applied-ai-018's picture
Add files using upload-large-folder tool
068e5e3 verified
raw
history blame
30 kB
import copy
import json
import logging
import subprocess
from collections import defaultdict
from typing import List, Optional, Union
import torch
import torch.nn.functional as F
import transformers
from packaging import version
from tqdm import tqdm
from transformers import GenerationConfig
from transformers.generation import StoppingCriteriaList
import lm_eval.models.utils
from lm_eval import utils
from lm_eval.api.model import TemplateLM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import stop_sequences_criteria
try:
NEURON_AVAILABLE = True
from optimum.neuron import NeuronModelForCausalLM
from optimum.neuron.generation import TokenSelector
from optimum.neuron.version import __version__ as optimum_neuron_version
except ImportError:
NeuronModelForCausalLM = object
NEURON_AVAILABLE = False
logger = logging.getLogger(__name__)
def get_nc_count() -> Union[int, None]:
"""Returns the number of neuron cores on the current instance."""
try:
cmd = "neuron-ls --json-output"
result = subprocess.run(cmd, shell=True, capture_output=True)
print(f"inferring nc_count from `neuron-ls` {result.stdout}")
json_output = json.loads(result.stdout)
count = sum([x["nc_count"] for x in json_output])
print(f"nc_count={count}")
return count
except Exception:
return None
def wrap_constant_batch_size(func):
def _decorator(self, input_ids):
"""input_ids a 2D array with batch_size on dim=0
makes sure the func runs with self.batch_size
"""
# access a from TestSample
batch_size = input_ids.shape[0]
if batch_size < self.batch_size:
# handle the event of input_ids.shape[0] != batch_size
# Neuron cores expect constant batch_size
input_ids = torch.concat(
(
input_ids,
# add missing_batch_size dummy
torch.zeros(
[self.batch_size - batch_size, *input_ids.size()[1:]],
dtype=input_ids.dtype,
device=input_ids.device,
),
),
dim=0,
)
elif batch_size > self.batch_size:
raise ValueError(
f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})"
)
# return the forward pass that requires constant batch size
return func(self, input_ids)[:batch_size]
return _decorator
class CustomNeuronModelForCausalLM(NeuronModelForCausalLM):
"""NeuronModelForCausalLM with `stopping_criteria` in `generate`"""
def generate(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
stopping_criteria: Optional["StoppingCriteriaList"] = None,
generation_config: Optional["GenerationConfig"] = None,
**kwargs,
) -> torch.LongTensor:
r"""
A streamlined generate() method overriding the transformers.GenerationMixin.generate() method.
This method uses the same logits processors/warpers and stopping criteria as the transformers library
`generate()` method but restricts the generation to greedy search and sampling.
It does not support transformers `generate()` advanced options.
Please refer to https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationMixin.generate
for details on generation configuration.
Parameters:
input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices.
generation_config (`~transformers.generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~transformers.generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
Returns:
`torch.Tensor`: A `torch.FloatTensor`.
"""
# The actual generation configuration is a combination of config and parameters
generation_config = copy.deepcopy(
self.generation_config if generation_config is None else generation_config
)
model_kwargs = generation_config.update(
**kwargs
) # All unused kwargs must be model kwargs
# Check model kwargs are actually used by either prepare_inputs_for_generation or forward
self._validate_model_kwargs(model_kwargs)
# Instantiate a TokenSelector for the specified configuration
selector = TokenSelector.create(
input_ids, generation_config, self, self.max_length
)
selector.stopping_criteria.append(stopping_criteria)
# Verify that the inputs are compatible with the model static input dimensions
batch_size, sequence_length = input_ids.shape
if sequence_length > self.max_length:
raise ValueError(
f"The input sequence length ({sequence_length}) exceeds the model static sequence length ({self.max_length})"
)
padded_input_ids = input_ids
padded_attention_mask = attention_mask
if batch_size > self.batch_size:
raise ValueError(
f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})"
)
elif batch_size < self.batch_size:
logger.warning(
"Inputs will be padded to match the model static batch size. This will increase latency."
)
padding_shape = [self.batch_size - batch_size, sequence_length]
padding = torch.full(
padding_shape, fill_value=self.config.eos_token_id, dtype=torch.int64
)
padded_input_ids = torch.cat([input_ids, padding])
if attention_mask is not None:
padding = torch.zeros(padding_shape, dtype=torch.int64)
padded_attention_mask = torch.cat([attention_mask, padding])
# Drop the current generation context and clear the Key/Value cache
self.reset_generation()
output_ids = self.generate_tokens(
padded_input_ids,
selector,
batch_size,
attention_mask=padded_attention_mask,
**model_kwargs,
)
return output_ids[:batch_size, :]
@register_model("neuronx")
class NEURON_HF(TemplateLM):
"""
Enables usage with on AWS Neuron
using the HuggingFace Transformers + Transformers neuronx library.
Tested with neuron 2.17.0
"""
_DEFAULT_MAX_LENGTH = 2048
def __init__(
self,
pretrained: Optional[str] = "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
revision: Optional[str] = "main",
tp_degree: Optional[int] = None,
subfolder: Optional[str] = None,
tokenizer: Optional[str] = None,
truncation: Optional[bool] = False,
max_length: Optional[int] = None,
dtype: Optional[Union[str, torch.dtype]] = "auto",
batch_size: Optional[int] = 1,
low_cpu_mem_usage: Optional[bool] = True,
trust_remote_code: Optional[bool] = False,
use_fast_tokenizer: Optional[bool] = True,
add_bos_token: Optional[bool] = False,
) -> None:
if not NEURON_AVAILABLE:
raise Exception(
"Tried to load neuron model, but neuron is not installed ",
"please install neuron via pip install transformers-neuron ",
"also make sure you are running on an AWS inf2 instance",
)
if version.parse(optimum_neuron_version) != version.parse("0.0.17"):
logger.warning(
'`optimum-neuron` model requires `pip install "optimum[neuronx]>=0.0.17" '
"preferably using the Hugging Face Neuron Deep Learning AMI (Ubuntu 22.04) "
"https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2 "
f"You are using optimum-neuron={optimum_neuron_version}"
)
super().__init__()
assert isinstance(pretrained, str)
assert isinstance(batch_size, (int, str))
self.batch_size_per_gpu = int(batch_size)
batch_size = int(batch_size)
if tp_degree is None:
# execute `neuron-ls --json-output | jq '.[0].nc_count'``
# to get the number of neuron cores on your instance
tp_degree = get_nc_count()
assert isinstance(tp_degree, int), (
f"model_args must include tp_degree. tp_degree must be set to an integer,"
f" but is tp_degree=`{tp_degree}` with type=`{type(tp_degree)}`."
"Set it to number of neuron cores on your instance."
" For inf2.xlarge and inf2.8xlarge, set it to `2`."
" For inf2.24xlarge, set it to `12`."
" For inf2.48xlarge, set it to `24`."
)
# TODO: update this to be less of a hack once subfolder is fixed in HF
revision = revision + ("/" + subfolder if subfolder is not None else "")
self._config = transformers.AutoConfig.from_pretrained(
pretrained,
revision=revision,
trust_remote_code=trust_remote_code,
)
torch_dtype = lm_eval.models.utils.get_dtype(dtype)
assert torch_dtype in [
torch.float16,
torch.bfloat16,
], "Only float16 and bfloat16 are supported"
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
pretrained if tokenizer is None else tokenizer,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
)
# Neuron specific code
if torch_dtype == torch.float16:
self.amp_dtype = "f16"
elif torch_dtype == torch.bfloat16:
self.amp_dtype = "bf16"
elif torch_dtype == torch.float32:
self.amp_dtype = "f32"
else:
raise NotImplementedError("Only float16 and bfloat16 are implemented.")
compiler_args = {"num_cores": tp_degree, "auto_cast_type": self.amp_dtype}
input_shapes = {
"batch_size": batch_size,
"sequence_length": self._DEFAULT_MAX_LENGTH,
}
print(
f"{'='*20} \n loading model to neuron with"
f" {compiler_args}, {input_shapes}..."
)
self.model = CustomNeuronModelForCausalLM.from_pretrained(
pretrained,
revision=revision,
trust_remote_code=trust_remote_code,
low_cpu_mem_usage=low_cpu_mem_usage,
export=True,
**compiler_args,
**input_shapes,
)
print(f"SUCCESS: neuron model compiled. \n {'='*20}")
self.truncation = truncation
self.vocab_size = self.tokenizer.vocab_size
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.add_bos_token = self.add_bos_token
self._max_length = max_length
self.batch_schedule = 1
self.batch_sizes = {}
@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def prefix_token_id(self):
# it is used as prefix for loglikelihood
return self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
@property
def max_length(self):
if self._max_length: # if max length manually set, return it
return self._max_length
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
for attr in seqlen_config_attrs:
if hasattr(self.model.config, attr):
return getattr(self.model.config, attr)
if hasattr(self.tokenizer, "model_max_length"):
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
return self._DEFAULT_MAX_LENGTH
return self.tokenizer.model_max_length
return self._DEFAULT_MAX_LENGTH
@property
def max_gen_toks(self) -> int:
return 256
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def device(self):
"""device are neuron cores, but the created tensors are on CPU."""
return "cpu"
@property
def rank(self):
return 0
@property
def world_size(self):
return 1
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None):
""" """
if add_special_tokens is None:
add_special_tokens = False or self.add_bos_token
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding
def tok_batch_encode(
self,
strings: List[str],
padding_side: str = "left",
left_truncate_len: int = None,
truncation: bool = False,
):
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
add_special_tokens = False or self.add_bos_token
encoding = self.tokenizer(
strings,
truncation=truncation,
padding="longest",
return_tensors="pt",
add_special_tokens=add_special_tokens,
)
if left_truncate_len:
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
encoding["attention_mask"] = encoding["attention_mask"][
:, -left_truncate_len:
]
self.tokenizer.padding_side = old_padding_side
return encoding["input_ids"], encoding["attention_mask"]
def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)
@wrap_constant_batch_size
def _model_call(self, input_ids: torch.Tensor):
"""
get logits for the entire sequence
:param input_ids: torch.Tensor
A torch tensor of shape [batch, sequence_cont]
the size of sequence may vary from call to call
:return
A torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model's decoder-lm head
"""
_, sequence_length = input_ids.shape
with torch.inference_mode():
cache_ids = torch.arange(0, sequence_length, dtype=torch.int32).split(1)
input_ids_split = input_ids.split(1, dim=1)
return torch.concat(
[
self.model.forward(
input_ids=input_id, cache_ids=cache_id, return_dict=False
)[0]
for input_id, cache_id in zip(input_ids_split, cache_ids)
],
dim=1,
)
def _model_generate(self, context, max_length, stop, **generation_kwargs):
# we require users to pass do_sample=True explicitly
# for non-greedy gen. This should be reevaluated when considering beam search.
with torch.inference_mode():
if "do_sample" not in generation_kwargs.keys():
generation_kwargs["do_sample"] = False
stopping_criteria = stop_sequences_criteria(
self.tokenizer,
stop + [self.tokenizer.decode([self.config.eos_token_id])],
1,
context.shape[0],
)
return self.model.generate(
input_ids=context,
max_length=max_length,
stopping_criteria=stopping_criteria,
pad_token_id=self.eot_token_id,
use_cache=True,
**generation_kwargs,
)
def _select_cont_toks(self, logits, contlen=None, inplen=None):
assert (
contlen and inplen
), "Must pass input len and cont. len to select scored logits for causal LM"
# discard right-padding.
# also discard the input/context tokens. we'll only score continuations.
logits = logits[inplen - contlen : inplen]
return logits
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
loglikelihoods = []
adaptive_batch_size = None
for (string,) in tqdm(
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
):
rolling_token_windows = list(
map(
utils.make_disjoint_window,
utils.get_rolling_token_windows(
token_list=self.tok_encode(string),
prefix_token=self.prefix_token_id,
max_seq_len=self.max_length,
context_len=1,
),
)
)
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
pad_amnt = 0
if self.world_size > 1:
# We pad out the external document-level iterator so the inner iterator doesn't hang
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
gathered = (
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
)
pad_amnt = max(gathered) - gathered[self.rank]
if pad_amnt > 0:
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
string_nll = self._loglikelihood_tokens(
rolling_token_windows,
disable_tqdm=True,
override_bs=adaptive_batch_size,
)
if (self.world_size > 1) and (pad_amnt > 0):
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
else:
# discard is_greedy
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
def _loglikelihood_tokens(
self, requests, disable_tqdm: bool = False, override_bs=None
):
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = x[1] + x[2]
return -len(toks), tuple(toks)
re_ord = utils.Reorderer(requests, _collate)
n_reordered_requests = len(re_ord.get_reordered()) # noqa
# automatic (variable) batch size detection for vectorization
# pull longest context sample from request
chunks = lm_eval.models.utils.chunks(
re_ord.get_reordered(),
n=self.batch_size,
fn=None,
)
for chunk in tqdm(chunks, disable=(disable_tqdm or (self.rank != 0))):
inps = []
cont_toks_list = []
inplens = []
conts = [] # noqa
encoder_attns = [] # noqa
padding_len_inp = None
padding_len_cont = None # noqa
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
# again because vectorizing is annoying
for _, context_enc, continuation_enc in chunk:
# sanity check
assert len(context_enc) > 0
assert len(continuation_enc) > 0
assert len(continuation_enc) <= self.max_length
# how this all works (illustrated on a causal decoder-only setup):
# CTX CONT
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
# model \ \
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
# when too long to fit in context, truncate from the left
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
padding_len_inp = (
max(padding_len_inp, inplen)
if padding_len_inp is not None
else inplen
)
inps.append(inp) # [1, inp_length]
cont_toks_list.append(continuation_enc)
inplens.append(inplen)
# create encoder attn mask and batched conts, if seq2seq
call_kwargs = {}
batched_inps = lm_eval.models.utils.pad_and_concat(
padding_len_inp, inps, padding_side="right"
) # [batch, padding_len_inp]
multi_logits = F.log_softmax(
self._model_call(batched_inps, **call_kwargs), dim=-1
) # [batch, padding_length (inp or cont), vocab]
for (cache_key, _, _), logits, inplen, cont_toks in zip(
chunk, multi_logits, inplens, cont_toks_list
):
# Slice to original seq length
contlen = len(cont_toks)
# take only logits in the continuation
# (discard context toks if decoder-only ; discard right-padding)
# also discards + checks for "virtual tokens" in the causal LM's input window
# from prompt/prefix tuning tokens, if applicable
ctx_len = inplen + (logits.shape[0] - padding_len_inp)
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
logits = logits.unsqueeze(0) # [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens = logits.argmax(dim=-1)
cont_toks = torch.tensor(
cont_toks, dtype=torch.long, device=self.device
).unsqueeze(0) # [1, seq]
max_equal = (greedy_tokens == cont_toks).all()
# Obtain log-probs at the corresponding continuation token indices
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
-1
) # [1, seq]
# Answer: (log prob, is-exact-match)
answer = (float(logits.sum()), bool(max_equal))
res.append(answer)
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
return re_ord.get_original(res)
def generate_until(self, requests, disable_tqdm: bool = False):
res = defaultdict(list)
re_ords = {}
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(x[0])
return -len(toks), x[0]
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
for key, reqs in grouper.get_grouped().items():
# within each set of reqs for given kwargs, we reorder by token length, descending.
re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
# for each different set of kwargs, we execute all requests, by batch.
for key, re_ord in re_ords.items():
chunks = lm_eval.models.utils.chunks(
re_ord.get_reordered(), n=self.batch_size
)
for chunk in tqdm(chunks, disable=self.rank != 0):
contexts, all_gen_kwargs = zip(*chunk)
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
# unpack our keyword arguments.
until = None
if isinstance(gen_kwargs, dict):
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
if "until" in kwargs.keys():
until = kwargs.pop("until")
if isinstance(until, str):
until = [until]
elif not isinstance(until, list):
raise ValueError(
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
)
else:
raise ValueError(
f"Expected `kwargs` to be of type `dict` but got {kwargs}"
)
# add EOS token to stop sequences
eos = self.tok_decode(self.eot_token_id)
if not until:
until = [eos]
else:
until.append(eos)
if "max_gen_toks" in kwargs.keys():
max_gen_toks = kwargs.pop("max_gen_toks")
else:
max_gen_toks = self.max_gen_toks
# first stop sequence is used to halt generation upon encountering
primary_until = [until[0]]
max_ctx_len = self.max_length - max_gen_toks
# encode, pad, and truncate contexts for this batch
context_enc, attn_masks = self.tok_batch_encode(
contexts,
left_truncate_len=max_ctx_len,
truncation=self.truncation,
)
context_enc = context_enc.to(self.device)
attn_masks = attn_masks.to(self.device)
if "max_length" not in kwargs:
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
# perform batched generation
cont = self._model_generate(
context=context_enc,
attention_mask=attn_masks,
stop=primary_until,
**kwargs,
)
cont_toks_list = cont.tolist()
for cont_toks, context in zip(cont_toks_list, contexts):
# discard context + left-padding toks if using causal decoder-only LM
cont_toks = cont_toks[context_enc.shape[1] :]
s = self.tok_decode(cont_toks)
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
for term in until:
if len(term) > 0:
# ignore '' separator,
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
s = s.split(term)[0]
res[key].append(s)
self.cache_hook.add_partial(
"generate_until", (context, gen_kwargs), s
)
pbar.update(1)
# reorder this group of results back to original unsorted form
res[key] = re_ord.get_original(res[key])
pbar.close()
return grouper.get_original(res)