peacock-data-public-datasets-idc-llm_eval
/
lm-evaluation
/scripts
/clean_training_data
/generate_13_grams.py
""" | |
Outputs all 13-grams found in The Pile. | |
Loops through all documents and uses the logic found in janitor.py to extract 13-grams. | |
We bucket each 13-gram by hash into separate file buckets to allow easy parallel processing in the | |
next stage. We also include the current pile document_id with each ngram instance to allow the | |
filtering to exclude 13-grams that match more then 10 unique documents (done further down the pipeline). | |
We didn't use lm_dataformat to output as it increases time 4x (slow jsonify) and makes | |
resuming hard (and we had the storage). | |
Arguments | |
--------- | |
--working_directory (-dir) | |
Directory containing the pile distribution. An "output" subdirectory will be created underneath | |
to store the bucketed 13-grams, checkpoint and done files. Default: current directory | |
--n_value (-n) | |
n value in n-gram, added for later use if ever needed. Default: 13 | |
--bucket_count (-buckets) | |
Number of file buckets to use when generating 13grams. Default: 500 | |
""" | |
import argparse | |
import glob | |
import json | |
import logging | |
import os | |
import pickle | |
import signal | |
import sys | |
from pathlib import Path | |
from signal import SIGINT | |
from tqdm import tqdm | |
from tqdm_multiprocess.logger import setup_logger_tqdm | |
from lm_eval.decontamination.archiver import Reader, TextArchive | |
from lm_eval.decontamination.janitor import Janitor, word_ngrams | |
logger = logging.getLogger(__name__) | |
terminate = False | |
def handler(signal_received, frame): | |
global terminate | |
terminate = True | |
def yield_pile(start_offsets=None, checkpoint_offset=None): | |
directory = "pile" | |
if not os.path.exists(directory): | |
print( | |
"We expect the pile archives to be in the 'pile' directory, but this was not found." | |
) | |
raise Exception("Pile directory not found.") | |
files = list(sorted(glob.glob(os.path.join(directory, "*.jsonl.zst*")))) | |
pile_global_offset = 0 | |
start_file = 0 | |
if checkpoint_offset: | |
for file_i, start_offset in enumerate(start_offsets): | |
if start_offset > checkpoint_offset: | |
break | |
start_file = file_i | |
pile_global_offset = start_offset | |
for file_i, file in enumerate(files): | |
if file_i < start_file: | |
logger.info(f"Skipping file {file}") | |
continue | |
logger.info(f"Reading from pile file: {file}") | |
reader = Reader() | |
for document in reader.read(file): | |
yield (pile_global_offset, document) | |
pile_global_offset += 1 | |
# Hash buckets > disk backed files. Supports file position checkpointing and resuming | |
# Allows you to write continuously and checkpoint intermittently. If a failure occurs | |
# the buckets are simply truncated at your last checkpoint. | |
class Buckets: | |
def __init__(self, directory, num_buckets): | |
self.bucket_files = [ | |
os.path.join(directory, f"ngrams_{i}.bkt.txt") for i in range(num_buckets) | |
] | |
self.buckets = list(map(TextArchive, self.bucket_files)) | |
self.checkpoint_file = os.path.join(directory, "bucket_offsets.ckpt") | |
if os.path.exists(self.checkpoint_file): | |
self.bucket_offsets = pickle.load(open(self.checkpoint_file, "rb")) | |
else: | |
self.bucket_offsets = [0 for i in range(len(self.buckets))] | |
for i, offset in enumerate(self.bucket_offsets): | |
bucket = self.buckets[i] | |
bucket.fh.seek(offset) | |
bucket.fh.truncate() | |
def add_data(self, key, value): | |
i = hash(key) % len(self.buckets) | |
bucket = self.buckets[i] | |
bucket.add_data(value) | |
def save_checkpoint(self): | |
for bucket in self.buckets: | |
bucket.fh.flush() | |
bucket_offsets = [bucket.fh.tell() for bucket in self.buckets] | |
pickle.dump(bucket_offsets, open(self.checkpoint_file, "wb")) | |
def close_buckets(self): | |
for bucket in self.buckets: | |
bucket.commit() | |
def do_ngrams_in_buckets(n_value, working_directory, bucket_count): | |
pile_statistics = json.load(open("pile_statistics.json", "r", encoding="utf-8")) | |
pile_document_count = pile_statistics["Document Count"] | |
start_offsets = pile_statistics["File Start Offsets"] | |
output_directory = os.path.join(working_directory, "output") | |
os.makedirs(output_directory, exist_ok=True) | |
logger.info(f"Generating {n_value}-grams and bucketing.") | |
# Done file | |
done_file = os.path.join(output_directory, "ngram_buckets.done") | |
if os.path.exists(done_file): | |
logger.info("ngrams already generated and bucketed, skipping") | |
return | |
# Checkpoint | |
checkpoint_file = os.path.join(working_directory, "pile_offset.ckpt") | |
if os.path.exists(checkpoint_file): | |
checkpoint_offset = pickle.load(open(checkpoint_file, "rb")) | |
iterate = True | |
else: | |
checkpoint_offset = 0 | |
iterate = False | |
logger.info(f"Starting at pile document index {checkpoint_offset}") | |
buckets = Buckets(output_directory, bucket_count) | |
janitor = Janitor() | |
batch_size = 1000 | |
batch_counter = 0 | |
with tqdm(total=checkpoint_offset, dynamic_ncols=True, unit="docs") as progress: | |
for offset, document in yield_pile(start_offsets, checkpoint_offset): | |
if iterate: | |
logger.info(f"Iterating to offset {checkpoint_offset} from {offset}") | |
progress.update(offset) | |
iterate = False | |
if offset < checkpoint_offset: | |
progress.update() | |
if terminate: | |
return | |
continue | |
if offset == checkpoint_offset: | |
progress.reset(total=pile_document_count) | |
progress.update(checkpoint_offset) | |
# Save checkpoint every "batch_size", only allow terminate after checkpoint | |
if batch_counter == batch_size: | |
progress.update(batch_size) | |
batch_counter = 0 | |
buckets.save_checkpoint() | |
pickle.dump(offset, open(checkpoint_file, "wb")) | |
if terminate: | |
buckets.close_buckets() | |
return | |
ngrams = word_ngrams(janitor.normalize_string(document), n_value) | |
for ngram in ngrams: | |
buckets.add_data(ngram, f"{ngram} {offset}") | |
batch_counter += 1 | |
buckets.close_buckets() | |
Path(done_file).touch() | |
parser = argparse.ArgumentParser(description="Generate 13 grams from Pile.") | |
parser.add_argument("-dir", "--working_directory", default="") | |
parser.add_argument("-n", "--n_value", type=int, default=13) | |
parser.add_argument("-buckets", "--bucket_count", type=int, default=500) | |
if __name__ == "__main__": | |
version = 1.00 | |
print(f"Running version {version}") | |
if "PYTHONHASHSEED" not in os.environ or os.environ["PYTHONHASHSEED"] != "0": | |
print("Please run 'export PYTHONHASHSEED=0' before running generate.") | |
sys.exit() | |
# Handle sigint (ctrl-c) cleanly | |
previous_signal_int = signal.signal(SIGINT, handler) | |
logfile_path = "ngrams.log" | |
setup_logger_tqdm(logfile_path) | |
args = parser.parse_args() | |
do_ngrams_in_buckets(args.n_value, args.working_directory, args.bucket_count) | |
info_dict = {"title": "dataset ngrams", "ngram_size": 13} | |
info_dict_path = os.path.join(args.working_directory, "info.json") | |
json.dump(info_dict, open(info_dict_path, "w", encoding="utf-8")) | |