|
from __future__ import annotations |
|
|
|
import sys |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
|
|
import lm_eval.tasks as tasks |
|
from lm_eval.api.instance import Instance |
|
from lm_eval.models.huggingface import HFLM |
|
|
|
|
|
task_manager = tasks.TaskManager() |
|
|
|
|
|
class Test_HFLM: |
|
torch.use_deterministic_algorithms(True) |
|
task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"]) |
|
version_minor = sys.version_info.minor |
|
multiple_choice_task = task_list["arc_easy"] |
|
multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1) |
|
MULTIPLE_CH: list[Instance] = multiple_choice_task.instances |
|
generate_until_task = task_list["gsm8k"] |
|
generate_until_task._config.generation_kwargs["max_gen_toks"] = 10 |
|
generate_until_task.build_all_requests(limit=10, rank=0, world_size=1) |
|
generate_until: list[Instance] = generate_until_task.instances |
|
rolling_task = task_list["wikitext"] |
|
rolling_task.build_all_requests(limit=10, rank=0, world_size=1) |
|
ROLLING: list[Instance] = rolling_task.instances |
|
|
|
MULTIPLE_CH_RES = [ |
|
-41.902435302734375, |
|
-42.939308166503906, |
|
-33.914180755615234, |
|
-37.07139205932617, |
|
-22.95258331298828, |
|
-20.342208862304688, |
|
-14.818366050720215, |
|
-27.942853927612305, |
|
-15.80704116821289, |
|
-15.936427116394043, |
|
-13.052018165588379, |
|
-18.04828453063965, |
|
-13.345029830932617, |
|
-13.366025924682617, |
|
-12.127134323120117, |
|
-11.872495651245117, |
|
-47.10598373413086, |
|
-47.76410675048828, |
|
-36.4406852722168, |
|
-50.0289421081543, |
|
-16.72093963623047, |
|
-18.535587310791016, |
|
-26.46993637084961, |
|
-20.355995178222656, |
|
-17.757919311523438, |
|
-21.80595588684082, |
|
-33.1990852355957, |
|
-39.28636932373047, |
|
-14.759679794311523, |
|
-16.753942489624023, |
|
-11.486852645874023, |
|
-15.42177677154541, |
|
-13.15798282623291, |
|
-15.887393951416016, |
|
-15.28614616394043, |
|
-12.339089393615723, |
|
-44.59441375732422, |
|
-55.40888214111328, |
|
-52.70050811767578, |
|
-56.25089645385742, |
|
] |
|
generate_until_RES = [ |
|
" The average of $2.50 each is $", |
|
" A robe takes 2 bolts of blue fiber and half", |
|
" $50,000 in repairs.\n\nQuestion", |
|
" He runs 1 sprint 3 times a week.", |
|
" They feed each of her chickens three cups of mixed", |
|
" The price of the glasses is $5, but", |
|
" The total percentage of students who said they like to", |
|
" Carla is downloading a 200 GB file. Normally", |
|
" John drives for 3 hours at a speed of 60", |
|
" Eliza sells 4 tickets to 5 friends so she", |
|
] |
|
ROLLING_RES = [ |
|
-3603.6328125, |
|
-19779.23974609375, |
|
-8834.16455078125, |
|
-27967.591796875, |
|
-7636.794982910156, |
|
-9491.93505859375, |
|
-41043.4248046875, |
|
-8397.689819335938, |
|
-45969.47155761719, |
|
-7158.90625, |
|
] |
|
LM = HFLM(pretrained="EleutherAI/pythia-70m", device="cpu", dtype="float32") |
|
|
|
def test_logliklihood(self) -> None: |
|
res = self.LM.loglikelihood(self.MULTIPLE_CH) |
|
_RES, _res = self.MULTIPLE_CH_RES, [r[0] for r in res] |
|
|
|
dir_path = Path("test_logs") |
|
dir_path.mkdir(parents=True, exist_ok=True) |
|
|
|
file_path = dir_path / f"outputs_log_{self.version_minor}.txt" |
|
file_path = file_path.resolve() |
|
with open(file_path, "w") as f: |
|
f.write("\n".join(str(x) for x in _res)) |
|
assert np.allclose(_res, _RES, atol=1e-2) |
|
|
|
argmax_RES, argmax_res = ( |
|
np.argmax(np.array(_RES).reshape(-1, 4), axis=1), |
|
np.argmax(np.array(_res).reshape(-1, 4), axis=1), |
|
) |
|
assert (argmax_RES == argmax_res).all() |
|
|
|
def test_generate_until(self) -> None: |
|
res = self.LM.generate_until(self.generate_until) |
|
assert res == self.generate_until_RES |
|
|
|
def test_logliklihood_rolling(self) -> None: |
|
res = self.LM.loglikelihood_rolling(self.ROLLING) |
|
assert np.allclose(res, self.ROLLING_RES, atol=1e-1) |
|
|
|
def test_toc_encode(self) -> None: |
|
res = self.LM.tok_encode("foo bar") |
|
assert res == [12110, 2534] |
|
|
|
def test_toc_decode(self) -> None: |
|
res = self.LM.tok_decode([12110, 2534]) |
|
assert res == "foo bar" |
|
|
|
def test_batch_encode(self) -> None: |
|
res = self.LM.tok_batch_encode(["foo bar", "bar foo"])[0].tolist() |
|
assert res == [[12110, 2534], [2009, 17374]] |
|
|
|
def test_model_generate(self) -> None: |
|
context = self.LM.tok_batch_encode(["foo bar"])[0] |
|
res = self.LM._model_generate(context, max_length=10, stop=["\n\n"]) |
|
res = self.LM.tok_decode(res[0]) |
|
assert res == "foo bar\n<bazhang>!info bar" |
|
|