peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nvidia
/cublas
/include
/cublasLt.h
/* | |
* Copyright 1993-2022 NVIDIA Corporation. All rights reserved. | |
* | |
* NOTICE TO LICENSEE: | |
* | |
* This source code and/or documentation ("Licensed Deliverables") are | |
* subject to NVIDIA intellectual property rights under U.S. and | |
* international Copyright laws. | |
* | |
* These Licensed Deliverables contained herein is PROPRIETARY and | |
* CONFIDENTIAL to NVIDIA and is being provided under the terms and | |
* conditions of a form of NVIDIA software license agreement by and | |
* between NVIDIA and Licensee ("License Agreement") or electronically | |
* accepted by Licensee. Notwithstanding any terms or conditions to | |
* the contrary in the License Agreement, reproduction or disclosure | |
* of the Licensed Deliverables to any third party without the express | |
* written consent of NVIDIA is prohibited. | |
* | |
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE | |
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE | |
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS | |
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. | |
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED | |
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, | |
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. | |
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE | |
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY | |
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY | |
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS | |
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
* OF THESE LICENSED DELIVERABLES. | |
* | |
* U.S. Government End Users. These Licensed Deliverables are a | |
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT | |
* 1995), consisting of "commercial computer software" and "commercial | |
* computer software documentation" as such terms are used in 48 | |
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government | |
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and | |
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all | |
* U.S. Government End Users acquire the Licensed Deliverables with | |
* only those rights set forth herein. | |
* | |
* Any use of the Licensed Deliverables in individual and commercial | |
* software must include, in the user documentation and internal | |
* comments to the code, the above Disclaimer and U.S. Government End | |
* Users Notice. | |
*/ | |
extern "C" { | |
/** Opaque structure holding CUBLASLT context | |
*/ | |
typedef struct cublasLtContext* cublasLtHandle_t; | |
cublasStatus_t CUBLASWINAPI cublasLtCreate(cublasLtHandle_t* lightHandle); | |
cublasStatus_t CUBLASWINAPI cublasLtDestroy(cublasLtHandle_t lightHandle); | |
const char* CUBLASWINAPI cublasLtGetStatusName(cublasStatus_t status); | |
const char* CUBLASWINAPI cublasLtGetStatusString(cublasStatus_t status); | |
size_t CUBLASWINAPI cublasLtGetVersion(void); | |
size_t CUBLASWINAPI cublasLtGetCudartVersion(void); | |
cublasStatus_t CUBLASWINAPI cublasLtGetProperty(libraryPropertyType type, int* value); | |
cublasStatus_t CUBLASWINAPI cublasLtHeuristicsCacheGetCapacity(size_t* capacity); | |
cublasStatus_t CUBLASWINAPI cublasLtHeuristicsCacheSetCapacity(size_t capacity); | |
/** Restricts usage of CPU instructions (ISA) specified by the flags in the mask. | |
* | |
* Flags can be combined with bitwise OR(|) operator. Supported flags: | |
* - 0x1 -- x86-64 AVX512 ISA | |
* | |
* Default mask: 0 (any applicable ISA is allowed). | |
* | |
* The function returns the previous value of the mask. | |
* The function takes precedence over the environment variable CUBLASLT_DISABLE_CPU_INSTRUCTIONS_MASK. | |
*/ | |
unsigned CUBLASWINAPI cublasLtDisableCpuInstructionsSetMask(unsigned mask); | |
/** Semi-opaque descriptor for matrix memory layout | |
*/ | |
typedef struct { | |
uint64_t data[8]; | |
} cublasLtMatrixLayoutOpaque_t; | |
/** Opaque descriptor for matrix memory layout | |
*/ | |
typedef cublasLtMatrixLayoutOpaque_t* cublasLtMatrixLayout_t; | |
/** Semi-opaque algorithm descriptor (to avoid complicated alloc/free schemes) | |
* | |
* This structure can be trivially serialized and later restored for use with the same version of cuBLAS library to save | |
* on selecting the right configuration again. | |
*/ | |
typedef struct { | |
uint64_t data[8]; | |
} cublasLtMatmulAlgo_t; | |
/** Semi-opaque descriptor for cublasLtMatmul() operation details | |
*/ | |
typedef struct { | |
uint64_t data[23]; | |
} cublasLtMatmulDescOpaque_t; | |
/** Opaque descriptor for cublasLtMatmul() operation details | |
*/ | |
typedef cublasLtMatmulDescOpaque_t* cublasLtMatmulDesc_t; | |
/** Semi-opaque descriptor for cublasLtMatrixTransform() operation details | |
*/ | |
typedef struct { | |
uint64_t data[8]; | |
} cublasLtMatrixTransformDescOpaque_t; | |
/** Opaque descriptor for cublasLtMatrixTransform() operation details | |
*/ | |
typedef cublasLtMatrixTransformDescOpaque_t* cublasLtMatrixTransformDesc_t; | |
/** Semi-opaque descriptor for cublasLtMatmulPreference() operation details | |
*/ | |
typedef struct { | |
uint64_t data[8]; | |
} cublasLtMatmulPreferenceOpaque_t; | |
/** Opaque descriptor for cublasLtMatmulAlgoGetHeuristic() configuration | |
*/ | |
typedef cublasLtMatmulPreferenceOpaque_t* cublasLtMatmulPreference_t; | |
/** Tile size (in C/D matrix Rows x Cols) | |
* | |
* General order of tile IDs is sorted by size first and by first dimension second. | |
*/ | |
typedef enum { | |
CUBLASLT_MATMUL_TILE_UNDEFINED = 0, | |
CUBLASLT_MATMUL_TILE_8x8 = 1, | |
CUBLASLT_MATMUL_TILE_8x16 = 2, | |
CUBLASLT_MATMUL_TILE_16x8 = 3, | |
CUBLASLT_MATMUL_TILE_8x32 = 4, | |
CUBLASLT_MATMUL_TILE_16x16 = 5, | |
CUBLASLT_MATMUL_TILE_32x8 = 6, | |
CUBLASLT_MATMUL_TILE_8x64 = 7, | |
CUBLASLT_MATMUL_TILE_16x32 = 8, | |
CUBLASLT_MATMUL_TILE_32x16 = 9, | |
CUBLASLT_MATMUL_TILE_64x8 = 10, | |
CUBLASLT_MATMUL_TILE_32x32 = 11, | |
CUBLASLT_MATMUL_TILE_32x64 = 12, | |
CUBLASLT_MATMUL_TILE_64x32 = 13, | |
CUBLASLT_MATMUL_TILE_32x128 = 14, | |
CUBLASLT_MATMUL_TILE_64x64 = 15, | |
CUBLASLT_MATMUL_TILE_128x32 = 16, | |
CUBLASLT_MATMUL_TILE_64x128 = 17, | |
CUBLASLT_MATMUL_TILE_128x64 = 18, | |
CUBLASLT_MATMUL_TILE_64x256 = 19, | |
CUBLASLT_MATMUL_TILE_128x128 = 20, | |
CUBLASLT_MATMUL_TILE_256x64 = 21, | |
CUBLASLT_MATMUL_TILE_64x512 = 22, | |
CUBLASLT_MATMUL_TILE_128x256 = 23, | |
CUBLASLT_MATMUL_TILE_256x128 = 24, | |
CUBLASLT_MATMUL_TILE_512x64 = 25, | |
CUBLASLT_MATMUL_TILE_64x96 = 26, | |
CUBLASLT_MATMUL_TILE_96x64 = 27, | |
CUBLASLT_MATMUL_TILE_96x128 = 28, | |
CUBLASLT_MATMUL_TILE_128x160 = 29, | |
CUBLASLT_MATMUL_TILE_160x128 = 30, | |
CUBLASLT_MATMUL_TILE_192x128 = 31, | |
CUBLASLT_MATMUL_TILE_128x192 = 32, | |
CUBLASLT_MATMUL_TILE_128x96 = 33, | |
CUBLASLT_MATMUL_TILE_32x256 = 34, | |
CUBLASLT_MATMUL_TILE_256x32 = 35, | |
CUBLASLT_MATMUL_TILE_END | |
} cublasLtMatmulTile_t; | |
/** Size and number of stages in which elements are read into shared memory | |
* | |
* General order of stages IDs is sorted by stage size first and by number of stages second. | |
*/ | |
typedef enum { | |
CUBLASLT_MATMUL_STAGES_UNDEFINED = 0, | |
CUBLASLT_MATMUL_STAGES_16x1 = 1, | |
CUBLASLT_MATMUL_STAGES_16x2 = 2, | |
CUBLASLT_MATMUL_STAGES_16x3 = 3, | |
CUBLASLT_MATMUL_STAGES_16x4 = 4, | |
CUBLASLT_MATMUL_STAGES_16x5 = 5, | |
CUBLASLT_MATMUL_STAGES_16x6 = 6, | |
CUBLASLT_MATMUL_STAGES_32x1 = 7, | |
CUBLASLT_MATMUL_STAGES_32x2 = 8, | |
CUBLASLT_MATMUL_STAGES_32x3 = 9, | |
CUBLASLT_MATMUL_STAGES_32x4 = 10, | |
CUBLASLT_MATMUL_STAGES_32x5 = 11, | |
CUBLASLT_MATMUL_STAGES_32x6 = 12, | |
CUBLASLT_MATMUL_STAGES_64x1 = 13, | |
CUBLASLT_MATMUL_STAGES_64x2 = 14, | |
CUBLASLT_MATMUL_STAGES_64x3 = 15, | |
CUBLASLT_MATMUL_STAGES_64x4 = 16, | |
CUBLASLT_MATMUL_STAGES_64x5 = 17, | |
CUBLASLT_MATMUL_STAGES_64x6 = 18, | |
CUBLASLT_MATMUL_STAGES_128x1 = 19, | |
CUBLASLT_MATMUL_STAGES_128x2 = 20, | |
CUBLASLT_MATMUL_STAGES_128x3 = 21, | |
CUBLASLT_MATMUL_STAGES_128x4 = 22, | |
CUBLASLT_MATMUL_STAGES_128x5 = 23, | |
CUBLASLT_MATMUL_STAGES_128x6 = 24, | |
CUBLASLT_MATMUL_STAGES_32x10 = 25, | |
CUBLASLT_MATMUL_STAGES_8x4 = 26, | |
CUBLASLT_MATMUL_STAGES_16x10 = 27, | |
CUBLASLT_MATMUL_STAGES_8x5 = 28, | |
CUBLASLT_MATMUL_STAGES_8x3 = 31, | |
CUBLASLT_MATMUL_STAGES_8xAUTO = 32, | |
CUBLASLT_MATMUL_STAGES_16xAUTO = 33, | |
CUBLASLT_MATMUL_STAGES_32xAUTO = 34, | |
CUBLASLT_MATMUL_STAGES_64xAUTO = 35, | |
CUBLASLT_MATMUL_STAGES_128xAUTO = 36, | |
CUBLASLT_MATMUL_STAGES_END | |
} cublasLtMatmulStages_t; | |
/** Thread Block Cluster size | |
* | |
* Typically dimensioned similar to cublasLtMatmulTile_t, with the third coordinate unused at this time. | |
*/ | |
typedef enum { | |
/** Let library pick cluster shape automatically */ | |
CUBLASLT_CLUSTER_SHAPE_AUTO = 0, | |
CUBLASLT_CLUSTER_SHAPE_1x1x1 = 2, | |
CUBLASLT_CLUSTER_SHAPE_2x1x1 = 3, | |
CUBLASLT_CLUSTER_SHAPE_4x1x1 = 4, | |
CUBLASLT_CLUSTER_SHAPE_1x2x1 = 5, | |
CUBLASLT_CLUSTER_SHAPE_2x2x1 = 6, | |
CUBLASLT_CLUSTER_SHAPE_4x2x1 = 7, | |
CUBLASLT_CLUSTER_SHAPE_1x4x1 = 8, | |
CUBLASLT_CLUSTER_SHAPE_2x4x1 = 9, | |
CUBLASLT_CLUSTER_SHAPE_4x4x1 = 10, | |
CUBLASLT_CLUSTER_SHAPE_8x1x1 = 11, | |
CUBLASLT_CLUSTER_SHAPE_1x8x1 = 12, | |
CUBLASLT_CLUSTER_SHAPE_8x2x1 = 13, | |
CUBLASLT_CLUSTER_SHAPE_2x8x1 = 14, | |
CUBLASLT_CLUSTER_SHAPE_16x1x1 = 15, | |
CUBLASLT_CLUSTER_SHAPE_1x16x1 = 16, | |
CUBLASLT_CLUSTER_SHAPE_3x1x1 = 17, | |
CUBLASLT_CLUSTER_SHAPE_5x1x1 = 18, | |
CUBLASLT_CLUSTER_SHAPE_6x1x1 = 19, | |
CUBLASLT_CLUSTER_SHAPE_7x1x1 = 20, | |
CUBLASLT_CLUSTER_SHAPE_9x1x1 = 21, | |
CUBLASLT_CLUSTER_SHAPE_10x1x1 = 22, | |
CUBLASLT_CLUSTER_SHAPE_11x1x1 = 23, | |
CUBLASLT_CLUSTER_SHAPE_12x1x1 = 24, | |
CUBLASLT_CLUSTER_SHAPE_13x1x1 = 25, | |
CUBLASLT_CLUSTER_SHAPE_14x1x1 = 26, | |
CUBLASLT_CLUSTER_SHAPE_15x1x1 = 27, | |
CUBLASLT_CLUSTER_SHAPE_3x2x1 = 28, | |
CUBLASLT_CLUSTER_SHAPE_5x2x1 = 29, | |
CUBLASLT_CLUSTER_SHAPE_6x2x1 = 30, | |
CUBLASLT_CLUSTER_SHAPE_7x2x1 = 31, | |
CUBLASLT_CLUSTER_SHAPE_1x3x1 = 32, | |
CUBLASLT_CLUSTER_SHAPE_2x3x1 = 33, | |
CUBLASLT_CLUSTER_SHAPE_3x3x1 = 34, | |
CUBLASLT_CLUSTER_SHAPE_4x3x1 = 35, | |
CUBLASLT_CLUSTER_SHAPE_5x3x1 = 36, | |
CUBLASLT_CLUSTER_SHAPE_3x4x1 = 37, | |
CUBLASLT_CLUSTER_SHAPE_1x5x1 = 38, | |
CUBLASLT_CLUSTER_SHAPE_2x5x1 = 39, | |
CUBLASLT_CLUSTER_SHAPE_3x5x1 = 40, | |
CUBLASLT_CLUSTER_SHAPE_1x6x1 = 41, | |
CUBLASLT_CLUSTER_SHAPE_2x6x1 = 42, | |
CUBLASLT_CLUSTER_SHAPE_1x7x1 = 43, | |
CUBLASLT_CLUSTER_SHAPE_2x7x1 = 44, | |
CUBLASLT_CLUSTER_SHAPE_1x9x1 = 45, | |
CUBLASLT_CLUSTER_SHAPE_1x10x1 = 46, | |
CUBLASLT_CLUSTER_SHAPE_1x11x1 = 47, | |
CUBLASLT_CLUSTER_SHAPE_1x12x1 = 48, | |
CUBLASLT_CLUSTER_SHAPE_1x13x1 = 49, | |
CUBLASLT_CLUSTER_SHAPE_1x14x1 = 50, | |
CUBLASLT_CLUSTER_SHAPE_1x15x1 = 51, | |
CUBLASLT_CLUSTER_SHAPE_END | |
} cublasLtClusterShape_t; | |
/** Inner size of the kernel | |
* | |
* Represents various aspects of internal kernel design, that don't impact CUDA grid size but may have other more subtle | |
* effects. | |
* | |
*/ | |
typedef enum { | |
CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED = 0, | |
CUBLASLT_MATMUL_INNER_SHAPE_MMA884 = 1, | |
CUBLASLT_MATMUL_INNER_SHAPE_MMA1684 = 2, | |
CUBLASLT_MATMUL_INNER_SHAPE_MMA1688 = 3, | |
CUBLASLT_MATMUL_INNER_SHAPE_MMA16816 = 4, | |
CUBLASLT_MATMUL_INNER_SHAPE_END | |
} cublasLtMatmulInnerShape_t; | |
/** Pointer mode to use for alpha/beta */ | |
typedef enum { | |
/** matches CUBLAS_POINTER_MODE_HOST, pointer targets a single value host memory */ | |
CUBLASLT_POINTER_MODE_HOST = CUBLAS_POINTER_MODE_HOST, | |
/** matches CUBLAS_POINTER_MODE_DEVICE, pointer targets a single value device memory */ | |
CUBLASLT_POINTER_MODE_DEVICE = CUBLAS_POINTER_MODE_DEVICE, | |
/** pointer targets an array in device memory */ | |
CUBLASLT_POINTER_MODE_DEVICE_VECTOR = 2, | |
/** alpha pointer targets an array in device memory, beta is zero. Note: | |
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE is not supported, must be 0. */ | |
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO = 3, | |
/** alpha pointer targets an array in device memory, beta is a single value in host memory. */ | |
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST = 4, | |
} cublasLtPointerMode_t; | |
/** Mask to define pointer mode capability */ | |
typedef enum { | |
/** see CUBLASLT_POINTER_MODE_HOST */ | |
CUBLASLT_POINTER_MODE_MASK_HOST = 1, | |
/** see CUBLASLT_POINTER_MODE_DEVICE */ | |
CUBLASLT_POINTER_MODE_MASK_DEVICE = 2, | |
/** see CUBLASLT_POINTER_MODE_DEVICE_VECTOR */ | |
CUBLASLT_POINTER_MODE_MASK_DEVICE_VECTOR = 4, | |
/** see CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO */ | |
CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_ZERO = 8, | |
/** see CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST */ | |
CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_HOST = 16, | |
} cublasLtPointerModeMask_t; | |
/** Implementation details that may affect numerical behavior of algorithms. */ | |
typedef uint64_t cublasLtNumericalImplFlags_t; | |
/** Execute matrix multiplication (D = alpha * op(A) * op(B) + beta * C). | |
* | |
* \retval CUBLAS_STATUS_NOT_INITIALIZED if cuBLASLt handle has not been initialized | |
* \retval CUBLAS_STATUS_INVALID_VALUE if parameters are in conflict or in an impossible configuration; e.g. | |
* when workspaceSizeInBytes is less than workspace required by configured | |
* algo | |
* \retval CUBLAS_STATUS_NOT_SUPPORTED if current implementation on selected device doesn't support configured | |
* operation | |
* \retval CUBLAS_STATUS_ARCH_MISMATCH if configured operation cannot be run using selected device | |
* \retval CUBLAS_STATUS_EXECUTION_FAILED if cuda reported execution error from the device | |
* \retval CUBLAS_STATUS_SUCCESS if the operation completed successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmul(cublasLtHandle_t lightHandle, | |
cublasLtMatmulDesc_t computeDesc, | |
const void* alpha, /* host or device pointer */ | |
const void* A, | |
cublasLtMatrixLayout_t Adesc, | |
const void* B, | |
cublasLtMatrixLayout_t Bdesc, | |
const void* beta, /* host or device pointer */ | |
const void* C, | |
cublasLtMatrixLayout_t Cdesc, | |
void* D, | |
cublasLtMatrixLayout_t Ddesc, | |
const cublasLtMatmulAlgo_t* algo, | |
void* workspace, | |
size_t workspaceSizeInBytes, | |
cudaStream_t stream); | |
/** Matrix layout conversion helper (C = alpha * op(A) + beta * op(B)) | |
* | |
* Can be used to change memory order of data or to scale and shift the values. | |
* | |
* \retval CUBLAS_STATUS_NOT_INITIALIZED if cuBLASLt handle has not been initialized | |
* \retval CUBLAS_STATUS_INVALID_VALUE if parameters are in conflict or in an impossible configuration; e.g. | |
* when A is not NULL, but Adesc is NULL | |
* \retval CUBLAS_STATUS_NOT_SUPPORTED if current implementation on selected device doesn't support configured | |
* operation | |
* \retval CUBLAS_STATUS_ARCH_MISMATCH if configured operation cannot be run using selected device | |
* \retval CUBLAS_STATUS_EXECUTION_FAILED if cuda reported execution error from the device | |
* \retval CUBLAS_STATUS_SUCCESS if the operation completed successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransform(cublasLtHandle_t lightHandle, | |
cublasLtMatrixTransformDesc_t transformDesc, | |
const void* alpha, /* host or device pointer */ | |
const void* A, | |
cublasLtMatrixLayout_t Adesc, | |
const void* beta, /* host or device pointer */ | |
const void* B, | |
cublasLtMatrixLayout_t Bdesc, | |
void* C, | |
cublasLtMatrixLayout_t Cdesc, | |
cudaStream_t stream); | |
/* ---------------------------------------------------------------------------------------*/ | |
/* Helper functions for cublasLtMatrixLayout_t */ | |
/* ---------------------------------------------------------------------------------------*/ | |
/** Enum for data ordering */ | |
typedef enum { | |
/** Column-major | |
* | |
* Leading dimension is the stride (in elements) to the beginning of next column in memory. | |
*/ | |
CUBLASLT_ORDER_COL = 0, | |
/** Row major | |
* | |
* Leading dimension is the stride (in elements) to the beginning of next row in memory. | |
*/ | |
CUBLASLT_ORDER_ROW = 1, | |
/** Column-major ordered tiles of 32 columns. | |
* | |
* Leading dimension is the stride (in elements) to the beginning of next group of 32-columns. E.g. if matrix has 33 | |
* columns and 2 rows, ld must be at least (32) * 2 = 64. | |
*/ | |
CUBLASLT_ORDER_COL32 = 2, | |
/** Column-major ordered tiles of composite tiles with total 32 columns and 8 rows, tile composed of interleaved | |
* inner tiles of 4 columns within 4 even or odd rows in an alternating pattern. | |
* | |
* Leading dimension is the stride (in elements) to the beginning of the first 32 column x 8 row tile for the next | |
* 32-wide group of columns. E.g. if matrix has 33 columns and 1 row, ld must be at least (32 * 8) * 1 = 256. | |
*/ | |
CUBLASLT_ORDER_COL4_4R2_8C = 3, | |
/** Column-major ordered tiles of composite tiles with total 32 columns ands 32 rows. | |
* Element offset within the tile is calculated as (((row%8)/2*4+row/8)*2+row%2)*32+col. | |
* | |
* Leading dimension is the stride (in elements) to the beginning of the first 32 column x 32 row tile for the next | |
* 32-wide group of columns. E.g. if matrix has 33 columns and 1 row, ld must be at least (32*32)*1 = 1024. | |
*/ | |
CUBLASLT_ORDER_COL32_2R_4R4 = 4, | |
} cublasLtOrder_t; | |
/** Attributes of memory layout */ | |
typedef enum { | |
/** Data type, see cudaDataType. | |
* | |
* uint32_t | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_TYPE = 0, | |
/** Memory order of the data, see cublasLtOrder_t. | |
* | |
* int32_t, default: CUBLASLT_ORDER_COL | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_ORDER = 1, | |
/** Number of rows. | |
* | |
* Usually only values that can be expressed as int32_t are supported. | |
* | |
* uint64_t | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_ROWS = 2, | |
/** Number of columns. | |
* | |
* Usually only values that can be expressed as int32_t are supported. | |
* | |
* uint64_t | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_COLS = 3, | |
/** Matrix leading dimension. | |
* | |
* For CUBLASLT_ORDER_COL this is stride (in elements) of matrix column, for more details and documentation for | |
* other memory orders see documentation for cublasLtOrder_t values. | |
* | |
* Currently only non-negative values are supported, must be large enough so that matrix memory locations are not | |
* overlapping (e.g. greater or equal to CUBLASLT_MATRIX_LAYOUT_ROWS in case of CUBLASLT_ORDER_COL). | |
* | |
* int64_t; | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_LD = 4, | |
/** Number of matmul operations to perform in the batch. | |
* | |
* See also CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORT | |
* | |
* int32_t, default: 1 | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT = 5, | |
/** Stride (in elements) to the next matrix for strided batch operation. | |
* | |
* When matrix type is planar-complex (CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET != 0), batch stride | |
* is interpreted by cublasLtMatmul() in number of real valued sub-elements. E.g. for data of type CUDA_C_16F, | |
* offset of 1024B is encoded as a stride of value 512 (since each element of the real and imaginary matrices | |
* is a 2B (16bit) floating point type). | |
* | |
* NOTE: A bug in cublasLtMatrixTransform() causes it to interpret the batch stride for a planar-complex matrix | |
* as if it was specified in number of complex elements. Therefore an offset of 1024B must be encoded as stride | |
* value 256 when calling cublasLtMatrixTransform() (each complex element is 4B with real and imaginary values 2B | |
* each). This behavior is expected to be corrected in the next major cuBLAS version. | |
* | |
* int64_t, default: 0 | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET = 6, | |
/** Stride (in bytes) to the imaginary plane for planar complex layout. | |
* | |
* int64_t, default: 0 - 0 means that layout is regular (real and imaginary parts of complex numbers are interleaved | |
* in memory in each element) | |
*/ | |
CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET = 7, | |
} cublasLtMatrixLayoutAttribute_t; | |
/** Internal. Do not use directly. | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutInit_internal( // | |
cublasLtMatrixLayout_t matLayout, | |
size_t size, | |
cudaDataType type, | |
uint64_t rows, | |
uint64_t cols, | |
int64_t ld); | |
/** Initialize matrix layout descriptor in pre-allocated space. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully | |
*/ | |
static inline cublasStatus_t cublasLtMatrixLayoutInit( | |
cublasLtMatrixLayout_t matLayout, cudaDataType type, uint64_t rows, uint64_t cols, int64_t ld) { | |
return cublasLtMatrixLayoutInit_internal(matLayout, sizeof(*matLayout), type, rows, cols, ld); | |
} | |
/** Create new matrix layout descriptor. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutCreate( // | |
cublasLtMatrixLayout_t* matLayout, | |
cudaDataType type, | |
uint64_t rows, | |
uint64_t cols, | |
int64_t ld); | |
/** Destroy matrix layout descriptor. | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if operation was successful | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutDestroy(cublasLtMatrixLayout_t matLayout); | |
/** Set matrix layout descriptor attribute. | |
* | |
* \param[in] matLayout The descriptor | |
* \param[in] attr The attribute | |
* \param[in] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutSetAttribute( // | |
cublasLtMatrixLayout_t matLayout, | |
cublasLtMatrixLayoutAttribute_t attr, | |
const void* buf, | |
size_t sizeInBytes); | |
/** Get matrix layout descriptor attribute. | |
* | |
* \param[in] matLayout The descriptor | |
* \param[in] attr The attribute | |
* \param[out] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of | |
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero | |
* and buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutGetAttribute( // | |
cublasLtMatrixLayout_t matLayout, | |
cublasLtMatrixLayoutAttribute_t attr, | |
void* buf, | |
size_t sizeInBytes, | |
size_t* sizeWritten); | |
/* ---------------------------------------------------------------------------------------*/ | |
/* Helper functions for cublasLtMatmulDesc_t */ | |
/* ---------------------------------------------------------------------------------------*/ | |
/** Matmul descriptor attributes to define details of the operation. */ | |
typedef enum { | |
/** Compute type, see cudaDataType. Defines data type used for multiply and accumulate operations and the | |
* accumulator during matrix multiplication. | |
* | |
* int32_t | |
*/ | |
CUBLASLT_MATMUL_DESC_COMPUTE_TYPE = 0, | |
/** Scale type, see cudaDataType. Defines data type of alpha and beta. Accumulator and value from matrix C are | |
* typically converted to scale type before final scaling. Value is then converted from scale type to type of matrix | |
* D before being stored in memory. | |
* | |
* int32_t, default: same as CUBLASLT_MATMUL_DESC_COMPUTE_TYPE | |
*/ | |
CUBLASLT_MATMUL_DESC_SCALE_TYPE = 1, | |
/** Pointer mode of alpha and beta, see cublasLtPointerMode_t. When CUBLASLT_POINTER_MODE_DEVICE_VECTOR is in use, | |
* alpha/beta vector lenghts must match number of output matrix rows. | |
* | |
* int32_t, default: CUBLASLT_POINTER_MODE_HOST | |
*/ | |
CUBLASLT_MATMUL_DESC_POINTER_MODE = 2, | |
/** Transform of matrix A, see cublasOperation_t. | |
* | |
* int32_t, default: CUBLAS_OP_N | |
*/ | |
CUBLASLT_MATMUL_DESC_TRANSA = 3, | |
/** Transform of matrix B, see cublasOperation_t. | |
* | |
* int32_t, default: CUBLAS_OP_N | |
*/ | |
CUBLASLT_MATMUL_DESC_TRANSB = 4, | |
/** Transform of matrix C, see cublasOperation_t. | |
* | |
* Currently only CUBLAS_OP_N is supported. | |
* | |
* int32_t, default: CUBLAS_OP_N | |
*/ | |
CUBLASLT_MATMUL_DESC_TRANSC = 5, | |
/** Matrix fill mode, see cublasFillMode_t. | |
* | |
* int32_t, default: CUBLAS_FILL_MODE_FULL | |
*/ | |
CUBLASLT_MATMUL_DESC_FILL_MODE = 6, | |
/** Epilogue function, see cublasLtEpilogue_t. | |
* | |
* uint32_t, default: CUBLASLT_EPILOGUE_DEFAULT | |
*/ | |
CUBLASLT_MATMUL_DESC_EPILOGUE = 7, | |
/** Bias or bias gradient vector pointer in the device memory. | |
* | |
* Bias case. See CUBLASLT_EPILOGUE_BIAS. | |
* For bias data type see CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE. | |
* | |
* Bias vector length must match matrix D rows count. | |
* | |
* Bias gradient case. See CUBLASLT_EPILOGUE_DRELU_BGRAD and CUBLASLT_EPILOGUE_DGELU_BGRAD. | |
* Bias gradient vector elements are the same type as the output elements | |
* (Ctype) with the exception of IMMA kernels (see above). | |
* | |
* Routines that don't dereference this pointer, like cublasLtMatmulAlgoGetHeuristic() | |
* depend on its value to determine expected pointer alignment. | |
* | |
* Bias case: const void *, default: NULL | |
* Bias gradient case: void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_BIAS_POINTER = 8, | |
/** Batch stride for bias or bias gradient vector. | |
* | |
* Used together with CUBLASLT_MATMUL_DESC_BIAS_POINTER when matrix D's CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT > 1. | |
* | |
* int64_t, default: 0 | |
*/ | |
CUBLASLT_MATMUL_DESC_BIAS_BATCH_STRIDE = 10, | |
/** Pointer for epilogue auxiliary buffer. | |
* | |
* - Output vector for ReLu bit-mask in forward pass when CUBLASLT_EPILOGUE_RELU_AUX | |
* or CUBLASLT_EPILOGUE_RELU_AUX_BIAS epilogue is used. | |
* - Input vector for ReLu bit-mask in backward pass when | |
* CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is used. | |
* | |
* - Output of GELU input matrix in forward pass when | |
* CUBLASLT_EPILOGUE_GELU_AUX_BIAS epilogue is used. | |
* - Input of GELU input matrix for backward pass when | |
* CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue is used. | |
* | |
* For aux data type see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE. | |
* | |
* Routines that don't dereference this pointer, like cublasLtMatmulAlgoGetHeuristic() | |
* depend on its value to determine expected pointer alignment. | |
* | |
* Requires setting CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD attribute. | |
* | |
* Forward pass: void *, default: NULL | |
* Backward pass: const void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER = 11, | |
/** Leading dimension for epilogue auxiliary buffer. | |
* | |
* - ReLu bit-mask matrix leading dimension in elements (i.e. bits) | |
* when CUBLASLT_EPILOGUE_RELU_AUX, CUBLASLT_EPILOGUE_RELU_AUX_BIAS or CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is | |
* used. Must be divisible by 128 and be no less than the number of rows in the output matrix. | |
* | |
* - GELU input matrix leading dimension in elements | |
* when CUBLASLT_EPILOGUE_GELU_AUX_BIAS or CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue used. | |
* Must be divisible by 8 and be no less than the number of rows in the output matrix. | |
* | |
* int64_t, default: 0 | |
*/ | |
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD = 12, | |
/** Batch stride for epilogue auxiliary buffer. | |
* | |
* - ReLu bit-mask matrix batch stride in elements (i.e. bits) | |
* when CUBLASLT_EPILOGUE_RELU_AUX, CUBLASLT_EPILOGUE_RELU_AUX_BIAS or CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is | |
* used. Must be divisible by 128. | |
* | |
* - GELU input matrix batch stride in elements | |
* when CUBLASLT_EPILOGUE_GELU_AUX_BIAS or CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue used. | |
* Must be divisible by 8. | |
* | |
* int64_t, default: 0 | |
*/ | |
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_BATCH_STRIDE = 13, | |
/** Batch stride for alpha vector. | |
* | |
* Used together with CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST when matrix D's | |
* CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT > 1. If CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO is set then | |
* CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE must be set to 0 as this mode doesnt supported batched alpha vector. | |
* | |
* int64_t, default: 0 | |
*/ | |
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE = 14, | |
/** Number of SMs to target for parallel execution. Optimizes heuristics for execution on a different number of SMs | |
* when user expects a concurrent stream to be using some of the device resources. | |
* | |
* int32_t, default: 0 - use the number reported by the device. | |
*/ | |
CUBLASLT_MATMUL_DESC_SM_COUNT_TARGET = 15, | |
/** Device pointer to the scale factor value that converts data in matrix A to the compute data type range. | |
* | |
* The scaling factor value must have the same type as the compute type. | |
* | |
* If not specified, or set to NULL, the scaling factor is assumed to be 1. | |
* | |
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul() | |
* will return CUBLAS_INVALID_VALUE. | |
* | |
* const void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_A_SCALE_POINTER = 17, | |
/** Device pointer to the scale factor value to convert data in matrix B to compute data type range. | |
* | |
* The scaling factor value must have the same type as the compute type. | |
* | |
* If not specified, or set to NULL, the scaling factor is assumed to be 1. | |
* | |
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul() | |
* will return CUBLAS_INVALID_VALUE. | |
* | |
* const void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_B_SCALE_POINTER = 18, | |
/** Device pointer to the scale factor value to convert data in matrix C to compute data type range. | |
* | |
* The scaling factor value must have the same type as the compute type. | |
* | |
* If not specified, or set to NULL, the scaling factor is assumed to be 1. | |
* | |
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul() | |
* will return CUBLAS_INVALID_VALUE. | |
* | |
* const void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_C_SCALE_POINTER = 19, | |
/** Device pointer to the scale factor value to convert data in matrix D to compute data type range. | |
* | |
* The scaling factor value must have the same type as the compute type. | |
* | |
* If not specified, or set to NULL, the scaling factor is assumed to be 1. | |
* | |
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul() | |
* will return CUBLAS_INVALID_VALUE. | |
* | |
* const void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_D_SCALE_POINTER = 20, | |
/** Device pointer to the memory location that on completion will be set to the maximum of absolute values in the | |
* output matrix. | |
* | |
* The computed value has the same type as the compute type. | |
* | |
* If not specified or set to NULL, the maximum absolute value is not computed. If set for an unsupported matrix | |
* data, scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE. | |
* | |
* void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_AMAX_D_POINTER = 21, | |
/** Type of the data to be stored to the memory pointed to by CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
* | |
* If unset, the data type defaults to the type of elements of the output matrix with some exceptions, see details | |
* below. | |
* | |
* ReLu uses a bit-mask. | |
* | |
* GELU input matrix elements type is the same as the type of elements of | |
* the output matrix with some exceptions, see details below. | |
* | |
* For fp8 kernels with output type CUDA_R_8F_E4M3 the aux data type can be CUDA_R_8F_E4M3 or CUDA_R_16F with some | |
* restrictions. See https://docs.nvidia.com/cuda/cublas/index.html#cublasLtMatmulDescAttributes_t for more details. | |
* | |
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul() | |
* will return CUBLAS_INVALID_VALUE. | |
* | |
* int32_t based on cudaDataType, default: -1 | |
*/ | |
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE = 22, | |
/** Device pointer to the scaling factor value to convert results from compute type data range to storage | |
* data range in the auxiliary matrix that is set via CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
* | |
* The scaling factor value must have the same type as the compute type. | |
* | |
* If not specified, or set to NULL, the scaling factor is assumed to be 1. If set for an unsupported matrix data, | |
* scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE. | |
* | |
* void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_SCALE_POINTER = 23, | |
/** Device pointer to the memory location that on completion will be set to the maximum of absolute values in the | |
* buffer that is set via CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
* | |
* The computed value has the same type as the compute type. | |
* | |
* If not specified or set to NULL, the maximum absolute value is not computed. If set for an unsupported matrix | |
* data, scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE. | |
* | |
* void *, default: NULL | |
*/ | |
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTER = 24, | |
/** Flag for managing fp8 fast accumulation mode. | |
* When enabled, problem execution might be faster but at the cost of lower accuracy because intermediate results | |
* will not periodically be promoted to a higher precision. | |
* | |
* int8_t, default: 0 - fast accumulation mode is disabled. | |
*/ | |
CUBLASLT_MATMUL_DESC_FAST_ACCUM = 25, | |
/** Type of bias or bias gradient vector in the device memory. | |
* | |
* Bias case: see CUBLASLT_EPILOGUE_BIAS. | |
* | |
* Bias vector elements are the same type as the elements of output matrix (Dtype) with the following exceptions: | |
* - IMMA kernels with computeType=CUDA_R_32I and Ctype=CUDA_R_8I where the bias vector elements | |
* are the same type as alpha, beta (CUBLASLT_MATMUL_DESC_SCALE_TYPE=CUDA_R_32F) | |
* - fp8 kernels with an output type of CUDA_R_32F, CUDA_R_8F_E4M3 or CUDA_R_8F_E5M2, See | |
* https://docs.nvidia.com/cuda/cublas/index.html#cublasLtMatmul for details. | |
* | |
* int32_t based on cudaDataType, default: -1 | |
*/ | |
CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE = 26, | |
} cublasLtMatmulDescAttributes_t; | |
/** Internal. Do not use directly. | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescInit_internal( // | |
cublasLtMatmulDesc_t matmulDesc, | |
size_t size, | |
cublasComputeType_t computeType, | |
cudaDataType_t scaleType); | |
/** Initialize matmul operation descriptor in pre-allocated space. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was initialized successfully | |
*/ | |
static inline cublasStatus_t cublasLtMatmulDescInit( // | |
cublasLtMatmulDesc_t matmulDesc, | |
cublasComputeType_t computeType, | |
cudaDataType_t scaleType) { | |
return cublasLtMatmulDescInit_internal(matmulDesc, sizeof(*matmulDesc), computeType, scaleType); | |
} | |
/** Create new matmul operation descriptor. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescCreate(cublasLtMatmulDesc_t* matmulDesc, | |
cublasComputeType_t computeType, | |
cudaDataType_t scaleType); | |
/** Destroy matmul operation descriptor. | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if operation was successful | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescDestroy(cublasLtMatmulDesc_t matmulDesc); | |
/** Set matmul operation descriptor attribute. | |
* | |
* \param[in] matmulDesc The descriptor | |
* \param[in] attr The attribute | |
* \param[in] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescSetAttribute( // | |
cublasLtMatmulDesc_t matmulDesc, | |
cublasLtMatmulDescAttributes_t attr, | |
const void* buf, | |
size_t sizeInBytes); | |
/** Get matmul operation descriptor attribute. | |
* | |
* \param[in] matmulDesc The descriptor | |
* \param[in] attr The attribute | |
* \param[out] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of | |
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero | |
* and buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescGetAttribute( // | |
cublasLtMatmulDesc_t matmulDesc, | |
cublasLtMatmulDescAttributes_t attr, | |
void* buf, | |
size_t sizeInBytes, | |
size_t* sizeWritten); | |
/* ---------------------------------------------------------------------------------------*/ | |
/* Helper functions for cublasLtMatrixTransformDesc_t */ | |
/* ---------------------------------------------------------------------------------------*/ | |
/** Matrix transform descriptor attributes to define details of the operation. | |
*/ | |
typedef enum { | |
/** Scale type, see cudaDataType. Inputs are converted to scale type for scaling and summation and results are then | |
* converted to output type to store in memory. | |
* | |
* int32_t | |
*/ | |
CUBLASLT_MATRIX_TRANSFORM_DESC_SCALE_TYPE, | |
/** Pointer mode of alpha and beta, see cublasLtPointerMode_t. | |
* | |
* int32_t, default: CUBLASLT_POINTER_MODE_HOST | |
*/ | |
CUBLASLT_MATRIX_TRANSFORM_DESC_POINTER_MODE, | |
/** Transform of matrix A, see cublasOperation_t. | |
* | |
* int32_t, default: CUBLAS_OP_N | |
*/ | |
CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, | |
/** Transform of matrix B, see cublasOperation_t. | |
* | |
* int32_t, default: CUBLAS_OP_N | |
*/ | |
CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSB, | |
} cublasLtMatrixTransformDescAttributes_t; | |
/** Internal. Do not use directly. | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescInit_internal(cublasLtMatrixTransformDesc_t transformDesc, | |
size_t size, | |
cudaDataType scaleType); | |
/** Initialize matrix transform operation descriptor in pre-allocated space. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully | |
*/ | |
static inline cublasStatus_t cublasLtMatrixTransformDescInit(cublasLtMatrixTransformDesc_t transformDesc, | |
cudaDataType scaleType) { | |
return cublasLtMatrixTransformDescInit_internal(transformDesc, sizeof(*transformDesc), scaleType); | |
} | |
/** Create new matrix transform operation descriptor. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescCreate(cublasLtMatrixTransformDesc_t* transformDesc, | |
cudaDataType scaleType); | |
/** Destroy matrix transform operation descriptor. | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if operation was successful | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescDestroy(cublasLtMatrixTransformDesc_t transformDesc); | |
/** Set matrix transform operation descriptor attribute. | |
* | |
* \param[in] transformDesc The descriptor | |
* \param[in] attr The attribute | |
* \param[in] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescSetAttribute( // | |
cublasLtMatrixTransformDesc_t transformDesc, | |
cublasLtMatrixTransformDescAttributes_t attr, | |
const void* buf, | |
size_t sizeInBytes); | |
/** Get matrix transform operation descriptor attribute. | |
* | |
* \param[in] transformDesc The descriptor | |
* \param[in] attr The attribute | |
* \param[out] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number | |
* of bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero | |
* and buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescGetAttribute( // | |
cublasLtMatrixTransformDesc_t transformDesc, | |
cublasLtMatrixTransformDescAttributes_t attr, | |
void* buf, | |
size_t sizeInBytes, | |
size_t* sizeWritten); | |
/** Reduction scheme for portions of the dot-product calculated in parallel (a. k. a. "split - K"). | |
*/ | |
typedef enum { | |
/** No reduction scheme, dot-product shall be performed in one sequence. | |
*/ | |
CUBLASLT_REDUCTION_SCHEME_NONE = 0, | |
/** Reduction is performed "in place" - using the output buffer (and output data type) and counters (in workspace) to | |
* guarantee the sequentiality. | |
*/ | |
CUBLASLT_REDUCTION_SCHEME_INPLACE = 1, | |
/** Intermediate results are stored in compute type in the workspace and reduced in a separate step. | |
*/ | |
CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE = 2, | |
/** Intermediate results are stored in output type in the workspace and reduced in a separate step. | |
*/ | |
CUBLASLT_REDUCTION_SCHEME_OUTPUT_TYPE = 4, | |
CUBLASLT_REDUCTION_SCHEME_MASK = 0x7, | |
} cublasLtReductionScheme_t; | |
/** Postprocessing options for the epilogue | |
*/ | |
typedef enum { | |
/** No special postprocessing, just scale and quantize results if necessary. | |
*/ | |
CUBLASLT_EPILOGUE_DEFAULT = 1, | |
/** ReLu, apply ReLu point-wise transform to the results (x:=max(x, 0)). | |
*/ | |
CUBLASLT_EPILOGUE_RELU = 2, | |
/** ReLu, apply ReLu point-wise transform to the results (x:=max(x, 0)). | |
* | |
* This epilogue mode produces an extra output, a ReLu bit-mask matrix, | |
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_RELU_AUX = (CUBLASLT_EPILOGUE_RELU | 128), | |
/** Bias, apply (broadcasted) Bias from bias vector. Bias vector length must match matrix D rows, it must be packed | |
* (stride between vector elements is 1). Bias vector is broadcasted to all columns and added before applying final | |
* postprocessing. | |
*/ | |
CUBLASLT_EPILOGUE_BIAS = 4, | |
/** ReLu and Bias, apply Bias and then ReLu transform | |
*/ | |
CUBLASLT_EPILOGUE_RELU_BIAS = (CUBLASLT_EPILOGUE_RELU | CUBLASLT_EPILOGUE_BIAS), | |
/** ReLu and Bias, apply Bias and then ReLu transform | |
* | |
* This epilogue mode produces an extra output, a ReLu bit-mask matrix, | |
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_RELU_AUX_BIAS = (CUBLASLT_EPILOGUE_RELU_AUX | CUBLASLT_EPILOGUE_BIAS), | |
/* ReLu gradient. Apply ReLu gradient to matmul output. Store ReLu gradient in the output matrix. | |
* | |
* This epilogue mode requires an extra input, | |
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_DRELU = 8 | 128, | |
/* ReLu and Bias gradients. Apply independently ReLu and Bias gradient to | |
* matmul output. Store ReLu gradient in the output matrix, and Bias gradient | |
* in the auxiliary output (see CUBLASLT_MATMUL_DESC_BIAS_POINTER). | |
* | |
* This epilogue mode requires an extra input, | |
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_DRELU_BGRAD = CUBLASLT_EPILOGUE_DRELU | 16, | |
/** GELU, apply GELU point-wise transform to the results (x:=GELU(x)). | |
*/ | |
CUBLASLT_EPILOGUE_GELU = 32, | |
/** GELU, apply GELU point-wise transform to the results (x:=GELU(x)). | |
* | |
* This epilogue mode outputs GELU input as a separate matrix (useful for training). | |
* See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_GELU_AUX = (CUBLASLT_EPILOGUE_GELU | 128), | |
/** GELU and Bias, apply Bias and then GELU transform | |
*/ | |
CUBLASLT_EPILOGUE_GELU_BIAS = (CUBLASLT_EPILOGUE_GELU | CUBLASLT_EPILOGUE_BIAS), | |
/** GELU and Bias, apply Bias and then GELU transform | |
* | |
* This epilogue mode outputs GELU input as a separate matrix (useful for training). | |
* See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_GELU_AUX_BIAS = (CUBLASLT_EPILOGUE_GELU_AUX | CUBLASLT_EPILOGUE_BIAS), | |
/* GELU gradient. Apply GELU gradient to matmul output. Store GELU gradient in the output matrix. | |
* | |
* This epilogue mode requires an extra input, | |
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_DGELU = 64 | 128, | |
/* GELU and Bias gradients. Apply independently GELU and Bias gradient to | |
* matmul output. Store GELU gradient in the output matrix, and Bias gradient | |
* in the auxiliary output (see CUBLASLT_MATMUL_DESC_BIAS_POINTER). | |
* | |
* This epilogue mode requires an extra input, | |
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER. | |
*/ | |
CUBLASLT_EPILOGUE_DGELU_BGRAD = CUBLASLT_EPILOGUE_DGELU | 16, | |
/** Bias gradient based on the input matrix A. | |
* | |
* The bias size corresponds to the number of rows of the matrix D. | |
* The reduction happens over the GEMM's "k" dimension. | |
* | |
* Stores Bias gradient in the auxiliary output | |
* (see CUBLASLT_MATMUL_DESC_BIAS_POINTER). | |
*/ | |
CUBLASLT_EPILOGUE_BGRADA = 256, | |
/** Bias gradient based on the input matrix B. | |
* | |
* The bias size corresponds to the number of columns of the matrix D. | |
* The reduction happens over the GEMM's "k" dimension. | |
* | |
* Stores Bias gradient in the auxiliary output | |
* (see CUBLASLT_MATMUL_DESC_BIAS_POINTER). | |
*/ | |
CUBLASLT_EPILOGUE_BGRADB = 512, | |
} cublasLtEpilogue_t; | |
/** Matmul heuristic search mode | |
*/ | |
typedef enum { | |
/** ask heuristics for best algo for given usecase | |
*/ | |
CUBLASLT_SEARCH_BEST_FIT = 0, | |
/** only try to find best config for preconfigured algo id | |
*/ | |
CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID = 1, | |
/** reserved for future use | |
*/ | |
CUBLASLT_SEARCH_RESERVED_02 = 2, | |
/** reserved for future use | |
*/ | |
CUBLASLT_SEARCH_RESERVED_03 = 3, | |
/** reserved for future use | |
*/ | |
CUBLASLT_SEARCH_RESERVED_04 = 4, | |
/** reserved for future use | |
*/ | |
CUBLASLT_SEARCH_RESERVED_05 = 5, | |
} cublasLtMatmulSearch_t; | |
/** Algo search preference to fine tune the heuristic function. */ | |
typedef enum { | |
/** Search mode, see cublasLtMatmulSearch_t. | |
* | |
* uint32_t, default: CUBLASLT_SEARCH_BEST_FIT | |
*/ | |
CUBLASLT_MATMUL_PREF_SEARCH_MODE = 0, | |
/** Maximum allowed workspace size in bytes. | |
* | |
* uint64_t, default: 0 - no workspace allowed | |
*/ | |
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES = 1, | |
/** Reduction scheme mask, see cublasLtReductionScheme_t. Filters heuristic result to only include algo configs that | |
* use one of the required modes. | |
* | |
* E.g. mask value of 0x03 will allow only INPLACE and COMPUTE_TYPE reduction schemes. | |
* | |
* uint32_t, default: CUBLASLT_REDUCTION_SCHEME_MASK (allows all reduction schemes) | |
*/ | |
CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK = 3, | |
/** Minimum buffer alignment for matrix A (in bytes). | |
* | |
* Selecting a smaller value will exclude algorithms that can not work with matrix A that is not as strictly aligned | |
* as they need. | |
* | |
* uint32_t, default: 256 | |
*/ | |
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_A_BYTES = 5, | |
/** Minimum buffer alignment for matrix B (in bytes). | |
* | |
* Selecting a smaller value will exclude algorithms that can not work with matrix B that is not as strictly aligned | |
* as they need. | |
* | |
* uint32_t, default: 256 | |
*/ | |
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_B_BYTES = 6, | |
/** Minimum buffer alignment for matrix C (in bytes). | |
* | |
* Selecting a smaller value will exclude algorithms that can not work with matrix C that is not as strictly aligned | |
* as they need. | |
* | |
* uint32_t, default: 256 | |
*/ | |
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_C_BYTES = 7, | |
/** Minimum buffer alignment for matrix D (in bytes). | |
* | |
* Selecting a smaller value will exclude algorithms that can not work with matrix D that is not as strictly aligned | |
* as they need. | |
* | |
* uint32_t, default: 256 | |
*/ | |
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_D_BYTES = 8, | |
/** Maximum wave count. | |
* | |
* See cublasLtMatmulHeuristicResult_t::wavesCount. | |
* | |
* Selecting a non-zero value will exclude algorithms that report device utilization higher than specified. | |
* | |
* float, default: 0.0f | |
*/ | |
CUBLASLT_MATMUL_PREF_MAX_WAVES_COUNT = 9, | |
/** Numerical implementation details mask, see cublasLtNumericalImplFlags_t. Filters heuristic result to only include | |
* algorithms that use the allowed implementations. | |
* | |
* uint64_t, default: uint64_t(-1) (allow everything) | |
*/ | |
CUBLASLT_MATMUL_PREF_IMPL_MASK = 12, | |
} cublasLtMatmulPreferenceAttributes_t; | |
/** Internal. Do not use directly. | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceInit_internal(cublasLtMatmulPreference_t pref, size_t size); | |
/** Initialize matmul heuristic search preference descriptor in pre-allocated space. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully | |
*/ | |
static inline cublasStatus_t cublasLtMatmulPreferenceInit(cublasLtMatmulPreference_t pref) { | |
return cublasLtMatmulPreferenceInit_internal(pref, sizeof(*pref)); | |
} | |
/** Create new matmul heuristic search preference descriptor. | |
* | |
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated | |
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceCreate(cublasLtMatmulPreference_t* pref); | |
/** Destroy matmul heuristic search preference descriptor. | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if operation was successful | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceDestroy(cublasLtMatmulPreference_t pref); | |
/** Set matmul heuristic search preference descriptor attribute. | |
* | |
* \param[in] pref The descriptor | |
* \param[in] attr The attribute | |
* \param[in] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceSetAttribute( // | |
cublasLtMatmulPreference_t pref, | |
cublasLtMatmulPreferenceAttributes_t attr, | |
const void* buf, | |
size_t sizeInBytes); | |
/** Get matmul heuristic search preference descriptor attribute. | |
* | |
* \param[in] pref The descriptor | |
* \param[in] attr The attribute | |
* \param[out] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of | |
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero | |
* and buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceGetAttribute( // | |
cublasLtMatmulPreference_t pref, | |
cublasLtMatmulPreferenceAttributes_t attr, | |
void* buf, | |
size_t sizeInBytes, | |
size_t* sizeWritten); | |
/** Results structure used by cublasLtMatmulGetAlgo. | |
* | |
* Holds returned configured algo descriptor and its runtime properties. | |
*/ | |
typedef struct { | |
/** Matmul algorithm descriptor. | |
* | |
* Must be initialized with cublasLtMatmulAlgoInit() if preferences' CUBLASLT_MATMUL_PERF_SEARCH_MODE is set to | |
* CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID | |
*/ | |
cublasLtMatmulAlgo_t algo; | |
/** Actual size of workspace memory required. | |
*/ | |
size_t workspaceSize; | |
/** Result status, other fields are only valid if after call to cublasLtMatmulAlgoGetHeuristic() this member is set to | |
* CUBLAS_STATUS_SUCCESS. | |
*/ | |
cublasStatus_t state; | |
/** Waves count - a device utilization metric. | |
* | |
* wavesCount value of 1.0f suggests that when kernel is launched it will fully occupy the GPU. | |
*/ | |
float wavesCount; | |
int reserved[4]; | |
} cublasLtMatmulHeuristicResult_t; | |
/** Query cublasLt heuristic for algorithm appropriate for given use case. | |
* | |
* \param[in] lightHandle Pointer to the allocated cuBLASLt handle for the cuBLASLt | |
* context. See cublasLtHandle_t. | |
* \param[in] operationDesc Handle to the matrix multiplication descriptor. | |
* \param[in] Adesc Handle to the layout descriptors for matrix A. | |
* \param[in] Bdesc Handle to the layout descriptors for matrix B. | |
* \param[in] Cdesc Handle to the layout descriptors for matrix C. | |
* \param[in] Ddesc Handle to the layout descriptors for matrix D. | |
* \param[in] preference Pointer to the structure holding the heuristic search | |
* preferences descriptor. See cublasLtMatrixLayout_t. | |
* \param[in] requestedAlgoCount Size of heuristicResultsArray (in elements) and requested | |
* maximum number of algorithms to return. | |
* \param[in, out] heuristicResultsArray Output algorithms and associated runtime characteristics, | |
* ordered in increasing estimated compute time. | |
* \param[out] returnAlgoCount The number of heuristicResultsArray elements written. | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if requestedAlgoCount is less or equal to zero | |
* \retval CUBLAS_STATUS_NOT_SUPPORTED if no heuristic function available for current configuration | |
* \retval CUBLAS_STATUS_SUCCESS if query was successful, inspect | |
* heuristicResultsArray[0 to (returnAlgoCount - 1)].state | |
* for detail status of results | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoGetHeuristic(cublasLtHandle_t lightHandle, | |
cublasLtMatmulDesc_t operationDesc, | |
cublasLtMatrixLayout_t Adesc, | |
cublasLtMatrixLayout_t Bdesc, | |
cublasLtMatrixLayout_t Cdesc, | |
cublasLtMatrixLayout_t Ddesc, | |
cublasLtMatmulPreference_t preference, | |
int requestedAlgoCount, | |
cublasLtMatmulHeuristicResult_t heuristicResultsArray[], | |
int* returnAlgoCount); | |
/* ---------------------------------------------------------------------------------------*/ | |
/* Lower level API to be able to implement own Heuristic and Find routines */ | |
/* ---------------------------------------------------------------------------------------*/ | |
/** Routine to get all algo IDs that can potentially run | |
* | |
* \param[in] int requestedAlgoCount requested number of algos (must be less or equal to size of algoIdsA | |
* (in elements)) \param[out] algoIdsA array to write algoIds to \param[out] returnAlgoCount number of algoIds | |
* actually written | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if requestedAlgoCount is less or equal to zero | |
* \retval CUBLAS_STATUS_SUCCESS if query was successful, inspect returnAlgoCount to get actual number of IDs | |
* available | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoGetIds(cublasLtHandle_t lightHandle, | |
cublasComputeType_t computeType, | |
cudaDataType_t scaleType, | |
cudaDataType_t Atype, | |
cudaDataType_t Btype, | |
cudaDataType_t Ctype, | |
cudaDataType_t Dtype, | |
int requestedAlgoCount, | |
int algoIdsArray[], | |
int* returnAlgoCount); | |
/** Initialize algo structure | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if algo is NULL or algoId is outside of recognized range | |
* \retval CUBLAS_STATUS_NOT_SUPPORTED if algoId is not supported for given combination of data types | |
* \retval CUBLAS_STATUS_SUCCESS if the structure was successfully initialized | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoInit(cublasLtHandle_t lightHandle, | |
cublasComputeType_t computeType, | |
cudaDataType_t scaleType, | |
cudaDataType_t Atype, | |
cudaDataType_t Btype, | |
cudaDataType_t Ctype, | |
cudaDataType_t Dtype, | |
int algoId, | |
cublasLtMatmulAlgo_t* algo); | |
/** Check configured algo descriptor for correctness and support on current device. | |
* | |
* Result includes required workspace size and calculated wave count. | |
* | |
* CUBLAS_STATUS_SUCCESS doesn't fully guarantee algo will run (will fail if e.g. buffers are not correctly aligned); | |
* but if cublasLtMatmulAlgoCheck fails, the algo will not run. | |
* | |
* \param[in] algo algo configuration to check | |
* \param[out] result result structure to report algo runtime characteristics; algo field is never updated | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if matrix layout descriptors or operation descriptor don't match algo | |
* descriptor | |
* \retval CUBLAS_STATUS_NOT_SUPPORTED if algo configuration or data type combination is not currently supported on | |
* given device | |
* \retval CUBLAS_STATUS_ARCH_MISMATCH if algo configuration cannot be run using the selected device | |
* \retval CUBLAS_STATUS_SUCCESS if check was successful | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoCheck( // | |
cublasLtHandle_t lightHandle, | |
cublasLtMatmulDesc_t operationDesc, | |
cublasLtMatrixLayout_t Adesc, | |
cublasLtMatrixLayout_t Bdesc, | |
cublasLtMatrixLayout_t Cdesc, | |
cublasLtMatrixLayout_t Ddesc, | |
const cublasLtMatmulAlgo_t* algo, ///< may point to result->algo | |
cublasLtMatmulHeuristicResult_t* result); | |
/** Capabilities Attributes that can be retrieved from an initialized Algo structure | |
*/ | |
typedef enum { | |
/** support for split K, see CUBLASLT_ALGO_CONFIG_SPLITK_NUM | |
* | |
* int32_t, 0 means no support, supported otherwise | |
*/ | |
CUBLASLT_ALGO_CAP_SPLITK_SUPPORT = 0, | |
/** reduction scheme mask, see cublasLtReductionScheme_t; shows supported reduction schemes, if reduction scheme is | |
* not masked out it is supported. | |
* | |
* e.g. int isReductionSchemeComputeTypeSupported ? (reductionSchemeMask & CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE) == | |
* CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE ? 1 : 0; | |
* | |
* uint32_t | |
*/ | |
CUBLASLT_ALGO_CAP_REDUCTION_SCHEME_MASK = 1, | |
/** support for cta swizzling, see CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING | |
* | |
* uint32_t, 0 means no support, 1 means supported value of 1, other values are reserved | |
*/ | |
CUBLASLT_ALGO_CAP_CTA_SWIZZLING_SUPPORT = 2, | |
/** support strided batch | |
* | |
* int32_t, 0 means no support, supported otherwise | |
*/ | |
CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORT = 3, | |
/** support results out of place (D != C in D = alpha.A.B + beta.C) | |
* | |
* int32_t, 0 means no support, supported otherwise | |
*/ | |
CUBLASLT_ALGO_CAP_OUT_OF_PLACE_RESULT_SUPPORT = 4, | |
/** syrk/herk support (on top of regular gemm) | |
* | |
* int32_t, 0 means no support, supported otherwise | |
*/ | |
CUBLASLT_ALGO_CAP_UPLO_SUPPORT = 5, | |
/** tile ids possible to use, see cublasLtMatmulTile_t; if no tile ids are supported use | |
* CUBLASLT_MATMUL_TILE_UNDEFINED | |
* | |
* use cublasLtMatmulAlgoCapGetAttribute() with sizeInBytes=0 to query actual count | |
* | |
* array of uint32_t | |
*/ | |
CUBLASLT_ALGO_CAP_TILE_IDS = 6, | |
/** custom option range is from 0 to CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX (inclusive), see | |
* CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION | |
* | |
* int32_t | |
*/ | |
CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX = 7, | |
/** whether algorithm supports custom (not COL or ROW memory order), see cublasLtOrder_t | |
* | |
* int32_t 0 means only COL and ROW memory order is allowed, non-zero means that algo might have different | |
* requirements; | |
*/ | |
CUBLASLT_ALGO_CAP_CUSTOM_MEMORY_ORDER = 10, | |
/** bitmask enumerating pointer modes algorithm supports | |
* | |
* uint32_t, see cublasLtPointerModeMask_t | |
*/ | |
CUBLASLT_ALGO_CAP_POINTER_MODE_MASK = 11, | |
/** bitmask enumerating kinds of postprocessing algorithm supports in the epilogue | |
* | |
* uint32_t, see cublasLtEpilogue_t | |
*/ | |
CUBLASLT_ALGO_CAP_EPILOGUE_MASK = 12, | |
/** stages ids possible to use, see cublasLtMatmulStages_t; if no stages ids are supported use | |
* CUBLASLT_MATMUL_STAGES_UNDEFINED | |
* | |
* use cublasLtMatmulAlgoCapGetAttribute() with sizeInBytes=0 to query actual count | |
* | |
* array of uint32_t | |
*/ | |
CUBLASLT_ALGO_CAP_STAGES_IDS = 13, | |
/** support for nagative ld for all of the matrices | |
* | |
* int32_t 0 means no support, supported otherwise | |
*/ | |
CUBLASLT_ALGO_CAP_LD_NEGATIVE = 14, | |
/** details about algorithm's implementation that affect it's numerical behavior | |
* | |
* uint64_t, see cublasLtNumericalImplFlags_t | |
*/ | |
CUBLASLT_ALGO_CAP_NUMERICAL_IMPL_FLAGS = 15, | |
/** minimum alignment required for A matrix in bytes | |
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order) | |
* | |
* uint32_t | |
*/ | |
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_A_BYTES = 16, | |
/** minimum alignment required for B matrix in bytes | |
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order) | |
* | |
* uint32_t | |
*/ | |
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_B_BYTES = 17, | |
/** minimum alignment required for C matrix in bytes | |
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order) | |
* | |
* uint32_t | |
*/ | |
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_C_BYTES = 18, | |
/** minimum alignment required for D matrix in bytes | |
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order) | |
* | |
* uint32_t | |
*/ | |
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_D_BYTES = 19, | |
} cublasLtMatmulAlgoCapAttributes_t; | |
/** Get algo capability attribute. | |
* | |
* E.g. to get list of supported Tile IDs: | |
* cublasLtMatmulTile_t tiles[CUBLASLT_MATMUL_TILE_END]; | |
* size_t num_tiles, size_written; | |
* if (cublasLtMatmulAlgoCapGetAttribute(algo, CUBLASLT_ALGO_CAP_TILE_IDS, tiles, sizeof(tiles), size_written) == | |
* CUBLAS_STATUS_SUCCESS) { num_tiles = size_written / sizeof(tiles[0]); | |
* } | |
* | |
* \param[in] algo The algo descriptor | |
* \param[in] attr The attribute | |
* \param[out] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of | |
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero | |
* and buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoCapGetAttribute(const cublasLtMatmulAlgo_t* algo, | |
cublasLtMatmulAlgoCapAttributes_t attr, | |
void* buf, | |
size_t sizeInBytes, | |
size_t* sizeWritten); | |
/** Algo Configuration Attributes that can be set according to the Algo capabilities | |
*/ | |
typedef enum { | |
/** algorithm index, see cublasLtMatmulAlgoGetIds() | |
* | |
* readonly, set by cublasLtMatmulAlgoInit() | |
* int32_t | |
*/ | |
CUBLASLT_ALGO_CONFIG_ID = 0, | |
/** tile id, see cublasLtMatmulTile_t | |
* | |
* uint32_t, default: CUBLASLT_MATMUL_TILE_UNDEFINED | |
*/ | |
CUBLASLT_ALGO_CONFIG_TILE_ID = 1, | |
/** Number of K splits. If the number of K splits is greater than one, SPLITK_NUM parts | |
* of matrix multiplication will be computed in parallel. The results will be accumulated | |
* according to CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME | |
* | |
* int32_t, default: 1 | |
*/ | |
CUBLASLT_ALGO_CONFIG_SPLITK_NUM = 2, | |
/** reduction scheme, see cublasLtReductionScheme_t | |
* | |
* uint32_t, default: CUBLASLT_REDUCTION_SCHEME_NONE | |
*/ | |
CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME = 3, | |
/** cta swizzling, change mapping from CUDA grid coordinates to parts of the matrices | |
* | |
* possible values: 0, 1, other values reserved | |
* | |
* uint32_t, default: 0 | |
*/ | |
CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING = 4, | |
/** custom option, each algorithm can support some custom options that don't fit description of the other config | |
* attributes, see CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX to get accepted range for any specific case | |
* | |
* uint32_t, default: 0 | |
*/ | |
CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION = 5, | |
/** stages id, see cublasLtMatmulStages_t | |
* | |
* uint32_t, default: CUBLASLT_MATMUL_STAGES_UNDEFINED | |
*/ | |
CUBLASLT_ALGO_CONFIG_STAGES_ID = 6, | |
/** inner shape id, see cublasLtMatmulInnerShape_t | |
* | |
* uint16_t, default: 0 (CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED) | |
*/ | |
CUBLASLT_ALGO_CONFIG_INNER_SHAPE_ID = 7, | |
/** Thread Block Cluster shape id, see cublasLtClusterShape_t. Defines cluster size to use. | |
* | |
* uint16_t, default: 0 (CUBLASLT_CLUSTER_SHAPE_AUTO) | |
*/ | |
CUBLASLT_ALGO_CONFIG_CLUSTER_SHAPE_ID = 8, | |
} cublasLtMatmulAlgoConfigAttributes_t; | |
/** Set algo configuration attribute. | |
* | |
* \param[in] algo The algo descriptor | |
* \param[in] attr The attribute | |
* \param[in] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoConfigSetAttribute(cublasLtMatmulAlgo_t* algo, | |
cublasLtMatmulAlgoConfigAttributes_t attr, | |
const void* buf, | |
size_t sizeInBytes); | |
/** Get algo configuration attribute. | |
* | |
* \param[in] algo The algo descriptor | |
* \param[in] attr The attribute | |
* \param[out] buf memory address containing the new value | |
* \param[in] sizeInBytes size of buf buffer for verification (in bytes) | |
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of | |
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero | |
* and buf is NULL or sizeInBytes doesn't match size of internal storage for | |
* selected attribute | |
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoConfigGetAttribute(const cublasLtMatmulAlgo_t* algo, | |
cublasLtMatmulAlgoConfigAttributes_t attr, | |
void* buf, | |
size_t sizeInBytes, | |
size_t* sizeWritten); | |
/** Experimental: Logger callback type. | |
*/ | |
typedef void (*cublasLtLoggerCallback_t)(int logLevel, const char* functionName, const char* message); | |
/** Experimental: Logger callback setter. | |
* | |
* \param[in] callback a user defined callback function to be called by the logger | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if callback was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetCallback(cublasLtLoggerCallback_t callback); | |
/** Experimental: Log file setter. | |
* | |
* \param[in] file an open file with write permissions | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if log file was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetFile(FILE* file); | |
/** Experimental: Open log file. | |
* | |
* \param[in] logFile log file path. if the log file does not exist, it will be created | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if log file was created successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtLoggerOpenFile(const char* logFile); | |
/** Experimental: Log level setter. | |
* | |
* \param[in] level log level, should be one of the following: | |
* 0. Off | |
* 1. Errors | |
* 2. Performance Trace | |
* 3. Performance Hints | |
* 4. Heuristics Trace | |
* 5. API Trace | |
* | |
* \retval CUBLAS_STATUS_INVALID_VALUE if log level is not one of the above levels | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if log level was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetLevel(int level); | |
/** Experimental: Log mask setter. | |
* | |
* \param[in] mask log mask, should be a combination of the following masks: | |
* 0. Off | |
* 1. Errors | |
* 2. Performance Trace | |
* 4. Performance Hints | |
* 8. Heuristics Trace | |
* 16. API Trace | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if log mask was set successfully | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetMask(int mask); | |
/** Experimental: Disable logging for the entire session. | |
* | |
* \retval CUBLAS_STATUS_SUCCESS if disabled logging | |
*/ | |
cublasStatus_t CUBLASWINAPI cublasLtLoggerForceDisable(); | |
} | |