peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/safetensors
/tensorflow.py
import os | |
from typing import Dict, Optional, Union | |
import numpy as np | |
import tensorflow as tf | |
from safetensors import numpy, safe_open | |
def save(tensors: Dict[str, tf.Tensor], metadata: Optional[Dict[str, str]] = None) -> bytes: | |
""" | |
Saves a dictionary of tensors into raw bytes in safetensors format. | |
Args: | |
tensors (`Dict[str, tf.Tensor]`): | |
The incoming tensors. Tensors need to be contiguous and dense. | |
metadata (`Dict[str, str]`, *optional*, defaults to `None`): | |
Optional text only metadata you might want to save in your header. | |
For instance it can be useful to specify more about the underlying | |
tensors. This is purely informative and does not affect tensor loading. | |
Returns: | |
`bytes`: The raw bytes representing the format | |
Example: | |
```python | |
from safetensors.tensorflow import save | |
import tensorflow as tf | |
tensors = {"embedding": tf.zeros((512, 1024)), "attention": tf.zeros((256, 256))} | |
byte_data = save(tensors) | |
``` | |
""" | |
np_tensors = _tf2np(tensors) | |
return numpy.save(np_tensors, metadata=metadata) | |
def save_file( | |
tensors: Dict[str, tf.Tensor], | |
filename: Union[str, os.PathLike], | |
metadata: Optional[Dict[str, str]] = None, | |
) -> None: | |
""" | |
Saves a dictionary of tensors into raw bytes in safetensors format. | |
Args: | |
tensors (`Dict[str, tf.Tensor]`): | |
The incoming tensors. Tensors need to be contiguous and dense. | |
filename (`str`, or `os.PathLike`)): | |
The filename we're saving into. | |
metadata (`Dict[str, str]`, *optional*, defaults to `None`): | |
Optional text only metadata you might want to save in your header. | |
For instance it can be useful to specify more about the underlying | |
tensors. This is purely informative and does not affect tensor loading. | |
Returns: | |
`None` | |
Example: | |
```python | |
from safetensors.tensorflow import save_file | |
import tensorflow as tf | |
tensors = {"embedding": tf.zeros((512, 1024)), "attention": tf.zeros((256, 256))} | |
save_file(tensors, "model.safetensors") | |
``` | |
""" | |
np_tensors = _tf2np(tensors) | |
return numpy.save_file(np_tensors, filename, metadata=metadata) | |
def load(data: bytes) -> Dict[str, tf.Tensor]: | |
""" | |
Loads a safetensors file into tensorflow format from pure bytes. | |
Args: | |
data (`bytes`): | |
The content of a safetensors file | |
Returns: | |
`Dict[str, tf.Tensor]`: dictionary that contains name as key, value as `tf.Tensor` on cpu | |
Example: | |
```python | |
from safetensors.tensorflow import load | |
file_path = "./my_folder/bert.safetensors" | |
with open(file_path, "rb") as f: | |
data = f.read() | |
loaded = load(data) | |
``` | |
""" | |
flat = numpy.load(data) | |
return _np2tf(flat) | |
def load_file(filename: Union[str, os.PathLike]) -> Dict[str, tf.Tensor]: | |
""" | |
Loads a safetensors file into tensorflow format. | |
Args: | |
filename (`str`, or `os.PathLike`)): | |
The name of the file which contains the tensors | |
Returns: | |
`Dict[str, tf.Tensor]`: dictionary that contains name as key, value as `tf.Tensor` | |
Example: | |
```python | |
from safetensors.tensorflow import load_file | |
file_path = "./my_folder/bert.safetensors" | |
loaded = load_file(file_path) | |
``` | |
""" | |
result = {} | |
with safe_open(filename, framework="tf") as f: | |
for k in f.keys(): | |
result[k] = f.get_tensor(k) | |
return result | |
def _np2tf(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, tf.Tensor]: | |
for k, v in numpy_dict.items(): | |
numpy_dict[k] = tf.convert_to_tensor(v) | |
return numpy_dict | |
def _tf2np(tf_dict: Dict[str, tf.Tensor]) -> Dict[str, np.array]: | |
for k, v in tf_dict.items(): | |
tf_dict[k] = v.numpy() | |
return tf_dict | |