|
"""An implementation of gates that act on qubits. |
|
|
|
Gates are unitary operators that act on the space of qubits. |
|
|
|
Medium Term Todo: |
|
|
|
* Optimize Gate._apply_operators_Qubit to remove the creation of many |
|
intermediate Qubit objects. |
|
* Add commutation relationships to all operators and use this in gate_sort. |
|
* Fix gate_sort and gate_simp. |
|
* Get multi-target UGates plotting properly. |
|
* Get UGate to work with either sympy/numpy matrices and output either |
|
format. This should also use the matrix slots. |
|
""" |
|
|
|
from itertools import chain |
|
import random |
|
|
|
from sympy.core.add import Add |
|
from sympy.core.containers import Tuple |
|
from sympy.core.mul import Mul |
|
from sympy.core.numbers import (I, Integer) |
|
from sympy.core.power import Pow |
|
from sympy.core.numbers import Number |
|
from sympy.core.singleton import S as _S |
|
from sympy.core.sorting import default_sort_key |
|
from sympy.core.sympify import _sympify |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.printing.pretty.stringpict import prettyForm, stringPict |
|
|
|
from sympy.physics.quantum.anticommutator import AntiCommutator |
|
from sympy.physics.quantum.commutator import Commutator |
|
from sympy.physics.quantum.qexpr import QuantumError |
|
from sympy.physics.quantum.hilbert import ComplexSpace |
|
from sympy.physics.quantum.operator import (UnitaryOperator, Operator, |
|
HermitianOperator) |
|
from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye |
|
from sympy.physics.quantum.matrixcache import matrix_cache |
|
|
|
from sympy.matrices.matrices import MatrixBase |
|
|
|
from sympy.utilities.iterables import is_sequence |
|
|
|
__all__ = [ |
|
'Gate', |
|
'CGate', |
|
'UGate', |
|
'OneQubitGate', |
|
'TwoQubitGate', |
|
'IdentityGate', |
|
'HadamardGate', |
|
'XGate', |
|
'YGate', |
|
'ZGate', |
|
'TGate', |
|
'PhaseGate', |
|
'SwapGate', |
|
'CNotGate', |
|
|
|
'CNOT', |
|
'SWAP', |
|
'H', |
|
'X', |
|
'Y', |
|
'Z', |
|
'T', |
|
'S', |
|
'Phase', |
|
'normalized', |
|
'gate_sort', |
|
'gate_simp', |
|
'random_circuit', |
|
'CPHASE', |
|
'CGateS', |
|
] |
|
|
|
|
|
|
|
|
|
|
|
_normalized = True |
|
|
|
|
|
def _max(*args, **kwargs): |
|
if "key" not in kwargs: |
|
kwargs["key"] = default_sort_key |
|
return max(*args, **kwargs) |
|
|
|
|
|
def _min(*args, **kwargs): |
|
if "key" not in kwargs: |
|
kwargs["key"] = default_sort_key |
|
return min(*args, **kwargs) |
|
|
|
|
|
def normalized(normalize): |
|
r"""Set flag controlling normalization of Hadamard gates by `1/\sqrt{2}`. |
|
|
|
This is a global setting that can be used to simplify the look of various |
|
expressions, by leaving off the leading `1/\sqrt{2}` of the Hadamard gate. |
|
|
|
Parameters |
|
---------- |
|
normalize : bool |
|
Should the Hadamard gate include the `1/\sqrt{2}` normalization factor? |
|
When True, the Hadamard gate will have the `1/\sqrt{2}`. When False, the |
|
Hadamard gate will not have this factor. |
|
""" |
|
global _normalized |
|
_normalized = normalize |
|
|
|
|
|
def _validate_targets_controls(tandc): |
|
tandc = list(tandc) |
|
|
|
for bit in tandc: |
|
if not bit.is_Integer and not bit.is_Symbol: |
|
raise TypeError('Integer expected, got: %r' % tandc[bit]) |
|
|
|
if len(set(tandc)) != len(tandc): |
|
raise QuantumError( |
|
'Target/control qubits in a gate cannot be duplicated' |
|
) |
|
|
|
|
|
class Gate(UnitaryOperator): |
|
"""Non-controlled unitary gate operator that acts on qubits. |
|
|
|
This is a general abstract gate that needs to be subclassed to do anything |
|
useful. |
|
|
|
Parameters |
|
---------- |
|
label : tuple, int |
|
A list of the target qubits (as ints) that the gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
|
|
""" |
|
|
|
_label_separator = ',' |
|
|
|
gate_name = 'G' |
|
gate_name_latex = 'G' |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def _eval_args(cls, args): |
|
args = Tuple(*UnitaryOperator._eval_args(args)) |
|
_validate_targets_controls(args) |
|
return args |
|
|
|
@classmethod |
|
def _eval_hilbert_space(cls, args): |
|
"""This returns the smallest possible Hilbert space.""" |
|
return ComplexSpace(2)**(_max(args) + 1) |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def nqubits(self): |
|
"""The total number of qubits this gate acts on. |
|
|
|
For controlled gate subclasses this includes both target and control |
|
qubits, so that, for examples the CNOT gate acts on 2 qubits. |
|
""" |
|
return len(self.targets) |
|
|
|
@property |
|
def min_qubits(self): |
|
"""The minimum number of qubits this gate needs to act on.""" |
|
return _max(self.targets) + 1 |
|
|
|
@property |
|
def targets(self): |
|
"""A tuple of target qubits.""" |
|
return self.label |
|
|
|
@property |
|
def gate_name_plot(self): |
|
return r'$%s$' % self.gate_name_latex |
|
|
|
|
|
|
|
|
|
|
|
def get_target_matrix(self, format='sympy'): |
|
"""The matrix representation of the target part of the gate. |
|
|
|
Parameters |
|
---------- |
|
format : str |
|
The format string ('sympy','numpy', etc.) |
|
""" |
|
raise NotImplementedError( |
|
'get_target_matrix is not implemented in Gate.') |
|
|
|
|
|
|
|
|
|
|
|
def _apply_operator_IntQubit(self, qubits, **options): |
|
"""Redirect an apply from IntQubit to Qubit""" |
|
return self._apply_operator_Qubit(qubits, **options) |
|
|
|
def _apply_operator_Qubit(self, qubits, **options): |
|
"""Apply this gate to a Qubit.""" |
|
|
|
|
|
if qubits.nqubits < self.min_qubits: |
|
raise QuantumError( |
|
'Gate needs a minimum of %r qubits to act on, got: %r' % |
|
(self.min_qubits, qubits.nqubits) |
|
) |
|
|
|
|
|
if isinstance(self, CGate): |
|
if not self.eval_controls(qubits): |
|
return qubits |
|
|
|
targets = self.targets |
|
target_matrix = self.get_target_matrix(format='sympy') |
|
|
|
|
|
column_index = 0 |
|
n = 1 |
|
for target in targets: |
|
column_index += n*qubits[target] |
|
n = n << 1 |
|
column = target_matrix[:, int(column_index)] |
|
|
|
|
|
result = 0 |
|
for index in range(column.rows): |
|
|
|
|
|
|
|
|
|
new_qubit = qubits.__class__(*qubits.args) |
|
|
|
for bit, target in enumerate(targets): |
|
if new_qubit[target] != (index >> bit) & 1: |
|
new_qubit = new_qubit.flip(target) |
|
|
|
|
|
result += column[index]*new_qubit |
|
return result |
|
|
|
|
|
|
|
|
|
|
|
def _represent_default_basis(self, **options): |
|
return self._represent_ZGate(None, **options) |
|
|
|
def _represent_ZGate(self, basis, **options): |
|
format = options.get('format', 'sympy') |
|
nqubits = options.get('nqubits', 0) |
|
if nqubits == 0: |
|
raise QuantumError( |
|
'The number of qubits must be given as nqubits.') |
|
|
|
|
|
if nqubits < self.min_qubits: |
|
raise QuantumError( |
|
'The number of qubits %r is too small for the gate.' % nqubits |
|
) |
|
|
|
target_matrix = self.get_target_matrix(format) |
|
targets = self.targets |
|
if isinstance(self, CGate): |
|
controls = self.controls |
|
else: |
|
controls = [] |
|
m = represent_zbasis( |
|
controls, targets, target_matrix, nqubits, format |
|
) |
|
return m |
|
|
|
|
|
|
|
|
|
|
|
def _sympystr(self, printer, *args): |
|
label = self._print_label(printer, *args) |
|
return '%s(%s)' % (self.gate_name, label) |
|
|
|
def _pretty(self, printer, *args): |
|
a = stringPict(self.gate_name) |
|
b = self._print_label_pretty(printer, *args) |
|
return self._print_subscript_pretty(a, b) |
|
|
|
def _latex(self, printer, *args): |
|
label = self._print_label(printer, *args) |
|
return '%s_{%s}' % (self.gate_name_latex, label) |
|
|
|
def plot_gate(self, axes, gate_idx, gate_grid, wire_grid): |
|
raise NotImplementedError('plot_gate is not implemented.') |
|
|
|
|
|
class CGate(Gate): |
|
"""A general unitary gate with control qubits. |
|
|
|
A general control gate applies a target gate to a set of targets if all |
|
of the control qubits have a particular values (set by |
|
``CGate.control_value``). |
|
|
|
Parameters |
|
---------- |
|
label : tuple |
|
The label in this case has the form (controls, gate), where controls |
|
is a tuple/list of control qubits (as ints) and gate is a ``Gate`` |
|
instance that is the target operator. |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
|
|
gate_name = 'C' |
|
gate_name_latex = 'C' |
|
|
|
|
|
control_value = _S.One |
|
|
|
simplify_cgate = False |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def _eval_args(cls, args): |
|
|
|
controls = args[0] |
|
gate = args[1] |
|
if not is_sequence(controls): |
|
controls = (controls,) |
|
controls = UnitaryOperator._eval_args(controls) |
|
_validate_targets_controls(chain(controls, gate.targets)) |
|
return (Tuple(*controls), gate) |
|
|
|
@classmethod |
|
def _eval_hilbert_space(cls, args): |
|
"""This returns the smallest possible Hilbert space.""" |
|
return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits) |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def nqubits(self): |
|
"""The total number of qubits this gate acts on. |
|
|
|
For controlled gate subclasses this includes both target and control |
|
qubits, so that, for examples the CNOT gate acts on 2 qubits. |
|
""" |
|
return len(self.targets) + len(self.controls) |
|
|
|
@property |
|
def min_qubits(self): |
|
"""The minimum number of qubits this gate needs to act on.""" |
|
return _max(_max(self.controls), _max(self.targets)) + 1 |
|
|
|
@property |
|
def targets(self): |
|
"""A tuple of target qubits.""" |
|
return self.gate.targets |
|
|
|
@property |
|
def controls(self): |
|
"""A tuple of control qubits.""" |
|
return tuple(self.label[0]) |
|
|
|
@property |
|
def gate(self): |
|
"""The non-controlled gate that will be applied to the targets.""" |
|
return self.label[1] |
|
|
|
|
|
|
|
|
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return self.gate.get_target_matrix(format) |
|
|
|
def eval_controls(self, qubit): |
|
"""Return True/False to indicate if the controls are satisfied.""" |
|
return all(qubit[bit] == self.control_value for bit in self.controls) |
|
|
|
def decompose(self, **options): |
|
"""Decompose the controlled gate into CNOT and single qubits gates.""" |
|
if len(self.controls) == 1: |
|
c = self.controls[0] |
|
t = self.gate.targets[0] |
|
if isinstance(self.gate, YGate): |
|
g1 = PhaseGate(t) |
|
g2 = CNotGate(c, t) |
|
g3 = PhaseGate(t) |
|
g4 = ZGate(t) |
|
return g1*g2*g3*g4 |
|
if isinstance(self.gate, ZGate): |
|
g1 = HadamardGate(t) |
|
g2 = CNotGate(c, t) |
|
g3 = HadamardGate(t) |
|
return g1*g2*g3 |
|
else: |
|
return self |
|
|
|
|
|
|
|
|
|
|
|
def _print_label(self, printer, *args): |
|
controls = self._print_sequence(self.controls, ',', printer, *args) |
|
gate = printer._print(self.gate, *args) |
|
return '(%s),%s' % (controls, gate) |
|
|
|
def _pretty(self, printer, *args): |
|
controls = self._print_sequence_pretty( |
|
self.controls, ',', printer, *args) |
|
gate = printer._print(self.gate) |
|
gate_name = stringPict(self.gate_name) |
|
first = self._print_subscript_pretty(gate_name, controls) |
|
gate = self._print_parens_pretty(gate) |
|
final = prettyForm(*first.right(gate)) |
|
return final |
|
|
|
def _latex(self, printer, *args): |
|
controls = self._print_sequence(self.controls, ',', printer, *args) |
|
gate = printer._print(self.gate, *args) |
|
return r'%s_{%s}{\left(%s\right)}' % \ |
|
(self.gate_name_latex, controls, gate) |
|
|
|
def plot_gate(self, circ_plot, gate_idx): |
|
""" |
|
Plot the controlled gate. If *simplify_cgate* is true, simplify |
|
C-X and C-Z gates into their more familiar forms. |
|
""" |
|
min_wire = int(_min(chain(self.controls, self.targets))) |
|
max_wire = int(_max(chain(self.controls, self.targets))) |
|
circ_plot.control_line(gate_idx, min_wire, max_wire) |
|
for c in self.controls: |
|
circ_plot.control_point(gate_idx, int(c)) |
|
if self.simplify_cgate: |
|
if self.gate.gate_name == 'X': |
|
self.gate.plot_gate_plus(circ_plot, gate_idx) |
|
elif self.gate.gate_name == 'Z': |
|
circ_plot.control_point(gate_idx, self.targets[0]) |
|
else: |
|
self.gate.plot_gate(circ_plot, gate_idx) |
|
else: |
|
self.gate.plot_gate(circ_plot, gate_idx) |
|
|
|
|
|
|
|
|
|
|
|
def _eval_dagger(self): |
|
if isinstance(self.gate, HermitianOperator): |
|
return self |
|
else: |
|
return Gate._eval_dagger(self) |
|
|
|
def _eval_inverse(self): |
|
if isinstance(self.gate, HermitianOperator): |
|
return self |
|
else: |
|
return Gate._eval_inverse(self) |
|
|
|
def _eval_power(self, exp): |
|
if isinstance(self.gate, HermitianOperator): |
|
if exp == -1: |
|
return Gate._eval_power(self, exp) |
|
elif abs(exp) % 2 == 0: |
|
return self*(Gate._eval_inverse(self)) |
|
else: |
|
return self |
|
else: |
|
return Gate._eval_power(self, exp) |
|
|
|
class CGateS(CGate): |
|
"""Version of CGate that allows gate simplifications. |
|
I.e. cnot looks like an oplus, cphase has dots, etc. |
|
""" |
|
simplify_cgate=True |
|
|
|
|
|
class UGate(Gate): |
|
"""General gate specified by a set of targets and a target matrix. |
|
|
|
Parameters |
|
---------- |
|
label : tuple |
|
A tuple of the form (targets, U), where targets is a tuple of the |
|
target qubits and U is a unitary matrix with dimension of |
|
len(targets). |
|
""" |
|
gate_name = 'U' |
|
gate_name_latex = 'U' |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def _eval_args(cls, args): |
|
targets = args[0] |
|
if not is_sequence(targets): |
|
targets = (targets,) |
|
targets = Gate._eval_args(targets) |
|
_validate_targets_controls(targets) |
|
mat = args[1] |
|
if not isinstance(mat, MatrixBase): |
|
raise TypeError('Matrix expected, got: %r' % mat) |
|
|
|
mat = _sympify(mat) |
|
dim = 2**len(targets) |
|
if not all(dim == shape for shape in mat.shape): |
|
raise IndexError( |
|
'Number of targets must match the matrix size: %r %r' % |
|
(targets, mat) |
|
) |
|
return (targets, mat) |
|
|
|
@classmethod |
|
def _eval_hilbert_space(cls, args): |
|
"""This returns the smallest possible Hilbert space.""" |
|
return ComplexSpace(2)**(_max(args[0]) + 1) |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def targets(self): |
|
"""A tuple of target qubits.""" |
|
return tuple(self.label[0]) |
|
|
|
|
|
|
|
|
|
|
|
def get_target_matrix(self, format='sympy'): |
|
"""The matrix rep. of the target part of the gate. |
|
|
|
Parameters |
|
---------- |
|
format : str |
|
The format string ('sympy','numpy', etc.) |
|
""" |
|
return self.label[1] |
|
|
|
|
|
|
|
|
|
def _pretty(self, printer, *args): |
|
targets = self._print_sequence_pretty( |
|
self.targets, ',', printer, *args) |
|
gate_name = stringPict(self.gate_name) |
|
return self._print_subscript_pretty(gate_name, targets) |
|
|
|
def _latex(self, printer, *args): |
|
targets = self._print_sequence(self.targets, ',', printer, *args) |
|
return r'%s_{%s}' % (self.gate_name_latex, targets) |
|
|
|
def plot_gate(self, circ_plot, gate_idx): |
|
circ_plot.one_qubit_box( |
|
self.gate_name_plot, |
|
gate_idx, int(self.targets[0]) |
|
) |
|
|
|
|
|
class OneQubitGate(Gate): |
|
"""A single qubit unitary gate base class.""" |
|
|
|
nqubits = _S.One |
|
|
|
def plot_gate(self, circ_plot, gate_idx): |
|
circ_plot.one_qubit_box( |
|
self.gate_name_plot, |
|
gate_idx, int(self.targets[0]) |
|
) |
|
|
|
def _eval_commutator(self, other, **hints): |
|
if isinstance(other, OneQubitGate): |
|
if self.targets != other.targets or self.__class__ == other.__class__: |
|
return _S.Zero |
|
return Operator._eval_commutator(self, other, **hints) |
|
|
|
def _eval_anticommutator(self, other, **hints): |
|
if isinstance(other, OneQubitGate): |
|
if self.targets != other.targets or self.__class__ == other.__class__: |
|
return Integer(2)*self*other |
|
return Operator._eval_anticommutator(self, other, **hints) |
|
|
|
|
|
class TwoQubitGate(Gate): |
|
"""A two qubit unitary gate base class.""" |
|
|
|
nqubits = Integer(2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class IdentityGate(OneQubitGate): |
|
"""The single qubit identity gate. |
|
|
|
Parameters |
|
---------- |
|
target : int |
|
The target qubit this gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
gate_name = '1' |
|
gate_name_latex = '1' |
|
|
|
|
|
def _apply_operator_Qubit(self, qubits, **options): |
|
|
|
if qubits.nqubits < self.min_qubits: |
|
raise QuantumError( |
|
'Gate needs a minimum of %r qubits to act on, got: %r' % |
|
(self.min_qubits, qubits.nqubits) |
|
) |
|
return qubits |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return matrix_cache.get_matrix('eye2', format) |
|
|
|
def _eval_commutator(self, other, **hints): |
|
return _S.Zero |
|
|
|
def _eval_anticommutator(self, other, **hints): |
|
return Integer(2)*other |
|
|
|
|
|
class HadamardGate(HermitianOperator, OneQubitGate): |
|
"""The single qubit Hadamard gate. |
|
|
|
Parameters |
|
---------- |
|
target : int |
|
The target qubit this gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import sqrt |
|
>>> from sympy.physics.quantum.qubit import Qubit |
|
>>> from sympy.physics.quantum.gate import HadamardGate |
|
>>> from sympy.physics.quantum.qapply import qapply |
|
>>> qapply(HadamardGate(0)*Qubit('1')) |
|
sqrt(2)*|0>/2 - sqrt(2)*|1>/2 |
|
>>> # Hadamard on bell state, applied on 2 qubits. |
|
>>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11')) |
|
>>> qapply(HadamardGate(0)*HadamardGate(1)*psi) |
|
sqrt(2)*|00>/2 + sqrt(2)*|11>/2 |
|
|
|
""" |
|
gate_name = 'H' |
|
gate_name_latex = 'H' |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
if _normalized: |
|
return matrix_cache.get_matrix('H', format) |
|
else: |
|
return matrix_cache.get_matrix('Hsqrt2', format) |
|
|
|
def _eval_commutator_XGate(self, other, **hints): |
|
return I*sqrt(2)*YGate(self.targets[0]) |
|
|
|
def _eval_commutator_YGate(self, other, **hints): |
|
return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0])) |
|
|
|
def _eval_commutator_ZGate(self, other, **hints): |
|
return -I*sqrt(2)*YGate(self.targets[0]) |
|
|
|
def _eval_anticommutator_XGate(self, other, **hints): |
|
return sqrt(2)*IdentityGate(self.targets[0]) |
|
|
|
def _eval_anticommutator_YGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
def _eval_anticommutator_ZGate(self, other, **hints): |
|
return sqrt(2)*IdentityGate(self.targets[0]) |
|
|
|
|
|
class XGate(HermitianOperator, OneQubitGate): |
|
"""The single qubit X, or NOT, gate. |
|
|
|
Parameters |
|
---------- |
|
target : int |
|
The target qubit this gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
gate_name = 'X' |
|
gate_name_latex = 'X' |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return matrix_cache.get_matrix('X', format) |
|
|
|
def plot_gate(self, circ_plot, gate_idx): |
|
OneQubitGate.plot_gate(self,circ_plot,gate_idx) |
|
|
|
def plot_gate_plus(self, circ_plot, gate_idx): |
|
circ_plot.not_point( |
|
gate_idx, int(self.label[0]) |
|
) |
|
|
|
def _eval_commutator_YGate(self, other, **hints): |
|
return Integer(2)*I*ZGate(self.targets[0]) |
|
|
|
def _eval_anticommutator_XGate(self, other, **hints): |
|
return Integer(2)*IdentityGate(self.targets[0]) |
|
|
|
def _eval_anticommutator_YGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
def _eval_anticommutator_ZGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
|
|
class YGate(HermitianOperator, OneQubitGate): |
|
"""The single qubit Y gate. |
|
|
|
Parameters |
|
---------- |
|
target : int |
|
The target qubit this gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
gate_name = 'Y' |
|
gate_name_latex = 'Y' |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return matrix_cache.get_matrix('Y', format) |
|
|
|
def _eval_commutator_ZGate(self, other, **hints): |
|
return Integer(2)*I*XGate(self.targets[0]) |
|
|
|
def _eval_anticommutator_YGate(self, other, **hints): |
|
return Integer(2)*IdentityGate(self.targets[0]) |
|
|
|
def _eval_anticommutator_ZGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
|
|
class ZGate(HermitianOperator, OneQubitGate): |
|
"""The single qubit Z gate. |
|
|
|
Parameters |
|
---------- |
|
target : int |
|
The target qubit this gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
gate_name = 'Z' |
|
gate_name_latex = 'Z' |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return matrix_cache.get_matrix('Z', format) |
|
|
|
def _eval_commutator_XGate(self, other, **hints): |
|
return Integer(2)*I*YGate(self.targets[0]) |
|
|
|
def _eval_anticommutator_YGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
|
|
class PhaseGate(OneQubitGate): |
|
"""The single qubit phase, or S, gate. |
|
|
|
This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and |
|
does nothing if the state is ``|0>``. |
|
|
|
Parameters |
|
---------- |
|
target : int |
|
The target qubit this gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
gate_name = 'S' |
|
gate_name_latex = 'S' |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return matrix_cache.get_matrix('S', format) |
|
|
|
def _eval_commutator_ZGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
def _eval_commutator_TGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
|
|
class TGate(OneQubitGate): |
|
"""The single qubit pi/8 gate. |
|
|
|
This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and |
|
does nothing if the state is ``|0>``. |
|
|
|
Parameters |
|
---------- |
|
target : int |
|
The target qubit this gate will apply to. |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
gate_name = 'T' |
|
gate_name_latex = 'T' |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return matrix_cache.get_matrix('T', format) |
|
|
|
def _eval_commutator_ZGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
def _eval_commutator_PhaseGate(self, other, **hints): |
|
return _S.Zero |
|
|
|
|
|
|
|
H = HadamardGate |
|
X = XGate |
|
Y = YGate |
|
Z = ZGate |
|
T = TGate |
|
Phase = S = PhaseGate |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CNotGate(HermitianOperator, CGate, TwoQubitGate): |
|
"""Two qubit controlled-NOT. |
|
|
|
This gate performs the NOT or X gate on the target qubit if the control |
|
qubits all have the value 1. |
|
|
|
Parameters |
|
---------- |
|
label : tuple |
|
A tuple of the form (control, target). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.quantum.gate import CNOT |
|
>>> from sympy.physics.quantum.qapply import qapply |
|
>>> from sympy.physics.quantum.qubit import Qubit |
|
>>> c = CNOT(1,0) |
|
>>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left |
|
|11> |
|
|
|
""" |
|
gate_name = 'CNOT' |
|
gate_name_latex = r'\text{CNOT}' |
|
simplify_cgate = True |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def _eval_args(cls, args): |
|
args = Gate._eval_args(args) |
|
return args |
|
|
|
@classmethod |
|
def _eval_hilbert_space(cls, args): |
|
"""This returns the smallest possible Hilbert space.""" |
|
return ComplexSpace(2)**(_max(args) + 1) |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def min_qubits(self): |
|
"""The minimum number of qubits this gate needs to act on.""" |
|
return _max(self.label) + 1 |
|
|
|
@property |
|
def targets(self): |
|
"""A tuple of target qubits.""" |
|
return (self.label[1],) |
|
|
|
@property |
|
def controls(self): |
|
"""A tuple of control qubits.""" |
|
return (self.label[0],) |
|
|
|
@property |
|
def gate(self): |
|
"""The non-controlled gate that will be applied to the targets.""" |
|
return XGate(self.label[1]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _print_label(self, printer, *args): |
|
return Gate._print_label(self, printer, *args) |
|
|
|
def _pretty(self, printer, *args): |
|
return Gate._pretty(self, printer, *args) |
|
|
|
def _latex(self, printer, *args): |
|
return Gate._latex(self, printer, *args) |
|
|
|
|
|
|
|
|
|
|
|
def _eval_commutator_ZGate(self, other, **hints): |
|
"""[CNOT(i, j), Z(i)] == 0.""" |
|
if self.controls[0] == other.targets[0]: |
|
return _S.Zero |
|
else: |
|
raise NotImplementedError('Commutator not implemented: %r' % other) |
|
|
|
def _eval_commutator_TGate(self, other, **hints): |
|
"""[CNOT(i, j), T(i)] == 0.""" |
|
return self._eval_commutator_ZGate(other, **hints) |
|
|
|
def _eval_commutator_PhaseGate(self, other, **hints): |
|
"""[CNOT(i, j), S(i)] == 0.""" |
|
return self._eval_commutator_ZGate(other, **hints) |
|
|
|
def _eval_commutator_XGate(self, other, **hints): |
|
"""[CNOT(i, j), X(j)] == 0.""" |
|
if self.targets[0] == other.targets[0]: |
|
return _S.Zero |
|
else: |
|
raise NotImplementedError('Commutator not implemented: %r' % other) |
|
|
|
def _eval_commutator_CNotGate(self, other, **hints): |
|
"""[CNOT(i, j), CNOT(i,k)] == 0.""" |
|
if self.controls[0] == other.controls[0]: |
|
return _S.Zero |
|
else: |
|
raise NotImplementedError('Commutator not implemented: %r' % other) |
|
|
|
|
|
class SwapGate(TwoQubitGate): |
|
"""Two qubit SWAP gate. |
|
|
|
This gate swap the values of the two qubits. |
|
|
|
Parameters |
|
---------- |
|
label : tuple |
|
A tuple of the form (target1, target2). |
|
|
|
Examples |
|
======== |
|
|
|
""" |
|
gate_name = 'SWAP' |
|
gate_name_latex = r'\text{SWAP}' |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
return matrix_cache.get_matrix('SWAP', format) |
|
|
|
def decompose(self, **options): |
|
"""Decompose the SWAP gate into CNOT gates.""" |
|
i, j = self.targets[0], self.targets[1] |
|
g1 = CNotGate(i, j) |
|
g2 = CNotGate(j, i) |
|
return g1*g2*g1 |
|
|
|
def plot_gate(self, circ_plot, gate_idx): |
|
min_wire = int(_min(self.targets)) |
|
max_wire = int(_max(self.targets)) |
|
circ_plot.control_line(gate_idx, min_wire, max_wire) |
|
circ_plot.swap_point(gate_idx, min_wire) |
|
circ_plot.swap_point(gate_idx, max_wire) |
|
|
|
def _represent_ZGate(self, basis, **options): |
|
"""Represent the SWAP gate in the computational basis. |
|
|
|
The following representation is used to compute this: |
|
|
|
SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0| |
|
""" |
|
format = options.get('format', 'sympy') |
|
targets = [int(t) for t in self.targets] |
|
min_target = _min(targets) |
|
max_target = _max(targets) |
|
nqubits = options.get('nqubits', self.min_qubits) |
|
|
|
op01 = matrix_cache.get_matrix('op01', format) |
|
op10 = matrix_cache.get_matrix('op10', format) |
|
op11 = matrix_cache.get_matrix('op11', format) |
|
op00 = matrix_cache.get_matrix('op00', format) |
|
eye2 = matrix_cache.get_matrix('eye2', format) |
|
|
|
result = None |
|
for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)): |
|
product = nqubits*[eye2] |
|
product[nqubits - min_target - 1] = i |
|
product[nqubits - max_target - 1] = j |
|
new_result = matrix_tensor_product(*product) |
|
if result is None: |
|
result = new_result |
|
else: |
|
result = result + new_result |
|
|
|
return result |
|
|
|
|
|
|
|
CNOT = CNotGate |
|
SWAP = SwapGate |
|
def CPHASE(a,b): return CGateS((a,),Z(b)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'): |
|
"""Represent a gate with controls, targets and target_matrix. |
|
|
|
This function does the low-level work of representing gates as matrices |
|
in the standard computational basis (ZGate). Currently, we support two |
|
main cases: |
|
|
|
1. One target qubit and no control qubits. |
|
2. One target qubits and multiple control qubits. |
|
|
|
For the base of multiple controls, we use the following expression [1]: |
|
|
|
1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2}) |
|
|
|
Parameters |
|
---------- |
|
controls : list, tuple |
|
A sequence of control qubits. |
|
targets : list, tuple |
|
A sequence of target qubits. |
|
target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse |
|
The matrix form of the transformation to be performed on the target |
|
qubits. The format of this matrix must match that passed into |
|
the `format` argument. |
|
nqubits : int |
|
The total number of qubits used for the representation. |
|
format : str |
|
The format of the final matrix ('sympy', 'numpy', 'scipy.sparse'). |
|
|
|
Examples |
|
======== |
|
|
|
References |
|
---------- |
|
[1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html. |
|
""" |
|
controls = [int(x) for x in controls] |
|
targets = [int(x) for x in targets] |
|
nqubits = int(nqubits) |
|
|
|
|
|
op11 = matrix_cache.get_matrix('op11', format) |
|
eye2 = matrix_cache.get_matrix('eye2', format) |
|
|
|
|
|
if len(controls) == 0 and len(targets) == 1: |
|
product = [] |
|
bit = targets[0] |
|
|
|
|
|
if bit != nqubits - 1: |
|
product.append(matrix_eye(2**(nqubits - bit - 1), format=format)) |
|
product.append(target_matrix) |
|
if bit != 0: |
|
product.append(matrix_eye(2**bit, format=format)) |
|
return matrix_tensor_product(*product) |
|
|
|
|
|
elif len(targets) == 1 and len(controls) >= 1: |
|
target = targets[0] |
|
|
|
|
|
product2 = [] |
|
for i in range(nqubits): |
|
product2.append(matrix_eye(2, format=format)) |
|
for control in controls: |
|
product2[nqubits - 1 - control] = op11 |
|
product2[nqubits - 1 - target] = target_matrix - eye2 |
|
|
|
return matrix_eye(2**nqubits, format=format) + \ |
|
matrix_tensor_product(*product2) |
|
|
|
|
|
else: |
|
raise NotImplementedError( |
|
'The representation of multi-target, multi-control gates ' |
|
'is not implemented.' |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gate_simp(circuit): |
|
"""Simplifies gates symbolically |
|
|
|
It first sorts gates using gate_sort. It then applies basic |
|
simplification rules to the circuit, e.g., XGate**2 = Identity |
|
""" |
|
|
|
|
|
circuit = gate_sort(circuit) |
|
|
|
|
|
|
|
|
|
if isinstance(circuit, Add): |
|
return sum(gate_simp(t) for t in circuit.args) |
|
elif isinstance(circuit, Mul): |
|
circuit_args = circuit.args |
|
elif isinstance(circuit, Pow): |
|
b, e = circuit.as_base_exp() |
|
circuit_args = (gate_simp(b)**e,) |
|
else: |
|
return circuit |
|
|
|
|
|
for i in range(len(circuit_args)): |
|
|
|
|
|
if isinstance(circuit_args[i], Pow): |
|
if isinstance(circuit_args[i].base, |
|
(HadamardGate, XGate, YGate, ZGate)) \ |
|
and isinstance(circuit_args[i].exp, Number): |
|
|
|
|
|
newargs = (circuit_args[:i] + |
|
(circuit_args[i].base**(circuit_args[i].exp % 2),) + |
|
circuit_args[i + 1:]) |
|
|
|
circuit = gate_simp(Mul(*newargs)) |
|
break |
|
elif isinstance(circuit_args[i].base, PhaseGate): |
|
|
|
|
|
newargs = circuit_args[:i] |
|
|
|
newargs = newargs + (ZGate(circuit_args[i].base.args[0])** |
|
(Integer(circuit_args[i].exp/2)), circuit_args[i].base** |
|
(circuit_args[i].exp % 2)) |
|
|
|
newargs = newargs + circuit_args[i + 1:] |
|
|
|
circuit = gate_simp(Mul(*newargs)) |
|
break |
|
elif isinstance(circuit_args[i].base, TGate): |
|
|
|
newargs = circuit_args[:i] |
|
|
|
|
|
newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])** |
|
Integer(circuit_args[i].exp/2), circuit_args[i].base** |
|
(circuit_args[i].exp % 2)) |
|
|
|
|
|
newargs = newargs + circuit_args[i + 1:] |
|
|
|
circuit = gate_simp(Mul(*newargs)) |
|
break |
|
return circuit |
|
|
|
|
|
def gate_sort(circuit): |
|
"""Sorts the gates while keeping track of commutation relations |
|
|
|
This function uses a bubble sort to rearrange the order of gate |
|
application. Keeps track of Quantum computations special commutation |
|
relations (e.g. things that apply to the same Qubit do not commute with |
|
each other) |
|
|
|
circuit is the Mul of gates that are to be sorted. |
|
""" |
|
|
|
if isinstance(circuit, Add): |
|
return sum(gate_sort(t) for t in circuit.args) |
|
if isinstance(circuit, Pow): |
|
return gate_sort(circuit.base)**circuit.exp |
|
elif isinstance(circuit, Gate): |
|
return circuit |
|
if not isinstance(circuit, Mul): |
|
return circuit |
|
|
|
changes = True |
|
while changes: |
|
changes = False |
|
circ_array = circuit.args |
|
for i in range(len(circ_array) - 1): |
|
|
|
if isinstance(circ_array[i], (Gate, Pow)) and \ |
|
isinstance(circ_array[i + 1], (Gate, Pow)): |
|
|
|
first_base, first_exp = circ_array[i].as_base_exp() |
|
second_base, second_exp = circ_array[i + 1].as_base_exp() |
|
|
|
|
|
|
|
|
|
if first_base.compare(second_base) > 0: |
|
if Commutator(first_base, second_base).doit() == 0: |
|
new_args = (circuit.args[:i] + (circuit.args[i + 1],) + |
|
(circuit.args[i],) + circuit.args[i + 2:]) |
|
circuit = Mul(*new_args) |
|
changes = True |
|
break |
|
if AntiCommutator(first_base, second_base).doit() == 0: |
|
new_args = (circuit.args[:i] + (circuit.args[i + 1],) + |
|
(circuit.args[i],) + circuit.args[i + 2:]) |
|
sign = _S.NegativeOne**(first_exp*second_exp) |
|
circuit = sign*Mul(*new_args) |
|
changes = True |
|
break |
|
return circuit |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)): |
|
"""Return a random circuit of ngates and nqubits. |
|
|
|
This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) |
|
gates. |
|
|
|
Parameters |
|
---------- |
|
ngates : int |
|
The number of gates in the circuit. |
|
nqubits : int |
|
The number of qubits in the circuit. |
|
gate_space : tuple |
|
A tuple of the gate classes that will be used in the circuit. |
|
Repeating gate classes multiple times in this tuple will increase |
|
the frequency they appear in the random circuit. |
|
""" |
|
qubit_space = range(nqubits) |
|
result = [] |
|
for i in range(ngates): |
|
g = random.choice(gate_space) |
|
if g == CNotGate or g == SwapGate: |
|
qubits = random.sample(qubit_space, 2) |
|
g = g(*qubits) |
|
else: |
|
qubit = random.choice(qubit_space) |
|
g = g(qubit) |
|
result.append(g) |
|
return Mul(*result) |
|
|
|
|
|
def zx_basis_transform(self, format='sympy'): |
|
"""Transformation matrix from Z to X basis.""" |
|
return matrix_cache.get_matrix('ZX', format) |
|
|
|
|
|
def zy_basis_transform(self, format='sympy'): |
|
"""Transformation matrix from Z to Y basis.""" |
|
return matrix_cache.get_matrix('ZY', format) |
|
|