|
"""1D quantum particle in a box.""" |
|
|
|
from sympy.core.numbers import pi |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import Symbol |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.functions.elementary.trigonometric import sin |
|
from sympy.sets.sets import Interval |
|
|
|
from sympy.physics.quantum.operator import HermitianOperator |
|
from sympy.physics.quantum.state import Ket, Bra |
|
from sympy.physics.quantum.constants import hbar |
|
from sympy.functions.special.tensor_functions import KroneckerDelta |
|
from sympy.physics.quantum.hilbert import L2 |
|
|
|
m = Symbol('m') |
|
L = Symbol('L') |
|
|
|
|
|
__all__ = [ |
|
'PIABHamiltonian', |
|
'PIABKet', |
|
'PIABBra' |
|
] |
|
|
|
|
|
class PIABHamiltonian(HermitianOperator): |
|
"""Particle in a box Hamiltonian operator.""" |
|
|
|
@classmethod |
|
def _eval_hilbert_space(cls, label): |
|
return L2(Interval(S.NegativeInfinity, S.Infinity)) |
|
|
|
def _apply_operator_PIABKet(self, ket, **options): |
|
n = ket.label[0] |
|
return (n**2*pi**2*hbar**2)/(2*m*L**2)*ket |
|
|
|
|
|
class PIABKet(Ket): |
|
"""Particle in a box eigenket.""" |
|
|
|
@classmethod |
|
def _eval_hilbert_space(cls, args): |
|
return L2(Interval(S.NegativeInfinity, S.Infinity)) |
|
|
|
@classmethod |
|
def dual_class(self): |
|
return PIABBra |
|
|
|
def _represent_default_basis(self, **options): |
|
return self._represent_XOp(None, **options) |
|
|
|
def _represent_XOp(self, basis, **options): |
|
x = Symbol('x') |
|
n = Symbol('n') |
|
subs_info = options.get('subs', {}) |
|
return sqrt(2/L)*sin(n*pi*x/L).subs(subs_info) |
|
|
|
def _eval_innerproduct_PIABBra(self, bra): |
|
return KroneckerDelta(bra.label[0], self.label[0]) |
|
|
|
|
|
class PIABBra(Bra): |
|
"""Particle in a box eigenbra.""" |
|
|
|
@classmethod |
|
def _eval_hilbert_space(cls, label): |
|
return L2(Interval(S.NegativeInfinity, S.Infinity)) |
|
|
|
@classmethod |
|
def dual_class(self): |
|
return PIABKet |
|
|