|
"""An implementation of qubits and gates acting on them. |
|
|
|
Todo: |
|
|
|
* Update docstrings. |
|
* Update tests. |
|
* Implement apply using decompose. |
|
* Implement represent using decompose or something smarter. For this to |
|
work we first have to implement represent for SWAP. |
|
* Decide if we want upper index to be inclusive in the constructor. |
|
* Fix the printing of Rk gates in plotting. |
|
""" |
|
|
|
from sympy.core.expr import Expr |
|
from sympy.core.numbers import (I, Integer, pi) |
|
from sympy.core.symbol import Symbol |
|
from sympy.functions.elementary.exponential import exp |
|
from sympy.matrices.dense import Matrix |
|
from sympy.functions import sqrt |
|
|
|
from sympy.physics.quantum.qapply import qapply |
|
from sympy.physics.quantum.qexpr import QuantumError, QExpr |
|
from sympy.matrices import eye |
|
from sympy.physics.quantum.tensorproduct import matrix_tensor_product |
|
|
|
from sympy.physics.quantum.gate import ( |
|
Gate, HadamardGate, SwapGate, OneQubitGate, CGate, PhaseGate, TGate, ZGate |
|
) |
|
|
|
__all__ = [ |
|
'QFT', |
|
'IQFT', |
|
'RkGate', |
|
'Rk' |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
class RkGate(OneQubitGate): |
|
"""This is the R_k gate of the QTF.""" |
|
gate_name = 'Rk' |
|
gate_name_latex = 'R' |
|
|
|
def __new__(cls, *args): |
|
if len(args) != 2: |
|
raise QuantumError( |
|
'Rk gates only take two arguments, got: %r' % args |
|
) |
|
|
|
|
|
|
|
target = args[0] |
|
k = args[1] |
|
if k == 1: |
|
return ZGate(target) |
|
elif k == 2: |
|
return PhaseGate(target) |
|
elif k == 3: |
|
return TGate(target) |
|
args = cls._eval_args(args) |
|
inst = Expr.__new__(cls, *args) |
|
inst.hilbert_space = cls._eval_hilbert_space(args) |
|
return inst |
|
|
|
@classmethod |
|
def _eval_args(cls, args): |
|
|
|
|
|
return QExpr._eval_args(args) |
|
|
|
@property |
|
def k(self): |
|
return self.label[1] |
|
|
|
@property |
|
def targets(self): |
|
return self.label[:1] |
|
|
|
@property |
|
def gate_name_plot(self): |
|
return r'$%s_%s$' % (self.gate_name_latex, str(self.k)) |
|
|
|
def get_target_matrix(self, format='sympy'): |
|
if format == 'sympy': |
|
return Matrix([[1, 0], [0, exp(Integer(2)*pi*I/(Integer(2)**self.k))]]) |
|
raise NotImplementedError( |
|
'Invalid format for the R_k gate: %r' % format) |
|
|
|
|
|
Rk = RkGate |
|
|
|
|
|
class Fourier(Gate): |
|
"""Superclass of Quantum Fourier and Inverse Quantum Fourier Gates.""" |
|
|
|
@classmethod |
|
def _eval_args(self, args): |
|
if len(args) != 2: |
|
raise QuantumError( |
|
'QFT/IQFT only takes two arguments, got: %r' % args |
|
) |
|
if args[0] >= args[1]: |
|
raise QuantumError("Start must be smaller than finish") |
|
return Gate._eval_args(args) |
|
|
|
def _represent_default_basis(self, **options): |
|
return self._represent_ZGate(None, **options) |
|
|
|
def _represent_ZGate(self, basis, **options): |
|
""" |
|
Represents the (I)QFT In the Z Basis |
|
""" |
|
nqubits = options.get('nqubits', 0) |
|
if nqubits == 0: |
|
raise QuantumError( |
|
'The number of qubits must be given as nqubits.') |
|
if nqubits < self.min_qubits: |
|
raise QuantumError( |
|
'The number of qubits %r is too small for the gate.' % nqubits |
|
) |
|
size = self.size |
|
omega = self.omega |
|
|
|
|
|
arrayFT = [[omega**( |
|
i*j % size)/sqrt(size) for i in range(size)] for j in range(size)] |
|
matrixFT = Matrix(arrayFT) |
|
|
|
|
|
if self.label[0] != 0: |
|
matrixFT = matrix_tensor_product(eye(2**self.label[0]), matrixFT) |
|
if self.min_qubits < nqubits: |
|
matrixFT = matrix_tensor_product( |
|
matrixFT, eye(2**(nqubits - self.min_qubits))) |
|
|
|
return matrixFT |
|
|
|
@property |
|
def targets(self): |
|
return range(self.label[0], self.label[1]) |
|
|
|
@property |
|
def min_qubits(self): |
|
return self.label[1] |
|
|
|
@property |
|
def size(self): |
|
"""Size is the size of the QFT matrix""" |
|
return 2**(self.label[1] - self.label[0]) |
|
|
|
@property |
|
def omega(self): |
|
return Symbol('omega') |
|
|
|
|
|
class QFT(Fourier): |
|
"""The forward quantum Fourier transform.""" |
|
|
|
gate_name = 'QFT' |
|
gate_name_latex = 'QFT' |
|
|
|
def decompose(self): |
|
"""Decomposes QFT into elementary gates.""" |
|
start = self.label[0] |
|
finish = self.label[1] |
|
circuit = 1 |
|
for level in reversed(range(start, finish)): |
|
circuit = HadamardGate(level)*circuit |
|
for i in range(level - start): |
|
circuit = CGate(level - i - 1, RkGate(level, i + 2))*circuit |
|
for i in range((finish - start)//2): |
|
circuit = SwapGate(i + start, finish - i - 1)*circuit |
|
return circuit |
|
|
|
def _apply_operator_Qubit(self, qubits, **options): |
|
return qapply(self.decompose()*qubits) |
|
|
|
def _eval_inverse(self): |
|
return IQFT(*self.args) |
|
|
|
@property |
|
def omega(self): |
|
return exp(2*pi*I/self.size) |
|
|
|
|
|
class IQFT(Fourier): |
|
"""The inverse quantum Fourier transform.""" |
|
|
|
gate_name = 'IQFT' |
|
gate_name_latex = '{QFT^{-1}}' |
|
|
|
def decompose(self): |
|
"""Decomposes IQFT into elementary gates.""" |
|
start = self.args[0] |
|
finish = self.args[1] |
|
circuit = 1 |
|
for i in range((finish - start)//2): |
|
circuit = SwapGate(i + start, finish - i - 1)*circuit |
|
for level in range(start, finish): |
|
for i in reversed(range(level - start)): |
|
circuit = CGate(level - i - 1, RkGate(level, -i - 2))*circuit |
|
circuit = HadamardGate(level)*circuit |
|
return circuit |
|
|
|
def _eval_inverse(self): |
|
return QFT(*self.args) |
|
|
|
@property |
|
def omega(self): |
|
return exp(-2*pi*I/self.size) |
|
|