peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/matrices
/dense.py
""" | |
Module for the ddm_* routines for operating on a matrix in list of lists | |
matrix representation. | |
These routines are used internally by the DDM class which also provides a | |
friendlier interface for them. The idea here is to implement core matrix | |
routines in a way that can be applied to any simple list representation | |
without the need to use any particular matrix class. For example we can | |
compute the RREF of a matrix like: | |
>>> from sympy.polys.matrices.dense import ddm_irref | |
>>> M = [[1, 2, 3], [4, 5, 6]] | |
>>> pivots = ddm_irref(M) | |
>>> M | |
[[1.0, 0.0, -1.0], [0, 1.0, 2.0]] | |
These are lower-level routines that work mostly in place.The routines at this | |
level should not need to know what the domain of the elements is but should | |
ideally document what operations they will use and what functions they need to | |
be provided with. | |
The next-level up is the DDM class which uses these routines but wraps them up | |
with an interface that handles copying etc and keeps track of the Domain of | |
the elements of the matrix: | |
>>> from sympy.polys.domains import QQ | |
>>> from sympy.polys.matrices.ddm import DDM | |
>>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ) | |
>>> M | |
[[1, 2, 3], [4, 5, 6]] | |
>>> Mrref, pivots = M.rref() | |
>>> Mrref | |
[[1, 0, -1], [0, 1, 2]] | |
""" | |
from __future__ import annotations | |
from operator import mul | |
from .exceptions import ( | |
DMShapeError, | |
DMNonInvertibleMatrixError, | |
DMNonSquareMatrixError, | |
) | |
from typing import Sequence, TypeVar | |
from sympy.polys.matrices._typing import RingElement | |
T = TypeVar('T') | |
R = TypeVar('R', bound=RingElement) | |
def ddm_transpose(matrix: Sequence[Sequence[T]]) -> list[list[T]]: | |
"""matrix transpose""" | |
return list(map(list, zip(*matrix))) | |
def ddm_iadd(a: list[list[R]], b: Sequence[Sequence[R]]) -> None: | |
"""a += b""" | |
for ai, bi in zip(a, b): | |
for j, bij in enumerate(bi): | |
ai[j] += bij | |
def ddm_isub(a: list[list[R]], b: Sequence[Sequence[R]]) -> None: | |
"""a -= b""" | |
for ai, bi in zip(a, b): | |
for j, bij in enumerate(bi): | |
ai[j] -= bij | |
def ddm_ineg(a: list[list[R]]) -> None: | |
"""a <-- -a""" | |
for ai in a: | |
for j, aij in enumerate(ai): | |
ai[j] = -aij | |
def ddm_imul(a: list[list[R]], b: R) -> None: | |
for ai in a: | |
for j, aij in enumerate(ai): | |
ai[j] = aij * b | |
def ddm_irmul(a: list[list[R]], b: R) -> None: | |
for ai in a: | |
for j, aij in enumerate(ai): | |
ai[j] = b * aij | |
def ddm_imatmul( | |
a: list[list[R]], b: Sequence[Sequence[R]], c: Sequence[Sequence[R]] | |
) -> None: | |
"""a += b @ c""" | |
cT = list(zip(*c)) | |
for bi, ai in zip(b, a): | |
for j, cTj in enumerate(cT): | |
ai[j] = sum(map(mul, bi, cTj), ai[j]) | |
def ddm_irref(a, _partial_pivot=False): | |
"""a <-- rref(a)""" | |
# a is (m x n) | |
m = len(a) | |
if not m: | |
return [] | |
n = len(a[0]) | |
i = 0 | |
pivots = [] | |
for j in range(n): | |
# Proper pivoting should be used for all domains for performance | |
# reasons but it is only strictly needed for RR and CC (and possibly | |
# other domains like RR(x)). This path is used by DDM.rref() if the | |
# domain is RR or CC. It uses partial (row) pivoting based on the | |
# absolute value of the pivot candidates. | |
if _partial_pivot: | |
ip = max(range(i, m), key=lambda ip: abs(a[ip][j])) | |
a[i], a[ip] = a[ip], a[i] | |
# pivot | |
aij = a[i][j] | |
# zero-pivot | |
if not aij: | |
for ip in range(i+1, m): | |
aij = a[ip][j] | |
# row-swap | |
if aij: | |
a[i], a[ip] = a[ip], a[i] | |
break | |
else: | |
# next column | |
continue | |
# normalise row | |
ai = a[i] | |
aijinv = aij**-1 | |
for l in range(j, n): | |
ai[l] *= aijinv # ai[j] = one | |
# eliminate above and below to the right | |
for k, ak in enumerate(a): | |
if k == i or not ak[j]: | |
continue | |
akj = ak[j] | |
ak[j] -= akj # ak[j] = zero | |
for l in range(j+1, n): | |
ak[l] -= akj * ai[l] | |
# next row | |
pivots.append(j) | |
i += 1 | |
# no more rows? | |
if i >= m: | |
break | |
return pivots | |
def ddm_idet(a, K): | |
"""a <-- echelon(a); return det""" | |
# Bareiss algorithm | |
# https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf | |
# a is (m x n) | |
m = len(a) | |
if not m: | |
return K.one | |
n = len(a[0]) | |
exquo = K.exquo | |
# uf keeps track of the sign change from row swaps | |
uf = K.one | |
for k in range(n-1): | |
if not a[k][k]: | |
for i in range(k+1, n): | |
if a[i][k]: | |
a[k], a[i] = a[i], a[k] | |
uf = -uf | |
break | |
else: | |
return K.zero | |
akkm1 = a[k-1][k-1] if k else K.one | |
for i in range(k+1, n): | |
for j in range(k+1, n): | |
a[i][j] = exquo(a[i][j]*a[k][k] - a[i][k]*a[k][j], akkm1) | |
return uf * a[-1][-1] | |
def ddm_iinv(ainv, a, K): | |
if not K.is_Field: | |
raise ValueError('Not a field') | |
# a is (m x n) | |
m = len(a) | |
if not m: | |
return | |
n = len(a[0]) | |
if m != n: | |
raise DMNonSquareMatrixError | |
eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)] | |
Aaug = [row + eyerow for row, eyerow in zip(a, eye)] | |
pivots = ddm_irref(Aaug) | |
if pivots != list(range(n)): | |
raise DMNonInvertibleMatrixError('Matrix det == 0; not invertible.') | |
ainv[:] = [row[n:] for row in Aaug] | |
def ddm_ilu_split(L, U, K): | |
"""L, U <-- LU(U)""" | |
m = len(U) | |
if not m: | |
return [] | |
n = len(U[0]) | |
swaps = ddm_ilu(U) | |
zeros = [K.zero] * min(m, n) | |
for i in range(1, m): | |
j = min(i, n) | |
L[i][:j] = U[i][:j] | |
U[i][:j] = zeros[:j] | |
return swaps | |
def ddm_ilu(a): | |
"""a <-- LU(a)""" | |
m = len(a) | |
if not m: | |
return [] | |
n = len(a[0]) | |
swaps = [] | |
for i in range(min(m, n)): | |
if not a[i][i]: | |
for ip in range(i+1, m): | |
if a[ip][i]: | |
swaps.append((i, ip)) | |
a[i], a[ip] = a[ip], a[i] | |
break | |
else: | |
# M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]]) | |
continue | |
for j in range(i+1, m): | |
l_ji = a[j][i] / a[i][i] | |
a[j][i] = l_ji | |
for k in range(i+1, n): | |
a[j][k] -= l_ji * a[i][k] | |
return swaps | |
def ddm_ilu_solve(x, L, U, swaps, b): | |
"""x <-- solve(L*U*x = swaps(b))""" | |
m = len(U) | |
if not m: | |
return | |
n = len(U[0]) | |
m2 = len(b) | |
if not m2: | |
raise DMShapeError("Shape mismtch") | |
o = len(b[0]) | |
if m != m2: | |
raise DMShapeError("Shape mismtch") | |
if m < n: | |
raise NotImplementedError("Underdetermined") | |
if swaps: | |
b = [row[:] for row in b] | |
for i1, i2 in swaps: | |
b[i1], b[i2] = b[i2], b[i1] | |
# solve Ly = b | |
y = [[None] * o for _ in range(m)] | |
for k in range(o): | |
for i in range(m): | |
rhs = b[i][k] | |
for j in range(i): | |
rhs -= L[i][j] * y[j][k] | |
y[i][k] = rhs | |
if m > n: | |
for i in range(n, m): | |
for j in range(o): | |
if y[i][j]: | |
raise DMNonInvertibleMatrixError | |
# Solve Ux = y | |
for k in range(o): | |
for i in reversed(range(n)): | |
if not U[i][i]: | |
raise DMNonInvertibleMatrixError | |
rhs = y[i][k] | |
for j in range(i+1, n): | |
rhs -= U[i][j] * x[j][k] | |
x[i][k] = rhs / U[i][i] | |
def ddm_berk(M, K): | |
m = len(M) | |
if not m: | |
return [[K.one]] | |
n = len(M[0]) | |
if m != n: | |
raise DMShapeError("Not square") | |
if n == 1: | |
return [[K.one], [-M[0][0]]] | |
a = M[0][0] | |
R = [M[0][1:]] | |
C = [[row[0]] for row in M[1:]] | |
A = [row[1:] for row in M[1:]] | |
q = ddm_berk(A, K) | |
T = [[K.zero] * n for _ in range(n+1)] | |
for i in range(n): | |
T[i][i] = K.one | |
T[i+1][i] = -a | |
for i in range(2, n+1): | |
if i == 2: | |
AnC = C | |
else: | |
C = AnC | |
AnC = [[K.zero] for row in C] | |
ddm_imatmul(AnC, A, C) | |
RAnC = [[K.zero]] | |
ddm_imatmul(RAnC, R, AnC) | |
for j in range(0, n+1-i): | |
T[i+j][j] = -RAnC[0][0] | |
qout = [[K.zero] for _ in range(n+1)] | |
ddm_imatmul(qout, T, q) | |
return qout | |