|
from collections import defaultdict |
|
|
|
from sympy.core.add import Add |
|
from sympy.core.expr import Expr |
|
from sympy.core.exprtools import Factors, gcd_terms, factor_terms |
|
from sympy.core.function import expand_mul |
|
from sympy.core.mul import Mul |
|
from sympy.core.numbers import pi, I |
|
from sympy.core.power import Pow |
|
from sympy.core.singleton import S |
|
from sympy.core.sorting import ordered |
|
from sympy.core.symbol import Dummy |
|
from sympy.core.sympify import sympify |
|
from sympy.core.traversal import bottom_up |
|
from sympy.functions.combinatorial.factorials import binomial |
|
from sympy.functions.elementary.hyperbolic import ( |
|
cosh, sinh, tanh, coth, sech, csch, HyperbolicFunction) |
|
from sympy.functions.elementary.trigonometric import ( |
|
cos, sin, tan, cot, sec, csc, sqrt, TrigonometricFunction) |
|
from sympy.ntheory.factor_ import perfect_power |
|
from sympy.polys.polytools import factor |
|
from sympy.strategies.tree import greedy |
|
from sympy.strategies.core import identity, debug |
|
|
|
from sympy import SYMPY_DEBUG |
|
|
|
|
|
|
|
|
|
|
|
def TR0(rv): |
|
"""Simplification of rational polynomials, trying to simplify |
|
the expression, e.g. combine things like 3*x + 2*x, etc.... |
|
""" |
|
|
|
|
|
return rv.normal().factor().expand() |
|
|
|
|
|
def TR1(rv): |
|
"""Replace sec, csc with 1/cos, 1/sin |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR1, sec, csc |
|
>>> from sympy.abc import x |
|
>>> TR1(2*csc(x) + sec(x)) |
|
1/cos(x) + 2/sin(x) |
|
""" |
|
|
|
def f(rv): |
|
if isinstance(rv, sec): |
|
a = rv.args[0] |
|
return S.One/cos(a) |
|
elif isinstance(rv, csc): |
|
a = rv.args[0] |
|
return S.One/sin(a) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR2(rv): |
|
"""Replace tan and cot with sin/cos and cos/sin |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR2 |
|
>>> from sympy.abc import x |
|
>>> from sympy import tan, cot, sin, cos |
|
>>> TR2(tan(x)) |
|
sin(x)/cos(x) |
|
>>> TR2(cot(x)) |
|
cos(x)/sin(x) |
|
>>> TR2(tan(tan(x) - sin(x)/cos(x))) |
|
0 |
|
|
|
""" |
|
|
|
def f(rv): |
|
if isinstance(rv, tan): |
|
a = rv.args[0] |
|
return sin(a)/cos(a) |
|
elif isinstance(rv, cot): |
|
a = rv.args[0] |
|
return cos(a)/sin(a) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR2i(rv, half=False): |
|
"""Converts ratios involving sin and cos as follows:: |
|
sin(x)/cos(x) -> tan(x) |
|
sin(x)/(cos(x) + 1) -> tan(x/2) if half=True |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR2i |
|
>>> from sympy.abc import x, a |
|
>>> from sympy import sin, cos |
|
>>> TR2i(sin(x)/cos(x)) |
|
tan(x) |
|
|
|
Powers of the numerator and denominator are also recognized |
|
|
|
>>> TR2i(sin(x)**2/(cos(x) + 1)**2, half=True) |
|
tan(x/2)**2 |
|
|
|
The transformation does not take place unless assumptions allow |
|
(i.e. the base must be positive or the exponent must be an integer |
|
for both numerator and denominator) |
|
|
|
>>> TR2i(sin(x)**a/(cos(x) + 1)**a) |
|
sin(x)**a/(cos(x) + 1)**a |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not rv.is_Mul: |
|
return rv |
|
|
|
n, d = rv.as_numer_denom() |
|
if n.is_Atom or d.is_Atom: |
|
return rv |
|
|
|
def ok(k, e): |
|
|
|
return ( |
|
(e.is_integer or k.is_positive) and ( |
|
k.func in (sin, cos) or (half and |
|
k.is_Add and |
|
len(k.args) >= 2 and |
|
any(any(isinstance(ai, cos) or ai.is_Pow and ai.base is cos |
|
for ai in Mul.make_args(a)) for a in k.args)))) |
|
|
|
n = n.as_powers_dict() |
|
ndone = [(k, n.pop(k)) for k in list(n.keys()) if not ok(k, n[k])] |
|
if not n: |
|
return rv |
|
|
|
d = d.as_powers_dict() |
|
ddone = [(k, d.pop(k)) for k in list(d.keys()) if not ok(k, d[k])] |
|
if not d: |
|
return rv |
|
|
|
|
|
|
|
def factorize(d, ddone): |
|
newk = [] |
|
for k in d: |
|
if k.is_Add and len(k.args) > 1: |
|
knew = factor(k) if half else factor_terms(k) |
|
if knew != k: |
|
newk.append((k, knew)) |
|
if newk: |
|
for i, (k, knew) in enumerate(newk): |
|
del d[k] |
|
newk[i] = knew |
|
newk = Mul(*newk).as_powers_dict() |
|
for k in newk: |
|
v = d[k] + newk[k] |
|
if ok(k, v): |
|
d[k] = v |
|
else: |
|
ddone.append((k, v)) |
|
del newk |
|
factorize(n, ndone) |
|
factorize(d, ddone) |
|
|
|
|
|
t = [] |
|
for k in n: |
|
if isinstance(k, sin): |
|
a = cos(k.args[0], evaluate=False) |
|
if a in d and d[a] == n[k]: |
|
t.append(tan(k.args[0])**n[k]) |
|
n[k] = d[a] = None |
|
elif half: |
|
a1 = 1 + a |
|
if a1 in d and d[a1] == n[k]: |
|
t.append((tan(k.args[0]/2))**n[k]) |
|
n[k] = d[a1] = None |
|
elif isinstance(k, cos): |
|
a = sin(k.args[0], evaluate=False) |
|
if a in d and d[a] == n[k]: |
|
t.append(tan(k.args[0])**-n[k]) |
|
n[k] = d[a] = None |
|
elif half and k.is_Add and k.args[0] is S.One and \ |
|
isinstance(k.args[1], cos): |
|
a = sin(k.args[1].args[0], evaluate=False) |
|
if a in d and d[a] == n[k] and (d[a].is_integer or \ |
|
a.is_positive): |
|
t.append(tan(a.args[0]/2)**-n[k]) |
|
n[k] = d[a] = None |
|
|
|
if t: |
|
rv = Mul(*(t + [b**e for b, e in n.items() if e]))/\ |
|
Mul(*[b**e for b, e in d.items() if e]) |
|
rv *= Mul(*[b**e for b, e in ndone])/Mul(*[b**e for b, e in ddone]) |
|
|
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR3(rv): |
|
"""Induced formula: example sin(-a) = -sin(a) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR3 |
|
>>> from sympy.abc import x, y |
|
>>> from sympy import pi |
|
>>> from sympy import cos |
|
>>> TR3(cos(y - x*(y - x))) |
|
cos(x*(x - y) + y) |
|
>>> cos(pi/2 + x) |
|
-sin(x) |
|
>>> cos(30*pi/2 + x) |
|
-cos(x) |
|
|
|
""" |
|
from sympy.simplify.simplify import signsimp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def f(rv): |
|
if not isinstance(rv, TrigonometricFunction): |
|
return rv |
|
rv = rv.func(signsimp(rv.args[0])) |
|
if not isinstance(rv, TrigonometricFunction): |
|
return rv |
|
if (rv.args[0] - S.Pi/4).is_positive is (S.Pi/2 - rv.args[0]).is_positive is True: |
|
fmap = {cos: sin, sin: cos, tan: cot, cot: tan, sec: csc, csc: sec} |
|
rv = fmap[type(rv)](S.Pi/2 - rv.args[0]) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR4(rv): |
|
"""Identify values of special angles. |
|
|
|
a= 0 pi/6 pi/4 pi/3 pi/2 |
|
---------------------------------------------------- |
|
sin(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1 |
|
cos(a) 1 sqrt(3)/2 sqrt(2)/2 1/2 0 |
|
tan(a) 0 sqt(3)/3 1 sqrt(3) -- |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import pi |
|
>>> from sympy import cos, sin, tan, cot |
|
>>> for s in (0, pi/6, pi/4, pi/3, pi/2): |
|
... print('%s %s %s %s' % (cos(s), sin(s), tan(s), cot(s))) |
|
... |
|
1 0 0 zoo |
|
sqrt(3)/2 1/2 sqrt(3)/3 sqrt(3) |
|
sqrt(2)/2 sqrt(2)/2 1 1 |
|
1/2 sqrt(3)/2 sqrt(3) sqrt(3)/3 |
|
0 1 zoo 0 |
|
""" |
|
|
|
return rv |
|
|
|
|
|
def _TR56(rv, f, g, h, max, pow): |
|
"""Helper for TR5 and TR6 to replace f**2 with h(g**2) |
|
|
|
Options |
|
======= |
|
|
|
max : controls size of exponent that can appear on f |
|
e.g. if max=4 then f**4 will be changed to h(g**2)**2. |
|
pow : controls whether the exponent must be a perfect power of 2 |
|
e.g. if pow=True (and max >= 6) then f**6 will not be changed |
|
but f**8 will be changed to h(g**2)**4 |
|
|
|
>>> from sympy.simplify.fu import _TR56 as T |
|
>>> from sympy.abc import x |
|
>>> from sympy import sin, cos |
|
>>> h = lambda x: 1 - x |
|
>>> T(sin(x)**3, sin, cos, h, 4, False) |
|
(1 - cos(x)**2)*sin(x) |
|
>>> T(sin(x)**6, sin, cos, h, 6, False) |
|
(1 - cos(x)**2)**3 |
|
>>> T(sin(x)**6, sin, cos, h, 6, True) |
|
sin(x)**6 |
|
>>> T(sin(x)**8, sin, cos, h, 10, True) |
|
(1 - cos(x)**2)**4 |
|
""" |
|
|
|
def _f(rv): |
|
|
|
|
|
|
|
|
|
if not (rv.is_Pow and rv.base.func == f): |
|
return rv |
|
if not rv.exp.is_real: |
|
return rv |
|
|
|
if (rv.exp < 0) == True: |
|
return rv |
|
if (rv.exp > max) == True: |
|
return rv |
|
if rv.exp == 1: |
|
return rv |
|
if rv.exp == 2: |
|
return h(g(rv.base.args[0])**2) |
|
else: |
|
if rv.exp % 2 == 1: |
|
e = rv.exp//2 |
|
return f(rv.base.args[0])*h(g(rv.base.args[0])**2)**e |
|
elif rv.exp == 4: |
|
e = 2 |
|
elif not pow: |
|
if rv.exp % 2: |
|
return rv |
|
e = rv.exp//2 |
|
else: |
|
p = perfect_power(rv.exp) |
|
if not p: |
|
return rv |
|
e = rv.exp//2 |
|
return h(g(rv.base.args[0])**2)**e |
|
|
|
return bottom_up(rv, _f) |
|
|
|
|
|
def TR5(rv, max=4, pow=False): |
|
"""Replacement of sin**2 with 1 - cos(x)**2. |
|
|
|
See _TR56 docstring for advanced use of ``max`` and ``pow``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR5 |
|
>>> from sympy.abc import x |
|
>>> from sympy import sin |
|
>>> TR5(sin(x)**2) |
|
1 - cos(x)**2 |
|
>>> TR5(sin(x)**-2) # unchanged |
|
sin(x)**(-2) |
|
>>> TR5(sin(x)**4) |
|
(1 - cos(x)**2)**2 |
|
""" |
|
return _TR56(rv, sin, cos, lambda x: 1 - x, max=max, pow=pow) |
|
|
|
|
|
def TR6(rv, max=4, pow=False): |
|
"""Replacement of cos**2 with 1 - sin(x)**2. |
|
|
|
See _TR56 docstring for advanced use of ``max`` and ``pow``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR6 |
|
>>> from sympy.abc import x |
|
>>> from sympy import cos |
|
>>> TR6(cos(x)**2) |
|
1 - sin(x)**2 |
|
>>> TR6(cos(x)**-2) #unchanged |
|
cos(x)**(-2) |
|
>>> TR6(cos(x)**4) |
|
(1 - sin(x)**2)**2 |
|
""" |
|
return _TR56(rv, cos, sin, lambda x: 1 - x, max=max, pow=pow) |
|
|
|
|
|
def TR7(rv): |
|
"""Lowering the degree of cos(x)**2. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR7 |
|
>>> from sympy.abc import x |
|
>>> from sympy import cos |
|
>>> TR7(cos(x)**2) |
|
cos(2*x)/2 + 1/2 |
|
>>> TR7(cos(x)**2 + 1) |
|
cos(2*x)/2 + 3/2 |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not (rv.is_Pow and rv.base.func == cos and rv.exp == 2): |
|
return rv |
|
return (1 + cos(2*rv.base.args[0]))/2 |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR8(rv, first=True): |
|
"""Converting products of ``cos`` and/or ``sin`` to a sum or |
|
difference of ``cos`` and or ``sin`` terms. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR8 |
|
>>> from sympy import cos, sin |
|
>>> TR8(cos(2)*cos(3)) |
|
cos(5)/2 + cos(1)/2 |
|
>>> TR8(cos(2)*sin(3)) |
|
sin(5)/2 + sin(1)/2 |
|
>>> TR8(sin(2)*sin(3)) |
|
-cos(5)/2 + cos(1)/2 |
|
""" |
|
|
|
def f(rv): |
|
if not ( |
|
rv.is_Mul or |
|
rv.is_Pow and |
|
rv.base.func in (cos, sin) and |
|
(rv.exp.is_integer or rv.base.is_positive)): |
|
return rv |
|
|
|
if first: |
|
n, d = [expand_mul(i) for i in rv.as_numer_denom()] |
|
newn = TR8(n, first=False) |
|
newd = TR8(d, first=False) |
|
if newn != n or newd != d: |
|
rv = gcd_terms(newn/newd) |
|
if rv.is_Mul and rv.args[0].is_Rational and \ |
|
len(rv.args) == 2 and rv.args[1].is_Add: |
|
rv = Mul(*rv.as_coeff_Mul()) |
|
return rv |
|
|
|
args = {cos: [], sin: [], None: []} |
|
for a in ordered(Mul.make_args(rv)): |
|
if a.func in (cos, sin): |
|
args[type(a)].append(a.args[0]) |
|
elif (a.is_Pow and a.exp.is_Integer and a.exp > 0 and \ |
|
a.base.func in (cos, sin)): |
|
|
|
|
|
args[type(a.base)].extend([a.base.args[0]]*a.exp) |
|
else: |
|
args[None].append(a) |
|
c = args[cos] |
|
s = args[sin] |
|
if not (c and s or len(c) > 1 or len(s) > 1): |
|
return rv |
|
|
|
args = args[None] |
|
n = min(len(c), len(s)) |
|
for i in range(n): |
|
a1 = s.pop() |
|
a2 = c.pop() |
|
args.append((sin(a1 + a2) + sin(a1 - a2))/2) |
|
while len(c) > 1: |
|
a1 = c.pop() |
|
a2 = c.pop() |
|
args.append((cos(a1 + a2) + cos(a1 - a2))/2) |
|
if c: |
|
args.append(cos(c.pop())) |
|
while len(s) > 1: |
|
a1 = s.pop() |
|
a2 = s.pop() |
|
args.append((-cos(a1 + a2) + cos(a1 - a2))/2) |
|
if s: |
|
args.append(sin(s.pop())) |
|
return TR8(expand_mul(Mul(*args))) |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR9(rv): |
|
"""Sum of ``cos`` or ``sin`` terms as a product of ``cos`` or ``sin``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR9 |
|
>>> from sympy import cos, sin |
|
>>> TR9(cos(1) + cos(2)) |
|
2*cos(1/2)*cos(3/2) |
|
>>> TR9(cos(1) + 2*sin(1) + 2*sin(2)) |
|
cos(1) + 4*sin(3/2)*cos(1/2) |
|
|
|
If no change is made by TR9, no re-arrangement of the |
|
expression will be made. For example, though factoring |
|
of common term is attempted, if the factored expression |
|
was not changed, the original expression will be returned: |
|
|
|
>>> TR9(cos(3) + cos(3)*cos(2)) |
|
cos(3) + cos(2)*cos(3) |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not rv.is_Add: |
|
return rv |
|
|
|
def do(rv, first=True): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not rv.is_Add: |
|
return rv |
|
|
|
args = list(ordered(rv.args)) |
|
if len(args) != 2: |
|
hit = False |
|
for i in range(len(args)): |
|
ai = args[i] |
|
if ai is None: |
|
continue |
|
for j in range(i + 1, len(args)): |
|
aj = args[j] |
|
if aj is None: |
|
continue |
|
was = ai + aj |
|
new = do(was) |
|
if new != was: |
|
args[i] = new |
|
args[j] = None |
|
hit = True |
|
break |
|
if hit: |
|
rv = Add(*[_f for _f in args if _f]) |
|
if rv.is_Add: |
|
rv = do(rv) |
|
|
|
return rv |
|
|
|
|
|
split = trig_split(*args) |
|
if not split: |
|
return rv |
|
gcd, n1, n2, a, b, iscos = split |
|
|
|
|
|
if iscos: |
|
if n1 == n2: |
|
return gcd*n1*2*cos((a + b)/2)*cos((a - b)/2) |
|
if n1 < 0: |
|
a, b = b, a |
|
return -2*gcd*sin((a + b)/2)*sin((a - b)/2) |
|
else: |
|
if n1 == n2: |
|
return gcd*n1*2*sin((a + b)/2)*cos((a - b)/2) |
|
if n1 < 0: |
|
a, b = b, a |
|
return 2*gcd*cos((a + b)/2)*sin((a - b)/2) |
|
|
|
return process_common_addends(rv, do) |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR10(rv, first=True): |
|
"""Separate sums in ``cos`` and ``sin``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR10 |
|
>>> from sympy.abc import a, b, c |
|
>>> from sympy import cos, sin |
|
>>> TR10(cos(a + b)) |
|
-sin(a)*sin(b) + cos(a)*cos(b) |
|
>>> TR10(sin(a + b)) |
|
sin(a)*cos(b) + sin(b)*cos(a) |
|
>>> TR10(sin(a + b + c)) |
|
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \ |
|
(sin(a)*cos(b) + sin(b)*cos(a))*cos(c) |
|
""" |
|
|
|
def f(rv): |
|
if rv.func not in (cos, sin): |
|
return rv |
|
|
|
f = rv.func |
|
arg = rv.args[0] |
|
if arg.is_Add: |
|
if first: |
|
args = list(ordered(arg.args)) |
|
else: |
|
args = list(arg.args) |
|
a = args.pop() |
|
b = Add._from_args(args) |
|
if b.is_Add: |
|
if f == sin: |
|
return sin(a)*TR10(cos(b), first=False) + \ |
|
cos(a)*TR10(sin(b), first=False) |
|
else: |
|
return cos(a)*TR10(cos(b), first=False) - \ |
|
sin(a)*TR10(sin(b), first=False) |
|
else: |
|
if f == sin: |
|
return sin(a)*cos(b) + cos(a)*sin(b) |
|
else: |
|
return cos(a)*cos(b) - sin(a)*sin(b) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR10i(rv): |
|
"""Sum of products to function of sum. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR10i |
|
>>> from sympy import cos, sin, sqrt |
|
>>> from sympy.abc import x |
|
|
|
>>> TR10i(cos(1)*cos(3) + sin(1)*sin(3)) |
|
cos(2) |
|
>>> TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3)) |
|
cos(3) + sin(4) |
|
>>> TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x) |
|
2*sqrt(2)*x*sin(x + pi/6) |
|
|
|
""" |
|
global _ROOT2, _ROOT3, _invROOT3 |
|
if _ROOT2 is None: |
|
_roots() |
|
|
|
def f(rv): |
|
if not rv.is_Add: |
|
return rv |
|
|
|
def do(rv, first=True): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not rv.is_Add: |
|
return rv |
|
|
|
args = list(ordered(rv.args)) |
|
if len(args) != 2: |
|
hit = False |
|
for i in range(len(args)): |
|
ai = args[i] |
|
if ai is None: |
|
continue |
|
for j in range(i + 1, len(args)): |
|
aj = args[j] |
|
if aj is None: |
|
continue |
|
was = ai + aj |
|
new = do(was) |
|
if new != was: |
|
args[i] = new |
|
args[j] = None |
|
hit = True |
|
break |
|
if hit: |
|
rv = Add(*[_f for _f in args if _f]) |
|
if rv.is_Add: |
|
rv = do(rv) |
|
|
|
return rv |
|
|
|
|
|
split = trig_split(*args, two=True) |
|
if not split: |
|
return rv |
|
gcd, n1, n2, a, b, same = split |
|
|
|
|
|
if same: |
|
gcd = n1*gcd |
|
if n1 == n2: |
|
return gcd*cos(a - b) |
|
return gcd*cos(a + b) |
|
else: |
|
gcd = n1*gcd |
|
if n1 == n2: |
|
return gcd*sin(a + b) |
|
return gcd*sin(b - a) |
|
|
|
rv = process_common_addends( |
|
rv, do, lambda x: tuple(ordered(x.free_symbols))) |
|
|
|
|
|
|
|
while rv.is_Add: |
|
byrad = defaultdict(list) |
|
for a in rv.args: |
|
hit = 0 |
|
if a.is_Mul: |
|
for ai in a.args: |
|
if ai.is_Pow and ai.exp is S.Half and \ |
|
ai.base.is_Integer: |
|
byrad[ai].append(a) |
|
hit = 1 |
|
break |
|
if not hit: |
|
byrad[S.One].append(a) |
|
|
|
|
|
|
|
args = [] |
|
for a in byrad: |
|
for b in [_ROOT3*a, _invROOT3]: |
|
if b in byrad: |
|
for i in range(len(byrad[a])): |
|
if byrad[a][i] is None: |
|
continue |
|
for j in range(len(byrad[b])): |
|
if byrad[b][j] is None: |
|
continue |
|
was = Add(byrad[a][i] + byrad[b][j]) |
|
new = do(was) |
|
if new != was: |
|
args.append(new) |
|
byrad[a][i] = None |
|
byrad[b][j] = None |
|
break |
|
if args: |
|
rv = Add(*(args + [Add(*[_f for _f in v if _f]) |
|
for v in byrad.values()])) |
|
else: |
|
rv = do(rv) |
|
break |
|
|
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR11(rv, base=None): |
|
"""Function of double angle to product. The ``base`` argument can be used |
|
to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base |
|
then cosine and sine functions with argument 6*pi/7 will be replaced. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR11 |
|
>>> from sympy import cos, sin, pi |
|
>>> from sympy.abc import x |
|
>>> TR11(sin(2*x)) |
|
2*sin(x)*cos(x) |
|
>>> TR11(cos(2*x)) |
|
-sin(x)**2 + cos(x)**2 |
|
>>> TR11(sin(4*x)) |
|
4*(-sin(x)**2 + cos(x)**2)*sin(x)*cos(x) |
|
>>> TR11(sin(4*x/3)) |
|
4*(-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3) |
|
|
|
If the arguments are simply integers, no change is made |
|
unless a base is provided: |
|
|
|
>>> TR11(cos(2)) |
|
cos(2) |
|
>>> TR11(cos(4), 2) |
|
-sin(2)**2 + cos(2)**2 |
|
|
|
There is a subtle issue here in that autosimplification will convert |
|
some higher angles to lower angles |
|
|
|
>>> cos(6*pi/7) + cos(3*pi/7) |
|
-cos(pi/7) + cos(3*pi/7) |
|
|
|
The 6*pi/7 angle is now pi/7 but can be targeted with TR11 by supplying |
|
the 3*pi/7 base: |
|
|
|
>>> TR11(_, 3*pi/7) |
|
-sin(3*pi/7)**2 + cos(3*pi/7)**2 + cos(3*pi/7) |
|
|
|
""" |
|
|
|
def f(rv): |
|
if rv.func not in (cos, sin): |
|
return rv |
|
|
|
if base: |
|
f = rv.func |
|
t = f(base*2) |
|
co = S.One |
|
if t.is_Mul: |
|
co, t = t.as_coeff_Mul() |
|
if t.func not in (cos, sin): |
|
return rv |
|
if rv.args[0] == t.args[0]: |
|
c = cos(base) |
|
s = sin(base) |
|
if f is cos: |
|
return (c**2 - s**2)/co |
|
else: |
|
return 2*c*s/co |
|
return rv |
|
|
|
elif not rv.args[0].is_Number: |
|
|
|
|
|
c, m = rv.args[0].as_coeff_Mul(rational=True) |
|
if c.p % 2 == 0: |
|
arg = c.p//2*m/c.q |
|
c = TR11(cos(arg)) |
|
s = TR11(sin(arg)) |
|
if rv.func == sin: |
|
rv = 2*s*c |
|
else: |
|
rv = c**2 - s**2 |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def _TR11(rv): |
|
""" |
|
Helper for TR11 to find half-arguments for sin in factors of |
|
num/den that appear in cos or sin factors in the den/num. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR11, _TR11 |
|
>>> from sympy import cos, sin |
|
>>> from sympy.abc import x |
|
>>> TR11(sin(x/3)/(cos(x/6))) |
|
sin(x/3)/cos(x/6) |
|
>>> _TR11(sin(x/3)/(cos(x/6))) |
|
2*sin(x/6) |
|
>>> TR11(sin(x/6)/(sin(x/3))) |
|
sin(x/6)/sin(x/3) |
|
>>> _TR11(sin(x/6)/(sin(x/3))) |
|
1/(2*cos(x/6)) |
|
|
|
""" |
|
def f(rv): |
|
if not isinstance(rv, Expr): |
|
return rv |
|
|
|
def sincos_args(flat): |
|
|
|
|
|
|
|
args = defaultdict(set) |
|
for fi in Mul.make_args(flat): |
|
b, e = fi.as_base_exp() |
|
if e.is_Integer and e > 0: |
|
if b.func in (cos, sin): |
|
args[type(b)].add(b.args[0]) |
|
return args |
|
num_args, den_args = map(sincos_args, rv.as_numer_denom()) |
|
def handle_match(rv, num_args, den_args): |
|
|
|
|
|
|
|
for narg in num_args[sin]: |
|
half = narg/2 |
|
if half in den_args[cos]: |
|
func = cos |
|
elif half in den_args[sin]: |
|
func = sin |
|
else: |
|
continue |
|
rv = TR11(rv, half) |
|
den_args[func].remove(half) |
|
return rv |
|
|
|
rv = handle_match(rv, num_args, den_args) |
|
|
|
rv = handle_match(rv, den_args, num_args) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR12(rv, first=True): |
|
"""Separate sums in ``tan``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import tan |
|
>>> from sympy.simplify.fu import TR12 |
|
>>> TR12(tan(x + y)) |
|
(tan(x) + tan(y))/(-tan(x)*tan(y) + 1) |
|
""" |
|
|
|
def f(rv): |
|
if not rv.func == tan: |
|
return rv |
|
|
|
arg = rv.args[0] |
|
if arg.is_Add: |
|
if first: |
|
args = list(ordered(arg.args)) |
|
else: |
|
args = list(arg.args) |
|
a = args.pop() |
|
b = Add._from_args(args) |
|
if b.is_Add: |
|
tb = TR12(tan(b), first=False) |
|
else: |
|
tb = tan(b) |
|
return (tan(a) + tb)/(1 - tan(a)*tb) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR12i(rv): |
|
"""Combine tan arguments as |
|
(tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR12i |
|
>>> from sympy import tan |
|
>>> from sympy.abc import a, b, c |
|
>>> ta, tb, tc = [tan(i) for i in (a, b, c)] |
|
>>> TR12i((ta + tb)/(-ta*tb + 1)) |
|
tan(a + b) |
|
>>> TR12i((ta + tb)/(ta*tb - 1)) |
|
-tan(a + b) |
|
>>> TR12i((-ta - tb)/(ta*tb - 1)) |
|
tan(a + b) |
|
>>> eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1)) |
|
>>> TR12i(eq.expand()) |
|
-3*tan(a + b)*tan(a + c)/(2*(tan(a) + tan(b) - 1)) |
|
""" |
|
def f(rv): |
|
if not (rv.is_Add or rv.is_Mul or rv.is_Pow): |
|
return rv |
|
|
|
n, d = rv.as_numer_denom() |
|
if not d.args or not n.args: |
|
return rv |
|
|
|
dok = {} |
|
|
|
def ok(di): |
|
m = as_f_sign_1(di) |
|
if m: |
|
g, f, s = m |
|
if s is S.NegativeOne and f.is_Mul and len(f.args) == 2 and \ |
|
all(isinstance(fi, tan) for fi in f.args): |
|
return g, f |
|
|
|
d_args = list(Mul.make_args(d)) |
|
for i, di in enumerate(d_args): |
|
m = ok(di) |
|
if m: |
|
g, t = m |
|
s = Add(*[_.args[0] for _ in t.args]) |
|
dok[s] = S.One |
|
d_args[i] = g |
|
continue |
|
if di.is_Add: |
|
di = factor(di) |
|
if di.is_Mul: |
|
d_args.extend(di.args) |
|
d_args[i] = S.One |
|
elif di.is_Pow and (di.exp.is_integer or di.base.is_positive): |
|
m = ok(di.base) |
|
if m: |
|
g, t = m |
|
s = Add(*[_.args[0] for _ in t.args]) |
|
dok[s] = di.exp |
|
d_args[i] = g**di.exp |
|
else: |
|
di = factor(di) |
|
if di.is_Mul: |
|
d_args.extend(di.args) |
|
d_args[i] = S.One |
|
if not dok: |
|
return rv |
|
|
|
def ok(ni): |
|
if ni.is_Add and len(ni.args) == 2: |
|
a, b = ni.args |
|
if isinstance(a, tan) and isinstance(b, tan): |
|
return a, b |
|
n_args = list(Mul.make_args(factor_terms(n))) |
|
hit = False |
|
for i, ni in enumerate(n_args): |
|
m = ok(ni) |
|
if not m: |
|
m = ok(-ni) |
|
if m: |
|
n_args[i] = S.NegativeOne |
|
else: |
|
if ni.is_Add: |
|
ni = factor(ni) |
|
if ni.is_Mul: |
|
n_args.extend(ni.args) |
|
n_args[i] = S.One |
|
continue |
|
elif ni.is_Pow and ( |
|
ni.exp.is_integer or ni.base.is_positive): |
|
m = ok(ni.base) |
|
if m: |
|
n_args[i] = S.One |
|
else: |
|
ni = factor(ni) |
|
if ni.is_Mul: |
|
n_args.extend(ni.args) |
|
n_args[i] = S.One |
|
continue |
|
else: |
|
continue |
|
else: |
|
n_args[i] = S.One |
|
hit = True |
|
s = Add(*[_.args[0] for _ in m]) |
|
ed = dok[s] |
|
newed = ed.extract_additively(S.One) |
|
if newed is not None: |
|
if newed: |
|
dok[s] = newed |
|
else: |
|
dok.pop(s) |
|
n_args[i] *= -tan(s) |
|
|
|
if hit: |
|
rv = Mul(*n_args)/Mul(*d_args)/Mul(*[(Add(*[ |
|
tan(a) for a in i.args]) - 1)**e for i, e in dok.items()]) |
|
|
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR13(rv): |
|
"""Change products of ``tan`` or ``cot``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR13 |
|
>>> from sympy import tan, cot |
|
>>> TR13(tan(3)*tan(2)) |
|
-tan(2)/tan(5) - tan(3)/tan(5) + 1 |
|
>>> TR13(cot(3)*cot(2)) |
|
cot(2)*cot(5) + 1 + cot(3)*cot(5) |
|
""" |
|
|
|
def f(rv): |
|
if not rv.is_Mul: |
|
return rv |
|
|
|
|
|
args = {tan: [], cot: [], None: []} |
|
for a in ordered(Mul.make_args(rv)): |
|
if a.func in (tan, cot): |
|
args[type(a)].append(a.args[0]) |
|
else: |
|
args[None].append(a) |
|
t = args[tan] |
|
c = args[cot] |
|
if len(t) < 2 and len(c) < 2: |
|
return rv |
|
args = args[None] |
|
while len(t) > 1: |
|
t1 = t.pop() |
|
t2 = t.pop() |
|
args.append(1 - (tan(t1)/tan(t1 + t2) + tan(t2)/tan(t1 + t2))) |
|
if t: |
|
args.append(tan(t.pop())) |
|
while len(c) > 1: |
|
t1 = c.pop() |
|
t2 = c.pop() |
|
args.append(1 + cot(t1)*cot(t1 + t2) + cot(t2)*cot(t1 + t2)) |
|
if c: |
|
args.append(cot(c.pop())) |
|
return Mul(*args) |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TRmorrie(rv): |
|
"""Returns cos(x)*cos(2*x)*...*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x)) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TRmorrie, TR8, TR3 |
|
>>> from sympy.abc import x |
|
>>> from sympy import Mul, cos, pi |
|
>>> TRmorrie(cos(x)*cos(2*x)) |
|
sin(4*x)/(4*sin(x)) |
|
>>> TRmorrie(7*Mul(*[cos(x) for x in range(10)])) |
|
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3)) |
|
|
|
Sometimes autosimplification will cause a power to be |
|
not recognized. e.g. in the following, cos(4*pi/7) automatically |
|
simplifies to -cos(3*pi/7) so only 2 of the 3 terms are |
|
recognized: |
|
|
|
>>> TRmorrie(cos(pi/7)*cos(2*pi/7)*cos(4*pi/7)) |
|
-sin(3*pi/7)*cos(3*pi/7)/(4*sin(pi/7)) |
|
|
|
A touch by TR8 resolves the expression to a Rational |
|
|
|
>>> TR8(_) |
|
-1/8 |
|
|
|
In this case, if eq is unsimplified, the answer is obtained |
|
directly: |
|
|
|
>>> eq = cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9) |
|
>>> TRmorrie(eq) |
|
1/16 |
|
|
|
But if angles are made canonical with TR3 then the answer |
|
is not simplified without further work: |
|
|
|
>>> TR3(eq) |
|
sin(pi/18)*cos(pi/9)*cos(2*pi/9)/2 |
|
>>> TRmorrie(_) |
|
sin(pi/18)*sin(4*pi/9)/(8*sin(pi/9)) |
|
>>> TR8(_) |
|
cos(7*pi/18)/(16*sin(pi/9)) |
|
>>> TR3(_) |
|
1/16 |
|
|
|
The original expression would have resolve to 1/16 directly with TR8, |
|
however: |
|
|
|
>>> TR8(eq) |
|
1/16 |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Morrie%27s_law |
|
|
|
""" |
|
|
|
def f(rv, first=True): |
|
if not rv.is_Mul: |
|
return rv |
|
if first: |
|
n, d = rv.as_numer_denom() |
|
return f(n, 0)/f(d, 0) |
|
|
|
args = defaultdict(list) |
|
coss = {} |
|
other = [] |
|
for c in rv.args: |
|
b, e = c.as_base_exp() |
|
if e.is_Integer and isinstance(b, cos): |
|
co, a = b.args[0].as_coeff_Mul() |
|
args[a].append(co) |
|
coss[b] = e |
|
else: |
|
other.append(c) |
|
|
|
new = [] |
|
for a in args: |
|
c = args[a] |
|
c.sort() |
|
while c: |
|
k = 0 |
|
cc = ci = c[0] |
|
while cc in c: |
|
k += 1 |
|
cc *= 2 |
|
if k > 1: |
|
newarg = sin(2**k*ci*a)/2**k/sin(ci*a) |
|
|
|
take = None |
|
ccs = [] |
|
for i in range(k): |
|
cc /= 2 |
|
key = cos(a*cc, evaluate=False) |
|
ccs.append(cc) |
|
take = min(coss[key], take or coss[key]) |
|
|
|
for i in range(k): |
|
cc = ccs.pop() |
|
key = cos(a*cc, evaluate=False) |
|
coss[key] -= take |
|
if not coss[key]: |
|
c.remove(cc) |
|
new.append(newarg**take) |
|
else: |
|
b = cos(c.pop(0)*a) |
|
other.append(b**coss[b]) |
|
|
|
if new: |
|
rv = Mul(*(new + other + [ |
|
cos(k*a, evaluate=False) for a in args for k in args[a]])) |
|
|
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR14(rv, first=True): |
|
"""Convert factored powers of sin and cos identities into simpler |
|
expressions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR14 |
|
>>> from sympy.abc import x, y |
|
>>> from sympy import cos, sin |
|
>>> TR14((cos(x) - 1)*(cos(x) + 1)) |
|
-sin(x)**2 |
|
>>> TR14((sin(x) - 1)*(sin(x) + 1)) |
|
-cos(x)**2 |
|
>>> p1 = (cos(x) + 1)*(cos(x) - 1) |
|
>>> p2 = (cos(y) - 1)*2*(cos(y) + 1) |
|
>>> p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1)) |
|
>>> TR14(p1*p2*p3*(x - 1)) |
|
-18*(x - 1)*sin(x)**2*sin(y)**4 |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not rv.is_Mul: |
|
return rv |
|
|
|
if first: |
|
|
|
|
|
n, d = rv.as_numer_denom() |
|
if d is not S.One: |
|
newn = TR14(n, first=False) |
|
newd = TR14(d, first=False) |
|
if newn != n or newd != d: |
|
rv = newn/newd |
|
return rv |
|
|
|
other = [] |
|
process = [] |
|
for a in rv.args: |
|
if a.is_Pow: |
|
b, e = a.as_base_exp() |
|
if not (e.is_integer or b.is_positive): |
|
other.append(a) |
|
continue |
|
a = b |
|
else: |
|
e = S.One |
|
m = as_f_sign_1(a) |
|
if not m or m[1].func not in (cos, sin): |
|
if e is S.One: |
|
other.append(a) |
|
else: |
|
other.append(a**e) |
|
continue |
|
g, f, si = m |
|
process.append((g, e.is_Number, e, f, si, a)) |
|
|
|
|
|
process = list(ordered(process)) |
|
|
|
|
|
nother = len(other) |
|
|
|
|
|
keys = (g, t, e, f, si, a) = list(range(6)) |
|
|
|
while process: |
|
A = process.pop(0) |
|
if process: |
|
B = process[0] |
|
|
|
if A[e].is_Number and B[e].is_Number: |
|
|
|
if A[f] == B[f]: |
|
if A[si] != B[si]: |
|
B = process.pop(0) |
|
take = min(A[e], B[e]) |
|
|
|
|
|
|
|
if B[e] != take: |
|
rem = [B[i] for i in keys] |
|
rem[e] -= take |
|
process.insert(0, rem) |
|
elif A[e] != take: |
|
rem = [A[i] for i in keys] |
|
rem[e] -= take |
|
process.insert(0, rem) |
|
|
|
if isinstance(A[f], cos): |
|
t = sin |
|
else: |
|
t = cos |
|
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take) |
|
continue |
|
|
|
elif A[e] == B[e]: |
|
|
|
if A[f] == B[f]: |
|
if A[si] != B[si]: |
|
B = process.pop(0) |
|
take = A[e] |
|
if isinstance(A[f], cos): |
|
t = sin |
|
else: |
|
t = cos |
|
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take) |
|
continue |
|
|
|
|
|
other.append(A[a]**A[e]) |
|
|
|
if len(other) != nother: |
|
rv = Mul(*other) |
|
|
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR15(rv, max=4, pow=False): |
|
"""Convert sin(x)**-2 to 1 + cot(x)**2. |
|
|
|
See _TR56 docstring for advanced use of ``max`` and ``pow``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR15 |
|
>>> from sympy.abc import x |
|
>>> from sympy import sin |
|
>>> TR15(1 - 1/sin(x)**2) |
|
-cot(x)**2 |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not (isinstance(rv, Pow) and isinstance(rv.base, sin)): |
|
return rv |
|
|
|
e = rv.exp |
|
if e % 2 == 1: |
|
return TR15(rv.base**(e + 1))/rv.base |
|
|
|
ia = 1/rv |
|
a = _TR56(ia, sin, cot, lambda x: 1 + x, max=max, pow=pow) |
|
if a != ia: |
|
rv = a |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR16(rv, max=4, pow=False): |
|
"""Convert cos(x)**-2 to 1 + tan(x)**2. |
|
|
|
See _TR56 docstring for advanced use of ``max`` and ``pow``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR16 |
|
>>> from sympy.abc import x |
|
>>> from sympy import cos |
|
>>> TR16(1 - 1/cos(x)**2) |
|
-tan(x)**2 |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not (isinstance(rv, Pow) and isinstance(rv.base, cos)): |
|
return rv |
|
|
|
e = rv.exp |
|
if e % 2 == 1: |
|
return TR15(rv.base**(e + 1))/rv.base |
|
|
|
ia = 1/rv |
|
a = _TR56(ia, cos, tan, lambda x: 1 + x, max=max, pow=pow) |
|
if a != ia: |
|
rv = a |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR111(rv): |
|
"""Convert f(x)**-i to g(x)**i where either ``i`` is an integer |
|
or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR111 |
|
>>> from sympy.abc import x |
|
>>> from sympy import tan |
|
>>> TR111(1 - 1/tan(x)**2) |
|
1 - cot(x)**2 |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not ( |
|
isinstance(rv, Pow) and |
|
(rv.base.is_positive or rv.exp.is_integer and rv.exp.is_negative)): |
|
return rv |
|
|
|
if isinstance(rv.base, tan): |
|
return cot(rv.base.args[0])**-rv.exp |
|
elif isinstance(rv.base, sin): |
|
return csc(rv.base.args[0])**-rv.exp |
|
elif isinstance(rv.base, cos): |
|
return sec(rv.base.args[0])**-rv.exp |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TR22(rv, max=4, pow=False): |
|
"""Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1. |
|
|
|
See _TR56 docstring for advanced use of ``max`` and ``pow``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TR22 |
|
>>> from sympy.abc import x |
|
>>> from sympy import tan, cot |
|
>>> TR22(1 + tan(x)**2) |
|
sec(x)**2 |
|
>>> TR22(1 + cot(x)**2) |
|
csc(x)**2 |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not (isinstance(rv, Pow) and rv.base.func in (cot, tan)): |
|
return rv |
|
|
|
rv = _TR56(rv, tan, sec, lambda x: x - 1, max=max, pow=pow) |
|
rv = _TR56(rv, cot, csc, lambda x: x - 1, max=max, pow=pow) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def TRpower(rv): |
|
"""Convert sin(x)**n and cos(x)**n with positive n to sums. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import TRpower |
|
>>> from sympy.abc import x |
|
>>> from sympy import cos, sin |
|
>>> TRpower(sin(x)**6) |
|
-15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16 |
|
>>> TRpower(sin(x)**3*cos(2*x)**4) |
|
(3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Power-reduction_formulae |
|
|
|
""" |
|
|
|
def f(rv): |
|
if not (isinstance(rv, Pow) and isinstance(rv.base, (sin, cos))): |
|
return rv |
|
b, n = rv.as_base_exp() |
|
x = b.args[0] |
|
if n.is_Integer and n.is_positive: |
|
if n.is_odd and isinstance(b, cos): |
|
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x) |
|
for k in range((n + 1)/2)]) |
|
elif n.is_odd and isinstance(b, sin): |
|
rv = 2**(1-n)*S.NegativeOne**((n-1)/2)*Add(*[binomial(n, k)* |
|
S.NegativeOne**k*sin((n - 2*k)*x) for k in range((n + 1)/2)]) |
|
elif n.is_even and isinstance(b, cos): |
|
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x) |
|
for k in range(n/2)]) |
|
elif n.is_even and isinstance(b, sin): |
|
rv = 2**(1-n)*S.NegativeOne**(n/2)*Add(*[binomial(n, k)* |
|
S.NegativeOne**k*cos((n - 2*k)*x) for k in range(n/2)]) |
|
if n.is_even: |
|
rv += 2**(-n)*binomial(n, n/2) |
|
return rv |
|
|
|
return bottom_up(rv, f) |
|
|
|
|
|
def L(rv): |
|
"""Return count of trigonometric functions in expression. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import L |
|
>>> from sympy.abc import x |
|
>>> from sympy import cos, sin |
|
>>> L(cos(x)+sin(x)) |
|
2 |
|
""" |
|
return S(rv.count(TrigonometricFunction)) |
|
|
|
|
|
|
|
|
|
if SYMPY_DEBUG: |
|
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13, |
|
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22 |
|
)= list(map(debug, |
|
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13, |
|
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22))) |
|
|
|
|
|
|
|
|
|
|
|
CTR1 = [(TR5, TR0), (TR6, TR0), identity] |
|
|
|
CTR2 = (TR11, [(TR5, TR0), (TR6, TR0), TR0]) |
|
|
|
CTR3 = [(TRmorrie, TR8, TR0), (TRmorrie, TR8, TR10i, TR0), identity] |
|
|
|
CTR4 = [(TR4, TR10i), identity] |
|
|
|
RL1 = (TR4, TR3, TR4, TR12, TR4, TR13, TR4, TR0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RL2 = [ |
|
(TR4, TR3, TR10, TR4, TR3, TR11), |
|
(TR5, TR7, TR11, TR4), |
|
(CTR3, CTR1, TR9, CTR2, TR4, TR9, TR9, CTR4), |
|
identity, |
|
] |
|
|
|
|
|
def fu(rv, measure=lambda x: (L(x), x.count_ops())): |
|
"""Attempt to simplify expression by using transformation rules given |
|
in the algorithm by Fu et al. |
|
|
|
:func:`fu` will try to minimize the objective function ``measure``. |
|
By default this first minimizes the number of trig terms and then minimizes |
|
the number of total operations. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import fu |
|
>>> from sympy import cos, sin, tan, pi, S, sqrt |
|
>>> from sympy.abc import x, y, a, b |
|
|
|
>>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6)) |
|
3/2 |
|
>>> fu(sqrt(6)*cos(x) + sqrt(2)*sin(x)) |
|
2*sqrt(2)*sin(x + pi/3) |
|
|
|
CTR1 example |
|
|
|
>>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2 |
|
>>> fu(eq) |
|
cos(x)**4 - 2*cos(y)**2 + 2 |
|
|
|
CTR2 example |
|
|
|
>>> fu(S.Half - cos(2*x)/2) |
|
sin(x)**2 |
|
|
|
CTR3 example |
|
|
|
>>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b))) |
|
sqrt(2)*sin(a + b + pi/4) |
|
|
|
CTR4 example |
|
|
|
>>> fu(sqrt(3)*cos(x)/2 + sin(x)/2) |
|
sin(x + pi/3) |
|
|
|
Example 1 |
|
|
|
>>> fu(1-sin(2*x)**2/4-sin(y)**2-cos(x)**4) |
|
-cos(x)**2 + cos(y)**2 |
|
|
|
Example 2 |
|
|
|
>>> fu(cos(4*pi/9)) |
|
sin(pi/18) |
|
>>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)) |
|
1/16 |
|
|
|
Example 3 |
|
|
|
>>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18)) |
|
-sqrt(3) |
|
|
|
Objective function example |
|
|
|
>>> fu(sin(x)/cos(x)) # default objective function |
|
tan(x) |
|
>>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op count |
|
sin(x)/cos(x) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://www.sciencedirect.com/science/article/pii/S0895717706001609 |
|
""" |
|
fRL1 = greedy(RL1, measure) |
|
fRL2 = greedy(RL2, measure) |
|
|
|
was = rv |
|
rv = sympify(rv) |
|
if not isinstance(rv, Expr): |
|
return rv.func(*[fu(a, measure=measure) for a in rv.args]) |
|
rv = TR1(rv) |
|
if rv.has(tan, cot): |
|
rv1 = fRL1(rv) |
|
if (measure(rv1) < measure(rv)): |
|
rv = rv1 |
|
if rv.has(tan, cot): |
|
rv = TR2(rv) |
|
if rv.has(sin, cos): |
|
rv1 = fRL2(rv) |
|
rv2 = TR8(TRmorrie(rv1)) |
|
rv = min([was, rv, rv1, rv2], key=measure) |
|
return min(TR2i(rv), rv, key=measure) |
|
|
|
|
|
def process_common_addends(rv, do, key2=None, key1=True): |
|
"""Apply ``do`` to addends of ``rv`` that (if ``key1=True``) share at least |
|
a common absolute value of their coefficient and the value of ``key2`` when |
|
applied to the argument. If ``key1`` is False ``key2`` must be supplied and |
|
will be the only key applied. |
|
""" |
|
|
|
|
|
absc = defaultdict(list) |
|
if key1: |
|
for a in rv.args: |
|
c, a = a.as_coeff_Mul() |
|
if c < 0: |
|
c = -c |
|
a = -a |
|
absc[(c, key2(a) if key2 else 1)].append(a) |
|
elif key2: |
|
for a in rv.args: |
|
absc[(S.One, key2(a))].append(a) |
|
else: |
|
raise ValueError('must have at least one key') |
|
|
|
args = [] |
|
hit = False |
|
for k in absc: |
|
v = absc[k] |
|
c, _ = k |
|
if len(v) > 1: |
|
e = Add(*v, evaluate=False) |
|
new = do(e) |
|
if new != e: |
|
e = new |
|
hit = True |
|
args.append(c*e) |
|
else: |
|
args.append(c*v[0]) |
|
if hit: |
|
rv = Add(*args) |
|
|
|
return rv |
|
|
|
|
|
fufuncs = ''' |
|
TR0 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR10i TR11 |
|
TR12 TR13 L TR2i TRmorrie TR12i |
|
TR14 TR15 TR16 TR111 TR22'''.split() |
|
FU = dict(list(zip(fufuncs, list(map(locals().get, fufuncs))))) |
|
|
|
|
|
def _roots(): |
|
global _ROOT2, _ROOT3, _invROOT3 |
|
_ROOT2, _ROOT3 = sqrt(2), sqrt(3) |
|
_invROOT3 = 1/_ROOT3 |
|
_ROOT2 = None |
|
|
|
|
|
def trig_split(a, b, two=False): |
|
"""Return the gcd, s1, s2, a1, a2, bool where |
|
|
|
If two is False (default) then:: |
|
a + b = gcd*(s1*f(a1) + s2*f(a2)) where f = cos if bool else sin |
|
else: |
|
if bool, a + b was +/- cos(a1)*cos(a2) +/- sin(a1)*sin(a2) and equals |
|
n1*gcd*cos(a - b) if n1 == n2 else |
|
n1*gcd*cos(a + b) |
|
else a + b was +/- cos(a1)*sin(a2) +/- sin(a1)*cos(a2) and equals |
|
n1*gcd*sin(a + b) if n1 = n2 else |
|
n1*gcd*sin(b - a) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import trig_split |
|
>>> from sympy.abc import x, y, z |
|
>>> from sympy import cos, sin, sqrt |
|
|
|
>>> trig_split(cos(x), cos(y)) |
|
(1, 1, 1, x, y, True) |
|
>>> trig_split(2*cos(x), -2*cos(y)) |
|
(2, 1, -1, x, y, True) |
|
>>> trig_split(cos(x)*sin(y), cos(y)*sin(y)) |
|
(sin(y), 1, 1, x, y, True) |
|
|
|
>>> trig_split(cos(x), -sqrt(3)*sin(x), two=True) |
|
(2, 1, -1, x, pi/6, False) |
|
>>> trig_split(cos(x), sin(x), two=True) |
|
(sqrt(2), 1, 1, x, pi/4, False) |
|
>>> trig_split(cos(x), -sin(x), two=True) |
|
(sqrt(2), 1, -1, x, pi/4, False) |
|
>>> trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True) |
|
(2*sqrt(2), 1, -1, x, pi/6, False) |
|
>>> trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True) |
|
(-2*sqrt(2), 1, 1, x, pi/3, False) |
|
>>> trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True) |
|
(sqrt(6)/3, 1, 1, x, pi/6, False) |
|
>>> trig_split(-sqrt(6)*cos(x)*sin(y), -sqrt(2)*sin(x)*sin(y), two=True) |
|
(-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False) |
|
|
|
>>> trig_split(cos(x), sin(x)) |
|
>>> trig_split(cos(x), sin(z)) |
|
>>> trig_split(2*cos(x), -sin(x)) |
|
>>> trig_split(cos(x), -sqrt(3)*sin(x)) |
|
>>> trig_split(cos(x)*cos(y), sin(x)*sin(z)) |
|
>>> trig_split(cos(x)*cos(y), sin(x)*sin(y)) |
|
>>> trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True) |
|
""" |
|
global _ROOT2, _ROOT3, _invROOT3 |
|
if _ROOT2 is None: |
|
_roots() |
|
|
|
a, b = [Factors(i) for i in (a, b)] |
|
ua, ub = a.normal(b) |
|
gcd = a.gcd(b).as_expr() |
|
n1 = n2 = 1 |
|
if S.NegativeOne in ua.factors: |
|
ua = ua.quo(S.NegativeOne) |
|
n1 = -n1 |
|
elif S.NegativeOne in ub.factors: |
|
ub = ub.quo(S.NegativeOne) |
|
n2 = -n2 |
|
a, b = [i.as_expr() for i in (ua, ub)] |
|
|
|
def pow_cos_sin(a, two): |
|
"""Return ``a`` as a tuple (r, c, s) such that |
|
``a = (r or 1)*(c or 1)*(s or 1)``. |
|
|
|
Three arguments are returned (radical, c-factor, s-factor) as |
|
long as the conditions set by ``two`` are met; otherwise None is |
|
returned. If ``two`` is True there will be one or two non-None |
|
values in the tuple: c and s or c and r or s and r or s or c with c |
|
being a cosine function (if possible) else a sine, and s being a sine |
|
function (if possible) else oosine. If ``two`` is False then there |
|
will only be a c or s term in the tuple. |
|
|
|
``two`` also require that either two cos and/or sin be present (with |
|
the condition that if the functions are the same the arguments are |
|
different or vice versa) or that a single cosine or a single sine |
|
be present with an optional radical. |
|
|
|
If the above conditions dictated by ``two`` are not met then None |
|
is returned. |
|
""" |
|
c = s = None |
|
co = S.One |
|
if a.is_Mul: |
|
co, a = a.as_coeff_Mul() |
|
if len(a.args) > 2 or not two: |
|
return None |
|
if a.is_Mul: |
|
args = list(a.args) |
|
else: |
|
args = [a] |
|
a = args.pop(0) |
|
if isinstance(a, cos): |
|
c = a |
|
elif isinstance(a, sin): |
|
s = a |
|
elif a.is_Pow and a.exp is S.Half: |
|
co *= a |
|
else: |
|
return None |
|
if args: |
|
b = args[0] |
|
if isinstance(b, cos): |
|
if c: |
|
s = b |
|
else: |
|
c = b |
|
elif isinstance(b, sin): |
|
if s: |
|
c = b |
|
else: |
|
s = b |
|
elif b.is_Pow and b.exp is S.Half: |
|
co *= b |
|
else: |
|
return None |
|
return co if co is not S.One else None, c, s |
|
elif isinstance(a, cos): |
|
c = a |
|
elif isinstance(a, sin): |
|
s = a |
|
if c is None and s is None: |
|
return |
|
co = co if co is not S.One else None |
|
return co, c, s |
|
|
|
|
|
m = pow_cos_sin(a, two) |
|
if m is None: |
|
return |
|
coa, ca, sa = m |
|
m = pow_cos_sin(b, two) |
|
if m is None: |
|
return |
|
cob, cb, sb = m |
|
|
|
|
|
if (not ca) and cb or ca and isinstance(ca, sin): |
|
coa, ca, sa, cob, cb, sb = cob, cb, sb, coa, ca, sa |
|
n1, n2 = n2, n1 |
|
if not two: |
|
c = ca or sa |
|
s = cb or sb |
|
if not isinstance(c, s.func): |
|
return None |
|
return gcd, n1, n2, c.args[0], s.args[0], isinstance(c, cos) |
|
else: |
|
if not coa and not cob: |
|
if (ca and cb and sa and sb): |
|
if isinstance(ca, sa.func) is not isinstance(cb, sb.func): |
|
return |
|
args = {j.args for j in (ca, sa)} |
|
if not all(i.args in args for i in (cb, sb)): |
|
return |
|
return gcd, n1, n2, ca.args[0], sa.args[0], isinstance(ca, sa.func) |
|
if ca and sa or cb and sb or \ |
|
two and (ca is None and sa is None or cb is None and sb is None): |
|
return |
|
c = ca or sa |
|
s = cb or sb |
|
if c.args != s.args: |
|
return |
|
if not coa: |
|
coa = S.One |
|
if not cob: |
|
cob = S.One |
|
if coa is cob: |
|
gcd *= _ROOT2 |
|
return gcd, n1, n2, c.args[0], pi/4, False |
|
elif coa/cob == _ROOT3: |
|
gcd *= 2*cob |
|
return gcd, n1, n2, c.args[0], pi/3, False |
|
elif coa/cob == _invROOT3: |
|
gcd *= 2*coa |
|
return gcd, n1, n2, c.args[0], pi/6, False |
|
|
|
|
|
def as_f_sign_1(e): |
|
"""If ``e`` is a sum that can be written as ``g*(a + s)`` where |
|
``s`` is ``+/-1``, return ``g``, ``a``, and ``s`` where ``a`` does |
|
not have a leading negative coefficient. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import as_f_sign_1 |
|
>>> from sympy.abc import x |
|
>>> as_f_sign_1(x + 1) |
|
(1, x, 1) |
|
>>> as_f_sign_1(x - 1) |
|
(1, x, -1) |
|
>>> as_f_sign_1(-x + 1) |
|
(-1, x, -1) |
|
>>> as_f_sign_1(-x - 1) |
|
(-1, x, 1) |
|
>>> as_f_sign_1(2*x + 2) |
|
(2, x, 1) |
|
""" |
|
if not e.is_Add or len(e.args) != 2: |
|
return |
|
|
|
a, b = e.args |
|
if a in (S.NegativeOne, S.One): |
|
g = S.One |
|
if b.is_Mul and b.args[0].is_Number and b.args[0] < 0: |
|
a, b = -a, -b |
|
g = -g |
|
return g, b, a |
|
|
|
a, b = [Factors(i) for i in e.args] |
|
ua, ub = a.normal(b) |
|
gcd = a.gcd(b).as_expr() |
|
if S.NegativeOne in ua.factors: |
|
ua = ua.quo(S.NegativeOne) |
|
n1 = -1 |
|
n2 = 1 |
|
elif S.NegativeOne in ub.factors: |
|
ub = ub.quo(S.NegativeOne) |
|
n1 = 1 |
|
n2 = -1 |
|
else: |
|
n1 = n2 = 1 |
|
a, b = [i.as_expr() for i in (ua, ub)] |
|
if a is S.One: |
|
a, b = b, a |
|
n1, n2 = n2, n1 |
|
if n1 == -1: |
|
gcd = -gcd |
|
n2 = -n2 |
|
|
|
if b is S.One: |
|
return gcd, a, n2 |
|
|
|
|
|
def _osborne(e, d): |
|
"""Replace all hyperbolic functions with trig functions using |
|
the Osborne rule. |
|
|
|
Notes |
|
===== |
|
|
|
``d`` is a dummy variable to prevent automatic evaluation |
|
of trigonometric/hyperbolic functions. |
|
|
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function |
|
""" |
|
|
|
def f(rv): |
|
if not isinstance(rv, HyperbolicFunction): |
|
return rv |
|
a = rv.args[0] |
|
a = a*d if not a.is_Add else Add._from_args([i*d for i in a.args]) |
|
if isinstance(rv, sinh): |
|
return I*sin(a) |
|
elif isinstance(rv, cosh): |
|
return cos(a) |
|
elif isinstance(rv, tanh): |
|
return I*tan(a) |
|
elif isinstance(rv, coth): |
|
return cot(a)/I |
|
elif isinstance(rv, sech): |
|
return sec(a) |
|
elif isinstance(rv, csch): |
|
return csc(a)/I |
|
else: |
|
raise NotImplementedError('unhandled %s' % rv.func) |
|
|
|
return bottom_up(e, f) |
|
|
|
|
|
def _osbornei(e, d): |
|
"""Replace all trig functions with hyperbolic functions using |
|
the Osborne rule. |
|
|
|
Notes |
|
===== |
|
|
|
``d`` is a dummy variable to prevent automatic evaluation |
|
of trigonometric/hyperbolic functions. |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function |
|
""" |
|
|
|
def f(rv): |
|
if not isinstance(rv, TrigonometricFunction): |
|
return rv |
|
const, x = rv.args[0].as_independent(d, as_Add=True) |
|
a = x.xreplace({d: S.One}) + const*I |
|
if isinstance(rv, sin): |
|
return sinh(a)/I |
|
elif isinstance(rv, cos): |
|
return cosh(a) |
|
elif isinstance(rv, tan): |
|
return tanh(a)/I |
|
elif isinstance(rv, cot): |
|
return coth(a)*I |
|
elif isinstance(rv, sec): |
|
return sech(a) |
|
elif isinstance(rv, csc): |
|
return csch(a)*I |
|
else: |
|
raise NotImplementedError('unhandled %s' % rv.func) |
|
|
|
return bottom_up(e, f) |
|
|
|
|
|
def hyper_as_trig(rv): |
|
"""Return an expression containing hyperbolic functions in terms |
|
of trigonometric functions. Any trigonometric functions initially |
|
present are replaced with Dummy symbols and the function to undo |
|
the masking and the conversion back to hyperbolics is also returned. It |
|
should always be true that:: |
|
|
|
t, f = hyper_as_trig(expr) |
|
expr == f(t) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import hyper_as_trig, fu |
|
>>> from sympy.abc import x |
|
>>> from sympy import cosh, sinh |
|
>>> eq = sinh(x)**2 + cosh(x)**2 |
|
>>> t, f = hyper_as_trig(eq) |
|
>>> f(fu(t)) |
|
cosh(2*x) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function |
|
""" |
|
from sympy.simplify.simplify import signsimp |
|
from sympy.simplify.radsimp import collect |
|
|
|
|
|
trigs = rv.atoms(TrigonometricFunction) |
|
reps = [(t, Dummy()) for t in trigs] |
|
masked = rv.xreplace(dict(reps)) |
|
|
|
|
|
reps = [(v, k) for k, v in reps] |
|
|
|
d = Dummy() |
|
|
|
return _osborne(masked, d), lambda x: collect(signsimp( |
|
_osbornei(x, d).xreplace(dict(reps))), S.ImaginaryUnit) |
|
|
|
|
|
def sincos_to_sum(expr): |
|
"""Convert products and powers of sin and cos to sums. |
|
|
|
Explanation |
|
=========== |
|
|
|
Applied power reduction TRpower first, then expands products, and |
|
converts products to sums with TR8. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.simplify.fu import sincos_to_sum |
|
>>> from sympy.abc import x |
|
>>> from sympy import cos, sin |
|
>>> sincos_to_sum(16*sin(x)**3*cos(2*x)**2) |
|
7*sin(x) - 5*sin(3*x) + 3*sin(5*x) - sin(7*x) |
|
""" |
|
|
|
if not expr.has(cos, sin): |
|
return expr |
|
else: |
|
return TR8(expand_mul(TRpower(expr))) |
|
|