peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/torchgen
/api
/functionalization.py
from typing import List, Optional | |
from torchgen.api import dispatcher | |
from torchgen.api.types import ( | |
BaseCType, | |
Binding, | |
boolT, | |
ConstRefCType, | |
CType, | |
longT, | |
NamedCType, | |
tensorT, | |
) | |
from torchgen.model import ( | |
Argument, | |
BaseTy, | |
BaseType, | |
FunctionSchema, | |
NativeFunctionsViewGroup, | |
) | |
# This file describes the translation of JIT schema to API's used | |
# when creating view lambdas that are used by the functionalization pass. | |
# There are two types of lambdas: forward lambdas and reverse lambdas. | |
# These API's mostly follow the dispatcher API, with a few quirks: | |
# - The lambda capture has to convert reference types to value types | |
# - While the forward lambda just directly calls into the at::_ops API | |
# (following the dispatcher convention), the logic here for the reverse lambda | |
# is responsible for generating both the call-site, and the declarations | |
# (which are implemented manually in the at::functionalization::impl namespace). | |
# The lambdas generated for each view op in the functionalization pass are of the form | |
# [capture_arguments](outer_arguments) -> returns_type { | |
# return name(inner_arguments); | |
# } | |
# Define some specific lambda input arguments. | |
base_binding = Binding( | |
name="base", | |
nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))), | |
argument=Argument( | |
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None | |
), | |
default=None, | |
) | |
mutated_view_binding = Binding( | |
name="mutated_view", | |
nctype=NamedCType(name="mutated_view", type=ConstRefCType(BaseCType(tensorT))), | |
argument=Argument( | |
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None | |
), | |
default=None, | |
) | |
mutated_view_idx_binding = Binding( | |
name="mutated_view_idx", | |
nctype=NamedCType(name="mutated_view_idx", type=BaseCType(longT)), | |
argument=Argument( | |
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None | |
), | |
default=None, | |
) | |
reapply_views_binding = Binding( | |
name="reapply_views", | |
nctype=NamedCType(name="reapply_views", type=BaseCType(boolT)), | |
argument=Argument( | |
name="reapply_views", type=BaseType(BaseTy.bool), default=None, annotation=None | |
), | |
default=None, | |
) | |
# The lambda capture itself doesn't have a name. | |
# The name returned here corresponds to the name of the inner function called by the lambda. | |
def name( | |
g: NativeFunctionsViewGroup, | |
*, | |
is_reverse: bool, | |
include_namespace: bool, | |
reapply_views: Optional[bool] = None, | |
) -> str: | |
if reapply_views is None: | |
# reapply_views is only important for the fwd lambda, | |
# since we always plumb the runtime "reapply_views" argument into the reverse function. | |
assert is_reverse | |
if is_reverse: | |
# for the reverse: the name of the inverse function always involves "view_copy", | |
# and we plumb the "reapply_views" flag into that function. | |
# (We could avoid doing that, but that would require writing out twice as many view inverse functions). | |
assert g.view_copy is not None | |
api_name = g.view_copy.func.name.unambiguous_name() | |
# in the reverse case, we codegen both the call-sites (which need the full namespace) and the declarations (which don't) | |
if include_namespace: | |
return f"at::functionalization::FunctionalInverses::{api_name}_inverse" | |
else: | |
return f"{api_name}_inverse" | |
# in the forward case, we just directly call into the at::_ops API (so we always need the namespace) | |
assert include_namespace | |
assert g.view_copy is not None | |
api_name = ( | |
g.view.func.name.unambiguous_name() | |
if reapply_views | |
else g.view_copy.func.name.unambiguous_name() | |
) | |
return f"at::_ops::{api_name}::call" | |
def capture_arguments(func: FunctionSchema, *, is_reverse: bool) -> List[Binding]: | |
# capture arguments include all arguments except `self`. | |
# Importantly, they don't include any C++ reference types (or else we'll get a dangling reference in the capture), | |
# So any reference types (IntArrayRef) need to be converted to value types (vector<int64_t>) | |
args = func.arguments.flat_all | |
assert args[0].type == BaseType(BaseTy.Tensor) | |
non_self_args = args[1:] | |
non_self_value_bindings = [ | |
dispatcher.argument(a, remove_non_owning_ref_types=True) for a in non_self_args | |
] | |
all_bindings = [reapply_views_binding] + non_self_value_bindings | |
return all_bindings | |
def returns_type(func: FunctionSchema) -> CType: | |
# Assertion: all view ops return tensor-like outputs | |
assert len(func.returns) >= 1 | |
for ret in func.returns: | |
assert ret.type.is_tensor_like() | |
# However, the return type of the lambda is always an individual tensor. | |
# For multi-tensor outputs, each tensor needs to be tracked individually. | |
return BaseCType(tensorT) | |
def outer_arguments(*, is_reverse: bool) -> List[Binding]: | |
if is_reverse: | |
return [base_binding, mutated_view_binding, mutated_view_idx_binding] | |
else: | |
return [base_binding, mutated_view_idx_binding] | |
def inner_call_index(func: FunctionSchema) -> Optional[Binding]: | |
# For view ops that return multiple tensors (like `split`), we generate a separate lambda for each output. | |
# When we replay a view op that returns multiple tensors, we need to index into the output appropriately | |
if len(func.returns) > 1 or ( | |
len(func.returns) == 1 and func.returns[0].type.is_list_like() | |
): | |
return mutated_view_idx_binding | |
return None | |
def inner_arguments(func: FunctionSchema, is_reverse: bool) -> List[Binding]: | |
args = func.arguments.flat_all | |
assert args[0].type == BaseType(BaseTy.Tensor) | |
non_self_args = args[1:] | |
# The forward lambda calls the at::_ops API, while the reverse lambda calls the view inverse API. | |
# Both of these follow the dispatcher API. | |
non_self_bindings = [dispatcher.argument(a) for a in non_self_args] | |
if not is_reverse: | |
# the forward lambda swaps out the original tensor argument with the lambd arg "base" | |
return [base_binding] + non_self_bindings | |
else: | |
# the reverse lambda does the same, but with an additional "mutated_view" arg | |
# additionally, we have a calling convention: for view ops that return multiple tensor outputs | |
# their corresponding view_inverse function takes in an additional index argument. | |
index_binding = inner_call_index(func) | |
if index_binding is not None: | |
return [ | |
base_binding, | |
mutated_view_binding, | |
reapply_views_binding, | |
index_binding, | |
] + non_self_bindings | |
else: | |
return [ | |
base_binding, | |
mutated_view_binding, | |
reapply_views_binding, | |
] + non_self_bindings | |