peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/torchgen
/api
/ufunc.py
| from dataclasses import dataclass | |
| from typing import List, Optional | |
| import torchgen.api.types as api_types | |
| from torchgen.api import cpp, structured | |
| from torchgen.api.types import ( | |
| ArgName, | |
| BaseCppType, | |
| BaseCType, | |
| Binding, | |
| ConstRefCType, | |
| CType, | |
| NamedCType, | |
| scalarT, | |
| ) | |
| from torchgen.model import ( | |
| Argument, | |
| BaseTy, | |
| BaseType, | |
| DispatchKey, | |
| FunctionSchema, | |
| NativeFunctionsGroup, | |
| Type, | |
| ) | |
| def schema_kernel_name(func: FunctionSchema, dispatch_key: DispatchKey) -> str: | |
| assert func.is_out_fn(), "ufunc.kernel_name should only be invoked on out schemas" | |
| return f"ufunc_{func.name.name}_{dispatch_key}" | |
| def kernel_name(g: NativeFunctionsGroup, dispatch_key: DispatchKey) -> str: | |
| return schema_kernel_name(g.out.func, dispatch_key) | |
| # Tensors are omitted (as they are stored in TensorIterator), everything else is | |
| # passed along (technically, we can pass tensors along too, it just wastes | |
| # argument registers) | |
| # | |
| # NB: used for CPU only | |
| def dispatchstub_type(t: Type, *, binds: ArgName) -> Optional[NamedCType]: | |
| # Dispatch stubs are always plain ints | |
| r = cpp.valuetype_type(t, binds=binds, symint=False) | |
| if r is not None: | |
| return r | |
| if t == BaseType(BaseTy.Scalar): | |
| return NamedCType(binds, ConstRefCType(BaseCType(scalarT))) | |
| elif t == BaseType(BaseTy.Tensor): | |
| return None | |
| else: | |
| raise AssertionError(f"unrecognized type {repr(t)}") | |
| def opmath_type(scalar_t: BaseCppType) -> BaseCppType: | |
| if scalar_t == api_types.scalar_t: | |
| return api_types.opmath_t | |
| raise NotImplementedError | |
| # NB: Tensors in constructor are stored in opmath_t, not scalar_t | |
| # because Tensor in constructor = its a scalar tensor partially applied = | |
| # it can be higher precision and we want to compute in that higher precision | |
| # | |
| # NB: CUDA only | |
| def ufunctor_ctor_type(t: Type, *, binds: ArgName, scalar_t: BaseCppType) -> NamedCType: | |
| r = cpp.valuetype_type(t, binds=binds, symint=False) | |
| if r is not None: | |
| return r | |
| if t == BaseType(BaseTy.Scalar): | |
| return NamedCType(binds, BaseCType(opmath_type(scalar_t))) | |
| elif t == BaseType(BaseTy.Tensor): | |
| return NamedCType(binds, BaseCType(opmath_type(scalar_t))) | |
| else: | |
| raise AssertionError(f"unrecognized type {repr(t)}") | |
| # Only Tensors ever get passed directly to operator() | |
| # | |
| # NB: CUDA only | |
| # (Actually, this works for CPU too) | |
| def ufunctor_apply_type( | |
| t: Type, *, binds: ArgName, scalar_t: BaseCppType | |
| ) -> NamedCType: | |
| if t == BaseType(BaseTy.Tensor): | |
| return NamedCType(binds, BaseCType(scalar_t)) | |
| else: | |
| raise AssertionError(f"unrecognized type {repr(t)}") | |
| # The actual ufunc template function the user writes. Everything here | |
| # is done in the computation type. compute_t is opmath_t in CUDA and scalar_t | |
| # in CPU | |
| def ufunc_type(t: Type, *, binds: ArgName, compute_t: CType) -> NamedCType: | |
| r = cpp.valuetype_type(t, binds=binds, symint=False) | |
| if r is not None: | |
| return r | |
| if t == BaseType(BaseTy.Scalar): | |
| return NamedCType(binds, compute_t) | |
| elif t == BaseType(BaseTy.Tensor): | |
| return NamedCType(binds, compute_t) | |
| else: | |
| raise AssertionError(f"unrecognized type {repr(t)}") | |
| def ufunctor_ctor_argument(a: Argument, scalar_t: BaseCppType) -> Binding: | |
| return Binding( | |
| nctype=ufunctor_ctor_type(a.type, binds=a.name, scalar_t=scalar_t), | |
| name=a.name, | |
| default=None, | |
| argument=a, | |
| ) | |
| def ufunctor_apply_argument(a: Argument, scalar_t: BaseCppType) -> Binding: | |
| return Binding( | |
| nctype=ufunctor_apply_type(a.type, binds=a.name, scalar_t=scalar_t), | |
| name=a.name, | |
| default=None, | |
| argument=a, | |
| ) | |
| def ufunc_argument(a: Argument, compute_t: CType) -> Binding: | |
| return Binding( | |
| nctype=ufunc_type(a.type, binds=a.name, compute_t=compute_t), | |
| name=a.name, | |
| default=None, | |
| argument=a, | |
| ) | |
| class UfunctorBindings: | |
| ctor: List[Binding] | |
| apply: List[Binding] | |
| # ufunctors are a CUDA-only concept representing functors that take some of | |
| # their arguments on a host-side constructor, and the rest in the device-side | |
| # apply. E.g., | |
| # | |
| # template <typename scalar_t> | |
| # struct CUDAFunctorOnSelf_add { | |
| # using opmath_t = at::opmath_type<scalar_t>; | |
| # opmath_t other_; | |
| # opmath_t alpha_; | |
| # CUDAFunctorOnSelf_add(opmath_t other, opmath_t alpha) : other_(other), alpha_(alpha) {} | |
| # __device__ scalar_t operator()(scalar_t self) { | |
| # return ufunc::add(static_cast<opmath_t>(self), other_, alpha_); | |
| # } | |
| # }; | |
| # | |
| # The ctor refers to the constructor CUDAFunctorOnSelf_add, while apply refers | |
| # to the operator() definition | |
| def ufunctor_arguments( | |
| g: NativeFunctionsGroup, *, scalar_tensor_idx: Optional[int], scalar_t: BaseCppType | |
| ) -> UfunctorBindings: | |
| ctor = [] | |
| apply = [] | |
| for a in g.functional.func.arguments.flat_non_out: | |
| if a.type.is_tensor_like(): | |
| if scalar_tensor_idx == 0: | |
| # put it in the ctor anyway | |
| ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t)) | |
| scalar_tensor_idx = None | |
| else: | |
| if scalar_tensor_idx is not None: | |
| scalar_tensor_idx -= 1 | |
| apply.append(ufunctor_apply_argument(a, scalar_t=scalar_t)) | |
| else: | |
| ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t)) | |
| assert scalar_tensor_idx is None | |
| return UfunctorBindings(ctor=ctor, apply=apply) | |
| # ufuncs are the inner loop template functions that you wrote in ufunc/add.h | |
| # which do the actual computation in question. E.g., | |
| # | |
| # template <typename T> | |
| # C10_HOST_DEVICE T add(T self, T other, T alpha) __ubsan_ignore_undefined__ { | |
| # return self + alpha * other; | |
| # } | |
| # | |
| # In this file, we refer to T as compute_t which is bound by caller | |
| def ufunc_arguments(g: NativeFunctionsGroup, *, compute_t: CType) -> List[Binding]: | |
| return [ | |
| ufunc_argument(a, compute_t=compute_t) | |
| for a in g.functional.func.arguments.flat_non_out | |
| ] | |
| # Stubs are the DispatchStub trampolines that CPU kernels use to get to their | |
| # vectorized versions. E.g., | |
| # | |
| # using structured_binary_fn_alpha = void(*)(TensorIteratorBase&, const Scalar& alpha); | |
| # DECLARE_DISPATCH(structured_binary_fn_alpha, add_stub); | |
| def stub_arguments(g: NativeFunctionsGroup) -> List[Binding]: | |
| # stubs drop all tensor arguments (they are implicit in the TensorIterator | |
| # argument and keep everything else) | |
| return [ | |
| r | |
| for a in g.out.func.arguments.flat_non_out | |
| if not a.type.is_tensor_like() | |
| for r in structured.argument(a) | |
| ] | |