peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/torchgen
/context.py
import contextlib | |
import functools | |
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, TypeVar, Union | |
import torchgen.local as local | |
from torchgen.model import ( | |
BackendIndex, | |
DispatchKey, | |
NativeFunction, | |
NativeFunctionsGroup, | |
NativeFunctionsViewGroup, | |
) | |
from torchgen.utils import context, S, T | |
# Helper functions for defining generators on things in the model | |
F = TypeVar( | |
"F", | |
NativeFunction, | |
NativeFunctionsGroup, | |
NativeFunctionsViewGroup, | |
Union[NativeFunction, NativeFunctionsGroup], | |
Union[NativeFunction, NativeFunctionsViewGroup], | |
) | |
F2 = TypeVar( | |
"F2", | |
NativeFunction, | |
NativeFunctionsGroup, | |
Optional[NativeFunction], | |
bool, | |
str, | |
) | |
F3 = TypeVar("F3", Tuple[NativeFunction, Any], List[NativeFunction]) | |
def native_function_manager( | |
g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup, NativeFunction] | |
) -> Iterator[None]: | |
if isinstance(g, NativeFunctionsGroup): | |
# By default, we associate all errors with structured native functions | |
# with the out variant. In some cases, it might be better to have | |
# a more specific place to hang things; if so, use | |
# native_function_manager again on the inside | |
f = g.out | |
elif isinstance(g, NativeFunctionsViewGroup): | |
# We associate errors with the view operator | |
f = g.view | |
else: | |
f = g | |
with context(lambda: f"in native_functions.yaml line {f.loc}:\n {f.func}"): | |
with local.parametrize( | |
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors, | |
use_ilistref_for_tensor_lists=f.part_of_structured_group, | |
): | |
yield | |
# Given a function that operates on NativeFunction, wrap it into a new function | |
# that sets some appropriate context managers for that native function. | |
# YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound | |
# (you will get an error if we try to access the local variables without having | |
# set them). | |
def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]: | |
def wrapper(f: F) -> T: | |
with native_function_manager(f): | |
return func(f) | |
return wrapper | |
def with_native_function_and(func: Callable[[F, F2], T]) -> Callable[[F, F2], T]: | |
def wrapper(f: F, f2: F2) -> T: | |
# The first native_function is assumed to be the one with the appropriate context. | |
with native_function_manager(f): | |
return func(f, f2) | |
return wrapper | |
def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]: | |
def wrapper(slf: S, f: F) -> T: | |
with native_function_manager(f): | |
return func(slf, f) | |
return wrapper | |
def method_with_nested_native_function( | |
func: Callable[[S, F3], T] | |
) -> Callable[[S, F3], T]: | |
def wrapper(slf: S, f: F3) -> T: | |
with native_function_manager(f[0]): | |
return func(slf, f) | |
return wrapper | |
# Convenience decorator for functions that explicitly take in a BackendIndex, | |
# instead of indirectly taking one in as a closure | |
def with_native_function_and_index( | |
func: Callable[[F, BackendIndex], T] | |
) -> Callable[[F, BackendIndex], T]: | |
def wrapper(f: F, backend_index: BackendIndex) -> T: | |
with native_function_manager(f): | |
return func(f, backend_index) | |
return wrapper | |
# Convenience decorator for functions that explicitly take in a Dict of BackendIndices | |
def with_native_function_and_indices( | |
func: Callable[[F, Dict[DispatchKey, BackendIndex]], T] | |
) -> Callable[[F, Dict[DispatchKey, BackendIndex]], T]: | |
def wrapper(f: F, backend_indices: Dict[DispatchKey, BackendIndex]) -> T: | |
with native_function_manager(f): | |
return func(f, backend_indices) | |
return wrapper | |