|
import dataclasses |
|
import itertools |
|
import re |
|
|
|
from dataclasses import dataclass |
|
from enum import auto, Enum |
|
from typing import Callable, Dict, Iterator, List, Optional, Sequence, Set, Tuple, Union |
|
|
|
from torchgen.utils import assert_never, NamespaceHelper, OrderedSet |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class Location: |
|
file: str |
|
line: int |
|
|
|
def __str__(self) -> str: |
|
return f"{self.file}:{self.line}" |
|
|
|
|
|
|
|
class Variant(Enum): |
|
function = auto() |
|
method = auto() |
|
|
|
|
|
|
|
DEFAULT_KERNEL_NAMESPACE = "at::native" |
|
|
|
|
|
BACKEND_COMPONENTS = "CPU CUDA HIP XLA MTIA MPS IPU XPU HPU VE Lazy Meta PrivateUse1 PrivateUse2 PrivateUse3".split() |
|
FUNCTIONALITY_KEYS = ["", "Quantized", "Sparse", "NestedTensor", "Autograd"] |
|
|
|
|
|
|
|
AUTOGRAD_KEYS = ["AutogradNestedTensor"] + [ |
|
"Autograd" + component for component in BACKEND_COMPONENTS |
|
] |
|
|
|
FRAGMENT_NAMESPACES = {"quantized", "quantized_decomposed"} |
|
|
|
|
|
|
|
|
|
class DispatchKey(Enum): |
|
Undefined = 0 |
|
CatchAll = Undefined |
|
|
|
FPGA = auto() |
|
ORT = auto() |
|
Vulkan = auto() |
|
Metal = auto() |
|
MKLDNN = auto() |
|
OpenGL = auto() |
|
OpenCL = auto() |
|
IDEEP = auto() |
|
CustomRNGKeyId = auto() |
|
MkldnnCPU = auto() |
|
Sparse = auto() |
|
SparseCsrCPU = auto() |
|
SparseCsrCUDA = auto() |
|
NestedTensor = auto() |
|
Dense = auto() |
|
|
|
Python = auto() |
|
FuncTorchDynamicLayerBackMode = auto() |
|
ZeroTensor = auto() |
|
Conjugate = auto() |
|
Negative = auto() |
|
BackendSelect = auto() |
|
Named = auto() |
|
AutogradOther = auto() |
|
AutogradFunctionality = auto() |
|
AutogradNestedTensor = auto() |
|
Tracer = auto() |
|
Autocast = auto() |
|
Batched = auto() |
|
VmapMode = auto() |
|
FuncTorchGradWrapper = auto() |
|
FuncTorchBatched = auto() |
|
BatchedNestedTensor = auto() |
|
FuncTorchVmapMode = auto() |
|
FuncTorchDynamicLayerFrontMode = auto() |
|
Functionalize = auto() |
|
TESTING_ONLY_GenericWrapper = auto() |
|
TESTING_ONLY_GenericMode = auto() |
|
|
|
ADInplaceOrView = auto() |
|
Autograd = auto() |
|
CompositeImplicitAutograd = auto() |
|
CompositeImplicitAutogradNestedTensor = auto() |
|
CompositeExplicitAutograd = auto() |
|
CompositeExplicitAutogradNonFunctional = auto() |
|
FuncTorchBatchedDecomposition = auto() |
|
|
|
|
|
CPU = auto() |
|
CUDA = auto() |
|
HIP = auto() |
|
XLA = auto() |
|
MTIA = auto() |
|
MPS = auto() |
|
IPU = auto() |
|
XPU = auto() |
|
HPU = auto() |
|
VE = auto() |
|
Lazy = auto() |
|
Meta = auto() |
|
PrivateUse1 = auto() |
|
PrivateUse2 = auto() |
|
PrivateUse3 = auto() |
|
QuantizedCPU = auto() |
|
QuantizedCUDA = auto() |
|
QuantizedHIP = auto() |
|
QuantizedXLA = auto() |
|
QuantizedMTIA = auto() |
|
QuantizedMPS = auto() |
|
QuantizedIPU = auto() |
|
QuantizedXPU = auto() |
|
QuantizedHPU = auto() |
|
QuantizedVE = auto() |
|
QuantizedLazy = auto() |
|
QuantizedMeta = auto() |
|
QuantizedPrivateUse1 = auto() |
|
QuantizedPrivateUse2 = auto() |
|
QuantizedPrivateUse3 = auto() |
|
SparseCPU = auto() |
|
SparseCUDA = auto() |
|
SparseHIP = auto() |
|
SparseXLA = auto() |
|
SparseMTIA = auto() |
|
SparseMPS = auto() |
|
SparseIPU = auto() |
|
SparseXPU = auto() |
|
SparseHPU = auto() |
|
SparseVE = auto() |
|
SparseLazy = auto() |
|
SparseMeta = auto() |
|
SparsePrivateUse1 = auto() |
|
SparsePrivateUse2 = auto() |
|
SparsePrivateUse3 = auto() |
|
NestedTensorCPU = auto() |
|
NestedTensorCUDA = auto() |
|
NestedTensorHIP = auto() |
|
NestedTensorXLA = auto() |
|
NestedTensorMTIA = auto() |
|
NestedTensorMPS = auto() |
|
NestedTensorIPU = auto() |
|
NestedTensorXPU = auto() |
|
NestedTensorHPU = auto() |
|
NestedTensorVE = auto() |
|
NestedTensorLazy = auto() |
|
NestedTensorMeta = auto() |
|
NestedTensorPrivateUse1 = auto() |
|
NestedTensorPrivateUse2 = auto() |
|
NestedTensorPrivateUse3 = auto() |
|
AutogradCPU = auto() |
|
AutogradCUDA = auto() |
|
AutogradHIP = auto() |
|
AutogradXLA = auto() |
|
AutogradMTIA = auto() |
|
AutogradMPS = auto() |
|
AutogradIPU = auto() |
|
AutogradXPU = auto() |
|
AutogradHPU = auto() |
|
AutogradVE = auto() |
|
AutogradLazy = auto() |
|
AutogradMeta = auto() |
|
AutogradPrivateUse1 = auto() |
|
AutogradPrivateUse2 = auto() |
|
AutogradPrivateUse3 = auto() |
|
|
|
|
|
def __str__(self) -> str: |
|
return self.name |
|
|
|
def lower(self) -> str: |
|
return str(self).lower() |
|
|
|
@staticmethod |
|
def parse(value: str) -> "DispatchKey": |
|
for k, v in DispatchKey.__members__.items(): |
|
if k == value: |
|
return v |
|
raise AssertionError(f"unknown dispatch key {value}") |
|
|
|
|
|
class _TorchDispatchModeKey(Enum): |
|
FAKE = auto() |
|
PROXY = auto() |
|
FUNCTIONAL = auto() |
|
|
|
|
|
def codegen_per_backend_entries() -> str: |
|
r = [] |
|
for fk in FUNCTIONALITY_KEYS: |
|
for bc in BACKEND_COMPONENTS: |
|
r.append(f" {fk}{bc} = auto()") |
|
return "\n".join(r) |
|
|
|
|
|
for fk in FUNCTIONALITY_KEYS: |
|
for bc in BACKEND_COMPONENTS: |
|
if not hasattr(DispatchKey, fk + bc): |
|
r = codegen_per_backend_entries() |
|
print(r) |
|
raise RuntimeError( |
|
f"Missing {fk}{bc} from DispatchKey enum. Here is the autogenerated list we expect to have:\n\n{r}" |
|
) |
|
|
|
|
|
STRUCTURED_DISPATCH_KEYS = {DispatchKey.MPS, DispatchKey.CUDA, DispatchKey.CPU} |
|
UFUNC_DISPATCH_KEYS = {DispatchKey.CUDA, DispatchKey.CPU} |
|
|
|
|
|
dispatch_keys = [ |
|
DispatchKey.CPU, |
|
DispatchKey.SparseCPU, |
|
DispatchKey.SparseCsrCPU, |
|
DispatchKey.MkldnnCPU, |
|
DispatchKey.CUDA, |
|
DispatchKey.MPS, |
|
DispatchKey.SparseCUDA, |
|
DispatchKey.SparseCsrCUDA, |
|
DispatchKey.QuantizedCPU, |
|
DispatchKey.QuantizedCUDA, |
|
DispatchKey.CompositeImplicitAutograd, |
|
DispatchKey.CompositeImplicitAutogradNestedTensor, |
|
DispatchKey.CompositeExplicitAutograd, |
|
DispatchKey.CompositeExplicitAutogradNonFunctional, |
|
DispatchKey.NestedTensorCPU, |
|
DispatchKey.NestedTensorCUDA, |
|
|
|
|
|
DispatchKey.Meta, |
|
DispatchKey.SparseMeta, |
|
DispatchKey.QuantizedMeta, |
|
DispatchKey.NestedTensorMeta, |
|
DispatchKey.ZeroTensor, |
|
] |
|
|
|
|
|
|
|
|
|
def is_generic_dispatch_key(dk: DispatchKey) -> bool: |
|
return dk in { |
|
DispatchKey.CompositeExplicitAutograd, |
|
DispatchKey.CompositeExplicitAutogradNonFunctional, |
|
DispatchKey.CompositeImplicitAutograd, |
|
DispatchKey.CompositeImplicitAutogradNestedTensor, |
|
} |
|
|
|
|
|
|
|
def is_cuda_dispatch_key(dk: DispatchKey) -> bool: |
|
return dk in { |
|
DispatchKey.CUDA, |
|
DispatchKey.QuantizedCUDA, |
|
DispatchKey.SparseCUDA, |
|
DispatchKey.SparseCsrCUDA, |
|
DispatchKey.NestedTensorCUDA, |
|
DispatchKey.AutogradCUDA, |
|
} |
|
|
|
|
|
|
|
|
|
def is_structured_dispatch_key(dk: DispatchKey) -> bool: |
|
return dk in STRUCTURED_DISPATCH_KEYS |
|
|
|
|
|
def is_ufunc_dispatch_key(dk: DispatchKey) -> bool: |
|
|
|
return dk in UFUNC_DISPATCH_KEYS |
|
|
|
|
|
|
|
class ScalarType(Enum): |
|
Byte = auto() |
|
Char = auto() |
|
Short = auto() |
|
Int = auto() |
|
Long = auto() |
|
Half = auto() |
|
Float = auto() |
|
Double = auto() |
|
ComplexHalf = auto() |
|
ComplexFloat = auto() |
|
ComplexDouble = auto() |
|
Bool = auto() |
|
BFloat16 = auto() |
|
Float8_e5m2 = auto() |
|
Float8_e5m2fnuz = auto() |
|
Float8_e4m3fn = auto() |
|
Float8_e4m3fnuz = auto() |
|
|
|
def __str__(self) -> str: |
|
return self.name |
|
|
|
@staticmethod |
|
def maybe_parse(value: str) -> Optional["ScalarType"]: |
|
for k, v in ScalarType.__members__.items(): |
|
if k == value: |
|
return v |
|
return None |
|
|
|
@staticmethod |
|
def parse(value: str) -> "ScalarType": |
|
mb_r = ScalarType.maybe_parse(value) |
|
assert mb_r is not None, f"unknown dtype {value}" |
|
return mb_r |
|
|
|
@staticmethod |
|
def parse_set(values: str) -> OrderedSet["ScalarType"]: |
|
dtypes: OrderedSet[ScalarType] = OrderedSet() |
|
for value in values.split(", "): |
|
if value in DTYPE_CLASSES: |
|
dtypes.update(DTYPE_CLASSES[value]) |
|
else: |
|
dtypes.add(ScalarType.parse(value)) |
|
return dtypes |
|
|
|
|
|
DTYPE_CLASSES: Dict[str, OrderedSet[ScalarType]] = {} |
|
|
|
DTYPE_CLASSES["Integral"] = OrderedSet( |
|
[ |
|
ScalarType.Byte, |
|
ScalarType.Char, |
|
ScalarType.Int, |
|
ScalarType.Long, |
|
ScalarType.Short, |
|
] |
|
) |
|
|
|
DTYPE_CLASSES["Floating"] = OrderedSet([ScalarType.Float, ScalarType.Double]) |
|
DTYPE_CLASSES["Complex"] = OrderedSet( |
|
[ScalarType.ComplexFloat, ScalarType.ComplexDouble] |
|
) |
|
DTYPE_CLASSES["All"] = DTYPE_CLASSES["Integral"] | DTYPE_CLASSES["Floating"] |
|
DTYPE_CLASSES["AllAndComplex"] = DTYPE_CLASSES["All"] | DTYPE_CLASSES["Complex"] |
|
DTYPE_CLASSES["FloatingAndComplex"] = ( |
|
DTYPE_CLASSES["Floating"] | DTYPE_CLASSES["Complex"] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class UfuncKey(Enum): |
|
|
|
|
|
CUDAFunctor = auto() |
|
CUDAFunctorOnOther = auto() |
|
CUDAFunctorOnSelf = auto() |
|
|
|
CPUScalar = auto() |
|
CPUVector = auto() |
|
|
|
|
|
|
|
ScalarOnly = auto() |
|
Generic = auto() |
|
|
|
def __str__(self) -> str: |
|
return self.name |
|
|
|
@staticmethod |
|
def parse(value: str) -> "UfuncKey": |
|
for k, v in UfuncKey.__members__.items(): |
|
if k == value: |
|
return v |
|
raise AssertionError(f"unknown ufunc key {value}") |
|
|
|
|
|
class DeviceCheckType(Enum): |
|
NoCheck = 0 |
|
ExactSame = 1 |
|
|
|
|
|
class ViewSchemaKind(Enum): |
|
aliasing = auto() |
|
aliasing_inplace = auto() |
|
non_aliasing = auto() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class NativeFunction: |
|
|
|
|
|
|
|
|
|
namespace: str |
|
|
|
|
|
|
|
|
|
|
|
|
|
func: "FunctionSchema" |
|
|
|
|
|
|
|
use_const_ref_for_mutable_tensors: bool |
|
|
|
|
|
device_guard: bool |
|
|
|
|
|
device_check: DeviceCheckType |
|
|
|
|
|
python_module: Optional[str] |
|
|
|
|
|
category_override: Optional[str] |
|
|
|
|
|
|
|
variants: Set[Variant] |
|
|
|
|
|
|
|
|
|
manual_kernel_registration: bool |
|
|
|
|
|
|
|
|
|
|
|
manual_cpp_binding: bool |
|
|
|
|
|
|
|
loc: "Location" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
autogen: List["OperatorName"] |
|
|
|
|
|
|
|
ufunc_inner_loop: Dict[UfuncKey, "UfuncInnerLoop"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
structured: bool |
|
|
|
|
|
|
|
structured_delegate: Optional["OperatorName"] |
|
|
|
|
|
|
|
|
|
|
|
structured_inherits: Optional[str] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
precomputed: Optional["Precompute"] |
|
|
|
|
|
|
|
cpp_no_default_args: Set[str] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_abstract: bool |
|
|
|
|
|
has_composite_implicit_autograd_kernel: bool |
|
has_composite_implicit_autograd_nested_tensor_kernel: bool |
|
has_composite_explicit_autograd_kernel: bool |
|
has_composite_explicit_autograd_non_functional_kernel: bool |
|
|
|
|
|
|
|
tags: Set[str] |
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod |
|
def from_yaml( |
|
ei: Dict[str, object], |
|
loc: "Location", |
|
valid_tags: Set[str], |
|
ignore_keys: Optional[Set[DispatchKey]] = None, |
|
) -> Tuple[ |
|
"NativeFunction", Dict[DispatchKey, Dict["OperatorName", "BackendMetadata"]] |
|
]: |
|
""" |
|
Parse a NativeFunction from a dictionary as directly parsed |
|
from native_functions.yaml |
|
""" |
|
e = ei.copy() |
|
|
|
funcs = e.pop("func") |
|
assert isinstance(funcs, str), f"not a str: {funcs}" |
|
|
|
namespace_helper = NamespaceHelper.from_namespaced_entity( |
|
namespaced_entity=funcs, max_level=1 |
|
) |
|
namespace = namespace_helper.get_cpp_namespace(default="aten") |
|
func = FunctionSchema.parse(namespace_helper.entity_name) |
|
|
|
cpp_no_default_args_list = e.pop("cpp_no_default_args", []) |
|
assert isinstance(cpp_no_default_args_list, list) |
|
cpp_no_default_args = set(cpp_no_default_args_list) |
|
|
|
use_const_ref_for_mutable_tensors = e.pop( |
|
"use_const_ref_for_mutable_tensors", False |
|
) |
|
assert isinstance(use_const_ref_for_mutable_tensors, bool) |
|
|
|
variants_s = e.pop("variants", "function") |
|
assert isinstance(variants_s, str) |
|
variants: Set[Variant] = set() |
|
for v in variants_s.split(", "): |
|
if v == "function": |
|
variants.add(Variant.function) |
|
elif v == "method": |
|
variants.add(Variant.method) |
|
else: |
|
raise AssertionError(f"illegal variant {v}") |
|
|
|
manual_kernel_registration = e.pop("manual_kernel_registration", False) |
|
assert isinstance( |
|
manual_kernel_registration, bool |
|
), f"not a bool: {manual_kernel_registration}" |
|
|
|
manual_cpp_binding = e.pop("manual_cpp_binding", False) |
|
assert isinstance(manual_cpp_binding, bool), f"not a bool: {manual_cpp_binding}" |
|
|
|
device_guard = e.pop("device_guard", True) |
|
assert isinstance(device_guard, bool), f"not a bool: {device_guard}" |
|
|
|
device_check_s = e.pop("device_check", None) |
|
assert device_check_s is None or isinstance( |
|
device_check_s, str |
|
), f"not a str: {device_check_s}" |
|
device_check: DeviceCheckType |
|
if device_check_s is None: |
|
device_check = DeviceCheckType.ExactSame |
|
else: |
|
device_check = DeviceCheckType[device_check_s] |
|
|
|
structured = e.pop("structured", False) |
|
assert isinstance(structured, bool), f"not a bool: {structured}" |
|
|
|
structured_delegate_s = e.pop("structured_delegate", None) |
|
assert structured_delegate_s is None or isinstance( |
|
structured_delegate_s, str |
|
), f"not a str: {structured_delegate_s}" |
|
assert structured_delegate_s is None or "::" not in structured_delegate_s, ( |
|
"namespace is not supported in structured delegate," |
|
" using the same namespace as the native function" |
|
) |
|
structured_delegate: Optional[OperatorName] = None |
|
if structured_delegate_s is not None: |
|
structured_delegate = OperatorName.parse(structured_delegate_s) |
|
|
|
structured_inherits = e.pop("structured_inherits", None) |
|
assert structured_inherits is None or isinstance( |
|
structured_inherits, str |
|
), f"not a str: {structured_inherits}" |
|
assert structured_inherits is None or "::" not in structured_inherits, ( |
|
"namespace is not supported in structured inherits," |
|
" using the same namespace as the native function" |
|
) |
|
|
|
python_module = e.pop("python_module", None) |
|
assert python_module is None or isinstance( |
|
python_module, str |
|
), f"not a str: {python_module}" |
|
assert ( |
|
python_module is None or Variant.method not in variants |
|
), "functions in modules cannot be methods" |
|
|
|
category_override = e.pop("category_override", None) |
|
assert category_override is None or isinstance( |
|
category_override, str |
|
), f"not a str: {category_override}" |
|
|
|
precomputed_dict = e.pop("precomputed", None) |
|
assert precomputed_dict is None or structured is True |
|
precomputed = Precompute.parse(precomputed_dict) if precomputed_dict else None |
|
|
|
tags_inp = e.pop("tags", []) |
|
if isinstance(tags_inp, str): |
|
tags_inp = [tags_inp] |
|
assert isinstance(tags_inp, list) |
|
|
|
|
|
if namespace == "aten" and "pt2_compliant_tag" in valid_tags: |
|
tags_inp.append("pt2_compliant_tag") |
|
|
|
tags: Set[str] = set() |
|
for t in tags_inp: |
|
assert len(valid_tags) > 0 |
|
|
|
if t in valid_tags: |
|
tags.add(t) |
|
else: |
|
raise AssertionError(f"illegal tag {t}") |
|
|
|
from torchgen.api import cpp |
|
|
|
raw_dispatch = e.pop("dispatch", None) |
|
assert raw_dispatch is None or isinstance(raw_dispatch, dict), e |
|
dispatch: Dict[DispatchKey, BackendMetadata] = {} |
|
num_dispatch_keys: int = 0 |
|
if raw_dispatch is not None: |
|
assert not manual_kernel_registration, ( |
|
"cannot specify both manual_kernel_registration and dispatch; with " |
|
"manual registration, dispatch has no effect!" |
|
) |
|
redundant_composite_implicit_autograd = False |
|
for ks, v in raw_dispatch.items(): |
|
if ks == "__line__": |
|
continue |
|
assert isinstance(ks, str), e |
|
for k in ks.split(","): |
|
dispatch_key = DispatchKey.parse(k.strip()) |
|
num_dispatch_keys += 1 |
|
|
|
if ignore_keys and dispatch_key in ignore_keys: |
|
continue |
|
assert dispatch_key in dispatch_keys, ( |
|
f"Dispatch key {dispatch_key} of kernel {v} " |
|
"is not a supported dispatch key." |
|
) |
|
|
|
|
|
namespace_helper = NamespaceHelper.from_namespaced_entity( |
|
v, max_level=3 |
|
) |
|
kernel_namespace = namespace_helper.get_cpp_namespace(default="at") |
|
|
|
|
|
|
|
dispatch[dispatch_key] = BackendMetadata( |
|
kernel=namespace_helper.entity_name, |
|
structured=structured |
|
and is_structured_dispatch_key(dispatch_key), |
|
cpp_namespace=(kernel_namespace + "::native"), |
|
) |
|
if ( |
|
dispatch_key is DispatchKey.CompositeImplicitAutograd |
|
and v == cpp.name(func) |
|
): |
|
redundant_composite_implicit_autograd = True |
|
|
|
|
|
|
|
|
|
assert not ( |
|
num_dispatch_keys == 1 and redundant_composite_implicit_autograd |
|
), ( |
|
"unnecessary dispatch table for this function; just delete the dispatch " |
|
"key entirely" |
|
) |
|
|
|
|
|
assert ( |
|
structured_delegate |
|
or dispatch.keys() != {DispatchKey.CompositeImplicitAutograd} |
|
or dispatch[DispatchKey.CompositeImplicitAutograd].supports_symint() |
|
or num_dispatch_keys != 1 |
|
), ( |
|
f"unexpected name for singleton CompositeImplicitAutograd dispatch entry: expected {cpp.name(func)} " |
|
f"but got {dispatch[DispatchKey.CompositeImplicitAutograd]}. Rename your implementation to the expected " |
|
"name, then delete the dispatch table" |
|
) |
|
elif not structured and structured_delegate is None: |
|
name = str(func.name.name) |
|
assert not ( |
|
name.startswith("new_") |
|
or name.endswith("_like") |
|
|
|
or ( |
|
func.arguments.tensor_options |
|
and not func.arguments.has_tensor_arg() |
|
) |
|
), ( |
|
f"expected {name} to have a CompositeExplicitAutograd " |
|
"dispatch entry, but there was no dispatch table. Factory functions " |
|
"should not have implicit dispatch as they should not be decomposed " |
|
"for __torch_dispatch__" |
|
) |
|
dispatch[DispatchKey.CompositeImplicitAutograd] = BackendMetadata( |
|
cpp.name(func), structured=False, cpp_namespace=DEFAULT_KERNEL_NAMESPACE |
|
) |
|
|
|
composites_in_dispatch = [ |
|
d |
|
for d in dispatch |
|
if d == DispatchKey.CompositeExplicitAutograd |
|
or d == DispatchKey.CompositeExplicitAutogradNonFunctional |
|
or d == DispatchKey.CompositeImplicitAutograd |
|
or d == DispatchKey.CompositeImplicitAutogradNestedTensor |
|
] |
|
|
|
assert len(composites_in_dispatch) <= 1 or ( |
|
len(composites_in_dispatch) == 2 |
|
and ( |
|
DispatchKey.CompositeExplicitAutogradNonFunctional |
|
not in composites_in_dispatch |
|
) |
|
and ( |
|
DispatchKey.CompositeImplicitAutogradNestedTensor |
|
in composites_in_dispatch |
|
) |
|
), ( |
|
"cannot specify more than one of CompositeExplicitAutograd, CompositeExplicitAutogradNonFunctional, " |
|
"or CompositeImplicitAutograd on a single kernel; each " |
|
"strictly subsumes the other. If you wanted to provide an explicit autograd " |
|
"implementation, specify CompositeExplicitAutograd; otherwise specify CompositeImplicitAutograd only" |
|
) |
|
|
|
autogen_str = e.pop("autogen", "") |
|
assert isinstance(autogen_str, str) |
|
autogen = ( |
|
[] |
|
if autogen_str == "" |
|
else [OperatorName.parse(x) for x in autogen_str.split(", ")] |
|
) |
|
|
|
raw_ufunc_inner_loop = e.pop("ufunc_inner_loop", {}) |
|
ufunc_inner_loop = {} |
|
if isinstance(raw_ufunc_inner_loop, str): |
|
ufunc_inner_loop[UfuncKey.Generic] = UfuncInnerLoop.parse( |
|
raw_ufunc_inner_loop, UfuncKey.Generic |
|
) |
|
elif isinstance(raw_ufunc_inner_loop, dict): |
|
for k, vo in raw_ufunc_inner_loop.items(): |
|
if k == "__line__": |
|
continue |
|
assert isinstance(k, str), f"ufunc_inner_loop key is not a str: {k}" |
|
assert isinstance(vo, str), f"ufunc_inner_loop value is not a str: {v}" |
|
ufunc_key = UfuncKey.parse(k) |
|
ufunc_inner_loop[ufunc_key] = UfuncInnerLoop.parse(vo, ufunc_key) |
|
else: |
|
raise AssertionError( |
|
f"ufunc_inner_loop not str or dict: {raw_ufunc_inner_loop}" |
|
) |
|
|
|
if ufunc_inner_loop: |
|
assert structured, "ufunc must be structured" |
|
|
|
|
|
|
|
import torchgen.api.ufunc as ufunc |
|
|
|
for dispatch_key in UFUNC_DISPATCH_KEYS: |
|
assert ( |
|
dispatch_key not in dispatch |
|
), f"ufunc should not have explicit dispatch entry for {dispatch_key}" |
|
dispatch[dispatch_key] = BackendMetadata( |
|
kernel=ufunc.schema_kernel_name(func, dispatch_key), |
|
structured=True, |
|
cpp_namespace=DEFAULT_KERNEL_NAMESPACE, |
|
) |
|
|
|
if structured_delegate: |
|
|
|
is_abstract = True |
|
else: |
|
is_abstract = ( |
|
dispatch.keys() != {DispatchKey.CompositeImplicitAutograd} |
|
and dispatch.keys() |
|
!= {DispatchKey.CompositeImplicitAutogradNestedTensor} |
|
and dispatch.keys() |
|
!= { |
|
DispatchKey.CompositeImplicitAutograd, |
|
DispatchKey.CompositeImplicitAutogradNestedTensor, |
|
} |
|
) |
|
|
|
has_composite_implicit_autograd_kernel = ( |
|
DispatchKey.CompositeImplicitAutograd in dispatch.keys() |
|
) |
|
has_composite_implicit_autograd_nested_tensor_kernel = ( |
|
DispatchKey.CompositeImplicitAutogradNestedTensor in dispatch.keys() |
|
) |
|
has_composite_explicit_autograd_kernel = ( |
|
DispatchKey.CompositeExplicitAutograd in dispatch.keys() |
|
) |
|
has_composite_explicit_autograd_non_functional_kernel = ( |
|
DispatchKey.CompositeExplicitAutogradNonFunctional in dispatch.keys() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
backend_metadata = {k: {func.name: v} for k, v in dispatch.items()} |
|
|
|
|
|
|
|
e.pop("__line__", None) |
|
assert not e, f"leftover entries: {e}" |
|
|
|
|
|
if structured_delegate is not None: |
|
for key in STRUCTURED_DISPATCH_KEYS: |
|
assert key not in dispatch, ( |
|
f"if structured_delegate, then must not have {key} in dispatch dictionary " |
|
"(it is delegated!)" |
|
) |
|
|
|
return ( |
|
NativeFunction( |
|
func=func, |
|
use_const_ref_for_mutable_tensors=use_const_ref_for_mutable_tensors, |
|
variants=variants, |
|
structured=structured, |
|
structured_delegate=structured_delegate, |
|
structured_inherits=structured_inherits, |
|
precomputed=precomputed, |
|
autogen=autogen, |
|
ufunc_inner_loop=ufunc_inner_loop, |
|
manual_kernel_registration=manual_kernel_registration, |
|
manual_cpp_binding=manual_cpp_binding, |
|
python_module=python_module, |
|
category_override=category_override, |
|
device_guard=device_guard, |
|
device_check=device_check, |
|
loc=loc, |
|
cpp_no_default_args=cpp_no_default_args, |
|
is_abstract=is_abstract, |
|
has_composite_implicit_autograd_kernel=has_composite_implicit_autograd_kernel, |
|
has_composite_implicit_autograd_nested_tensor_kernel=has_composite_implicit_autograd_nested_tensor_kernel, |
|
has_composite_explicit_autograd_kernel=has_composite_explicit_autograd_kernel, |
|
has_composite_explicit_autograd_non_functional_kernel=has_composite_explicit_autograd_non_functional_kernel, |
|
tags=tags, |
|
namespace=namespace, |
|
), |
|
backend_metadata, |
|
) |
|
|
|
def validate_unstructured(self) -> None: |
|
|
|
|
|
assert not self.structured, ( |
|
"This function is structured, but there was " |
|
"no valid functional variant of it." |
|
) |
|
assert self.structured_delegate, ( |
|
"This function delegates to another structured out function, " |
|
"but no valid function was found (the delegate may not exist, or it has the wrong type)" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __post_init__(self) -> None: |
|
if self.func.arguments.out: |
|
assert self.variants == {Variant.function}, ( |
|
"Native functions with out arguments MUST " |
|
"be declared with only function variant; e.g., variants: function; " |
|
"otherwise you will tickle a Python argument binding bug " |
|
"(which usually manifests itself as the result variable being undefined.)" |
|
) |
|
if self.structured: |
|
assert self.func.kind() == SchemaKind.out, ( |
|
"Put structured field on the out= " |
|
"variant of a function; did you mean structured_delegate?" |
|
) |
|
assert ( |
|
self.device_guard |
|
), "device_guard: False is not respected by structured kernels" |
|
if self.structured_delegate: |
|
assert self.func.kind() != SchemaKind.out, ( |
|
"structured_delegate field not allowed " |
|
"on out= functions; did you mean structured?" |
|
) |
|
assert ( |
|
self.device_guard |
|
), "device_guard: False is not respected by structured kernels" |
|
|
|
|
|
assert not ( |
|
self.structured and self.structured_delegate |
|
), "Cannot have both structured and structured_delegate on function" |
|
defaulted_arguments = { |
|
a.name for a in self.func.schema_order_arguments() if a.default is not None |
|
} |
|
invalid_args = set.difference(self.cpp_no_default_args, defaulted_arguments) |
|
assert len(invalid_args) == 0, f"Invalid cpp_no_default_args: {invalid_args}" |
|
if self.structured_inherits is not None: |
|
assert ( |
|
self.structured |
|
), "structured_inherits must also imply structured: True" |
|
if str(self.func.name).startswith("_foreach"): |
|
assert self.device_check == DeviceCheckType.NoCheck, ( |
|
"foreach kernels fall back to slow path when tensor are on different devices, " |
|
"device_check not allowed to be enabled" |
|
) |
|
|
|
|
|
|
|
if ( |
|
"rand" in str(self.func.name) |
|
or ( |
|
( |
|
"dropout" in str(self.func.name) |
|
or any( |
|
"dropout" in arg.name for arg in self.func.arguments.flat_all |
|
) |
|
) |
|
|
|
and "backward" not in str(self.func.name) |
|
and str(self.func.name.name) not in ["_cudnn_init_dropout_state"] |
|
) |
|
or self.func.arguments.has_generator_arg() |
|
): |
|
assert "nondeterministic_seeded" in self.tags, str(self.func.name) |
|
|
|
@property |
|
def has_composite_kernel(self) -> bool: |
|
return ( |
|
self.has_composite_implicit_autograd_kernel |
|
or self.has_composite_explicit_autograd_kernel |
|
or self.has_composite_explicit_autograd_non_functional_kernel |
|
) or ( |
|
self.has_composite_implicit_autograd_kernel |
|
and self.has_composite_implicit_autograd_nested_tensor_kernel |
|
) |
|
|
|
@property |
|
def is_view_op(self) -> bool: |
|
rets = self.func.returns |
|
is_non_mutating_view = len(rets) > 0 and any( |
|
r.annotation is not None and not r.annotation.is_write for r in rets |
|
) |
|
|
|
is_inplace_view = ( |
|
"inplace_view" in self.tags |
|
and str(self.func.name) != "resize_" |
|
and str(self.func.name) != "resize_as_" |
|
) |
|
is_wildcard_view = any( |
|
inp.annotation is not None and "*" in inp.annotation.alias_set_after |
|
for inp in self.func.schema_order_arguments() |
|
) |
|
return is_non_mutating_view or is_inplace_view or is_wildcard_view |
|
|
|
@property |
|
def view_schema_kind(self) -> ViewSchemaKind: |
|
if self.is_view_op and self.func.name.name.inplace: |
|
assert "inplace_view" in self.tags |
|
return ViewSchemaKind.aliasing_inplace |
|
if self.is_view_op: |
|
return ViewSchemaKind.aliasing |
|
else: |
|
return ViewSchemaKind.non_aliasing |
|
|
|
@property |
|
def root_name(self) -> str: |
|
return self.func.name.name.base |
|
|
|
@property |
|
def part_of_structured_group(self) -> bool: |
|
return self.structured or self.structured_delegate is not None |
|
|
|
|
|
class SchemaKind(Enum): |
|
functional = auto() |
|
inplace = auto() |
|
out = auto() |
|
mutable = auto() |
|
scratch = auto() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class NativeFunctionsGroup: |
|
functional: NativeFunction |
|
inplace: Optional[NativeFunction] |
|
mutable: Optional[NativeFunction] |
|
out: NativeFunction |
|
|
|
@property |
|
def structured(self) -> bool: |
|
|
|
return self.out.structured |
|
|
|
def __post_init__(self) -> None: |
|
test_sig: FunctionSchema = self.functional.func.signature() |
|
for f in self.functions(): |
|
if test_sig != f.func.signature(): |
|
raise AssertionError( |
|
"NativeFunctionsGroup constructed from two NativeFunctions " |
|
f"that don't have matching signatures: {test_sig} != {f.func.signature()}" |
|
) |
|
|
|
if self.structured != f.part_of_structured_group: |
|
raise AssertionError( |
|
"NativeFunctionsGroup constructed from structured and unstructured " |
|
f"functions: {self.out.func.name} and {f.func.name}" |
|
) |
|
assert self.functional.func.kind() == SchemaKind.functional |
|
assert self.out.func.kind() == SchemaKind.out |
|
assert self.functional.namespace == self.out.namespace |
|
if self.inplace is not None: |
|
assert self.inplace.func.kind() == SchemaKind.inplace |
|
assert self.inplace.namespace == self.functional.namespace |
|
|
|
if self.mutable is not None: |
|
assert self.mutable.func.kind() == SchemaKind.mutable |
|
assert self.mutable.namespace == self.functional.namespace |
|
|
|
assert self.functional.func.name.name.functional_overload |
|
|
|
if self.structured: |
|
|
|
|
|
assert ( |
|
not self.out.has_composite_implicit_autograd_kernel |
|
and not self.out.has_composite_implicit_autograd_nested_tensor_kernel |
|
) |
|
|
|
assert self.functional.structured_delegate == self.out.func.name, ( |
|
f"{self.functional.func.name} delegates to {self.functional.structured_delegate} " |
|
f"but its actual delegate is {self.out.func.name}" |
|
) |
|
if self.inplace is not None: |
|
assert self.inplace.structured_delegate == self.out.func.name |
|
|
|
generated_fns = sorted( |
|
[str(f.func.name) for f in self.functions() if "generated" in f.tags] |
|
) |
|
generated_fns_str = ", ".join(str(x) for x in generated_fns) |
|
expected_generated_fns: Set[str] = set() |
|
for f in self.functions(): |
|
expected_generated_fns.update(str(op) for op in f.autogen) |
|
expected_generated_fns_str = ", ".join( |
|
str(x) for x in sorted(expected_generated_fns) |
|
) |
|
if len(expected_generated_fns) == 0 and len(generated_fns) > 0: |
|
raise RuntimeError( |
|
f"The codegen expects to be able to generate '{generated_fns_str}'." |
|
" In order to generate them however, we expect them to be called out explicitly in the yaml." |
|
f" Please add an 'autogen: {generated_fns_str}' line to the entry for {str(f.func.name)}" |
|
) |
|
if expected_generated_fns_str != generated_fns_str: |
|
raise RuntimeError( |
|
f"The codegen expects to be able to generate '{generated_fns_str}'." |
|
f" To do so, it expects a line: 'autogen: {generated_fns_str}'." |
|
f" Instead, it found 'autogen: {expected_generated_fns_str}'" |
|
) |
|
|
|
def signature(self) -> "FunctionSchema": |
|
return self.out.func.signature() |
|
|
|
def functions(self) -> Iterator[NativeFunction]: |
|
yield self.functional |
|
yield self.out |
|
if self.inplace is not None: |
|
yield self.inplace |
|
if self.mutable is not None: |
|
yield self.mutable |
|
|
|
@property |
|
def root_name(self) -> str: |
|
return self.functional.root_name |
|
|
|
@staticmethod |
|
def from_dict( |
|
d: Dict[SchemaKind, NativeFunction] |
|
) -> Optional["NativeFunctionsGroup"]: |
|
assert d |
|
if len(d) == 1: |
|
return None |
|
d = dict(d) |
|
functional = d.pop(SchemaKind.functional, None) |
|
inplace = d.pop(SchemaKind.inplace, None) |
|
mutable = d.pop(SchemaKind.mutable, None) |
|
out = d.pop(SchemaKind.out, None) |
|
assert not d |
|
assert functional is not None |
|
|
|
|
|
if out is None: |
|
return None |
|
|
|
return NativeFunctionsGroup( |
|
functional=functional, |
|
inplace=inplace, |
|
mutable=mutable, |
|
out=out, |
|
) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class BackendMetadata: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kernel: str |
|
|
|
|
|
|
|
|
|
structured: bool |
|
|
|
|
|
cpp_namespace: str |
|
|
|
def supports_symint(self) -> bool: |
|
return "_symint" in self.kernel |
|
|
|
|
|
@dataclass(frozen=True) |
|
class UfuncInnerLoop: |
|
name: str |
|
supported_dtypes: OrderedSet[ScalarType] |
|
|
|
|
|
ufunc_key: UfuncKey |
|
|
|
@staticmethod |
|
def parse(value: str, ufunc_key: UfuncKey) -> "UfuncInnerLoop": |
|
name, supported_dtypes_str = value.split(" ", 1) |
|
assert supported_dtypes_str[0] == "(" |
|
assert supported_dtypes_str[-1] == ")" |
|
supported_dtypes: OrderedSet[ScalarType] = OrderedSet() |
|
for k in supported_dtypes_str[1:-1].split(", "): |
|
supported_dtypes |= ScalarType.parse_set(k) |
|
return UfuncInnerLoop( |
|
name=name, supported_dtypes=supported_dtypes, ufunc_key=ufunc_key |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class BackendIndex: |
|
dispatch_key: DispatchKey |
|
|
|
|
|
use_out_as_primary: bool |
|
|
|
|
|
|
|
device_guard: bool |
|
|
|
external: bool |
|
|
|
index: Dict["OperatorName", BackendMetadata] |
|
|
|
@staticmethod |
|
def grow_index( |
|
parent_index: Dict[DispatchKey, Dict["OperatorName", BackendMetadata]], |
|
child_index: Dict[DispatchKey, Dict["OperatorName", BackendMetadata]], |
|
) -> None: |
|
for k, v in child_index.items(): |
|
for op_name, metadata in v.items(): |
|
assert ( |
|
op_name not in parent_index[k] |
|
), f"duplicate operator {op_name} for dispatch key {k}" |
|
parent_index[k][op_name] = metadata |
|
|
|
def primary(self, g: NativeFunctionsGroup) -> NativeFunction: |
|
if self.use_out_as_primary: |
|
return g.out |
|
else: |
|
return g.functional |
|
|
|
def has_kernel(self, g: Union[NativeFunction, NativeFunctionsGroup]) -> bool: |
|
m = self.get_kernel(g) |
|
return m is not None |
|
|
|
def get_kernel( |
|
self, g: Union[NativeFunction, NativeFunctionsGroup] |
|
) -> Optional[BackendMetadata]: |
|
if isinstance(g, NativeFunction): |
|
f = g |
|
elif isinstance(g, NativeFunctionsGroup): |
|
f = self.primary(g) |
|
else: |
|
assert_never(g) |
|
if f.func.name not in self.index: |
|
return None |
|
return self.index[f.func.name] |
|
|
|
def native_function_class_name(self) -> Optional[str]: |
|
if self.external: |
|
return f"{str(self.dispatch_key)}NativeFunctions" |
|
else: |
|
|
|
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class FunctionSchema: |
|
|
|
name: "OperatorName" |
|
|
|
arguments: "Arguments" |
|
|
|
|
|
returns: Tuple["Return", ...] |
|
|
|
def schema_order_arguments(self) -> Iterator["Argument"]: |
|
return itertools.chain( |
|
self.arguments.flat_positional, |
|
self.arguments.flat_kwarg_only, |
|
self.arguments.out, |
|
) |
|
|
|
decl_re = re.compile(r"(?P<name>[^\(]+)\((?P<args>.*)\) -> (?P<returns>.*)") |
|
|
|
@staticmethod |
|
def parse(func: str) -> "FunctionSchema": |
|
|
|
decls = FunctionSchema.decl_re.findall(func) |
|
assert len(decls) == 1, f"Invalid function schema: {func}" |
|
ops, args, return_decl = decls[0] |
|
name = OperatorName.parse(ops) |
|
arguments = Arguments.parse(args) |
|
returns = parse_returns(return_decl) |
|
r = FunctionSchema(name=name, arguments=arguments, returns=returns) |
|
assert str(r) == func, f"{str(r)} != {func}" |
|
return r |
|
|
|
def returns_are_aliased(self) -> bool: |
|
|
|
return any( |
|
r |
|
for r in self.returns |
|
if r.annotation is not None and r.annotation.is_write |
|
) |
|
|
|
def __post_init__(self) -> None: |
|
for arg, ret in zip(self.arguments.out, self.returns): |
|
assert arg.annotation == ret.annotation, ( |
|
"Out arguments must have matching return Tensor; furthermore, " |
|
"the ith-argument needs to correspond to the ith return" |
|
) |
|
|
|
|
|
for a in self.arguments.post_self_positional_mutable: |
|
assert not any( |
|
a.annotation == r.annotation for r in self.returns |
|
), f"If you have a schema with mutable positional args, we expect them to not be returned. schema: {str(self)}" |
|
|
|
|
|
|
|
|
|
out_and_self = list(self.arguments.out) + [ |
|
arg for arg in self.arguments.flat_positional if arg.name == "self" |
|
] |
|
mutable_returns = [ |
|
ret |
|
for ret in self.returns |
|
if ret.annotation is not None and ret.annotation.is_write |
|
] |
|
immutable_returns = [ |
|
ret |
|
for ret in self.returns |
|
if ret.annotation is None or not ret.annotation.is_write |
|
] |
|
|
|
|
|
|
|
|
|
|
|
assert ( |
|
len(mutable_returns) == 0 or len(immutable_returns) == 0 |
|
), f"NativeFunctions must have either only mutable returns, or only immutable returns. Found: {str(self)}" |
|
for ret in mutable_returns: |
|
assert any(ret.annotation == arg.annotation for arg in out_and_self), ( |
|
'All mutable returns must be aliased either to a keyword argument, or to "self". ' |
|
"Did you forget to mark an out argument as keyword-only?" |
|
) |
|
if self.arguments.out: |
|
|
|
|
|
|
|
|
|
|
|
if any(a.type != BaseType(BaseTy.Tensor) for a in self.arguments.out): |
|
assert ( |
|
len(self.returns) == 0 |
|
), "out= ops that accept tensor lists as out arguments " |
|
"are expected to have no return type (since you can't do method chaining on them)" |
|
else: |
|
|
|
|
|
assert len( |
|
[ |
|
arg |
|
for arg in self.arguments.out |
|
if not arg.name.startswith("_scratch_") |
|
] |
|
) == len( |
|
self.returns |
|
), "Must return as many arguments as there are out arguments, or no return at all" |
|
|
|
if self.name.name.inplace: |
|
self_a = self.arguments.self_arg |
|
assert ( |
|
self_a |
|
and self_a.argument.annotation |
|
and self_a.argument.annotation.is_write |
|
) |
|
if self_a.argument.type == BaseType(BaseTy.Tensor): |
|
|
|
|
|
assert ( |
|
len(self.returns) == 1 |
|
and self.returns[0].annotation == self_a.argument.annotation |
|
) |
|
else: |
|
|
|
|
|
assert len(self.returns) == 0 |
|
|
|
if self.arguments.tensor_options is not None: |
|
assert self.kind() == SchemaKind.functional, ( |
|
"Found an operator that is not functional or out variant, but has tensor options arguments." |
|
"This is not allowed- tensor options arguments are only allowed for factory functions." |
|
f"schema: {str(self)}" |
|
) |
|
if self.is_functional_fn(): |
|
assert self.kind() == SchemaKind.functional, ( |
|
"Found an operator that is not functional, but its overload contains the string 'functional'." |
|
"This is a special keyword in the codegen, please use a different overload name." |
|
f"schema: {str(self)}" |
|
) |
|
|
|
def is_functional_fn(self) -> bool: |
|
return "functional" in self.name.overload_name |
|
|
|
def is_out_fn(self) -> bool: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return bool(self.arguments.out) |
|
|
|
def kind(self) -> SchemaKind: |
|
""" |
|
What kind of schema is this? A functional schema is one |
|
that returns a newly allocated output; an inplace schema |
|
modifies the self argument inplace; an out schema writes |
|
the result into an explicitly provided out argument. |
|
""" |
|
is_out = bool(self.arguments.out) |
|
is_scratch = bool( |
|
[arg for arg in self.arguments.out if arg.name.startswith("_scratch_")] |
|
) |
|
is_inplace = self.name.name.inplace |
|
is_mutable = any( |
|
a.annotation is not None and a.annotation.is_write |
|
for a in self.arguments.post_self_positional |
|
) |
|
assert not (is_out and is_inplace) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_inplace: |
|
return SchemaKind.inplace |
|
elif is_scratch: |
|
assert ( |
|
is_out |
|
), "invariant: all scratch operators are expected to be out= operators too" |
|
return SchemaKind.scratch |
|
elif is_out: |
|
assert ( |
|
not is_scratch |
|
), "We should not categorize a scratch op as an out variant. Check if the order of if statements are expected!" |
|
return SchemaKind.out |
|
elif is_mutable: |
|
return SchemaKind.mutable |
|
else: |
|
return SchemaKind.functional |
|
|
|
|
|
|
|
|
|
|
|
def aliased_return_names(self) -> List[Optional[str]]: |
|
outs: List[Optional[str]] = [] |
|
for r in self.returns: |
|
aliased_args = [ |
|
a |
|
for a in self.arguments.flat_all |
|
if a.annotation is not None and a.annotation == r.annotation |
|
] |
|
if len(aliased_args) == 0: |
|
outs.append(None) |
|
elif len(aliased_args) == 1: |
|
outs.append(aliased_args[0].name) |
|
else: |
|
aliased_names = ", ".join(a.name for a in aliased_args) |
|
raise AssertionError( |
|
f"Found a return ({r.name})that aliases multiple inputs ({aliased_names})" |
|
) |
|
return outs |
|
|
|
def signature( |
|
self, |
|
*, |
|
strip_default: bool = False, |
|
strip_view_copy_name: bool = False, |
|
keep_return_names: bool = False, |
|
) -> "FunctionSchema": |
|
""" |
|
Certain schemas are 'related', in that they are simply |
|
inplace/out/functional versions of the same function. This method |
|
factors these schemas into the "core" functional signature which |
|
is equal across all versions. |
|
|
|
Here is what normalization happens to the schema to convert |
|
it to a signature: |
|
- The overload name is stripped (name is retained, since |
|
it expresses semantic content about what the function does) |
|
- Inplace is set False |
|
- Out arguments are stripped |
|
- Mutable post_self_positional args are converted to returns |
|
- Mutability annotations are stripped (this is sound |
|
because you cannot overload on mutability annotation) |
|
- Return names are stripped since they are not overloadable and |
|
some variants have return names but some not |
|
- TensorOptions are dropped |
|
because out= variants of factory functions don't include them |
|
(and we want to be able to pair up factory functions with their out variants) |
|
|
|
Finally, we want to be able to pair up related "view" and their |
|
corresponding "view_copy" operators. We do this by optionally |
|
stripping the trailing "_copy" from the base name. |
|
|
|
Example of a mutable op before and after: |
|
|
|
f.func (Mutable operator): |
|
_fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950 |
|
|
|
f.func (Corresponding functional operator): |
|
_fused_moving_avg_obs_fq_helper.functional(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor running_min, Tensor running_max, Tensor scale, Tensor zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask, Tensor running_min_out, Tensor running_max_out, Tensor scale_out, Tensor zero_point_out) # noqa: B950 |
|
|
|
f.func.signature() output: |
|
_fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor running_min, Tensor running_max, Tensor scale, Tensor zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) # noqa: B950 |
|
""" |
|
|
|
def strip_ret_annotation(r: Return) -> Return: |
|
return Return( |
|
name=r.name if keep_return_names else None, |
|
type=r.type, |
|
annotation=None, |
|
) |
|
|
|
base_name = self.name.name.base |
|
if strip_view_copy_name and base_name.endswith("_copy"): |
|
base_name = base_name.replace("_copy", "") |
|
|
|
|
|
returns_from_mutable_inputs = tuple( |
|
|
|
|
|
|
|
Return( |
|
name=f"{a.name}_out" if keep_return_names else None, |
|
type=a.type, |
|
annotation=None, |
|
) |
|
for a in itertools.chain( |
|
|
|
|
|
[self.arguments.self_arg.argument] |
|
if self.arguments.self_arg is not None |
|
else [], |
|
self.arguments.out, |
|
self.arguments.post_self_positional, |
|
) |
|
if a.annotation is not None |
|
and a.annotation.is_write |
|
and not any(a.annotation == r.annotation for r in self.returns) |
|
) |
|
original_returns = tuple(map(strip_ret_annotation, self.returns)) |
|
|
|
returns = original_returns + returns_from_mutable_inputs |
|
|
|
args_sig = self.arguments.signature(strip_default=strip_default) |
|
|
|
if str(self.name) == "bernoulli.p": |
|
args_sig = Arguments.parse(str(args_sig).replace("float p", "float p=0.5")) |
|
|
|
return FunctionSchema( |
|
name=OperatorName( |
|
name=BaseOperatorName( |
|
base=base_name, |
|
inplace=False, |
|
dunder_method=self.name.name.dunder_method, |
|
), |
|
overload_name="", |
|
), |
|
arguments=args_sig, |
|
returns=returns, |
|
) |
|
|
|
def view_signature(self) -> "FunctionSchema": |
|
return self.signature(strip_view_copy_name=True) |
|
|
|
def with_name(self, name: "OperatorName") -> "FunctionSchema": |
|
return FunctionSchema( |
|
name=name, |
|
arguments=self.arguments, |
|
returns=self.returns, |
|
) |
|
|
|
@property |
|
def modifies_arguments(self) -> bool: |
|
return self.kind() in [SchemaKind.inplace, SchemaKind.out, SchemaKind.mutable] |
|
|
|
def has_symint(self) -> bool: |
|
return self.arguments.has_symint_arg() |
|
|
|
def __str__(self) -> str: |
|
all_arguments_str = str(self.arguments) |
|
if len(self.returns) == 1: |
|
returns = str(self.returns[0]) |
|
else: |
|
returns = "(" + ", ".join(map(str, self.returns)) + ")" |
|
return f"{self.name}({all_arguments_str}) -> {returns}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class Annotation: |
|
|
|
|
|
alias_set: Tuple[str, ...] |
|
is_write: bool |
|
alias_set_after: Tuple[str, ...] |
|
|
|
@staticmethod |
|
def parse(ann: str) -> "Annotation": |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m = re.match(r"^([a-z])(\|[a-z])*(!?)( -> (\*|[a-z](\|[a-z])*))?$", ann) |
|
|
|
assert m is not None, f"unrecognized alias annotation {ann}" |
|
before_alias = m.group(1) + (m.group(2) if m.group(2) else "") |
|
alias_set = tuple(before_alias.split("|")) |
|
is_write = m.group(3) == "!" |
|
assert not ( |
|
is_write and len(alias_set) > 1 |
|
), f"alias set larger than 1 is not mutable, got {ann} instead." |
|
after_set = tuple(m.group(5).split("|")) if m.group(5) else tuple() |
|
assert not ( |
|
len(before_alias) > 1 and len(after_set) > 1 |
|
), f"before alias set and after alias set cannot be larger than 1 at the same time, got {ann} instead." |
|
r = Annotation( |
|
alias_set=alias_set, is_write=is_write, alias_set_after=after_set |
|
) |
|
assert str(r) == ann, f"{r} != {ann}" |
|
return r |
|
|
|
def __str__(self) -> str: |
|
alias_set = "|".join(self.alias_set) |
|
if self.is_write: |
|
alias_set = f"{alias_set}!" |
|
alias_set_after = "|".join(self.alias_set_after) |
|
if alias_set_after: |
|
alias_set = f'{alias_set}{" -> "}{alias_set_after}' |
|
return alias_set |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class Type: |
|
@staticmethod |
|
def parse(t: str) -> "Type": |
|
r = Type._parse(t) |
|
assert str(r) == t, f"{r} != {t}" |
|
return r |
|
|
|
@staticmethod |
|
def _parse(t: str) -> "Type": |
|
m = re.match(r"^(.+)\?$", t) |
|
if m is not None: |
|
return OptionalType(Type.parse(m.group(1))) |
|
m = re.match(r"^(.+)\[([0-9]+)?\]$", t) |
|
if m is not None: |
|
size = int(m.group(2)) if m.group(2) is not None else None |
|
return ListType(elem=Type.parse(m.group(1)), size=size) |
|
|
|
|
|
m = re.match(r"^__torch__\.torch\.classes\.([a-zA-Z0-9_.]+)$", t) |
|
if m is not None: |
|
return CustomClassType(m.group(1)) |
|
try: |
|
return BaseType(BaseTy[t]) |
|
except KeyError as e: |
|
raise RuntimeError(f"unrecognized type {t}") from e |
|
|
|
def __str__(self) -> str: |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
|
|
def is_base_ty_like(self, base_ty: "BaseTy") -> bool: |
|
raise NotImplementedError |
|
|
|
def is_tensor_like(self) -> bool: |
|
return self.is_base_ty_like(BaseTy.Tensor) |
|
|
|
def is_generator_like(self) -> bool: |
|
return self.is_base_ty_like(BaseTy.Generator) |
|
|
|
def is_symint_like(self) -> bool: |
|
return self.is_base_ty_like(BaseTy.SymInt) |
|
|
|
def is_nullable(self) -> bool: |
|
raise NotImplementedError |
|
|
|
def is_list_like(self) -> Optional["ListType"]: |
|
raise NotImplementedError |
|
|
|
|
|
|
|
class BaseTy(Enum): |
|
Generator = auto() |
|
ScalarType = auto() |
|
Tensor = auto() |
|
int = auto() |
|
Dimname = auto() |
|
DimVector = auto() |
|
float = auto() |
|
str = auto() |
|
bool = auto() |
|
Layout = auto() |
|
Device = auto() |
|
DeviceIndex = auto() |
|
Scalar = auto() |
|
MemoryFormat = auto() |
|
QScheme = auto() |
|
Storage = auto() |
|
Stream = auto() |
|
SymInt = auto() |
|
ConstQuantizerPtr = auto() |
|
|
|
|
|
@dataclass(frozen=True) |
|
class BaseType(Type): |
|
name: BaseTy |
|
|
|
def __str__(self) -> str: |
|
return f"{self.name.name}" |
|
|
|
def is_base_ty_like(self, base_ty: BaseTy) -> bool: |
|
return self.name == base_ty |
|
|
|
def is_nullable(self) -> bool: |
|
return False |
|
|
|
def is_list_like(self) -> Optional["ListType"]: |
|
return None |
|
|
|
def is_symint_like(self) -> bool: |
|
return self.name == BaseTy.SymInt |
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class OptionalType(Type): |
|
elem: Type |
|
|
|
def __str__(self) -> str: |
|
return f"{self.elem}?" |
|
|
|
def is_base_ty_like(self, base_ty: BaseTy) -> bool: |
|
return self.elem.is_base_ty_like(base_ty) |
|
|
|
def is_symint_like(self) -> bool: |
|
return self.elem.is_symint_like() |
|
|
|
def is_nullable(self) -> bool: |
|
return True |
|
|
|
def is_list_like(self) -> Optional["ListType"]: |
|
return self.elem.is_list_like() |
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class CustomClassType(Type): |
|
class_name: str |
|
|
|
def __str__(self) -> str: |
|
""" |
|
Return the class name will prefix __torch__.torch.classes |
|
""" |
|
return f"__torch__.torch.classes.{self.class_name}" |
|
|
|
def is_base_ty_like(self, base_ty: BaseTy) -> bool: |
|
return False |
|
|
|
def is_symint_like(self) -> bool: |
|
return False |
|
|
|
def is_nullable(self) -> bool: |
|
""" |
|
Assume a custom class is not nullable. |
|
""" |
|
return False |
|
|
|
def is_list_like(self) -> Optional["ListType"]: |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class ListType(Type): |
|
elem: Type |
|
size: Optional[int] |
|
|
|
def __str__(self) -> str: |
|
size = f"{self.size}" if self.size else "" |
|
return f"{self.elem}[{size}]" |
|
|
|
def is_base_ty_like(self, base_ty: BaseTy) -> bool: |
|
return self.elem.is_base_ty_like(base_ty) |
|
|
|
def is_symint_like(self) -> bool: |
|
return self.elem.is_symint_like() |
|
|
|
def is_nullable(self) -> bool: |
|
return self.elem.is_nullable() |
|
|
|
def is_list_like(self) -> Optional["ListType"]: |
|
return self |
|
|
|
|
|
@dataclass(frozen=True) |
|
class Argument: |
|
|
|
|
|
|
|
name: str |
|
type: Type |
|
default: Optional[str] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotation: Optional[Annotation] |
|
|
|
@staticmethod |
|
def parse(arg: str) -> "Argument": |
|
name: str |
|
default: Optional[str] |
|
type_and_annot, name_and_default = arg.rsplit(" ", 1) |
|
if "=" in name_and_default: |
|
name, default = name_and_default.split("=") |
|
else: |
|
name = name_and_default |
|
default = None |
|
|
|
match = re.match(r"Tensor\((.+)\)(.*)", type_and_annot) |
|
annotation: Optional[Annotation] |
|
if match: |
|
|
|
assert match.group(2) in [ |
|
"", |
|
"?", |
|
"[]", |
|
], "unrecognized alias analysis form with Tensor" |
|
type_s = "Tensor" + match.group(2) |
|
annotation = Annotation.parse(match.group(1)) |
|
else: |
|
type_s = type_and_annot |
|
annotation = None |
|
type = Type.parse(type_s) |
|
r = Argument( |
|
name=name, |
|
type=type, |
|
default=default, |
|
annotation=annotation, |
|
) |
|
assert str(r) == arg, f"{str(r)} != {arg}" |
|
return r |
|
|
|
@property |
|
def is_write(self) -> bool: |
|
return self.annotation is not None and self.annotation.is_write |
|
|
|
def __str__(self) -> str: |
|
type = f"{self.type}" |
|
if self.annotation: |
|
assert type in ["Tensor", "Tensor?", "Tensor[]"] |
|
type = type.replace("Tensor", f"Tensor({self.annotation})") |
|
if self.name is None: |
|
return type |
|
else: |
|
mb_default = "" |
|
if self.default: |
|
mb_default = f"={self.default}" |
|
return f"{type} {self.name}{mb_default}" |
|
|
|
|
|
@dataclass(frozen=True) |
|
class Return: |
|
name: Optional[str] |
|
type: Type |
|
annotation: Optional[Annotation] |
|
|
|
@staticmethod |
|
def parse(arg: str) -> "Return": |
|
name: Optional[str] |
|
if " " in arg: |
|
type_and_annot, name = arg.rsplit(" ", 1) |
|
else: |
|
type_and_annot = arg |
|
name = None |
|
match = re.match(r"Tensor\((.+)\)(.*)", type_and_annot) |
|
annotation: Optional[Annotation] |
|
if match: |
|
|
|
assert match.group(2) in [ |
|
"", |
|
"?", |
|
"[]", |
|
], "unrecognized alias analysis form with Tensor" |
|
type_s = "Tensor" + match.group(2) |
|
annotation = Annotation.parse(match.group(1)) |
|
else: |
|
type_s = type_and_annot |
|
annotation = None |
|
type = Type.parse(type_s) |
|
r = Return( |
|
name=name, |
|
type=type, |
|
annotation=annotation, |
|
) |
|
assert str(r) == arg, f"{str(r)} != {arg}" |
|
return r |
|
|
|
@property |
|
def is_write(self) -> bool: |
|
return self.annotation is not None and self.annotation.is_write |
|
|
|
def __str__(self) -> str: |
|
type = f"{self.type}" |
|
if self.annotation: |
|
assert type in ["Tensor", "Tensor?", "Tensor[]"] |
|
type = type.replace("Tensor", f"Tensor({self.annotation})") |
|
if self.name is None: |
|
return type |
|
else: |
|
return f"{type} {self.name}" |
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class SelfArgument: |
|
argument: Argument |
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class TensorOptionsArguments: |
|
dtype: Argument |
|
layout: Argument |
|
device: Argument |
|
pin_memory: Argument |
|
|
|
def all(self) -> Sequence[Argument]: |
|
return [self.dtype, self.layout, self.device, self.pin_memory] |
|
|
|
|
|
@dataclass(frozen=True) |
|
class Arguments: |
|
|
|
|
|
|
|
pre_self_positional: Tuple[Argument, ...] |
|
self_arg: Optional[SelfArgument] |
|
post_self_positional: Tuple[Argument, ...] |
|
|
|
pre_tensor_options_kwarg_only: Tuple[Argument, ...] |
|
tensor_options: Optional[TensorOptionsArguments] |
|
|
|
|
|
|
|
post_tensor_options_kwarg_only: Tuple[Argument, ...] |
|
|
|
|
|
|
|
|
|
|
|
|
|
out: Tuple[Argument, ...] |
|
|
|
@property |
|
def flat_non_out(self) -> Sequence[Argument]: |
|
ret: List[Argument] = [] |
|
ret.extend(self.flat_positional) |
|
ret.extend(self.flat_kwarg_only) |
|
return ret |
|
|
|
@property |
|
def flat_positional(self) -> Sequence[Argument]: |
|
ret: List[Argument] = [] |
|
ret.extend(self.pre_self_positional) |
|
if self.self_arg is not None: |
|
ret.append(self.self_arg.argument) |
|
ret.extend(self.post_self_positional) |
|
return ret |
|
|
|
@property |
|
def post_self_positional_mutable(self) -> Sequence[Argument]: |
|
return [a for a in self.post_self_positional if a.is_write] |
|
|
|
|
|
@property |
|
def flat_kwarg_only(self) -> Sequence[Argument]: |
|
ret: List[Argument] = [] |
|
ret.extend(self.pre_tensor_options_kwarg_only) |
|
if self.tensor_options is not None: |
|
ret.extend(self.tensor_options.all()) |
|
ret.extend(self.post_tensor_options_kwarg_only) |
|
return ret |
|
|
|
@property |
|
def flat_all(self) -> Sequence[Argument]: |
|
ret: List[Argument] = [] |
|
ret.extend(self.flat_positional) |
|
ret.extend(self.flat_kwarg_only) |
|
ret.extend(self.out) |
|
return ret |
|
|
|
@property |
|
def non_out( |
|
self, |
|
) -> Sequence[Union[Argument, SelfArgument, TensorOptionsArguments]]: |
|
ret: List[Union[Argument, SelfArgument, TensorOptionsArguments]] = [] |
|
ret.extend(self.positional) |
|
ret.extend(self.kwarg_only) |
|
return ret |
|
|
|
@property |
|
def positional(self) -> Sequence[Union[Argument, SelfArgument]]: |
|
ret: List[Union[Argument, SelfArgument]] = [] |
|
ret.extend(self.pre_self_positional) |
|
if self.self_arg is not None: |
|
ret.append(self.self_arg) |
|
ret.extend(self.post_self_positional) |
|
return ret |
|
|
|
@property |
|
def kwarg_only(self) -> Sequence[Union[Argument, TensorOptionsArguments]]: |
|
ret: List[Union[Argument, TensorOptionsArguments]] = [] |
|
ret.extend(self.pre_tensor_options_kwarg_only) |
|
if self.tensor_options is not None: |
|
ret.append(self.tensor_options) |
|
ret.extend(self.post_tensor_options_kwarg_only) |
|
return ret |
|
|
|
@property |
|
def all(self) -> Sequence[Union[Argument, SelfArgument, TensorOptionsArguments]]: |
|
ret: List[Union[Argument, SelfArgument, TensorOptionsArguments]] = [] |
|
ret.extend(self.positional) |
|
ret.extend(self.kwarg_only) |
|
ret.extend(self.out) |
|
return ret |
|
|
|
def mutable_arg_names(self) -> List[str]: |
|
return [ |
|
a.name |
|
for a in self.flat_all |
|
if a.annotation is not None and a.annotation.is_write |
|
] |
|
|
|
def has_tensor_arg(self) -> bool: |
|
return any(a.type.is_tensor_like() for a in self.flat_non_out) |
|
|
|
def has_symint_arg(self) -> bool: |
|
return any(a.type.is_symint_like() for a in self.flat_non_out) |
|
|
|
def has_generator_arg(self) -> bool: |
|
return any(a.type.is_generator_like() for a in self.flat_non_out) |
|
|
|
def signature(self, *, strip_default: bool = False) -> "Arguments": |
|
|
|
|
|
def strip_arg_annotation(a: Argument) -> Argument: |
|
return Argument( |
|
name=a.name, |
|
type=a.type, |
|
default=a.default if not strip_default else None, |
|
annotation=None, |
|
) |
|
|
|
return Arguments( |
|
pre_self_positional=tuple( |
|
map(strip_arg_annotation, self.pre_self_positional) |
|
), |
|
self_arg=SelfArgument(strip_arg_annotation(self.self_arg.argument)) |
|
if self.self_arg is not None |
|
else None, |
|
post_self_positional=tuple( |
|
map(strip_arg_annotation, self.post_self_positional) |
|
), |
|
|
|
|
|
pre_tensor_options_kwarg_only=tuple( |
|
map(strip_arg_annotation, self.pre_tensor_options_kwarg_only) |
|
) |
|
+ tuple(map(strip_arg_annotation, self.post_tensor_options_kwarg_only)), |
|
|
|
|
|
tensor_options=None, |
|
post_tensor_options_kwarg_only=tuple(), |
|
|
|
out=(), |
|
) |
|
|
|
def remove_self_annotation(self) -> "Arguments": |
|
assert self.self_arg is not None |
|
return dataclasses.replace( |
|
self, |
|
self_arg=SelfArgument( |
|
dataclasses.replace(self.self_arg.argument, annotation=None) |
|
), |
|
) |
|
|
|
def with_out_args(self, outs: List[Argument]) -> "Arguments": |
|
assert len(self.out) == 0 |
|
return dataclasses.replace( |
|
self, |
|
out=tuple(outs), |
|
) |
|
|
|
@staticmethod |
|
def _preparse(args: str) -> Tuple[List[Argument], List[Argument], List[Argument]]: |
|
positional: List[Argument] = [] |
|
kwarg_only: List[Argument] = [] |
|
out: List[Argument] = [] |
|
arguments_acc = positional |
|
|
|
|
|
|
|
for arg in args.split(", "): |
|
if not arg: |
|
continue |
|
if arg == "*": |
|
assert ( |
|
arguments_acc is positional |
|
), "invalid syntax: kwarg-only specifier * can only occur once" |
|
arguments_acc = kwarg_only |
|
continue |
|
parg = Argument.parse(arg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if parg.annotation is not None and parg.annotation.is_write: |
|
if arguments_acc is positional: |
|
pass |
|
elif arguments_acc is kwarg_only: |
|
arguments_acc = out |
|
else: |
|
assert arguments_acc is not out |
|
arguments_acc.append(parg) |
|
|
|
return positional, kwarg_only, out |
|
|
|
@staticmethod |
|
def parse(args: str) -> "Arguments": |
|
""" |
|
Input: 'int x, int y, int z' |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
positional, kwarg_only, out = Arguments._preparse(args) |
|
|
|
|
|
self_ix = None |
|
for i, a in enumerate(positional): |
|
if a.name == "self": |
|
self_ix = i |
|
break |
|
pre_self_positional: List[Argument] |
|
self_arg: Optional[SelfArgument] |
|
post_self_positional: List[Argument] |
|
if self_ix is not None: |
|
pre_self_positional = positional[:self_ix] |
|
self_arg = SelfArgument(positional[self_ix]) |
|
post_self_positional = positional[self_ix + 1 :] |
|
else: |
|
pre_self_positional = [] |
|
self_arg = None |
|
post_self_positional = positional |
|
|
|
|
|
pre_tensor_options_kwarg_only: List[Argument] = [] |
|
tensor_options: Optional[TensorOptionsArguments] = None |
|
post_tensor_options_kwarg_only: List[Argument] = [] |
|
kwarg_only_acc = pre_tensor_options_kwarg_only |
|
|
|
def pred(name: str, ty: Type) -> Callable[[Argument], bool]: |
|
return lambda a: a.name == name and a.type in [ty, OptionalType(ty)] |
|
|
|
predicates = [ |
|
pred("dtype", Type.parse("ScalarType")), |
|
pred("layout", Type.parse("Layout")), |
|
pred("device", Type.parse("Device")), |
|
pred("pin_memory", Type.parse("bool")), |
|
] |
|
|
|
i = 0 |
|
while i < len(kwarg_only): |
|
|
|
if i <= len(kwarg_only) - len(predicates): |
|
|
|
if all( |
|
p(a) |
|
for p, a in zip(predicates, kwarg_only[i : i + len(predicates)]) |
|
): |
|
assert kwarg_only_acc is pre_tensor_options_kwarg_only |
|
|
|
tensor_options = TensorOptionsArguments( |
|
dtype=kwarg_only[i], |
|
layout=kwarg_only[i + 1], |
|
device=kwarg_only[i + 2], |
|
pin_memory=kwarg_only[i + 3], |
|
) |
|
i += len(predicates) |
|
kwarg_only_acc = post_tensor_options_kwarg_only |
|
continue |
|
kwarg_only_acc.append(kwarg_only[i]) |
|
i += 1 |
|
|
|
return Arguments( |
|
pre_self_positional=tuple(pre_self_positional), |
|
self_arg=self_arg, |
|
post_self_positional=tuple(post_self_positional), |
|
pre_tensor_options_kwarg_only=tuple(pre_tensor_options_kwarg_only), |
|
tensor_options=tensor_options, |
|
post_tensor_options_kwarg_only=tuple(post_tensor_options_kwarg_only), |
|
out=tuple(out), |
|
) |
|
|
|
def __str__(self) -> str: |
|
all_arguments: List[str] = [] |
|
all_arguments.extend(map(str, self.flat_positional)) |
|
if self.flat_kwarg_only or self.out: |
|
all_arguments.append("*") |
|
all_arguments.extend(map(str, self.flat_kwarg_only)) |
|
all_arguments.extend(map(str, self.out)) |
|
return ", ".join(all_arguments) |
|
|
|
def __post_init__(self) -> None: |
|
|
|
|
|
if self.self_arg is None: |
|
assert not self.pre_self_positional |
|
if self.tensor_options is None: |
|
assert not self.post_tensor_options_kwarg_only |
|
|
|
|
|
|
|
mutable_pre_self_positionals = [ |
|
a |
|
for a in self.pre_self_positional |
|
if a.annotation is not None and a.annotation.is_write |
|
] |
|
assert ( |
|
len(mutable_pre_self_positionals) == 0 |
|
), "mutable pre_self_positional arguments are not currently supported in the schema" |
|
|
|
|
|
|
|
|
|
|
|
AUGMENTED_ASSIGNMENT_NAMES = [ |
|
"add", |
|
"sub", |
|
"mul", |
|
"div", |
|
"mod", |
|
"pow", |
|
"lshift", |
|
"rshift", |
|
"and", |
|
"xor", |
|
"or", |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class BaseOperatorName: |
|
base: str |
|
inplace: bool |
|
dunder_method: bool |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
functional_overload: bool = False |
|
|
|
@staticmethod |
|
def parse(op: str) -> "BaseOperatorName": |
|
assert op != "" |
|
assert not op.endswith("_out"), ( |
|
"_out suffix is reserved and not permitted for operator names; " |
|
"did you mean to specify an out overload name instead?" |
|
) |
|
m = re.match(r"^__([^_]+)__$", op) |
|
if m is not None: |
|
dunder_method = True |
|
base = m.group(1) |
|
if any(base == f"i{n}" for n in AUGMENTED_ASSIGNMENT_NAMES): |
|
inplace = True |
|
base = base[1:] |
|
else: |
|
inplace = False |
|
|
|
|
|
|
|
|
|
assert base[0] != "i" |
|
else: |
|
dunder_method = False |
|
base = op |
|
if base[-1] == "_": |
|
inplace = True |
|
base = base[:-1] |
|
else: |
|
inplace = False |
|
|
|
|
|
functional_suffix = "_functional" |
|
if base.endswith(functional_suffix): |
|
functional_overload = True |
|
base = base[: -len(functional_suffix)] |
|
|
|
|
|
assert not dunder_method and not inplace |
|
else: |
|
functional_overload = False |
|
|
|
r = BaseOperatorName( |
|
base=base, |
|
inplace=inplace, |
|
dunder_method=dunder_method, |
|
functional_overload=functional_overload, |
|
) |
|
assert str(r) == op, f"{str(r)} != {op}" |
|
return r |
|
|
|
def __str__(self) -> str: |
|
if self.dunder_method: |
|
i = "i" if self.inplace else "" |
|
return f"__{i}{self.base}__" |
|
else: |
|
i = ( |
|
"_" |
|
if self.inplace |
|
else "_functional" |
|
if self.functional_overload |
|
else "" |
|
) |
|
return f"{self.base}{i}" |
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class OperatorName: |
|
name: BaseOperatorName |
|
overload_name: str |
|
|
|
@staticmethod |
|
def parse(op_name: str) -> "OperatorName": |
|
if "." in op_name: |
|
name, overload_name = op_name.split(".", 1) |
|
else: |
|
name = op_name |
|
overload_name = "" |
|
r = OperatorName(name=BaseOperatorName.parse(name), overload_name=overload_name) |
|
assert str(r) == op_name, f"{str(r)} != {op_name}" |
|
return r |
|
|
|
def __str__(self) -> str: |
|
if self.overload_name: |
|
return f"{self.name}.{self.overload_name}" |
|
else: |
|
return f"{self.name}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
def unambiguous_name(self) -> str: |
|
if self.overload_name: |
|
return f"{self.name}_{self.overload_name}" |
|
else: |
|
return f"{self.name}" |
|
|
|
def remove_inplace(self) -> "OperatorName": |
|
return OperatorName( |
|
name=BaseOperatorName( |
|
base=self.name.base, |
|
inplace=False, |
|
dunder_method=self.name.dunder_method, |
|
), |
|
overload_name=self.overload_name, |
|
) |
|
|
|
def with_overload(self, overload: str) -> "OperatorName": |
|
return OperatorName( |
|
name=BaseOperatorName( |
|
base=self.name.base, |
|
inplace=False, |
|
dunder_method=self.name.dunder_method, |
|
), |
|
overload_name=overload, |
|
) |
|
|
|
|
|
def gets_generated_out_inplace_wrapper( |
|
f: NativeFunction, g: NativeFunctionsGroup, b: BackendIndex |
|
) -> bool: |
|
return ( |
|
f.func.kind() is not SchemaKind.functional |
|
and not b.has_kernel(f) |
|
and b.has_kernel(g.functional) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class NativeFunctionsViewGroup: |
|
view: NativeFunction |
|
|
|
|
|
|
|
view_copy: Optional[NativeFunction] |
|
|
|
view_inplace: Optional[NativeFunction] |
|
|
|
def __post_init__(self) -> None: |
|
assert self.view.is_view_op |
|
if self.view_copy is None: |
|
assert not gets_generated_view_copy(self.view), ( |
|
f"{str(self.view.func.name)} appears to be a new operator that aliases its inputs." |
|
" The codegen expects you to add a corresponding operator to native_functions.yaml:" |
|
f" {get_view_copy_name(self.view)!s}." |
|
" See Note [view_copy NativeFunctions] for details." |
|
) |
|
else: |
|
assert self.view_copy.func.name.name.base.endswith("_copy") |
|
assert self.view.func.signature() == self.view_copy.func.signature( |
|
strip_view_copy_name=True |
|
) |
|
assert "view_copy" in self.view_copy.tags, ( |
|
f"{str(self.view_copy.func.name), str(self.view.tags)} appears to be a view_copy operator. The codegen expects" |
|
" view_copy operators to be annotated with the 'view_copy' tag in native_functions.yaml." |
|
" See Note [view_copy NativeFunction] for details." |
|
) |
|
if self.view_inplace is not None: |
|
assert self.view.func.signature() == self.view_inplace.func.signature() |
|
|
|
if self.view.has_composite_implicit_autograd_kernel: |
|
if self.view_inplace is not None: |
|
assert self.view_inplace.has_composite_implicit_autograd_kernel, ( |
|
f"{str(self.view.func.name)} and {str(self.view_inplace.func.name)} must either" |
|
" both have CompositeImplicitAutograd kernels, or both not have composite kernels." |
|
) |
|
if self.view.has_composite_implicit_autograd_nested_tensor_kernel: |
|
if self.view_inplace is not None: |
|
assert ( |
|
self.view_inplace.has_composite_implicit_autograd_nested_tensor_kernel |
|
), ( |
|
f"{str(self.view.func.name)} and {str(self.view_inplace.func.name)} must either" |
|
" both have CompositeImplicitAutogradNestedTensor kernels, or both not have composite kernels." |
|
) |
|
|
|
def functions(self, *, include_copy: bool = True) -> Iterator[NativeFunction]: |
|
yield self.view |
|
if self.view_inplace is not None: |
|
yield self.view_inplace |
|
if self.view_copy is not None and include_copy: |
|
yield self.view_copy |
|
|
|
@property |
|
def root_name(self) -> str: |
|
return self.view.root_name |
|
|
|
@property |
|
def composite(self) -> bool: |
|
|
|
|
|
return self.view.has_composite_implicit_autograd_kernel |
|
|
|
|
|
def gets_generated_view_copy(f: NativeFunction) -> bool: |
|
|
|
if not f.is_view_op: |
|
return False |
|
|
|
|
|
if f.has_composite_implicit_autograd_kernel: |
|
return False |
|
|
|
if "inplace_view" in f.tags: |
|
return False |
|
return True |
|
|
|
|
|
|
|
|
|
def get_view_copy_name(f: NativeFunction) -> "OperatorName": |
|
|
|
|
|
|
|
|
|
|
|
|
|
list_of_ops_with_explicit_view_copy_operators = ["narrow"] |
|
if str(f.func.name) not in list_of_ops_with_explicit_view_copy_operators: |
|
assert gets_generated_view_copy(f) |
|
|
|
base_name = f"{f.func.name.name.base}_copy" |
|
view_copy_name = OperatorName( |
|
name=BaseOperatorName( |
|
base=base_name, inplace=False, dunder_method=f.func.name.name.dunder_method |
|
), |
|
overload_name=f.func.name.overload_name, |
|
) |
|
return view_copy_name |
|
|
|
|
|
|
|
|
|
|
|
def parse_returns(return_decl: str) -> Tuple[Return, ...]: |
|
""" |
|
Input: '()' |
|
Output: [] |
|
""" |
|
if return_decl == "()": |
|
return () |
|
if return_decl[0] == "(" and return_decl[-1] == ")": |
|
return_decl = return_decl[1:-1] |
|
return tuple(Return.parse(arg) for arg in return_decl.split(", ")) |
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class Precompute: |
|
|
|
|
|
replace: Dict[str, List[Argument]] |
|
|
|
add: List[Argument] |
|
|
|
@staticmethod |
|
def parse(src: object) -> "Precompute": |
|
assert isinstance(src, list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
add_args = [] |
|
if " -> " not in src[-1]: |
|
add_list = src[-1].split(",") |
|
add_args = [Argument.parse(name.strip()) for name in add_list] |
|
src = src[:-1] |
|
|
|
replace = {} |
|
for raw_replace_item in src: |
|
assert isinstance(raw_replace_item, str) |
|
assert " -> " in raw_replace_item, ( |
|
"precomputed parameters without replacement" |
|
" are allowed only in the last line" |
|
) |
|
|
|
arg, with_list_raw = raw_replace_item.split(" -> ") |
|
with_list = with_list_raw.split(",") |
|
with_list_args = [Argument.parse(name.strip()) for name in with_list] |
|
replace[arg] = with_list_args |
|
|
|
r = Precompute(replace=replace, add=add_args) |
|
assert r.to_list() == src, "r.to_list() != src" |
|
return r |
|
|
|
def __post_init__(self) -> None: |
|
|
|
|
|
for a in self.add: |
|
assert a.name.upper() != a.name |
|
for args in self.replace.values(): |
|
for a in args: |
|
assert a.name.upper() != a.name |
|
|
|
def to_list(self) -> List[str]: |
|
replace_list = [] |
|
for kernel_param, replacement_params in self.replace.items(): |
|
replacements = ", ".join(str(param) for param in replacement_params) |
|
replace_list.append(f"{kernel_param} -> {replacements}") |
|
|
|
return replace_list |
|
|