|
import logging |
|
import time |
|
|
|
import requests |
|
from requests.exceptions import RequestException |
|
from tqdm import tqdm |
|
|
|
from lm_eval.api.model import LM |
|
from lm_eval.api.registry import register_model |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def get_result(logprobs, context_length): |
|
is_greedy = True |
|
offsets = logprobs["text_offset"] |
|
tokens = logprobs["tokens"] |
|
tokens_logprobs = logprobs["token_logprobs"] |
|
|
|
idx = 0 |
|
while offsets[idx] < context_length: |
|
idx += 1 |
|
continuation_logprobs = sum(tokens_logprobs[idx:-1]) |
|
for i in range(idx, len(tokens)): |
|
token = tokens[i] |
|
top_tokens = logprobs["top_logprobs"][i] |
|
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x]) |
|
if top_token != token: |
|
is_greedy = False |
|
break |
|
|
|
return continuation_logprobs, is_greedy |
|
|
|
|
|
@register_model("gguf", "ggml") |
|
class GGUFLM(LM): |
|
def __init__(self, base_url=None, max_length=2048, **kwargs): |
|
super().__init__() |
|
self.base_url = base_url |
|
assert self.base_url, "must pass `base_url` to use GGUF LM!" |
|
self.logprobs = 10 |
|
self.temperature = 0.0 |
|
self.max_length = max_length |
|
|
|
def gguf_completion( |
|
self, context, continuation=None, stop=None, retries=3, delay=5, **kwargs |
|
): |
|
for _ in range(retries): |
|
try: |
|
prompt = context |
|
request = { |
|
"prompt": prompt, |
|
"logprobs": self.logprobs, |
|
"temperature": self.temperature, |
|
} |
|
if continuation: |
|
prompt += continuation |
|
request.update({"prompt": prompt, "max_tokens": 1, "echo": True}) |
|
if stop is not None: |
|
request["stop"] = stop |
|
response = requests.post( |
|
f"{self.base_url}/v1/completions", json=request |
|
) |
|
response.raise_for_status() |
|
return response.json() |
|
except RequestException as e: |
|
logger.error(f"RequestException: {e}") |
|
time.sleep(delay) |
|
else: |
|
raise Exception(f"Failed to get a valid response after {retries} retries.") |
|
|
|
def loglikelihood(self, requests, disable_tqdm: bool = False): |
|
if not requests: |
|
return [] |
|
res = [] |
|
for context, continuation in tqdm( |
|
[req.args for req in requests], disable=disable_tqdm |
|
): |
|
response = self.gguf_completion(context=context, continuation=continuation) |
|
if response and "choices" in response and response["choices"]: |
|
choice = response["choices"][0] |
|
logprobs = choice.get("logprobs") |
|
if ( |
|
logprobs |
|
and "token_logprobs" in logprobs |
|
and logprobs["token_logprobs"] |
|
): |
|
logprob, is_greedy = get_result(logprobs, len(context)) |
|
res.append((logprob, is_greedy)) |
|
else: |
|
logger.warning( |
|
"Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list." |
|
) |
|
else: |
|
logger.error( |
|
f"Invalid response for loglikelihood. Response: {response}" |
|
) |
|
assert False |
|
return res |
|
|
|
def generate_until(self, requests, disable_tqdm: bool = False): |
|
if not requests: |
|
return [] |
|
|
|
res = [] |
|
for request in tqdm([req.args for req in requests], disable=disable_tqdm): |
|
inp = request[0] |
|
request_args = request[1] |
|
until = request_args.get("until", ["</s>"]) |
|
response = self.gguf_completion(context=inp, stop=until) |
|
if response and "choices" in response and response["choices"]: |
|
choice = response["choices"][0] |
|
if "text" in choice: |
|
generated_text = choice["text"].strip() |
|
res.append(generated_text) |
|
else: |
|
logger.error( |
|
f"Invalid response for greedy_until. Response: {response}" |
|
) |
|
res.append(None) |
|
else: |
|
logger.error(f"Invalid response for greedy_until. Response: {response}") |
|
res.append(None) |
|
return res |
|
|
|
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False): |
|
raise NotImplementedError( |
|
"loglikelihood_rolling not yet supported for GGUF models" |
|
) |
|
|