peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/pandas
/io
/clipboards.py
""" io on the clipboard """ | |
from __future__ import annotations | |
from io import StringIO | |
from typing import TYPE_CHECKING | |
import warnings | |
from pandas._libs import lib | |
from pandas.util._exceptions import find_stack_level | |
from pandas.util._validators import check_dtype_backend | |
from pandas.core.dtypes.generic import ABCDataFrame | |
from pandas import ( | |
get_option, | |
option_context, | |
) | |
if TYPE_CHECKING: | |
from pandas._typing import DtypeBackend | |
def read_clipboard( | |
sep: str = r"\s+", | |
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, | |
**kwargs, | |
): # pragma: no cover | |
r""" | |
Read text from clipboard and pass to :func:`~pandas.read_csv`. | |
Parses clipboard contents similar to how CSV files are parsed | |
using :func:`~pandas.read_csv`. | |
Parameters | |
---------- | |
sep : str, default '\\s+' | |
A string or regex delimiter. The default of ``'\\s+'`` denotes | |
one or more whitespace characters. | |
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' | |
Back-end data type applied to the resultant :class:`DataFrame` | |
(still experimental). Behaviour is as follows: | |
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` | |
(default). | |
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` | |
DataFrame. | |
.. versionadded:: 2.0 | |
**kwargs | |
See :func:`~pandas.read_csv` for the full argument list. | |
Returns | |
------- | |
DataFrame | |
A parsed :class:`~pandas.DataFrame` object. | |
See Also | |
-------- | |
DataFrame.to_clipboard : Copy object to the system clipboard. | |
read_csv : Read a comma-separated values (csv) file into DataFrame. | |
read_fwf : Read a table of fixed-width formatted lines into DataFrame. | |
Examples | |
-------- | |
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) | |
>>> df.to_clipboard() # doctest: +SKIP | |
>>> pd.read_clipboard() # doctest: +SKIP | |
A B C | |
0 1 2 3 | |
1 4 5 6 | |
""" | |
encoding = kwargs.pop("encoding", "utf-8") | |
# only utf-8 is valid for passed value because that's what clipboard | |
# supports | |
if encoding is not None and encoding.lower().replace("-", "") != "utf8": | |
raise NotImplementedError("reading from clipboard only supports utf-8 encoding") | |
check_dtype_backend(dtype_backend) | |
from pandas.io.clipboard import clipboard_get | |
from pandas.io.parsers import read_csv | |
text = clipboard_get() | |
# Try to decode (if needed, as "text" might already be a string here). | |
try: | |
text = text.decode(kwargs.get("encoding") or get_option("display.encoding")) | |
except AttributeError: | |
pass | |
# Excel copies into clipboard with \t separation | |
# inspect no more then the 10 first lines, if they | |
# all contain an equal number (>0) of tabs, infer | |
# that this came from excel and set 'sep' accordingly | |
lines = text[:10000].split("\n")[:-1][:10] | |
# Need to remove leading white space, since read_csv | |
# accepts: | |
# a b | |
# 0 1 2 | |
# 1 3 4 | |
counts = {x.lstrip(" ").count("\t") for x in lines} | |
if len(lines) > 1 and len(counts) == 1 and counts.pop() != 0: | |
sep = "\t" | |
# check the number of leading tabs in the first line | |
# to account for index columns | |
index_length = len(lines[0]) - len(lines[0].lstrip(" \t")) | |
if index_length != 0: | |
kwargs.setdefault("index_col", list(range(index_length))) | |
# Edge case where sep is specified to be None, return to default | |
if sep is None and kwargs.get("delim_whitespace") is None: | |
sep = r"\s+" | |
# Regex separator currently only works with python engine. | |
# Default to python if separator is multi-character (regex) | |
if len(sep) > 1 and kwargs.get("engine") is None: | |
kwargs["engine"] = "python" | |
elif len(sep) > 1 and kwargs.get("engine") == "c": | |
warnings.warn( | |
"read_clipboard with regex separator does not work properly with c engine.", | |
stacklevel=find_stack_level(), | |
) | |
return read_csv(StringIO(text), sep=sep, dtype_backend=dtype_backend, **kwargs) | |
def to_clipboard( | |
obj, excel: bool | None = True, sep: str | None = None, **kwargs | |
) -> None: # pragma: no cover | |
""" | |
Attempt to write text representation of object to the system clipboard | |
The clipboard can be then pasted into Excel for example. | |
Parameters | |
---------- | |
obj : the object to write to the clipboard | |
excel : bool, defaults to True | |
if True, use the provided separator, writing in a csv | |
format for allowing easy pasting into excel. | |
if False, write a string representation of the object | |
to the clipboard | |
sep : optional, defaults to tab | |
other keywords are passed to to_csv | |
Notes | |
----- | |
Requirements for your platform | |
- Linux: xclip, or xsel (with PyQt4 modules) | |
- Windows: | |
- OS X: | |
""" | |
encoding = kwargs.pop("encoding", "utf-8") | |
# testing if an invalid encoding is passed to clipboard | |
if encoding is not None and encoding.lower().replace("-", "") != "utf8": | |
raise ValueError("clipboard only supports utf-8 encoding") | |
from pandas.io.clipboard import clipboard_set | |
if excel is None: | |
excel = True | |
if excel: | |
try: | |
if sep is None: | |
sep = "\t" | |
buf = StringIO() | |
# clipboard_set (pyperclip) expects unicode | |
obj.to_csv(buf, sep=sep, encoding="utf-8", **kwargs) | |
text = buf.getvalue() | |
clipboard_set(text) | |
return | |
except TypeError: | |
warnings.warn( | |
"to_clipboard in excel mode requires a single character separator.", | |
stacklevel=find_stack_level(), | |
) | |
elif sep is not None: | |
warnings.warn( | |
"to_clipboard with excel=False ignores the sep argument.", | |
stacklevel=find_stack_level(), | |
) | |
if isinstance(obj, ABCDataFrame): | |
# str(df) has various unhelpful defaults, like truncation | |
with option_context("display.max_colwidth", None): | |
objstr = obj.to_string(**kwargs) | |
else: | |
objstr = str(obj) | |
clipboard_set(objstr) | |