peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/pandas
/io
/parquet.py
""" parquet compat """ | |
from __future__ import annotations | |
import io | |
import json | |
import os | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
Literal, | |
) | |
import warnings | |
from warnings import catch_warnings | |
from pandas._config import using_pyarrow_string_dtype | |
from pandas._config.config import _get_option | |
from pandas._libs import lib | |
from pandas.compat._optional import import_optional_dependency | |
from pandas.errors import AbstractMethodError | |
from pandas.util._decorators import doc | |
from pandas.util._exceptions import find_stack_level | |
from pandas.util._validators import check_dtype_backend | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
get_option, | |
) | |
from pandas.core.shared_docs import _shared_docs | |
from pandas.io._util import arrow_string_types_mapper | |
from pandas.io.common import ( | |
IOHandles, | |
get_handle, | |
is_fsspec_url, | |
is_url, | |
stringify_path, | |
) | |
if TYPE_CHECKING: | |
from pandas._typing import ( | |
DtypeBackend, | |
FilePath, | |
ReadBuffer, | |
StorageOptions, | |
WriteBuffer, | |
) | |
def get_engine(engine: str) -> BaseImpl: | |
"""return our implementation""" | |
if engine == "auto": | |
engine = get_option("io.parquet.engine") | |
if engine == "auto": | |
# try engines in this order | |
engine_classes = [PyArrowImpl, FastParquetImpl] | |
error_msgs = "" | |
for engine_class in engine_classes: | |
try: | |
return engine_class() | |
except ImportError as err: | |
error_msgs += "\n - " + str(err) | |
raise ImportError( | |
"Unable to find a usable engine; " | |
"tried using: 'pyarrow', 'fastparquet'.\n" | |
"A suitable version of " | |
"pyarrow or fastparquet is required for parquet " | |
"support.\n" | |
"Trying to import the above resulted in these errors:" | |
f"{error_msgs}" | |
) | |
if engine == "pyarrow": | |
return PyArrowImpl() | |
elif engine == "fastparquet": | |
return FastParquetImpl() | |
raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") | |
def _get_path_or_handle( | |
path: FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], | |
fs: Any, | |
storage_options: StorageOptions | None = None, | |
mode: str = "rb", | |
is_dir: bool = False, | |
) -> tuple[ | |
FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any | |
]: | |
"""File handling for PyArrow.""" | |
path_or_handle = stringify_path(path) | |
if fs is not None: | |
pa_fs = import_optional_dependency("pyarrow.fs", errors="ignore") | |
fsspec = import_optional_dependency("fsspec", errors="ignore") | |
if pa_fs is not None and isinstance(fs, pa_fs.FileSystem): | |
if storage_options: | |
raise NotImplementedError( | |
"storage_options not supported with a pyarrow FileSystem." | |
) | |
elif fsspec is not None and isinstance(fs, fsspec.spec.AbstractFileSystem): | |
pass | |
else: | |
raise ValueError( | |
f"filesystem must be a pyarrow or fsspec FileSystem, " | |
f"not a {type(fs).__name__}" | |
) | |
if is_fsspec_url(path_or_handle) and fs is None: | |
if storage_options is None: | |
pa = import_optional_dependency("pyarrow") | |
pa_fs = import_optional_dependency("pyarrow.fs") | |
try: | |
fs, path_or_handle = pa_fs.FileSystem.from_uri(path) | |
except (TypeError, pa.ArrowInvalid): | |
pass | |
if fs is None: | |
fsspec = import_optional_dependency("fsspec") | |
fs, path_or_handle = fsspec.core.url_to_fs( | |
path_or_handle, **(storage_options or {}) | |
) | |
elif storage_options and (not is_url(path_or_handle) or mode != "rb"): | |
# can't write to a remote url | |
# without making use of fsspec at the moment | |
raise ValueError("storage_options passed with buffer, or non-supported URL") | |
handles = None | |
if ( | |
not fs | |
and not is_dir | |
and isinstance(path_or_handle, str) | |
and not os.path.isdir(path_or_handle) | |
): | |
# use get_handle only when we are very certain that it is not a directory | |
# fsspec resources can also point to directories | |
# this branch is used for example when reading from non-fsspec URLs | |
handles = get_handle( | |
path_or_handle, mode, is_text=False, storage_options=storage_options | |
) | |
fs = None | |
path_or_handle = handles.handle | |
return path_or_handle, handles, fs | |
class BaseImpl: | |
def validate_dataframe(df: DataFrame) -> None: | |
if not isinstance(df, DataFrame): | |
raise ValueError("to_parquet only supports IO with DataFrames") | |
def write(self, df: DataFrame, path, compression, **kwargs): | |
raise AbstractMethodError(self) | |
def read(self, path, columns=None, **kwargs) -> DataFrame: | |
raise AbstractMethodError(self) | |
class PyArrowImpl(BaseImpl): | |
def __init__(self) -> None: | |
import_optional_dependency( | |
"pyarrow", extra="pyarrow is required for parquet support." | |
) | |
import pyarrow.parquet | |
# import utils to register the pyarrow extension types | |
import pandas.core.arrays.arrow.extension_types # pyright: ignore[reportUnusedImport] # noqa: F401 | |
self.api = pyarrow | |
def write( | |
self, | |
df: DataFrame, | |
path: FilePath | WriteBuffer[bytes], | |
compression: str | None = "snappy", | |
index: bool | None = None, | |
storage_options: StorageOptions | None = None, | |
partition_cols: list[str] | None = None, | |
filesystem=None, | |
**kwargs, | |
) -> None: | |
self.validate_dataframe(df) | |
from_pandas_kwargs: dict[str, Any] = {"schema": kwargs.pop("schema", None)} | |
if index is not None: | |
from_pandas_kwargs["preserve_index"] = index | |
table = self.api.Table.from_pandas(df, **from_pandas_kwargs) | |
if df.attrs: | |
df_metadata = {"PANDAS_ATTRS": json.dumps(df.attrs)} | |
existing_metadata = table.schema.metadata | |
merged_metadata = {**existing_metadata, **df_metadata} | |
table = table.replace_schema_metadata(merged_metadata) | |
path_or_handle, handles, filesystem = _get_path_or_handle( | |
path, | |
filesystem, | |
storage_options=storage_options, | |
mode="wb", | |
is_dir=partition_cols is not None, | |
) | |
if ( | |
isinstance(path_or_handle, io.BufferedWriter) | |
and hasattr(path_or_handle, "name") | |
and isinstance(path_or_handle.name, (str, bytes)) | |
): | |
if isinstance(path_or_handle.name, bytes): | |
path_or_handle = path_or_handle.name.decode() | |
else: | |
path_or_handle = path_or_handle.name | |
try: | |
if partition_cols is not None: | |
# writes to multiple files under the given path | |
self.api.parquet.write_to_dataset( | |
table, | |
path_or_handle, | |
compression=compression, | |
partition_cols=partition_cols, | |
filesystem=filesystem, | |
**kwargs, | |
) | |
else: | |
# write to single output file | |
self.api.parquet.write_table( | |
table, | |
path_or_handle, | |
compression=compression, | |
filesystem=filesystem, | |
**kwargs, | |
) | |
finally: | |
if handles is not None: | |
handles.close() | |
def read( | |
self, | |
path, | |
columns=None, | |
filters=None, | |
use_nullable_dtypes: bool = False, | |
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, | |
storage_options: StorageOptions | None = None, | |
filesystem=None, | |
**kwargs, | |
) -> DataFrame: | |
kwargs["use_pandas_metadata"] = True | |
to_pandas_kwargs = {} | |
if dtype_backend == "numpy_nullable": | |
from pandas.io._util import _arrow_dtype_mapping | |
mapping = _arrow_dtype_mapping() | |
to_pandas_kwargs["types_mapper"] = mapping.get | |
elif dtype_backend == "pyarrow": | |
to_pandas_kwargs["types_mapper"] = pd.ArrowDtype # type: ignore[assignment] | |
elif using_pyarrow_string_dtype(): | |
to_pandas_kwargs["types_mapper"] = arrow_string_types_mapper() | |
manager = _get_option("mode.data_manager", silent=True) | |
if manager == "array": | |
to_pandas_kwargs["split_blocks"] = True # type: ignore[assignment] | |
path_or_handle, handles, filesystem = _get_path_or_handle( | |
path, | |
filesystem, | |
storage_options=storage_options, | |
mode="rb", | |
) | |
try: | |
pa_table = self.api.parquet.read_table( | |
path_or_handle, | |
columns=columns, | |
filesystem=filesystem, | |
filters=filters, | |
**kwargs, | |
) | |
result = pa_table.to_pandas(**to_pandas_kwargs) | |
if manager == "array": | |
result = result._as_manager("array", copy=False) | |
if pa_table.schema.metadata: | |
if b"PANDAS_ATTRS" in pa_table.schema.metadata: | |
df_metadata = pa_table.schema.metadata[b"PANDAS_ATTRS"] | |
result.attrs = json.loads(df_metadata) | |
return result | |
finally: | |
if handles is not None: | |
handles.close() | |
class FastParquetImpl(BaseImpl): | |
def __init__(self) -> None: | |
# since pandas is a dependency of fastparquet | |
# we need to import on first use | |
fastparquet = import_optional_dependency( | |
"fastparquet", extra="fastparquet is required for parquet support." | |
) | |
self.api = fastparquet | |
def write( | |
self, | |
df: DataFrame, | |
path, | |
compression: Literal["snappy", "gzip", "brotli"] | None = "snappy", | |
index=None, | |
partition_cols=None, | |
storage_options: StorageOptions | None = None, | |
filesystem=None, | |
**kwargs, | |
) -> None: | |
self.validate_dataframe(df) | |
if "partition_on" in kwargs and partition_cols is not None: | |
raise ValueError( | |
"Cannot use both partition_on and " | |
"partition_cols. Use partition_cols for partitioning data" | |
) | |
if "partition_on" in kwargs: | |
partition_cols = kwargs.pop("partition_on") | |
if partition_cols is not None: | |
kwargs["file_scheme"] = "hive" | |
if filesystem is not None: | |
raise NotImplementedError( | |
"filesystem is not implemented for the fastparquet engine." | |
) | |
# cannot use get_handle as write() does not accept file buffers | |
path = stringify_path(path) | |
if is_fsspec_url(path): | |
fsspec = import_optional_dependency("fsspec") | |
# if filesystem is provided by fsspec, file must be opened in 'wb' mode. | |
kwargs["open_with"] = lambda path, _: fsspec.open( | |
path, "wb", **(storage_options or {}) | |
).open() | |
elif storage_options: | |
raise ValueError( | |
"storage_options passed with file object or non-fsspec file path" | |
) | |
with catch_warnings(record=True): | |
self.api.write( | |
path, | |
df, | |
compression=compression, | |
write_index=index, | |
partition_on=partition_cols, | |
**kwargs, | |
) | |
def read( | |
self, | |
path, | |
columns=None, | |
filters=None, | |
storage_options: StorageOptions | None = None, | |
filesystem=None, | |
**kwargs, | |
) -> DataFrame: | |
parquet_kwargs: dict[str, Any] = {} | |
use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False) | |
dtype_backend = kwargs.pop("dtype_backend", lib.no_default) | |
# We are disabling nullable dtypes for fastparquet pending discussion | |
parquet_kwargs["pandas_nulls"] = False | |
if use_nullable_dtypes: | |
raise ValueError( | |
"The 'use_nullable_dtypes' argument is not supported for the " | |
"fastparquet engine" | |
) | |
if dtype_backend is not lib.no_default: | |
raise ValueError( | |
"The 'dtype_backend' argument is not supported for the " | |
"fastparquet engine" | |
) | |
if filesystem is not None: | |
raise NotImplementedError( | |
"filesystem is not implemented for the fastparquet engine." | |
) | |
path = stringify_path(path) | |
handles = None | |
if is_fsspec_url(path): | |
fsspec = import_optional_dependency("fsspec") | |
parquet_kwargs["fs"] = fsspec.open(path, "rb", **(storage_options or {})).fs | |
elif isinstance(path, str) and not os.path.isdir(path): | |
# use get_handle only when we are very certain that it is not a directory | |
# fsspec resources can also point to directories | |
# this branch is used for example when reading from non-fsspec URLs | |
handles = get_handle( | |
path, "rb", is_text=False, storage_options=storage_options | |
) | |
path = handles.handle | |
try: | |
parquet_file = self.api.ParquetFile(path, **parquet_kwargs) | |
return parquet_file.to_pandas(columns=columns, filters=filters, **kwargs) | |
finally: | |
if handles is not None: | |
handles.close() | |
def to_parquet( | |
df: DataFrame, | |
path: FilePath | WriteBuffer[bytes] | None = None, | |
engine: str = "auto", | |
compression: str | None = "snappy", | |
index: bool | None = None, | |
storage_options: StorageOptions | None = None, | |
partition_cols: list[str] | None = None, | |
filesystem: Any = None, | |
**kwargs, | |
) -> bytes | None: | |
""" | |
Write a DataFrame to the parquet format. | |
Parameters | |
---------- | |
df : DataFrame | |
path : str, path object, file-like object, or None, default None | |
String, path object (implementing ``os.PathLike[str]``), or file-like | |
object implementing a binary ``write()`` function. If None, the result is | |
returned as bytes. If a string, it will be used as Root Directory path | |
when writing a partitioned dataset. The engine fastparquet does not | |
accept file-like objects. | |
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' | |
Parquet library to use. If 'auto', then the option | |
``io.parquet.engine`` is used. The default ``io.parquet.engine`` | |
behavior is to try 'pyarrow', falling back to 'fastparquet' if | |
'pyarrow' is unavailable. | |
When using the ``'pyarrow'`` engine and no storage options are provided | |
and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec`` | |
(e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first. | |
Use the filesystem keyword with an instantiated fsspec filesystem | |
if you wish to use its implementation. | |
compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}}, | |
default 'snappy'. Name of the compression to use. Use ``None`` | |
for no compression. | |
index : bool, default None | |
If ``True``, include the dataframe's index(es) in the file output. If | |
``False``, they will not be written to the file. | |
If ``None``, similar to ``True`` the dataframe's index(es) | |
will be saved. However, instead of being saved as values, | |
the RangeIndex will be stored as a range in the metadata so it | |
doesn't require much space and is faster. Other indexes will | |
be included as columns in the file output. | |
partition_cols : str or list, optional, default None | |
Column names by which to partition the dataset. | |
Columns are partitioned in the order they are given. | |
Must be None if path is not a string. | |
{storage_options} | |
filesystem : fsspec or pyarrow filesystem, default None | |
Filesystem object to use when reading the parquet file. Only implemented | |
for ``engine="pyarrow"``. | |
.. versionadded:: 2.1.0 | |
kwargs | |
Additional keyword arguments passed to the engine | |
Returns | |
------- | |
bytes if no path argument is provided else None | |
""" | |
if isinstance(partition_cols, str): | |
partition_cols = [partition_cols] | |
impl = get_engine(engine) | |
path_or_buf: FilePath | WriteBuffer[bytes] = io.BytesIO() if path is None else path | |
impl.write( | |
df, | |
path_or_buf, | |
compression=compression, | |
index=index, | |
partition_cols=partition_cols, | |
storage_options=storage_options, | |
filesystem=filesystem, | |
**kwargs, | |
) | |
if path is None: | |
assert isinstance(path_or_buf, io.BytesIO) | |
return path_or_buf.getvalue() | |
else: | |
return None | |
def read_parquet( | |
path: FilePath | ReadBuffer[bytes], | |
engine: str = "auto", | |
columns: list[str] | None = None, | |
storage_options: StorageOptions | None = None, | |
use_nullable_dtypes: bool | lib.NoDefault = lib.no_default, | |
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, | |
filesystem: Any = None, | |
filters: list[tuple] | list[list[tuple]] | None = None, | |
**kwargs, | |
) -> DataFrame: | |
""" | |
Load a parquet object from the file path, returning a DataFrame. | |
Parameters | |
---------- | |
path : str, path object or file-like object | |
String, path object (implementing ``os.PathLike[str]``), or file-like | |
object implementing a binary ``read()`` function. | |
The string could be a URL. Valid URL schemes include http, ftp, s3, | |
gs, and file. For file URLs, a host is expected. A local file could be: | |
``file://localhost/path/to/table.parquet``. | |
A file URL can also be a path to a directory that contains multiple | |
partitioned parquet files. Both pyarrow and fastparquet support | |
paths to directories as well as file URLs. A directory path could be: | |
``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``. | |
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' | |
Parquet library to use. If 'auto', then the option | |
``io.parquet.engine`` is used. The default ``io.parquet.engine`` | |
behavior is to try 'pyarrow', falling back to 'fastparquet' if | |
'pyarrow' is unavailable. | |
When using the ``'pyarrow'`` engine and no storage options are provided | |
and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec`` | |
(e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first. | |
Use the filesystem keyword with an instantiated fsspec filesystem | |
if you wish to use its implementation. | |
columns : list, default=None | |
If not None, only these columns will be read from the file. | |
{storage_options} | |
.. versionadded:: 1.3.0 | |
use_nullable_dtypes : bool, default False | |
If True, use dtypes that use ``pd.NA`` as missing value indicator | |
for the resulting DataFrame. (only applicable for the ``pyarrow`` | |
engine) | |
As new dtypes are added that support ``pd.NA`` in the future, the | |
output with this option will change to use those dtypes. | |
Note: this is an experimental option, and behaviour (e.g. additional | |
support dtypes) may change without notice. | |
.. deprecated:: 2.0 | |
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' | |
Back-end data type applied to the resultant :class:`DataFrame` | |
(still experimental). Behaviour is as follows: | |
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` | |
(default). | |
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` | |
DataFrame. | |
.. versionadded:: 2.0 | |
filesystem : fsspec or pyarrow filesystem, default None | |
Filesystem object to use when reading the parquet file. Only implemented | |
for ``engine="pyarrow"``. | |
.. versionadded:: 2.1.0 | |
filters : List[Tuple] or List[List[Tuple]], default None | |
To filter out data. | |
Filter syntax: [[(column, op, val), ...],...] | |
where op is [==, =, >, >=, <, <=, !=, in, not in] | |
The innermost tuples are transposed into a set of filters applied | |
through an `AND` operation. | |
The outer list combines these sets of filters through an `OR` | |
operation. | |
A single list of tuples can also be used, meaning that no `OR` | |
operation between set of filters is to be conducted. | |
Using this argument will NOT result in row-wise filtering of the final | |
partitions unless ``engine="pyarrow"`` is also specified. For | |
other engines, filtering is only performed at the partition level, that is, | |
to prevent the loading of some row-groups and/or files. | |
.. versionadded:: 2.1.0 | |
**kwargs | |
Any additional kwargs are passed to the engine. | |
Returns | |
------- | |
DataFrame | |
See Also | |
-------- | |
DataFrame.to_parquet : Create a parquet object that serializes a DataFrame. | |
Examples | |
-------- | |
>>> original_df = pd.DataFrame( | |
... {{"foo": range(5), "bar": range(5, 10)}} | |
... ) | |
>>> original_df | |
foo bar | |
0 0 5 | |
1 1 6 | |
2 2 7 | |
3 3 8 | |
4 4 9 | |
>>> df_parquet_bytes = original_df.to_parquet() | |
>>> from io import BytesIO | |
>>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes)) | |
>>> restored_df | |
foo bar | |
0 0 5 | |
1 1 6 | |
2 2 7 | |
3 3 8 | |
4 4 9 | |
>>> restored_df.equals(original_df) | |
True | |
>>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"]) | |
>>> restored_bar | |
bar | |
0 5 | |
1 6 | |
2 7 | |
3 8 | |
4 9 | |
>>> restored_bar.equals(original_df[['bar']]) | |
True | |
The function uses `kwargs` that are passed directly to the engine. | |
In the following example, we use the `filters` argument of the pyarrow | |
engine to filter the rows of the DataFrame. | |
Since `pyarrow` is the default engine, we can omit the `engine` argument. | |
Note that the `filters` argument is implemented by the `pyarrow` engine, | |
which can benefit from multithreading and also potentially be more | |
economical in terms of memory. | |
>>> sel = [("foo", ">", 2)] | |
>>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel) | |
>>> restored_part | |
foo bar | |
0 3 8 | |
1 4 9 | |
""" | |
impl = get_engine(engine) | |
if use_nullable_dtypes is not lib.no_default: | |
msg = ( | |
"The argument 'use_nullable_dtypes' is deprecated and will be removed " | |
"in a future version." | |
) | |
if use_nullable_dtypes is True: | |
msg += ( | |
"Use dtype_backend='numpy_nullable' instead of use_nullable_dtype=True." | |
) | |
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level()) | |
else: | |
use_nullable_dtypes = False | |
check_dtype_backend(dtype_backend) | |
return impl.read( | |
path, | |
columns=columns, | |
filters=filters, | |
storage_options=storage_options, | |
use_nullable_dtypes=use_nullable_dtypes, | |
dtype_backend=dtype_backend, | |
filesystem=filesystem, | |
**kwargs, | |
) | |