applied-ai-018 commited on
Commit
fb5a1b4
·
verified ·
1 Parent(s): c9cfa33

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/__init__.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/_util.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/api.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/clipboards.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/common.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/feather_format.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/gbq.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/html.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/orc.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/parquet.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/pickle.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/pytables.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/spss.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/sql.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/stata.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/xml.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/pandas/io/_util.py +34 -0
  18. env-llmeval/lib/python3.10/site-packages/pandas/io/clipboard/__init__.py +747 -0
  19. env-llmeval/lib/python3.10/site-packages/pandas/io/clipboard/__pycache__/__init__.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__init__.py +19 -0
  21. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_base.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_odfreader.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_pyxlsb.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_base.py +1659 -0
  25. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_odfreader.py +253 -0
  26. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_pyxlsb.py +127 -0
  27. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_util.py +334 -0
  28. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py +143 -0
  29. env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_xlsxwriter.py +284 -0
  30. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__init__.py +9 -0
  31. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/__init__.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/_color_data.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/console.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/css.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/csvs.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/excel.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/format.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/html.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/info.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/printing.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/string.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style_render.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/xml.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/_color_data.py +157 -0
  46. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/console.py +94 -0
  47. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/css.py +421 -0
  48. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/excel.py +962 -0
  49. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/format.py +2058 -0
  50. env-llmeval/lib/python3.10/site-packages/pandas/io/formats/html.py +646 -0
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (321 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/_util.cpython-310.pyc ADDED
Binary file (1.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/api.cpython-310.pyc ADDED
Binary file (1.31 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/clipboards.cpython-310.pyc ADDED
Binary file (5.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/common.cpython-310.pyc ADDED
Binary file (27.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/feather_format.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/gbq.cpython-310.pyc ADDED
Binary file (8.79 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/html.cpython-310.pyc ADDED
Binary file (36.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/orc.cpython-310.pyc ADDED
Binary file (7.65 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/parquet.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/pickle.cpython-310.pyc ADDED
Binary file (5.83 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/pytables.cpython-310.pyc ADDED
Binary file (138 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/spss.cpython-310.pyc ADDED
Binary file (2.31 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/sql.cpython-310.pyc ADDED
Binary file (79.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/stata.cpython-310.pyc ADDED
Binary file (103 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/__pycache__/xml.cpython-310.pyc ADDED
Binary file (34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/_util.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import Callable
4
+
5
+ from pandas.compat._optional import import_optional_dependency
6
+
7
+ import pandas as pd
8
+
9
+
10
+ def _arrow_dtype_mapping() -> dict:
11
+ pa = import_optional_dependency("pyarrow")
12
+ return {
13
+ pa.int8(): pd.Int8Dtype(),
14
+ pa.int16(): pd.Int16Dtype(),
15
+ pa.int32(): pd.Int32Dtype(),
16
+ pa.int64(): pd.Int64Dtype(),
17
+ pa.uint8(): pd.UInt8Dtype(),
18
+ pa.uint16(): pd.UInt16Dtype(),
19
+ pa.uint32(): pd.UInt32Dtype(),
20
+ pa.uint64(): pd.UInt64Dtype(),
21
+ pa.bool_(): pd.BooleanDtype(),
22
+ pa.string(): pd.StringDtype(),
23
+ pa.float32(): pd.Float32Dtype(),
24
+ pa.float64(): pd.Float64Dtype(),
25
+ }
26
+
27
+
28
+ def arrow_string_types_mapper() -> Callable:
29
+ pa = import_optional_dependency("pyarrow")
30
+
31
+ return {
32
+ pa.string(): pd.StringDtype(storage="pyarrow_numpy"),
33
+ pa.large_string(): pd.StringDtype(storage="pyarrow_numpy"),
34
+ }.get
env-llmeval/lib/python3.10/site-packages/pandas/io/clipboard/__init__.py ADDED
@@ -0,0 +1,747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pyperclip
3
+
4
+ A cross-platform clipboard module for Python,
5
+ with copy & paste functions for plain text.
6
+ By Al Sweigart [email protected]
7
+ Licence at LICENSES/PYPERCLIP_LICENSE
8
+
9
+ Usage:
10
+ import pyperclip
11
+ pyperclip.copy('The text to be copied to the clipboard.')
12
+ spam = pyperclip.paste()
13
+
14
+ if not pyperclip.is_available():
15
+ print("Copy functionality unavailable!")
16
+
17
+ On Windows, no additional modules are needed.
18
+ On Mac, the pyobjc module is used, falling back to the pbcopy and pbpaste cli
19
+ commands. (These commands should come with OS X.).
20
+ On Linux, install xclip, xsel, or wl-clipboard (for "wayland" sessions) via
21
+ package manager.
22
+ For example, in Debian:
23
+ sudo apt-get install xclip
24
+ sudo apt-get install xsel
25
+ sudo apt-get install wl-clipboard
26
+
27
+ Otherwise on Linux, you will need the PyQt5 modules installed.
28
+
29
+ This module does not work with PyGObject yet.
30
+
31
+ Cygwin is currently not supported.
32
+
33
+ Security Note: This module runs programs with these names:
34
+ - pbcopy
35
+ - pbpaste
36
+ - xclip
37
+ - xsel
38
+ - wl-copy/wl-paste
39
+ - klipper
40
+ - qdbus
41
+ A malicious user could rename or add programs with these names, tricking
42
+ Pyperclip into running them with whatever permissions the Python process has.
43
+
44
+ """
45
+
46
+ __version__ = "1.8.2"
47
+
48
+
49
+ import contextlib
50
+ import ctypes
51
+ from ctypes import (
52
+ c_size_t,
53
+ c_wchar,
54
+ c_wchar_p,
55
+ get_errno,
56
+ sizeof,
57
+ )
58
+ import os
59
+ import platform
60
+ from shutil import which as _executable_exists
61
+ import subprocess
62
+ import time
63
+ import warnings
64
+
65
+ from pandas.errors import (
66
+ PyperclipException,
67
+ PyperclipWindowsException,
68
+ )
69
+ from pandas.util._exceptions import find_stack_level
70
+
71
+ # `import PyQt4` sys.exit()s if DISPLAY is not in the environment.
72
+ # Thus, we need to detect the presence of $DISPLAY manually
73
+ # and not load PyQt4 if it is absent.
74
+ HAS_DISPLAY = os.getenv("DISPLAY")
75
+
76
+ EXCEPT_MSG = """
77
+ Pyperclip could not find a copy/paste mechanism for your system.
78
+ For more information, please visit
79
+ https://pyperclip.readthedocs.io/en/latest/index.html#not-implemented-error
80
+ """
81
+
82
+ ENCODING = "utf-8"
83
+
84
+
85
+ class PyperclipTimeoutException(PyperclipException):
86
+ pass
87
+
88
+
89
+ def _stringifyText(text) -> str:
90
+ acceptedTypes = (str, int, float, bool)
91
+ if not isinstance(text, acceptedTypes):
92
+ raise PyperclipException(
93
+ f"only str, int, float, and bool values "
94
+ f"can be copied to the clipboard, not {type(text).__name__}"
95
+ )
96
+ return str(text)
97
+
98
+
99
+ def init_osx_pbcopy_clipboard():
100
+ def copy_osx_pbcopy(text):
101
+ text = _stringifyText(text) # Converts non-str values to str.
102
+ with subprocess.Popen(
103
+ ["pbcopy", "w"], stdin=subprocess.PIPE, close_fds=True
104
+ ) as p:
105
+ p.communicate(input=text.encode(ENCODING))
106
+
107
+ def paste_osx_pbcopy():
108
+ with subprocess.Popen(
109
+ ["pbpaste", "r"], stdout=subprocess.PIPE, close_fds=True
110
+ ) as p:
111
+ stdout = p.communicate()[0]
112
+ return stdout.decode(ENCODING)
113
+
114
+ return copy_osx_pbcopy, paste_osx_pbcopy
115
+
116
+
117
+ def init_osx_pyobjc_clipboard():
118
+ def copy_osx_pyobjc(text):
119
+ """Copy string argument to clipboard"""
120
+ text = _stringifyText(text) # Converts non-str values to str.
121
+ newStr = Foundation.NSString.stringWithString_(text).nsstring()
122
+ newData = newStr.dataUsingEncoding_(Foundation.NSUTF8StringEncoding)
123
+ board = AppKit.NSPasteboard.generalPasteboard()
124
+ board.declareTypes_owner_([AppKit.NSStringPboardType], None)
125
+ board.setData_forType_(newData, AppKit.NSStringPboardType)
126
+
127
+ def paste_osx_pyobjc():
128
+ """Returns contents of clipboard"""
129
+ board = AppKit.NSPasteboard.generalPasteboard()
130
+ content = board.stringForType_(AppKit.NSStringPboardType)
131
+ return content
132
+
133
+ return copy_osx_pyobjc, paste_osx_pyobjc
134
+
135
+
136
+ def init_qt_clipboard():
137
+ global QApplication
138
+ # $DISPLAY should exist
139
+
140
+ # Try to import from qtpy, but if that fails try PyQt5 then PyQt4
141
+ try:
142
+ from qtpy.QtWidgets import QApplication
143
+ except ImportError:
144
+ try:
145
+ from PyQt5.QtWidgets import QApplication
146
+ except ImportError:
147
+ from PyQt4.QtGui import QApplication
148
+
149
+ app = QApplication.instance()
150
+ if app is None:
151
+ app = QApplication([])
152
+
153
+ def copy_qt(text):
154
+ text = _stringifyText(text) # Converts non-str values to str.
155
+ cb = app.clipboard()
156
+ cb.setText(text)
157
+
158
+ def paste_qt() -> str:
159
+ cb = app.clipboard()
160
+ return str(cb.text())
161
+
162
+ return copy_qt, paste_qt
163
+
164
+
165
+ def init_xclip_clipboard():
166
+ DEFAULT_SELECTION = "c"
167
+ PRIMARY_SELECTION = "p"
168
+
169
+ def copy_xclip(text, primary=False):
170
+ text = _stringifyText(text) # Converts non-str values to str.
171
+ selection = DEFAULT_SELECTION
172
+ if primary:
173
+ selection = PRIMARY_SELECTION
174
+ with subprocess.Popen(
175
+ ["xclip", "-selection", selection], stdin=subprocess.PIPE, close_fds=True
176
+ ) as p:
177
+ p.communicate(input=text.encode(ENCODING))
178
+
179
+ def paste_xclip(primary=False):
180
+ selection = DEFAULT_SELECTION
181
+ if primary:
182
+ selection = PRIMARY_SELECTION
183
+ with subprocess.Popen(
184
+ ["xclip", "-selection", selection, "-o"],
185
+ stdout=subprocess.PIPE,
186
+ stderr=subprocess.PIPE,
187
+ close_fds=True,
188
+ ) as p:
189
+ stdout = p.communicate()[0]
190
+ # Intentionally ignore extraneous output on stderr when clipboard is empty
191
+ return stdout.decode(ENCODING)
192
+
193
+ return copy_xclip, paste_xclip
194
+
195
+
196
+ def init_xsel_clipboard():
197
+ DEFAULT_SELECTION = "-b"
198
+ PRIMARY_SELECTION = "-p"
199
+
200
+ def copy_xsel(text, primary=False):
201
+ text = _stringifyText(text) # Converts non-str values to str.
202
+ selection_flag = DEFAULT_SELECTION
203
+ if primary:
204
+ selection_flag = PRIMARY_SELECTION
205
+ with subprocess.Popen(
206
+ ["xsel", selection_flag, "-i"], stdin=subprocess.PIPE, close_fds=True
207
+ ) as p:
208
+ p.communicate(input=text.encode(ENCODING))
209
+
210
+ def paste_xsel(primary=False):
211
+ selection_flag = DEFAULT_SELECTION
212
+ if primary:
213
+ selection_flag = PRIMARY_SELECTION
214
+ with subprocess.Popen(
215
+ ["xsel", selection_flag, "-o"], stdout=subprocess.PIPE, close_fds=True
216
+ ) as p:
217
+ stdout = p.communicate()[0]
218
+ return stdout.decode(ENCODING)
219
+
220
+ return copy_xsel, paste_xsel
221
+
222
+
223
+ def init_wl_clipboard():
224
+ PRIMARY_SELECTION = "-p"
225
+
226
+ def copy_wl(text, primary=False):
227
+ text = _stringifyText(text) # Converts non-str values to str.
228
+ args = ["wl-copy"]
229
+ if primary:
230
+ args.append(PRIMARY_SELECTION)
231
+ if not text:
232
+ args.append("--clear")
233
+ subprocess.check_call(args, close_fds=True)
234
+ else:
235
+ p = subprocess.Popen(args, stdin=subprocess.PIPE, close_fds=True)
236
+ p.communicate(input=text.encode(ENCODING))
237
+
238
+ def paste_wl(primary=False):
239
+ args = ["wl-paste", "-n"]
240
+ if primary:
241
+ args.append(PRIMARY_SELECTION)
242
+ p = subprocess.Popen(args, stdout=subprocess.PIPE, close_fds=True)
243
+ stdout, _stderr = p.communicate()
244
+ return stdout.decode(ENCODING)
245
+
246
+ return copy_wl, paste_wl
247
+
248
+
249
+ def init_klipper_clipboard():
250
+ def copy_klipper(text):
251
+ text = _stringifyText(text) # Converts non-str values to str.
252
+ with subprocess.Popen(
253
+ [
254
+ "qdbus",
255
+ "org.kde.klipper",
256
+ "/klipper",
257
+ "setClipboardContents",
258
+ text.encode(ENCODING),
259
+ ],
260
+ stdin=subprocess.PIPE,
261
+ close_fds=True,
262
+ ) as p:
263
+ p.communicate(input=None)
264
+
265
+ def paste_klipper():
266
+ with subprocess.Popen(
267
+ ["qdbus", "org.kde.klipper", "/klipper", "getClipboardContents"],
268
+ stdout=subprocess.PIPE,
269
+ close_fds=True,
270
+ ) as p:
271
+ stdout = p.communicate()[0]
272
+
273
+ # Workaround for https://bugs.kde.org/show_bug.cgi?id=342874
274
+ # TODO: https://github.com/asweigart/pyperclip/issues/43
275
+ clipboardContents = stdout.decode(ENCODING)
276
+ # even if blank, Klipper will append a newline at the end
277
+ assert len(clipboardContents) > 0
278
+ # make sure that newline is there
279
+ assert clipboardContents.endswith("\n")
280
+ if clipboardContents.endswith("\n"):
281
+ clipboardContents = clipboardContents[:-1]
282
+ return clipboardContents
283
+
284
+ return copy_klipper, paste_klipper
285
+
286
+
287
+ def init_dev_clipboard_clipboard():
288
+ def copy_dev_clipboard(text):
289
+ text = _stringifyText(text) # Converts non-str values to str.
290
+ if text == "":
291
+ warnings.warn(
292
+ "Pyperclip cannot copy a blank string to the clipboard on Cygwin. "
293
+ "This is effectively a no-op.",
294
+ stacklevel=find_stack_level(),
295
+ )
296
+ if "\r" in text:
297
+ warnings.warn(
298
+ "Pyperclip cannot handle \\r characters on Cygwin.",
299
+ stacklevel=find_stack_level(),
300
+ )
301
+
302
+ with open("/dev/clipboard", "w", encoding="utf-8") as fd:
303
+ fd.write(text)
304
+
305
+ def paste_dev_clipboard() -> str:
306
+ with open("/dev/clipboard", encoding="utf-8") as fd:
307
+ content = fd.read()
308
+ return content
309
+
310
+ return copy_dev_clipboard, paste_dev_clipboard
311
+
312
+
313
+ def init_no_clipboard():
314
+ class ClipboardUnavailable:
315
+ def __call__(self, *args, **kwargs):
316
+ raise PyperclipException(EXCEPT_MSG)
317
+
318
+ def __bool__(self) -> bool:
319
+ return False
320
+
321
+ return ClipboardUnavailable(), ClipboardUnavailable()
322
+
323
+
324
+ # Windows-related clipboard functions:
325
+ class CheckedCall:
326
+ def __init__(self, f) -> None:
327
+ super().__setattr__("f", f)
328
+
329
+ def __call__(self, *args):
330
+ ret = self.f(*args)
331
+ if not ret and get_errno():
332
+ raise PyperclipWindowsException("Error calling " + self.f.__name__)
333
+ return ret
334
+
335
+ def __setattr__(self, key, value):
336
+ setattr(self.f, key, value)
337
+
338
+
339
+ def init_windows_clipboard():
340
+ global HGLOBAL, LPVOID, DWORD, LPCSTR, INT
341
+ global HWND, HINSTANCE, HMENU, BOOL, UINT, HANDLE
342
+ from ctypes.wintypes import (
343
+ BOOL,
344
+ DWORD,
345
+ HANDLE,
346
+ HGLOBAL,
347
+ HINSTANCE,
348
+ HMENU,
349
+ HWND,
350
+ INT,
351
+ LPCSTR,
352
+ LPVOID,
353
+ UINT,
354
+ )
355
+
356
+ windll = ctypes.windll
357
+ msvcrt = ctypes.CDLL("msvcrt")
358
+
359
+ safeCreateWindowExA = CheckedCall(windll.user32.CreateWindowExA)
360
+ safeCreateWindowExA.argtypes = [
361
+ DWORD,
362
+ LPCSTR,
363
+ LPCSTR,
364
+ DWORD,
365
+ INT,
366
+ INT,
367
+ INT,
368
+ INT,
369
+ HWND,
370
+ HMENU,
371
+ HINSTANCE,
372
+ LPVOID,
373
+ ]
374
+ safeCreateWindowExA.restype = HWND
375
+
376
+ safeDestroyWindow = CheckedCall(windll.user32.DestroyWindow)
377
+ safeDestroyWindow.argtypes = [HWND]
378
+ safeDestroyWindow.restype = BOOL
379
+
380
+ OpenClipboard = windll.user32.OpenClipboard
381
+ OpenClipboard.argtypes = [HWND]
382
+ OpenClipboard.restype = BOOL
383
+
384
+ safeCloseClipboard = CheckedCall(windll.user32.CloseClipboard)
385
+ safeCloseClipboard.argtypes = []
386
+ safeCloseClipboard.restype = BOOL
387
+
388
+ safeEmptyClipboard = CheckedCall(windll.user32.EmptyClipboard)
389
+ safeEmptyClipboard.argtypes = []
390
+ safeEmptyClipboard.restype = BOOL
391
+
392
+ safeGetClipboardData = CheckedCall(windll.user32.GetClipboardData)
393
+ safeGetClipboardData.argtypes = [UINT]
394
+ safeGetClipboardData.restype = HANDLE
395
+
396
+ safeSetClipboardData = CheckedCall(windll.user32.SetClipboardData)
397
+ safeSetClipboardData.argtypes = [UINT, HANDLE]
398
+ safeSetClipboardData.restype = HANDLE
399
+
400
+ safeGlobalAlloc = CheckedCall(windll.kernel32.GlobalAlloc)
401
+ safeGlobalAlloc.argtypes = [UINT, c_size_t]
402
+ safeGlobalAlloc.restype = HGLOBAL
403
+
404
+ safeGlobalLock = CheckedCall(windll.kernel32.GlobalLock)
405
+ safeGlobalLock.argtypes = [HGLOBAL]
406
+ safeGlobalLock.restype = LPVOID
407
+
408
+ safeGlobalUnlock = CheckedCall(windll.kernel32.GlobalUnlock)
409
+ safeGlobalUnlock.argtypes = [HGLOBAL]
410
+ safeGlobalUnlock.restype = BOOL
411
+
412
+ wcslen = CheckedCall(msvcrt.wcslen)
413
+ wcslen.argtypes = [c_wchar_p]
414
+ wcslen.restype = UINT
415
+
416
+ GMEM_MOVEABLE = 0x0002
417
+ CF_UNICODETEXT = 13
418
+
419
+ @contextlib.contextmanager
420
+ def window():
421
+ """
422
+ Context that provides a valid Windows hwnd.
423
+ """
424
+ # we really just need the hwnd, so setting "STATIC"
425
+ # as predefined lpClass is just fine.
426
+ hwnd = safeCreateWindowExA(
427
+ 0, b"STATIC", None, 0, 0, 0, 0, 0, None, None, None, None
428
+ )
429
+ try:
430
+ yield hwnd
431
+ finally:
432
+ safeDestroyWindow(hwnd)
433
+
434
+ @contextlib.contextmanager
435
+ def clipboard(hwnd):
436
+ """
437
+ Context manager that opens the clipboard and prevents
438
+ other applications from modifying the clipboard content.
439
+ """
440
+ # We may not get the clipboard handle immediately because
441
+ # some other application is accessing it (?)
442
+ # We try for at least 500ms to get the clipboard.
443
+ t = time.time() + 0.5
444
+ success = False
445
+ while time.time() < t:
446
+ success = OpenClipboard(hwnd)
447
+ if success:
448
+ break
449
+ time.sleep(0.01)
450
+ if not success:
451
+ raise PyperclipWindowsException("Error calling OpenClipboard")
452
+
453
+ try:
454
+ yield
455
+ finally:
456
+ safeCloseClipboard()
457
+
458
+ def copy_windows(text):
459
+ # This function is heavily based on
460
+ # http://msdn.com/ms649016#_win32_Copying_Information_to_the_Clipboard
461
+
462
+ text = _stringifyText(text) # Converts non-str values to str.
463
+
464
+ with window() as hwnd:
465
+ # http://msdn.com/ms649048
466
+ # If an application calls OpenClipboard with hwnd set to NULL,
467
+ # EmptyClipboard sets the clipboard owner to NULL;
468
+ # this causes SetClipboardData to fail.
469
+ # => We need a valid hwnd to copy something.
470
+ with clipboard(hwnd):
471
+ safeEmptyClipboard()
472
+
473
+ if text:
474
+ # http://msdn.com/ms649051
475
+ # If the hMem parameter identifies a memory object,
476
+ # the object must have been allocated using the
477
+ # function with the GMEM_MOVEABLE flag.
478
+ count = wcslen(text) + 1
479
+ handle = safeGlobalAlloc(GMEM_MOVEABLE, count * sizeof(c_wchar))
480
+ locked_handle = safeGlobalLock(handle)
481
+
482
+ ctypes.memmove(
483
+ c_wchar_p(locked_handle),
484
+ c_wchar_p(text),
485
+ count * sizeof(c_wchar),
486
+ )
487
+
488
+ safeGlobalUnlock(handle)
489
+ safeSetClipboardData(CF_UNICODETEXT, handle)
490
+
491
+ def paste_windows():
492
+ with clipboard(None):
493
+ handle = safeGetClipboardData(CF_UNICODETEXT)
494
+ if not handle:
495
+ # GetClipboardData may return NULL with errno == NO_ERROR
496
+ # if the clipboard is empty.
497
+ # (Also, it may return a handle to an empty buffer,
498
+ # but technically that's not empty)
499
+ return ""
500
+ return c_wchar_p(handle).value
501
+
502
+ return copy_windows, paste_windows
503
+
504
+
505
+ def init_wsl_clipboard():
506
+ def copy_wsl(text):
507
+ text = _stringifyText(text) # Converts non-str values to str.
508
+ with subprocess.Popen(["clip.exe"], stdin=subprocess.PIPE, close_fds=True) as p:
509
+ p.communicate(input=text.encode(ENCODING))
510
+
511
+ def paste_wsl():
512
+ with subprocess.Popen(
513
+ ["powershell.exe", "-command", "Get-Clipboard"],
514
+ stdout=subprocess.PIPE,
515
+ stderr=subprocess.PIPE,
516
+ close_fds=True,
517
+ ) as p:
518
+ stdout = p.communicate()[0]
519
+ # WSL appends "\r\n" to the contents.
520
+ return stdout[:-2].decode(ENCODING)
521
+
522
+ return copy_wsl, paste_wsl
523
+
524
+
525
+ # Automatic detection of clipboard mechanisms
526
+ # and importing is done in determine_clipboard():
527
+ def determine_clipboard():
528
+ """
529
+ Determine the OS/platform and set the copy() and paste() functions
530
+ accordingly.
531
+ """
532
+ global Foundation, AppKit, qtpy, PyQt4, PyQt5
533
+
534
+ # Setup for the CYGWIN platform:
535
+ if (
536
+ "cygwin" in platform.system().lower()
537
+ ): # Cygwin has a variety of values returned by platform.system(),
538
+ # such as 'CYGWIN_NT-6.1'
539
+ # FIXME(pyperclip#55): pyperclip currently does not support Cygwin,
540
+ # see https://github.com/asweigart/pyperclip/issues/55
541
+ if os.path.exists("/dev/clipboard"):
542
+ warnings.warn(
543
+ "Pyperclip's support for Cygwin is not perfect, "
544
+ "see https://github.com/asweigart/pyperclip/issues/55",
545
+ stacklevel=find_stack_level(),
546
+ )
547
+ return init_dev_clipboard_clipboard()
548
+
549
+ # Setup for the WINDOWS platform:
550
+ elif os.name == "nt" or platform.system() == "Windows":
551
+ return init_windows_clipboard()
552
+
553
+ if platform.system() == "Linux":
554
+ if _executable_exists("wslconfig.exe"):
555
+ return init_wsl_clipboard()
556
+
557
+ # Setup for the macOS platform:
558
+ if os.name == "mac" or platform.system() == "Darwin":
559
+ try:
560
+ import AppKit
561
+ import Foundation # check if pyobjc is installed
562
+ except ImportError:
563
+ return init_osx_pbcopy_clipboard()
564
+ else:
565
+ return init_osx_pyobjc_clipboard()
566
+
567
+ # Setup for the LINUX platform:
568
+ if HAS_DISPLAY:
569
+ if os.environ.get("WAYLAND_DISPLAY") and _executable_exists("wl-copy"):
570
+ return init_wl_clipboard()
571
+ if _executable_exists("xsel"):
572
+ return init_xsel_clipboard()
573
+ if _executable_exists("xclip"):
574
+ return init_xclip_clipboard()
575
+ if _executable_exists("klipper") and _executable_exists("qdbus"):
576
+ return init_klipper_clipboard()
577
+
578
+ try:
579
+ # qtpy is a small abstraction layer that lets you write applications
580
+ # using a single api call to either PyQt or PySide.
581
+ # https://pypi.python.org/project/QtPy
582
+ import qtpy # check if qtpy is installed
583
+ except ImportError:
584
+ # If qtpy isn't installed, fall back on importing PyQt4.
585
+ try:
586
+ import PyQt5 # check if PyQt5 is installed
587
+ except ImportError:
588
+ try:
589
+ import PyQt4 # check if PyQt4 is installed
590
+ except ImportError:
591
+ pass # We want to fail fast for all non-ImportError exceptions.
592
+ else:
593
+ return init_qt_clipboard()
594
+ else:
595
+ return init_qt_clipboard()
596
+ else:
597
+ return init_qt_clipboard()
598
+
599
+ return init_no_clipboard()
600
+
601
+
602
+ def set_clipboard(clipboard):
603
+ """
604
+ Explicitly sets the clipboard mechanism. The "clipboard mechanism" is how
605
+ the copy() and paste() functions interact with the operating system to
606
+ implement the copy/paste feature. The clipboard parameter must be one of:
607
+ - pbcopy
608
+ - pyobjc (default on macOS)
609
+ - qt
610
+ - xclip
611
+ - xsel
612
+ - klipper
613
+ - windows (default on Windows)
614
+ - no (this is what is set when no clipboard mechanism can be found)
615
+ """
616
+ global copy, paste
617
+
618
+ clipboard_types = {
619
+ "pbcopy": init_osx_pbcopy_clipboard,
620
+ "pyobjc": init_osx_pyobjc_clipboard,
621
+ "qt": init_qt_clipboard, # TODO - split this into 'qtpy', 'pyqt4', and 'pyqt5'
622
+ "xclip": init_xclip_clipboard,
623
+ "xsel": init_xsel_clipboard,
624
+ "wl-clipboard": init_wl_clipboard,
625
+ "klipper": init_klipper_clipboard,
626
+ "windows": init_windows_clipboard,
627
+ "no": init_no_clipboard,
628
+ }
629
+
630
+ if clipboard not in clipboard_types:
631
+ allowed_clipboard_types = [repr(_) for _ in clipboard_types]
632
+ raise ValueError(
633
+ f"Argument must be one of {', '.join(allowed_clipboard_types)}"
634
+ )
635
+
636
+ # Sets pyperclip's copy() and paste() functions:
637
+ copy, paste = clipboard_types[clipboard]()
638
+
639
+
640
+ def lazy_load_stub_copy(text):
641
+ """
642
+ A stub function for copy(), which will load the real copy() function when
643
+ called so that the real copy() function is used for later calls.
644
+
645
+ This allows users to import pyperclip without having determine_clipboard()
646
+ automatically run, which will automatically select a clipboard mechanism.
647
+ This could be a problem if it selects, say, the memory-heavy PyQt4 module
648
+ but the user was just going to immediately call set_clipboard() to use a
649
+ different clipboard mechanism.
650
+
651
+ The lazy loading this stub function implements gives the user a chance to
652
+ call set_clipboard() to pick another clipboard mechanism. Or, if the user
653
+ simply calls copy() or paste() without calling set_clipboard() first,
654
+ will fall back on whatever clipboard mechanism that determine_clipboard()
655
+ automatically chooses.
656
+ """
657
+ global copy, paste
658
+ copy, paste = determine_clipboard()
659
+ return copy(text)
660
+
661
+
662
+ def lazy_load_stub_paste():
663
+ """
664
+ A stub function for paste(), which will load the real paste() function when
665
+ called so that the real paste() function is used for later calls.
666
+
667
+ This allows users to import pyperclip without having determine_clipboard()
668
+ automatically run, which will automatically select a clipboard mechanism.
669
+ This could be a problem if it selects, say, the memory-heavy PyQt4 module
670
+ but the user was just going to immediately call set_clipboard() to use a
671
+ different clipboard mechanism.
672
+
673
+ The lazy loading this stub function implements gives the user a chance to
674
+ call set_clipboard() to pick another clipboard mechanism. Or, if the user
675
+ simply calls copy() or paste() without calling set_clipboard() first,
676
+ will fall back on whatever clipboard mechanism that determine_clipboard()
677
+ automatically chooses.
678
+ """
679
+ global copy, paste
680
+ copy, paste = determine_clipboard()
681
+ return paste()
682
+
683
+
684
+ def is_available() -> bool:
685
+ return copy != lazy_load_stub_copy and paste != lazy_load_stub_paste
686
+
687
+
688
+ # Initially, copy() and paste() are set to lazy loading wrappers which will
689
+ # set `copy` and `paste` to real functions the first time they're used, unless
690
+ # set_clipboard() or determine_clipboard() is called first.
691
+ copy, paste = lazy_load_stub_copy, lazy_load_stub_paste
692
+
693
+
694
+ def waitForPaste(timeout=None):
695
+ """This function call blocks until a non-empty text string exists on the
696
+ clipboard. It returns this text.
697
+
698
+ This function raises PyperclipTimeoutException if timeout was set to
699
+ a number of seconds that has elapsed without non-empty text being put on
700
+ the clipboard."""
701
+ startTime = time.time()
702
+ while True:
703
+ clipboardText = paste()
704
+ if clipboardText != "":
705
+ return clipboardText
706
+ time.sleep(0.01)
707
+
708
+ if timeout is not None and time.time() > startTime + timeout:
709
+ raise PyperclipTimeoutException(
710
+ "waitForPaste() timed out after " + str(timeout) + " seconds."
711
+ )
712
+
713
+
714
+ def waitForNewPaste(timeout=None):
715
+ """This function call blocks until a new text string exists on the
716
+ clipboard that is different from the text that was there when the function
717
+ was first called. It returns this text.
718
+
719
+ This function raises PyperclipTimeoutException if timeout was set to
720
+ a number of seconds that has elapsed without non-empty text being put on
721
+ the clipboard."""
722
+ startTime = time.time()
723
+ originalText = paste()
724
+ while True:
725
+ currentText = paste()
726
+ if currentText != originalText:
727
+ return currentText
728
+ time.sleep(0.01)
729
+
730
+ if timeout is not None and time.time() > startTime + timeout:
731
+ raise PyperclipTimeoutException(
732
+ "waitForNewPaste() timed out after " + str(timeout) + " seconds."
733
+ )
734
+
735
+
736
+ __all__ = [
737
+ "copy",
738
+ "paste",
739
+ "waitForPaste",
740
+ "waitForNewPaste",
741
+ "set_clipboard",
742
+ "determine_clipboard",
743
+ ]
744
+
745
+ # pandas aliases
746
+ clipboard_get = paste
747
+ clipboard_set = copy
env-llmeval/lib/python3.10/site-packages/pandas/io/clipboard/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (19.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.io.excel._base import (
2
+ ExcelFile,
3
+ ExcelWriter,
4
+ read_excel,
5
+ )
6
+ from pandas.io.excel._odswriter import ODSWriter as _ODSWriter
7
+ from pandas.io.excel._openpyxl import OpenpyxlWriter as _OpenpyxlWriter
8
+ from pandas.io.excel._util import register_writer
9
+ from pandas.io.excel._xlsxwriter import XlsxWriter as _XlsxWriter
10
+
11
+ __all__ = ["read_excel", "ExcelWriter", "ExcelFile"]
12
+
13
+
14
+ register_writer(_OpenpyxlWriter)
15
+
16
+ register_writer(_XlsxWriter)
17
+
18
+
19
+ register_writer(_ODSWriter)
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_base.cpython-310.pyc ADDED
Binary file (48.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_odfreader.cpython-310.pyc ADDED
Binary file (7.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_pyxlsb.cpython-310.pyc ADDED
Binary file (4.16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_base.py ADDED
@@ -0,0 +1,1659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections.abc import (
4
+ Hashable,
5
+ Iterable,
6
+ Mapping,
7
+ Sequence,
8
+ )
9
+ import datetime
10
+ from functools import partial
11
+ from io import BytesIO
12
+ import os
13
+ from textwrap import fill
14
+ from typing import (
15
+ IO,
16
+ TYPE_CHECKING,
17
+ Any,
18
+ Callable,
19
+ Generic,
20
+ Literal,
21
+ TypeVar,
22
+ Union,
23
+ cast,
24
+ overload,
25
+ )
26
+ import warnings
27
+ import zipfile
28
+
29
+ from pandas._config import config
30
+
31
+ from pandas._libs import lib
32
+ from pandas._libs.parsers import STR_NA_VALUES
33
+ from pandas.compat._optional import (
34
+ get_version,
35
+ import_optional_dependency,
36
+ )
37
+ from pandas.errors import EmptyDataError
38
+ from pandas.util._decorators import (
39
+ Appender,
40
+ doc,
41
+ )
42
+ from pandas.util._exceptions import find_stack_level
43
+ from pandas.util._validators import check_dtype_backend
44
+
45
+ from pandas.core.dtypes.common import (
46
+ is_bool,
47
+ is_float,
48
+ is_integer,
49
+ is_list_like,
50
+ )
51
+
52
+ from pandas.core.frame import DataFrame
53
+ from pandas.core.shared_docs import _shared_docs
54
+ from pandas.util.version import Version
55
+
56
+ from pandas.io.common import (
57
+ IOHandles,
58
+ get_handle,
59
+ stringify_path,
60
+ validate_header_arg,
61
+ )
62
+ from pandas.io.excel._util import (
63
+ fill_mi_header,
64
+ get_default_engine,
65
+ get_writer,
66
+ maybe_convert_usecols,
67
+ pop_header_name,
68
+ )
69
+ from pandas.io.parsers import TextParser
70
+ from pandas.io.parsers.readers import validate_integer
71
+
72
+ if TYPE_CHECKING:
73
+ from types import TracebackType
74
+
75
+ from pandas._typing import (
76
+ DtypeArg,
77
+ DtypeBackend,
78
+ ExcelWriterIfSheetExists,
79
+ FilePath,
80
+ IntStrT,
81
+ ReadBuffer,
82
+ Self,
83
+ SequenceNotStr,
84
+ StorageOptions,
85
+ WriteExcelBuffer,
86
+ )
87
+ _read_excel_doc = (
88
+ """
89
+ Read an Excel file into a ``pandas`` ``DataFrame``.
90
+
91
+ Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions
92
+ read from a local filesystem or URL. Supports an option to read
93
+ a single sheet or a list of sheets.
94
+
95
+ Parameters
96
+ ----------
97
+ io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object
98
+ Any valid string path is acceptable. The string could be a URL. Valid
99
+ URL schemes include http, ftp, s3, and file. For file URLs, a host is
100
+ expected. A local file could be: ``file://localhost/path/to/table.xlsx``.
101
+
102
+ If you want to pass in a path object, pandas accepts any ``os.PathLike``.
103
+
104
+ By file-like object, we refer to objects with a ``read()`` method,
105
+ such as a file handle (e.g. via builtin ``open`` function)
106
+ or ``StringIO``.
107
+
108
+ .. deprecated:: 2.1.0
109
+ Passing byte strings is deprecated. To read from a
110
+ byte string, wrap it in a ``BytesIO`` object.
111
+ sheet_name : str, int, list, or None, default 0
112
+ Strings are used for sheet names. Integers are used in zero-indexed
113
+ sheet positions (chart sheets do not count as a sheet position).
114
+ Lists of strings/integers are used to request multiple sheets.
115
+ Specify ``None`` to get all worksheets.
116
+
117
+ Available cases:
118
+
119
+ * Defaults to ``0``: 1st sheet as a `DataFrame`
120
+ * ``1``: 2nd sheet as a `DataFrame`
121
+ * ``"Sheet1"``: Load sheet with name "Sheet1"
122
+ * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
123
+ as a dict of `DataFrame`
124
+ * ``None``: All worksheets.
125
+
126
+ header : int, list of int, default 0
127
+ Row (0-indexed) to use for the column labels of the parsed
128
+ DataFrame. If a list of integers is passed those row positions will
129
+ be combined into a ``MultiIndex``. Use None if there is no header.
130
+ names : array-like, default None
131
+ List of column names to use. If file contains no header row,
132
+ then you should explicitly pass header=None.
133
+ index_col : int, str, list of int, default None
134
+ Column (0-indexed) to use as the row labels of the DataFrame.
135
+ Pass None if there is no such column. If a list is passed,
136
+ those columns will be combined into a ``MultiIndex``. If a
137
+ subset of data is selected with ``usecols``, index_col
138
+ is based on the subset.
139
+
140
+ Missing values will be forward filled to allow roundtripping with
141
+ ``to_excel`` for ``merged_cells=True``. To avoid forward filling the
142
+ missing values use ``set_index`` after reading the data instead of
143
+ ``index_col``.
144
+ usecols : str, list-like, or callable, default None
145
+ * If None, then parse all columns.
146
+ * If str, then indicates comma separated list of Excel column letters
147
+ and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
148
+ both sides.
149
+ * If list of int, then indicates list of column numbers to be parsed
150
+ (0-indexed).
151
+ * If list of string, then indicates list of column names to be parsed.
152
+ * If callable, then evaluate each column name against it and parse the
153
+ column if the callable returns ``True``.
154
+
155
+ Returns a subset of the columns according to behavior above.
156
+ dtype : Type name or dict of column -> type, default None
157
+ Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32}}
158
+ Use ``object`` to preserve data as stored in Excel and not interpret dtype,
159
+ which will necessarily result in ``object`` dtype.
160
+ If converters are specified, they will be applied INSTEAD
161
+ of dtype conversion.
162
+ If you use ``None``, it will infer the dtype of each column based on the data.
163
+ engine : {{'openpyxl', 'calamine', 'odf', 'pyxlsb', 'xlrd'}}, default None
164
+ If io is not a buffer or path, this must be set to identify io.
165
+ Engine compatibility :
166
+
167
+ - ``openpyxl`` supports newer Excel file formats.
168
+ - ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
169
+ and OpenDocument (.ods) file formats.
170
+ - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
171
+ - ``pyxlsb`` supports Binary Excel files.
172
+ - ``xlrd`` supports old-style Excel files (.xls).
173
+
174
+ When ``engine=None``, the following logic will be used to determine the engine:
175
+
176
+ - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
177
+ then `odf <https://pypi.org/project/odfpy/>`_ will be used.
178
+ - Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used.
179
+ - Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used.
180
+ - Otherwise ``openpyxl`` will be used.
181
+ converters : dict, default None
182
+ Dict of functions for converting values in certain columns. Keys can
183
+ either be integers or column labels, values are functions that take one
184
+ input argument, the Excel cell content, and return the transformed
185
+ content.
186
+ true_values : list, default None
187
+ Values to consider as True.
188
+ false_values : list, default None
189
+ Values to consider as False.
190
+ skiprows : list-like, int, or callable, optional
191
+ Line numbers to skip (0-indexed) or number of lines to skip (int) at the
192
+ start of the file. If callable, the callable function will be evaluated
193
+ against the row indices, returning True if the row should be skipped and
194
+ False otherwise. An example of a valid callable argument would be ``lambda
195
+ x: x in [0, 2]``.
196
+ nrows : int, default None
197
+ Number of rows to parse.
198
+ na_values : scalar, str, list-like, or dict, default None
199
+ Additional strings to recognize as NA/NaN. If dict passed, specific
200
+ per-column NA values. By default the following values are interpreted
201
+ as NaN: '"""
202
+ + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ")
203
+ + """'.
204
+ keep_default_na : bool, default True
205
+ Whether or not to include the default NaN values when parsing the data.
206
+ Depending on whether ``na_values`` is passed in, the behavior is as follows:
207
+
208
+ * If ``keep_default_na`` is True, and ``na_values`` are specified,
209
+ ``na_values`` is appended to the default NaN values used for parsing.
210
+ * If ``keep_default_na`` is True, and ``na_values`` are not specified, only
211
+ the default NaN values are used for parsing.
212
+ * If ``keep_default_na`` is False, and ``na_values`` are specified, only
213
+ the NaN values specified ``na_values`` are used for parsing.
214
+ * If ``keep_default_na`` is False, and ``na_values`` are not specified, no
215
+ strings will be parsed as NaN.
216
+
217
+ Note that if `na_filter` is passed in as False, the ``keep_default_na`` and
218
+ ``na_values`` parameters will be ignored.
219
+ na_filter : bool, default True
220
+ Detect missing value markers (empty strings and the value of na_values). In
221
+ data without any NAs, passing ``na_filter=False`` can improve the
222
+ performance of reading a large file.
223
+ verbose : bool, default False
224
+ Indicate number of NA values placed in non-numeric columns.
225
+ parse_dates : bool, list-like, or dict, default False
226
+ The behavior is as follows:
227
+
228
+ * ``bool``. If True -> try parsing the index.
229
+ * ``list`` of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
230
+ each as a separate date column.
231
+ * ``list`` of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
232
+ a single date column.
233
+ * ``dict``, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
234
+ result 'foo'
235
+
236
+ If a column or index contains an unparsable date, the entire column or
237
+ index will be returned unaltered as an object data type. If you don`t want to
238
+ parse some cells as date just change their type in Excel to "Text".
239
+ For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.
240
+
241
+ Note: A fast-path exists for iso8601-formatted dates.
242
+ date_parser : function, optional
243
+ Function to use for converting a sequence of string columns to an array of
244
+ datetime instances. The default uses ``dateutil.parser.parser`` to do the
245
+ conversion. Pandas will try to call `date_parser` in three different ways,
246
+ advancing to the next if an exception occurs: 1) Pass one or more arrays
247
+ (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
248
+ string values from the columns defined by `parse_dates` into a single array
249
+ and pass that; and 3) call `date_parser` once for each row using one or
250
+ more strings (corresponding to the columns defined by `parse_dates`) as
251
+ arguments.
252
+
253
+ .. deprecated:: 2.0.0
254
+ Use ``date_format`` instead, or read in as ``object`` and then apply
255
+ :func:`to_datetime` as-needed.
256
+ date_format : str or dict of column -> format, default ``None``
257
+ If used in conjunction with ``parse_dates``, will parse dates according to this
258
+ format. For anything more complex,
259
+ please read in as ``object`` and then apply :func:`to_datetime` as-needed.
260
+
261
+ .. versionadded:: 2.0.0
262
+ thousands : str, default None
263
+ Thousands separator for parsing string columns to numeric. Note that
264
+ this parameter is only necessary for columns stored as TEXT in Excel,
265
+ any numeric columns will automatically be parsed, regardless of display
266
+ format.
267
+ decimal : str, default '.'
268
+ Character to recognize as decimal point for parsing string columns to numeric.
269
+ Note that this parameter is only necessary for columns stored as TEXT in Excel,
270
+ any numeric columns will automatically be parsed, regardless of display
271
+ format.(e.g. use ',' for European data).
272
+
273
+ .. versionadded:: 1.4.0
274
+
275
+ comment : str, default None
276
+ Comments out remainder of line. Pass a character or characters to this
277
+ argument to indicate comments in the input file. Any data between the
278
+ comment string and the end of the current line is ignored.
279
+ skipfooter : int, default 0
280
+ Rows at the end to skip (0-indexed).
281
+ {storage_options}
282
+
283
+ dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
284
+ Back-end data type applied to the resultant :class:`DataFrame`
285
+ (still experimental). Behaviour is as follows:
286
+
287
+ * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
288
+ (default).
289
+ * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
290
+ DataFrame.
291
+
292
+ .. versionadded:: 2.0
293
+
294
+ engine_kwargs : dict, optional
295
+ Arbitrary keyword arguments passed to excel engine.
296
+
297
+ Returns
298
+ -------
299
+ DataFrame or dict of DataFrames
300
+ DataFrame from the passed in Excel file. See notes in sheet_name
301
+ argument for more information on when a dict of DataFrames is returned.
302
+
303
+ See Also
304
+ --------
305
+ DataFrame.to_excel : Write DataFrame to an Excel file.
306
+ DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
307
+ read_csv : Read a comma-separated values (csv) file into DataFrame.
308
+ read_fwf : Read a table of fixed-width formatted lines into DataFrame.
309
+
310
+ Notes
311
+ -----
312
+ For specific information on the methods used for each Excel engine, refer to the pandas
313
+ :ref:`user guide <io.excel_reader>`
314
+
315
+ Examples
316
+ --------
317
+ The file can be read using the file name as string or an open file object:
318
+
319
+ >>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP
320
+ Name Value
321
+ 0 string1 1
322
+ 1 string2 2
323
+ 2 #Comment 3
324
+
325
+ >>> pd.read_excel(open('tmp.xlsx', 'rb'),
326
+ ... sheet_name='Sheet3') # doctest: +SKIP
327
+ Unnamed: 0 Name Value
328
+ 0 0 string1 1
329
+ 1 1 string2 2
330
+ 2 2 #Comment 3
331
+
332
+ Index and header can be specified via the `index_col` and `header` arguments
333
+
334
+ >>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP
335
+ 0 1 2
336
+ 0 NaN Name Value
337
+ 1 0.0 string1 1
338
+ 2 1.0 string2 2
339
+ 3 2.0 #Comment 3
340
+
341
+ Column types are inferred but can be explicitly specified
342
+
343
+ >>> pd.read_excel('tmp.xlsx', index_col=0,
344
+ ... dtype={{'Name': str, 'Value': float}}) # doctest: +SKIP
345
+ Name Value
346
+ 0 string1 1.0
347
+ 1 string2 2.0
348
+ 2 #Comment 3.0
349
+
350
+ True, False, and NA values, and thousands separators have defaults,
351
+ but can be explicitly specified, too. Supply the values you would like
352
+ as strings or lists of strings!
353
+
354
+ >>> pd.read_excel('tmp.xlsx', index_col=0,
355
+ ... na_values=['string1', 'string2']) # doctest: +SKIP
356
+ Name Value
357
+ 0 NaN 1
358
+ 1 NaN 2
359
+ 2 #Comment 3
360
+
361
+ Comment lines in the excel input file can be skipped using the
362
+ ``comment`` kwarg.
363
+
364
+ >>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP
365
+ Name Value
366
+ 0 string1 1.0
367
+ 1 string2 2.0
368
+ 2 None NaN
369
+ """
370
+ )
371
+
372
+
373
+ @overload
374
+ def read_excel(
375
+ io,
376
+ # sheet name is str or int -> DataFrame
377
+ sheet_name: str | int = ...,
378
+ *,
379
+ header: int | Sequence[int] | None = ...,
380
+ names: SequenceNotStr[Hashable] | range | None = ...,
381
+ index_col: int | str | Sequence[int] | None = ...,
382
+ usecols: int
383
+ | str
384
+ | Sequence[int]
385
+ | Sequence[str]
386
+ | Callable[[str], bool]
387
+ | None = ...,
388
+ dtype: DtypeArg | None = ...,
389
+ engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ...,
390
+ converters: dict[str, Callable] | dict[int, Callable] | None = ...,
391
+ true_values: Iterable[Hashable] | None = ...,
392
+ false_values: Iterable[Hashable] | None = ...,
393
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
394
+ nrows: int | None = ...,
395
+ na_values=...,
396
+ keep_default_na: bool = ...,
397
+ na_filter: bool = ...,
398
+ verbose: bool = ...,
399
+ parse_dates: list | dict | bool = ...,
400
+ date_parser: Callable | lib.NoDefault = ...,
401
+ date_format: dict[Hashable, str] | str | None = ...,
402
+ thousands: str | None = ...,
403
+ decimal: str = ...,
404
+ comment: str | None = ...,
405
+ skipfooter: int = ...,
406
+ storage_options: StorageOptions = ...,
407
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
408
+ ) -> DataFrame:
409
+ ...
410
+
411
+
412
+ @overload
413
+ def read_excel(
414
+ io,
415
+ # sheet name is list or None -> dict[IntStrT, DataFrame]
416
+ sheet_name: list[IntStrT] | None,
417
+ *,
418
+ header: int | Sequence[int] | None = ...,
419
+ names: SequenceNotStr[Hashable] | range | None = ...,
420
+ index_col: int | str | Sequence[int] | None = ...,
421
+ usecols: int
422
+ | str
423
+ | Sequence[int]
424
+ | Sequence[str]
425
+ | Callable[[str], bool]
426
+ | None = ...,
427
+ dtype: DtypeArg | None = ...,
428
+ engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ...,
429
+ converters: dict[str, Callable] | dict[int, Callable] | None = ...,
430
+ true_values: Iterable[Hashable] | None = ...,
431
+ false_values: Iterable[Hashable] | None = ...,
432
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
433
+ nrows: int | None = ...,
434
+ na_values=...,
435
+ keep_default_na: bool = ...,
436
+ na_filter: bool = ...,
437
+ verbose: bool = ...,
438
+ parse_dates: list | dict | bool = ...,
439
+ date_parser: Callable | lib.NoDefault = ...,
440
+ date_format: dict[Hashable, str] | str | None = ...,
441
+ thousands: str | None = ...,
442
+ decimal: str = ...,
443
+ comment: str | None = ...,
444
+ skipfooter: int = ...,
445
+ storage_options: StorageOptions = ...,
446
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
447
+ ) -> dict[IntStrT, DataFrame]:
448
+ ...
449
+
450
+
451
+ @doc(storage_options=_shared_docs["storage_options"])
452
+ @Appender(_read_excel_doc)
453
+ def read_excel(
454
+ io,
455
+ sheet_name: str | int | list[IntStrT] | None = 0,
456
+ *,
457
+ header: int | Sequence[int] | None = 0,
458
+ names: SequenceNotStr[Hashable] | range | None = None,
459
+ index_col: int | str | Sequence[int] | None = None,
460
+ usecols: int
461
+ | str
462
+ | Sequence[int]
463
+ | Sequence[str]
464
+ | Callable[[str], bool]
465
+ | None = None,
466
+ dtype: DtypeArg | None = None,
467
+ engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = None,
468
+ converters: dict[str, Callable] | dict[int, Callable] | None = None,
469
+ true_values: Iterable[Hashable] | None = None,
470
+ false_values: Iterable[Hashable] | None = None,
471
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
472
+ nrows: int | None = None,
473
+ na_values=None,
474
+ keep_default_na: bool = True,
475
+ na_filter: bool = True,
476
+ verbose: bool = False,
477
+ parse_dates: list | dict | bool = False,
478
+ date_parser: Callable | lib.NoDefault = lib.no_default,
479
+ date_format: dict[Hashable, str] | str | None = None,
480
+ thousands: str | None = None,
481
+ decimal: str = ".",
482
+ comment: str | None = None,
483
+ skipfooter: int = 0,
484
+ storage_options: StorageOptions | None = None,
485
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
486
+ engine_kwargs: dict | None = None,
487
+ ) -> DataFrame | dict[IntStrT, DataFrame]:
488
+ check_dtype_backend(dtype_backend)
489
+ should_close = False
490
+ if engine_kwargs is None:
491
+ engine_kwargs = {}
492
+
493
+ if not isinstance(io, ExcelFile):
494
+ should_close = True
495
+ io = ExcelFile(
496
+ io,
497
+ storage_options=storage_options,
498
+ engine=engine,
499
+ engine_kwargs=engine_kwargs,
500
+ )
501
+ elif engine and engine != io.engine:
502
+ raise ValueError(
503
+ "Engine should not be specified when passing "
504
+ "an ExcelFile - ExcelFile already has the engine set"
505
+ )
506
+
507
+ try:
508
+ data = io.parse(
509
+ sheet_name=sheet_name,
510
+ header=header,
511
+ names=names,
512
+ index_col=index_col,
513
+ usecols=usecols,
514
+ dtype=dtype,
515
+ converters=converters,
516
+ true_values=true_values,
517
+ false_values=false_values,
518
+ skiprows=skiprows,
519
+ nrows=nrows,
520
+ na_values=na_values,
521
+ keep_default_na=keep_default_na,
522
+ na_filter=na_filter,
523
+ verbose=verbose,
524
+ parse_dates=parse_dates,
525
+ date_parser=date_parser,
526
+ date_format=date_format,
527
+ thousands=thousands,
528
+ decimal=decimal,
529
+ comment=comment,
530
+ skipfooter=skipfooter,
531
+ dtype_backend=dtype_backend,
532
+ )
533
+ finally:
534
+ # make sure to close opened file handles
535
+ if should_close:
536
+ io.close()
537
+ return data
538
+
539
+
540
+ _WorkbookT = TypeVar("_WorkbookT")
541
+
542
+
543
+ class BaseExcelReader(Generic[_WorkbookT]):
544
+ book: _WorkbookT
545
+
546
+ def __init__(
547
+ self,
548
+ filepath_or_buffer,
549
+ storage_options: StorageOptions | None = None,
550
+ engine_kwargs: dict | None = None,
551
+ ) -> None:
552
+ if engine_kwargs is None:
553
+ engine_kwargs = {}
554
+
555
+ # First argument can also be bytes, so create a buffer
556
+ if isinstance(filepath_or_buffer, bytes):
557
+ filepath_or_buffer = BytesIO(filepath_or_buffer)
558
+
559
+ self.handles = IOHandles(
560
+ handle=filepath_or_buffer, compression={"method": None}
561
+ )
562
+ if not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)):
563
+ self.handles = get_handle(
564
+ filepath_or_buffer, "rb", storage_options=storage_options, is_text=False
565
+ )
566
+
567
+ if isinstance(self.handles.handle, self._workbook_class):
568
+ self.book = self.handles.handle
569
+ elif hasattr(self.handles.handle, "read"):
570
+ # N.B. xlrd.Book has a read attribute too
571
+ self.handles.handle.seek(0)
572
+ try:
573
+ self.book = self.load_workbook(self.handles.handle, engine_kwargs)
574
+ except Exception:
575
+ self.close()
576
+ raise
577
+ else:
578
+ raise ValueError(
579
+ "Must explicitly set engine if not passing in buffer or path for io."
580
+ )
581
+
582
+ @property
583
+ def _workbook_class(self) -> type[_WorkbookT]:
584
+ raise NotImplementedError
585
+
586
+ def load_workbook(self, filepath_or_buffer, engine_kwargs) -> _WorkbookT:
587
+ raise NotImplementedError
588
+
589
+ def close(self) -> None:
590
+ if hasattr(self, "book"):
591
+ if hasattr(self.book, "close"):
592
+ # pyxlsb: opens a TemporaryFile
593
+ # openpyxl: https://stackoverflow.com/questions/31416842/
594
+ # openpyxl-does-not-close-excel-workbook-in-read-only-mode
595
+ self.book.close()
596
+ elif hasattr(self.book, "release_resources"):
597
+ # xlrd
598
+ # https://github.com/python-excel/xlrd/blob/2.0.1/xlrd/book.py#L548
599
+ self.book.release_resources()
600
+ self.handles.close()
601
+
602
+ @property
603
+ def sheet_names(self) -> list[str]:
604
+ raise NotImplementedError
605
+
606
+ def get_sheet_by_name(self, name: str):
607
+ raise NotImplementedError
608
+
609
+ def get_sheet_by_index(self, index: int):
610
+ raise NotImplementedError
611
+
612
+ def get_sheet_data(self, sheet, rows: int | None = None):
613
+ raise NotImplementedError
614
+
615
+ def raise_if_bad_sheet_by_index(self, index: int) -> None:
616
+ n_sheets = len(self.sheet_names)
617
+ if index >= n_sheets:
618
+ raise ValueError(
619
+ f"Worksheet index {index} is invalid, {n_sheets} worksheets found"
620
+ )
621
+
622
+ def raise_if_bad_sheet_by_name(self, name: str) -> None:
623
+ if name not in self.sheet_names:
624
+ raise ValueError(f"Worksheet named '{name}' not found")
625
+
626
+ def _check_skiprows_func(
627
+ self,
628
+ skiprows: Callable,
629
+ rows_to_use: int,
630
+ ) -> int:
631
+ """
632
+ Determine how many file rows are required to obtain `nrows` data
633
+ rows when `skiprows` is a function.
634
+
635
+ Parameters
636
+ ----------
637
+ skiprows : function
638
+ The function passed to read_excel by the user.
639
+ rows_to_use : int
640
+ The number of rows that will be needed for the header and
641
+ the data.
642
+
643
+ Returns
644
+ -------
645
+ int
646
+ """
647
+ i = 0
648
+ rows_used_so_far = 0
649
+ while rows_used_so_far < rows_to_use:
650
+ if not skiprows(i):
651
+ rows_used_so_far += 1
652
+ i += 1
653
+ return i
654
+
655
+ def _calc_rows(
656
+ self,
657
+ header: int | Sequence[int] | None,
658
+ index_col: int | Sequence[int] | None,
659
+ skiprows: Sequence[int] | int | Callable[[int], object] | None,
660
+ nrows: int | None,
661
+ ) -> int | None:
662
+ """
663
+ If nrows specified, find the number of rows needed from the
664
+ file, otherwise return None.
665
+
666
+
667
+ Parameters
668
+ ----------
669
+ header : int, list of int, or None
670
+ See read_excel docstring.
671
+ index_col : int, str, list of int, or None
672
+ See read_excel docstring.
673
+ skiprows : list-like, int, callable, or None
674
+ See read_excel docstring.
675
+ nrows : int or None
676
+ See read_excel docstring.
677
+
678
+ Returns
679
+ -------
680
+ int or None
681
+ """
682
+ if nrows is None:
683
+ return None
684
+ if header is None:
685
+ header_rows = 1
686
+ elif is_integer(header):
687
+ header = cast(int, header)
688
+ header_rows = 1 + header
689
+ else:
690
+ header = cast(Sequence, header)
691
+ header_rows = 1 + header[-1]
692
+ # If there is a MultiIndex header and an index then there is also
693
+ # a row containing just the index name(s)
694
+ if is_list_like(header) and index_col is not None:
695
+ header = cast(Sequence, header)
696
+ if len(header) > 1:
697
+ header_rows += 1
698
+ if skiprows is None:
699
+ return header_rows + nrows
700
+ if is_integer(skiprows):
701
+ skiprows = cast(int, skiprows)
702
+ return header_rows + nrows + skiprows
703
+ if is_list_like(skiprows):
704
+
705
+ def f(skiprows: Sequence, x: int) -> bool:
706
+ return x in skiprows
707
+
708
+ skiprows = cast(Sequence, skiprows)
709
+ return self._check_skiprows_func(partial(f, skiprows), header_rows + nrows)
710
+ if callable(skiprows):
711
+ return self._check_skiprows_func(
712
+ skiprows,
713
+ header_rows + nrows,
714
+ )
715
+ # else unexpected skiprows type: read_excel will not optimize
716
+ # the number of rows read from file
717
+ return None
718
+
719
+ def parse(
720
+ self,
721
+ sheet_name: str | int | list[int] | list[str] | None = 0,
722
+ header: int | Sequence[int] | None = 0,
723
+ names: SequenceNotStr[Hashable] | range | None = None,
724
+ index_col: int | Sequence[int] | None = None,
725
+ usecols=None,
726
+ dtype: DtypeArg | None = None,
727
+ true_values: Iterable[Hashable] | None = None,
728
+ false_values: Iterable[Hashable] | None = None,
729
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
730
+ nrows: int | None = None,
731
+ na_values=None,
732
+ verbose: bool = False,
733
+ parse_dates: list | dict | bool = False,
734
+ date_parser: Callable | lib.NoDefault = lib.no_default,
735
+ date_format: dict[Hashable, str] | str | None = None,
736
+ thousands: str | None = None,
737
+ decimal: str = ".",
738
+ comment: str | None = None,
739
+ skipfooter: int = 0,
740
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
741
+ **kwds,
742
+ ):
743
+ validate_header_arg(header)
744
+ validate_integer("nrows", nrows)
745
+
746
+ ret_dict = False
747
+
748
+ # Keep sheetname to maintain backwards compatibility.
749
+ sheets: list[int] | list[str]
750
+ if isinstance(sheet_name, list):
751
+ sheets = sheet_name
752
+ ret_dict = True
753
+ elif sheet_name is None:
754
+ sheets = self.sheet_names
755
+ ret_dict = True
756
+ elif isinstance(sheet_name, str):
757
+ sheets = [sheet_name]
758
+ else:
759
+ sheets = [sheet_name]
760
+
761
+ # handle same-type duplicates.
762
+ sheets = cast(Union[list[int], list[str]], list(dict.fromkeys(sheets).keys()))
763
+
764
+ output = {}
765
+
766
+ last_sheetname = None
767
+ for asheetname in sheets:
768
+ last_sheetname = asheetname
769
+ if verbose:
770
+ print(f"Reading sheet {asheetname}")
771
+
772
+ if isinstance(asheetname, str):
773
+ sheet = self.get_sheet_by_name(asheetname)
774
+ else: # assume an integer if not a string
775
+ sheet = self.get_sheet_by_index(asheetname)
776
+
777
+ file_rows_needed = self._calc_rows(header, index_col, skiprows, nrows)
778
+ data = self.get_sheet_data(sheet, file_rows_needed)
779
+ if hasattr(sheet, "close"):
780
+ # pyxlsb opens two TemporaryFiles
781
+ sheet.close()
782
+ usecols = maybe_convert_usecols(usecols)
783
+
784
+ if not data:
785
+ output[asheetname] = DataFrame()
786
+ continue
787
+
788
+ is_list_header = False
789
+ is_len_one_list_header = False
790
+ if is_list_like(header):
791
+ assert isinstance(header, Sequence)
792
+ is_list_header = True
793
+ if len(header) == 1:
794
+ is_len_one_list_header = True
795
+
796
+ if is_len_one_list_header:
797
+ header = cast(Sequence[int], header)[0]
798
+
799
+ # forward fill and pull out names for MultiIndex column
800
+ header_names = None
801
+ if header is not None and is_list_like(header):
802
+ assert isinstance(header, Sequence)
803
+
804
+ header_names = []
805
+ control_row = [True] * len(data[0])
806
+
807
+ for row in header:
808
+ if is_integer(skiprows):
809
+ assert isinstance(skiprows, int)
810
+ row += skiprows
811
+
812
+ if row > len(data) - 1:
813
+ raise ValueError(
814
+ f"header index {row} exceeds maximum index "
815
+ f"{len(data) - 1} of data.",
816
+ )
817
+
818
+ data[row], control_row = fill_mi_header(data[row], control_row)
819
+
820
+ if index_col is not None:
821
+ header_name, _ = pop_header_name(data[row], index_col)
822
+ header_names.append(header_name)
823
+
824
+ # If there is a MultiIndex header and an index then there is also
825
+ # a row containing just the index name(s)
826
+ has_index_names = False
827
+ if is_list_header and not is_len_one_list_header and index_col is not None:
828
+ index_col_list: Sequence[int]
829
+ if isinstance(index_col, int):
830
+ index_col_list = [index_col]
831
+ else:
832
+ assert isinstance(index_col, Sequence)
833
+ index_col_list = index_col
834
+
835
+ # We have to handle mi without names. If any of the entries in the data
836
+ # columns are not empty, this is a regular row
837
+ assert isinstance(header, Sequence)
838
+ if len(header) < len(data):
839
+ potential_index_names = data[len(header)]
840
+ potential_data = [
841
+ x
842
+ for i, x in enumerate(potential_index_names)
843
+ if not control_row[i] and i not in index_col_list
844
+ ]
845
+ has_index_names = all(x == "" or x is None for x in potential_data)
846
+
847
+ if is_list_like(index_col):
848
+ # Forward fill values for MultiIndex index.
849
+ if header is None:
850
+ offset = 0
851
+ elif isinstance(header, int):
852
+ offset = 1 + header
853
+ else:
854
+ offset = 1 + max(header)
855
+
856
+ # GH34673: if MultiIndex names present and not defined in the header,
857
+ # offset needs to be incremented so that forward filling starts
858
+ # from the first MI value instead of the name
859
+ if has_index_names:
860
+ offset += 1
861
+
862
+ # Check if we have an empty dataset
863
+ # before trying to collect data.
864
+ if offset < len(data):
865
+ assert isinstance(index_col, Sequence)
866
+
867
+ for col in index_col:
868
+ last = data[offset][col]
869
+
870
+ for row in range(offset + 1, len(data)):
871
+ if data[row][col] == "" or data[row][col] is None:
872
+ data[row][col] = last
873
+ else:
874
+ last = data[row][col]
875
+
876
+ # GH 12292 : error when read one empty column from excel file
877
+ try:
878
+ parser = TextParser(
879
+ data,
880
+ names=names,
881
+ header=header,
882
+ index_col=index_col,
883
+ has_index_names=has_index_names,
884
+ dtype=dtype,
885
+ true_values=true_values,
886
+ false_values=false_values,
887
+ skiprows=skiprows,
888
+ nrows=nrows,
889
+ na_values=na_values,
890
+ skip_blank_lines=False, # GH 39808
891
+ parse_dates=parse_dates,
892
+ date_parser=date_parser,
893
+ date_format=date_format,
894
+ thousands=thousands,
895
+ decimal=decimal,
896
+ comment=comment,
897
+ skipfooter=skipfooter,
898
+ usecols=usecols,
899
+ dtype_backend=dtype_backend,
900
+ **kwds,
901
+ )
902
+
903
+ output[asheetname] = parser.read(nrows=nrows)
904
+
905
+ if header_names:
906
+ output[asheetname].columns = output[asheetname].columns.set_names(
907
+ header_names
908
+ )
909
+
910
+ except EmptyDataError:
911
+ # No Data, return an empty DataFrame
912
+ output[asheetname] = DataFrame()
913
+
914
+ except Exception as err:
915
+ err.args = (f"{err.args[0]} (sheet: {asheetname})", *err.args[1:])
916
+ raise err
917
+
918
+ if last_sheetname is None:
919
+ raise ValueError("Sheet name is an empty list")
920
+
921
+ if ret_dict:
922
+ return output
923
+ else:
924
+ return output[last_sheetname]
925
+
926
+
927
+ @doc(storage_options=_shared_docs["storage_options"])
928
+ class ExcelWriter(Generic[_WorkbookT]):
929
+ """
930
+ Class for writing DataFrame objects into excel sheets.
931
+
932
+ Default is to use:
933
+
934
+ * `xlsxwriter <https://pypi.org/project/XlsxWriter/>`__ for xlsx files if xlsxwriter
935
+ is installed otherwise `openpyxl <https://pypi.org/project/openpyxl/>`__
936
+ * `odswriter <https://pypi.org/project/odswriter/>`__ for ods files
937
+
938
+ See ``DataFrame.to_excel`` for typical usage.
939
+
940
+ The writer should be used as a context manager. Otherwise, call `close()` to save
941
+ and close any opened file handles.
942
+
943
+ Parameters
944
+ ----------
945
+ path : str or typing.BinaryIO
946
+ Path to xls or xlsx or ods file.
947
+ engine : str (optional)
948
+ Engine to use for writing. If None, defaults to
949
+ ``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword
950
+ argument.
951
+ date_format : str, default None
952
+ Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
953
+ datetime_format : str, default None
954
+ Format string for datetime objects written into Excel files.
955
+ (e.g. 'YYYY-MM-DD HH:MM:SS').
956
+ mode : {{'w', 'a'}}, default 'w'
957
+ File mode to use (write or append). Append does not work with fsspec URLs.
958
+ {storage_options}
959
+
960
+ if_sheet_exists : {{'error', 'new', 'replace', 'overlay'}}, default 'error'
961
+ How to behave when trying to write to a sheet that already
962
+ exists (append mode only).
963
+
964
+ * error: raise a ValueError.
965
+ * new: Create a new sheet, with a name determined by the engine.
966
+ * replace: Delete the contents of the sheet before writing to it.
967
+ * overlay: Write contents to the existing sheet without first removing,
968
+ but possibly over top of, the existing contents.
969
+
970
+ .. versionadded:: 1.3.0
971
+
972
+ .. versionchanged:: 1.4.0
973
+
974
+ Added ``overlay`` option
975
+
976
+ engine_kwargs : dict, optional
977
+ Keyword arguments to be passed into the engine. These will be passed to
978
+ the following functions of the respective engines:
979
+
980
+ * xlsxwriter: ``xlsxwriter.Workbook(file, **engine_kwargs)``
981
+ * openpyxl (write mode): ``openpyxl.Workbook(**engine_kwargs)``
982
+ * openpyxl (append mode): ``openpyxl.load_workbook(file, **engine_kwargs)``
983
+ * odswriter: ``odf.opendocument.OpenDocumentSpreadsheet(**engine_kwargs)``
984
+
985
+ .. versionadded:: 1.3.0
986
+
987
+ Notes
988
+ -----
989
+ For compatibility with CSV writers, ExcelWriter serializes lists
990
+ and dicts to strings before writing.
991
+
992
+ Examples
993
+ --------
994
+ Default usage:
995
+
996
+ >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
997
+ >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
998
+ ... df.to_excel(writer) # doctest: +SKIP
999
+
1000
+ To write to separate sheets in a single file:
1001
+
1002
+ >>> df1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"]) # doctest: +SKIP
1003
+ >>> df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
1004
+ >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
1005
+ ... df1.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP
1006
+ ... df2.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP
1007
+
1008
+ You can set the date format or datetime format:
1009
+
1010
+ >>> from datetime import date, datetime # doctest: +SKIP
1011
+ >>> df = pd.DataFrame(
1012
+ ... [
1013
+ ... [date(2014, 1, 31), date(1999, 9, 24)],
1014
+ ... [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
1015
+ ... ],
1016
+ ... index=["Date", "Datetime"],
1017
+ ... columns=["X", "Y"],
1018
+ ... ) # doctest: +SKIP
1019
+ >>> with pd.ExcelWriter(
1020
+ ... "path_to_file.xlsx",
1021
+ ... date_format="YYYY-MM-DD",
1022
+ ... datetime_format="YYYY-MM-DD HH:MM:SS"
1023
+ ... ) as writer:
1024
+ ... df.to_excel(writer) # doctest: +SKIP
1025
+
1026
+ You can also append to an existing Excel file:
1027
+
1028
+ >>> with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:
1029
+ ... df.to_excel(writer, sheet_name="Sheet3") # doctest: +SKIP
1030
+
1031
+ Here, the `if_sheet_exists` parameter can be set to replace a sheet if it
1032
+ already exists:
1033
+
1034
+ >>> with ExcelWriter(
1035
+ ... "path_to_file.xlsx",
1036
+ ... mode="a",
1037
+ ... engine="openpyxl",
1038
+ ... if_sheet_exists="replace",
1039
+ ... ) as writer:
1040
+ ... df.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP
1041
+
1042
+ You can also write multiple DataFrames to a single sheet. Note that the
1043
+ ``if_sheet_exists`` parameter needs to be set to ``overlay``:
1044
+
1045
+ >>> with ExcelWriter("path_to_file.xlsx",
1046
+ ... mode="a",
1047
+ ... engine="openpyxl",
1048
+ ... if_sheet_exists="overlay",
1049
+ ... ) as writer:
1050
+ ... df1.to_excel(writer, sheet_name="Sheet1")
1051
+ ... df2.to_excel(writer, sheet_name="Sheet1", startcol=3) # doctest: +SKIP
1052
+
1053
+ You can store Excel file in RAM:
1054
+
1055
+ >>> import io
1056
+ >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
1057
+ >>> buffer = io.BytesIO()
1058
+ >>> with pd.ExcelWriter(buffer) as writer:
1059
+ ... df.to_excel(writer)
1060
+
1061
+ You can pack Excel file into zip archive:
1062
+
1063
+ >>> import zipfile # doctest: +SKIP
1064
+ >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
1065
+ >>> with zipfile.ZipFile("path_to_file.zip", "w") as zf:
1066
+ ... with zf.open("filename.xlsx", "w") as buffer:
1067
+ ... with pd.ExcelWriter(buffer) as writer:
1068
+ ... df.to_excel(writer) # doctest: +SKIP
1069
+
1070
+ You can specify additional arguments to the underlying engine:
1071
+
1072
+ >>> with pd.ExcelWriter(
1073
+ ... "path_to_file.xlsx",
1074
+ ... engine="xlsxwriter",
1075
+ ... engine_kwargs={{"options": {{"nan_inf_to_errors": True}}}}
1076
+ ... ) as writer:
1077
+ ... df.to_excel(writer) # doctest: +SKIP
1078
+
1079
+ In append mode, ``engine_kwargs`` are passed through to
1080
+ openpyxl's ``load_workbook``:
1081
+
1082
+ >>> with pd.ExcelWriter(
1083
+ ... "path_to_file.xlsx",
1084
+ ... engine="openpyxl",
1085
+ ... mode="a",
1086
+ ... engine_kwargs={{"keep_vba": True}}
1087
+ ... ) as writer:
1088
+ ... df.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP
1089
+ """
1090
+
1091
+ # Defining an ExcelWriter implementation (see abstract methods for more...)
1092
+
1093
+ # - Mandatory
1094
+ # - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)``
1095
+ # --> called to write additional DataFrames to disk
1096
+ # - ``_supported_extensions`` (tuple of supported extensions), used to
1097
+ # check that engine supports the given extension.
1098
+ # - ``_engine`` - string that gives the engine name. Necessary to
1099
+ # instantiate class directly and bypass ``ExcelWriterMeta`` engine
1100
+ # lookup.
1101
+ # - ``save(self)`` --> called to save file to disk
1102
+ # - Mostly mandatory (i.e. should at least exist)
1103
+ # - book, cur_sheet, path
1104
+
1105
+ # - Optional:
1106
+ # - ``__init__(self, path, engine=None, **kwargs)`` --> always called
1107
+ # with path as first argument.
1108
+
1109
+ # You also need to register the class with ``register_writer()``.
1110
+ # Technically, ExcelWriter implementations don't need to subclass
1111
+ # ExcelWriter.
1112
+
1113
+ _engine: str
1114
+ _supported_extensions: tuple[str, ...]
1115
+
1116
+ def __new__(
1117
+ cls,
1118
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
1119
+ engine: str | None = None,
1120
+ date_format: str | None = None,
1121
+ datetime_format: str | None = None,
1122
+ mode: str = "w",
1123
+ storage_options: StorageOptions | None = None,
1124
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
1125
+ engine_kwargs: dict | None = None,
1126
+ ) -> Self:
1127
+ # only switch class if generic(ExcelWriter)
1128
+ if cls is ExcelWriter:
1129
+ if engine is None or (isinstance(engine, str) and engine == "auto"):
1130
+ if isinstance(path, str):
1131
+ ext = os.path.splitext(path)[-1][1:]
1132
+ else:
1133
+ ext = "xlsx"
1134
+
1135
+ try:
1136
+ engine = config.get_option(f"io.excel.{ext}.writer", silent=True)
1137
+ if engine == "auto":
1138
+ engine = get_default_engine(ext, mode="writer")
1139
+ except KeyError as err:
1140
+ raise ValueError(f"No engine for filetype: '{ext}'") from err
1141
+
1142
+ # for mypy
1143
+ assert engine is not None
1144
+ # error: Incompatible types in assignment (expression has type
1145
+ # "type[ExcelWriter[Any]]", variable has type "type[Self]")
1146
+ cls = get_writer(engine) # type: ignore[assignment]
1147
+
1148
+ return object.__new__(cls)
1149
+
1150
+ # declare external properties you can count on
1151
+ _path = None
1152
+
1153
+ @property
1154
+ def supported_extensions(self) -> tuple[str, ...]:
1155
+ """Extensions that writer engine supports."""
1156
+ return self._supported_extensions
1157
+
1158
+ @property
1159
+ def engine(self) -> str:
1160
+ """Name of engine."""
1161
+ return self._engine
1162
+
1163
+ @property
1164
+ def sheets(self) -> dict[str, Any]:
1165
+ """Mapping of sheet names to sheet objects."""
1166
+ raise NotImplementedError
1167
+
1168
+ @property
1169
+ def book(self) -> _WorkbookT:
1170
+ """
1171
+ Book instance. Class type will depend on the engine used.
1172
+
1173
+ This attribute can be used to access engine-specific features.
1174
+ """
1175
+ raise NotImplementedError
1176
+
1177
+ def _write_cells(
1178
+ self,
1179
+ cells,
1180
+ sheet_name: str | None = None,
1181
+ startrow: int = 0,
1182
+ startcol: int = 0,
1183
+ freeze_panes: tuple[int, int] | None = None,
1184
+ ) -> None:
1185
+ """
1186
+ Write given formatted cells into Excel an excel sheet
1187
+
1188
+ Parameters
1189
+ ----------
1190
+ cells : generator
1191
+ cell of formatted data to save to Excel sheet
1192
+ sheet_name : str, default None
1193
+ Name of Excel sheet, if None, then use self.cur_sheet
1194
+ startrow : upper left cell row to dump data frame
1195
+ startcol : upper left cell column to dump data frame
1196
+ freeze_panes: int tuple of length 2
1197
+ contains the bottom-most row and right-most column to freeze
1198
+ """
1199
+ raise NotImplementedError
1200
+
1201
+ def _save(self) -> None:
1202
+ """
1203
+ Save workbook to disk.
1204
+ """
1205
+ raise NotImplementedError
1206
+
1207
+ def __init__(
1208
+ self,
1209
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
1210
+ engine: str | None = None,
1211
+ date_format: str | None = None,
1212
+ datetime_format: str | None = None,
1213
+ mode: str = "w",
1214
+ storage_options: StorageOptions | None = None,
1215
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
1216
+ engine_kwargs: dict[str, Any] | None = None,
1217
+ ) -> None:
1218
+ # validate that this engine can handle the extension
1219
+ if isinstance(path, str):
1220
+ ext = os.path.splitext(path)[-1]
1221
+ self.check_extension(ext)
1222
+
1223
+ # use mode to open the file
1224
+ if "b" not in mode:
1225
+ mode += "b"
1226
+ # use "a" for the user to append data to excel but internally use "r+" to let
1227
+ # the excel backend first read the existing file and then write any data to it
1228
+ mode = mode.replace("a", "r+")
1229
+
1230
+ if if_sheet_exists not in (None, "error", "new", "replace", "overlay"):
1231
+ raise ValueError(
1232
+ f"'{if_sheet_exists}' is not valid for if_sheet_exists. "
1233
+ "Valid options are 'error', 'new', 'replace' and 'overlay'."
1234
+ )
1235
+ if if_sheet_exists and "r+" not in mode:
1236
+ raise ValueError("if_sheet_exists is only valid in append mode (mode='a')")
1237
+ if if_sheet_exists is None:
1238
+ if_sheet_exists = "error"
1239
+ self._if_sheet_exists = if_sheet_exists
1240
+
1241
+ # cast ExcelWriter to avoid adding 'if self._handles is not None'
1242
+ self._handles = IOHandles(
1243
+ cast(IO[bytes], path), compression={"compression": None}
1244
+ )
1245
+ if not isinstance(path, ExcelWriter):
1246
+ self._handles = get_handle(
1247
+ path, mode, storage_options=storage_options, is_text=False
1248
+ )
1249
+ self._cur_sheet = None
1250
+
1251
+ if date_format is None:
1252
+ self._date_format = "YYYY-MM-DD"
1253
+ else:
1254
+ self._date_format = date_format
1255
+ if datetime_format is None:
1256
+ self._datetime_format = "YYYY-MM-DD HH:MM:SS"
1257
+ else:
1258
+ self._datetime_format = datetime_format
1259
+
1260
+ self._mode = mode
1261
+
1262
+ @property
1263
+ def date_format(self) -> str:
1264
+ """
1265
+ Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
1266
+ """
1267
+ return self._date_format
1268
+
1269
+ @property
1270
+ def datetime_format(self) -> str:
1271
+ """
1272
+ Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
1273
+ """
1274
+ return self._datetime_format
1275
+
1276
+ @property
1277
+ def if_sheet_exists(self) -> str:
1278
+ """
1279
+ How to behave when writing to a sheet that already exists in append mode.
1280
+ """
1281
+ return self._if_sheet_exists
1282
+
1283
+ def __fspath__(self) -> str:
1284
+ return getattr(self._handles.handle, "name", "")
1285
+
1286
+ def _get_sheet_name(self, sheet_name: str | None) -> str:
1287
+ if sheet_name is None:
1288
+ sheet_name = self._cur_sheet
1289
+ if sheet_name is None: # pragma: no cover
1290
+ raise ValueError("Must pass explicit sheet_name or set _cur_sheet property")
1291
+ return sheet_name
1292
+
1293
+ def _value_with_fmt(
1294
+ self, val
1295
+ ) -> tuple[
1296
+ int | float | bool | str | datetime.datetime | datetime.date, str | None
1297
+ ]:
1298
+ """
1299
+ Convert numpy types to Python types for the Excel writers.
1300
+
1301
+ Parameters
1302
+ ----------
1303
+ val : object
1304
+ Value to be written into cells
1305
+
1306
+ Returns
1307
+ -------
1308
+ Tuple with the first element being the converted value and the second
1309
+ being an optional format
1310
+ """
1311
+ fmt = None
1312
+
1313
+ if is_integer(val):
1314
+ val = int(val)
1315
+ elif is_float(val):
1316
+ val = float(val)
1317
+ elif is_bool(val):
1318
+ val = bool(val)
1319
+ elif isinstance(val, datetime.datetime):
1320
+ fmt = self._datetime_format
1321
+ elif isinstance(val, datetime.date):
1322
+ fmt = self._date_format
1323
+ elif isinstance(val, datetime.timedelta):
1324
+ val = val.total_seconds() / 86400
1325
+ fmt = "0"
1326
+ else:
1327
+ val = str(val)
1328
+
1329
+ return val, fmt
1330
+
1331
+ @classmethod
1332
+ def check_extension(cls, ext: str) -> Literal[True]:
1333
+ """
1334
+ checks that path's extension against the Writer's supported
1335
+ extensions. If it isn't supported, raises UnsupportedFiletypeError.
1336
+ """
1337
+ if ext.startswith("."):
1338
+ ext = ext[1:]
1339
+ if not any(ext in extension for extension in cls._supported_extensions):
1340
+ raise ValueError(f"Invalid extension for engine '{cls.engine}': '{ext}'")
1341
+ return True
1342
+
1343
+ # Allow use as a contextmanager
1344
+ def __enter__(self) -> Self:
1345
+ return self
1346
+
1347
+ def __exit__(
1348
+ self,
1349
+ exc_type: type[BaseException] | None,
1350
+ exc_value: BaseException | None,
1351
+ traceback: TracebackType | None,
1352
+ ) -> None:
1353
+ self.close()
1354
+
1355
+ def close(self) -> None:
1356
+ """synonym for save, to make it more file-like"""
1357
+ self._save()
1358
+ self._handles.close()
1359
+
1360
+
1361
+ XLS_SIGNATURES = (
1362
+ b"\x09\x00\x04\x00\x07\x00\x10\x00", # BIFF2
1363
+ b"\x09\x02\x06\x00\x00\x00\x10\x00", # BIFF3
1364
+ b"\x09\x04\x06\x00\x00\x00\x10\x00", # BIFF4
1365
+ b"\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1", # Compound File Binary
1366
+ )
1367
+ ZIP_SIGNATURE = b"PK\x03\x04"
1368
+ PEEK_SIZE = max(map(len, XLS_SIGNATURES + (ZIP_SIGNATURE,)))
1369
+
1370
+
1371
+ @doc(storage_options=_shared_docs["storage_options"])
1372
+ def inspect_excel_format(
1373
+ content_or_path: FilePath | ReadBuffer[bytes],
1374
+ storage_options: StorageOptions | None = None,
1375
+ ) -> str | None:
1376
+ """
1377
+ Inspect the path or content of an excel file and get its format.
1378
+
1379
+ Adopted from xlrd: https://github.com/python-excel/xlrd.
1380
+
1381
+ Parameters
1382
+ ----------
1383
+ content_or_path : str or file-like object
1384
+ Path to file or content of file to inspect. May be a URL.
1385
+ {storage_options}
1386
+
1387
+ Returns
1388
+ -------
1389
+ str or None
1390
+ Format of file if it can be determined.
1391
+
1392
+ Raises
1393
+ ------
1394
+ ValueError
1395
+ If resulting stream is empty.
1396
+ BadZipFile
1397
+ If resulting stream does not have an XLS signature and is not a valid zipfile.
1398
+ """
1399
+ if isinstance(content_or_path, bytes):
1400
+ content_or_path = BytesIO(content_or_path)
1401
+
1402
+ with get_handle(
1403
+ content_or_path, "rb", storage_options=storage_options, is_text=False
1404
+ ) as handle:
1405
+ stream = handle.handle
1406
+ stream.seek(0)
1407
+ buf = stream.read(PEEK_SIZE)
1408
+ if buf is None:
1409
+ raise ValueError("stream is empty")
1410
+ assert isinstance(buf, bytes)
1411
+ peek = buf
1412
+ stream.seek(0)
1413
+
1414
+ if any(peek.startswith(sig) for sig in XLS_SIGNATURES):
1415
+ return "xls"
1416
+ elif not peek.startswith(ZIP_SIGNATURE):
1417
+ return None
1418
+
1419
+ with zipfile.ZipFile(stream) as zf:
1420
+ # Workaround for some third party files that use forward slashes and
1421
+ # lower case names.
1422
+ component_names = [
1423
+ name.replace("\\", "/").lower() for name in zf.namelist()
1424
+ ]
1425
+
1426
+ if "xl/workbook.xml" in component_names:
1427
+ return "xlsx"
1428
+ if "xl/workbook.bin" in component_names:
1429
+ return "xlsb"
1430
+ if "content.xml" in component_names:
1431
+ return "ods"
1432
+ return "zip"
1433
+
1434
+
1435
+ class ExcelFile:
1436
+ """
1437
+ Class for parsing tabular Excel sheets into DataFrame objects.
1438
+
1439
+ See read_excel for more documentation.
1440
+
1441
+ Parameters
1442
+ ----------
1443
+ path_or_buffer : str, bytes, path object (pathlib.Path or py._path.local.LocalPath),
1444
+ A file-like object, xlrd workbook or openpyxl workbook.
1445
+ If a string or path object, expected to be a path to a
1446
+ .xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file.
1447
+ engine : str, default None
1448
+ If io is not a buffer or path, this must be set to identify io.
1449
+ Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``, ``calamine``
1450
+ Engine compatibility :
1451
+
1452
+ - ``xlrd`` supports old-style Excel files (.xls).
1453
+ - ``openpyxl`` supports newer Excel file formats.
1454
+ - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
1455
+ - ``pyxlsb`` supports Binary Excel files.
1456
+ - ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
1457
+ and OpenDocument (.ods) file formats.
1458
+
1459
+ .. versionchanged:: 1.2.0
1460
+
1461
+ The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
1462
+ now only supports old-style ``.xls`` files.
1463
+ When ``engine=None``, the following logic will be
1464
+ used to determine the engine:
1465
+
1466
+ - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
1467
+ then `odf <https://pypi.org/project/odfpy/>`_ will be used.
1468
+ - Otherwise if ``path_or_buffer`` is an xls format,
1469
+ ``xlrd`` will be used.
1470
+ - Otherwise if ``path_or_buffer`` is in xlsb format,
1471
+ `pyxlsb <https://pypi.org/project/pyxlsb/>`_ will be used.
1472
+
1473
+ .. versionadded:: 1.3.0
1474
+
1475
+ - Otherwise if `openpyxl <https://pypi.org/project/openpyxl/>`_ is installed,
1476
+ then ``openpyxl`` will be used.
1477
+ - Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised.
1478
+
1479
+ .. warning::
1480
+
1481
+ Please do not report issues when using ``xlrd`` to read ``.xlsx`` files.
1482
+ This is not supported, switch to using ``openpyxl`` instead.
1483
+ engine_kwargs : dict, optional
1484
+ Arbitrary keyword arguments passed to excel engine.
1485
+
1486
+ Examples
1487
+ --------
1488
+ >>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP
1489
+ >>> with pd.ExcelFile("myfile.xls") as xls: # doctest: +SKIP
1490
+ ... df1 = pd.read_excel(xls, "Sheet1") # doctest: +SKIP
1491
+ """
1492
+
1493
+ from pandas.io.excel._calamine import CalamineReader
1494
+ from pandas.io.excel._odfreader import ODFReader
1495
+ from pandas.io.excel._openpyxl import OpenpyxlReader
1496
+ from pandas.io.excel._pyxlsb import PyxlsbReader
1497
+ from pandas.io.excel._xlrd import XlrdReader
1498
+
1499
+ _engines: Mapping[str, Any] = {
1500
+ "xlrd": XlrdReader,
1501
+ "openpyxl": OpenpyxlReader,
1502
+ "odf": ODFReader,
1503
+ "pyxlsb": PyxlsbReader,
1504
+ "calamine": CalamineReader,
1505
+ }
1506
+
1507
+ def __init__(
1508
+ self,
1509
+ path_or_buffer,
1510
+ engine: str | None = None,
1511
+ storage_options: StorageOptions | None = None,
1512
+ engine_kwargs: dict | None = None,
1513
+ ) -> None:
1514
+ if engine_kwargs is None:
1515
+ engine_kwargs = {}
1516
+
1517
+ if engine is not None and engine not in self._engines:
1518
+ raise ValueError(f"Unknown engine: {engine}")
1519
+
1520
+ # First argument can also be bytes, so create a buffer
1521
+ if isinstance(path_or_buffer, bytes):
1522
+ path_or_buffer = BytesIO(path_or_buffer)
1523
+ warnings.warn(
1524
+ "Passing bytes to 'read_excel' is deprecated and "
1525
+ "will be removed in a future version. To read from a "
1526
+ "byte string, wrap it in a `BytesIO` object.",
1527
+ FutureWarning,
1528
+ stacklevel=find_stack_level(),
1529
+ )
1530
+
1531
+ # Could be a str, ExcelFile, Book, etc.
1532
+ self.io = path_or_buffer
1533
+ # Always a string
1534
+ self._io = stringify_path(path_or_buffer)
1535
+
1536
+ # Determine xlrd version if installed
1537
+ if import_optional_dependency("xlrd", errors="ignore") is None:
1538
+ xlrd_version = None
1539
+ else:
1540
+ import xlrd
1541
+
1542
+ xlrd_version = Version(get_version(xlrd))
1543
+
1544
+ if engine is None:
1545
+ # Only determine ext if it is needed
1546
+ ext: str | None
1547
+ if xlrd_version is not None and isinstance(path_or_buffer, xlrd.Book):
1548
+ ext = "xls"
1549
+ else:
1550
+ ext = inspect_excel_format(
1551
+ content_or_path=path_or_buffer, storage_options=storage_options
1552
+ )
1553
+ if ext is None:
1554
+ raise ValueError(
1555
+ "Excel file format cannot be determined, you must specify "
1556
+ "an engine manually."
1557
+ )
1558
+
1559
+ engine = config.get_option(f"io.excel.{ext}.reader", silent=True)
1560
+ if engine == "auto":
1561
+ engine = get_default_engine(ext, mode="reader")
1562
+
1563
+ assert engine is not None
1564
+ self.engine = engine
1565
+ self.storage_options = storage_options
1566
+
1567
+ self._reader = self._engines[engine](
1568
+ self._io,
1569
+ storage_options=storage_options,
1570
+ engine_kwargs=engine_kwargs,
1571
+ )
1572
+
1573
+ def __fspath__(self):
1574
+ return self._io
1575
+
1576
+ def parse(
1577
+ self,
1578
+ sheet_name: str | int | list[int] | list[str] | None = 0,
1579
+ header: int | Sequence[int] | None = 0,
1580
+ names: SequenceNotStr[Hashable] | range | None = None,
1581
+ index_col: int | Sequence[int] | None = None,
1582
+ usecols=None,
1583
+ converters=None,
1584
+ true_values: Iterable[Hashable] | None = None,
1585
+ false_values: Iterable[Hashable] | None = None,
1586
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
1587
+ nrows: int | None = None,
1588
+ na_values=None,
1589
+ parse_dates: list | dict | bool = False,
1590
+ date_parser: Callable | lib.NoDefault = lib.no_default,
1591
+ date_format: str | dict[Hashable, str] | None = None,
1592
+ thousands: str | None = None,
1593
+ comment: str | None = None,
1594
+ skipfooter: int = 0,
1595
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
1596
+ **kwds,
1597
+ ) -> DataFrame | dict[str, DataFrame] | dict[int, DataFrame]:
1598
+ """
1599
+ Parse specified sheet(s) into a DataFrame.
1600
+
1601
+ Equivalent to read_excel(ExcelFile, ...) See the read_excel
1602
+ docstring for more info on accepted parameters.
1603
+
1604
+ Returns
1605
+ -------
1606
+ DataFrame or dict of DataFrames
1607
+ DataFrame from the passed in Excel file.
1608
+
1609
+ Examples
1610
+ --------
1611
+ >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
1612
+ >>> df.to_excel('myfile.xlsx') # doctest: +SKIP
1613
+ >>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP
1614
+ >>> file.parse() # doctest: +SKIP
1615
+ """
1616
+ return self._reader.parse(
1617
+ sheet_name=sheet_name,
1618
+ header=header,
1619
+ names=names,
1620
+ index_col=index_col,
1621
+ usecols=usecols,
1622
+ converters=converters,
1623
+ true_values=true_values,
1624
+ false_values=false_values,
1625
+ skiprows=skiprows,
1626
+ nrows=nrows,
1627
+ na_values=na_values,
1628
+ parse_dates=parse_dates,
1629
+ date_parser=date_parser,
1630
+ date_format=date_format,
1631
+ thousands=thousands,
1632
+ comment=comment,
1633
+ skipfooter=skipfooter,
1634
+ dtype_backend=dtype_backend,
1635
+ **kwds,
1636
+ )
1637
+
1638
+ @property
1639
+ def book(self):
1640
+ return self._reader.book
1641
+
1642
+ @property
1643
+ def sheet_names(self):
1644
+ return self._reader.sheet_names
1645
+
1646
+ def close(self) -> None:
1647
+ """close io if necessary"""
1648
+ self._reader.close()
1649
+
1650
+ def __enter__(self) -> Self:
1651
+ return self
1652
+
1653
+ def __exit__(
1654
+ self,
1655
+ exc_type: type[BaseException] | None,
1656
+ exc_value: BaseException | None,
1657
+ traceback: TracebackType | None,
1658
+ ) -> None:
1659
+ self.close()
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_odfreader.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import (
4
+ TYPE_CHECKING,
5
+ cast,
6
+ )
7
+
8
+ import numpy as np
9
+
10
+ from pandas._typing import (
11
+ FilePath,
12
+ ReadBuffer,
13
+ Scalar,
14
+ StorageOptions,
15
+ )
16
+ from pandas.compat._optional import import_optional_dependency
17
+ from pandas.util._decorators import doc
18
+
19
+ import pandas as pd
20
+ from pandas.core.shared_docs import _shared_docs
21
+
22
+ from pandas.io.excel._base import BaseExcelReader
23
+
24
+ if TYPE_CHECKING:
25
+ from odf.opendocument import OpenDocument
26
+
27
+ from pandas._libs.tslibs.nattype import NaTType
28
+
29
+
30
+ @doc(storage_options=_shared_docs["storage_options"])
31
+ class ODFReader(BaseExcelReader["OpenDocument"]):
32
+ def __init__(
33
+ self,
34
+ filepath_or_buffer: FilePath | ReadBuffer[bytes],
35
+ storage_options: StorageOptions | None = None,
36
+ engine_kwargs: dict | None = None,
37
+ ) -> None:
38
+ """
39
+ Read tables out of OpenDocument formatted files.
40
+
41
+ Parameters
42
+ ----------
43
+ filepath_or_buffer : str, path to be parsed or
44
+ an open readable stream.
45
+ {storage_options}
46
+ engine_kwargs : dict, optional
47
+ Arbitrary keyword arguments passed to excel engine.
48
+ """
49
+ import_optional_dependency("odf")
50
+ super().__init__(
51
+ filepath_or_buffer,
52
+ storage_options=storage_options,
53
+ engine_kwargs=engine_kwargs,
54
+ )
55
+
56
+ @property
57
+ def _workbook_class(self) -> type[OpenDocument]:
58
+ from odf.opendocument import OpenDocument
59
+
60
+ return OpenDocument
61
+
62
+ def load_workbook(
63
+ self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
64
+ ) -> OpenDocument:
65
+ from odf.opendocument import load
66
+
67
+ return load(filepath_or_buffer, **engine_kwargs)
68
+
69
+ @property
70
+ def empty_value(self) -> str:
71
+ """Property for compat with other readers."""
72
+ return ""
73
+
74
+ @property
75
+ def sheet_names(self) -> list[str]:
76
+ """Return a list of sheet names present in the document"""
77
+ from odf.table import Table
78
+
79
+ tables = self.book.getElementsByType(Table)
80
+ return [t.getAttribute("name") for t in tables]
81
+
82
+ def get_sheet_by_index(self, index: int):
83
+ from odf.table import Table
84
+
85
+ self.raise_if_bad_sheet_by_index(index)
86
+ tables = self.book.getElementsByType(Table)
87
+ return tables[index]
88
+
89
+ def get_sheet_by_name(self, name: str):
90
+ from odf.table import Table
91
+
92
+ self.raise_if_bad_sheet_by_name(name)
93
+ tables = self.book.getElementsByType(Table)
94
+
95
+ for table in tables:
96
+ if table.getAttribute("name") == name:
97
+ return table
98
+
99
+ self.close()
100
+ raise ValueError(f"sheet {name} not found")
101
+
102
+ def get_sheet_data(
103
+ self, sheet, file_rows_needed: int | None = None
104
+ ) -> list[list[Scalar | NaTType]]:
105
+ """
106
+ Parse an ODF Table into a list of lists
107
+ """
108
+ from odf.table import (
109
+ CoveredTableCell,
110
+ TableCell,
111
+ TableRow,
112
+ )
113
+
114
+ covered_cell_name = CoveredTableCell().qname
115
+ table_cell_name = TableCell().qname
116
+ cell_names = {covered_cell_name, table_cell_name}
117
+
118
+ sheet_rows = sheet.getElementsByType(TableRow)
119
+ empty_rows = 0
120
+ max_row_len = 0
121
+
122
+ table: list[list[Scalar | NaTType]] = []
123
+
124
+ for sheet_row in sheet_rows:
125
+ sheet_cells = [
126
+ x
127
+ for x in sheet_row.childNodes
128
+ if hasattr(x, "qname") and x.qname in cell_names
129
+ ]
130
+ empty_cells = 0
131
+ table_row: list[Scalar | NaTType] = []
132
+
133
+ for sheet_cell in sheet_cells:
134
+ if sheet_cell.qname == table_cell_name:
135
+ value = self._get_cell_value(sheet_cell)
136
+ else:
137
+ value = self.empty_value
138
+
139
+ column_repeat = self._get_column_repeat(sheet_cell)
140
+
141
+ # Queue up empty values, writing only if content succeeds them
142
+ if value == self.empty_value:
143
+ empty_cells += column_repeat
144
+ else:
145
+ table_row.extend([self.empty_value] * empty_cells)
146
+ empty_cells = 0
147
+ table_row.extend([value] * column_repeat)
148
+
149
+ if max_row_len < len(table_row):
150
+ max_row_len = len(table_row)
151
+
152
+ row_repeat = self._get_row_repeat(sheet_row)
153
+ if len(table_row) == 0:
154
+ empty_rows += row_repeat
155
+ else:
156
+ # add blank rows to our table
157
+ table.extend([[self.empty_value]] * empty_rows)
158
+ empty_rows = 0
159
+ table.extend(table_row for _ in range(row_repeat))
160
+ if file_rows_needed is not None and len(table) >= file_rows_needed:
161
+ break
162
+
163
+ # Make our table square
164
+ for row in table:
165
+ if len(row) < max_row_len:
166
+ row.extend([self.empty_value] * (max_row_len - len(row)))
167
+
168
+ return table
169
+
170
+ def _get_row_repeat(self, row) -> int:
171
+ """
172
+ Return number of times this row was repeated
173
+ Repeating an empty row appeared to be a common way
174
+ of representing sparse rows in the table.
175
+ """
176
+ from odf.namespaces import TABLENS
177
+
178
+ return int(row.attributes.get((TABLENS, "number-rows-repeated"), 1))
179
+
180
+ def _get_column_repeat(self, cell) -> int:
181
+ from odf.namespaces import TABLENS
182
+
183
+ return int(cell.attributes.get((TABLENS, "number-columns-repeated"), 1))
184
+
185
+ def _get_cell_value(self, cell) -> Scalar | NaTType:
186
+ from odf.namespaces import OFFICENS
187
+
188
+ if str(cell) == "#N/A":
189
+ return np.nan
190
+
191
+ cell_type = cell.attributes.get((OFFICENS, "value-type"))
192
+ if cell_type == "boolean":
193
+ if str(cell) == "TRUE":
194
+ return True
195
+ return False
196
+ if cell_type is None:
197
+ return self.empty_value
198
+ elif cell_type == "float":
199
+ # GH5394
200
+ cell_value = float(cell.attributes.get((OFFICENS, "value")))
201
+ val = int(cell_value)
202
+ if val == cell_value:
203
+ return val
204
+ return cell_value
205
+ elif cell_type == "percentage":
206
+ cell_value = cell.attributes.get((OFFICENS, "value"))
207
+ return float(cell_value)
208
+ elif cell_type == "string":
209
+ return self._get_cell_string_value(cell)
210
+ elif cell_type == "currency":
211
+ cell_value = cell.attributes.get((OFFICENS, "value"))
212
+ return float(cell_value)
213
+ elif cell_type == "date":
214
+ cell_value = cell.attributes.get((OFFICENS, "date-value"))
215
+ return pd.Timestamp(cell_value)
216
+ elif cell_type == "time":
217
+ stamp = pd.Timestamp(str(cell))
218
+ # cast needed here because Scalar doesn't include datetime.time
219
+ return cast(Scalar, stamp.time())
220
+ else:
221
+ self.close()
222
+ raise ValueError(f"Unrecognized type {cell_type}")
223
+
224
+ def _get_cell_string_value(self, cell) -> str:
225
+ """
226
+ Find and decode OpenDocument text:s tags that represent
227
+ a run length encoded sequence of space characters.
228
+ """
229
+ from odf.element import Element
230
+ from odf.namespaces import TEXTNS
231
+ from odf.office import Annotation
232
+ from odf.text import S
233
+
234
+ office_annotation = Annotation().qname
235
+ text_s = S().qname
236
+
237
+ value = []
238
+
239
+ for fragment in cell.childNodes:
240
+ if isinstance(fragment, Element):
241
+ if fragment.qname == text_s:
242
+ spaces = int(fragment.attributes.get((TEXTNS, "c"), 1))
243
+ value.append(" " * spaces)
244
+ elif fragment.qname == office_annotation:
245
+ continue
246
+ else:
247
+ # recursive impl needed in case of nested fragments
248
+ # with multiple spaces
249
+ # https://github.com/pandas-dev/pandas/pull/36175#discussion_r484639704
250
+ value.append(self._get_cell_string_value(fragment))
251
+ else:
252
+ value.append(str(fragment).strip("\n"))
253
+ return "".join(value)
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_pyxlsb.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pyright: reportMissingImports=false
2
+ from __future__ import annotations
3
+
4
+ from typing import TYPE_CHECKING
5
+
6
+ from pandas.compat._optional import import_optional_dependency
7
+ from pandas.util._decorators import doc
8
+
9
+ from pandas.core.shared_docs import _shared_docs
10
+
11
+ from pandas.io.excel._base import BaseExcelReader
12
+
13
+ if TYPE_CHECKING:
14
+ from pyxlsb import Workbook
15
+
16
+ from pandas._typing import (
17
+ FilePath,
18
+ ReadBuffer,
19
+ Scalar,
20
+ StorageOptions,
21
+ )
22
+
23
+
24
+ class PyxlsbReader(BaseExcelReader["Workbook"]):
25
+ @doc(storage_options=_shared_docs["storage_options"])
26
+ def __init__(
27
+ self,
28
+ filepath_or_buffer: FilePath | ReadBuffer[bytes],
29
+ storage_options: StorageOptions | None = None,
30
+ engine_kwargs: dict | None = None,
31
+ ) -> None:
32
+ """
33
+ Reader using pyxlsb engine.
34
+
35
+ Parameters
36
+ ----------
37
+ filepath_or_buffer : str, path object, or Workbook
38
+ Object to be parsed.
39
+ {storage_options}
40
+ engine_kwargs : dict, optional
41
+ Arbitrary keyword arguments passed to excel engine.
42
+ """
43
+ import_optional_dependency("pyxlsb")
44
+ # This will call load_workbook on the filepath or buffer
45
+ # And set the result to the book-attribute
46
+ super().__init__(
47
+ filepath_or_buffer,
48
+ storage_options=storage_options,
49
+ engine_kwargs=engine_kwargs,
50
+ )
51
+
52
+ @property
53
+ def _workbook_class(self) -> type[Workbook]:
54
+ from pyxlsb import Workbook
55
+
56
+ return Workbook
57
+
58
+ def load_workbook(
59
+ self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
60
+ ) -> Workbook:
61
+ from pyxlsb import open_workbook
62
+
63
+ # TODO: hack in buffer capability
64
+ # This might need some modifications to the Pyxlsb library
65
+ # Actual work for opening it is in xlsbpackage.py, line 20-ish
66
+
67
+ return open_workbook(filepath_or_buffer, **engine_kwargs)
68
+
69
+ @property
70
+ def sheet_names(self) -> list[str]:
71
+ return self.book.sheets
72
+
73
+ def get_sheet_by_name(self, name: str):
74
+ self.raise_if_bad_sheet_by_name(name)
75
+ return self.book.get_sheet(name)
76
+
77
+ def get_sheet_by_index(self, index: int):
78
+ self.raise_if_bad_sheet_by_index(index)
79
+ # pyxlsb sheets are indexed from 1 onwards
80
+ # There's a fix for this in the source, but the pypi package doesn't have it
81
+ return self.book.get_sheet(index + 1)
82
+
83
+ def _convert_cell(self, cell) -> Scalar:
84
+ # TODO: there is no way to distinguish between floats and datetimes in pyxlsb
85
+ # This means that there is no way to read datetime types from an xlsb file yet
86
+ if cell.v is None:
87
+ return "" # Prevents non-named columns from not showing up as Unnamed: i
88
+ if isinstance(cell.v, float):
89
+ val = int(cell.v)
90
+ if val == cell.v:
91
+ return val
92
+ else:
93
+ return float(cell.v)
94
+
95
+ return cell.v
96
+
97
+ def get_sheet_data(
98
+ self,
99
+ sheet,
100
+ file_rows_needed: int | None = None,
101
+ ) -> list[list[Scalar]]:
102
+ data: list[list[Scalar]] = []
103
+ previous_row_number = -1
104
+ # When sparse=True the rows can have different lengths and empty rows are
105
+ # not returned. The cells are namedtuples of row, col, value (r, c, v).
106
+ for row in sheet.rows(sparse=True):
107
+ row_number = row[0].r
108
+ converted_row = [self._convert_cell(cell) for cell in row]
109
+ while converted_row and converted_row[-1] == "":
110
+ # trim trailing empty elements
111
+ converted_row.pop()
112
+ if converted_row:
113
+ data.extend([[]] * (row_number - previous_row_number - 1))
114
+ data.append(converted_row)
115
+ previous_row_number = row_number
116
+ if file_rows_needed is not None and len(data) >= file_rows_needed:
117
+ break
118
+ if data:
119
+ # extend rows to max_width
120
+ max_width = max(len(data_row) for data_row in data)
121
+ if min(len(data_row) for data_row in data) < max_width:
122
+ empty_cell: list[Scalar] = [""]
123
+ data = [
124
+ data_row + (max_width - len(data_row)) * empty_cell
125
+ for data_row in data
126
+ ]
127
+ return data
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_util.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections.abc import (
4
+ Hashable,
5
+ Iterable,
6
+ MutableMapping,
7
+ Sequence,
8
+ )
9
+ from typing import (
10
+ TYPE_CHECKING,
11
+ Any,
12
+ Callable,
13
+ Literal,
14
+ TypeVar,
15
+ overload,
16
+ )
17
+
18
+ from pandas.compat._optional import import_optional_dependency
19
+
20
+ from pandas.core.dtypes.common import (
21
+ is_integer,
22
+ is_list_like,
23
+ )
24
+
25
+ if TYPE_CHECKING:
26
+ from pandas.io.excel._base import ExcelWriter
27
+
28
+ ExcelWriter_t = type[ExcelWriter]
29
+ usecols_func = TypeVar("usecols_func", bound=Callable[[Hashable], object])
30
+
31
+ _writers: MutableMapping[str, ExcelWriter_t] = {}
32
+
33
+
34
+ def register_writer(klass: ExcelWriter_t) -> None:
35
+ """
36
+ Add engine to the excel writer registry.io.excel.
37
+
38
+ You must use this method to integrate with ``to_excel``.
39
+
40
+ Parameters
41
+ ----------
42
+ klass : ExcelWriter
43
+ """
44
+ if not callable(klass):
45
+ raise ValueError("Can only register callables as engines")
46
+ engine_name = klass._engine
47
+ _writers[engine_name] = klass
48
+
49
+
50
+ def get_default_engine(ext: str, mode: Literal["reader", "writer"] = "reader") -> str:
51
+ """
52
+ Return the default reader/writer for the given extension.
53
+
54
+ Parameters
55
+ ----------
56
+ ext : str
57
+ The excel file extension for which to get the default engine.
58
+ mode : str {'reader', 'writer'}
59
+ Whether to get the default engine for reading or writing.
60
+ Either 'reader' or 'writer'
61
+
62
+ Returns
63
+ -------
64
+ str
65
+ The default engine for the extension.
66
+ """
67
+ _default_readers = {
68
+ "xlsx": "openpyxl",
69
+ "xlsm": "openpyxl",
70
+ "xlsb": "pyxlsb",
71
+ "xls": "xlrd",
72
+ "ods": "odf",
73
+ }
74
+ _default_writers = {
75
+ "xlsx": "openpyxl",
76
+ "xlsm": "openpyxl",
77
+ "xlsb": "pyxlsb",
78
+ "ods": "odf",
79
+ }
80
+ assert mode in ["reader", "writer"]
81
+ if mode == "writer":
82
+ # Prefer xlsxwriter over openpyxl if installed
83
+ xlsxwriter = import_optional_dependency("xlsxwriter", errors="warn")
84
+ if xlsxwriter:
85
+ _default_writers["xlsx"] = "xlsxwriter"
86
+ return _default_writers[ext]
87
+ else:
88
+ return _default_readers[ext]
89
+
90
+
91
+ def get_writer(engine_name: str) -> ExcelWriter_t:
92
+ try:
93
+ return _writers[engine_name]
94
+ except KeyError as err:
95
+ raise ValueError(f"No Excel writer '{engine_name}'") from err
96
+
97
+
98
+ def _excel2num(x: str) -> int:
99
+ """
100
+ Convert Excel column name like 'AB' to 0-based column index.
101
+
102
+ Parameters
103
+ ----------
104
+ x : str
105
+ The Excel column name to convert to a 0-based column index.
106
+
107
+ Returns
108
+ -------
109
+ num : int
110
+ The column index corresponding to the name.
111
+
112
+ Raises
113
+ ------
114
+ ValueError
115
+ Part of the Excel column name was invalid.
116
+ """
117
+ index = 0
118
+
119
+ for c in x.upper().strip():
120
+ cp = ord(c)
121
+
122
+ if cp < ord("A") or cp > ord("Z"):
123
+ raise ValueError(f"Invalid column name: {x}")
124
+
125
+ index = index * 26 + cp - ord("A") + 1
126
+
127
+ return index - 1
128
+
129
+
130
+ def _range2cols(areas: str) -> list[int]:
131
+ """
132
+ Convert comma separated list of column names and ranges to indices.
133
+
134
+ Parameters
135
+ ----------
136
+ areas : str
137
+ A string containing a sequence of column ranges (or areas).
138
+
139
+ Returns
140
+ -------
141
+ cols : list
142
+ A list of 0-based column indices.
143
+
144
+ Examples
145
+ --------
146
+ >>> _range2cols('A:E')
147
+ [0, 1, 2, 3, 4]
148
+ >>> _range2cols('A,C,Z:AB')
149
+ [0, 2, 25, 26, 27]
150
+ """
151
+ cols: list[int] = []
152
+
153
+ for rng in areas.split(","):
154
+ if ":" in rng:
155
+ rngs = rng.split(":")
156
+ cols.extend(range(_excel2num(rngs[0]), _excel2num(rngs[1]) + 1))
157
+ else:
158
+ cols.append(_excel2num(rng))
159
+
160
+ return cols
161
+
162
+
163
+ @overload
164
+ def maybe_convert_usecols(usecols: str | list[int]) -> list[int]:
165
+ ...
166
+
167
+
168
+ @overload
169
+ def maybe_convert_usecols(usecols: list[str]) -> list[str]:
170
+ ...
171
+
172
+
173
+ @overload
174
+ def maybe_convert_usecols(usecols: usecols_func) -> usecols_func:
175
+ ...
176
+
177
+
178
+ @overload
179
+ def maybe_convert_usecols(usecols: None) -> None:
180
+ ...
181
+
182
+
183
+ def maybe_convert_usecols(
184
+ usecols: str | list[int] | list[str] | usecols_func | None,
185
+ ) -> None | list[int] | list[str] | usecols_func:
186
+ """
187
+ Convert `usecols` into a compatible format for parsing in `parsers.py`.
188
+
189
+ Parameters
190
+ ----------
191
+ usecols : object
192
+ The use-columns object to potentially convert.
193
+
194
+ Returns
195
+ -------
196
+ converted : object
197
+ The compatible format of `usecols`.
198
+ """
199
+ if usecols is None:
200
+ return usecols
201
+
202
+ if is_integer(usecols):
203
+ raise ValueError(
204
+ "Passing an integer for `usecols` is no longer supported. "
205
+ "Please pass in a list of int from 0 to `usecols` inclusive instead."
206
+ )
207
+
208
+ if isinstance(usecols, str):
209
+ return _range2cols(usecols)
210
+
211
+ return usecols
212
+
213
+
214
+ @overload
215
+ def validate_freeze_panes(freeze_panes: tuple[int, int]) -> Literal[True]:
216
+ ...
217
+
218
+
219
+ @overload
220
+ def validate_freeze_panes(freeze_panes: None) -> Literal[False]:
221
+ ...
222
+
223
+
224
+ def validate_freeze_panes(freeze_panes: tuple[int, int] | None) -> bool:
225
+ if freeze_panes is not None:
226
+ if len(freeze_panes) == 2 and all(
227
+ isinstance(item, int) for item in freeze_panes
228
+ ):
229
+ return True
230
+
231
+ raise ValueError(
232
+ "freeze_panes must be of form (row, column) "
233
+ "where row and column are integers"
234
+ )
235
+
236
+ # freeze_panes wasn't specified, return False so it won't be applied
237
+ # to output sheet
238
+ return False
239
+
240
+
241
+ def fill_mi_header(
242
+ row: list[Hashable], control_row: list[bool]
243
+ ) -> tuple[list[Hashable], list[bool]]:
244
+ """
245
+ Forward fill blank entries in row but only inside the same parent index.
246
+
247
+ Used for creating headers in Multiindex.
248
+
249
+ Parameters
250
+ ----------
251
+ row : list
252
+ List of items in a single row.
253
+ control_row : list of bool
254
+ Helps to determine if particular column is in same parent index as the
255
+ previous value. Used to stop propagation of empty cells between
256
+ different indexes.
257
+
258
+ Returns
259
+ -------
260
+ Returns changed row and control_row
261
+ """
262
+ last = row[0]
263
+ for i in range(1, len(row)):
264
+ if not control_row[i]:
265
+ last = row[i]
266
+
267
+ if row[i] == "" or row[i] is None:
268
+ row[i] = last
269
+ else:
270
+ control_row[i] = False
271
+ last = row[i]
272
+
273
+ return row, control_row
274
+
275
+
276
+ def pop_header_name(
277
+ row: list[Hashable], index_col: int | Sequence[int]
278
+ ) -> tuple[Hashable | None, list[Hashable]]:
279
+ """
280
+ Pop the header name for MultiIndex parsing.
281
+
282
+ Parameters
283
+ ----------
284
+ row : list
285
+ The data row to parse for the header name.
286
+ index_col : int, list
287
+ The index columns for our data. Assumed to be non-null.
288
+
289
+ Returns
290
+ -------
291
+ header_name : str
292
+ The extracted header name.
293
+ trimmed_row : list
294
+ The original data row with the header name removed.
295
+ """
296
+ # Pop out header name and fill w/blank.
297
+ if is_list_like(index_col):
298
+ assert isinstance(index_col, Iterable)
299
+ i = max(index_col)
300
+ else:
301
+ assert not isinstance(index_col, Iterable)
302
+ i = index_col
303
+
304
+ header_name = row[i]
305
+ header_name = None if header_name == "" else header_name
306
+
307
+ return header_name, row[:i] + [""] + row[i + 1 :]
308
+
309
+
310
+ def combine_kwargs(engine_kwargs: dict[str, Any] | None, kwargs: dict) -> dict:
311
+ """
312
+ Used to combine two sources of kwargs for the backend engine.
313
+
314
+ Use of kwargs is deprecated, this function is solely for use in 1.3 and should
315
+ be removed in 1.4/2.0. Also _base.ExcelWriter.__new__ ensures either engine_kwargs
316
+ or kwargs must be None or empty respectively.
317
+
318
+ Parameters
319
+ ----------
320
+ engine_kwargs: dict
321
+ kwargs to be passed through to the engine.
322
+ kwargs: dict
323
+ kwargs to be psased through to the engine (deprecated)
324
+
325
+ Returns
326
+ -------
327
+ engine_kwargs combined with kwargs
328
+ """
329
+ if engine_kwargs is None:
330
+ result = {}
331
+ else:
332
+ result = engine_kwargs.copy()
333
+ result.update(kwargs)
334
+ return result
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from datetime import time
4
+ import math
5
+ from typing import TYPE_CHECKING
6
+
7
+ import numpy as np
8
+
9
+ from pandas.compat._optional import import_optional_dependency
10
+ from pandas.util._decorators import doc
11
+
12
+ from pandas.core.shared_docs import _shared_docs
13
+
14
+ from pandas.io.excel._base import BaseExcelReader
15
+
16
+ if TYPE_CHECKING:
17
+ from xlrd import Book
18
+
19
+ from pandas._typing import (
20
+ Scalar,
21
+ StorageOptions,
22
+ )
23
+
24
+
25
+ class XlrdReader(BaseExcelReader["Book"]):
26
+ @doc(storage_options=_shared_docs["storage_options"])
27
+ def __init__(
28
+ self,
29
+ filepath_or_buffer,
30
+ storage_options: StorageOptions | None = None,
31
+ engine_kwargs: dict | None = None,
32
+ ) -> None:
33
+ """
34
+ Reader using xlrd engine.
35
+
36
+ Parameters
37
+ ----------
38
+ filepath_or_buffer : str, path object or Workbook
39
+ Object to be parsed.
40
+ {storage_options}
41
+ engine_kwargs : dict, optional
42
+ Arbitrary keyword arguments passed to excel engine.
43
+ """
44
+ err_msg = "Install xlrd >= 2.0.1 for xls Excel support"
45
+ import_optional_dependency("xlrd", extra=err_msg)
46
+ super().__init__(
47
+ filepath_or_buffer,
48
+ storage_options=storage_options,
49
+ engine_kwargs=engine_kwargs,
50
+ )
51
+
52
+ @property
53
+ def _workbook_class(self) -> type[Book]:
54
+ from xlrd import Book
55
+
56
+ return Book
57
+
58
+ def load_workbook(self, filepath_or_buffer, engine_kwargs) -> Book:
59
+ from xlrd import open_workbook
60
+
61
+ if hasattr(filepath_or_buffer, "read"):
62
+ data = filepath_or_buffer.read()
63
+ return open_workbook(file_contents=data, **engine_kwargs)
64
+ else:
65
+ return open_workbook(filepath_or_buffer, **engine_kwargs)
66
+
67
+ @property
68
+ def sheet_names(self):
69
+ return self.book.sheet_names()
70
+
71
+ def get_sheet_by_name(self, name):
72
+ self.raise_if_bad_sheet_by_name(name)
73
+ return self.book.sheet_by_name(name)
74
+
75
+ def get_sheet_by_index(self, index):
76
+ self.raise_if_bad_sheet_by_index(index)
77
+ return self.book.sheet_by_index(index)
78
+
79
+ def get_sheet_data(
80
+ self, sheet, file_rows_needed: int | None = None
81
+ ) -> list[list[Scalar]]:
82
+ from xlrd import (
83
+ XL_CELL_BOOLEAN,
84
+ XL_CELL_DATE,
85
+ XL_CELL_ERROR,
86
+ XL_CELL_NUMBER,
87
+ xldate,
88
+ )
89
+
90
+ epoch1904 = self.book.datemode
91
+
92
+ def _parse_cell(cell_contents, cell_typ):
93
+ """
94
+ converts the contents of the cell into a pandas appropriate object
95
+ """
96
+ if cell_typ == XL_CELL_DATE:
97
+ # Use the newer xlrd datetime handling.
98
+ try:
99
+ cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
100
+ except OverflowError:
101
+ return cell_contents
102
+
103
+ # Excel doesn't distinguish between dates and time,
104
+ # so we treat dates on the epoch as times only.
105
+ # Also, Excel supports 1900 and 1904 epochs.
106
+ year = (cell_contents.timetuple())[0:3]
107
+ if (not epoch1904 and year == (1899, 12, 31)) or (
108
+ epoch1904 and year == (1904, 1, 1)
109
+ ):
110
+ cell_contents = time(
111
+ cell_contents.hour,
112
+ cell_contents.minute,
113
+ cell_contents.second,
114
+ cell_contents.microsecond,
115
+ )
116
+
117
+ elif cell_typ == XL_CELL_ERROR:
118
+ cell_contents = np.nan
119
+ elif cell_typ == XL_CELL_BOOLEAN:
120
+ cell_contents = bool(cell_contents)
121
+ elif cell_typ == XL_CELL_NUMBER:
122
+ # GH5394 - Excel 'numbers' are always floats
123
+ # it's a minimal perf hit and less surprising
124
+ if math.isfinite(cell_contents):
125
+ # GH54564 - don't attempt to convert NaN/Inf
126
+ val = int(cell_contents)
127
+ if val == cell_contents:
128
+ cell_contents = val
129
+ return cell_contents
130
+
131
+ data = []
132
+
133
+ nrows = sheet.nrows
134
+ if file_rows_needed is not None:
135
+ nrows = min(nrows, file_rows_needed)
136
+ for i in range(nrows):
137
+ row = [
138
+ _parse_cell(value, typ)
139
+ for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
140
+ ]
141
+ data.append(row)
142
+
143
+ return data
env-llmeval/lib/python3.10/site-packages/pandas/io/excel/_xlsxwriter.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Any,
7
+ )
8
+
9
+ from pandas.io.excel._base import ExcelWriter
10
+ from pandas.io.excel._util import (
11
+ combine_kwargs,
12
+ validate_freeze_panes,
13
+ )
14
+
15
+ if TYPE_CHECKING:
16
+ from pandas._typing import (
17
+ ExcelWriterIfSheetExists,
18
+ FilePath,
19
+ StorageOptions,
20
+ WriteExcelBuffer,
21
+ )
22
+
23
+
24
+ class _XlsxStyler:
25
+ # Map from openpyxl-oriented styles to flatter xlsxwriter representation
26
+ # Ordering necessary for both determinism and because some are keyed by
27
+ # prefixes of others.
28
+ STYLE_MAPPING: dict[str, list[tuple[tuple[str, ...], str]]] = {
29
+ "font": [
30
+ (("name",), "font_name"),
31
+ (("sz",), "font_size"),
32
+ (("size",), "font_size"),
33
+ (("color", "rgb"), "font_color"),
34
+ (("color",), "font_color"),
35
+ (("b",), "bold"),
36
+ (("bold",), "bold"),
37
+ (("i",), "italic"),
38
+ (("italic",), "italic"),
39
+ (("u",), "underline"),
40
+ (("underline",), "underline"),
41
+ (("strike",), "font_strikeout"),
42
+ (("vertAlign",), "font_script"),
43
+ (("vertalign",), "font_script"),
44
+ ],
45
+ "number_format": [(("format_code",), "num_format"), ((), "num_format")],
46
+ "protection": [(("locked",), "locked"), (("hidden",), "hidden")],
47
+ "alignment": [
48
+ (("horizontal",), "align"),
49
+ (("vertical",), "valign"),
50
+ (("text_rotation",), "rotation"),
51
+ (("wrap_text",), "text_wrap"),
52
+ (("indent",), "indent"),
53
+ (("shrink_to_fit",), "shrink"),
54
+ ],
55
+ "fill": [
56
+ (("patternType",), "pattern"),
57
+ (("patterntype",), "pattern"),
58
+ (("fill_type",), "pattern"),
59
+ (("start_color", "rgb"), "fg_color"),
60
+ (("fgColor", "rgb"), "fg_color"),
61
+ (("fgcolor", "rgb"), "fg_color"),
62
+ (("start_color",), "fg_color"),
63
+ (("fgColor",), "fg_color"),
64
+ (("fgcolor",), "fg_color"),
65
+ (("end_color", "rgb"), "bg_color"),
66
+ (("bgColor", "rgb"), "bg_color"),
67
+ (("bgcolor", "rgb"), "bg_color"),
68
+ (("end_color",), "bg_color"),
69
+ (("bgColor",), "bg_color"),
70
+ (("bgcolor",), "bg_color"),
71
+ ],
72
+ "border": [
73
+ (("color", "rgb"), "border_color"),
74
+ (("color",), "border_color"),
75
+ (("style",), "border"),
76
+ (("top", "color", "rgb"), "top_color"),
77
+ (("top", "color"), "top_color"),
78
+ (("top", "style"), "top"),
79
+ (("top",), "top"),
80
+ (("right", "color", "rgb"), "right_color"),
81
+ (("right", "color"), "right_color"),
82
+ (("right", "style"), "right"),
83
+ (("right",), "right"),
84
+ (("bottom", "color", "rgb"), "bottom_color"),
85
+ (("bottom", "color"), "bottom_color"),
86
+ (("bottom", "style"), "bottom"),
87
+ (("bottom",), "bottom"),
88
+ (("left", "color", "rgb"), "left_color"),
89
+ (("left", "color"), "left_color"),
90
+ (("left", "style"), "left"),
91
+ (("left",), "left"),
92
+ ],
93
+ }
94
+
95
+ @classmethod
96
+ def convert(cls, style_dict, num_format_str=None):
97
+ """
98
+ converts a style_dict to an xlsxwriter format dict
99
+
100
+ Parameters
101
+ ----------
102
+ style_dict : style dictionary to convert
103
+ num_format_str : optional number format string
104
+ """
105
+ # Create a XlsxWriter format object.
106
+ props = {}
107
+
108
+ if num_format_str is not None:
109
+ props["num_format"] = num_format_str
110
+
111
+ if style_dict is None:
112
+ return props
113
+
114
+ if "borders" in style_dict:
115
+ style_dict = style_dict.copy()
116
+ style_dict["border"] = style_dict.pop("borders")
117
+
118
+ for style_group_key, style_group in style_dict.items():
119
+ for src, dst in cls.STYLE_MAPPING.get(style_group_key, []):
120
+ # src is a sequence of keys into a nested dict
121
+ # dst is a flat key
122
+ if dst in props:
123
+ continue
124
+ v = style_group
125
+ for k in src:
126
+ try:
127
+ v = v[k]
128
+ except (KeyError, TypeError):
129
+ break
130
+ else:
131
+ props[dst] = v
132
+
133
+ if isinstance(props.get("pattern"), str):
134
+ # TODO: support other fill patterns
135
+ props["pattern"] = 0 if props["pattern"] == "none" else 1
136
+
137
+ for k in ["border", "top", "right", "bottom", "left"]:
138
+ if isinstance(props.get(k), str):
139
+ try:
140
+ props[k] = [
141
+ "none",
142
+ "thin",
143
+ "medium",
144
+ "dashed",
145
+ "dotted",
146
+ "thick",
147
+ "double",
148
+ "hair",
149
+ "mediumDashed",
150
+ "dashDot",
151
+ "mediumDashDot",
152
+ "dashDotDot",
153
+ "mediumDashDotDot",
154
+ "slantDashDot",
155
+ ].index(props[k])
156
+ except ValueError:
157
+ props[k] = 2
158
+
159
+ if isinstance(props.get("font_script"), str):
160
+ props["font_script"] = ["baseline", "superscript", "subscript"].index(
161
+ props["font_script"]
162
+ )
163
+
164
+ if isinstance(props.get("underline"), str):
165
+ props["underline"] = {
166
+ "none": 0,
167
+ "single": 1,
168
+ "double": 2,
169
+ "singleAccounting": 33,
170
+ "doubleAccounting": 34,
171
+ }[props["underline"]]
172
+
173
+ # GH 30107 - xlsxwriter uses different name
174
+ if props.get("valign") == "center":
175
+ props["valign"] = "vcenter"
176
+
177
+ return props
178
+
179
+
180
+ class XlsxWriter(ExcelWriter):
181
+ _engine = "xlsxwriter"
182
+ _supported_extensions = (".xlsx",)
183
+
184
+ def __init__(
185
+ self,
186
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
187
+ engine: str | None = None,
188
+ date_format: str | None = None,
189
+ datetime_format: str | None = None,
190
+ mode: str = "w",
191
+ storage_options: StorageOptions | None = None,
192
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
193
+ engine_kwargs: dict[str, Any] | None = None,
194
+ **kwargs,
195
+ ) -> None:
196
+ # Use the xlsxwriter module as the Excel writer.
197
+ from xlsxwriter import Workbook
198
+
199
+ engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
200
+
201
+ if mode == "a":
202
+ raise ValueError("Append mode is not supported with xlsxwriter!")
203
+
204
+ super().__init__(
205
+ path,
206
+ engine=engine,
207
+ date_format=date_format,
208
+ datetime_format=datetime_format,
209
+ mode=mode,
210
+ storage_options=storage_options,
211
+ if_sheet_exists=if_sheet_exists,
212
+ engine_kwargs=engine_kwargs,
213
+ )
214
+
215
+ try:
216
+ self._book = Workbook(self._handles.handle, **engine_kwargs)
217
+ except TypeError:
218
+ self._handles.handle.close()
219
+ raise
220
+
221
+ @property
222
+ def book(self):
223
+ """
224
+ Book instance of class xlsxwriter.Workbook.
225
+
226
+ This attribute can be used to access engine-specific features.
227
+ """
228
+ return self._book
229
+
230
+ @property
231
+ def sheets(self) -> dict[str, Any]:
232
+ result = self.book.sheetnames
233
+ return result
234
+
235
+ def _save(self) -> None:
236
+ """
237
+ Save workbook to disk.
238
+ """
239
+ self.book.close()
240
+
241
+ def _write_cells(
242
+ self,
243
+ cells,
244
+ sheet_name: str | None = None,
245
+ startrow: int = 0,
246
+ startcol: int = 0,
247
+ freeze_panes: tuple[int, int] | None = None,
248
+ ) -> None:
249
+ # Write the frame cells using xlsxwriter.
250
+ sheet_name = self._get_sheet_name(sheet_name)
251
+
252
+ wks = self.book.get_worksheet_by_name(sheet_name)
253
+ if wks is None:
254
+ wks = self.book.add_worksheet(sheet_name)
255
+
256
+ style_dict = {"null": None}
257
+
258
+ if validate_freeze_panes(freeze_panes):
259
+ wks.freeze_panes(*(freeze_panes))
260
+
261
+ for cell in cells:
262
+ val, fmt = self._value_with_fmt(cell.val)
263
+
264
+ stylekey = json.dumps(cell.style)
265
+ if fmt:
266
+ stylekey += fmt
267
+
268
+ if stylekey in style_dict:
269
+ style = style_dict[stylekey]
270
+ else:
271
+ style = self.book.add_format(_XlsxStyler.convert(cell.style, fmt))
272
+ style_dict[stylekey] = style
273
+
274
+ if cell.mergestart is not None and cell.mergeend is not None:
275
+ wks.merge_range(
276
+ startrow + cell.row,
277
+ startcol + cell.col,
278
+ startrow + cell.mergestart,
279
+ startcol + cell.mergeend,
280
+ val,
281
+ style,
282
+ )
283
+ else:
284
+ wks.write(startrow + cell.row, startcol + cell.col, val, style)
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # ruff: noqa: TCH004
2
+ from typing import TYPE_CHECKING
3
+
4
+ if TYPE_CHECKING:
5
+ # import modules that have public classes/functions
6
+ from pandas.io.formats import style
7
+
8
+ # and mark only those modules as public
9
+ __all__ = ["style"]
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (307 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/_color_data.cpython-310.pyc ADDED
Binary file (4.52 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/console.cpython-310.pyc ADDED
Binary file (1.91 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/css.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/csvs.cpython-310.pyc ADDED
Binary file (9.88 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/excel.cpython-310.pyc ADDED
Binary file (24.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/format.cpython-310.pyc ADDED
Binary file (57.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/html.cpython-310.pyc ADDED
Binary file (16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/info.cpython-310.pyc ADDED
Binary file (36.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/printing.cpython-310.pyc ADDED
Binary file (16.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/string.cpython-310.pyc ADDED
Binary file (6.48 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style.cpython-310.pyc ADDED
Binary file (137 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style_render.cpython-310.pyc ADDED
Binary file (75.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/__pycache__/xml.cpython-310.pyc ADDED
Binary file (14.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/_color_data.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GH37967: Enable the use of CSS named colors, as defined in
2
+ # matplotlib.colors.CSS4_COLORS, when exporting to Excel.
3
+ # This data has been copied here, instead of being imported from matplotlib,
4
+ # not to have ``to_excel`` methods require matplotlib.
5
+ # source: matplotlib._color_data (3.3.3)
6
+ from __future__ import annotations
7
+
8
+ CSS4_COLORS = {
9
+ "aliceblue": "F0F8FF",
10
+ "antiquewhite": "FAEBD7",
11
+ "aqua": "00FFFF",
12
+ "aquamarine": "7FFFD4",
13
+ "azure": "F0FFFF",
14
+ "beige": "F5F5DC",
15
+ "bisque": "FFE4C4",
16
+ "black": "000000",
17
+ "blanchedalmond": "FFEBCD",
18
+ "blue": "0000FF",
19
+ "blueviolet": "8A2BE2",
20
+ "brown": "A52A2A",
21
+ "burlywood": "DEB887",
22
+ "cadetblue": "5F9EA0",
23
+ "chartreuse": "7FFF00",
24
+ "chocolate": "D2691E",
25
+ "coral": "FF7F50",
26
+ "cornflowerblue": "6495ED",
27
+ "cornsilk": "FFF8DC",
28
+ "crimson": "DC143C",
29
+ "cyan": "00FFFF",
30
+ "darkblue": "00008B",
31
+ "darkcyan": "008B8B",
32
+ "darkgoldenrod": "B8860B",
33
+ "darkgray": "A9A9A9",
34
+ "darkgreen": "006400",
35
+ "darkgrey": "A9A9A9",
36
+ "darkkhaki": "BDB76B",
37
+ "darkmagenta": "8B008B",
38
+ "darkolivegreen": "556B2F",
39
+ "darkorange": "FF8C00",
40
+ "darkorchid": "9932CC",
41
+ "darkred": "8B0000",
42
+ "darksalmon": "E9967A",
43
+ "darkseagreen": "8FBC8F",
44
+ "darkslateblue": "483D8B",
45
+ "darkslategray": "2F4F4F",
46
+ "darkslategrey": "2F4F4F",
47
+ "darkturquoise": "00CED1",
48
+ "darkviolet": "9400D3",
49
+ "deeppink": "FF1493",
50
+ "deepskyblue": "00BFFF",
51
+ "dimgray": "696969",
52
+ "dimgrey": "696969",
53
+ "dodgerblue": "1E90FF",
54
+ "firebrick": "B22222",
55
+ "floralwhite": "FFFAF0",
56
+ "forestgreen": "228B22",
57
+ "fuchsia": "FF00FF",
58
+ "gainsboro": "DCDCDC",
59
+ "ghostwhite": "F8F8FF",
60
+ "gold": "FFD700",
61
+ "goldenrod": "DAA520",
62
+ "gray": "808080",
63
+ "green": "008000",
64
+ "greenyellow": "ADFF2F",
65
+ "grey": "808080",
66
+ "honeydew": "F0FFF0",
67
+ "hotpink": "FF69B4",
68
+ "indianred": "CD5C5C",
69
+ "indigo": "4B0082",
70
+ "ivory": "FFFFF0",
71
+ "khaki": "F0E68C",
72
+ "lavender": "E6E6FA",
73
+ "lavenderblush": "FFF0F5",
74
+ "lawngreen": "7CFC00",
75
+ "lemonchiffon": "FFFACD",
76
+ "lightblue": "ADD8E6",
77
+ "lightcoral": "F08080",
78
+ "lightcyan": "E0FFFF",
79
+ "lightgoldenrodyellow": "FAFAD2",
80
+ "lightgray": "D3D3D3",
81
+ "lightgreen": "90EE90",
82
+ "lightgrey": "D3D3D3",
83
+ "lightpink": "FFB6C1",
84
+ "lightsalmon": "FFA07A",
85
+ "lightseagreen": "20B2AA",
86
+ "lightskyblue": "87CEFA",
87
+ "lightslategray": "778899",
88
+ "lightslategrey": "778899",
89
+ "lightsteelblue": "B0C4DE",
90
+ "lightyellow": "FFFFE0",
91
+ "lime": "00FF00",
92
+ "limegreen": "32CD32",
93
+ "linen": "FAF0E6",
94
+ "magenta": "FF00FF",
95
+ "maroon": "800000",
96
+ "mediumaquamarine": "66CDAA",
97
+ "mediumblue": "0000CD",
98
+ "mediumorchid": "BA55D3",
99
+ "mediumpurple": "9370DB",
100
+ "mediumseagreen": "3CB371",
101
+ "mediumslateblue": "7B68EE",
102
+ "mediumspringgreen": "00FA9A",
103
+ "mediumturquoise": "48D1CC",
104
+ "mediumvioletred": "C71585",
105
+ "midnightblue": "191970",
106
+ "mintcream": "F5FFFA",
107
+ "mistyrose": "FFE4E1",
108
+ "moccasin": "FFE4B5",
109
+ "navajowhite": "FFDEAD",
110
+ "navy": "000080",
111
+ "oldlace": "FDF5E6",
112
+ "olive": "808000",
113
+ "olivedrab": "6B8E23",
114
+ "orange": "FFA500",
115
+ "orangered": "FF4500",
116
+ "orchid": "DA70D6",
117
+ "palegoldenrod": "EEE8AA",
118
+ "palegreen": "98FB98",
119
+ "paleturquoise": "AFEEEE",
120
+ "palevioletred": "DB7093",
121
+ "papayawhip": "FFEFD5",
122
+ "peachpuff": "FFDAB9",
123
+ "peru": "CD853F",
124
+ "pink": "FFC0CB",
125
+ "plum": "DDA0DD",
126
+ "powderblue": "B0E0E6",
127
+ "purple": "800080",
128
+ "rebeccapurple": "663399",
129
+ "red": "FF0000",
130
+ "rosybrown": "BC8F8F",
131
+ "royalblue": "4169E1",
132
+ "saddlebrown": "8B4513",
133
+ "salmon": "FA8072",
134
+ "sandybrown": "F4A460",
135
+ "seagreen": "2E8B57",
136
+ "seashell": "FFF5EE",
137
+ "sienna": "A0522D",
138
+ "silver": "C0C0C0",
139
+ "skyblue": "87CEEB",
140
+ "slateblue": "6A5ACD",
141
+ "slategray": "708090",
142
+ "slategrey": "708090",
143
+ "snow": "FFFAFA",
144
+ "springgreen": "00FF7F",
145
+ "steelblue": "4682B4",
146
+ "tan": "D2B48C",
147
+ "teal": "008080",
148
+ "thistle": "D8BFD8",
149
+ "tomato": "FF6347",
150
+ "turquoise": "40E0D0",
151
+ "violet": "EE82EE",
152
+ "wheat": "F5DEB3",
153
+ "white": "FFFFFF",
154
+ "whitesmoke": "F5F5F5",
155
+ "yellow": "FFFF00",
156
+ "yellowgreen": "9ACD32",
157
+ }
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/console.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Internal module for console introspection
3
+ """
4
+ from __future__ import annotations
5
+
6
+ from shutil import get_terminal_size
7
+
8
+
9
+ def get_console_size() -> tuple[int | None, int | None]:
10
+ """
11
+ Return console size as tuple = (width, height).
12
+
13
+ Returns (None,None) in non-interactive session.
14
+ """
15
+ from pandas import get_option
16
+
17
+ display_width = get_option("display.width")
18
+ display_height = get_option("display.max_rows")
19
+
20
+ # Consider
21
+ # interactive shell terminal, can detect term size
22
+ # interactive non-shell terminal (ipnb/ipqtconsole), cannot detect term
23
+ # size non-interactive script, should disregard term size
24
+
25
+ # in addition
26
+ # width,height have default values, but setting to 'None' signals
27
+ # should use Auto-Detection, But only in interactive shell-terminal.
28
+ # Simple. yeah.
29
+
30
+ if in_interactive_session():
31
+ if in_ipython_frontend():
32
+ # sane defaults for interactive non-shell terminal
33
+ # match default for width,height in config_init
34
+ from pandas._config.config import get_default_val
35
+
36
+ terminal_width = get_default_val("display.width")
37
+ terminal_height = get_default_val("display.max_rows")
38
+ else:
39
+ # pure terminal
40
+ terminal_width, terminal_height = get_terminal_size()
41
+ else:
42
+ terminal_width, terminal_height = None, None
43
+
44
+ # Note if the User sets width/Height to None (auto-detection)
45
+ # and we're in a script (non-inter), this will return (None,None)
46
+ # caller needs to deal.
47
+ return display_width or terminal_width, display_height or terminal_height
48
+
49
+
50
+ # ----------------------------------------------------------------------
51
+ # Detect our environment
52
+
53
+
54
+ def in_interactive_session() -> bool:
55
+ """
56
+ Check if we're running in an interactive shell.
57
+
58
+ Returns
59
+ -------
60
+ bool
61
+ True if running under python/ipython interactive shell.
62
+ """
63
+ from pandas import get_option
64
+
65
+ def check_main():
66
+ try:
67
+ import __main__ as main
68
+ except ModuleNotFoundError:
69
+ return get_option("mode.sim_interactive")
70
+ return not hasattr(main, "__file__") or get_option("mode.sim_interactive")
71
+
72
+ try:
73
+ # error: Name '__IPYTHON__' is not defined
74
+ return __IPYTHON__ or check_main() # type: ignore[name-defined]
75
+ except NameError:
76
+ return check_main()
77
+
78
+
79
+ def in_ipython_frontend() -> bool:
80
+ """
81
+ Check if we're inside an IPython zmq frontend.
82
+
83
+ Returns
84
+ -------
85
+ bool
86
+ """
87
+ try:
88
+ # error: Name 'get_ipython' is not defined
89
+ ip = get_ipython() # type: ignore[name-defined]
90
+ return "zmq" in str(type(ip)).lower()
91
+ except NameError:
92
+ pass
93
+
94
+ return False
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/css.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utilities for interpreting CSS from Stylers for formatting non-HTML outputs.
3
+ """
4
+ from __future__ import annotations
5
+
6
+ import re
7
+ from typing import (
8
+ TYPE_CHECKING,
9
+ Callable,
10
+ )
11
+ import warnings
12
+
13
+ from pandas.errors import CSSWarning
14
+ from pandas.util._exceptions import find_stack_level
15
+
16
+ if TYPE_CHECKING:
17
+ from collections.abc import (
18
+ Generator,
19
+ Iterable,
20
+ Iterator,
21
+ )
22
+
23
+
24
+ def _side_expander(prop_fmt: str) -> Callable:
25
+ """
26
+ Wrapper to expand shorthand property into top, right, bottom, left properties
27
+
28
+ Parameters
29
+ ----------
30
+ side : str
31
+ The border side to expand into properties
32
+
33
+ Returns
34
+ -------
35
+ function: Return to call when a 'border(-{side}): {value}' string is encountered
36
+ """
37
+
38
+ def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]:
39
+ """
40
+ Expand shorthand property into side-specific property (top, right, bottom, left)
41
+
42
+ Parameters
43
+ ----------
44
+ prop (str): CSS property name
45
+ value (str): String token for property
46
+
47
+ Yields
48
+ ------
49
+ Tuple (str, str): Expanded property, value
50
+ """
51
+ tokens = value.split()
52
+ try:
53
+ mapping = self.SIDE_SHORTHANDS[len(tokens)]
54
+ except KeyError:
55
+ warnings.warn(
56
+ f'Could not expand "{prop}: {value}"',
57
+ CSSWarning,
58
+ stacklevel=find_stack_level(),
59
+ )
60
+ return
61
+ for key, idx in zip(self.SIDES, mapping):
62
+ yield prop_fmt.format(key), tokens[idx]
63
+
64
+ return expand
65
+
66
+
67
+ def _border_expander(side: str = "") -> Callable:
68
+ """
69
+ Wrapper to expand 'border' property into border color, style, and width properties
70
+
71
+ Parameters
72
+ ----------
73
+ side : str
74
+ The border side to expand into properties
75
+
76
+ Returns
77
+ -------
78
+ function: Return to call when a 'border(-{side}): {value}' string is encountered
79
+ """
80
+ if side != "":
81
+ side = f"-{side}"
82
+
83
+ def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]:
84
+ """
85
+ Expand border into color, style, and width tuples
86
+
87
+ Parameters
88
+ ----------
89
+ prop : str
90
+ CSS property name passed to styler
91
+ value : str
92
+ Value passed to styler for property
93
+
94
+ Yields
95
+ ------
96
+ Tuple (str, str): Expanded property, value
97
+ """
98
+ tokens = value.split()
99
+ if len(tokens) == 0 or len(tokens) > 3:
100
+ warnings.warn(
101
+ f'Too many tokens provided to "{prop}" (expected 1-3)',
102
+ CSSWarning,
103
+ stacklevel=find_stack_level(),
104
+ )
105
+
106
+ # TODO: Can we use current color as initial value to comply with CSS standards?
107
+ border_declarations = {
108
+ f"border{side}-color": "black",
109
+ f"border{side}-style": "none",
110
+ f"border{side}-width": "medium",
111
+ }
112
+ for token in tokens:
113
+ if token.lower() in self.BORDER_STYLES:
114
+ border_declarations[f"border{side}-style"] = token
115
+ elif any(ratio in token.lower() for ratio in self.BORDER_WIDTH_RATIOS):
116
+ border_declarations[f"border{side}-width"] = token
117
+ else:
118
+ border_declarations[f"border{side}-color"] = token
119
+ # TODO: Warn user if item entered more than once (e.g. "border: red green")
120
+
121
+ # Per CSS, "border" will reset previous "border-*" definitions
122
+ yield from self.atomize(border_declarations.items())
123
+
124
+ return expand
125
+
126
+
127
+ class CSSResolver:
128
+ """
129
+ A callable for parsing and resolving CSS to atomic properties.
130
+ """
131
+
132
+ UNIT_RATIOS = {
133
+ "pt": ("pt", 1),
134
+ "em": ("em", 1),
135
+ "rem": ("pt", 12),
136
+ "ex": ("em", 0.5),
137
+ # 'ch':
138
+ "px": ("pt", 0.75),
139
+ "pc": ("pt", 12),
140
+ "in": ("pt", 72),
141
+ "cm": ("in", 1 / 2.54),
142
+ "mm": ("in", 1 / 25.4),
143
+ "q": ("mm", 0.25),
144
+ "!!default": ("em", 0),
145
+ }
146
+
147
+ FONT_SIZE_RATIOS = UNIT_RATIOS.copy()
148
+ FONT_SIZE_RATIOS.update(
149
+ {
150
+ "%": ("em", 0.01),
151
+ "xx-small": ("rem", 0.5),
152
+ "x-small": ("rem", 0.625),
153
+ "small": ("rem", 0.8),
154
+ "medium": ("rem", 1),
155
+ "large": ("rem", 1.125),
156
+ "x-large": ("rem", 1.5),
157
+ "xx-large": ("rem", 2),
158
+ "smaller": ("em", 1 / 1.2),
159
+ "larger": ("em", 1.2),
160
+ "!!default": ("em", 1),
161
+ }
162
+ )
163
+
164
+ MARGIN_RATIOS = UNIT_RATIOS.copy()
165
+ MARGIN_RATIOS.update({"none": ("pt", 0)})
166
+
167
+ BORDER_WIDTH_RATIOS = UNIT_RATIOS.copy()
168
+ BORDER_WIDTH_RATIOS.update(
169
+ {
170
+ "none": ("pt", 0),
171
+ "thick": ("px", 4),
172
+ "medium": ("px", 2),
173
+ "thin": ("px", 1),
174
+ # Default: medium only if solid
175
+ }
176
+ )
177
+
178
+ BORDER_STYLES = [
179
+ "none",
180
+ "hidden",
181
+ "dotted",
182
+ "dashed",
183
+ "solid",
184
+ "double",
185
+ "groove",
186
+ "ridge",
187
+ "inset",
188
+ "outset",
189
+ "mediumdashdot",
190
+ "dashdotdot",
191
+ "hair",
192
+ "mediumdashdotdot",
193
+ "dashdot",
194
+ "slantdashdot",
195
+ "mediumdashed",
196
+ ]
197
+
198
+ SIDE_SHORTHANDS = {
199
+ 1: [0, 0, 0, 0],
200
+ 2: [0, 1, 0, 1],
201
+ 3: [0, 1, 2, 1],
202
+ 4: [0, 1, 2, 3],
203
+ }
204
+
205
+ SIDES = ("top", "right", "bottom", "left")
206
+
207
+ CSS_EXPANSIONS = {
208
+ **{
209
+ (f"border-{prop}" if prop else "border"): _border_expander(prop)
210
+ for prop in ["", "top", "right", "bottom", "left"]
211
+ },
212
+ **{
213
+ f"border-{prop}": _side_expander(f"border-{{:s}}-{prop}")
214
+ for prop in ["color", "style", "width"]
215
+ },
216
+ "margin": _side_expander("margin-{:s}"),
217
+ "padding": _side_expander("padding-{:s}"),
218
+ }
219
+
220
+ def __call__(
221
+ self,
222
+ declarations: str | Iterable[tuple[str, str]],
223
+ inherited: dict[str, str] | None = None,
224
+ ) -> dict[str, str]:
225
+ """
226
+ The given declarations to atomic properties.
227
+
228
+ Parameters
229
+ ----------
230
+ declarations_str : str | Iterable[tuple[str, str]]
231
+ A CSS string or set of CSS declaration tuples
232
+ e.g. "font-weight: bold; background: blue" or
233
+ {("font-weight", "bold"), ("background", "blue")}
234
+ inherited : dict, optional
235
+ Atomic properties indicating the inherited style context in which
236
+ declarations_str is to be resolved. ``inherited`` should already
237
+ be resolved, i.e. valid output of this method.
238
+
239
+ Returns
240
+ -------
241
+ dict
242
+ Atomic CSS 2.2 properties.
243
+
244
+ Examples
245
+ --------
246
+ >>> resolve = CSSResolver()
247
+ >>> inherited = {'font-family': 'serif', 'font-weight': 'bold'}
248
+ >>> out = resolve('''
249
+ ... border-color: BLUE RED;
250
+ ... font-size: 1em;
251
+ ... font-size: 2em;
252
+ ... font-weight: normal;
253
+ ... font-weight: inherit;
254
+ ... ''', inherited)
255
+ >>> sorted(out.items()) # doctest: +NORMALIZE_WHITESPACE
256
+ [('border-bottom-color', 'blue'),
257
+ ('border-left-color', 'red'),
258
+ ('border-right-color', 'red'),
259
+ ('border-top-color', 'blue'),
260
+ ('font-family', 'serif'),
261
+ ('font-size', '24pt'),
262
+ ('font-weight', 'bold')]
263
+ """
264
+ if isinstance(declarations, str):
265
+ declarations = self.parse(declarations)
266
+ props = dict(self.atomize(declarations))
267
+ if inherited is None:
268
+ inherited = {}
269
+
270
+ props = self._update_initial(props, inherited)
271
+ props = self._update_font_size(props, inherited)
272
+ return self._update_other_units(props)
273
+
274
+ def _update_initial(
275
+ self,
276
+ props: dict[str, str],
277
+ inherited: dict[str, str],
278
+ ) -> dict[str, str]:
279
+ # 1. resolve inherited, initial
280
+ for prop, val in inherited.items():
281
+ if prop not in props:
282
+ props[prop] = val
283
+
284
+ new_props = props.copy()
285
+ for prop, val in props.items():
286
+ if val == "inherit":
287
+ val = inherited.get(prop, "initial")
288
+
289
+ if val in ("initial", None):
290
+ # we do not define a complete initial stylesheet
291
+ del new_props[prop]
292
+ else:
293
+ new_props[prop] = val
294
+ return new_props
295
+
296
+ def _update_font_size(
297
+ self,
298
+ props: dict[str, str],
299
+ inherited: dict[str, str],
300
+ ) -> dict[str, str]:
301
+ # 2. resolve relative font size
302
+ if props.get("font-size"):
303
+ props["font-size"] = self.size_to_pt(
304
+ props["font-size"],
305
+ self._get_font_size(inherited),
306
+ conversions=self.FONT_SIZE_RATIOS,
307
+ )
308
+ return props
309
+
310
+ def _get_font_size(self, props: dict[str, str]) -> float | None:
311
+ if props.get("font-size"):
312
+ font_size_string = props["font-size"]
313
+ return self._get_float_font_size_from_pt(font_size_string)
314
+ return None
315
+
316
+ def _get_float_font_size_from_pt(self, font_size_string: str) -> float:
317
+ assert font_size_string.endswith("pt")
318
+ return float(font_size_string.rstrip("pt"))
319
+
320
+ def _update_other_units(self, props: dict[str, str]) -> dict[str, str]:
321
+ font_size = self._get_font_size(props)
322
+ # 3. TODO: resolve other font-relative units
323
+ for side in self.SIDES:
324
+ prop = f"border-{side}-width"
325
+ if prop in props:
326
+ props[prop] = self.size_to_pt(
327
+ props[prop],
328
+ em_pt=font_size,
329
+ conversions=self.BORDER_WIDTH_RATIOS,
330
+ )
331
+
332
+ for prop in [f"margin-{side}", f"padding-{side}"]:
333
+ if prop in props:
334
+ # TODO: support %
335
+ props[prop] = self.size_to_pt(
336
+ props[prop],
337
+ em_pt=font_size,
338
+ conversions=self.MARGIN_RATIOS,
339
+ )
340
+ return props
341
+
342
+ def size_to_pt(self, in_val, em_pt=None, conversions=UNIT_RATIOS) -> str:
343
+ def _error():
344
+ warnings.warn(
345
+ f"Unhandled size: {repr(in_val)}",
346
+ CSSWarning,
347
+ stacklevel=find_stack_level(),
348
+ )
349
+ return self.size_to_pt("1!!default", conversions=conversions)
350
+
351
+ match = re.match(r"^(\S*?)([a-zA-Z%!].*)", in_val)
352
+ if match is None:
353
+ return _error()
354
+
355
+ val, unit = match.groups()
356
+ if val == "":
357
+ # hack for 'large' etc.
358
+ val = 1
359
+ else:
360
+ try:
361
+ val = float(val)
362
+ except ValueError:
363
+ return _error()
364
+
365
+ while unit != "pt":
366
+ if unit == "em":
367
+ if em_pt is None:
368
+ unit = "rem"
369
+ else:
370
+ val *= em_pt
371
+ unit = "pt"
372
+ continue
373
+
374
+ try:
375
+ unit, mul = conversions[unit]
376
+ except KeyError:
377
+ return _error()
378
+ val *= mul
379
+
380
+ val = round(val, 5)
381
+ if int(val) == val:
382
+ size_fmt = f"{int(val):d}pt"
383
+ else:
384
+ size_fmt = f"{val:f}pt"
385
+ return size_fmt
386
+
387
+ def atomize(self, declarations: Iterable) -> Generator[tuple[str, str], None, None]:
388
+ for prop, value in declarations:
389
+ prop = prop.lower()
390
+ value = value.lower()
391
+ if prop in self.CSS_EXPANSIONS:
392
+ expand = self.CSS_EXPANSIONS[prop]
393
+ yield from expand(self, prop, value)
394
+ else:
395
+ yield prop, value
396
+
397
+ def parse(self, declarations_str: str) -> Iterator[tuple[str, str]]:
398
+ """
399
+ Generates (prop, value) pairs from declarations.
400
+
401
+ In a future version may generate parsed tokens from tinycss/tinycss2
402
+
403
+ Parameters
404
+ ----------
405
+ declarations_str : str
406
+ """
407
+ for decl in declarations_str.split(";"):
408
+ if not decl.strip():
409
+ continue
410
+ prop, sep, val = decl.partition(":")
411
+ prop = prop.strip().lower()
412
+ # TODO: don't lowercase case sensitive parts of values (strings)
413
+ val = val.strip().lower()
414
+ if sep:
415
+ yield prop, val
416
+ else:
417
+ warnings.warn(
418
+ f"Ill-formatted attribute: expected a colon in {repr(decl)}",
419
+ CSSWarning,
420
+ stacklevel=find_stack_level(),
421
+ )
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/excel.py ADDED
@@ -0,0 +1,962 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utilities for conversion to writer-agnostic Excel representation.
3
+ """
4
+ from __future__ import annotations
5
+
6
+ from collections.abc import (
7
+ Hashable,
8
+ Iterable,
9
+ Mapping,
10
+ Sequence,
11
+ )
12
+ import functools
13
+ import itertools
14
+ import re
15
+ from typing import (
16
+ TYPE_CHECKING,
17
+ Any,
18
+ Callable,
19
+ cast,
20
+ )
21
+ import warnings
22
+
23
+ import numpy as np
24
+
25
+ from pandas._libs.lib import is_list_like
26
+ from pandas.util._decorators import doc
27
+ from pandas.util._exceptions import find_stack_level
28
+
29
+ from pandas.core.dtypes import missing
30
+ from pandas.core.dtypes.common import (
31
+ is_float,
32
+ is_scalar,
33
+ )
34
+
35
+ from pandas import (
36
+ DataFrame,
37
+ Index,
38
+ MultiIndex,
39
+ PeriodIndex,
40
+ )
41
+ import pandas.core.common as com
42
+ from pandas.core.shared_docs import _shared_docs
43
+
44
+ from pandas.io.formats._color_data import CSS4_COLORS
45
+ from pandas.io.formats.css import (
46
+ CSSResolver,
47
+ CSSWarning,
48
+ )
49
+ from pandas.io.formats.format import get_level_lengths
50
+ from pandas.io.formats.printing import pprint_thing
51
+
52
+ if TYPE_CHECKING:
53
+ from pandas._typing import (
54
+ FilePath,
55
+ IndexLabel,
56
+ StorageOptions,
57
+ WriteExcelBuffer,
58
+ )
59
+
60
+ from pandas import ExcelWriter
61
+
62
+
63
+ class ExcelCell:
64
+ __fields__ = ("row", "col", "val", "style", "mergestart", "mergeend")
65
+ __slots__ = __fields__
66
+
67
+ def __init__(
68
+ self,
69
+ row: int,
70
+ col: int,
71
+ val,
72
+ style=None,
73
+ mergestart: int | None = None,
74
+ mergeend: int | None = None,
75
+ ) -> None:
76
+ self.row = row
77
+ self.col = col
78
+ self.val = val
79
+ self.style = style
80
+ self.mergestart = mergestart
81
+ self.mergeend = mergeend
82
+
83
+
84
+ class CssExcelCell(ExcelCell):
85
+ def __init__(
86
+ self,
87
+ row: int,
88
+ col: int,
89
+ val,
90
+ style: dict | None,
91
+ css_styles: dict[tuple[int, int], list[tuple[str, Any]]] | None,
92
+ css_row: int,
93
+ css_col: int,
94
+ css_converter: Callable | None,
95
+ **kwargs,
96
+ ) -> None:
97
+ if css_styles and css_converter:
98
+ # Use dict to get only one (case-insensitive) declaration per property
99
+ declaration_dict = {
100
+ prop.lower(): val for prop, val in css_styles[css_row, css_col]
101
+ }
102
+ # Convert to frozenset for order-invariant caching
103
+ unique_declarations = frozenset(declaration_dict.items())
104
+ style = css_converter(unique_declarations)
105
+
106
+ super().__init__(row=row, col=col, val=val, style=style, **kwargs)
107
+
108
+
109
+ class CSSToExcelConverter:
110
+ """
111
+ A callable for converting CSS declarations to ExcelWriter styles
112
+
113
+ Supports parts of CSS 2.2, with minimal CSS 3.0 support (e.g. text-shadow),
114
+ focusing on font styling, backgrounds, borders and alignment.
115
+
116
+ Operates by first computing CSS styles in a fairly generic
117
+ way (see :meth:`compute_css`) then determining Excel style
118
+ properties from CSS properties (see :meth:`build_xlstyle`).
119
+
120
+ Parameters
121
+ ----------
122
+ inherited : str, optional
123
+ CSS declarations understood to be the containing scope for the
124
+ CSS processed by :meth:`__call__`.
125
+ """
126
+
127
+ NAMED_COLORS = CSS4_COLORS
128
+
129
+ VERTICAL_MAP = {
130
+ "top": "top",
131
+ "text-top": "top",
132
+ "middle": "center",
133
+ "baseline": "bottom",
134
+ "bottom": "bottom",
135
+ "text-bottom": "bottom",
136
+ # OpenXML also has 'justify', 'distributed'
137
+ }
138
+
139
+ BOLD_MAP = {
140
+ "bold": True,
141
+ "bolder": True,
142
+ "600": True,
143
+ "700": True,
144
+ "800": True,
145
+ "900": True,
146
+ "normal": False,
147
+ "lighter": False,
148
+ "100": False,
149
+ "200": False,
150
+ "300": False,
151
+ "400": False,
152
+ "500": False,
153
+ }
154
+
155
+ ITALIC_MAP = {
156
+ "normal": False,
157
+ "italic": True,
158
+ "oblique": True,
159
+ }
160
+
161
+ FAMILY_MAP = {
162
+ "serif": 1, # roman
163
+ "sans-serif": 2, # swiss
164
+ "cursive": 4, # script
165
+ "fantasy": 5, # decorative
166
+ }
167
+
168
+ BORDER_STYLE_MAP = {
169
+ style.lower(): style
170
+ for style in [
171
+ "dashed",
172
+ "mediumDashDot",
173
+ "dashDotDot",
174
+ "hair",
175
+ "dotted",
176
+ "mediumDashDotDot",
177
+ "double",
178
+ "dashDot",
179
+ "slantDashDot",
180
+ "mediumDashed",
181
+ ]
182
+ }
183
+
184
+ # NB: Most of the methods here could be classmethods, as only __init__
185
+ # and __call__ make use of instance attributes. We leave them as
186
+ # instancemethods so that users can easily experiment with extensions
187
+ # without monkey-patching.
188
+ inherited: dict[str, str] | None
189
+
190
+ def __init__(self, inherited: str | None = None) -> None:
191
+ if inherited is not None:
192
+ self.inherited = self.compute_css(inherited)
193
+ else:
194
+ self.inherited = None
195
+ # We should avoid cache on the __call__ method.
196
+ # Otherwise once the method __call__ has been called
197
+ # garbage collection no longer deletes the instance.
198
+ self._call_cached = functools.cache(self._call_uncached)
199
+
200
+ compute_css = CSSResolver()
201
+
202
+ def __call__(
203
+ self, declarations: str | frozenset[tuple[str, str]]
204
+ ) -> dict[str, dict[str, str]]:
205
+ """
206
+ Convert CSS declarations to ExcelWriter style.
207
+
208
+ Parameters
209
+ ----------
210
+ declarations : str | frozenset[tuple[str, str]]
211
+ CSS string or set of CSS declaration tuples.
212
+ e.g. "font-weight: bold; background: blue" or
213
+ {("font-weight", "bold"), ("background", "blue")}
214
+
215
+ Returns
216
+ -------
217
+ xlstyle : dict
218
+ A style as interpreted by ExcelWriter when found in
219
+ ExcelCell.style.
220
+ """
221
+ return self._call_cached(declarations)
222
+
223
+ def _call_uncached(
224
+ self, declarations: str | frozenset[tuple[str, str]]
225
+ ) -> dict[str, dict[str, str]]:
226
+ properties = self.compute_css(declarations, self.inherited)
227
+ return self.build_xlstyle(properties)
228
+
229
+ def build_xlstyle(self, props: Mapping[str, str]) -> dict[str, dict[str, str]]:
230
+ out = {
231
+ "alignment": self.build_alignment(props),
232
+ "border": self.build_border(props),
233
+ "fill": self.build_fill(props),
234
+ "font": self.build_font(props),
235
+ "number_format": self.build_number_format(props),
236
+ }
237
+
238
+ # TODO: handle cell width and height: needs support in pandas.io.excel
239
+
240
+ def remove_none(d: dict[str, str | None]) -> None:
241
+ """Remove key where value is None, through nested dicts"""
242
+ for k, v in list(d.items()):
243
+ if v is None:
244
+ del d[k]
245
+ elif isinstance(v, dict):
246
+ remove_none(v)
247
+ if not v:
248
+ del d[k]
249
+
250
+ remove_none(out)
251
+ return out
252
+
253
+ def build_alignment(self, props: Mapping[str, str]) -> dict[str, bool | str | None]:
254
+ # TODO: text-indent, padding-left -> alignment.indent
255
+ return {
256
+ "horizontal": props.get("text-align"),
257
+ "vertical": self._get_vertical_alignment(props),
258
+ "wrap_text": self._get_is_wrap_text(props),
259
+ }
260
+
261
+ def _get_vertical_alignment(self, props: Mapping[str, str]) -> str | None:
262
+ vertical_align = props.get("vertical-align")
263
+ if vertical_align:
264
+ return self.VERTICAL_MAP.get(vertical_align)
265
+ return None
266
+
267
+ def _get_is_wrap_text(self, props: Mapping[str, str]) -> bool | None:
268
+ if props.get("white-space") is None:
269
+ return None
270
+ return bool(props["white-space"] not in ("nowrap", "pre", "pre-line"))
271
+
272
+ def build_border(
273
+ self, props: Mapping[str, str]
274
+ ) -> dict[str, dict[str, str | None]]:
275
+ return {
276
+ side: {
277
+ "style": self._border_style(
278
+ props.get(f"border-{side}-style"),
279
+ props.get(f"border-{side}-width"),
280
+ self.color_to_excel(props.get(f"border-{side}-color")),
281
+ ),
282
+ "color": self.color_to_excel(props.get(f"border-{side}-color")),
283
+ }
284
+ for side in ["top", "right", "bottom", "left"]
285
+ }
286
+
287
+ def _border_style(self, style: str | None, width: str | None, color: str | None):
288
+ # convert styles and widths to openxml, one of:
289
+ # 'dashDot'
290
+ # 'dashDotDot'
291
+ # 'dashed'
292
+ # 'dotted'
293
+ # 'double'
294
+ # 'hair'
295
+ # 'medium'
296
+ # 'mediumDashDot'
297
+ # 'mediumDashDotDot'
298
+ # 'mediumDashed'
299
+ # 'slantDashDot'
300
+ # 'thick'
301
+ # 'thin'
302
+ if width is None and style is None and color is None:
303
+ # Return None will remove "border" from style dictionary
304
+ return None
305
+
306
+ if width is None and style is None:
307
+ # Return "none" will keep "border" in style dictionary
308
+ return "none"
309
+
310
+ if style in ("none", "hidden"):
311
+ return "none"
312
+
313
+ width_name = self._get_width_name(width)
314
+ if width_name is None:
315
+ return "none"
316
+
317
+ if style in (None, "groove", "ridge", "inset", "outset", "solid"):
318
+ # not handled
319
+ return width_name
320
+
321
+ if style == "double":
322
+ return "double"
323
+ if style == "dotted":
324
+ if width_name in ("hair", "thin"):
325
+ return "dotted"
326
+ return "mediumDashDotDot"
327
+ if style == "dashed":
328
+ if width_name in ("hair", "thin"):
329
+ return "dashed"
330
+ return "mediumDashed"
331
+ elif style in self.BORDER_STYLE_MAP:
332
+ # Excel-specific styles
333
+ return self.BORDER_STYLE_MAP[style]
334
+ else:
335
+ warnings.warn(
336
+ f"Unhandled border style format: {repr(style)}",
337
+ CSSWarning,
338
+ stacklevel=find_stack_level(),
339
+ )
340
+ return "none"
341
+
342
+ def _get_width_name(self, width_input: str | None) -> str | None:
343
+ width = self._width_to_float(width_input)
344
+ if width < 1e-5:
345
+ return None
346
+ elif width < 1.3:
347
+ return "thin"
348
+ elif width < 2.8:
349
+ return "medium"
350
+ return "thick"
351
+
352
+ def _width_to_float(self, width: str | None) -> float:
353
+ if width is None:
354
+ width = "2pt"
355
+ return self._pt_to_float(width)
356
+
357
+ def _pt_to_float(self, pt_string: str) -> float:
358
+ assert pt_string.endswith("pt")
359
+ return float(pt_string.rstrip("pt"))
360
+
361
+ def build_fill(self, props: Mapping[str, str]):
362
+ # TODO: perhaps allow for special properties
363
+ # -excel-pattern-bgcolor and -excel-pattern-type
364
+ fill_color = props.get("background-color")
365
+ if fill_color not in (None, "transparent", "none"):
366
+ return {"fgColor": self.color_to_excel(fill_color), "patternType": "solid"}
367
+
368
+ def build_number_format(self, props: Mapping[str, str]) -> dict[str, str | None]:
369
+ fc = props.get("number-format")
370
+ fc = fc.replace("§", ";") if isinstance(fc, str) else fc
371
+ return {"format_code": fc}
372
+
373
+ def build_font(
374
+ self, props: Mapping[str, str]
375
+ ) -> dict[str, bool | float | str | None]:
376
+ font_names = self._get_font_names(props)
377
+ decoration = self._get_decoration(props)
378
+ return {
379
+ "name": font_names[0] if font_names else None,
380
+ "family": self._select_font_family(font_names),
381
+ "size": self._get_font_size(props),
382
+ "bold": self._get_is_bold(props),
383
+ "italic": self._get_is_italic(props),
384
+ "underline": ("single" if "underline" in decoration else None),
385
+ "strike": ("line-through" in decoration) or None,
386
+ "color": self.color_to_excel(props.get("color")),
387
+ # shadow if nonzero digit before shadow color
388
+ "shadow": self._get_shadow(props),
389
+ }
390
+
391
+ def _get_is_bold(self, props: Mapping[str, str]) -> bool | None:
392
+ weight = props.get("font-weight")
393
+ if weight:
394
+ return self.BOLD_MAP.get(weight)
395
+ return None
396
+
397
+ def _get_is_italic(self, props: Mapping[str, str]) -> bool | None:
398
+ font_style = props.get("font-style")
399
+ if font_style:
400
+ return self.ITALIC_MAP.get(font_style)
401
+ return None
402
+
403
+ def _get_decoration(self, props: Mapping[str, str]) -> Sequence[str]:
404
+ decoration = props.get("text-decoration")
405
+ if decoration is not None:
406
+ return decoration.split()
407
+ else:
408
+ return ()
409
+
410
+ def _get_underline(self, decoration: Sequence[str]) -> str | None:
411
+ if "underline" in decoration:
412
+ return "single"
413
+ return None
414
+
415
+ def _get_shadow(self, props: Mapping[str, str]) -> bool | None:
416
+ if "text-shadow" in props:
417
+ return bool(re.search("^[^#(]*[1-9]", props["text-shadow"]))
418
+ return None
419
+
420
+ def _get_font_names(self, props: Mapping[str, str]) -> Sequence[str]:
421
+ font_names_tmp = re.findall(
422
+ r"""(?x)
423
+ (
424
+ "(?:[^"]|\\")+"
425
+ |
426
+ '(?:[^']|\\')+'
427
+ |
428
+ [^'",]+
429
+ )(?=,|\s*$)
430
+ """,
431
+ props.get("font-family", ""),
432
+ )
433
+
434
+ font_names = []
435
+ for name in font_names_tmp:
436
+ if name[:1] == '"':
437
+ name = name[1:-1].replace('\\"', '"')
438
+ elif name[:1] == "'":
439
+ name = name[1:-1].replace("\\'", "'")
440
+ else:
441
+ name = name.strip()
442
+ if name:
443
+ font_names.append(name)
444
+ return font_names
445
+
446
+ def _get_font_size(self, props: Mapping[str, str]) -> float | None:
447
+ size = props.get("font-size")
448
+ if size is None:
449
+ return size
450
+ return self._pt_to_float(size)
451
+
452
+ def _select_font_family(self, font_names: Sequence[str]) -> int | None:
453
+ family = None
454
+ for name in font_names:
455
+ family = self.FAMILY_MAP.get(name)
456
+ if family:
457
+ break
458
+
459
+ return family
460
+
461
+ def color_to_excel(self, val: str | None) -> str | None:
462
+ if val is None:
463
+ return None
464
+
465
+ if self._is_hex_color(val):
466
+ return self._convert_hex_to_excel(val)
467
+
468
+ try:
469
+ return self.NAMED_COLORS[val]
470
+ except KeyError:
471
+ warnings.warn(
472
+ f"Unhandled color format: {repr(val)}",
473
+ CSSWarning,
474
+ stacklevel=find_stack_level(),
475
+ )
476
+ return None
477
+
478
+ def _is_hex_color(self, color_string: str) -> bool:
479
+ return bool(color_string.startswith("#"))
480
+
481
+ def _convert_hex_to_excel(self, color_string: str) -> str:
482
+ code = color_string.lstrip("#")
483
+ if self._is_shorthand_color(color_string):
484
+ return (code[0] * 2 + code[1] * 2 + code[2] * 2).upper()
485
+ else:
486
+ return code.upper()
487
+
488
+ def _is_shorthand_color(self, color_string: str) -> bool:
489
+ """Check if color code is shorthand.
490
+
491
+ #FFF is a shorthand as opposed to full #FFFFFF.
492
+ """
493
+ code = color_string.lstrip("#")
494
+ if len(code) == 3:
495
+ return True
496
+ elif len(code) == 6:
497
+ return False
498
+ else:
499
+ raise ValueError(f"Unexpected color {color_string}")
500
+
501
+
502
+ class ExcelFormatter:
503
+ """
504
+ Class for formatting a DataFrame to a list of ExcelCells,
505
+
506
+ Parameters
507
+ ----------
508
+ df : DataFrame or Styler
509
+ na_rep: na representation
510
+ float_format : str, default None
511
+ Format string for floating point numbers
512
+ cols : sequence, optional
513
+ Columns to write
514
+ header : bool or sequence of str, default True
515
+ Write out column names. If a list of string is given it is
516
+ assumed to be aliases for the column names
517
+ index : bool, default True
518
+ output row names (index)
519
+ index_label : str or sequence, default None
520
+ Column label for index column(s) if desired. If None is given, and
521
+ `header` and `index` are True, then the index names are used. A
522
+ sequence should be given if the DataFrame uses MultiIndex.
523
+ merge_cells : bool, default False
524
+ Format MultiIndex and Hierarchical Rows as merged cells.
525
+ inf_rep : str, default `'inf'`
526
+ representation for np.inf values (which aren't representable in Excel)
527
+ A `'-'` sign will be added in front of -inf.
528
+ style_converter : callable, optional
529
+ This translates Styler styles (CSS) into ExcelWriter styles.
530
+ Defaults to ``CSSToExcelConverter()``.
531
+ It should have signature css_declarations string -> excel style.
532
+ This is only called for body cells.
533
+ """
534
+
535
+ max_rows = 2**20
536
+ max_cols = 2**14
537
+
538
+ def __init__(
539
+ self,
540
+ df,
541
+ na_rep: str = "",
542
+ float_format: str | None = None,
543
+ cols: Sequence[Hashable] | None = None,
544
+ header: Sequence[Hashable] | bool = True,
545
+ index: bool = True,
546
+ index_label: IndexLabel | None = None,
547
+ merge_cells: bool = False,
548
+ inf_rep: str = "inf",
549
+ style_converter: Callable | None = None,
550
+ ) -> None:
551
+ self.rowcounter = 0
552
+ self.na_rep = na_rep
553
+ if not isinstance(df, DataFrame):
554
+ self.styler = df
555
+ self.styler._compute() # calculate applied styles
556
+ df = df.data
557
+ if style_converter is None:
558
+ style_converter = CSSToExcelConverter()
559
+ self.style_converter: Callable | None = style_converter
560
+ else:
561
+ self.styler = None
562
+ self.style_converter = None
563
+ self.df = df
564
+ if cols is not None:
565
+ # all missing, raise
566
+ if not len(Index(cols).intersection(df.columns)):
567
+ raise KeyError("passes columns are not ALL present dataframe")
568
+
569
+ if len(Index(cols).intersection(df.columns)) != len(set(cols)):
570
+ # Deprecated in GH#17295, enforced in 1.0.0
571
+ raise KeyError("Not all names specified in 'columns' are found")
572
+
573
+ self.df = df.reindex(columns=cols)
574
+
575
+ self.columns = self.df.columns
576
+ self.float_format = float_format
577
+ self.index = index
578
+ self.index_label = index_label
579
+ self.header = header
580
+ self.merge_cells = merge_cells
581
+ self.inf_rep = inf_rep
582
+
583
+ @property
584
+ def header_style(self) -> dict[str, dict[str, str | bool]]:
585
+ return {
586
+ "font": {"bold": True},
587
+ "borders": {
588
+ "top": "thin",
589
+ "right": "thin",
590
+ "bottom": "thin",
591
+ "left": "thin",
592
+ },
593
+ "alignment": {"horizontal": "center", "vertical": "top"},
594
+ }
595
+
596
+ def _format_value(self, val):
597
+ if is_scalar(val) and missing.isna(val):
598
+ val = self.na_rep
599
+ elif is_float(val):
600
+ if missing.isposinf_scalar(val):
601
+ val = self.inf_rep
602
+ elif missing.isneginf_scalar(val):
603
+ val = f"-{self.inf_rep}"
604
+ elif self.float_format is not None:
605
+ val = float(self.float_format % val)
606
+ if getattr(val, "tzinfo", None) is not None:
607
+ raise ValueError(
608
+ "Excel does not support datetimes with "
609
+ "timezones. Please ensure that datetimes "
610
+ "are timezone unaware before writing to Excel."
611
+ )
612
+ return val
613
+
614
+ def _format_header_mi(self) -> Iterable[ExcelCell]:
615
+ if self.columns.nlevels > 1:
616
+ if not self.index:
617
+ raise NotImplementedError(
618
+ "Writing to Excel with MultiIndex columns and no "
619
+ "index ('index'=False) is not yet implemented."
620
+ )
621
+
622
+ if not (self._has_aliases or self.header):
623
+ return
624
+
625
+ columns = self.columns
626
+ level_strs = columns._format_multi(
627
+ sparsify=self.merge_cells, include_names=False
628
+ )
629
+ level_lengths = get_level_lengths(level_strs)
630
+ coloffset = 0
631
+ lnum = 0
632
+
633
+ if self.index and isinstance(self.df.index, MultiIndex):
634
+ coloffset = len(self.df.index[0]) - 1
635
+
636
+ if self.merge_cells:
637
+ # Format multi-index as a merged cells.
638
+ for lnum, name in enumerate(columns.names):
639
+ yield ExcelCell(
640
+ row=lnum,
641
+ col=coloffset,
642
+ val=name,
643
+ style=self.header_style,
644
+ )
645
+
646
+ for lnum, (spans, levels, level_codes) in enumerate(
647
+ zip(level_lengths, columns.levels, columns.codes)
648
+ ):
649
+ values = levels.take(level_codes)
650
+ for i, span_val in spans.items():
651
+ mergestart, mergeend = None, None
652
+ if span_val > 1:
653
+ mergestart, mergeend = lnum, coloffset + i + span_val
654
+ yield CssExcelCell(
655
+ row=lnum,
656
+ col=coloffset + i + 1,
657
+ val=values[i],
658
+ style=self.header_style,
659
+ css_styles=getattr(self.styler, "ctx_columns", None),
660
+ css_row=lnum,
661
+ css_col=i,
662
+ css_converter=self.style_converter,
663
+ mergestart=mergestart,
664
+ mergeend=mergeend,
665
+ )
666
+ else:
667
+ # Format in legacy format with dots to indicate levels.
668
+ for i, values in enumerate(zip(*level_strs)):
669
+ v = ".".join(map(pprint_thing, values))
670
+ yield CssExcelCell(
671
+ row=lnum,
672
+ col=coloffset + i + 1,
673
+ val=v,
674
+ style=self.header_style,
675
+ css_styles=getattr(self.styler, "ctx_columns", None),
676
+ css_row=lnum,
677
+ css_col=i,
678
+ css_converter=self.style_converter,
679
+ )
680
+
681
+ self.rowcounter = lnum
682
+
683
+ def _format_header_regular(self) -> Iterable[ExcelCell]:
684
+ if self._has_aliases or self.header:
685
+ coloffset = 0
686
+
687
+ if self.index:
688
+ coloffset = 1
689
+ if isinstance(self.df.index, MultiIndex):
690
+ coloffset = len(self.df.index.names)
691
+
692
+ colnames = self.columns
693
+ if self._has_aliases:
694
+ self.header = cast(Sequence, self.header)
695
+ if len(self.header) != len(self.columns):
696
+ raise ValueError(
697
+ f"Writing {len(self.columns)} cols "
698
+ f"but got {len(self.header)} aliases"
699
+ )
700
+ colnames = self.header
701
+
702
+ for colindex, colname in enumerate(colnames):
703
+ yield CssExcelCell(
704
+ row=self.rowcounter,
705
+ col=colindex + coloffset,
706
+ val=colname,
707
+ style=self.header_style,
708
+ css_styles=getattr(self.styler, "ctx_columns", None),
709
+ css_row=0,
710
+ css_col=colindex,
711
+ css_converter=self.style_converter,
712
+ )
713
+
714
+ def _format_header(self) -> Iterable[ExcelCell]:
715
+ gen: Iterable[ExcelCell]
716
+
717
+ if isinstance(self.columns, MultiIndex):
718
+ gen = self._format_header_mi()
719
+ else:
720
+ gen = self._format_header_regular()
721
+
722
+ gen2: Iterable[ExcelCell] = ()
723
+
724
+ if self.df.index.names:
725
+ row = [x if x is not None else "" for x in self.df.index.names] + [
726
+ ""
727
+ ] * len(self.columns)
728
+ if functools.reduce(lambda x, y: x and y, (x != "" for x in row)):
729
+ gen2 = (
730
+ ExcelCell(self.rowcounter, colindex, val, self.header_style)
731
+ for colindex, val in enumerate(row)
732
+ )
733
+ self.rowcounter += 1
734
+ return itertools.chain(gen, gen2)
735
+
736
+ def _format_body(self) -> Iterable[ExcelCell]:
737
+ if isinstance(self.df.index, MultiIndex):
738
+ return self._format_hierarchical_rows()
739
+ else:
740
+ return self._format_regular_rows()
741
+
742
+ def _format_regular_rows(self) -> Iterable[ExcelCell]:
743
+ if self._has_aliases or self.header:
744
+ self.rowcounter += 1
745
+
746
+ # output index and index_label?
747
+ if self.index:
748
+ # check aliases
749
+ # if list only take first as this is not a MultiIndex
750
+ if self.index_label and isinstance(
751
+ self.index_label, (list, tuple, np.ndarray, Index)
752
+ ):
753
+ index_label = self.index_label[0]
754
+ # if string good to go
755
+ elif self.index_label and isinstance(self.index_label, str):
756
+ index_label = self.index_label
757
+ else:
758
+ index_label = self.df.index.names[0]
759
+
760
+ if isinstance(self.columns, MultiIndex):
761
+ self.rowcounter += 1
762
+
763
+ if index_label and self.header is not False:
764
+ yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style)
765
+
766
+ # write index_values
767
+ index_values = self.df.index
768
+ if isinstance(self.df.index, PeriodIndex):
769
+ index_values = self.df.index.to_timestamp()
770
+
771
+ for idx, idxval in enumerate(index_values):
772
+ yield CssExcelCell(
773
+ row=self.rowcounter + idx,
774
+ col=0,
775
+ val=idxval,
776
+ style=self.header_style,
777
+ css_styles=getattr(self.styler, "ctx_index", None),
778
+ css_row=idx,
779
+ css_col=0,
780
+ css_converter=self.style_converter,
781
+ )
782
+ coloffset = 1
783
+ else:
784
+ coloffset = 0
785
+
786
+ yield from self._generate_body(coloffset)
787
+
788
+ def _format_hierarchical_rows(self) -> Iterable[ExcelCell]:
789
+ if self._has_aliases or self.header:
790
+ self.rowcounter += 1
791
+
792
+ gcolidx = 0
793
+
794
+ if self.index:
795
+ index_labels = self.df.index.names
796
+ # check for aliases
797
+ if self.index_label and isinstance(
798
+ self.index_label, (list, tuple, np.ndarray, Index)
799
+ ):
800
+ index_labels = self.index_label
801
+
802
+ # MultiIndex columns require an extra row
803
+ # with index names (blank if None) for
804
+ # unambiguous round-trip, unless not merging,
805
+ # in which case the names all go on one row Issue #11328
806
+ if isinstance(self.columns, MultiIndex) and self.merge_cells:
807
+ self.rowcounter += 1
808
+
809
+ # if index labels are not empty go ahead and dump
810
+ if com.any_not_none(*index_labels) and self.header is not False:
811
+ for cidx, name in enumerate(index_labels):
812
+ yield ExcelCell(self.rowcounter - 1, cidx, name, self.header_style)
813
+
814
+ if self.merge_cells:
815
+ # Format hierarchical rows as merged cells.
816
+ level_strs = self.df.index._format_multi(
817
+ sparsify=True, include_names=False
818
+ )
819
+ level_lengths = get_level_lengths(level_strs)
820
+
821
+ for spans, levels, level_codes in zip(
822
+ level_lengths, self.df.index.levels, self.df.index.codes
823
+ ):
824
+ values = levels.take(
825
+ level_codes,
826
+ allow_fill=levels._can_hold_na,
827
+ fill_value=levels._na_value,
828
+ )
829
+
830
+ for i, span_val in spans.items():
831
+ mergestart, mergeend = None, None
832
+ if span_val > 1:
833
+ mergestart = self.rowcounter + i + span_val - 1
834
+ mergeend = gcolidx
835
+ yield CssExcelCell(
836
+ row=self.rowcounter + i,
837
+ col=gcolidx,
838
+ val=values[i],
839
+ style=self.header_style,
840
+ css_styles=getattr(self.styler, "ctx_index", None),
841
+ css_row=i,
842
+ css_col=gcolidx,
843
+ css_converter=self.style_converter,
844
+ mergestart=mergestart,
845
+ mergeend=mergeend,
846
+ )
847
+ gcolidx += 1
848
+
849
+ else:
850
+ # Format hierarchical rows with non-merged values.
851
+ for indexcolvals in zip(*self.df.index):
852
+ for idx, indexcolval in enumerate(indexcolvals):
853
+ yield CssExcelCell(
854
+ row=self.rowcounter + idx,
855
+ col=gcolidx,
856
+ val=indexcolval,
857
+ style=self.header_style,
858
+ css_styles=getattr(self.styler, "ctx_index", None),
859
+ css_row=idx,
860
+ css_col=gcolidx,
861
+ css_converter=self.style_converter,
862
+ )
863
+ gcolidx += 1
864
+
865
+ yield from self._generate_body(gcolidx)
866
+
867
+ @property
868
+ def _has_aliases(self) -> bool:
869
+ """Whether the aliases for column names are present."""
870
+ return is_list_like(self.header)
871
+
872
+ def _generate_body(self, coloffset: int) -> Iterable[ExcelCell]:
873
+ # Write the body of the frame data series by series.
874
+ for colidx in range(len(self.columns)):
875
+ series = self.df.iloc[:, colidx]
876
+ for i, val in enumerate(series):
877
+ yield CssExcelCell(
878
+ row=self.rowcounter + i,
879
+ col=colidx + coloffset,
880
+ val=val,
881
+ style=None,
882
+ css_styles=getattr(self.styler, "ctx", None),
883
+ css_row=i,
884
+ css_col=colidx,
885
+ css_converter=self.style_converter,
886
+ )
887
+
888
+ def get_formatted_cells(self) -> Iterable[ExcelCell]:
889
+ for cell in itertools.chain(self._format_header(), self._format_body()):
890
+ cell.val = self._format_value(cell.val)
891
+ yield cell
892
+
893
+ @doc(storage_options=_shared_docs["storage_options"])
894
+ def write(
895
+ self,
896
+ writer: FilePath | WriteExcelBuffer | ExcelWriter,
897
+ sheet_name: str = "Sheet1",
898
+ startrow: int = 0,
899
+ startcol: int = 0,
900
+ freeze_panes: tuple[int, int] | None = None,
901
+ engine: str | None = None,
902
+ storage_options: StorageOptions | None = None,
903
+ engine_kwargs: dict | None = None,
904
+ ) -> None:
905
+ """
906
+ writer : path-like, file-like, or ExcelWriter object
907
+ File path or existing ExcelWriter
908
+ sheet_name : str, default 'Sheet1'
909
+ Name of sheet which will contain DataFrame
910
+ startrow :
911
+ upper left cell row to dump data frame
912
+ startcol :
913
+ upper left cell column to dump data frame
914
+ freeze_panes : tuple of integer (length 2), default None
915
+ Specifies the one-based bottommost row and rightmost column that
916
+ is to be frozen
917
+ engine : string, default None
918
+ write engine to use if writer is a path - you can also set this
919
+ via the options ``io.excel.xlsx.writer``,
920
+ or ``io.excel.xlsm.writer``.
921
+
922
+ {storage_options}
923
+
924
+ engine_kwargs: dict, optional
925
+ Arbitrary keyword arguments passed to excel engine.
926
+ """
927
+ from pandas.io.excel import ExcelWriter
928
+
929
+ num_rows, num_cols = self.df.shape
930
+ if num_rows > self.max_rows or num_cols > self.max_cols:
931
+ raise ValueError(
932
+ f"This sheet is too large! Your sheet size is: {num_rows}, {num_cols} "
933
+ f"Max sheet size is: {self.max_rows}, {self.max_cols}"
934
+ )
935
+
936
+ if engine_kwargs is None:
937
+ engine_kwargs = {}
938
+
939
+ formatted_cells = self.get_formatted_cells()
940
+ if isinstance(writer, ExcelWriter):
941
+ need_save = False
942
+ else:
943
+ writer = ExcelWriter(
944
+ writer,
945
+ engine=engine,
946
+ storage_options=storage_options,
947
+ engine_kwargs=engine_kwargs,
948
+ )
949
+ need_save = True
950
+
951
+ try:
952
+ writer._write_cells(
953
+ formatted_cells,
954
+ sheet_name,
955
+ startrow=startrow,
956
+ startcol=startcol,
957
+ freeze_panes=freeze_panes,
958
+ )
959
+ finally:
960
+ # make sure to close opened file handles
961
+ if need_save:
962
+ writer.close()
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/format.py ADDED
@@ -0,0 +1,2058 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Internal module for formatting output data in csv, html, xml,
3
+ and latex files. This module also applies to display formatting.
4
+ """
5
+ from __future__ import annotations
6
+
7
+ from collections.abc import (
8
+ Generator,
9
+ Hashable,
10
+ Mapping,
11
+ Sequence,
12
+ )
13
+ from contextlib import contextmanager
14
+ from csv import QUOTE_NONE
15
+ from decimal import Decimal
16
+ from functools import partial
17
+ from io import StringIO
18
+ import math
19
+ import re
20
+ from shutil import get_terminal_size
21
+ from typing import (
22
+ TYPE_CHECKING,
23
+ Any,
24
+ Callable,
25
+ Final,
26
+ cast,
27
+ )
28
+
29
+ import numpy as np
30
+
31
+ from pandas._config.config import (
32
+ get_option,
33
+ set_option,
34
+ )
35
+
36
+ from pandas._libs import lib
37
+ from pandas._libs.missing import NA
38
+ from pandas._libs.tslibs import (
39
+ NaT,
40
+ Timedelta,
41
+ Timestamp,
42
+ )
43
+ from pandas._libs.tslibs.nattype import NaTType
44
+
45
+ from pandas.core.dtypes.common import (
46
+ is_complex_dtype,
47
+ is_float,
48
+ is_integer,
49
+ is_list_like,
50
+ is_numeric_dtype,
51
+ is_scalar,
52
+ )
53
+ from pandas.core.dtypes.dtypes import (
54
+ CategoricalDtype,
55
+ DatetimeTZDtype,
56
+ ExtensionDtype,
57
+ )
58
+ from pandas.core.dtypes.missing import (
59
+ isna,
60
+ notna,
61
+ )
62
+
63
+ from pandas.core.arrays import (
64
+ Categorical,
65
+ DatetimeArray,
66
+ ExtensionArray,
67
+ TimedeltaArray,
68
+ )
69
+ from pandas.core.arrays.string_ import StringDtype
70
+ from pandas.core.base import PandasObject
71
+ import pandas.core.common as com
72
+ from pandas.core.indexes.api import (
73
+ Index,
74
+ MultiIndex,
75
+ PeriodIndex,
76
+ ensure_index,
77
+ )
78
+ from pandas.core.indexes.datetimes import DatetimeIndex
79
+ from pandas.core.indexes.timedeltas import TimedeltaIndex
80
+ from pandas.core.reshape.concat import concat
81
+
82
+ from pandas.io.common import (
83
+ check_parent_directory,
84
+ stringify_path,
85
+ )
86
+ from pandas.io.formats import printing
87
+
88
+ if TYPE_CHECKING:
89
+ from pandas._typing import (
90
+ ArrayLike,
91
+ Axes,
92
+ ColspaceArgType,
93
+ ColspaceType,
94
+ CompressionOptions,
95
+ FilePath,
96
+ FloatFormatType,
97
+ FormattersType,
98
+ IndexLabel,
99
+ SequenceNotStr,
100
+ StorageOptions,
101
+ WriteBuffer,
102
+ )
103
+
104
+ from pandas import (
105
+ DataFrame,
106
+ Series,
107
+ )
108
+
109
+
110
+ common_docstring: Final = """
111
+ Parameters
112
+ ----------
113
+ buf : str, Path or StringIO-like, optional, default None
114
+ Buffer to write to. If None, the output is returned as a string.
115
+ columns : array-like, optional, default None
116
+ The subset of columns to write. Writes all columns by default.
117
+ col_space : %(col_space_type)s, optional
118
+ %(col_space)s.
119
+ header : %(header_type)s, optional
120
+ %(header)s.
121
+ index : bool, optional, default True
122
+ Whether to print index (row) labels.
123
+ na_rep : str, optional, default 'NaN'
124
+ String representation of ``NaN`` to use.
125
+ formatters : list, tuple or dict of one-param. functions, optional
126
+ Formatter functions to apply to columns' elements by position or
127
+ name.
128
+ The result of each function must be a unicode string.
129
+ List/tuple must be of length equal to the number of columns.
130
+ float_format : one-parameter function, optional, default None
131
+ Formatter function to apply to columns' elements if they are
132
+ floats. This function must return a unicode string and will be
133
+ applied only to the non-``NaN`` elements, with ``NaN`` being
134
+ handled by ``na_rep``.
135
+ sparsify : bool, optional, default True
136
+ Set to False for a DataFrame with a hierarchical index to print
137
+ every multiindex key at each row.
138
+ index_names : bool, optional, default True
139
+ Prints the names of the indexes.
140
+ justify : str, default None
141
+ How to justify the column labels. If None uses the option from
142
+ the print configuration (controlled by set_option), 'right' out
143
+ of the box. Valid values are
144
+
145
+ * left
146
+ * right
147
+ * center
148
+ * justify
149
+ * justify-all
150
+ * start
151
+ * end
152
+ * inherit
153
+ * match-parent
154
+ * initial
155
+ * unset.
156
+ max_rows : int, optional
157
+ Maximum number of rows to display in the console.
158
+ max_cols : int, optional
159
+ Maximum number of columns to display in the console.
160
+ show_dimensions : bool, default False
161
+ Display DataFrame dimensions (number of rows by number of columns).
162
+ decimal : str, default '.'
163
+ Character recognized as decimal separator, e.g. ',' in Europe.
164
+ """
165
+
166
+ VALID_JUSTIFY_PARAMETERS = (
167
+ "left",
168
+ "right",
169
+ "center",
170
+ "justify",
171
+ "justify-all",
172
+ "start",
173
+ "end",
174
+ "inherit",
175
+ "match-parent",
176
+ "initial",
177
+ "unset",
178
+ )
179
+
180
+ return_docstring: Final = """
181
+ Returns
182
+ -------
183
+ str or None
184
+ If buf is None, returns the result as a string. Otherwise returns
185
+ None.
186
+ """
187
+
188
+
189
+ class SeriesFormatter:
190
+ """
191
+ Implement the main logic of Series.to_string, which underlies
192
+ Series.__repr__.
193
+ """
194
+
195
+ def __init__(
196
+ self,
197
+ series: Series,
198
+ *,
199
+ length: bool | str = True,
200
+ header: bool = True,
201
+ index: bool = True,
202
+ na_rep: str = "NaN",
203
+ name: bool = False,
204
+ float_format: str | None = None,
205
+ dtype: bool = True,
206
+ max_rows: int | None = None,
207
+ min_rows: int | None = None,
208
+ ) -> None:
209
+ self.series = series
210
+ self.buf = StringIO()
211
+ self.name = name
212
+ self.na_rep = na_rep
213
+ self.header = header
214
+ self.length = length
215
+ self.index = index
216
+ self.max_rows = max_rows
217
+ self.min_rows = min_rows
218
+
219
+ if float_format is None:
220
+ float_format = get_option("display.float_format")
221
+ self.float_format = float_format
222
+ self.dtype = dtype
223
+ self.adj = printing.get_adjustment()
224
+
225
+ self._chk_truncate()
226
+
227
+ def _chk_truncate(self) -> None:
228
+ self.tr_row_num: int | None
229
+
230
+ min_rows = self.min_rows
231
+ max_rows = self.max_rows
232
+ # truncation determined by max_rows, actual truncated number of rows
233
+ # used below by min_rows
234
+ is_truncated_vertically = max_rows and (len(self.series) > max_rows)
235
+ series = self.series
236
+ if is_truncated_vertically:
237
+ max_rows = cast(int, max_rows)
238
+ if min_rows:
239
+ # if min_rows is set (not None or 0), set max_rows to minimum
240
+ # of both
241
+ max_rows = min(min_rows, max_rows)
242
+ if max_rows == 1:
243
+ row_num = max_rows
244
+ series = series.iloc[:max_rows]
245
+ else:
246
+ row_num = max_rows // 2
247
+ series = concat((series.iloc[:row_num], series.iloc[-row_num:]))
248
+ self.tr_row_num = row_num
249
+ else:
250
+ self.tr_row_num = None
251
+ self.tr_series = series
252
+ self.is_truncated_vertically = is_truncated_vertically
253
+
254
+ def _get_footer(self) -> str:
255
+ name = self.series.name
256
+ footer = ""
257
+
258
+ index = self.series.index
259
+ if (
260
+ isinstance(index, (DatetimeIndex, PeriodIndex, TimedeltaIndex))
261
+ and index.freq is not None
262
+ ):
263
+ footer += f"Freq: {index.freqstr}"
264
+
265
+ if self.name is not False and name is not None:
266
+ if footer:
267
+ footer += ", "
268
+
269
+ series_name = printing.pprint_thing(name, escape_chars=("\t", "\r", "\n"))
270
+ footer += f"Name: {series_name}"
271
+
272
+ if self.length is True or (
273
+ self.length == "truncate" and self.is_truncated_vertically
274
+ ):
275
+ if footer:
276
+ footer += ", "
277
+ footer += f"Length: {len(self.series)}"
278
+
279
+ if self.dtype is not False and self.dtype is not None:
280
+ dtype_name = getattr(self.tr_series.dtype, "name", None)
281
+ if dtype_name:
282
+ if footer:
283
+ footer += ", "
284
+ footer += f"dtype: {printing.pprint_thing(dtype_name)}"
285
+
286
+ # level infos are added to the end and in a new line, like it is done
287
+ # for Categoricals
288
+ if isinstance(self.tr_series.dtype, CategoricalDtype):
289
+ level_info = self.tr_series._values._get_repr_footer()
290
+ if footer:
291
+ footer += "\n"
292
+ footer += level_info
293
+
294
+ return str(footer)
295
+
296
+ def _get_formatted_values(self) -> list[str]:
297
+ return format_array(
298
+ self.tr_series._values,
299
+ None,
300
+ float_format=self.float_format,
301
+ na_rep=self.na_rep,
302
+ leading_space=self.index,
303
+ )
304
+
305
+ def to_string(self) -> str:
306
+ series = self.tr_series
307
+ footer = self._get_footer()
308
+
309
+ if len(series) == 0:
310
+ return f"{type(self.series).__name__}([], {footer})"
311
+
312
+ index = series.index
313
+ have_header = _has_names(index)
314
+ if isinstance(index, MultiIndex):
315
+ fmt_index = index._format_multi(include_names=True, sparsify=None)
316
+ adj = printing.get_adjustment()
317
+ fmt_index = adj.adjoin(2, *fmt_index).split("\n")
318
+ else:
319
+ fmt_index = index._format_flat(include_name=True)
320
+ fmt_values = self._get_formatted_values()
321
+
322
+ if self.is_truncated_vertically:
323
+ n_header_rows = 0
324
+ row_num = self.tr_row_num
325
+ row_num = cast(int, row_num)
326
+ width = self.adj.len(fmt_values[row_num - 1])
327
+ if width > 3:
328
+ dot_str = "..."
329
+ else:
330
+ dot_str = ".."
331
+ # Series uses mode=center because it has single value columns
332
+ # DataFrame uses mode=left
333
+ dot_str = self.adj.justify([dot_str], width, mode="center")[0]
334
+ fmt_values.insert(row_num + n_header_rows, dot_str)
335
+ fmt_index.insert(row_num + 1, "")
336
+
337
+ if self.index:
338
+ result = self.adj.adjoin(3, *[fmt_index[1:], fmt_values])
339
+ else:
340
+ result = self.adj.adjoin(3, fmt_values)
341
+
342
+ if self.header and have_header:
343
+ result = fmt_index[0] + "\n" + result
344
+
345
+ if footer:
346
+ result += "\n" + footer
347
+
348
+ return str("".join(result))
349
+
350
+
351
+ def get_dataframe_repr_params() -> dict[str, Any]:
352
+ """Get the parameters used to repr(dataFrame) calls using DataFrame.to_string.
353
+
354
+ Supplying these parameters to DataFrame.to_string is equivalent to calling
355
+ ``repr(DataFrame)``. This is useful if you want to adjust the repr output.
356
+
357
+ .. versionadded:: 1.4.0
358
+
359
+ Example
360
+ -------
361
+ >>> import pandas as pd
362
+ >>>
363
+ >>> df = pd.DataFrame([[1, 2], [3, 4]])
364
+ >>> repr_params = pd.io.formats.format.get_dataframe_repr_params()
365
+ >>> repr(df) == df.to_string(**repr_params)
366
+ True
367
+ """
368
+ from pandas.io.formats import console
369
+
370
+ if get_option("display.expand_frame_repr"):
371
+ line_width, _ = console.get_console_size()
372
+ else:
373
+ line_width = None
374
+ return {
375
+ "max_rows": get_option("display.max_rows"),
376
+ "min_rows": get_option("display.min_rows"),
377
+ "max_cols": get_option("display.max_columns"),
378
+ "max_colwidth": get_option("display.max_colwidth"),
379
+ "show_dimensions": get_option("display.show_dimensions"),
380
+ "line_width": line_width,
381
+ }
382
+
383
+
384
+ def get_series_repr_params() -> dict[str, Any]:
385
+ """Get the parameters used to repr(Series) calls using Series.to_string.
386
+
387
+ Supplying these parameters to Series.to_string is equivalent to calling
388
+ ``repr(series)``. This is useful if you want to adjust the series repr output.
389
+
390
+ .. versionadded:: 1.4.0
391
+
392
+ Example
393
+ -------
394
+ >>> import pandas as pd
395
+ >>>
396
+ >>> ser = pd.Series([1, 2, 3, 4])
397
+ >>> repr_params = pd.io.formats.format.get_series_repr_params()
398
+ >>> repr(ser) == ser.to_string(**repr_params)
399
+ True
400
+ """
401
+ width, height = get_terminal_size()
402
+ max_rows_opt = get_option("display.max_rows")
403
+ max_rows = height if max_rows_opt == 0 else max_rows_opt
404
+ min_rows = height if max_rows_opt == 0 else get_option("display.min_rows")
405
+
406
+ return {
407
+ "name": True,
408
+ "dtype": True,
409
+ "min_rows": min_rows,
410
+ "max_rows": max_rows,
411
+ "length": get_option("display.show_dimensions"),
412
+ }
413
+
414
+
415
+ class DataFrameFormatter:
416
+ """
417
+ Class for processing dataframe formatting options and data.
418
+
419
+ Used by DataFrame.to_string, which backs DataFrame.__repr__.
420
+ """
421
+
422
+ __doc__ = __doc__ if __doc__ else ""
423
+ __doc__ += common_docstring + return_docstring
424
+
425
+ def __init__(
426
+ self,
427
+ frame: DataFrame,
428
+ columns: Axes | None = None,
429
+ col_space: ColspaceArgType | None = None,
430
+ header: bool | SequenceNotStr[str] = True,
431
+ index: bool = True,
432
+ na_rep: str = "NaN",
433
+ formatters: FormattersType | None = None,
434
+ justify: str | None = None,
435
+ float_format: FloatFormatType | None = None,
436
+ sparsify: bool | None = None,
437
+ index_names: bool = True,
438
+ max_rows: int | None = None,
439
+ min_rows: int | None = None,
440
+ max_cols: int | None = None,
441
+ show_dimensions: bool | str = False,
442
+ decimal: str = ".",
443
+ bold_rows: bool = False,
444
+ escape: bool = True,
445
+ ) -> None:
446
+ self.frame = frame
447
+ self.columns = self._initialize_columns(columns)
448
+ self.col_space = self._initialize_colspace(col_space)
449
+ self.header = header
450
+ self.index = index
451
+ self.na_rep = na_rep
452
+ self.formatters = self._initialize_formatters(formatters)
453
+ self.justify = self._initialize_justify(justify)
454
+ self.float_format = float_format
455
+ self.sparsify = self._initialize_sparsify(sparsify)
456
+ self.show_index_names = index_names
457
+ self.decimal = decimal
458
+ self.bold_rows = bold_rows
459
+ self.escape = escape
460
+ self.max_rows = max_rows
461
+ self.min_rows = min_rows
462
+ self.max_cols = max_cols
463
+ self.show_dimensions = show_dimensions
464
+
465
+ self.max_cols_fitted = self._calc_max_cols_fitted()
466
+ self.max_rows_fitted = self._calc_max_rows_fitted()
467
+
468
+ self.tr_frame = self.frame
469
+ self.truncate()
470
+ self.adj = printing.get_adjustment()
471
+
472
+ def get_strcols(self) -> list[list[str]]:
473
+ """
474
+ Render a DataFrame to a list of columns (as lists of strings).
475
+ """
476
+ strcols = self._get_strcols_without_index()
477
+
478
+ if self.index:
479
+ str_index = self._get_formatted_index(self.tr_frame)
480
+ strcols.insert(0, str_index)
481
+
482
+ return strcols
483
+
484
+ @property
485
+ def should_show_dimensions(self) -> bool:
486
+ return self.show_dimensions is True or (
487
+ self.show_dimensions == "truncate" and self.is_truncated
488
+ )
489
+
490
+ @property
491
+ def is_truncated(self) -> bool:
492
+ return bool(self.is_truncated_horizontally or self.is_truncated_vertically)
493
+
494
+ @property
495
+ def is_truncated_horizontally(self) -> bool:
496
+ return bool(self.max_cols_fitted and (len(self.columns) > self.max_cols_fitted))
497
+
498
+ @property
499
+ def is_truncated_vertically(self) -> bool:
500
+ return bool(self.max_rows_fitted and (len(self.frame) > self.max_rows_fitted))
501
+
502
+ @property
503
+ def dimensions_info(self) -> str:
504
+ return f"\n\n[{len(self.frame)} rows x {len(self.frame.columns)} columns]"
505
+
506
+ @property
507
+ def has_index_names(self) -> bool:
508
+ return _has_names(self.frame.index)
509
+
510
+ @property
511
+ def has_column_names(self) -> bool:
512
+ return _has_names(self.frame.columns)
513
+
514
+ @property
515
+ def show_row_idx_names(self) -> bool:
516
+ return all((self.has_index_names, self.index, self.show_index_names))
517
+
518
+ @property
519
+ def show_col_idx_names(self) -> bool:
520
+ return all((self.has_column_names, self.show_index_names, self.header))
521
+
522
+ @property
523
+ def max_rows_displayed(self) -> int:
524
+ return min(self.max_rows or len(self.frame), len(self.frame))
525
+
526
+ def _initialize_sparsify(self, sparsify: bool | None) -> bool:
527
+ if sparsify is None:
528
+ return get_option("display.multi_sparse")
529
+ return sparsify
530
+
531
+ def _initialize_formatters(
532
+ self, formatters: FormattersType | None
533
+ ) -> FormattersType:
534
+ if formatters is None:
535
+ return {}
536
+ elif len(self.frame.columns) == len(formatters) or isinstance(formatters, dict):
537
+ return formatters
538
+ else:
539
+ raise ValueError(
540
+ f"Formatters length({len(formatters)}) should match "
541
+ f"DataFrame number of columns({len(self.frame.columns)})"
542
+ )
543
+
544
+ def _initialize_justify(self, justify: str | None) -> str:
545
+ if justify is None:
546
+ return get_option("display.colheader_justify")
547
+ else:
548
+ return justify
549
+
550
+ def _initialize_columns(self, columns: Axes | None) -> Index:
551
+ if columns is not None:
552
+ cols = ensure_index(columns)
553
+ self.frame = self.frame[cols]
554
+ return cols
555
+ else:
556
+ return self.frame.columns
557
+
558
+ def _initialize_colspace(self, col_space: ColspaceArgType | None) -> ColspaceType:
559
+ result: ColspaceType
560
+
561
+ if col_space is None:
562
+ result = {}
563
+ elif isinstance(col_space, (int, str)):
564
+ result = {"": col_space}
565
+ result.update({column: col_space for column in self.frame.columns})
566
+ elif isinstance(col_space, Mapping):
567
+ for column in col_space.keys():
568
+ if column not in self.frame.columns and column != "":
569
+ raise ValueError(
570
+ f"Col_space is defined for an unknown column: {column}"
571
+ )
572
+ result = col_space
573
+ else:
574
+ if len(self.frame.columns) != len(col_space):
575
+ raise ValueError(
576
+ f"Col_space length({len(col_space)}) should match "
577
+ f"DataFrame number of columns({len(self.frame.columns)})"
578
+ )
579
+ result = dict(zip(self.frame.columns, col_space))
580
+ return result
581
+
582
+ def _calc_max_cols_fitted(self) -> int | None:
583
+ """Number of columns fitting the screen."""
584
+ if not self._is_in_terminal():
585
+ return self.max_cols
586
+
587
+ width, _ = get_terminal_size()
588
+ if self._is_screen_narrow(width):
589
+ return width
590
+ else:
591
+ return self.max_cols
592
+
593
+ def _calc_max_rows_fitted(self) -> int | None:
594
+ """Number of rows with data fitting the screen."""
595
+ max_rows: int | None
596
+
597
+ if self._is_in_terminal():
598
+ _, height = get_terminal_size()
599
+ if self.max_rows == 0:
600
+ # rows available to fill with actual data
601
+ return height - self._get_number_of_auxiliary_rows()
602
+
603
+ if self._is_screen_short(height):
604
+ max_rows = height
605
+ else:
606
+ max_rows = self.max_rows
607
+ else:
608
+ max_rows = self.max_rows
609
+
610
+ return self._adjust_max_rows(max_rows)
611
+
612
+ def _adjust_max_rows(self, max_rows: int | None) -> int | None:
613
+ """Adjust max_rows using display logic.
614
+
615
+ See description here:
616
+ https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options
617
+
618
+ GH #37359
619
+ """
620
+ if max_rows:
621
+ if (len(self.frame) > max_rows) and self.min_rows:
622
+ # if truncated, set max_rows showed to min_rows
623
+ max_rows = min(self.min_rows, max_rows)
624
+ return max_rows
625
+
626
+ def _is_in_terminal(self) -> bool:
627
+ """Check if the output is to be shown in terminal."""
628
+ return bool(self.max_cols == 0 or self.max_rows == 0)
629
+
630
+ def _is_screen_narrow(self, max_width) -> bool:
631
+ return bool(self.max_cols == 0 and len(self.frame.columns) > max_width)
632
+
633
+ def _is_screen_short(self, max_height) -> bool:
634
+ return bool(self.max_rows == 0 and len(self.frame) > max_height)
635
+
636
+ def _get_number_of_auxiliary_rows(self) -> int:
637
+ """Get number of rows occupied by prompt, dots and dimension info."""
638
+ dot_row = 1
639
+ prompt_row = 1
640
+ num_rows = dot_row + prompt_row
641
+
642
+ if self.show_dimensions:
643
+ num_rows += len(self.dimensions_info.splitlines())
644
+
645
+ if self.header:
646
+ num_rows += 1
647
+
648
+ return num_rows
649
+
650
+ def truncate(self) -> None:
651
+ """
652
+ Check whether the frame should be truncated. If so, slice the frame up.
653
+ """
654
+ if self.is_truncated_horizontally:
655
+ self._truncate_horizontally()
656
+
657
+ if self.is_truncated_vertically:
658
+ self._truncate_vertically()
659
+
660
+ def _truncate_horizontally(self) -> None:
661
+ """Remove columns, which are not to be displayed and adjust formatters.
662
+
663
+ Attributes affected:
664
+ - tr_frame
665
+ - formatters
666
+ - tr_col_num
667
+ """
668
+ assert self.max_cols_fitted is not None
669
+ col_num = self.max_cols_fitted // 2
670
+ if col_num >= 1:
671
+ left = self.tr_frame.iloc[:, :col_num]
672
+ right = self.tr_frame.iloc[:, -col_num:]
673
+ self.tr_frame = concat((left, right), axis=1)
674
+
675
+ # truncate formatter
676
+ if isinstance(self.formatters, (list, tuple)):
677
+ self.formatters = [
678
+ *self.formatters[:col_num],
679
+ *self.formatters[-col_num:],
680
+ ]
681
+ else:
682
+ col_num = cast(int, self.max_cols)
683
+ self.tr_frame = self.tr_frame.iloc[:, :col_num]
684
+ self.tr_col_num = col_num
685
+
686
+ def _truncate_vertically(self) -> None:
687
+ """Remove rows, which are not to be displayed.
688
+
689
+ Attributes affected:
690
+ - tr_frame
691
+ - tr_row_num
692
+ """
693
+ assert self.max_rows_fitted is not None
694
+ row_num = self.max_rows_fitted // 2
695
+ if row_num >= 1:
696
+ _len = len(self.tr_frame)
697
+ _slice = np.hstack([np.arange(row_num), np.arange(_len - row_num, _len)])
698
+ self.tr_frame = self.tr_frame.iloc[_slice]
699
+ else:
700
+ row_num = cast(int, self.max_rows)
701
+ self.tr_frame = self.tr_frame.iloc[:row_num, :]
702
+ self.tr_row_num = row_num
703
+
704
+ def _get_strcols_without_index(self) -> list[list[str]]:
705
+ strcols: list[list[str]] = []
706
+
707
+ if not is_list_like(self.header) and not self.header:
708
+ for i, c in enumerate(self.tr_frame):
709
+ fmt_values = self.format_col(i)
710
+ fmt_values = _make_fixed_width(
711
+ strings=fmt_values,
712
+ justify=self.justify,
713
+ minimum=int(self.col_space.get(c, 0)),
714
+ adj=self.adj,
715
+ )
716
+ strcols.append(fmt_values)
717
+ return strcols
718
+
719
+ if is_list_like(self.header):
720
+ # cast here since can't be bool if is_list_like
721
+ self.header = cast(list[str], self.header)
722
+ if len(self.header) != len(self.columns):
723
+ raise ValueError(
724
+ f"Writing {len(self.columns)} cols "
725
+ f"but got {len(self.header)} aliases"
726
+ )
727
+ str_columns = [[label] for label in self.header]
728
+ else:
729
+ str_columns = self._get_formatted_column_labels(self.tr_frame)
730
+
731
+ if self.show_row_idx_names:
732
+ for x in str_columns:
733
+ x.append("")
734
+
735
+ for i, c in enumerate(self.tr_frame):
736
+ cheader = str_columns[i]
737
+ header_colwidth = max(
738
+ int(self.col_space.get(c, 0)), *(self.adj.len(x) for x in cheader)
739
+ )
740
+ fmt_values = self.format_col(i)
741
+ fmt_values = _make_fixed_width(
742
+ fmt_values, self.justify, minimum=header_colwidth, adj=self.adj
743
+ )
744
+
745
+ max_len = max(*(self.adj.len(x) for x in fmt_values), header_colwidth)
746
+ cheader = self.adj.justify(cheader, max_len, mode=self.justify)
747
+ strcols.append(cheader + fmt_values)
748
+
749
+ return strcols
750
+
751
+ def format_col(self, i: int) -> list[str]:
752
+ frame = self.tr_frame
753
+ formatter = self._get_formatter(i)
754
+ return format_array(
755
+ frame.iloc[:, i]._values,
756
+ formatter,
757
+ float_format=self.float_format,
758
+ na_rep=self.na_rep,
759
+ space=self.col_space.get(frame.columns[i]),
760
+ decimal=self.decimal,
761
+ leading_space=self.index,
762
+ )
763
+
764
+ def _get_formatter(self, i: str | int) -> Callable | None:
765
+ if isinstance(self.formatters, (list, tuple)):
766
+ if is_integer(i):
767
+ i = cast(int, i)
768
+ return self.formatters[i]
769
+ else:
770
+ return None
771
+ else:
772
+ if is_integer(i) and i not in self.columns:
773
+ i = self.columns[i]
774
+ return self.formatters.get(i, None)
775
+
776
+ def _get_formatted_column_labels(self, frame: DataFrame) -> list[list[str]]:
777
+ from pandas.core.indexes.multi import sparsify_labels
778
+
779
+ columns = frame.columns
780
+
781
+ if isinstance(columns, MultiIndex):
782
+ fmt_columns = columns._format_multi(sparsify=False, include_names=False)
783
+ fmt_columns = list(zip(*fmt_columns))
784
+ dtypes = self.frame.dtypes._values
785
+
786
+ # if we have a Float level, they don't use leading space at all
787
+ restrict_formatting = any(level.is_floating for level in columns.levels)
788
+ need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes)))
789
+
790
+ def space_format(x, y):
791
+ if (
792
+ y not in self.formatters
793
+ and need_leadsp[x]
794
+ and not restrict_formatting
795
+ ):
796
+ return " " + y
797
+ return y
798
+
799
+ str_columns_tuple = list(
800
+ zip(*([space_format(x, y) for y in x] for x in fmt_columns))
801
+ )
802
+ if self.sparsify and len(str_columns_tuple):
803
+ str_columns_tuple = sparsify_labels(str_columns_tuple)
804
+
805
+ str_columns = [list(x) for x in zip(*str_columns_tuple)]
806
+ else:
807
+ fmt_columns = columns._format_flat(include_name=False)
808
+ dtypes = self.frame.dtypes
809
+ need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes)))
810
+ str_columns = [
811
+ [" " + x if not self._get_formatter(i) and need_leadsp[x] else x]
812
+ for i, x in enumerate(fmt_columns)
813
+ ]
814
+ # self.str_columns = str_columns
815
+ return str_columns
816
+
817
+ def _get_formatted_index(self, frame: DataFrame) -> list[str]:
818
+ # Note: this is only used by to_string() and to_latex(), not by
819
+ # to_html(). so safe to cast col_space here.
820
+ col_space = {k: cast(int, v) for k, v in self.col_space.items()}
821
+ index = frame.index
822
+ columns = frame.columns
823
+ fmt = self._get_formatter("__index__")
824
+
825
+ if isinstance(index, MultiIndex):
826
+ fmt_index = index._format_multi(
827
+ sparsify=self.sparsify,
828
+ include_names=self.show_row_idx_names,
829
+ formatter=fmt,
830
+ )
831
+ else:
832
+ fmt_index = [
833
+ index._format_flat(include_name=self.show_row_idx_names, formatter=fmt)
834
+ ]
835
+
836
+ fmt_index = [
837
+ tuple(
838
+ _make_fixed_width(
839
+ list(x), justify="left", minimum=col_space.get("", 0), adj=self.adj
840
+ )
841
+ )
842
+ for x in fmt_index
843
+ ]
844
+
845
+ adjoined = self.adj.adjoin(1, *fmt_index).split("\n")
846
+
847
+ # empty space for columns
848
+ if self.show_col_idx_names:
849
+ col_header = [str(x) for x in self._get_column_name_list()]
850
+ else:
851
+ col_header = [""] * columns.nlevels
852
+
853
+ if self.header:
854
+ return col_header + adjoined
855
+ else:
856
+ return adjoined
857
+
858
+ def _get_column_name_list(self) -> list[Hashable]:
859
+ names: list[Hashable] = []
860
+ columns = self.frame.columns
861
+ if isinstance(columns, MultiIndex):
862
+ names.extend("" if name is None else name for name in columns.names)
863
+ else:
864
+ names.append("" if columns.name is None else columns.name)
865
+ return names
866
+
867
+
868
+ class DataFrameRenderer:
869
+ """Class for creating dataframe output in multiple formats.
870
+
871
+ Called in pandas.core.generic.NDFrame:
872
+ - to_csv
873
+ - to_latex
874
+
875
+ Called in pandas.core.frame.DataFrame:
876
+ - to_html
877
+ - to_string
878
+
879
+ Parameters
880
+ ----------
881
+ fmt : DataFrameFormatter
882
+ Formatter with the formatting options.
883
+ """
884
+
885
+ def __init__(self, fmt: DataFrameFormatter) -> None:
886
+ self.fmt = fmt
887
+
888
+ def to_html(
889
+ self,
890
+ buf: FilePath | WriteBuffer[str] | None = None,
891
+ encoding: str | None = None,
892
+ classes: str | list | tuple | None = None,
893
+ notebook: bool = False,
894
+ border: int | bool | None = None,
895
+ table_id: str | None = None,
896
+ render_links: bool = False,
897
+ ) -> str | None:
898
+ """
899
+ Render a DataFrame to a html table.
900
+
901
+ Parameters
902
+ ----------
903
+ buf : str, path object, file-like object, or None, default None
904
+ String, path object (implementing ``os.PathLike[str]``), or file-like
905
+ object implementing a string ``write()`` function. If None, the result is
906
+ returned as a string.
907
+ encoding : str, default “utf-8”
908
+ Set character encoding.
909
+ classes : str or list-like
910
+ classes to include in the `class` attribute of the opening
911
+ ``<table>`` tag, in addition to the default "dataframe".
912
+ notebook : {True, False}, optional, default False
913
+ Whether the generated HTML is for IPython Notebook.
914
+ border : int
915
+ A ``border=border`` attribute is included in the opening
916
+ ``<table>`` tag. Default ``pd.options.display.html.border``.
917
+ table_id : str, optional
918
+ A css id is included in the opening `<table>` tag if specified.
919
+ render_links : bool, default False
920
+ Convert URLs to HTML links.
921
+ """
922
+ from pandas.io.formats.html import (
923
+ HTMLFormatter,
924
+ NotebookFormatter,
925
+ )
926
+
927
+ Klass = NotebookFormatter if notebook else HTMLFormatter
928
+
929
+ html_formatter = Klass(
930
+ self.fmt,
931
+ classes=classes,
932
+ border=border,
933
+ table_id=table_id,
934
+ render_links=render_links,
935
+ )
936
+ string = html_formatter.to_string()
937
+ return save_to_buffer(string, buf=buf, encoding=encoding)
938
+
939
+ def to_string(
940
+ self,
941
+ buf: FilePath | WriteBuffer[str] | None = None,
942
+ encoding: str | None = None,
943
+ line_width: int | None = None,
944
+ ) -> str | None:
945
+ """
946
+ Render a DataFrame to a console-friendly tabular output.
947
+
948
+ Parameters
949
+ ----------
950
+ buf : str, path object, file-like object, or None, default None
951
+ String, path object (implementing ``os.PathLike[str]``), or file-like
952
+ object implementing a string ``write()`` function. If None, the result is
953
+ returned as a string.
954
+ encoding: str, default “utf-8”
955
+ Set character encoding.
956
+ line_width : int, optional
957
+ Width to wrap a line in characters.
958
+ """
959
+ from pandas.io.formats.string import StringFormatter
960
+
961
+ string_formatter = StringFormatter(self.fmt, line_width=line_width)
962
+ string = string_formatter.to_string()
963
+ return save_to_buffer(string, buf=buf, encoding=encoding)
964
+
965
+ def to_csv(
966
+ self,
967
+ path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None,
968
+ encoding: str | None = None,
969
+ sep: str = ",",
970
+ columns: Sequence[Hashable] | None = None,
971
+ index_label: IndexLabel | None = None,
972
+ mode: str = "w",
973
+ compression: CompressionOptions = "infer",
974
+ quoting: int | None = None,
975
+ quotechar: str = '"',
976
+ lineterminator: str | None = None,
977
+ chunksize: int | None = None,
978
+ date_format: str | None = None,
979
+ doublequote: bool = True,
980
+ escapechar: str | None = None,
981
+ errors: str = "strict",
982
+ storage_options: StorageOptions | None = None,
983
+ ) -> str | None:
984
+ """
985
+ Render dataframe as comma-separated file.
986
+ """
987
+ from pandas.io.formats.csvs import CSVFormatter
988
+
989
+ if path_or_buf is None:
990
+ created_buffer = True
991
+ path_or_buf = StringIO()
992
+ else:
993
+ created_buffer = False
994
+
995
+ csv_formatter = CSVFormatter(
996
+ path_or_buf=path_or_buf,
997
+ lineterminator=lineterminator,
998
+ sep=sep,
999
+ encoding=encoding,
1000
+ errors=errors,
1001
+ compression=compression,
1002
+ quoting=quoting,
1003
+ cols=columns,
1004
+ index_label=index_label,
1005
+ mode=mode,
1006
+ chunksize=chunksize,
1007
+ quotechar=quotechar,
1008
+ date_format=date_format,
1009
+ doublequote=doublequote,
1010
+ escapechar=escapechar,
1011
+ storage_options=storage_options,
1012
+ formatter=self.fmt,
1013
+ )
1014
+ csv_formatter.save()
1015
+
1016
+ if created_buffer:
1017
+ assert isinstance(path_or_buf, StringIO)
1018
+ content = path_or_buf.getvalue()
1019
+ path_or_buf.close()
1020
+ return content
1021
+
1022
+ return None
1023
+
1024
+
1025
+ def save_to_buffer(
1026
+ string: str,
1027
+ buf: FilePath | WriteBuffer[str] | None = None,
1028
+ encoding: str | None = None,
1029
+ ) -> str | None:
1030
+ """
1031
+ Perform serialization. Write to buf or return as string if buf is None.
1032
+ """
1033
+ with _get_buffer(buf, encoding=encoding) as fd:
1034
+ fd.write(string)
1035
+ if buf is None:
1036
+ # error: "WriteBuffer[str]" has no attribute "getvalue"
1037
+ return fd.getvalue() # type: ignore[attr-defined]
1038
+ return None
1039
+
1040
+
1041
+ @contextmanager
1042
+ def _get_buffer(
1043
+ buf: FilePath | WriteBuffer[str] | None, encoding: str | None = None
1044
+ ) -> Generator[WriteBuffer[str], None, None] | Generator[StringIO, None, None]:
1045
+ """
1046
+ Context manager to open, yield and close buffer for filenames or Path-like
1047
+ objects, otherwise yield buf unchanged.
1048
+ """
1049
+ if buf is not None:
1050
+ buf = stringify_path(buf)
1051
+ else:
1052
+ buf = StringIO()
1053
+
1054
+ if encoding is None:
1055
+ encoding = "utf-8"
1056
+ elif not isinstance(buf, str):
1057
+ raise ValueError("buf is not a file name and encoding is specified.")
1058
+
1059
+ if hasattr(buf, "write"):
1060
+ # Incompatible types in "yield" (actual type "Union[str, WriteBuffer[str],
1061
+ # StringIO]", expected type "Union[WriteBuffer[str], StringIO]")
1062
+ yield buf # type: ignore[misc]
1063
+ elif isinstance(buf, str):
1064
+ check_parent_directory(str(buf))
1065
+ with open(buf, "w", encoding=encoding, newline="") as f:
1066
+ # GH#30034 open instead of codecs.open prevents a file leak
1067
+ # if we have an invalid encoding argument.
1068
+ # newline="" is needed to roundtrip correctly on
1069
+ # windows test_to_latex_filename
1070
+ yield f
1071
+ else:
1072
+ raise TypeError("buf is not a file name and it has no write method")
1073
+
1074
+
1075
+ # ----------------------------------------------------------------------
1076
+ # Array formatters
1077
+
1078
+
1079
+ def format_array(
1080
+ values: ArrayLike,
1081
+ formatter: Callable | None,
1082
+ float_format: FloatFormatType | None = None,
1083
+ na_rep: str = "NaN",
1084
+ digits: int | None = None,
1085
+ space: str | int | None = None,
1086
+ justify: str = "right",
1087
+ decimal: str = ".",
1088
+ leading_space: bool | None = True,
1089
+ quoting: int | None = None,
1090
+ fallback_formatter: Callable | None = None,
1091
+ ) -> list[str]:
1092
+ """
1093
+ Format an array for printing.
1094
+
1095
+ Parameters
1096
+ ----------
1097
+ values : np.ndarray or ExtensionArray
1098
+ formatter
1099
+ float_format
1100
+ na_rep
1101
+ digits
1102
+ space
1103
+ justify
1104
+ decimal
1105
+ leading_space : bool, optional, default True
1106
+ Whether the array should be formatted with a leading space.
1107
+ When an array as a column of a Series or DataFrame, we do want
1108
+ the leading space to pad between columns.
1109
+
1110
+ When formatting an Index subclass
1111
+ (e.g. IntervalIndex._get_values_for_csv), we don't want the
1112
+ leading space since it should be left-aligned.
1113
+ fallback_formatter
1114
+
1115
+ Returns
1116
+ -------
1117
+ List[str]
1118
+ """
1119
+ fmt_klass: type[_GenericArrayFormatter]
1120
+ if lib.is_np_dtype(values.dtype, "M"):
1121
+ fmt_klass = _Datetime64Formatter
1122
+ values = cast(DatetimeArray, values)
1123
+ elif isinstance(values.dtype, DatetimeTZDtype):
1124
+ fmt_klass = _Datetime64TZFormatter
1125
+ values = cast(DatetimeArray, values)
1126
+ elif lib.is_np_dtype(values.dtype, "m"):
1127
+ fmt_klass = _Timedelta64Formatter
1128
+ values = cast(TimedeltaArray, values)
1129
+ elif isinstance(values.dtype, ExtensionDtype):
1130
+ fmt_klass = _ExtensionArrayFormatter
1131
+ elif lib.is_np_dtype(values.dtype, "fc"):
1132
+ fmt_klass = FloatArrayFormatter
1133
+ elif lib.is_np_dtype(values.dtype, "iu"):
1134
+ fmt_klass = _IntArrayFormatter
1135
+ else:
1136
+ fmt_klass = _GenericArrayFormatter
1137
+
1138
+ if space is None:
1139
+ space = 12
1140
+
1141
+ if float_format is None:
1142
+ float_format = get_option("display.float_format")
1143
+
1144
+ if digits is None:
1145
+ digits = get_option("display.precision")
1146
+
1147
+ fmt_obj = fmt_klass(
1148
+ values,
1149
+ digits=digits,
1150
+ na_rep=na_rep,
1151
+ float_format=float_format,
1152
+ formatter=formatter,
1153
+ space=space,
1154
+ justify=justify,
1155
+ decimal=decimal,
1156
+ leading_space=leading_space,
1157
+ quoting=quoting,
1158
+ fallback_formatter=fallback_formatter,
1159
+ )
1160
+
1161
+ return fmt_obj.get_result()
1162
+
1163
+
1164
+ class _GenericArrayFormatter:
1165
+ def __init__(
1166
+ self,
1167
+ values: ArrayLike,
1168
+ digits: int = 7,
1169
+ formatter: Callable | None = None,
1170
+ na_rep: str = "NaN",
1171
+ space: str | int = 12,
1172
+ float_format: FloatFormatType | None = None,
1173
+ justify: str = "right",
1174
+ decimal: str = ".",
1175
+ quoting: int | None = None,
1176
+ fixed_width: bool = True,
1177
+ leading_space: bool | None = True,
1178
+ fallback_formatter: Callable | None = None,
1179
+ ) -> None:
1180
+ self.values = values
1181
+ self.digits = digits
1182
+ self.na_rep = na_rep
1183
+ self.space = space
1184
+ self.formatter = formatter
1185
+ self.float_format = float_format
1186
+ self.justify = justify
1187
+ self.decimal = decimal
1188
+ self.quoting = quoting
1189
+ self.fixed_width = fixed_width
1190
+ self.leading_space = leading_space
1191
+ self.fallback_formatter = fallback_formatter
1192
+
1193
+ def get_result(self) -> list[str]:
1194
+ fmt_values = self._format_strings()
1195
+ return _make_fixed_width(fmt_values, self.justify)
1196
+
1197
+ def _format_strings(self) -> list[str]:
1198
+ if self.float_format is None:
1199
+ float_format = get_option("display.float_format")
1200
+ if float_format is None:
1201
+ precision = get_option("display.precision")
1202
+ float_format = lambda x: _trim_zeros_single_float(
1203
+ f"{x: .{precision:d}f}"
1204
+ )
1205
+ else:
1206
+ float_format = self.float_format
1207
+
1208
+ if self.formatter is not None:
1209
+ formatter = self.formatter
1210
+ elif self.fallback_formatter is not None:
1211
+ formatter = self.fallback_formatter
1212
+ else:
1213
+ quote_strings = self.quoting is not None and self.quoting != QUOTE_NONE
1214
+ formatter = partial(
1215
+ printing.pprint_thing,
1216
+ escape_chars=("\t", "\r", "\n"),
1217
+ quote_strings=quote_strings,
1218
+ )
1219
+
1220
+ def _format(x):
1221
+ if self.na_rep is not None and is_scalar(x) and isna(x):
1222
+ if x is None:
1223
+ return "None"
1224
+ elif x is NA:
1225
+ return str(NA)
1226
+ elif lib.is_float(x) and np.isinf(x):
1227
+ # TODO(3.0): this will be unreachable when use_inf_as_na
1228
+ # deprecation is enforced
1229
+ return str(x)
1230
+ elif x is NaT or isinstance(x, (np.datetime64, np.timedelta64)):
1231
+ return "NaT"
1232
+ return self.na_rep
1233
+ elif isinstance(x, PandasObject):
1234
+ return str(x)
1235
+ elif isinstance(x, StringDtype):
1236
+ return repr(x)
1237
+ else:
1238
+ # object dtype
1239
+ return str(formatter(x))
1240
+
1241
+ vals = self.values
1242
+ if not isinstance(vals, np.ndarray):
1243
+ raise TypeError(
1244
+ "ExtensionArray formatting should use _ExtensionArrayFormatter"
1245
+ )
1246
+ inferred = lib.map_infer(vals, is_float)
1247
+ is_float_type = (
1248
+ inferred
1249
+ # vals may have 2 or more dimensions
1250
+ & np.all(notna(vals), axis=tuple(range(1, len(vals.shape))))
1251
+ )
1252
+ leading_space = self.leading_space
1253
+ if leading_space is None:
1254
+ leading_space = is_float_type.any()
1255
+
1256
+ fmt_values = []
1257
+ for i, v in enumerate(vals):
1258
+ if (not is_float_type[i] or self.formatter is not None) and leading_space:
1259
+ fmt_values.append(f" {_format(v)}")
1260
+ elif is_float_type[i]:
1261
+ fmt_values.append(float_format(v))
1262
+ else:
1263
+ if leading_space is False:
1264
+ # False specifically, so that the default is
1265
+ # to include a space if we get here.
1266
+ tpl = "{v}"
1267
+ else:
1268
+ tpl = " {v}"
1269
+ fmt_values.append(tpl.format(v=_format(v)))
1270
+
1271
+ return fmt_values
1272
+
1273
+
1274
+ class FloatArrayFormatter(_GenericArrayFormatter):
1275
+ def __init__(self, *args, **kwargs) -> None:
1276
+ super().__init__(*args, **kwargs)
1277
+
1278
+ # float_format is expected to be a string
1279
+ # formatter should be used to pass a function
1280
+ if self.float_format is not None and self.formatter is None:
1281
+ # GH21625, GH22270
1282
+ self.fixed_width = False
1283
+ if callable(self.float_format):
1284
+ self.formatter = self.float_format
1285
+ self.float_format = None
1286
+
1287
+ def _value_formatter(
1288
+ self,
1289
+ float_format: FloatFormatType | None = None,
1290
+ threshold: float | None = None,
1291
+ ) -> Callable:
1292
+ """Returns a function to be applied on each value to format it"""
1293
+ # the float_format parameter supersedes self.float_format
1294
+ if float_format is None:
1295
+ float_format = self.float_format
1296
+
1297
+ # we are going to compose different functions, to first convert to
1298
+ # a string, then replace the decimal symbol, and finally chop according
1299
+ # to the threshold
1300
+
1301
+ # when there is no float_format, we use str instead of '%g'
1302
+ # because str(0.0) = '0.0' while '%g' % 0.0 = '0'
1303
+ if float_format:
1304
+
1305
+ def base_formatter(v):
1306
+ assert float_format is not None # for mypy
1307
+ # error: "str" not callable
1308
+ # error: Unexpected keyword argument "value" for "__call__" of
1309
+ # "EngFormatter"
1310
+ return (
1311
+ float_format(value=v) # type: ignore[operator,call-arg]
1312
+ if notna(v)
1313
+ else self.na_rep
1314
+ )
1315
+
1316
+ else:
1317
+
1318
+ def base_formatter(v):
1319
+ return str(v) if notna(v) else self.na_rep
1320
+
1321
+ if self.decimal != ".":
1322
+
1323
+ def decimal_formatter(v):
1324
+ return base_formatter(v).replace(".", self.decimal, 1)
1325
+
1326
+ else:
1327
+ decimal_formatter = base_formatter
1328
+
1329
+ if threshold is None:
1330
+ return decimal_formatter
1331
+
1332
+ def formatter(value):
1333
+ if notna(value):
1334
+ if abs(value) > threshold:
1335
+ return decimal_formatter(value)
1336
+ else:
1337
+ return decimal_formatter(0.0)
1338
+ else:
1339
+ return self.na_rep
1340
+
1341
+ return formatter
1342
+
1343
+ def get_result_as_array(self) -> np.ndarray:
1344
+ """
1345
+ Returns the float values converted into strings using
1346
+ the parameters given at initialisation, as a numpy array
1347
+ """
1348
+
1349
+ def format_with_na_rep(values: ArrayLike, formatter: Callable, na_rep: str):
1350
+ mask = isna(values)
1351
+ formatted = np.array(
1352
+ [
1353
+ formatter(val) if not m else na_rep
1354
+ for val, m in zip(values.ravel(), mask.ravel())
1355
+ ]
1356
+ ).reshape(values.shape)
1357
+ return formatted
1358
+
1359
+ def format_complex_with_na_rep(
1360
+ values: ArrayLike, formatter: Callable, na_rep: str
1361
+ ):
1362
+ real_values = np.real(values).ravel() # type: ignore[arg-type]
1363
+ imag_values = np.imag(values).ravel() # type: ignore[arg-type]
1364
+ real_mask, imag_mask = isna(real_values), isna(imag_values)
1365
+ formatted_lst = []
1366
+ for val, real_val, imag_val, re_isna, im_isna in zip(
1367
+ values.ravel(),
1368
+ real_values,
1369
+ imag_values,
1370
+ real_mask,
1371
+ imag_mask,
1372
+ ):
1373
+ if not re_isna and not im_isna:
1374
+ formatted_lst.append(formatter(val))
1375
+ elif not re_isna: # xxx+nanj
1376
+ formatted_lst.append(f"{formatter(real_val)}+{na_rep}j")
1377
+ elif not im_isna: # nan[+/-]xxxj
1378
+ # The imaginary part may either start with a "-" or a space
1379
+ imag_formatted = formatter(imag_val).strip()
1380
+ if imag_formatted.startswith("-"):
1381
+ formatted_lst.append(f"{na_rep}{imag_formatted}j")
1382
+ else:
1383
+ formatted_lst.append(f"{na_rep}+{imag_formatted}j")
1384
+ else: # nan+nanj
1385
+ formatted_lst.append(f"{na_rep}+{na_rep}j")
1386
+ return np.array(formatted_lst).reshape(values.shape)
1387
+
1388
+ if self.formatter is not None:
1389
+ return format_with_na_rep(self.values, self.formatter, self.na_rep)
1390
+
1391
+ if self.fixed_width:
1392
+ threshold = get_option("display.chop_threshold")
1393
+ else:
1394
+ threshold = None
1395
+
1396
+ # if we have a fixed_width, we'll need to try different float_format
1397
+ def format_values_with(float_format):
1398
+ formatter = self._value_formatter(float_format, threshold)
1399
+
1400
+ # default formatter leaves a space to the left when formatting
1401
+ # floats, must be consistent for left-justifying NaNs (GH #25061)
1402
+ na_rep = " " + self.na_rep if self.justify == "left" else self.na_rep
1403
+
1404
+ # different formatting strategies for complex and non-complex data
1405
+ # need to distinguish complex and float NaNs (GH #53762)
1406
+ values = self.values
1407
+ is_complex = is_complex_dtype(values)
1408
+
1409
+ # separate the wheat from the chaff
1410
+ if is_complex:
1411
+ values = format_complex_with_na_rep(values, formatter, na_rep)
1412
+ else:
1413
+ values = format_with_na_rep(values, formatter, na_rep)
1414
+
1415
+ if self.fixed_width:
1416
+ if is_complex:
1417
+ result = _trim_zeros_complex(values, self.decimal)
1418
+ else:
1419
+ result = _trim_zeros_float(values, self.decimal)
1420
+ return np.asarray(result, dtype="object")
1421
+
1422
+ return values
1423
+
1424
+ # There is a special default string when we are fixed-width
1425
+ # The default is otherwise to use str instead of a formatting string
1426
+ float_format: FloatFormatType | None
1427
+ if self.float_format is None:
1428
+ if self.fixed_width:
1429
+ if self.leading_space is True:
1430
+ fmt_str = "{value: .{digits:d}f}"
1431
+ else:
1432
+ fmt_str = "{value:.{digits:d}f}"
1433
+ float_format = partial(fmt_str.format, digits=self.digits)
1434
+ else:
1435
+ float_format = self.float_format
1436
+ else:
1437
+ float_format = lambda value: self.float_format % value
1438
+
1439
+ formatted_values = format_values_with(float_format)
1440
+
1441
+ if not self.fixed_width:
1442
+ return formatted_values
1443
+
1444
+ # we need do convert to engineering format if some values are too small
1445
+ # and would appear as 0, or if some values are too big and take too
1446
+ # much space
1447
+
1448
+ if len(formatted_values) > 0:
1449
+ maxlen = max(len(x) for x in formatted_values)
1450
+ too_long = maxlen > self.digits + 6
1451
+ else:
1452
+ too_long = False
1453
+
1454
+ abs_vals = np.abs(self.values)
1455
+ # this is pretty arbitrary for now
1456
+ # large values: more that 8 characters including decimal symbol
1457
+ # and first digit, hence > 1e6
1458
+ has_large_values = (abs_vals > 1e6).any()
1459
+ has_small_values = ((abs_vals < 10 ** (-self.digits)) & (abs_vals > 0)).any()
1460
+
1461
+ if has_small_values or (too_long and has_large_values):
1462
+ if self.leading_space is True:
1463
+ fmt_str = "{value: .{digits:d}e}"
1464
+ else:
1465
+ fmt_str = "{value:.{digits:d}e}"
1466
+ float_format = partial(fmt_str.format, digits=self.digits)
1467
+ formatted_values = format_values_with(float_format)
1468
+
1469
+ return formatted_values
1470
+
1471
+ def _format_strings(self) -> list[str]:
1472
+ return list(self.get_result_as_array())
1473
+
1474
+
1475
+ class _IntArrayFormatter(_GenericArrayFormatter):
1476
+ def _format_strings(self) -> list[str]:
1477
+ if self.leading_space is False:
1478
+ formatter_str = lambda x: f"{x:d}".format(x=x)
1479
+ else:
1480
+ formatter_str = lambda x: f"{x: d}".format(x=x)
1481
+ formatter = self.formatter or formatter_str
1482
+ fmt_values = [formatter(x) for x in self.values]
1483
+ return fmt_values
1484
+
1485
+
1486
+ class _Datetime64Formatter(_GenericArrayFormatter):
1487
+ values: DatetimeArray
1488
+
1489
+ def __init__(
1490
+ self,
1491
+ values: DatetimeArray,
1492
+ nat_rep: str = "NaT",
1493
+ date_format: None = None,
1494
+ **kwargs,
1495
+ ) -> None:
1496
+ super().__init__(values, **kwargs)
1497
+ self.nat_rep = nat_rep
1498
+ self.date_format = date_format
1499
+
1500
+ def _format_strings(self) -> list[str]:
1501
+ """we by definition have DO NOT have a TZ"""
1502
+ values = self.values
1503
+
1504
+ if self.formatter is not None:
1505
+ return [self.formatter(x) for x in values]
1506
+
1507
+ fmt_values = values._format_native_types(
1508
+ na_rep=self.nat_rep, date_format=self.date_format
1509
+ )
1510
+ return fmt_values.tolist()
1511
+
1512
+
1513
+ class _ExtensionArrayFormatter(_GenericArrayFormatter):
1514
+ values: ExtensionArray
1515
+
1516
+ def _format_strings(self) -> list[str]:
1517
+ values = self.values
1518
+
1519
+ formatter = self.formatter
1520
+ fallback_formatter = None
1521
+ if formatter is None:
1522
+ fallback_formatter = values._formatter(boxed=True)
1523
+
1524
+ if isinstance(values, Categorical):
1525
+ # Categorical is special for now, so that we can preserve tzinfo
1526
+ array = values._internal_get_values()
1527
+ else:
1528
+ array = np.asarray(values, dtype=object)
1529
+
1530
+ fmt_values = format_array(
1531
+ array,
1532
+ formatter,
1533
+ float_format=self.float_format,
1534
+ na_rep=self.na_rep,
1535
+ digits=self.digits,
1536
+ space=self.space,
1537
+ justify=self.justify,
1538
+ decimal=self.decimal,
1539
+ leading_space=self.leading_space,
1540
+ quoting=self.quoting,
1541
+ fallback_formatter=fallback_formatter,
1542
+ )
1543
+ return fmt_values
1544
+
1545
+
1546
+ def format_percentiles(
1547
+ percentiles: (np.ndarray | Sequence[float]),
1548
+ ) -> list[str]:
1549
+ """
1550
+ Outputs rounded and formatted percentiles.
1551
+
1552
+ Parameters
1553
+ ----------
1554
+ percentiles : list-like, containing floats from interval [0,1]
1555
+
1556
+ Returns
1557
+ -------
1558
+ formatted : list of strings
1559
+
1560
+ Notes
1561
+ -----
1562
+ Rounding precision is chosen so that: (1) if any two elements of
1563
+ ``percentiles`` differ, they remain different after rounding
1564
+ (2) no entry is *rounded* to 0% or 100%.
1565
+ Any non-integer is always rounded to at least 1 decimal place.
1566
+
1567
+ Examples
1568
+ --------
1569
+ Keeps all entries different after rounding:
1570
+
1571
+ >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999])
1572
+ ['1.999%', '2.001%', '50%', '66.667%', '99.99%']
1573
+
1574
+ No element is rounded to 0% or 100% (unless already equal to it).
1575
+ Duplicates are allowed:
1576
+
1577
+ >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999])
1578
+ ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%']
1579
+ """
1580
+ percentiles = np.asarray(percentiles)
1581
+
1582
+ # It checks for np.nan as well
1583
+ if (
1584
+ not is_numeric_dtype(percentiles)
1585
+ or not np.all(percentiles >= 0)
1586
+ or not np.all(percentiles <= 1)
1587
+ ):
1588
+ raise ValueError("percentiles should all be in the interval [0,1]")
1589
+
1590
+ percentiles = 100 * percentiles
1591
+ prec = get_precision(percentiles)
1592
+ percentiles_round_type = percentiles.round(prec).astype(int)
1593
+
1594
+ int_idx = np.isclose(percentiles_round_type, percentiles)
1595
+
1596
+ if np.all(int_idx):
1597
+ out = percentiles_round_type.astype(str)
1598
+ return [i + "%" for i in out]
1599
+
1600
+ unique_pcts = np.unique(percentiles)
1601
+ prec = get_precision(unique_pcts)
1602
+ out = np.empty_like(percentiles, dtype=object)
1603
+ out[int_idx] = percentiles[int_idx].round().astype(int).astype(str)
1604
+
1605
+ out[~int_idx] = percentiles[~int_idx].round(prec).astype(str)
1606
+ return [i + "%" for i in out]
1607
+
1608
+
1609
+ def get_precision(array: np.ndarray | Sequence[float]) -> int:
1610
+ to_begin = array[0] if array[0] > 0 else None
1611
+ to_end = 100 - array[-1] if array[-1] < 100 else None
1612
+ diff = np.ediff1d(array, to_begin=to_begin, to_end=to_end)
1613
+ diff = abs(diff)
1614
+ prec = -np.floor(np.log10(np.min(diff))).astype(int)
1615
+ prec = max(1, prec)
1616
+ return prec
1617
+
1618
+
1619
+ def _format_datetime64(x: NaTType | Timestamp, nat_rep: str = "NaT") -> str:
1620
+ if x is NaT:
1621
+ return nat_rep
1622
+
1623
+ # Timestamp.__str__ falls back to datetime.datetime.__str__ = isoformat(sep=' ')
1624
+ # so it already uses string formatting rather than strftime (faster).
1625
+ return str(x)
1626
+
1627
+
1628
+ def _format_datetime64_dateonly(
1629
+ x: NaTType | Timestamp,
1630
+ nat_rep: str = "NaT",
1631
+ date_format: str | None = None,
1632
+ ) -> str:
1633
+ if isinstance(x, NaTType):
1634
+ return nat_rep
1635
+
1636
+ if date_format:
1637
+ return x.strftime(date_format)
1638
+ else:
1639
+ # Timestamp._date_repr relies on string formatting (faster than strftime)
1640
+ return x._date_repr
1641
+
1642
+
1643
+ def get_format_datetime64(
1644
+ is_dates_only: bool, nat_rep: str = "NaT", date_format: str | None = None
1645
+ ) -> Callable:
1646
+ """Return a formatter callable taking a datetime64 as input and providing
1647
+ a string as output"""
1648
+
1649
+ if is_dates_only:
1650
+ return lambda x: _format_datetime64_dateonly(
1651
+ x, nat_rep=nat_rep, date_format=date_format
1652
+ )
1653
+ else:
1654
+ return lambda x: _format_datetime64(x, nat_rep=nat_rep)
1655
+
1656
+
1657
+ class _Datetime64TZFormatter(_Datetime64Formatter):
1658
+ values: DatetimeArray
1659
+
1660
+ def _format_strings(self) -> list[str]:
1661
+ """we by definition have a TZ"""
1662
+ ido = self.values._is_dates_only
1663
+ values = self.values.astype(object)
1664
+ formatter = self.formatter or get_format_datetime64(
1665
+ ido, date_format=self.date_format
1666
+ )
1667
+ fmt_values = [formatter(x) for x in values]
1668
+
1669
+ return fmt_values
1670
+
1671
+
1672
+ class _Timedelta64Formatter(_GenericArrayFormatter):
1673
+ values: TimedeltaArray
1674
+
1675
+ def __init__(
1676
+ self,
1677
+ values: TimedeltaArray,
1678
+ nat_rep: str = "NaT",
1679
+ **kwargs,
1680
+ ) -> None:
1681
+ # TODO: nat_rep is never passed, na_rep is.
1682
+ super().__init__(values, **kwargs)
1683
+ self.nat_rep = nat_rep
1684
+
1685
+ def _format_strings(self) -> list[str]:
1686
+ formatter = self.formatter or get_format_timedelta64(
1687
+ self.values, nat_rep=self.nat_rep, box=False
1688
+ )
1689
+ return [formatter(x) for x in self.values]
1690
+
1691
+
1692
+ def get_format_timedelta64(
1693
+ values: TimedeltaArray,
1694
+ nat_rep: str | float = "NaT",
1695
+ box: bool = False,
1696
+ ) -> Callable:
1697
+ """
1698
+ Return a formatter function for a range of timedeltas.
1699
+ These will all have the same format argument
1700
+
1701
+ If box, then show the return in quotes
1702
+ """
1703
+ even_days = values._is_dates_only
1704
+
1705
+ if even_days:
1706
+ format = None
1707
+ else:
1708
+ format = "long"
1709
+
1710
+ def _formatter(x):
1711
+ if x is None or (is_scalar(x) and isna(x)):
1712
+ return nat_rep
1713
+
1714
+ if not isinstance(x, Timedelta):
1715
+ x = Timedelta(x)
1716
+
1717
+ # Timedelta._repr_base uses string formatting (faster than strftime)
1718
+ result = x._repr_base(format=format)
1719
+ if box:
1720
+ result = f"'{result}'"
1721
+ return result
1722
+
1723
+ return _formatter
1724
+
1725
+
1726
+ def _make_fixed_width(
1727
+ strings: list[str],
1728
+ justify: str = "right",
1729
+ minimum: int | None = None,
1730
+ adj: printing._TextAdjustment | None = None,
1731
+ ) -> list[str]:
1732
+ if len(strings) == 0 or justify == "all":
1733
+ return strings
1734
+
1735
+ if adj is None:
1736
+ adjustment = printing.get_adjustment()
1737
+ else:
1738
+ adjustment = adj
1739
+
1740
+ max_len = max(adjustment.len(x) for x in strings)
1741
+
1742
+ if minimum is not None:
1743
+ max_len = max(minimum, max_len)
1744
+
1745
+ conf_max = get_option("display.max_colwidth")
1746
+ if conf_max is not None and max_len > conf_max:
1747
+ max_len = conf_max
1748
+
1749
+ def just(x: str) -> str:
1750
+ if conf_max is not None:
1751
+ if (conf_max > 3) & (adjustment.len(x) > max_len):
1752
+ x = x[: max_len - 3] + "..."
1753
+ return x
1754
+
1755
+ strings = [just(x) for x in strings]
1756
+ result = adjustment.justify(strings, max_len, mode=justify)
1757
+ return result
1758
+
1759
+
1760
+ def _trim_zeros_complex(str_complexes: ArrayLike, decimal: str = ".") -> list[str]:
1761
+ """
1762
+ Separates the real and imaginary parts from the complex number, and
1763
+ executes the _trim_zeros_float method on each of those.
1764
+ """
1765
+ real_part, imag_part = [], []
1766
+ for x in str_complexes:
1767
+ # Complex numbers are represented as "(-)xxx(+/-)xxxj"
1768
+ # The split will give [{"", "-"}, "xxx", "+/-", "xxx", "j", ""]
1769
+ # Therefore, the imaginary part is the 4th and 3rd last elements,
1770
+ # and the real part is everything before the imaginary part
1771
+ trimmed = re.split(r"([j+-])", x)
1772
+ real_part.append("".join(trimmed[:-4]))
1773
+ imag_part.append("".join(trimmed[-4:-2]))
1774
+
1775
+ # We want to align the lengths of the real and imaginary parts of each complex
1776
+ # number, as well as the lengths the real (resp. complex) parts of all numbers
1777
+ # in the array
1778
+ n = len(str_complexes)
1779
+ padded_parts = _trim_zeros_float(real_part + imag_part, decimal)
1780
+ if len(padded_parts) == 0:
1781
+ return []
1782
+ padded_length = max(len(part) for part in padded_parts) - 1
1783
+ padded = [
1784
+ real_pt # real part, possibly NaN
1785
+ + imag_pt[0] # +/-
1786
+ + f"{imag_pt[1:]:>{padded_length}}" # complex part (no sign), possibly nan
1787
+ + "j"
1788
+ for real_pt, imag_pt in zip(padded_parts[:n], padded_parts[n:])
1789
+ ]
1790
+ return padded
1791
+
1792
+
1793
+ def _trim_zeros_single_float(str_float: str) -> str:
1794
+ """
1795
+ Trims trailing zeros after a decimal point,
1796
+ leaving just one if necessary.
1797
+ """
1798
+ str_float = str_float.rstrip("0")
1799
+ if str_float.endswith("."):
1800
+ str_float += "0"
1801
+
1802
+ return str_float
1803
+
1804
+
1805
+ def _trim_zeros_float(
1806
+ str_floats: ArrayLike | list[str], decimal: str = "."
1807
+ ) -> list[str]:
1808
+ """
1809
+ Trims the maximum number of trailing zeros equally from
1810
+ all numbers containing decimals, leaving just one if
1811
+ necessary.
1812
+ """
1813
+ trimmed = str_floats
1814
+ number_regex = re.compile(rf"^\s*[\+-]?[0-9]+\{decimal}[0-9]*$")
1815
+
1816
+ def is_number_with_decimal(x) -> bool:
1817
+ return re.match(number_regex, x) is not None
1818
+
1819
+ def should_trim(values: ArrayLike | list[str]) -> bool:
1820
+ """
1821
+ Determine if an array of strings should be trimmed.
1822
+
1823
+ Returns True if all numbers containing decimals (defined by the
1824
+ above regular expression) within the array end in a zero, otherwise
1825
+ returns False.
1826
+ """
1827
+ numbers = [x for x in values if is_number_with_decimal(x)]
1828
+ return len(numbers) > 0 and all(x.endswith("0") for x in numbers)
1829
+
1830
+ while should_trim(trimmed):
1831
+ trimmed = [x[:-1] if is_number_with_decimal(x) else x for x in trimmed]
1832
+
1833
+ # leave one 0 after the decimal points if need be.
1834
+ result = [
1835
+ x + "0" if is_number_with_decimal(x) and x.endswith(decimal) else x
1836
+ for x in trimmed
1837
+ ]
1838
+ return result
1839
+
1840
+
1841
+ def _has_names(index: Index) -> bool:
1842
+ if isinstance(index, MultiIndex):
1843
+ return com.any_not_none(*index.names)
1844
+ else:
1845
+ return index.name is not None
1846
+
1847
+
1848
+ class EngFormatter:
1849
+ """
1850
+ Formats float values according to engineering format.
1851
+
1852
+ Based on matplotlib.ticker.EngFormatter
1853
+ """
1854
+
1855
+ # The SI engineering prefixes
1856
+ ENG_PREFIXES = {
1857
+ -24: "y",
1858
+ -21: "z",
1859
+ -18: "a",
1860
+ -15: "f",
1861
+ -12: "p",
1862
+ -9: "n",
1863
+ -6: "u",
1864
+ -3: "m",
1865
+ 0: "",
1866
+ 3: "k",
1867
+ 6: "M",
1868
+ 9: "G",
1869
+ 12: "T",
1870
+ 15: "P",
1871
+ 18: "E",
1872
+ 21: "Z",
1873
+ 24: "Y",
1874
+ }
1875
+
1876
+ def __init__(
1877
+ self, accuracy: int | None = None, use_eng_prefix: bool = False
1878
+ ) -> None:
1879
+ self.accuracy = accuracy
1880
+ self.use_eng_prefix = use_eng_prefix
1881
+
1882
+ def __call__(self, num: float) -> str:
1883
+ """
1884
+ Formats a number in engineering notation, appending a letter
1885
+ representing the power of 1000 of the original number. Some examples:
1886
+ >>> format_eng = EngFormatter(accuracy=0, use_eng_prefix=True)
1887
+ >>> format_eng(0)
1888
+ ' 0'
1889
+ >>> format_eng = EngFormatter(accuracy=1, use_eng_prefix=True)
1890
+ >>> format_eng(1_000_000)
1891
+ ' 1.0M'
1892
+ >>> format_eng = EngFormatter(accuracy=2, use_eng_prefix=False)
1893
+ >>> format_eng("-1e-6")
1894
+ '-1.00E-06'
1895
+
1896
+ @param num: the value to represent
1897
+ @type num: either a numeric value or a string that can be converted to
1898
+ a numeric value (as per decimal.Decimal constructor)
1899
+
1900
+ @return: engineering formatted string
1901
+ """
1902
+ dnum = Decimal(str(num))
1903
+
1904
+ if Decimal.is_nan(dnum):
1905
+ return "NaN"
1906
+
1907
+ if Decimal.is_infinite(dnum):
1908
+ return "inf"
1909
+
1910
+ sign = 1
1911
+
1912
+ if dnum < 0: # pragma: no cover
1913
+ sign = -1
1914
+ dnum = -dnum
1915
+
1916
+ if dnum != 0:
1917
+ pow10 = Decimal(int(math.floor(dnum.log10() / 3) * 3))
1918
+ else:
1919
+ pow10 = Decimal(0)
1920
+
1921
+ pow10 = pow10.min(max(self.ENG_PREFIXES.keys()))
1922
+ pow10 = pow10.max(min(self.ENG_PREFIXES.keys()))
1923
+ int_pow10 = int(pow10)
1924
+
1925
+ if self.use_eng_prefix:
1926
+ prefix = self.ENG_PREFIXES[int_pow10]
1927
+ elif int_pow10 < 0:
1928
+ prefix = f"E-{-int_pow10:02d}"
1929
+ else:
1930
+ prefix = f"E+{int_pow10:02d}"
1931
+
1932
+ mant = sign * dnum / (10**pow10)
1933
+
1934
+ if self.accuracy is None: # pragma: no cover
1935
+ format_str = "{mant: g}{prefix}"
1936
+ else:
1937
+ format_str = f"{{mant: .{self.accuracy:d}f}}{{prefix}}"
1938
+
1939
+ formatted = format_str.format(mant=mant, prefix=prefix)
1940
+
1941
+ return formatted
1942
+
1943
+
1944
+ def set_eng_float_format(accuracy: int = 3, use_eng_prefix: bool = False) -> None:
1945
+ """
1946
+ Format float representation in DataFrame with SI notation.
1947
+
1948
+ Parameters
1949
+ ----------
1950
+ accuracy : int, default 3
1951
+ Number of decimal digits after the floating point.
1952
+ use_eng_prefix : bool, default False
1953
+ Whether to represent a value with SI prefixes.
1954
+
1955
+ Returns
1956
+ -------
1957
+ None
1958
+
1959
+ Examples
1960
+ --------
1961
+ >>> df = pd.DataFrame([1e-9, 1e-3, 1, 1e3, 1e6])
1962
+ >>> df
1963
+ 0
1964
+ 0 1.000000e-09
1965
+ 1 1.000000e-03
1966
+ 2 1.000000e+00
1967
+ 3 1.000000e+03
1968
+ 4 1.000000e+06
1969
+
1970
+ >>> pd.set_eng_float_format(accuracy=1)
1971
+ >>> df
1972
+ 0
1973
+ 0 1.0E-09
1974
+ 1 1.0E-03
1975
+ 2 1.0E+00
1976
+ 3 1.0E+03
1977
+ 4 1.0E+06
1978
+
1979
+ >>> pd.set_eng_float_format(use_eng_prefix=True)
1980
+ >>> df
1981
+ 0
1982
+ 0 1.000n
1983
+ 1 1.000m
1984
+ 2 1.000
1985
+ 3 1.000k
1986
+ 4 1.000M
1987
+
1988
+ >>> pd.set_eng_float_format(accuracy=1, use_eng_prefix=True)
1989
+ >>> df
1990
+ 0
1991
+ 0 1.0n
1992
+ 1 1.0m
1993
+ 2 1.0
1994
+ 3 1.0k
1995
+ 4 1.0M
1996
+
1997
+ >>> pd.set_option("display.float_format", None) # unset option
1998
+ """
1999
+ set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix))
2000
+
2001
+
2002
+ def get_level_lengths(
2003
+ levels: Any, sentinel: bool | object | str = ""
2004
+ ) -> list[dict[int, int]]:
2005
+ """
2006
+ For each index in each level the function returns lengths of indexes.
2007
+
2008
+ Parameters
2009
+ ----------
2010
+ levels : list of lists
2011
+ List of values on for level.
2012
+ sentinel : string, optional
2013
+ Value which states that no new index starts on there.
2014
+
2015
+ Returns
2016
+ -------
2017
+ Returns list of maps. For each level returns map of indexes (key is index
2018
+ in row and value is length of index).
2019
+ """
2020
+ if len(levels) == 0:
2021
+ return []
2022
+
2023
+ control = [True] * len(levels[0])
2024
+
2025
+ result = []
2026
+ for level in levels:
2027
+ last_index = 0
2028
+
2029
+ lengths = {}
2030
+ for i, key in enumerate(level):
2031
+ if control[i] and key == sentinel:
2032
+ pass
2033
+ else:
2034
+ control[i] = False
2035
+ lengths[last_index] = i - last_index
2036
+ last_index = i
2037
+
2038
+ lengths[last_index] = len(level) - last_index
2039
+
2040
+ result.append(lengths)
2041
+
2042
+ return result
2043
+
2044
+
2045
+ def buffer_put_lines(buf: WriteBuffer[str], lines: list[str]) -> None:
2046
+ """
2047
+ Appends lines to a buffer.
2048
+
2049
+ Parameters
2050
+ ----------
2051
+ buf
2052
+ The buffer to write to
2053
+ lines
2054
+ The lines to append.
2055
+ """
2056
+ if any(isinstance(x, str) for x in lines):
2057
+ lines = [str(x) for x in lines]
2058
+ buf.write("\n".join(lines))
env-llmeval/lib/python3.10/site-packages/pandas/io/formats/html.py ADDED
@@ -0,0 +1,646 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Module for formatting output data in HTML.
3
+ """
4
+ from __future__ import annotations
5
+
6
+ from textwrap import dedent
7
+ from typing import (
8
+ TYPE_CHECKING,
9
+ Any,
10
+ Final,
11
+ cast,
12
+ )
13
+
14
+ from pandas._config import get_option
15
+
16
+ from pandas._libs import lib
17
+
18
+ from pandas import (
19
+ MultiIndex,
20
+ option_context,
21
+ )
22
+
23
+ from pandas.io.common import is_url
24
+ from pandas.io.formats.format import (
25
+ DataFrameFormatter,
26
+ get_level_lengths,
27
+ )
28
+ from pandas.io.formats.printing import pprint_thing
29
+
30
+ if TYPE_CHECKING:
31
+ from collections.abc import (
32
+ Hashable,
33
+ Iterable,
34
+ Mapping,
35
+ )
36
+
37
+
38
+ class HTMLFormatter:
39
+ """
40
+ Internal class for formatting output data in html.
41
+ This class is intended for shared functionality between
42
+ DataFrame.to_html() and DataFrame._repr_html_().
43
+ Any logic in common with other output formatting methods
44
+ should ideally be inherited from classes in format.py
45
+ and this class responsible for only producing html markup.
46
+ """
47
+
48
+ indent_delta: Final = 2
49
+
50
+ def __init__(
51
+ self,
52
+ formatter: DataFrameFormatter,
53
+ classes: str | list[str] | tuple[str, ...] | None = None,
54
+ border: int | bool | None = None,
55
+ table_id: str | None = None,
56
+ render_links: bool = False,
57
+ ) -> None:
58
+ self.fmt = formatter
59
+ self.classes = classes
60
+
61
+ self.frame = self.fmt.frame
62
+ self.columns = self.fmt.tr_frame.columns
63
+ self.elements: list[str] = []
64
+ self.bold_rows = self.fmt.bold_rows
65
+ self.escape = self.fmt.escape
66
+ self.show_dimensions = self.fmt.show_dimensions
67
+ if border is None or border is True:
68
+ border = cast(int, get_option("display.html.border"))
69
+ elif not border:
70
+ border = None
71
+
72
+ self.border = border
73
+ self.table_id = table_id
74
+ self.render_links = render_links
75
+
76
+ self.col_space = {}
77
+ is_multi_index = isinstance(self.columns, MultiIndex)
78
+ for column, value in self.fmt.col_space.items():
79
+ col_space_value = f"{value}px" if isinstance(value, int) else value
80
+ self.col_space[column] = col_space_value
81
+ # GH 53885: Handling case where column is index
82
+ # Flatten the data in the multi index and add in the map
83
+ if is_multi_index and isinstance(column, tuple):
84
+ for column_index in column:
85
+ self.col_space[str(column_index)] = col_space_value
86
+
87
+ def to_string(self) -> str:
88
+ lines = self.render()
89
+ if any(isinstance(x, str) for x in lines):
90
+ lines = [str(x) for x in lines]
91
+ return "\n".join(lines)
92
+
93
+ def render(self) -> list[str]:
94
+ self._write_table()
95
+
96
+ if self.should_show_dimensions:
97
+ by = chr(215) # × # noqa: RUF003
98
+ self.write(
99
+ f"<p>{len(self.frame)} rows {by} {len(self.frame.columns)} columns</p>"
100
+ )
101
+
102
+ return self.elements
103
+
104
+ @property
105
+ def should_show_dimensions(self) -> bool:
106
+ return self.fmt.should_show_dimensions
107
+
108
+ @property
109
+ def show_row_idx_names(self) -> bool:
110
+ return self.fmt.show_row_idx_names
111
+
112
+ @property
113
+ def show_col_idx_names(self) -> bool:
114
+ return self.fmt.show_col_idx_names
115
+
116
+ @property
117
+ def row_levels(self) -> int:
118
+ if self.fmt.index:
119
+ # showing (row) index
120
+ return self.frame.index.nlevels
121
+ elif self.show_col_idx_names:
122
+ # see gh-22579
123
+ # Column misalignment also occurs for
124
+ # a standard index when the columns index is named.
125
+ # If the row index is not displayed a column of
126
+ # blank cells need to be included before the DataFrame values.
127
+ return 1
128
+ # not showing (row) index
129
+ return 0
130
+
131
+ def _get_columns_formatted_values(self) -> Iterable:
132
+ return self.columns
133
+
134
+ @property
135
+ def is_truncated(self) -> bool:
136
+ return self.fmt.is_truncated
137
+
138
+ @property
139
+ def ncols(self) -> int:
140
+ return len(self.fmt.tr_frame.columns)
141
+
142
+ def write(self, s: Any, indent: int = 0) -> None:
143
+ rs = pprint_thing(s)
144
+ self.elements.append(" " * indent + rs)
145
+
146
+ def write_th(
147
+ self, s: Any, header: bool = False, indent: int = 0, tags: str | None = None
148
+ ) -> None:
149
+ """
150
+ Method for writing a formatted <th> cell.
151
+
152
+ If col_space is set on the formatter then that is used for
153
+ the value of min-width.
154
+
155
+ Parameters
156
+ ----------
157
+ s : object
158
+ The data to be written inside the cell.
159
+ header : bool, default False
160
+ Set to True if the <th> is for use inside <thead>. This will
161
+ cause min-width to be set if there is one.
162
+ indent : int, default 0
163
+ The indentation level of the cell.
164
+ tags : str, default None
165
+ Tags to include in the cell.
166
+
167
+ Returns
168
+ -------
169
+ A written <th> cell.
170
+ """
171
+ col_space = self.col_space.get(s, None)
172
+
173
+ if header and col_space is not None:
174
+ tags = tags or ""
175
+ tags += f'style="min-width: {col_space};"'
176
+
177
+ self._write_cell(s, kind="th", indent=indent, tags=tags)
178
+
179
+ def write_td(self, s: Any, indent: int = 0, tags: str | None = None) -> None:
180
+ self._write_cell(s, kind="td", indent=indent, tags=tags)
181
+
182
+ def _write_cell(
183
+ self, s: Any, kind: str = "td", indent: int = 0, tags: str | None = None
184
+ ) -> None:
185
+ if tags is not None:
186
+ start_tag = f"<{kind} {tags}>"
187
+ else:
188
+ start_tag = f"<{kind}>"
189
+
190
+ if self.escape:
191
+ # escape & first to prevent double escaping of &
192
+ esc = {"&": r"&amp;", "<": r"&lt;", ">": r"&gt;"}
193
+ else:
194
+ esc = {}
195
+
196
+ rs = pprint_thing(s, escape_chars=esc).strip()
197
+
198
+ if self.render_links and is_url(rs):
199
+ rs_unescaped = pprint_thing(s, escape_chars={}).strip()
200
+ start_tag += f'<a href="{rs_unescaped}" target="_blank">'
201
+ end_a = "</a>"
202
+ else:
203
+ end_a = ""
204
+
205
+ self.write(f"{start_tag}{rs}{end_a}</{kind}>", indent)
206
+
207
+ def write_tr(
208
+ self,
209
+ line: Iterable,
210
+ indent: int = 0,
211
+ indent_delta: int = 0,
212
+ header: bool = False,
213
+ align: str | None = None,
214
+ tags: dict[int, str] | None = None,
215
+ nindex_levels: int = 0,
216
+ ) -> None:
217
+ if tags is None:
218
+ tags = {}
219
+
220
+ if align is None:
221
+ self.write("<tr>", indent)
222
+ else:
223
+ self.write(f'<tr style="text-align: {align};">', indent)
224
+ indent += indent_delta
225
+
226
+ for i, s in enumerate(line):
227
+ val_tag = tags.get(i, None)
228
+ if header or (self.bold_rows and i < nindex_levels):
229
+ self.write_th(s, indent=indent, header=header, tags=val_tag)
230
+ else:
231
+ self.write_td(s, indent, tags=val_tag)
232
+
233
+ indent -= indent_delta
234
+ self.write("</tr>", indent)
235
+
236
+ def _write_table(self, indent: int = 0) -> None:
237
+ _classes = ["dataframe"] # Default class.
238
+ use_mathjax = get_option("display.html.use_mathjax")
239
+ if not use_mathjax:
240
+ _classes.append("tex2jax_ignore")
241
+ if self.classes is not None:
242
+ if isinstance(self.classes, str):
243
+ self.classes = self.classes.split()
244
+ if not isinstance(self.classes, (list, tuple)):
245
+ raise TypeError(
246
+ "classes must be a string, list, "
247
+ f"or tuple, not {type(self.classes)}"
248
+ )
249
+ _classes.extend(self.classes)
250
+
251
+ if self.table_id is None:
252
+ id_section = ""
253
+ else:
254
+ id_section = f' id="{self.table_id}"'
255
+
256
+ if self.border is None:
257
+ border_attr = ""
258
+ else:
259
+ border_attr = f' border="{self.border}"'
260
+
261
+ self.write(
262
+ f'<table{border_attr} class="{" ".join(_classes)}"{id_section}>',
263
+ indent,
264
+ )
265
+
266
+ if self.fmt.header or self.show_row_idx_names:
267
+ self._write_header(indent + self.indent_delta)
268
+
269
+ self._write_body(indent + self.indent_delta)
270
+
271
+ self.write("</table>", indent)
272
+
273
+ def _write_col_header(self, indent: int) -> None:
274
+ row: list[Hashable]
275
+ is_truncated_horizontally = self.fmt.is_truncated_horizontally
276
+ if isinstance(self.columns, MultiIndex):
277
+ template = 'colspan="{span:d}" halign="left"'
278
+
279
+ sentinel: lib.NoDefault | bool
280
+ if self.fmt.sparsify:
281
+ # GH3547
282
+ sentinel = lib.no_default
283
+ else:
284
+ sentinel = False
285
+ levels = self.columns._format_multi(sparsify=sentinel, include_names=False)
286
+ level_lengths = get_level_lengths(levels, sentinel)
287
+ inner_lvl = len(level_lengths) - 1
288
+ for lnum, (records, values) in enumerate(zip(level_lengths, levels)):
289
+ if is_truncated_horizontally:
290
+ # modify the header lines
291
+ ins_col = self.fmt.tr_col_num
292
+ if self.fmt.sparsify:
293
+ recs_new = {}
294
+ # Increment tags after ... col.
295
+ for tag, span in list(records.items()):
296
+ if tag >= ins_col:
297
+ recs_new[tag + 1] = span
298
+ elif tag + span > ins_col:
299
+ recs_new[tag] = span + 1
300
+ if lnum == inner_lvl:
301
+ values = (
302
+ values[:ins_col] + ("...",) + values[ins_col:]
303
+ )
304
+ else:
305
+ # sparse col headers do not receive a ...
306
+ values = (
307
+ values[:ins_col]
308
+ + (values[ins_col - 1],)
309
+ + values[ins_col:]
310
+ )
311
+ else:
312
+ recs_new[tag] = span
313
+ # if ins_col lies between tags, all col headers
314
+ # get ...
315
+ if tag + span == ins_col:
316
+ recs_new[ins_col] = 1
317
+ values = values[:ins_col] + ("...",) + values[ins_col:]
318
+ records = recs_new
319
+ inner_lvl = len(level_lengths) - 1
320
+ if lnum == inner_lvl:
321
+ records[ins_col] = 1
322
+ else:
323
+ recs_new = {}
324
+ for tag, span in list(records.items()):
325
+ if tag >= ins_col:
326
+ recs_new[tag + 1] = span
327
+ else:
328
+ recs_new[tag] = span
329
+ recs_new[ins_col] = 1
330
+ records = recs_new
331
+ values = values[:ins_col] + ["..."] + values[ins_col:]
332
+
333
+ # see gh-22579
334
+ # Column Offset Bug with to_html(index=False) with
335
+ # MultiIndex Columns and Index.
336
+ # Initially fill row with blank cells before column names.
337
+ # TODO: Refactor to remove code duplication with code
338
+ # block below for standard columns index.
339
+ row = [""] * (self.row_levels - 1)
340
+ if self.fmt.index or self.show_col_idx_names:
341
+ # see gh-22747
342
+ # If to_html(index_names=False) do not show columns
343
+ # index names.
344
+ # TODO: Refactor to use _get_column_name_list from
345
+ # DataFrameFormatter class and create a
346
+ # _get_formatted_column_labels function for code
347
+ # parity with DataFrameFormatter class.
348
+ if self.fmt.show_index_names:
349
+ name = self.columns.names[lnum]
350
+ row.append(pprint_thing(name or ""))
351
+ else:
352
+ row.append("")
353
+
354
+ tags = {}
355
+ j = len(row)
356
+ for i, v in enumerate(values):
357
+ if i in records:
358
+ if records[i] > 1:
359
+ tags[j] = template.format(span=records[i])
360
+ else:
361
+ continue
362
+ j += 1
363
+ row.append(v)
364
+ self.write_tr(row, indent, self.indent_delta, tags=tags, header=True)
365
+ else:
366
+ # see gh-22579
367
+ # Column misalignment also occurs for
368
+ # a standard index when the columns index is named.
369
+ # Initially fill row with blank cells before column names.
370
+ # TODO: Refactor to remove code duplication with code block
371
+ # above for columns MultiIndex.
372
+ row = [""] * (self.row_levels - 1)
373
+ if self.fmt.index or self.show_col_idx_names:
374
+ # see gh-22747
375
+ # If to_html(index_names=False) do not show columns
376
+ # index names.
377
+ # TODO: Refactor to use _get_column_name_list from
378
+ # DataFrameFormatter class.
379
+ if self.fmt.show_index_names:
380
+ row.append(self.columns.name or "")
381
+ else:
382
+ row.append("")
383
+ row.extend(self._get_columns_formatted_values())
384
+ align = self.fmt.justify
385
+
386
+ if is_truncated_horizontally:
387
+ ins_col = self.row_levels + self.fmt.tr_col_num
388
+ row.insert(ins_col, "...")
389
+
390
+ self.write_tr(row, indent, self.indent_delta, header=True, align=align)
391
+
392
+ def _write_row_header(self, indent: int) -> None:
393
+ is_truncated_horizontally = self.fmt.is_truncated_horizontally
394
+ row = [x if x is not None else "" for x in self.frame.index.names] + [""] * (
395
+ self.ncols + (1 if is_truncated_horizontally else 0)
396
+ )
397
+ self.write_tr(row, indent, self.indent_delta, header=True)
398
+
399
+ def _write_header(self, indent: int) -> None:
400
+ self.write("<thead>", indent)
401
+
402
+ if self.fmt.header:
403
+ self._write_col_header(indent + self.indent_delta)
404
+
405
+ if self.show_row_idx_names:
406
+ self._write_row_header(indent + self.indent_delta)
407
+
408
+ self.write("</thead>", indent)
409
+
410
+ def _get_formatted_values(self) -> dict[int, list[str]]:
411
+ with option_context("display.max_colwidth", None):
412
+ fmt_values = {i: self.fmt.format_col(i) for i in range(self.ncols)}
413
+ return fmt_values
414
+
415
+ def _write_body(self, indent: int) -> None:
416
+ self.write("<tbody>", indent)
417
+ fmt_values = self._get_formatted_values()
418
+
419
+ # write values
420
+ if self.fmt.index and isinstance(self.frame.index, MultiIndex):
421
+ self._write_hierarchical_rows(fmt_values, indent + self.indent_delta)
422
+ else:
423
+ self._write_regular_rows(fmt_values, indent + self.indent_delta)
424
+
425
+ self.write("</tbody>", indent)
426
+
427
+ def _write_regular_rows(
428
+ self, fmt_values: Mapping[int, list[str]], indent: int
429
+ ) -> None:
430
+ is_truncated_horizontally = self.fmt.is_truncated_horizontally
431
+ is_truncated_vertically = self.fmt.is_truncated_vertically
432
+
433
+ nrows = len(self.fmt.tr_frame)
434
+
435
+ if self.fmt.index:
436
+ fmt = self.fmt._get_formatter("__index__")
437
+ if fmt is not None:
438
+ index_values = self.fmt.tr_frame.index.map(fmt)
439
+ else:
440
+ # only reached with non-Multi index
441
+ index_values = self.fmt.tr_frame.index._format_flat(include_name=False)
442
+
443
+ row: list[str] = []
444
+ for i in range(nrows):
445
+ if is_truncated_vertically and i == (self.fmt.tr_row_num):
446
+ str_sep_row = ["..."] * len(row)
447
+ self.write_tr(
448
+ str_sep_row,
449
+ indent,
450
+ self.indent_delta,
451
+ tags=None,
452
+ nindex_levels=self.row_levels,
453
+ )
454
+
455
+ row = []
456
+ if self.fmt.index:
457
+ row.append(index_values[i])
458
+ # see gh-22579
459
+ # Column misalignment also occurs for
460
+ # a standard index when the columns index is named.
461
+ # Add blank cell before data cells.
462
+ elif self.show_col_idx_names:
463
+ row.append("")
464
+ row.extend(fmt_values[j][i] for j in range(self.ncols))
465
+
466
+ if is_truncated_horizontally:
467
+ dot_col_ix = self.fmt.tr_col_num + self.row_levels
468
+ row.insert(dot_col_ix, "...")
469
+ self.write_tr(
470
+ row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels
471
+ )
472
+
473
+ def _write_hierarchical_rows(
474
+ self, fmt_values: Mapping[int, list[str]], indent: int
475
+ ) -> None:
476
+ template = 'rowspan="{span}" valign="top"'
477
+
478
+ is_truncated_horizontally = self.fmt.is_truncated_horizontally
479
+ is_truncated_vertically = self.fmt.is_truncated_vertically
480
+ frame = self.fmt.tr_frame
481
+ nrows = len(frame)
482
+
483
+ assert isinstance(frame.index, MultiIndex)
484
+ idx_values = frame.index._format_multi(sparsify=False, include_names=False)
485
+ idx_values = list(zip(*idx_values))
486
+
487
+ if self.fmt.sparsify:
488
+ # GH3547
489
+ sentinel = lib.no_default
490
+ levels = frame.index._format_multi(sparsify=sentinel, include_names=False)
491
+
492
+ level_lengths = get_level_lengths(levels, sentinel)
493
+ inner_lvl = len(level_lengths) - 1
494
+ if is_truncated_vertically:
495
+ # Insert ... row and adjust idx_values and
496
+ # level_lengths to take this into account.
497
+ ins_row = self.fmt.tr_row_num
498
+ inserted = False
499
+ for lnum, records in enumerate(level_lengths):
500
+ rec_new = {}
501
+ for tag, span in list(records.items()):
502
+ if tag >= ins_row:
503
+ rec_new[tag + 1] = span
504
+ elif tag + span > ins_row:
505
+ rec_new[tag] = span + 1
506
+
507
+ # GH 14882 - Make sure insertion done once
508
+ if not inserted:
509
+ dot_row = list(idx_values[ins_row - 1])
510
+ dot_row[-1] = "..."
511
+ idx_values.insert(ins_row, tuple(dot_row))
512
+ inserted = True
513
+ else:
514
+ dot_row = list(idx_values[ins_row])
515
+ dot_row[inner_lvl - lnum] = "..."
516
+ idx_values[ins_row] = tuple(dot_row)
517
+ else:
518
+ rec_new[tag] = span
519
+ # If ins_row lies between tags, all cols idx cols
520
+ # receive ...
521
+ if tag + span == ins_row:
522
+ rec_new[ins_row] = 1
523
+ if lnum == 0:
524
+ idx_values.insert(
525
+ ins_row, tuple(["..."] * len(level_lengths))
526
+ )
527
+
528
+ # GH 14882 - Place ... in correct level
529
+ elif inserted:
530
+ dot_row = list(idx_values[ins_row])
531
+ dot_row[inner_lvl - lnum] = "..."
532
+ idx_values[ins_row] = tuple(dot_row)
533
+ level_lengths[lnum] = rec_new
534
+
535
+ level_lengths[inner_lvl][ins_row] = 1
536
+ for ix_col in fmt_values:
537
+ fmt_values[ix_col].insert(ins_row, "...")
538
+ nrows += 1
539
+
540
+ for i in range(nrows):
541
+ row = []
542
+ tags = {}
543
+
544
+ sparse_offset = 0
545
+ j = 0
546
+ for records, v in zip(level_lengths, idx_values[i]):
547
+ if i in records:
548
+ if records[i] > 1:
549
+ tags[j] = template.format(span=records[i])
550
+ else:
551
+ sparse_offset += 1
552
+ continue
553
+
554
+ j += 1
555
+ row.append(v)
556
+
557
+ row.extend(fmt_values[j][i] for j in range(self.ncols))
558
+ if is_truncated_horizontally:
559
+ row.insert(
560
+ self.row_levels - sparse_offset + self.fmt.tr_col_num, "..."
561
+ )
562
+ self.write_tr(
563
+ row,
564
+ indent,
565
+ self.indent_delta,
566
+ tags=tags,
567
+ nindex_levels=len(levels) - sparse_offset,
568
+ )
569
+ else:
570
+ row = []
571
+ for i in range(len(frame)):
572
+ if is_truncated_vertically and i == (self.fmt.tr_row_num):
573
+ str_sep_row = ["..."] * len(row)
574
+ self.write_tr(
575
+ str_sep_row,
576
+ indent,
577
+ self.indent_delta,
578
+ tags=None,
579
+ nindex_levels=self.row_levels,
580
+ )
581
+
582
+ idx_values = list(
583
+ zip(*frame.index._format_multi(sparsify=False, include_names=False))
584
+ )
585
+ row = []
586
+ row.extend(idx_values[i])
587
+ row.extend(fmt_values[j][i] for j in range(self.ncols))
588
+ if is_truncated_horizontally:
589
+ row.insert(self.row_levels + self.fmt.tr_col_num, "...")
590
+ self.write_tr(
591
+ row,
592
+ indent,
593
+ self.indent_delta,
594
+ tags=None,
595
+ nindex_levels=frame.index.nlevels,
596
+ )
597
+
598
+
599
+ class NotebookFormatter(HTMLFormatter):
600
+ """
601
+ Internal class for formatting output data in html for display in Jupyter
602
+ Notebooks. This class is intended for functionality specific to
603
+ DataFrame._repr_html_() and DataFrame.to_html(notebook=True)
604
+ """
605
+
606
+ def _get_formatted_values(self) -> dict[int, list[str]]:
607
+ return {i: self.fmt.format_col(i) for i in range(self.ncols)}
608
+
609
+ def _get_columns_formatted_values(self) -> list[str]:
610
+ # only reached with non-Multi Index
611
+ return self.columns._format_flat(include_name=False)
612
+
613
+ def write_style(self) -> None:
614
+ # We use the "scoped" attribute here so that the desired
615
+ # style properties for the data frame are not then applied
616
+ # throughout the entire notebook.
617
+ template_first = """\
618
+ <style scoped>"""
619
+ template_last = """\
620
+ </style>"""
621
+ template_select = """\
622
+ .dataframe %s {
623
+ %s: %s;
624
+ }"""
625
+ element_props = [
626
+ ("tbody tr th:only-of-type", "vertical-align", "middle"),
627
+ ("tbody tr th", "vertical-align", "top"),
628
+ ]
629
+ if isinstance(self.columns, MultiIndex):
630
+ element_props.append(("thead tr th", "text-align", "left"))
631
+ if self.show_row_idx_names:
632
+ element_props.append(
633
+ ("thead tr:last-of-type th", "text-align", "right")
634
+ )
635
+ else:
636
+ element_props.append(("thead th", "text-align", "right"))
637
+ template_mid = "\n\n".join(template_select % t for t in element_props)
638
+ template = dedent(f"{template_first}\n{template_mid}\n{template_last}")
639
+ self.write(template)
640
+
641
+ def render(self) -> list[str]:
642
+ self.write("<div>")
643
+ self.write_style()
644
+ super().render()
645
+ self.write("</div>")
646
+ return self.elements