peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/pandas
/io
/parsers
/readers.py
""" | |
Module contains tools for processing files into DataFrames or other objects | |
GH#48849 provides a convenient way of deprecating keyword arguments | |
""" | |
from __future__ import annotations | |
from collections import ( | |
abc, | |
defaultdict, | |
) | |
import csv | |
import sys | |
from textwrap import fill | |
from typing import ( | |
IO, | |
TYPE_CHECKING, | |
Any, | |
Callable, | |
Literal, | |
NamedTuple, | |
TypedDict, | |
overload, | |
) | |
import warnings | |
import numpy as np | |
from pandas._config import using_copy_on_write | |
from pandas._libs import lib | |
from pandas._libs.parsers import STR_NA_VALUES | |
from pandas.errors import ( | |
AbstractMethodError, | |
ParserWarning, | |
) | |
from pandas.util._decorators import Appender | |
from pandas.util._exceptions import find_stack_level | |
from pandas.util._validators import check_dtype_backend | |
from pandas.core.dtypes.common import ( | |
is_file_like, | |
is_float, | |
is_hashable, | |
is_integer, | |
is_list_like, | |
pandas_dtype, | |
) | |
from pandas import Series | |
from pandas.core.frame import DataFrame | |
from pandas.core.indexes.api import RangeIndex | |
from pandas.core.shared_docs import _shared_docs | |
from pandas.io.common import ( | |
IOHandles, | |
get_handle, | |
stringify_path, | |
validate_header_arg, | |
) | |
from pandas.io.parsers.arrow_parser_wrapper import ArrowParserWrapper | |
from pandas.io.parsers.base_parser import ( | |
ParserBase, | |
is_index_col, | |
parser_defaults, | |
) | |
from pandas.io.parsers.c_parser_wrapper import CParserWrapper | |
from pandas.io.parsers.python_parser import ( | |
FixedWidthFieldParser, | |
PythonParser, | |
) | |
if TYPE_CHECKING: | |
from collections.abc import ( | |
Hashable, | |
Iterable, | |
Mapping, | |
Sequence, | |
) | |
from types import TracebackType | |
from pandas._typing import ( | |
CompressionOptions, | |
CSVEngine, | |
DtypeArg, | |
DtypeBackend, | |
FilePath, | |
IndexLabel, | |
ReadCsvBuffer, | |
Self, | |
StorageOptions, | |
UsecolsArgType, | |
) | |
_doc_read_csv_and_table = ( | |
r""" | |
{summary} | |
Also supports optionally iterating or breaking of the file | |
into chunks. | |
Additional help can be found in the online docs for | |
`IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. | |
Parameters | |
---------- | |
filepath_or_buffer : str, path object or file-like object | |
Any valid string path is acceptable. The string could be a URL. Valid | |
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is | |
expected. A local file could be: file://localhost/path/to/table.csv. | |
If you want to pass in a path object, pandas accepts any ``os.PathLike``. | |
By file-like object, we refer to objects with a ``read()`` method, such as | |
a file handle (e.g. via builtin ``open`` function) or ``StringIO``. | |
sep : str, default {_default_sep} | |
Character or regex pattern to treat as the delimiter. If ``sep=None``, the | |
C engine cannot automatically detect | |
the separator, but the Python parsing engine can, meaning the latter will | |
be used and automatically detect the separator from only the first valid | |
row of the file by Python's builtin sniffer tool, ``csv.Sniffer``. | |
In addition, separators longer than 1 character and different from | |
``'\s+'`` will be interpreted as regular expressions and will also force | |
the use of the Python parsing engine. Note that regex delimiters are prone | |
to ignoring quoted data. Regex example: ``'\r\t'``. | |
delimiter : str, optional | |
Alias for ``sep``. | |
header : int, Sequence of int, 'infer' or None, default 'infer' | |
Row number(s) containing column labels and marking the start of the | |
data (zero-indexed). Default behavior is to infer the column names: if no ``names`` | |
are passed the behavior is identical to ``header=0`` and column | |
names are inferred from the first line of the file, if column | |
names are passed explicitly to ``names`` then the behavior is identical to | |
``header=None``. Explicitly pass ``header=0`` to be able to | |
replace existing names. The header can be a list of integers that | |
specify row locations for a :class:`~pandas.MultiIndex` on the columns | |
e.g. ``[0, 1, 3]``. Intervening rows that are not specified will be | |
skipped (e.g. 2 in this example is skipped). Note that this | |
parameter ignores commented lines and empty lines if | |
``skip_blank_lines=True``, so ``header=0`` denotes the first line of | |
data rather than the first line of the file. | |
names : Sequence of Hashable, optional | |
Sequence of column labels to apply. If the file contains a header row, | |
then you should explicitly pass ``header=0`` to override the column names. | |
Duplicates in this list are not allowed. | |
index_col : Hashable, Sequence of Hashable or False, optional | |
Column(s) to use as row label(s), denoted either by column labels or column | |
indices. If a sequence of labels or indices is given, :class:`~pandas.MultiIndex` | |
will be formed for the row labels. | |
Note: ``index_col=False`` can be used to force pandas to *not* use the first | |
column as the index, e.g., when you have a malformed file with delimiters at | |
the end of each line. | |
usecols : Sequence of Hashable or Callable, optional | |
Subset of columns to select, denoted either by column labels or column indices. | |
If list-like, all elements must either | |
be positional (i.e. integer indices into the document columns) or strings | |
that correspond to column names provided either by the user in ``names`` or | |
inferred from the document header row(s). If ``names`` are given, the document | |
header row(s) are not taken into account. For example, a valid list-like | |
``usecols`` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. | |
Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. | |
To instantiate a :class:`~pandas.DataFrame` from ``data`` with element order | |
preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` | |
for columns in ``['foo', 'bar']`` order or | |
``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` | |
for ``['bar', 'foo']`` order. | |
If callable, the callable function will be evaluated against the column | |
names, returning names where the callable function evaluates to ``True``. An | |
example of a valid callable argument would be ``lambda x: x.upper() in | |
['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster | |
parsing time and lower memory usage. | |
dtype : dtype or dict of {{Hashable : dtype}}, optional | |
Data type(s) to apply to either the whole dataset or individual columns. | |
E.g., ``{{'a': np.float64, 'b': np.int32, 'c': 'Int64'}}`` | |
Use ``str`` or ``object`` together with suitable ``na_values`` settings | |
to preserve and not interpret ``dtype``. | |
If ``converters`` are specified, they will be applied INSTEAD | |
of ``dtype`` conversion. | |
.. versionadded:: 1.5.0 | |
Support for ``defaultdict`` was added. Specify a ``defaultdict`` as input where | |
the default determines the ``dtype`` of the columns which are not explicitly | |
listed. | |
engine : {{'c', 'python', 'pyarrow'}}, optional | |
Parser engine to use. The C and pyarrow engines are faster, while the python engine | |
is currently more feature-complete. Multithreading is currently only supported by | |
the pyarrow engine. | |
.. versionadded:: 1.4.0 | |
The 'pyarrow' engine was added as an *experimental* engine, and some features | |
are unsupported, or may not work correctly, with this engine. | |
converters : dict of {{Hashable : Callable}}, optional | |
Functions for converting values in specified columns. Keys can either | |
be column labels or column indices. | |
true_values : list, optional | |
Values to consider as ``True`` in addition to case-insensitive variants of 'True'. | |
false_values : list, optional | |
Values to consider as ``False`` in addition to case-insensitive variants of 'False'. | |
skipinitialspace : bool, default False | |
Skip spaces after delimiter. | |
skiprows : int, list of int or Callable, optional | |
Line numbers to skip (0-indexed) or number of lines to skip (``int``) | |
at the start of the file. | |
If callable, the callable function will be evaluated against the row | |
indices, returning ``True`` if the row should be skipped and ``False`` otherwise. | |
An example of a valid callable argument would be ``lambda x: x in [0, 2]``. | |
skipfooter : int, default 0 | |
Number of lines at bottom of file to skip (Unsupported with ``engine='c'``). | |
nrows : int, optional | |
Number of rows of file to read. Useful for reading pieces of large files. | |
na_values : Hashable, Iterable of Hashable or dict of {{Hashable : Iterable}}, optional | |
Additional strings to recognize as ``NA``/``NaN``. If ``dict`` passed, specific | |
per-column ``NA`` values. By default the following values are interpreted as | |
``NaN``: " """ | |
+ fill('", "'.join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") | |
+ """ ". | |
keep_default_na : bool, default True | |
Whether or not to include the default ``NaN`` values when parsing the data. | |
Depending on whether ``na_values`` is passed in, the behavior is as follows: | |
* If ``keep_default_na`` is ``True``, and ``na_values`` are specified, ``na_values`` | |
is appended to the default ``NaN`` values used for parsing. | |
* If ``keep_default_na`` is ``True``, and ``na_values`` are not specified, only | |
the default ``NaN`` values are used for parsing. | |
* If ``keep_default_na`` is ``False``, and ``na_values`` are specified, only | |
the ``NaN`` values specified ``na_values`` are used for parsing. | |
* If ``keep_default_na`` is ``False``, and ``na_values`` are not specified, no | |
strings will be parsed as ``NaN``. | |
Note that if ``na_filter`` is passed in as ``False``, the ``keep_default_na`` and | |
``na_values`` parameters will be ignored. | |
na_filter : bool, default True | |
Detect missing value markers (empty strings and the value of ``na_values``). In | |
data without any ``NA`` values, passing ``na_filter=False`` can improve the | |
performance of reading a large file. | |
verbose : bool, default False | |
Indicate number of ``NA`` values placed in non-numeric columns. | |
.. deprecated:: 2.2.0 | |
skip_blank_lines : bool, default True | |
If ``True``, skip over blank lines rather than interpreting as ``NaN`` values. | |
parse_dates : bool, list of Hashable, list of lists or dict of {{Hashable : list}}, \ | |
default False | |
The behavior is as follows: | |
* ``bool``. If ``True`` -> try parsing the index. Note: Automatically set to | |
``True`` if ``date_format`` or ``date_parser`` arguments have been passed. | |
* ``list`` of ``int`` or names. e.g. If ``[1, 2, 3]`` -> try parsing columns 1, 2, 3 | |
each as a separate date column. | |
* ``list`` of ``list``. e.g. If ``[[1, 3]]`` -> combine columns 1 and 3 and parse | |
as a single date column. Values are joined with a space before parsing. | |
* ``dict``, e.g. ``{{'foo' : [1, 3]}}`` -> parse columns 1, 3 as date and call | |
result 'foo'. Values are joined with a space before parsing. | |
If a column or index cannot be represented as an array of ``datetime``, | |
say because of an unparsable value or a mixture of timezones, the column | |
or index will be returned unaltered as an ``object`` data type. For | |
non-standard ``datetime`` parsing, use :func:`~pandas.to_datetime` after | |
:func:`~pandas.read_csv`. | |
Note: A fast-path exists for iso8601-formatted dates. | |
infer_datetime_format : bool, default False | |
If ``True`` and ``parse_dates`` is enabled, pandas will attempt to infer the | |
format of the ``datetime`` strings in the columns, and if it can be inferred, | |
switch to a faster method of parsing them. In some cases this can increase | |
the parsing speed by 5-10x. | |
.. deprecated:: 2.0.0 | |
A strict version of this argument is now the default, passing it has no effect. | |
keep_date_col : bool, default False | |
If ``True`` and ``parse_dates`` specifies combining multiple columns then | |
keep the original columns. | |
date_parser : Callable, optional | |
Function to use for converting a sequence of string columns to an array of | |
``datetime`` instances. The default uses ``dateutil.parser.parser`` to do the | |
conversion. pandas will try to call ``date_parser`` in three different ways, | |
advancing to the next if an exception occurs: 1) Pass one or more arrays | |
(as defined by ``parse_dates``) as arguments; 2) concatenate (row-wise) the | |
string values from the columns defined by ``parse_dates`` into a single array | |
and pass that; and 3) call ``date_parser`` once for each row using one or | |
more strings (corresponding to the columns defined by ``parse_dates``) as | |
arguments. | |
.. deprecated:: 2.0.0 | |
Use ``date_format`` instead, or read in as ``object`` and then apply | |
:func:`~pandas.to_datetime` as-needed. | |
date_format : str or dict of column -> format, optional | |
Format to use for parsing dates when used in conjunction with ``parse_dates``. | |
The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See | |
`strftime documentation | |
<https://docs.python.org/3/library/datetime.html | |
#strftime-and-strptime-behavior>`_ for more information on choices, though | |
note that :const:`"%f"` will parse all the way up to nanoseconds. | |
You can also pass: | |
- "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_ | |
time string (not necessarily in exactly the same format); | |
- "mixed", to infer the format for each element individually. This is risky, | |
and you should probably use it along with `dayfirst`. | |
.. versionadded:: 2.0.0 | |
dayfirst : bool, default False | |
DD/MM format dates, international and European format. | |
cache_dates : bool, default True | |
If ``True``, use a cache of unique, converted dates to apply the ``datetime`` | |
conversion. May produce significant speed-up when parsing duplicate | |
date strings, especially ones with timezone offsets. | |
iterator : bool, default False | |
Return ``TextFileReader`` object for iteration or getting chunks with | |
``get_chunk()``. | |
chunksize : int, optional | |
Number of lines to read from the file per chunk. Passing a value will cause the | |
function to return a ``TextFileReader`` object for iteration. | |
See the `IO Tools docs | |
<https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_ | |
for more information on ``iterator`` and ``chunksize``. | |
{decompression_options} | |
.. versionchanged:: 1.4.0 Zstandard support. | |
thousands : str (length 1), optional | |
Character acting as the thousands separator in numerical values. | |
decimal : str (length 1), default '.' | |
Character to recognize as decimal point (e.g., use ',' for European data). | |
lineterminator : str (length 1), optional | |
Character used to denote a line break. Only valid with C parser. | |
quotechar : str (length 1), optional | |
Character used to denote the start and end of a quoted item. Quoted | |
items can include the ``delimiter`` and it will be ignored. | |
quoting : {{0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL, 2 or csv.QUOTE_NONNUMERIC, \ | |
3 or csv.QUOTE_NONE}}, default csv.QUOTE_MINIMAL | |
Control field quoting behavior per ``csv.QUOTE_*`` constants. Default is | |
``csv.QUOTE_MINIMAL`` (i.e., 0) which implies that only fields containing special | |
characters are quoted (e.g., characters defined in ``quotechar``, ``delimiter``, | |
or ``lineterminator``. | |
doublequote : bool, default True | |
When ``quotechar`` is specified and ``quoting`` is not ``QUOTE_NONE``, indicate | |
whether or not to interpret two consecutive ``quotechar`` elements INSIDE a | |
field as a single ``quotechar`` element. | |
escapechar : str (length 1), optional | |
Character used to escape other characters. | |
comment : str (length 1), optional | |
Character indicating that the remainder of line should not be parsed. | |
If found at the beginning | |
of a line, the line will be ignored altogether. This parameter must be a | |
single character. Like empty lines (as long as ``skip_blank_lines=True``), | |
fully commented lines are ignored by the parameter ``header`` but not by | |
``skiprows``. For example, if ``comment='#'``, parsing | |
``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in ``'a,b,c'`` being | |
treated as the header. | |
encoding : str, optional, default 'utf-8' | |
Encoding to use for UTF when reading/writing (ex. ``'utf-8'``). `List of Python | |
standard encodings | |
<https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . | |
encoding_errors : str, optional, default 'strict' | |
How encoding errors are treated. `List of possible values | |
<https://docs.python.org/3/library/codecs.html#error-handlers>`_ . | |
.. versionadded:: 1.3.0 | |
dialect : str or csv.Dialect, optional | |
If provided, this parameter will override values (default or not) for the | |
following parameters: ``delimiter``, ``doublequote``, ``escapechar``, | |
``skipinitialspace``, ``quotechar``, and ``quoting``. If it is necessary to | |
override values, a ``ParserWarning`` will be issued. See ``csv.Dialect`` | |
documentation for more details. | |
on_bad_lines : {{'error', 'warn', 'skip'}} or Callable, default 'error' | |
Specifies what to do upon encountering a bad line (a line with too many fields). | |
Allowed values are : | |
- ``'error'``, raise an Exception when a bad line is encountered. | |
- ``'warn'``, raise a warning when a bad line is encountered and skip that line. | |
- ``'skip'``, skip bad lines without raising or warning when they are encountered. | |
.. versionadded:: 1.3.0 | |
.. versionadded:: 1.4.0 | |
- Callable, function with signature | |
``(bad_line: list[str]) -> list[str] | None`` that will process a single | |
bad line. ``bad_line`` is a list of strings split by the ``sep``. | |
If the function returns ``None``, the bad line will be ignored. | |
If the function returns a new ``list`` of strings with more elements than | |
expected, a ``ParserWarning`` will be emitted while dropping extra elements. | |
Only supported when ``engine='python'`` | |
.. versionchanged:: 2.2.0 | |
- Callable, function with signature | |
as described in `pyarrow documentation | |
<https://arrow.apache.org/docs/python/generated/pyarrow.csv.ParseOptions.html | |
#pyarrow.csv.ParseOptions.invalid_row_handler>`_ when ``engine='pyarrow'`` | |
delim_whitespace : bool, default False | |
Specifies whether or not whitespace (e.g. ``' '`` or ``'\\t'``) will be | |
used as the ``sep`` delimiter. Equivalent to setting ``sep='\\s+'``. If this option | |
is set to ``True``, nothing should be passed in for the ``delimiter`` | |
parameter. | |
.. deprecated:: 2.2.0 | |
Use ``sep="\\s+"`` instead. | |
low_memory : bool, default True | |
Internally process the file in chunks, resulting in lower memory use | |
while parsing, but possibly mixed type inference. To ensure no mixed | |
types either set ``False``, or specify the type with the ``dtype`` parameter. | |
Note that the entire file is read into a single :class:`~pandas.DataFrame` | |
regardless, use the ``chunksize`` or ``iterator`` parameter to return the data in | |
chunks. (Only valid with C parser). | |
memory_map : bool, default False | |
If a filepath is provided for ``filepath_or_buffer``, map the file object | |
directly onto memory and access the data directly from there. Using this | |
option can improve performance because there is no longer any I/O overhead. | |
float_precision : {{'high', 'legacy', 'round_trip'}}, optional | |
Specifies which converter the C engine should use for floating-point | |
values. The options are ``None`` or ``'high'`` for the ordinary converter, | |
``'legacy'`` for the original lower precision pandas converter, and | |
``'round_trip'`` for the round-trip converter. | |
{storage_options} | |
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' | |
Back-end data type applied to the resultant :class:`DataFrame` | |
(still experimental). Behaviour is as follows: | |
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` | |
(default). | |
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` | |
DataFrame. | |
.. versionadded:: 2.0 | |
Returns | |
------- | |
DataFrame or TextFileReader | |
A comma-separated values (csv) file is returned as two-dimensional | |
data structure with labeled axes. | |
See Also | |
-------- | |
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. | |
{see_also_func_name} : {see_also_func_summary} | |
read_fwf : Read a table of fixed-width formatted lines into DataFrame. | |
Examples | |
-------- | |
pd.{func_name}('data.csv') # doctest: +SKIP | |
""" | |
) | |
class _C_Parser_Defaults(TypedDict): | |
delim_whitespace: Literal[False] | |
na_filter: Literal[True] | |
low_memory: Literal[True] | |
memory_map: Literal[False] | |
float_precision: None | |
_c_parser_defaults: _C_Parser_Defaults = { | |
"delim_whitespace": False, | |
"na_filter": True, | |
"low_memory": True, | |
"memory_map": False, | |
"float_precision": None, | |
} | |
class _Fwf_Defaults(TypedDict): | |
colspecs: Literal["infer"] | |
infer_nrows: Literal[100] | |
widths: None | |
_fwf_defaults: _Fwf_Defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None} | |
_c_unsupported = {"skipfooter"} | |
_python_unsupported = {"low_memory", "float_precision"} | |
_pyarrow_unsupported = { | |
"skipfooter", | |
"float_precision", | |
"chunksize", | |
"comment", | |
"nrows", | |
"thousands", | |
"memory_map", | |
"dialect", | |
"delim_whitespace", | |
"quoting", | |
"lineterminator", | |
"converters", | |
"iterator", | |
"dayfirst", | |
"verbose", | |
"skipinitialspace", | |
"low_memory", | |
} | |
class _DeprecationConfig(NamedTuple): | |
default_value: Any | |
msg: str | None | |
def validate_integer(name: str, val: None, min_val: int = ...) -> None: | |
... | |
def validate_integer(name: str, val: float, min_val: int = ...) -> int: | |
... | |
def validate_integer(name: str, val: int | None, min_val: int = ...) -> int | None: | |
... | |
def validate_integer( | |
name: str, val: int | float | None, min_val: int = 0 | |
) -> int | None: | |
""" | |
Checks whether the 'name' parameter for parsing is either | |
an integer OR float that can SAFELY be cast to an integer | |
without losing accuracy. Raises a ValueError if that is | |
not the case. | |
Parameters | |
---------- | |
name : str | |
Parameter name (used for error reporting) | |
val : int or float | |
The value to check | |
min_val : int | |
Minimum allowed value (val < min_val will result in a ValueError) | |
""" | |
if val is None: | |
return val | |
msg = f"'{name:s}' must be an integer >={min_val:d}" | |
if is_float(val): | |
if int(val) != val: | |
raise ValueError(msg) | |
val = int(val) | |
elif not (is_integer(val) and val >= min_val): | |
raise ValueError(msg) | |
return int(val) | |
def _validate_names(names: Sequence[Hashable] | None) -> None: | |
""" | |
Raise ValueError if the `names` parameter contains duplicates or has an | |
invalid data type. | |
Parameters | |
---------- | |
names : array-like or None | |
An array containing a list of the names used for the output DataFrame. | |
Raises | |
------ | |
ValueError | |
If names are not unique or are not ordered (e.g. set). | |
""" | |
if names is not None: | |
if len(names) != len(set(names)): | |
raise ValueError("Duplicate names are not allowed.") | |
if not ( | |
is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView) | |
): | |
raise ValueError("Names should be an ordered collection.") | |
def _read( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], kwds | |
) -> DataFrame | TextFileReader: | |
"""Generic reader of line files.""" | |
# if we pass a date_parser and parse_dates=False, we should not parse the | |
# dates GH#44366 | |
if kwds.get("parse_dates", None) is None: | |
if ( | |
kwds.get("date_parser", lib.no_default) is lib.no_default | |
and kwds.get("date_format", None) is None | |
): | |
kwds["parse_dates"] = False | |
else: | |
kwds["parse_dates"] = True | |
# Extract some of the arguments (pass chunksize on). | |
iterator = kwds.get("iterator", False) | |
chunksize = kwds.get("chunksize", None) | |
if kwds.get("engine") == "pyarrow": | |
if iterator: | |
raise ValueError( | |
"The 'iterator' option is not supported with the 'pyarrow' engine" | |
) | |
if chunksize is not None: | |
raise ValueError( | |
"The 'chunksize' option is not supported with the 'pyarrow' engine" | |
) | |
else: | |
chunksize = validate_integer("chunksize", chunksize, 1) | |
nrows = kwds.get("nrows", None) | |
# Check for duplicates in names. | |
_validate_names(kwds.get("names", None)) | |
# Create the parser. | |
parser = TextFileReader(filepath_or_buffer, **kwds) | |
if chunksize or iterator: | |
return parser | |
with parser: | |
return parser.read(nrows) | |
# iterator=True -> TextFileReader | |
def read_csv( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Hashable | |
| Iterable[Hashable] | |
| Mapping[Hashable, Iterable[Hashable]] | |
| None = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] | None = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: Literal[True], | |
chunksize: int | None = ..., | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool | lib.NoDefault = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: Literal["high", "legacy"] | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> TextFileReader: | |
... | |
# chunksize=int -> TextFileReader | |
def read_csv( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Hashable | |
| Iterable[Hashable] | |
| Mapping[Hashable, Iterable[Hashable]] | |
| None = ..., | |
keep_default_na: bool = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] | None = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: bool = ..., | |
chunksize: int, | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool | lib.NoDefault = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: Literal["high", "legacy"] | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> TextFileReader: | |
... | |
# default case -> DataFrame | |
def read_csv( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Hashable | |
| Iterable[Hashable] | |
| Mapping[Hashable, Iterable[Hashable]] | |
| None = ..., | |
keep_default_na: bool = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] | None = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: Literal[False] = ..., | |
chunksize: None = ..., | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool | lib.NoDefault = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: Literal["high", "legacy"] | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> DataFrame: | |
... | |
# Unions -> DataFrame | TextFileReader | |
def read_csv( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Hashable | |
| Iterable[Hashable] | |
| Mapping[Hashable, Iterable[Hashable]] | |
| None = ..., | |
keep_default_na: bool = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] | None = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: bool = ..., | |
chunksize: int | None = ..., | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool | lib.NoDefault = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: Literal["high", "legacy"] | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> DataFrame | TextFileReader: | |
... | |
def read_csv( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = lib.no_default, | |
delimiter: str | None | lib.NoDefault = None, | |
# Column and Index Locations and Names | |
header: int | Sequence[int] | None | Literal["infer"] = "infer", | |
names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default, | |
index_col: IndexLabel | Literal[False] | None = None, | |
usecols: UsecolsArgType = None, | |
# General Parsing Configuration | |
dtype: DtypeArg | None = None, | |
engine: CSVEngine | None = None, | |
converters: Mapping[Hashable, Callable] | None = None, | |
true_values: list | None = None, | |
false_values: list | None = None, | |
skipinitialspace: bool = False, | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = None, | |
skipfooter: int = 0, | |
nrows: int | None = None, | |
# NA and Missing Data Handling | |
na_values: Hashable | |
| Iterable[Hashable] | |
| Mapping[Hashable, Iterable[Hashable]] | |
| None = None, | |
keep_default_na: bool = True, | |
na_filter: bool = True, | |
verbose: bool | lib.NoDefault = lib.no_default, | |
skip_blank_lines: bool = True, | |
# Datetime Handling | |
parse_dates: bool | Sequence[Hashable] | None = None, | |
infer_datetime_format: bool | lib.NoDefault = lib.no_default, | |
keep_date_col: bool | lib.NoDefault = lib.no_default, | |
date_parser: Callable | lib.NoDefault = lib.no_default, | |
date_format: str | dict[Hashable, str] | None = None, | |
dayfirst: bool = False, | |
cache_dates: bool = True, | |
# Iteration | |
iterator: bool = False, | |
chunksize: int | None = None, | |
# Quoting, Compression, and File Format | |
compression: CompressionOptions = "infer", | |
thousands: str | None = None, | |
decimal: str = ".", | |
lineterminator: str | None = None, | |
quotechar: str = '"', | |
quoting: int = csv.QUOTE_MINIMAL, | |
doublequote: bool = True, | |
escapechar: str | None = None, | |
comment: str | None = None, | |
encoding: str | None = None, | |
encoding_errors: str | None = "strict", | |
dialect: str | csv.Dialect | None = None, | |
# Error Handling | |
on_bad_lines: str = "error", | |
# Internal | |
delim_whitespace: bool | lib.NoDefault = lib.no_default, | |
low_memory: bool = _c_parser_defaults["low_memory"], | |
memory_map: bool = False, | |
float_precision: Literal["high", "legacy"] | None = None, | |
storage_options: StorageOptions | None = None, | |
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, | |
) -> DataFrame | TextFileReader: | |
if keep_date_col is not lib.no_default: | |
# GH#55569 | |
warnings.warn( | |
"The 'keep_date_col' keyword in pd.read_csv is deprecated and " | |
"will be removed in a future version. Explicitly remove unwanted " | |
"columns after parsing instead.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
else: | |
keep_date_col = False | |
if lib.is_list_like(parse_dates): | |
# GH#55569 | |
depr = False | |
# error: Item "bool" of "bool | Sequence[Hashable] | None" has no | |
# attribute "__iter__" (not iterable) | |
if not all(is_hashable(x) for x in parse_dates): # type: ignore[union-attr] | |
depr = True | |
elif isinstance(parse_dates, dict) and any( | |
lib.is_list_like(x) for x in parse_dates.values() | |
): | |
depr = True | |
if depr: | |
warnings.warn( | |
"Support for nested sequences for 'parse_dates' in pd.read_csv " | |
"is deprecated. Combine the desired columns with pd.to_datetime " | |
"after parsing instead.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
if infer_datetime_format is not lib.no_default: | |
warnings.warn( | |
"The argument 'infer_datetime_format' is deprecated and will " | |
"be removed in a future version. " | |
"A strict version of it is now the default, see " | |
"https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. " | |
"You can safely remove this argument.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
if delim_whitespace is not lib.no_default: | |
# GH#55569 | |
warnings.warn( | |
"The 'delim_whitespace' keyword in pd.read_csv is deprecated and " | |
"will be removed in a future version. Use ``sep='\\s+'`` instead", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
else: | |
delim_whitespace = False | |
if verbose is not lib.no_default: | |
# GH#55569 | |
warnings.warn( | |
"The 'verbose' keyword in pd.read_csv is deprecated and " | |
"will be removed in a future version.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
else: | |
verbose = False | |
# locals() should never be modified | |
kwds = locals().copy() | |
del kwds["filepath_or_buffer"] | |
del kwds["sep"] | |
kwds_defaults = _refine_defaults_read( | |
dialect, | |
delimiter, | |
delim_whitespace, | |
engine, | |
sep, | |
on_bad_lines, | |
names, | |
defaults={"delimiter": ","}, | |
dtype_backend=dtype_backend, | |
) | |
kwds.update(kwds_defaults) | |
return _read(filepath_or_buffer, kwds) | |
# iterator=True -> TextFileReader | |
def read_table( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ..., | |
keep_default_na: bool = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: Literal[True], | |
chunksize: int | None = ..., | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: str | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> TextFileReader: | |
... | |
# chunksize=int -> TextFileReader | |
def read_table( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ..., | |
keep_default_na: bool = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: bool = ..., | |
chunksize: int, | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: str | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> TextFileReader: | |
... | |
# default -> DataFrame | |
def read_table( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ..., | |
keep_default_na: bool = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: Literal[False] = ..., | |
chunksize: None = ..., | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: str | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> DataFrame: | |
... | |
# Unions -> DataFrame | TextFileReader | |
def read_table( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = ..., | |
delimiter: str | None | lib.NoDefault = ..., | |
header: int | Sequence[int] | None | Literal["infer"] = ..., | |
names: Sequence[Hashable] | None | lib.NoDefault = ..., | |
index_col: IndexLabel | Literal[False] | None = ..., | |
usecols: UsecolsArgType = ..., | |
dtype: DtypeArg | None = ..., | |
engine: CSVEngine | None = ..., | |
converters: Mapping[Hashable, Callable] | None = ..., | |
true_values: list | None = ..., | |
false_values: list | None = ..., | |
skipinitialspace: bool = ..., | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ..., | |
skipfooter: int = ..., | |
nrows: int | None = ..., | |
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ..., | |
keep_default_na: bool = ..., | |
na_filter: bool = ..., | |
verbose: bool | lib.NoDefault = ..., | |
skip_blank_lines: bool = ..., | |
parse_dates: bool | Sequence[Hashable] = ..., | |
infer_datetime_format: bool | lib.NoDefault = ..., | |
keep_date_col: bool | lib.NoDefault = ..., | |
date_parser: Callable | lib.NoDefault = ..., | |
date_format: str | dict[Hashable, str] | None = ..., | |
dayfirst: bool = ..., | |
cache_dates: bool = ..., | |
iterator: bool = ..., | |
chunksize: int | None = ..., | |
compression: CompressionOptions = ..., | |
thousands: str | None = ..., | |
decimal: str = ..., | |
lineterminator: str | None = ..., | |
quotechar: str = ..., | |
quoting: int = ..., | |
doublequote: bool = ..., | |
escapechar: str | None = ..., | |
comment: str | None = ..., | |
encoding: str | None = ..., | |
encoding_errors: str | None = ..., | |
dialect: str | csv.Dialect | None = ..., | |
on_bad_lines=..., | |
delim_whitespace: bool = ..., | |
low_memory: bool = ..., | |
memory_map: bool = ..., | |
float_precision: str | None = ..., | |
storage_options: StorageOptions = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
) -> DataFrame | TextFileReader: | |
... | |
def read_table( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
sep: str | None | lib.NoDefault = lib.no_default, | |
delimiter: str | None | lib.NoDefault = None, | |
# Column and Index Locations and Names | |
header: int | Sequence[int] | None | Literal["infer"] = "infer", | |
names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default, | |
index_col: IndexLabel | Literal[False] | None = None, | |
usecols: UsecolsArgType = None, | |
# General Parsing Configuration | |
dtype: DtypeArg | None = None, | |
engine: CSVEngine | None = None, | |
converters: Mapping[Hashable, Callable] | None = None, | |
true_values: list | None = None, | |
false_values: list | None = None, | |
skipinitialspace: bool = False, | |
skiprows: list[int] | int | Callable[[Hashable], bool] | None = None, | |
skipfooter: int = 0, | |
nrows: int | None = None, | |
# NA and Missing Data Handling | |
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = None, | |
keep_default_na: bool = True, | |
na_filter: bool = True, | |
verbose: bool | lib.NoDefault = lib.no_default, | |
skip_blank_lines: bool = True, | |
# Datetime Handling | |
parse_dates: bool | Sequence[Hashable] = False, | |
infer_datetime_format: bool | lib.NoDefault = lib.no_default, | |
keep_date_col: bool | lib.NoDefault = lib.no_default, | |
date_parser: Callable | lib.NoDefault = lib.no_default, | |
date_format: str | dict[Hashable, str] | None = None, | |
dayfirst: bool = False, | |
cache_dates: bool = True, | |
# Iteration | |
iterator: bool = False, | |
chunksize: int | None = None, | |
# Quoting, Compression, and File Format | |
compression: CompressionOptions = "infer", | |
thousands: str | None = None, | |
decimal: str = ".", | |
lineterminator: str | None = None, | |
quotechar: str = '"', | |
quoting: int = csv.QUOTE_MINIMAL, | |
doublequote: bool = True, | |
escapechar: str | None = None, | |
comment: str | None = None, | |
encoding: str | None = None, | |
encoding_errors: str | None = "strict", | |
dialect: str | csv.Dialect | None = None, | |
# Error Handling | |
on_bad_lines: str = "error", | |
# Internal | |
delim_whitespace: bool | lib.NoDefault = lib.no_default, | |
low_memory: bool = _c_parser_defaults["low_memory"], | |
memory_map: bool = False, | |
float_precision: str | None = None, | |
storage_options: StorageOptions | None = None, | |
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, | |
) -> DataFrame | TextFileReader: | |
if keep_date_col is not lib.no_default: | |
# GH#55569 | |
warnings.warn( | |
"The 'keep_date_col' keyword in pd.read_table is deprecated and " | |
"will be removed in a future version. Explicitly remove unwanted " | |
"columns after parsing instead.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
else: | |
keep_date_col = False | |
# error: Item "bool" of "bool | Sequence[Hashable]" has no attribute "__iter__" | |
if lib.is_list_like(parse_dates) and not all(is_hashable(x) for x in parse_dates): # type: ignore[union-attr] | |
# GH#55569 | |
warnings.warn( | |
"Support for nested sequences for 'parse_dates' in pd.read_table " | |
"is deprecated. Combine the desired columns with pd.to_datetime " | |
"after parsing instead.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
if infer_datetime_format is not lib.no_default: | |
warnings.warn( | |
"The argument 'infer_datetime_format' is deprecated and will " | |
"be removed in a future version. " | |
"A strict version of it is now the default, see " | |
"https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. " | |
"You can safely remove this argument.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
if delim_whitespace is not lib.no_default: | |
# GH#55569 | |
warnings.warn( | |
"The 'delim_whitespace' keyword in pd.read_table is deprecated and " | |
"will be removed in a future version. Use ``sep='\\s+'`` instead", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
else: | |
delim_whitespace = False | |
if verbose is not lib.no_default: | |
# GH#55569 | |
warnings.warn( | |
"The 'verbose' keyword in pd.read_table is deprecated and " | |
"will be removed in a future version.", | |
FutureWarning, | |
stacklevel=find_stack_level(), | |
) | |
else: | |
verbose = False | |
# locals() should never be modified | |
kwds = locals().copy() | |
del kwds["filepath_or_buffer"] | |
del kwds["sep"] | |
kwds_defaults = _refine_defaults_read( | |
dialect, | |
delimiter, | |
delim_whitespace, | |
engine, | |
sep, | |
on_bad_lines, | |
names, | |
defaults={"delimiter": "\t"}, | |
dtype_backend=dtype_backend, | |
) | |
kwds.update(kwds_defaults) | |
return _read(filepath_or_buffer, kwds) | |
def read_fwf( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
colspecs: Sequence[tuple[int, int]] | str | None = ..., | |
widths: Sequence[int] | None = ..., | |
infer_nrows: int = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
iterator: Literal[True], | |
chunksize: int | None = ..., | |
**kwds, | |
) -> TextFileReader: | |
... | |
def read_fwf( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
colspecs: Sequence[tuple[int, int]] | str | None = ..., | |
widths: Sequence[int] | None = ..., | |
infer_nrows: int = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
iterator: bool = ..., | |
chunksize: int, | |
**kwds, | |
) -> TextFileReader: | |
... | |
def read_fwf( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
colspecs: Sequence[tuple[int, int]] | str | None = ..., | |
widths: Sequence[int] | None = ..., | |
infer_nrows: int = ..., | |
dtype_backend: DtypeBackend | lib.NoDefault = ..., | |
iterator: Literal[False] = ..., | |
chunksize: None = ..., | |
**kwds, | |
) -> DataFrame: | |
... | |
def read_fwf( | |
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], | |
*, | |
colspecs: Sequence[tuple[int, int]] | str | None = "infer", | |
widths: Sequence[int] | None = None, | |
infer_nrows: int = 100, | |
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, | |
iterator: bool = False, | |
chunksize: int | None = None, | |
**kwds, | |
) -> DataFrame | TextFileReader: | |
r""" | |
Read a table of fixed-width formatted lines into DataFrame. | |
Also supports optionally iterating or breaking of the file | |
into chunks. | |
Additional help can be found in the `online docs for IO Tools | |
<https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. | |
Parameters | |
---------- | |
filepath_or_buffer : str, path object, or file-like object | |
String, path object (implementing ``os.PathLike[str]``), or file-like | |
object implementing a text ``read()`` function.The string could be a URL. | |
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is | |
expected. A local file could be: | |
``file://localhost/path/to/table.csv``. | |
colspecs : list of tuple (int, int) or 'infer'. optional | |
A list of tuples giving the extents of the fixed-width | |
fields of each line as half-open intervals (i.e., [from, to[ ). | |
String value 'infer' can be used to instruct the parser to try | |
detecting the column specifications from the first 100 rows of | |
the data which are not being skipped via skiprows (default='infer'). | |
widths : list of int, optional | |
A list of field widths which can be used instead of 'colspecs' if | |
the intervals are contiguous. | |
infer_nrows : int, default 100 | |
The number of rows to consider when letting the parser determine the | |
`colspecs`. | |
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' | |
Back-end data type applied to the resultant :class:`DataFrame` | |
(still experimental). Behaviour is as follows: | |
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` | |
(default). | |
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` | |
DataFrame. | |
.. versionadded:: 2.0 | |
**kwds : optional | |
Optional keyword arguments can be passed to ``TextFileReader``. | |
Returns | |
------- | |
DataFrame or TextFileReader | |
A comma-separated values (csv) file is returned as two-dimensional | |
data structure with labeled axes. | |
See Also | |
-------- | |
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. | |
read_csv : Read a comma-separated values (csv) file into DataFrame. | |
Examples | |
-------- | |
>>> pd.read_fwf('data.csv') # doctest: +SKIP | |
""" | |
# Check input arguments. | |
if colspecs is None and widths is None: | |
raise ValueError("Must specify either colspecs or widths") | |
if colspecs not in (None, "infer") and widths is not None: | |
raise ValueError("You must specify only one of 'widths' and 'colspecs'") | |
# Compute 'colspecs' from 'widths', if specified. | |
if widths is not None: | |
colspecs, col = [], 0 | |
for w in widths: | |
colspecs.append((col, col + w)) | |
col += w | |
# for mypy | |
assert colspecs is not None | |
# GH#40830 | |
# Ensure length of `colspecs` matches length of `names` | |
names = kwds.get("names") | |
if names is not None: | |
if len(names) != len(colspecs) and colspecs != "infer": | |
# need to check len(index_col) as it might contain | |
# unnamed indices, in which case it's name is not required | |
len_index = 0 | |
if kwds.get("index_col") is not None: | |
index_col: Any = kwds.get("index_col") | |
if index_col is not False: | |
if not is_list_like(index_col): | |
len_index = 1 | |
else: | |
len_index = len(index_col) | |
if kwds.get("usecols") is None and len(names) + len_index != len(colspecs): | |
# If usecols is used colspec may be longer than names | |
raise ValueError("Length of colspecs must match length of names") | |
kwds["colspecs"] = colspecs | |
kwds["infer_nrows"] = infer_nrows | |
kwds["engine"] = "python-fwf" | |
kwds["iterator"] = iterator | |
kwds["chunksize"] = chunksize | |
check_dtype_backend(dtype_backend) | |
kwds["dtype_backend"] = dtype_backend | |
return _read(filepath_or_buffer, kwds) | |
class TextFileReader(abc.Iterator): | |
""" | |
Passed dialect overrides any of the related parser options | |
""" | |
def __init__( | |
self, | |
f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list, | |
engine: CSVEngine | None = None, | |
**kwds, | |
) -> None: | |
if engine is not None: | |
engine_specified = True | |
else: | |
engine = "python" | |
engine_specified = False | |
self.engine = engine | |
self._engine_specified = kwds.get("engine_specified", engine_specified) | |
_validate_skipfooter(kwds) | |
dialect = _extract_dialect(kwds) | |
if dialect is not None: | |
if engine == "pyarrow": | |
raise ValueError( | |
"The 'dialect' option is not supported with the 'pyarrow' engine" | |
) | |
kwds = _merge_with_dialect_properties(dialect, kwds) | |
if kwds.get("header", "infer") == "infer": | |
kwds["header"] = 0 if kwds.get("names") is None else None | |
self.orig_options = kwds | |
# miscellanea | |
self._currow = 0 | |
options = self._get_options_with_defaults(engine) | |
options["storage_options"] = kwds.get("storage_options", None) | |
self.chunksize = options.pop("chunksize", None) | |
self.nrows = options.pop("nrows", None) | |
self._check_file_or_buffer(f, engine) | |
self.options, self.engine = self._clean_options(options, engine) | |
if "has_index_names" in kwds: | |
self.options["has_index_names"] = kwds["has_index_names"] | |
self.handles: IOHandles | None = None | |
self._engine = self._make_engine(f, self.engine) | |
def close(self) -> None: | |
if self.handles is not None: | |
self.handles.close() | |
self._engine.close() | |
def _get_options_with_defaults(self, engine: CSVEngine) -> dict[str, Any]: | |
kwds = self.orig_options | |
options = {} | |
default: object | None | |
for argname, default in parser_defaults.items(): | |
value = kwds.get(argname, default) | |
# see gh-12935 | |
if ( | |
engine == "pyarrow" | |
and argname in _pyarrow_unsupported | |
and value != default | |
and value != getattr(value, "value", default) | |
): | |
raise ValueError( | |
f"The {repr(argname)} option is not supported with the " | |
f"'pyarrow' engine" | |
) | |
options[argname] = value | |
for argname, default in _c_parser_defaults.items(): | |
if argname in kwds: | |
value = kwds[argname] | |
if engine != "c" and value != default: | |
# TODO: Refactor this logic, its pretty convoluted | |
if "python" in engine and argname not in _python_unsupported: | |
pass | |
elif "pyarrow" in engine and argname not in _pyarrow_unsupported: | |
pass | |
else: | |
raise ValueError( | |
f"The {repr(argname)} option is not supported with the " | |
f"{repr(engine)} engine" | |
) | |
else: | |
value = default | |
options[argname] = value | |
if engine == "python-fwf": | |
for argname, default in _fwf_defaults.items(): | |
options[argname] = kwds.get(argname, default) | |
return options | |
def _check_file_or_buffer(self, f, engine: CSVEngine) -> None: | |
# see gh-16530 | |
if is_file_like(f) and engine != "c" and not hasattr(f, "__iter__"): | |
# The C engine doesn't need the file-like to have the "__iter__" | |
# attribute. However, the Python engine needs "__iter__(...)" | |
# when iterating through such an object, meaning it | |
# needs to have that attribute | |
raise ValueError( | |
"The 'python' engine cannot iterate through this file buffer." | |
) | |
def _clean_options( | |
self, options: dict[str, Any], engine: CSVEngine | |
) -> tuple[dict[str, Any], CSVEngine]: | |
result = options.copy() | |
fallback_reason = None | |
# C engine not supported yet | |
if engine == "c": | |
if options["skipfooter"] > 0: | |
fallback_reason = "the 'c' engine does not support skipfooter" | |
engine = "python" | |
sep = options["delimiter"] | |
delim_whitespace = options["delim_whitespace"] | |
if sep is None and not delim_whitespace: | |
if engine in ("c", "pyarrow"): | |
fallback_reason = ( | |
f"the '{engine}' engine does not support " | |
"sep=None with delim_whitespace=False" | |
) | |
engine = "python" | |
elif sep is not None and len(sep) > 1: | |
if engine == "c" and sep == r"\s+": | |
result["delim_whitespace"] = True | |
del result["delimiter"] | |
elif engine not in ("python", "python-fwf"): | |
# wait until regex engine integrated | |
fallback_reason = ( | |
f"the '{engine}' engine does not support " | |
"regex separators (separators > 1 char and " | |
r"different from '\s+' are interpreted as regex)" | |
) | |
engine = "python" | |
elif delim_whitespace: | |
if "python" in engine: | |
result["delimiter"] = r"\s+" | |
elif sep is not None: | |
encodeable = True | |
encoding = sys.getfilesystemencoding() or "utf-8" | |
try: | |
if len(sep.encode(encoding)) > 1: | |
encodeable = False | |
except UnicodeDecodeError: | |
encodeable = False | |
if not encodeable and engine not in ("python", "python-fwf"): | |
fallback_reason = ( | |
f"the separator encoded in {encoding} " | |
f"is > 1 char long, and the '{engine}' engine " | |
"does not support such separators" | |
) | |
engine = "python" | |
quotechar = options["quotechar"] | |
if quotechar is not None and isinstance(quotechar, (str, bytes)): | |
if ( | |
len(quotechar) == 1 | |
and ord(quotechar) > 127 | |
and engine not in ("python", "python-fwf") | |
): | |
fallback_reason = ( | |
"ord(quotechar) > 127, meaning the " | |
"quotechar is larger than one byte, " | |
f"and the '{engine}' engine does not support such quotechars" | |
) | |
engine = "python" | |
if fallback_reason and self._engine_specified: | |
raise ValueError(fallback_reason) | |
if engine == "c": | |
for arg in _c_unsupported: | |
del result[arg] | |
if "python" in engine: | |
for arg in _python_unsupported: | |
if fallback_reason and result[arg] != _c_parser_defaults.get(arg): | |
raise ValueError( | |
"Falling back to the 'python' engine because " | |
f"{fallback_reason}, but this causes {repr(arg)} to be " | |
"ignored as it is not supported by the 'python' engine." | |
) | |
del result[arg] | |
if fallback_reason: | |
warnings.warn( | |
( | |
"Falling back to the 'python' engine because " | |
f"{fallback_reason}; you can avoid this warning by specifying " | |
"engine='python'." | |
), | |
ParserWarning, | |
stacklevel=find_stack_level(), | |
) | |
index_col = options["index_col"] | |
names = options["names"] | |
converters = options["converters"] | |
na_values = options["na_values"] | |
skiprows = options["skiprows"] | |
validate_header_arg(options["header"]) | |
if index_col is True: | |
raise ValueError("The value of index_col couldn't be 'True'") | |
if is_index_col(index_col): | |
if not isinstance(index_col, (list, tuple, np.ndarray)): | |
index_col = [index_col] | |
result["index_col"] = index_col | |
names = list(names) if names is not None else names | |
# type conversion-related | |
if converters is not None: | |
if not isinstance(converters, dict): | |
raise TypeError( | |
"Type converters must be a dict or subclass, " | |
f"input was a {type(converters).__name__}" | |
) | |
else: | |
converters = {} | |
# Converting values to NA | |
keep_default_na = options["keep_default_na"] | |
floatify = engine != "pyarrow" | |
na_values, na_fvalues = _clean_na_values( | |
na_values, keep_default_na, floatify=floatify | |
) | |
# handle skiprows; this is internally handled by the | |
# c-engine, so only need for python and pyarrow parsers | |
if engine == "pyarrow": | |
if not is_integer(skiprows) and skiprows is not None: | |
# pyarrow expects skiprows to be passed as an integer | |
raise ValueError( | |
"skiprows argument must be an integer when using " | |
"engine='pyarrow'" | |
) | |
else: | |
if is_integer(skiprows): | |
skiprows = list(range(skiprows)) | |
if skiprows is None: | |
skiprows = set() | |
elif not callable(skiprows): | |
skiprows = set(skiprows) | |
# put stuff back | |
result["names"] = names | |
result["converters"] = converters | |
result["na_values"] = na_values | |
result["na_fvalues"] = na_fvalues | |
result["skiprows"] = skiprows | |
return result, engine | |
def __next__(self) -> DataFrame: | |
try: | |
return self.get_chunk() | |
except StopIteration: | |
self.close() | |
raise | |
def _make_engine( | |
self, | |
f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list | IO, | |
engine: CSVEngine = "c", | |
) -> ParserBase: | |
mapping: dict[str, type[ParserBase]] = { | |
"c": CParserWrapper, | |
"python": PythonParser, | |
"pyarrow": ArrowParserWrapper, | |
"python-fwf": FixedWidthFieldParser, | |
} | |
if engine not in mapping: | |
raise ValueError( | |
f"Unknown engine: {engine} (valid options are {mapping.keys()})" | |
) | |
if not isinstance(f, list): | |
# open file here | |
is_text = True | |
mode = "r" | |
if engine == "pyarrow": | |
is_text = False | |
mode = "rb" | |
elif ( | |
engine == "c" | |
and self.options.get("encoding", "utf-8") == "utf-8" | |
and isinstance(stringify_path(f), str) | |
): | |
# c engine can decode utf-8 bytes, adding TextIOWrapper makes | |
# the c-engine especially for memory_map=True far slower | |
is_text = False | |
if "b" not in mode: | |
mode += "b" | |
self.handles = get_handle( | |
f, | |
mode, | |
encoding=self.options.get("encoding", None), | |
compression=self.options.get("compression", None), | |
memory_map=self.options.get("memory_map", False), | |
is_text=is_text, | |
errors=self.options.get("encoding_errors", "strict"), | |
storage_options=self.options.get("storage_options", None), | |
) | |
assert self.handles is not None | |
f = self.handles.handle | |
elif engine != "python": | |
msg = f"Invalid file path or buffer object type: {type(f)}" | |
raise ValueError(msg) | |
try: | |
return mapping[engine](f, **self.options) | |
except Exception: | |
if self.handles is not None: | |
self.handles.close() | |
raise | |
def _failover_to_python(self) -> None: | |
raise AbstractMethodError(self) | |
def read(self, nrows: int | None = None) -> DataFrame: | |
if self.engine == "pyarrow": | |
try: | |
# error: "ParserBase" has no attribute "read" | |
df = self._engine.read() # type: ignore[attr-defined] | |
except Exception: | |
self.close() | |
raise | |
else: | |
nrows = validate_integer("nrows", nrows) | |
try: | |
# error: "ParserBase" has no attribute "read" | |
( | |
index, | |
columns, | |
col_dict, | |
) = self._engine.read( # type: ignore[attr-defined] | |
nrows | |
) | |
except Exception: | |
self.close() | |
raise | |
if index is None: | |
if col_dict: | |
# Any column is actually fine: | |
new_rows = len(next(iter(col_dict.values()))) | |
index = RangeIndex(self._currow, self._currow + new_rows) | |
else: | |
new_rows = 0 | |
else: | |
new_rows = len(index) | |
if hasattr(self, "orig_options"): | |
dtype_arg = self.orig_options.get("dtype", None) | |
else: | |
dtype_arg = None | |
if isinstance(dtype_arg, dict): | |
dtype = defaultdict(lambda: None) # type: ignore[var-annotated] | |
dtype.update(dtype_arg) | |
elif dtype_arg is not None and pandas_dtype(dtype_arg) in ( | |
np.str_, | |
np.object_, | |
): | |
dtype = defaultdict(lambda: dtype_arg) | |
else: | |
dtype = None | |
if dtype is not None: | |
new_col_dict = {} | |
for k, v in col_dict.items(): | |
d = ( | |
dtype[k] | |
if pandas_dtype(dtype[k]) in (np.str_, np.object_) | |
else None | |
) | |
new_col_dict[k] = Series(v, index=index, dtype=d, copy=False) | |
else: | |
new_col_dict = col_dict | |
df = DataFrame( | |
new_col_dict, | |
columns=columns, | |
index=index, | |
copy=not using_copy_on_write(), | |
) | |
self._currow += new_rows | |
return df | |
def get_chunk(self, size: int | None = None) -> DataFrame: | |
if size is None: | |
size = self.chunksize | |
if self.nrows is not None: | |
if self._currow >= self.nrows: | |
raise StopIteration | |
size = min(size, self.nrows - self._currow) | |
return self.read(nrows=size) | |
def __enter__(self) -> Self: | |
return self | |
def __exit__( | |
self, | |
exc_type: type[BaseException] | None, | |
exc_value: BaseException | None, | |
traceback: TracebackType | None, | |
) -> None: | |
self.close() | |
def TextParser(*args, **kwds) -> TextFileReader: | |
""" | |
Converts lists of lists/tuples into DataFrames with proper type inference | |
and optional (e.g. string to datetime) conversion. Also enables iterating | |
lazily over chunks of large files | |
Parameters | |
---------- | |
data : file-like object or list | |
delimiter : separator character to use | |
dialect : str or csv.Dialect instance, optional | |
Ignored if delimiter is longer than 1 character | |
names : sequence, default | |
header : int, default 0 | |
Row to use to parse column labels. Defaults to the first row. Prior | |
rows will be discarded | |
index_col : int or list, optional | |
Column or columns to use as the (possibly hierarchical) index | |
has_index_names: bool, default False | |
True if the cols defined in index_col have an index name and are | |
not in the header. | |
na_values : scalar, str, list-like, or dict, optional | |
Additional strings to recognize as NA/NaN. | |
keep_default_na : bool, default True | |
thousands : str, optional | |
Thousands separator | |
comment : str, optional | |
Comment out remainder of line | |
parse_dates : bool, default False | |
keep_date_col : bool, default False | |
date_parser : function, optional | |
.. deprecated:: 2.0.0 | |
date_format : str or dict of column -> format, default ``None`` | |
.. versionadded:: 2.0.0 | |
skiprows : list of integers | |
Row numbers to skip | |
skipfooter : int | |
Number of line at bottom of file to skip | |
converters : dict, optional | |
Dict of functions for converting values in certain columns. Keys can | |
either be integers or column labels, values are functions that take one | |
input argument, the cell (not column) content, and return the | |
transformed content. | |
encoding : str, optional | |
Encoding to use for UTF when reading/writing (ex. 'utf-8') | |
float_precision : str, optional | |
Specifies which converter the C engine should use for floating-point | |
values. The options are `None` or `high` for the ordinary converter, | |
`legacy` for the original lower precision pandas converter, and | |
`round_trip` for the round-trip converter. | |
""" | |
kwds["engine"] = "python" | |
return TextFileReader(*args, **kwds) | |
def _clean_na_values(na_values, keep_default_na: bool = True, floatify: bool = True): | |
na_fvalues: set | dict | |
if na_values is None: | |
if keep_default_na: | |
na_values = STR_NA_VALUES | |
else: | |
na_values = set() | |
na_fvalues = set() | |
elif isinstance(na_values, dict): | |
old_na_values = na_values.copy() | |
na_values = {} # Prevent aliasing. | |
# Convert the values in the na_values dictionary | |
# into array-likes for further use. This is also | |
# where we append the default NaN values, provided | |
# that `keep_default_na=True`. | |
for k, v in old_na_values.items(): | |
if not is_list_like(v): | |
v = [v] | |
if keep_default_na: | |
v = set(v) | STR_NA_VALUES | |
na_values[k] = v | |
na_fvalues = {k: _floatify_na_values(v) for k, v in na_values.items()} | |
else: | |
if not is_list_like(na_values): | |
na_values = [na_values] | |
na_values = _stringify_na_values(na_values, floatify) | |
if keep_default_na: | |
na_values = na_values | STR_NA_VALUES | |
na_fvalues = _floatify_na_values(na_values) | |
return na_values, na_fvalues | |
def _floatify_na_values(na_values): | |
# create float versions of the na_values | |
result = set() | |
for v in na_values: | |
try: | |
v = float(v) | |
if not np.isnan(v): | |
result.add(v) | |
except (TypeError, ValueError, OverflowError): | |
pass | |
return result | |
def _stringify_na_values(na_values, floatify: bool): | |
"""return a stringified and numeric for these values""" | |
result: list[str | float] = [] | |
for x in na_values: | |
result.append(str(x)) | |
result.append(x) | |
try: | |
v = float(x) | |
# we are like 999 here | |
if v == int(v): | |
v = int(v) | |
result.append(f"{v}.0") | |
result.append(str(v)) | |
if floatify: | |
result.append(v) | |
except (TypeError, ValueError, OverflowError): | |
pass | |
if floatify: | |
try: | |
result.append(int(x)) | |
except (TypeError, ValueError, OverflowError): | |
pass | |
return set(result) | |
def _refine_defaults_read( | |
dialect: str | csv.Dialect | None, | |
delimiter: str | None | lib.NoDefault, | |
delim_whitespace: bool, | |
engine: CSVEngine | None, | |
sep: str | None | lib.NoDefault, | |
on_bad_lines: str | Callable, | |
names: Sequence[Hashable] | None | lib.NoDefault, | |
defaults: dict[str, Any], | |
dtype_backend: DtypeBackend | lib.NoDefault, | |
): | |
"""Validate/refine default values of input parameters of read_csv, read_table. | |
Parameters | |
---------- | |
dialect : str or csv.Dialect | |
If provided, this parameter will override values (default or not) for the | |
following parameters: `delimiter`, `doublequote`, `escapechar`, | |
`skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to | |
override values, a ParserWarning will be issued. See csv.Dialect | |
documentation for more details. | |
delimiter : str or object | |
Alias for sep. | |
delim_whitespace : bool | |
Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be | |
used as the sep. Equivalent to setting ``sep='\\s+'``. If this option | |
is set to True, nothing should be passed in for the ``delimiter`` | |
parameter. | |
.. deprecated:: 2.2.0 | |
Use ``sep="\\s+"`` instead. | |
engine : {{'c', 'python'}} | |
Parser engine to use. The C engine is faster while the python engine is | |
currently more feature-complete. | |
sep : str or object | |
A delimiter provided by the user (str) or a sentinel value, i.e. | |
pandas._libs.lib.no_default. | |
on_bad_lines : str, callable | |
An option for handling bad lines or a sentinel value(None). | |
names : array-like, optional | |
List of column names to use. If the file contains a header row, | |
then you should explicitly pass ``header=0`` to override the column names. | |
Duplicates in this list are not allowed. | |
defaults: dict | |
Default values of input parameters. | |
Returns | |
------- | |
kwds : dict | |
Input parameters with correct values. | |
Raises | |
------ | |
ValueError : | |
If a delimiter was specified with ``sep`` (or ``delimiter``) and | |
``delim_whitespace=True``. | |
""" | |
# fix types for sep, delimiter to Union(str, Any) | |
delim_default = defaults["delimiter"] | |
kwds: dict[str, Any] = {} | |
# gh-23761 | |
# | |
# When a dialect is passed, it overrides any of the overlapping | |
# parameters passed in directly. We don't want to warn if the | |
# default parameters were passed in (since it probably means | |
# that the user didn't pass them in explicitly in the first place). | |
# | |
# "delimiter" is the annoying corner case because we alias it to | |
# "sep" before doing comparison to the dialect values later on. | |
# Thus, we need a flag to indicate that we need to "override" | |
# the comparison to dialect values by checking if default values | |
# for BOTH "delimiter" and "sep" were provided. | |
if dialect is not None: | |
kwds["sep_override"] = delimiter is None and ( | |
sep is lib.no_default or sep == delim_default | |
) | |
if delimiter and (sep is not lib.no_default): | |
raise ValueError("Specified a sep and a delimiter; you can only specify one.") | |
kwds["names"] = None if names is lib.no_default else names | |
# Alias sep -> delimiter. | |
if delimiter is None: | |
delimiter = sep | |
if delim_whitespace and (delimiter is not lib.no_default): | |
raise ValueError( | |
"Specified a delimiter with both sep and " | |
"delim_whitespace=True; you can only specify one." | |
) | |
if delimiter == "\n": | |
raise ValueError( | |
r"Specified \n as separator or delimiter. This forces the python engine " | |
"which does not accept a line terminator. Hence it is not allowed to use " | |
"the line terminator as separator.", | |
) | |
if delimiter is lib.no_default: | |
# assign default separator value | |
kwds["delimiter"] = delim_default | |
else: | |
kwds["delimiter"] = delimiter | |
if engine is not None: | |
kwds["engine_specified"] = True | |
else: | |
kwds["engine"] = "c" | |
kwds["engine_specified"] = False | |
if on_bad_lines == "error": | |
kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.ERROR | |
elif on_bad_lines == "warn": | |
kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.WARN | |
elif on_bad_lines == "skip": | |
kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.SKIP | |
elif callable(on_bad_lines): | |
if engine not in ["python", "pyarrow"]: | |
raise ValueError( | |
"on_bad_line can only be a callable function " | |
"if engine='python' or 'pyarrow'" | |
) | |
kwds["on_bad_lines"] = on_bad_lines | |
else: | |
raise ValueError(f"Argument {on_bad_lines} is invalid for on_bad_lines") | |
check_dtype_backend(dtype_backend) | |
kwds["dtype_backend"] = dtype_backend | |
return kwds | |
def _extract_dialect(kwds: dict[str, Any]) -> csv.Dialect | None: | |
""" | |
Extract concrete csv dialect instance. | |
Returns | |
------- | |
csv.Dialect or None | |
""" | |
if kwds.get("dialect") is None: | |
return None | |
dialect = kwds["dialect"] | |
if dialect in csv.list_dialects(): | |
dialect = csv.get_dialect(dialect) | |
_validate_dialect(dialect) | |
return dialect | |
MANDATORY_DIALECT_ATTRS = ( | |
"delimiter", | |
"doublequote", | |
"escapechar", | |
"skipinitialspace", | |
"quotechar", | |
"quoting", | |
) | |
def _validate_dialect(dialect: csv.Dialect) -> None: | |
""" | |
Validate csv dialect instance. | |
Raises | |
------ | |
ValueError | |
If incorrect dialect is provided. | |
""" | |
for param in MANDATORY_DIALECT_ATTRS: | |
if not hasattr(dialect, param): | |
raise ValueError(f"Invalid dialect {dialect} provided") | |
def _merge_with_dialect_properties( | |
dialect: csv.Dialect, | |
defaults: dict[str, Any], | |
) -> dict[str, Any]: | |
""" | |
Merge default kwargs in TextFileReader with dialect parameters. | |
Parameters | |
---------- | |
dialect : csv.Dialect | |
Concrete csv dialect. See csv.Dialect documentation for more details. | |
defaults : dict | |
Keyword arguments passed to TextFileReader. | |
Returns | |
------- | |
kwds : dict | |
Updated keyword arguments, merged with dialect parameters. | |
""" | |
kwds = defaults.copy() | |
for param in MANDATORY_DIALECT_ATTRS: | |
dialect_val = getattr(dialect, param) | |
parser_default = parser_defaults[param] | |
provided = kwds.get(param, parser_default) | |
# Messages for conflicting values between the dialect | |
# instance and the actual parameters provided. | |
conflict_msgs = [] | |
# Don't warn if the default parameter was passed in, | |
# even if it conflicts with the dialect (gh-23761). | |
if provided not in (parser_default, dialect_val): | |
msg = ( | |
f"Conflicting values for '{param}': '{provided}' was " | |
f"provided, but the dialect specifies '{dialect_val}'. " | |
"Using the dialect-specified value." | |
) | |
# Annoying corner case for not warning about | |
# conflicts between dialect and delimiter parameter. | |
# Refer to the outer "_read_" function for more info. | |
if not (param == "delimiter" and kwds.pop("sep_override", False)): | |
conflict_msgs.append(msg) | |
if conflict_msgs: | |
warnings.warn( | |
"\n\n".join(conflict_msgs), ParserWarning, stacklevel=find_stack_level() | |
) | |
kwds[param] = dialect_val | |
return kwds | |
def _validate_skipfooter(kwds: dict[str, Any]) -> None: | |
""" | |
Check whether skipfooter is compatible with other kwargs in TextFileReader. | |
Parameters | |
---------- | |
kwds : dict | |
Keyword arguments passed to TextFileReader. | |
Raises | |
------ | |
ValueError | |
If skipfooter is not compatible with other parameters. | |
""" | |
if kwds.get("skipfooter"): | |
if kwds.get("iterator") or kwds.get("chunksize"): | |
raise ValueError("'skipfooter' not supported for iteration") | |
if kwds.get("nrows"): | |
raise ValueError("'skipfooter' not supported with 'nrows'") | |