applied-ai-018 commited on
Commit
e8cb1e5
·
verified ·
1 Parent(s): 68e7f63

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. env-llmeval/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so +3 -0
  3. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py +87 -0
  4. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so +0 -0
  5. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi +12 -0
  6. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi +14 -0
  7. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi +83 -0
  8. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi +62 -0
  9. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.cpython-310-x86_64-linux-gnu.so +0 -0
  10. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
  11. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.cpython-310-x86_64-linux-gnu.so +0 -0
  12. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi +33 -0
  13. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi +14 -0
  14. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.cpython-310-x86_64-linux-gnu.so +0 -0
  15. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi +174 -0
  16. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timestamps.cpython-310-x86_64-linux-gnu.so +0 -0
  17. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timestamps.pyi +241 -0
  18. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/tzconversion.cpython-310-x86_64-linux-gnu.so +0 -0
  19. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/tzconversion.pyi +21 -0
  20. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/vectorized.cpython-310-x86_64-linux-gnu.so +0 -0
  21. env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/vectorized.pyi +43 -0
  22. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__init__.py +9 -0
  23. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/arrow_parser_wrapper.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/base_parser.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/c_parser_wrapper.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/readers.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/arrow_parser_wrapper.py +303 -0
  28. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/base_parser.py +1448 -0
  29. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/c_parser_wrapper.py +410 -0
  30. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/python_parser.py +1387 -0
  31. env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/readers.py +2383 -0
  32. env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__init__.py +0 -0
  33. env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__pycache__/__init__.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_api.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_types.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/pandas/tests/api/test_api.py +383 -0
  37. env-llmeval/lib/python3.10/site-packages/pandas/tests/api/test_types.py +62 -0
  38. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py +0 -0
  39. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_algos.py +89 -0
  40. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_analytics.py +349 -0
  41. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_missing.py +216 -0
  42. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_replace.py +111 -0
  43. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_repr.py +550 -0
  44. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py +478 -0
  45. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimelike.py +1340 -0
  46. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimes.py +840 -0
  47. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_timedeltas.py +313 -0
  48. env-llmeval/lib/python3.10/site-packages/pandas/tests/config/__init__.py +0 -0
  49. env-llmeval/lib/python3.10/site-packages/pandas/tests/config/__pycache__/__init__.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/pandas/tests/config/__pycache__/test_config.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -169,3 +169,4 @@ env-llmeval/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64
169
  env-llmeval/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
170
  env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
171
  env-llmeval/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/_fmm_core.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
169
  env-llmeval/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
170
  env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
171
  env-llmeval/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/_fmm_core.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
172
+ env-llmeval/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
env-llmeval/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97df0241d7470fafc2785aaef2c2c4216803f45190f2c617a9042fecfc04678b
3
+ size 1409928
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__ = [
2
+ "dtypes",
3
+ "localize_pydatetime",
4
+ "NaT",
5
+ "NaTType",
6
+ "iNaT",
7
+ "nat_strings",
8
+ "OutOfBoundsDatetime",
9
+ "OutOfBoundsTimedelta",
10
+ "IncompatibleFrequency",
11
+ "Period",
12
+ "Resolution",
13
+ "Timedelta",
14
+ "normalize_i8_timestamps",
15
+ "is_date_array_normalized",
16
+ "dt64arr_to_periodarr",
17
+ "delta_to_nanoseconds",
18
+ "ints_to_pydatetime",
19
+ "ints_to_pytimedelta",
20
+ "get_resolution",
21
+ "Timestamp",
22
+ "tz_convert_from_utc_single",
23
+ "tz_convert_from_utc",
24
+ "to_offset",
25
+ "Tick",
26
+ "BaseOffset",
27
+ "tz_compare",
28
+ "is_unitless",
29
+ "astype_overflowsafe",
30
+ "get_unit_from_dtype",
31
+ "periods_per_day",
32
+ "periods_per_second",
33
+ "guess_datetime_format",
34
+ "add_overflowsafe",
35
+ "get_supported_dtype",
36
+ "is_supported_dtype",
37
+ ]
38
+
39
+ from pandas._libs.tslibs import dtypes # pylint: disable=import-self
40
+ from pandas._libs.tslibs.conversion import localize_pydatetime
41
+ from pandas._libs.tslibs.dtypes import (
42
+ Resolution,
43
+ periods_per_day,
44
+ periods_per_second,
45
+ )
46
+ from pandas._libs.tslibs.nattype import (
47
+ NaT,
48
+ NaTType,
49
+ iNaT,
50
+ nat_strings,
51
+ )
52
+ from pandas._libs.tslibs.np_datetime import (
53
+ OutOfBoundsDatetime,
54
+ OutOfBoundsTimedelta,
55
+ add_overflowsafe,
56
+ astype_overflowsafe,
57
+ get_supported_dtype,
58
+ is_supported_dtype,
59
+ is_unitless,
60
+ py_get_unit_from_dtype as get_unit_from_dtype,
61
+ )
62
+ from pandas._libs.tslibs.offsets import (
63
+ BaseOffset,
64
+ Tick,
65
+ to_offset,
66
+ )
67
+ from pandas._libs.tslibs.parsing import guess_datetime_format
68
+ from pandas._libs.tslibs.period import (
69
+ IncompatibleFrequency,
70
+ Period,
71
+ )
72
+ from pandas._libs.tslibs.timedeltas import (
73
+ Timedelta,
74
+ delta_to_nanoseconds,
75
+ ints_to_pytimedelta,
76
+ )
77
+ from pandas._libs.tslibs.timestamps import Timestamp
78
+ from pandas._libs.tslibs.timezones import tz_compare
79
+ from pandas._libs.tslibs.tzconversion import tz_convert_from_utc_single
80
+ from pandas._libs.tslibs.vectorized import (
81
+ dt64arr_to_periodarr,
82
+ get_resolution,
83
+ ints_to_pydatetime,
84
+ is_date_array_normalized,
85
+ normalize_i8_timestamps,
86
+ tz_convert_from_utc,
87
+ )
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (62.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DAYS: list[str]
2
+ MONTH_ALIASES: dict[int, str]
3
+ MONTH_NUMBERS: dict[str, int]
4
+ MONTHS: list[str]
5
+ int_to_weekday: dict[int, str]
6
+
7
+ def get_firstbday(year: int, month: int) -> int: ...
8
+ def get_lastbday(year: int, month: int) -> int: ...
9
+ def get_day_of_year(year: int, month: int, day: int) -> int: ...
10
+ def get_iso_calendar(year: int, month: int, day: int) -> tuple[int, int, int]: ...
11
+ def get_week_of_year(year: int, month: int, day: int) -> int: ...
12
+ def get_days_in_month(year: int, month: int) -> int: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ tzinfo,
4
+ )
5
+
6
+ import numpy as np
7
+
8
+ DT64NS_DTYPE: np.dtype
9
+ TD64NS_DTYPE: np.dtype
10
+
11
+ def localize_pydatetime(dt: datetime, tz: tzinfo | None) -> datetime: ...
12
+ def cast_from_unit_vectorized(
13
+ values: np.ndarray, unit: str, out_unit: str = ...
14
+ ) -> np.ndarray: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+
3
+ OFFSET_TO_PERIOD_FREQSTR: dict[str, str]
4
+
5
+ def periods_per_day(reso: int = ...) -> int: ...
6
+ def periods_per_second(reso: int) -> int: ...
7
+ def abbrev_to_npy_unit(abbrev: str | None) -> int: ...
8
+ def freq_to_period_freqstr(freq_n: int, freq_name: str) -> str: ...
9
+
10
+ class PeriodDtypeBase:
11
+ _dtype_code: int # PeriodDtypeCode
12
+ _n: int
13
+
14
+ # actually __cinit__
15
+ def __new__(cls, code: int, n: int): ...
16
+ @property
17
+ def _freq_group_code(self) -> int: ...
18
+ @property
19
+ def _resolution_obj(self) -> Resolution: ...
20
+ def _get_to_timestamp_base(self) -> int: ...
21
+ @property
22
+ def _freqstr(self) -> str: ...
23
+ def __hash__(self) -> int: ...
24
+ def _is_tick_like(self) -> bool: ...
25
+ @property
26
+ def _creso(self) -> int: ...
27
+ @property
28
+ def _td64_unit(self) -> str: ...
29
+
30
+ class FreqGroup(Enum):
31
+ FR_ANN: int
32
+ FR_QTR: int
33
+ FR_MTH: int
34
+ FR_WK: int
35
+ FR_BUS: int
36
+ FR_DAY: int
37
+ FR_HR: int
38
+ FR_MIN: int
39
+ FR_SEC: int
40
+ FR_MS: int
41
+ FR_US: int
42
+ FR_NS: int
43
+ FR_UND: int
44
+ @staticmethod
45
+ def from_period_dtype_code(code: int) -> FreqGroup: ...
46
+
47
+ class Resolution(Enum):
48
+ RESO_NS: int
49
+ RESO_US: int
50
+ RESO_MS: int
51
+ RESO_SEC: int
52
+ RESO_MIN: int
53
+ RESO_HR: int
54
+ RESO_DAY: int
55
+ RESO_MTH: int
56
+ RESO_QTR: int
57
+ RESO_YR: int
58
+ def __lt__(self, other: Resolution) -> bool: ...
59
+ def __ge__(self, other: Resolution) -> bool: ...
60
+ @property
61
+ def attrname(self) -> str: ...
62
+ @classmethod
63
+ def from_attrname(cls, attrname: str) -> Resolution: ...
64
+ @classmethod
65
+ def get_reso_from_freqstr(cls, freq: str) -> Resolution: ...
66
+ @property
67
+ def attr_abbrev(self) -> str: ...
68
+
69
+ class NpyDatetimeUnit(Enum):
70
+ NPY_FR_Y: int
71
+ NPY_FR_M: int
72
+ NPY_FR_W: int
73
+ NPY_FR_D: int
74
+ NPY_FR_h: int
75
+ NPY_FR_m: int
76
+ NPY_FR_s: int
77
+ NPY_FR_ms: int
78
+ NPY_FR_us: int
79
+ NPY_FR_ns: int
80
+ NPY_FR_ps: int
81
+ NPY_FR_fs: int
82
+ NPY_FR_as: int
83
+ NPY_FR_GENERIC: int
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def build_field_sarray(
6
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
7
+ reso: int, # NPY_DATETIMEUNIT
8
+ ) -> np.ndarray: ...
9
+ def month_position_check(fields, weekdays) -> str | None: ...
10
+ def get_date_name_field(
11
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
12
+ field: str,
13
+ locale: str | None = ...,
14
+ reso: int = ..., # NPY_DATETIMEUNIT
15
+ ) -> npt.NDArray[np.object_]: ...
16
+ def get_start_end_field(
17
+ dtindex: npt.NDArray[np.int64],
18
+ field: str,
19
+ freqstr: str | None = ...,
20
+ month_kw: int = ...,
21
+ reso: int = ..., # NPY_DATETIMEUNIT
22
+ ) -> npt.NDArray[np.bool_]: ...
23
+ def get_date_field(
24
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
25
+ field: str,
26
+ reso: int = ..., # NPY_DATETIMEUNIT
27
+ ) -> npt.NDArray[np.int32]: ...
28
+ def get_timedelta_field(
29
+ tdindex: npt.NDArray[np.int64], # const int64_t[:]
30
+ field: str,
31
+ reso: int = ..., # NPY_DATETIMEUNIT
32
+ ) -> npt.NDArray[np.int32]: ...
33
+ def get_timedelta_days(
34
+ tdindex: npt.NDArray[np.int64], # const int64_t[:]
35
+ reso: int = ..., # NPY_DATETIMEUNIT
36
+ ) -> npt.NDArray[np.int64]: ...
37
+ def isleapyear_arr(
38
+ years: np.ndarray,
39
+ ) -> npt.NDArray[np.bool_]: ...
40
+ def build_isocalendar_sarray(
41
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
42
+ reso: int, # NPY_DATETIMEUNIT
43
+ ) -> np.ndarray: ...
44
+ def _get_locale_names(name_type: str, locale: str | None = ...): ...
45
+
46
+ class RoundTo:
47
+ @property
48
+ def MINUS_INFTY(self) -> int: ...
49
+ @property
50
+ def PLUS_INFTY(self) -> int: ...
51
+ @property
52
+ def NEAREST_HALF_EVEN(self) -> int: ...
53
+ @property
54
+ def NEAREST_HALF_PLUS_INFTY(self) -> int: ...
55
+ @property
56
+ def NEAREST_HALF_MINUS_INFTY(self) -> int: ...
57
+
58
+ def round_nsint64(
59
+ values: npt.NDArray[np.int64],
60
+ mode: RoundTo,
61
+ nanos: int,
62
+ ) -> npt.NDArray[np.int64]: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (237 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (152 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (457 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ class DateParseError(ValueError): ...
8
+
9
+ def py_parse_datetime_string(
10
+ date_string: str,
11
+ dayfirst: bool = ...,
12
+ yearfirst: bool = ...,
13
+ ) -> datetime: ...
14
+ def parse_datetime_string_with_reso(
15
+ date_string: str,
16
+ freq: str | None = ...,
17
+ dayfirst: bool | None = ...,
18
+ yearfirst: bool | None = ...,
19
+ ) -> tuple[datetime, str]: ...
20
+ def _does_string_look_like_datetime(py_string: str) -> bool: ...
21
+ def quarter_to_myear(year: int, quarter: int, freq: str) -> tuple[int, int]: ...
22
+ def try_parse_dates(
23
+ values: npt.NDArray[np.object_], # object[:]
24
+ parser,
25
+ ) -> npt.NDArray[np.object_]: ...
26
+ def guess_datetime_format(
27
+ dt_str: str,
28
+ dayfirst: bool | None = ...,
29
+ ) -> str | None: ...
30
+ def concat_date_cols(
31
+ date_cols: tuple,
32
+ ) -> npt.NDArray[np.object_]: ...
33
+ def get_rule_month(source: str) -> str: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def array_strptime(
6
+ values: npt.NDArray[np.object_],
7
+ fmt: str | None,
8
+ exact: bool = ...,
9
+ errors: str = ...,
10
+ utc: bool = ...,
11
+ creso: int = ..., # NPY_DATETIMEUNIT
12
+ ) -> tuple[np.ndarray, np.ndarray]: ...
13
+
14
+ # first ndarray is M8[ns], second is object ndarray of tzinfo | None
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (652 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+ from typing import (
3
+ ClassVar,
4
+ Literal,
5
+ TypeAlias,
6
+ TypeVar,
7
+ overload,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas._libs.tslibs import (
13
+ NaTType,
14
+ Tick,
15
+ )
16
+ from pandas._typing import (
17
+ Frequency,
18
+ Self,
19
+ npt,
20
+ )
21
+
22
+ # This should be kept consistent with the keys in the dict timedelta_abbrevs
23
+ # in pandas/_libs/tslibs/timedeltas.pyx
24
+ UnitChoices: TypeAlias = Literal[
25
+ "Y",
26
+ "y",
27
+ "M",
28
+ "W",
29
+ "w",
30
+ "D",
31
+ "d",
32
+ "days",
33
+ "day",
34
+ "hours",
35
+ "hour",
36
+ "hr",
37
+ "h",
38
+ "m",
39
+ "minute",
40
+ "min",
41
+ "minutes",
42
+ "T",
43
+ "t",
44
+ "s",
45
+ "seconds",
46
+ "sec",
47
+ "second",
48
+ "ms",
49
+ "milliseconds",
50
+ "millisecond",
51
+ "milli",
52
+ "millis",
53
+ "L",
54
+ "l",
55
+ "us",
56
+ "microseconds",
57
+ "microsecond",
58
+ "µs",
59
+ "micro",
60
+ "micros",
61
+ "u",
62
+ "ns",
63
+ "nanoseconds",
64
+ "nano",
65
+ "nanos",
66
+ "nanosecond",
67
+ "n",
68
+ ]
69
+ _S = TypeVar("_S", bound=timedelta)
70
+
71
+ def get_unit_for_round(freq, creso: int) -> int: ...
72
+ def disallow_ambiguous_unit(unit: str | None) -> None: ...
73
+ def ints_to_pytimedelta(
74
+ m8values: npt.NDArray[np.timedelta64],
75
+ box: bool = ...,
76
+ ) -> npt.NDArray[np.object_]: ...
77
+ def array_to_timedelta64(
78
+ values: npt.NDArray[np.object_],
79
+ unit: str | None = ...,
80
+ errors: str = ...,
81
+ ) -> np.ndarray: ... # np.ndarray[m8ns]
82
+ def parse_timedelta_unit(unit: str | None) -> UnitChoices: ...
83
+ def delta_to_nanoseconds(
84
+ delta: np.timedelta64 | timedelta | Tick,
85
+ reso: int = ..., # NPY_DATETIMEUNIT
86
+ round_ok: bool = ...,
87
+ ) -> int: ...
88
+ def floordiv_object_array(
89
+ left: np.ndarray, right: npt.NDArray[np.object_]
90
+ ) -> np.ndarray: ...
91
+ def truediv_object_array(
92
+ left: np.ndarray, right: npt.NDArray[np.object_]
93
+ ) -> np.ndarray: ...
94
+
95
+ class Timedelta(timedelta):
96
+ _creso: int
97
+ min: ClassVar[Timedelta]
98
+ max: ClassVar[Timedelta]
99
+ resolution: ClassVar[Timedelta]
100
+ value: int # np.int64
101
+ _value: int # np.int64
102
+ # error: "__new__" must return a class instance (got "Union[Timestamp, NaTType]")
103
+ def __new__( # type: ignore[misc]
104
+ cls: type[_S],
105
+ value=...,
106
+ unit: str | None = ...,
107
+ **kwargs: float | np.integer | np.floating,
108
+ ) -> _S | NaTType: ...
109
+ @classmethod
110
+ def _from_value_and_reso(cls, value: np.int64, reso: int) -> Timedelta: ...
111
+ @property
112
+ def days(self) -> int: ...
113
+ @property
114
+ def seconds(self) -> int: ...
115
+ @property
116
+ def microseconds(self) -> int: ...
117
+ def total_seconds(self) -> float: ...
118
+ def to_pytimedelta(self) -> timedelta: ...
119
+ def to_timedelta64(self) -> np.timedelta64: ...
120
+ @property
121
+ def asm8(self) -> np.timedelta64: ...
122
+ # TODO: round/floor/ceil could return NaT?
123
+ def round(self, freq: Frequency) -> Self: ...
124
+ def floor(self, freq: Frequency) -> Self: ...
125
+ def ceil(self, freq: Frequency) -> Self: ...
126
+ @property
127
+ def resolution_string(self) -> str: ...
128
+ def __add__(self, other: timedelta) -> Timedelta: ...
129
+ def __radd__(self, other: timedelta) -> Timedelta: ...
130
+ def __sub__(self, other: timedelta) -> Timedelta: ...
131
+ def __rsub__(self, other: timedelta) -> Timedelta: ...
132
+ def __neg__(self) -> Timedelta: ...
133
+ def __pos__(self) -> Timedelta: ...
134
+ def __abs__(self) -> Timedelta: ...
135
+ def __mul__(self, other: float) -> Timedelta: ...
136
+ def __rmul__(self, other: float) -> Timedelta: ...
137
+ # error: Signature of "__floordiv__" incompatible with supertype "timedelta"
138
+ @overload # type: ignore[override]
139
+ def __floordiv__(self, other: timedelta) -> int: ...
140
+ @overload
141
+ def __floordiv__(self, other: float) -> Timedelta: ...
142
+ @overload
143
+ def __floordiv__(
144
+ self, other: npt.NDArray[np.timedelta64]
145
+ ) -> npt.NDArray[np.intp]: ...
146
+ @overload
147
+ def __floordiv__(
148
+ self, other: npt.NDArray[np.number]
149
+ ) -> npt.NDArray[np.timedelta64] | Timedelta: ...
150
+ @overload
151
+ def __rfloordiv__(self, other: timedelta | str) -> int: ...
152
+ @overload
153
+ def __rfloordiv__(self, other: None | NaTType) -> NaTType: ...
154
+ @overload
155
+ def __rfloordiv__(self, other: np.ndarray) -> npt.NDArray[np.timedelta64]: ...
156
+ @overload
157
+ def __truediv__(self, other: timedelta) -> float: ...
158
+ @overload
159
+ def __truediv__(self, other: float) -> Timedelta: ...
160
+ def __mod__(self, other: timedelta) -> Timedelta: ...
161
+ def __divmod__(self, other: timedelta) -> tuple[int, Timedelta]: ...
162
+ def __le__(self, other: timedelta) -> bool: ...
163
+ def __lt__(self, other: timedelta) -> bool: ...
164
+ def __ge__(self, other: timedelta) -> bool: ...
165
+ def __gt__(self, other: timedelta) -> bool: ...
166
+ def __hash__(self) -> int: ...
167
+ def isoformat(self) -> str: ...
168
+ def to_numpy(
169
+ self, dtype: npt.DTypeLike = ..., copy: bool = False
170
+ ) -> np.timedelta64: ...
171
+ def view(self, dtype: npt.DTypeLike) -> object: ...
172
+ @property
173
+ def unit(self) -> str: ...
174
+ def as_unit(self, unit: str, round_ok: bool = ...) -> Timedelta: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timestamps.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (665 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/timestamps.pyi ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ date as _date,
3
+ datetime,
4
+ time as _time,
5
+ timedelta,
6
+ tzinfo as _tzinfo,
7
+ )
8
+ from time import struct_time
9
+ from typing import (
10
+ ClassVar,
11
+ Literal,
12
+ TypeAlias,
13
+ overload,
14
+ )
15
+
16
+ import numpy as np
17
+
18
+ from pandas._libs.tslibs import (
19
+ BaseOffset,
20
+ NaTType,
21
+ Period,
22
+ Tick,
23
+ Timedelta,
24
+ )
25
+ from pandas._typing import (
26
+ Self,
27
+ TimestampNonexistent,
28
+ )
29
+
30
+ _TimeZones: TypeAlias = str | _tzinfo | None | int
31
+
32
+ def integer_op_not_supported(obj: object) -> TypeError: ...
33
+
34
+ class Timestamp(datetime):
35
+ _creso: int
36
+ min: ClassVar[Timestamp]
37
+ max: ClassVar[Timestamp]
38
+
39
+ resolution: ClassVar[Timedelta]
40
+ _value: int # np.int64
41
+ # error: "__new__" must return a class instance (got "Union[Timestamp, NaTType]")
42
+ def __new__( # type: ignore[misc]
43
+ cls: type[Self],
44
+ ts_input: np.integer | float | str | _date | datetime | np.datetime64 = ...,
45
+ year: int | None = ...,
46
+ month: int | None = ...,
47
+ day: int | None = ...,
48
+ hour: int | None = ...,
49
+ minute: int | None = ...,
50
+ second: int | None = ...,
51
+ microsecond: int | None = ...,
52
+ tzinfo: _tzinfo | None = ...,
53
+ *,
54
+ nanosecond: int | None = ...,
55
+ tz: _TimeZones = ...,
56
+ unit: str | int | None = ...,
57
+ fold: int | None = ...,
58
+ ) -> Self | NaTType: ...
59
+ @classmethod
60
+ def _from_value_and_reso(
61
+ cls, value: int, reso: int, tz: _TimeZones
62
+ ) -> Timestamp: ...
63
+ @property
64
+ def value(self) -> int: ... # np.int64
65
+ @property
66
+ def year(self) -> int: ...
67
+ @property
68
+ def month(self) -> int: ...
69
+ @property
70
+ def day(self) -> int: ...
71
+ @property
72
+ def hour(self) -> int: ...
73
+ @property
74
+ def minute(self) -> int: ...
75
+ @property
76
+ def second(self) -> int: ...
77
+ @property
78
+ def microsecond(self) -> int: ...
79
+ @property
80
+ def nanosecond(self) -> int: ...
81
+ @property
82
+ def tzinfo(self) -> _tzinfo | None: ...
83
+ @property
84
+ def tz(self) -> _tzinfo | None: ...
85
+ @property
86
+ def fold(self) -> int: ...
87
+ @classmethod
88
+ def fromtimestamp(cls, ts: float, tz: _TimeZones = ...) -> Self: ...
89
+ @classmethod
90
+ def utcfromtimestamp(cls, ts: float) -> Self: ...
91
+ @classmethod
92
+ def today(cls, tz: _TimeZones = ...) -> Self: ...
93
+ @classmethod
94
+ def fromordinal(
95
+ cls,
96
+ ordinal: int,
97
+ tz: _TimeZones = ...,
98
+ ) -> Self: ...
99
+ @classmethod
100
+ def now(cls, tz: _TimeZones = ...) -> Self: ...
101
+ @classmethod
102
+ def utcnow(cls) -> Self: ...
103
+ # error: Signature of "combine" incompatible with supertype "datetime"
104
+ @classmethod
105
+ def combine( # type: ignore[override]
106
+ cls, date: _date, time: _time
107
+ ) -> datetime: ...
108
+ @classmethod
109
+ def fromisoformat(cls, date_string: str) -> Self: ...
110
+ def strftime(self, format: str) -> str: ...
111
+ def __format__(self, fmt: str) -> str: ...
112
+ def toordinal(self) -> int: ...
113
+ def timetuple(self) -> struct_time: ...
114
+ def timestamp(self) -> float: ...
115
+ def utctimetuple(self) -> struct_time: ...
116
+ def date(self) -> _date: ...
117
+ def time(self) -> _time: ...
118
+ def timetz(self) -> _time: ...
119
+ # LSP violation: nanosecond is not present in datetime.datetime.replace
120
+ # and has positional args following it
121
+ def replace( # type: ignore[override]
122
+ self,
123
+ year: int | None = ...,
124
+ month: int | None = ...,
125
+ day: int | None = ...,
126
+ hour: int | None = ...,
127
+ minute: int | None = ...,
128
+ second: int | None = ...,
129
+ microsecond: int | None = ...,
130
+ nanosecond: int | None = ...,
131
+ tzinfo: _tzinfo | type[object] | None = ...,
132
+ fold: int | None = ...,
133
+ ) -> Self: ...
134
+ # LSP violation: datetime.datetime.astimezone has a default value for tz
135
+ def astimezone(self, tz: _TimeZones) -> Self: ... # type: ignore[override]
136
+ def ctime(self) -> str: ...
137
+ def isoformat(self, sep: str = ..., timespec: str = ...) -> str: ...
138
+ @classmethod
139
+ def strptime(
140
+ # Note: strptime is actually disabled and raises NotImplementedError
141
+ cls,
142
+ date_string: str,
143
+ format: str,
144
+ ) -> Self: ...
145
+ def utcoffset(self) -> timedelta | None: ...
146
+ def tzname(self) -> str | None: ...
147
+ def dst(self) -> timedelta | None: ...
148
+ def __le__(self, other: datetime) -> bool: ... # type: ignore[override]
149
+ def __lt__(self, other: datetime) -> bool: ... # type: ignore[override]
150
+ def __ge__(self, other: datetime) -> bool: ... # type: ignore[override]
151
+ def __gt__(self, other: datetime) -> bool: ... # type: ignore[override]
152
+ # error: Signature of "__add__" incompatible with supertype "date"/"datetime"
153
+ @overload # type: ignore[override]
154
+ def __add__(self, other: np.ndarray) -> np.ndarray: ...
155
+ @overload
156
+ def __add__(self, other: timedelta | np.timedelta64 | Tick) -> Self: ...
157
+ def __radd__(self, other: timedelta) -> Self: ...
158
+ @overload # type: ignore[override]
159
+ def __sub__(self, other: datetime) -> Timedelta: ...
160
+ @overload
161
+ def __sub__(self, other: timedelta | np.timedelta64 | Tick) -> Self: ...
162
+ def __hash__(self) -> int: ...
163
+ def weekday(self) -> int: ...
164
+ def isoweekday(self) -> int: ...
165
+ # Return type "Tuple[int, int, int]" of "isocalendar" incompatible with return
166
+ # type "_IsoCalendarDate" in supertype "date"
167
+ def isocalendar(self) -> tuple[int, int, int]: ... # type: ignore[override]
168
+ @property
169
+ def is_leap_year(self) -> bool: ...
170
+ @property
171
+ def is_month_start(self) -> bool: ...
172
+ @property
173
+ def is_quarter_start(self) -> bool: ...
174
+ @property
175
+ def is_year_start(self) -> bool: ...
176
+ @property
177
+ def is_month_end(self) -> bool: ...
178
+ @property
179
+ def is_quarter_end(self) -> bool: ...
180
+ @property
181
+ def is_year_end(self) -> bool: ...
182
+ def to_pydatetime(self, warn: bool = ...) -> datetime: ...
183
+ def to_datetime64(self) -> np.datetime64: ...
184
+ def to_period(self, freq: BaseOffset | str | None = None) -> Period: ...
185
+ def to_julian_date(self) -> np.float64: ...
186
+ @property
187
+ def asm8(self) -> np.datetime64: ...
188
+ def tz_convert(self, tz: _TimeZones) -> Self: ...
189
+ # TODO: could return NaT?
190
+ def tz_localize(
191
+ self,
192
+ tz: _TimeZones,
193
+ ambiguous: bool | Literal["raise", "NaT"] = ...,
194
+ nonexistent: TimestampNonexistent = ...,
195
+ ) -> Self: ...
196
+ def normalize(self) -> Self: ...
197
+ # TODO: round/floor/ceil could return NaT?
198
+ def round(
199
+ self,
200
+ freq: str,
201
+ ambiguous: bool | Literal["raise", "NaT"] = ...,
202
+ nonexistent: TimestampNonexistent = ...,
203
+ ) -> Self: ...
204
+ def floor(
205
+ self,
206
+ freq: str,
207
+ ambiguous: bool | Literal["raise", "NaT"] = ...,
208
+ nonexistent: TimestampNonexistent = ...,
209
+ ) -> Self: ...
210
+ def ceil(
211
+ self,
212
+ freq: str,
213
+ ambiguous: bool | Literal["raise", "NaT"] = ...,
214
+ nonexistent: TimestampNonexistent = ...,
215
+ ) -> Self: ...
216
+ def day_name(self, locale: str | None = ...) -> str: ...
217
+ def month_name(self, locale: str | None = ...) -> str: ...
218
+ @property
219
+ def day_of_week(self) -> int: ...
220
+ @property
221
+ def dayofweek(self) -> int: ...
222
+ @property
223
+ def day_of_year(self) -> int: ...
224
+ @property
225
+ def dayofyear(self) -> int: ...
226
+ @property
227
+ def quarter(self) -> int: ...
228
+ @property
229
+ def week(self) -> int: ...
230
+ def to_numpy(
231
+ self, dtype: np.dtype | None = ..., copy: bool = ...
232
+ ) -> np.datetime64: ...
233
+ @property
234
+ def _date_repr(self) -> str: ...
235
+ @property
236
+ def days_in_month(self) -> int: ...
237
+ @property
238
+ def daysinmonth(self) -> int: ...
239
+ @property
240
+ def unit(self) -> str: ...
241
+ def as_unit(self, unit: str, round_ok: bool = ...) -> Timestamp: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/tzconversion.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (341 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/tzconversion.pyi ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ timedelta,
3
+ tzinfo,
4
+ )
5
+ from typing import Iterable
6
+
7
+ import numpy as np
8
+
9
+ from pandas._typing import npt
10
+
11
+ # tz_convert_from_utc_single exposed for testing
12
+ def tz_convert_from_utc_single(
13
+ utc_val: np.int64, tz: tzinfo, creso: int = ...
14
+ ) -> np.int64: ...
15
+ def tz_localize_to_utc(
16
+ vals: npt.NDArray[np.int64],
17
+ tz: tzinfo | None,
18
+ ambiguous: str | bool | Iterable[bool] | None = ...,
19
+ nonexistent: str | timedelta | np.timedelta64 | None = ...,
20
+ creso: int = ..., # NPY_DATETIMEUNIT
21
+ ) -> npt.NDArray[np.int64]: ...
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/vectorized.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (250 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/_libs/tslibs/vectorized.pyi ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ For cython types that cannot be represented precisely, closest-available
3
+ python equivalents are used, and the precise types kept as adjacent comments.
4
+ """
5
+ from datetime import tzinfo
6
+
7
+ import numpy as np
8
+
9
+ from pandas._libs.tslibs.dtypes import Resolution
10
+ from pandas._typing import npt
11
+
12
+ def dt64arr_to_periodarr(
13
+ stamps: npt.NDArray[np.int64],
14
+ freq: int,
15
+ tz: tzinfo | None,
16
+ reso: int = ..., # NPY_DATETIMEUNIT
17
+ ) -> npt.NDArray[np.int64]: ...
18
+ def is_date_array_normalized(
19
+ stamps: npt.NDArray[np.int64],
20
+ tz: tzinfo | None,
21
+ reso: int, # NPY_DATETIMEUNIT
22
+ ) -> bool: ...
23
+ def normalize_i8_timestamps(
24
+ stamps: npt.NDArray[np.int64],
25
+ tz: tzinfo | None,
26
+ reso: int, # NPY_DATETIMEUNIT
27
+ ) -> npt.NDArray[np.int64]: ...
28
+ def get_resolution(
29
+ stamps: npt.NDArray[np.int64],
30
+ tz: tzinfo | None = ...,
31
+ reso: int = ..., # NPY_DATETIMEUNIT
32
+ ) -> Resolution: ...
33
+ def ints_to_pydatetime(
34
+ stamps: npt.NDArray[np.int64],
35
+ tz: tzinfo | None = ...,
36
+ box: str = ...,
37
+ reso: int = ..., # NPY_DATETIMEUNIT
38
+ ) -> npt.NDArray[np.object_]: ...
39
+ def tz_convert_from_utc(
40
+ stamps: npt.NDArray[np.int64],
41
+ tz: tzinfo | None,
42
+ reso: int = ..., # NPY_DATETIMEUNIT
43
+ ) -> npt.NDArray[np.int64]: ...
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.io.parsers.readers import (
2
+ TextFileReader,
3
+ TextParser,
4
+ read_csv,
5
+ read_fwf,
6
+ read_table,
7
+ )
8
+
9
+ __all__ = ["TextFileReader", "TextParser", "read_csv", "read_fwf", "read_table"]
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/arrow_parser_wrapper.cpython-310.pyc ADDED
Binary file (7.99 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/base_parser.cpython-310.pyc ADDED
Binary file (33.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/c_parser_wrapper.cpython-310.pyc ADDED
Binary file (9.56 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/__pycache__/readers.cpython-310.pyc ADDED
Binary file (61 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/arrow_parser_wrapper.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+ import warnings
5
+
6
+ from pandas._config import using_pyarrow_string_dtype
7
+
8
+ from pandas._libs import lib
9
+ from pandas.compat._optional import import_optional_dependency
10
+ from pandas.errors import (
11
+ ParserError,
12
+ ParserWarning,
13
+ )
14
+ from pandas.util._exceptions import find_stack_level
15
+
16
+ from pandas.core.dtypes.common import pandas_dtype
17
+ from pandas.core.dtypes.inference import is_integer
18
+
19
+ import pandas as pd
20
+ from pandas import DataFrame
21
+
22
+ from pandas.io._util import (
23
+ _arrow_dtype_mapping,
24
+ arrow_string_types_mapper,
25
+ )
26
+ from pandas.io.parsers.base_parser import ParserBase
27
+
28
+ if TYPE_CHECKING:
29
+ from pandas._typing import ReadBuffer
30
+
31
+
32
+ class ArrowParserWrapper(ParserBase):
33
+ """
34
+ Wrapper for the pyarrow engine for read_csv()
35
+ """
36
+
37
+ def __init__(self, src: ReadBuffer[bytes], **kwds) -> None:
38
+ super().__init__(kwds)
39
+ self.kwds = kwds
40
+ self.src = src
41
+
42
+ self._parse_kwds()
43
+
44
+ def _parse_kwds(self) -> None:
45
+ """
46
+ Validates keywords before passing to pyarrow.
47
+ """
48
+ encoding: str | None = self.kwds.get("encoding")
49
+ self.encoding = "utf-8" if encoding is None else encoding
50
+
51
+ na_values = self.kwds["na_values"]
52
+ if isinstance(na_values, dict):
53
+ raise ValueError(
54
+ "The pyarrow engine doesn't support passing a dict for na_values"
55
+ )
56
+ self.na_values = list(self.kwds["na_values"])
57
+
58
+ def _get_pyarrow_options(self) -> None:
59
+ """
60
+ Rename some arguments to pass to pyarrow
61
+ """
62
+ mapping = {
63
+ "usecols": "include_columns",
64
+ "na_values": "null_values",
65
+ "escapechar": "escape_char",
66
+ "skip_blank_lines": "ignore_empty_lines",
67
+ "decimal": "decimal_point",
68
+ "quotechar": "quote_char",
69
+ }
70
+ for pandas_name, pyarrow_name in mapping.items():
71
+ if pandas_name in self.kwds and self.kwds.get(pandas_name) is not None:
72
+ self.kwds[pyarrow_name] = self.kwds.pop(pandas_name)
73
+
74
+ # Date format handling
75
+ # If we get a string, we need to convert it into a list for pyarrow
76
+ # If we get a dict, we want to parse those separately
77
+ date_format = self.date_format
78
+ if isinstance(date_format, str):
79
+ date_format = [date_format]
80
+ else:
81
+ # In case of dict, we don't want to propagate through, so
82
+ # just set to pyarrow default of None
83
+
84
+ # Ideally, in future we disable pyarrow dtype inference (read in as string)
85
+ # to prevent misreads.
86
+ date_format = None
87
+ self.kwds["timestamp_parsers"] = date_format
88
+
89
+ self.parse_options = {
90
+ option_name: option_value
91
+ for option_name, option_value in self.kwds.items()
92
+ if option_value is not None
93
+ and option_name
94
+ in ("delimiter", "quote_char", "escape_char", "ignore_empty_lines")
95
+ }
96
+
97
+ on_bad_lines = self.kwds.get("on_bad_lines")
98
+ if on_bad_lines is not None:
99
+ if callable(on_bad_lines):
100
+ self.parse_options["invalid_row_handler"] = on_bad_lines
101
+ elif on_bad_lines == ParserBase.BadLineHandleMethod.ERROR:
102
+ self.parse_options[
103
+ "invalid_row_handler"
104
+ ] = None # PyArrow raises an exception by default
105
+ elif on_bad_lines == ParserBase.BadLineHandleMethod.WARN:
106
+
107
+ def handle_warning(invalid_row) -> str:
108
+ warnings.warn(
109
+ f"Expected {invalid_row.expected_columns} columns, but found "
110
+ f"{invalid_row.actual_columns}: {invalid_row.text}",
111
+ ParserWarning,
112
+ stacklevel=find_stack_level(),
113
+ )
114
+ return "skip"
115
+
116
+ self.parse_options["invalid_row_handler"] = handle_warning
117
+ elif on_bad_lines == ParserBase.BadLineHandleMethod.SKIP:
118
+ self.parse_options["invalid_row_handler"] = lambda _: "skip"
119
+
120
+ self.convert_options = {
121
+ option_name: option_value
122
+ for option_name, option_value in self.kwds.items()
123
+ if option_value is not None
124
+ and option_name
125
+ in (
126
+ "include_columns",
127
+ "null_values",
128
+ "true_values",
129
+ "false_values",
130
+ "decimal_point",
131
+ "timestamp_parsers",
132
+ )
133
+ }
134
+ self.convert_options["strings_can_be_null"] = "" in self.kwds["null_values"]
135
+ # autogenerated column names are prefixed with 'f' in pyarrow.csv
136
+ if self.header is None and "include_columns" in self.convert_options:
137
+ self.convert_options["include_columns"] = [
138
+ f"f{n}" for n in self.convert_options["include_columns"]
139
+ ]
140
+
141
+ self.read_options = {
142
+ "autogenerate_column_names": self.header is None,
143
+ "skip_rows": self.header
144
+ if self.header is not None
145
+ else self.kwds["skiprows"],
146
+ "encoding": self.encoding,
147
+ }
148
+
149
+ def _finalize_pandas_output(self, frame: DataFrame) -> DataFrame:
150
+ """
151
+ Processes data read in based on kwargs.
152
+
153
+ Parameters
154
+ ----------
155
+ frame: DataFrame
156
+ The DataFrame to process.
157
+
158
+ Returns
159
+ -------
160
+ DataFrame
161
+ The processed DataFrame.
162
+ """
163
+ num_cols = len(frame.columns)
164
+ multi_index_named = True
165
+ if self.header is None:
166
+ if self.names is None:
167
+ if self.header is None:
168
+ self.names = range(num_cols)
169
+ if len(self.names) != num_cols:
170
+ # usecols is passed through to pyarrow, we only handle index col here
171
+ # The only way self.names is not the same length as number of cols is
172
+ # if we have int index_col. We should just pad the names(they will get
173
+ # removed anyways) to expected length then.
174
+ self.names = list(range(num_cols - len(self.names))) + self.names
175
+ multi_index_named = False
176
+ frame.columns = self.names
177
+ # we only need the frame not the names
178
+ _, frame = self._do_date_conversions(frame.columns, frame)
179
+ if self.index_col is not None:
180
+ index_to_set = self.index_col.copy()
181
+ for i, item in enumerate(self.index_col):
182
+ if is_integer(item):
183
+ index_to_set[i] = frame.columns[item]
184
+ # String case
185
+ elif item not in frame.columns:
186
+ raise ValueError(f"Index {item} invalid")
187
+
188
+ # Process dtype for index_col and drop from dtypes
189
+ if self.dtype is not None:
190
+ key, new_dtype = (
191
+ (item, self.dtype.get(item))
192
+ if self.dtype.get(item) is not None
193
+ else (frame.columns[item], self.dtype.get(frame.columns[item]))
194
+ )
195
+ if new_dtype is not None:
196
+ frame[key] = frame[key].astype(new_dtype)
197
+ del self.dtype[key]
198
+
199
+ frame.set_index(index_to_set, drop=True, inplace=True)
200
+ # Clear names if headerless and no name given
201
+ if self.header is None and not multi_index_named:
202
+ frame.index.names = [None] * len(frame.index.names)
203
+
204
+ if self.dtype is not None:
205
+ # Ignore non-existent columns from dtype mapping
206
+ # like other parsers do
207
+ if isinstance(self.dtype, dict):
208
+ self.dtype = {
209
+ k: pandas_dtype(v)
210
+ for k, v in self.dtype.items()
211
+ if k in frame.columns
212
+ }
213
+ else:
214
+ self.dtype = pandas_dtype(self.dtype)
215
+ try:
216
+ frame = frame.astype(self.dtype)
217
+ except TypeError as e:
218
+ # GH#44901 reraise to keep api consistent
219
+ raise ValueError(e)
220
+ return frame
221
+
222
+ def _validate_usecols(self, usecols) -> None:
223
+ if lib.is_list_like(usecols) and not all(isinstance(x, str) for x in usecols):
224
+ raise ValueError(
225
+ "The pyarrow engine does not allow 'usecols' to be integer "
226
+ "column positions. Pass a list of string column names instead."
227
+ )
228
+ elif callable(usecols):
229
+ raise ValueError(
230
+ "The pyarrow engine does not allow 'usecols' to be a callable."
231
+ )
232
+
233
+ def read(self) -> DataFrame:
234
+ """
235
+ Reads the contents of a CSV file into a DataFrame and
236
+ processes it according to the kwargs passed in the
237
+ constructor.
238
+
239
+ Returns
240
+ -------
241
+ DataFrame
242
+ The DataFrame created from the CSV file.
243
+ """
244
+ pa = import_optional_dependency("pyarrow")
245
+ pyarrow_csv = import_optional_dependency("pyarrow.csv")
246
+ self._get_pyarrow_options()
247
+
248
+ try:
249
+ convert_options = pyarrow_csv.ConvertOptions(**self.convert_options)
250
+ except TypeError:
251
+ include = self.convert_options.get("include_columns", None)
252
+ if include is not None:
253
+ self._validate_usecols(include)
254
+
255
+ nulls = self.convert_options.get("null_values", set())
256
+ if not lib.is_list_like(nulls) or not all(
257
+ isinstance(x, str) for x in nulls
258
+ ):
259
+ raise TypeError(
260
+ "The 'pyarrow' engine requires all na_values to be strings"
261
+ )
262
+
263
+ raise
264
+
265
+ try:
266
+ table = pyarrow_csv.read_csv(
267
+ self.src,
268
+ read_options=pyarrow_csv.ReadOptions(**self.read_options),
269
+ parse_options=pyarrow_csv.ParseOptions(**self.parse_options),
270
+ convert_options=convert_options,
271
+ )
272
+ except pa.ArrowInvalid as e:
273
+ raise ParserError(e) from e
274
+
275
+ dtype_backend = self.kwds["dtype_backend"]
276
+
277
+ # Convert all pa.null() cols -> float64 (non nullable)
278
+ # else Int64 (nullable case, see below)
279
+ if dtype_backend is lib.no_default:
280
+ new_schema = table.schema
281
+ new_type = pa.float64()
282
+ for i, arrow_type in enumerate(table.schema.types):
283
+ if pa.types.is_null(arrow_type):
284
+ new_schema = new_schema.set(
285
+ i, new_schema.field(i).with_type(new_type)
286
+ )
287
+
288
+ table = table.cast(new_schema)
289
+
290
+ if dtype_backend == "pyarrow":
291
+ frame = table.to_pandas(types_mapper=pd.ArrowDtype)
292
+ elif dtype_backend == "numpy_nullable":
293
+ # Modify the default mapping to also
294
+ # map null to Int64 (to match other engines)
295
+ dtype_mapping = _arrow_dtype_mapping()
296
+ dtype_mapping[pa.null()] = pd.Int64Dtype()
297
+ frame = table.to_pandas(types_mapper=dtype_mapping.get)
298
+ elif using_pyarrow_string_dtype():
299
+ frame = table.to_pandas(types_mapper=arrow_string_types_mapper())
300
+
301
+ else:
302
+ frame = table.to_pandas()
303
+ return self._finalize_pandas_output(frame)
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/base_parser.py ADDED
@@ -0,0 +1,1448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections import defaultdict
4
+ from copy import copy
5
+ import csv
6
+ import datetime
7
+ from enum import Enum
8
+ import itertools
9
+ from typing import (
10
+ TYPE_CHECKING,
11
+ Any,
12
+ Callable,
13
+ cast,
14
+ final,
15
+ overload,
16
+ )
17
+ import warnings
18
+
19
+ import numpy as np
20
+
21
+ from pandas._libs import (
22
+ lib,
23
+ parsers,
24
+ )
25
+ import pandas._libs.ops as libops
26
+ from pandas._libs.parsers import STR_NA_VALUES
27
+ from pandas._libs.tslibs import parsing
28
+ from pandas.compat._optional import import_optional_dependency
29
+ from pandas.errors import (
30
+ ParserError,
31
+ ParserWarning,
32
+ )
33
+ from pandas.util._exceptions import find_stack_level
34
+
35
+ from pandas.core.dtypes.astype import astype_array
36
+ from pandas.core.dtypes.common import (
37
+ ensure_object,
38
+ is_bool_dtype,
39
+ is_dict_like,
40
+ is_extension_array_dtype,
41
+ is_float_dtype,
42
+ is_integer,
43
+ is_integer_dtype,
44
+ is_list_like,
45
+ is_object_dtype,
46
+ is_scalar,
47
+ is_string_dtype,
48
+ pandas_dtype,
49
+ )
50
+ from pandas.core.dtypes.dtypes import (
51
+ CategoricalDtype,
52
+ ExtensionDtype,
53
+ )
54
+ from pandas.core.dtypes.missing import isna
55
+
56
+ from pandas import (
57
+ ArrowDtype,
58
+ DataFrame,
59
+ DatetimeIndex,
60
+ StringDtype,
61
+ concat,
62
+ )
63
+ from pandas.core import algorithms
64
+ from pandas.core.arrays import (
65
+ ArrowExtensionArray,
66
+ BaseMaskedArray,
67
+ BooleanArray,
68
+ Categorical,
69
+ ExtensionArray,
70
+ FloatingArray,
71
+ IntegerArray,
72
+ )
73
+ from pandas.core.arrays.boolean import BooleanDtype
74
+ from pandas.core.indexes.api import (
75
+ Index,
76
+ MultiIndex,
77
+ default_index,
78
+ ensure_index_from_sequences,
79
+ )
80
+ from pandas.core.series import Series
81
+ from pandas.core.tools import datetimes as tools
82
+
83
+ from pandas.io.common import is_potential_multi_index
84
+
85
+ if TYPE_CHECKING:
86
+ from collections.abc import (
87
+ Hashable,
88
+ Iterable,
89
+ Mapping,
90
+ Sequence,
91
+ )
92
+
93
+ from pandas._typing import (
94
+ ArrayLike,
95
+ DtypeArg,
96
+ DtypeObj,
97
+ Scalar,
98
+ )
99
+
100
+
101
+ class ParserBase:
102
+ class BadLineHandleMethod(Enum):
103
+ ERROR = 0
104
+ WARN = 1
105
+ SKIP = 2
106
+
107
+ _implicit_index: bool
108
+ _first_chunk: bool
109
+ keep_default_na: bool
110
+ dayfirst: bool
111
+ cache_dates: bool
112
+ keep_date_col: bool
113
+ usecols_dtype: str | None
114
+
115
+ def __init__(self, kwds) -> None:
116
+ self._implicit_index = False
117
+
118
+ self.names = kwds.get("names")
119
+ self.orig_names: Sequence[Hashable] | None = None
120
+
121
+ self.index_col = kwds.get("index_col", None)
122
+ self.unnamed_cols: set = set()
123
+ self.index_names: Sequence[Hashable] | None = None
124
+ self.col_names: Sequence[Hashable] | None = None
125
+
126
+ self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False))
127
+ self._parse_date_cols: Iterable = []
128
+ self.date_parser = kwds.pop("date_parser", lib.no_default)
129
+ self.date_format = kwds.pop("date_format", None)
130
+ self.dayfirst = kwds.pop("dayfirst", False)
131
+ self.keep_date_col = kwds.pop("keep_date_col", False)
132
+
133
+ self.na_values = kwds.get("na_values")
134
+ self.na_fvalues = kwds.get("na_fvalues")
135
+ self.na_filter = kwds.get("na_filter", False)
136
+ self.keep_default_na = kwds.get("keep_default_na", True)
137
+
138
+ self.dtype = copy(kwds.get("dtype", None))
139
+ self.converters = kwds.get("converters")
140
+ self.dtype_backend = kwds.get("dtype_backend")
141
+
142
+ self.true_values = kwds.get("true_values")
143
+ self.false_values = kwds.get("false_values")
144
+ self.cache_dates = kwds.pop("cache_dates", True)
145
+
146
+ self._date_conv = _make_date_converter(
147
+ date_parser=self.date_parser,
148
+ date_format=self.date_format,
149
+ dayfirst=self.dayfirst,
150
+ cache_dates=self.cache_dates,
151
+ )
152
+
153
+ # validate header options for mi
154
+ self.header = kwds.get("header")
155
+ if is_list_like(self.header, allow_sets=False):
156
+ if kwds.get("usecols"):
157
+ raise ValueError(
158
+ "cannot specify usecols when specifying a multi-index header"
159
+ )
160
+ if kwds.get("names"):
161
+ raise ValueError(
162
+ "cannot specify names when specifying a multi-index header"
163
+ )
164
+
165
+ # validate index_col that only contains integers
166
+ if self.index_col is not None:
167
+ # In this case we can pin down index_col as list[int]
168
+ if is_integer(self.index_col):
169
+ self.index_col = [self.index_col]
170
+ elif not (
171
+ is_list_like(self.index_col, allow_sets=False)
172
+ and all(map(is_integer, self.index_col))
173
+ ):
174
+ raise ValueError(
175
+ "index_col must only contain row numbers "
176
+ "when specifying a multi-index header"
177
+ )
178
+ else:
179
+ self.index_col = list(self.index_col)
180
+
181
+ self._name_processed = False
182
+
183
+ self._first_chunk = True
184
+
185
+ self.usecols, self.usecols_dtype = self._validate_usecols_arg(kwds["usecols"])
186
+
187
+ # Fallback to error to pass a sketchy test(test_override_set_noconvert_columns)
188
+ # Normally, this arg would get pre-processed earlier on
189
+ self.on_bad_lines = kwds.get("on_bad_lines", self.BadLineHandleMethod.ERROR)
190
+
191
+ def _validate_parse_dates_presence(self, columns: Sequence[Hashable]) -> Iterable:
192
+ """
193
+ Check if parse_dates are in columns.
194
+
195
+ If user has provided names for parse_dates, check if those columns
196
+ are available.
197
+
198
+ Parameters
199
+ ----------
200
+ columns : list
201
+ List of names of the dataframe.
202
+
203
+ Returns
204
+ -------
205
+ The names of the columns which will get parsed later if a dict or list
206
+ is given as specification.
207
+
208
+ Raises
209
+ ------
210
+ ValueError
211
+ If column to parse_date is not in dataframe.
212
+
213
+ """
214
+ cols_needed: Iterable
215
+ if is_dict_like(self.parse_dates):
216
+ cols_needed = itertools.chain(*self.parse_dates.values())
217
+ elif is_list_like(self.parse_dates):
218
+ # a column in parse_dates could be represented
219
+ # ColReference = Union[int, str]
220
+ # DateGroups = List[ColReference]
221
+ # ParseDates = Union[DateGroups, List[DateGroups],
222
+ # Dict[ColReference, DateGroups]]
223
+ cols_needed = itertools.chain.from_iterable(
224
+ col if is_list_like(col) and not isinstance(col, tuple) else [col]
225
+ for col in self.parse_dates
226
+ )
227
+ else:
228
+ cols_needed = []
229
+
230
+ cols_needed = list(cols_needed)
231
+
232
+ # get only columns that are references using names (str), not by index
233
+ missing_cols = ", ".join(
234
+ sorted(
235
+ {
236
+ col
237
+ for col in cols_needed
238
+ if isinstance(col, str) and col not in columns
239
+ }
240
+ )
241
+ )
242
+ if missing_cols:
243
+ raise ValueError(
244
+ f"Missing column provided to 'parse_dates': '{missing_cols}'"
245
+ )
246
+ # Convert positions to actual column names
247
+ return [
248
+ col if (isinstance(col, str) or col in columns) else columns[col]
249
+ for col in cols_needed
250
+ ]
251
+
252
+ def close(self) -> None:
253
+ pass
254
+
255
+ @final
256
+ @property
257
+ def _has_complex_date_col(self) -> bool:
258
+ return isinstance(self.parse_dates, dict) or (
259
+ isinstance(self.parse_dates, list)
260
+ and len(self.parse_dates) > 0
261
+ and isinstance(self.parse_dates[0], list)
262
+ )
263
+
264
+ @final
265
+ def _should_parse_dates(self, i: int) -> bool:
266
+ if lib.is_bool(self.parse_dates):
267
+ return bool(self.parse_dates)
268
+ else:
269
+ if self.index_names is not None:
270
+ name = self.index_names[i]
271
+ else:
272
+ name = None
273
+ j = i if self.index_col is None else self.index_col[i]
274
+
275
+ return (j in self.parse_dates) or (
276
+ name is not None and name in self.parse_dates
277
+ )
278
+
279
+ @final
280
+ def _extract_multi_indexer_columns(
281
+ self,
282
+ header,
283
+ index_names: Sequence[Hashable] | None,
284
+ passed_names: bool = False,
285
+ ) -> tuple[
286
+ Sequence[Hashable], Sequence[Hashable] | None, Sequence[Hashable] | None, bool
287
+ ]:
288
+ """
289
+ Extract and return the names, index_names, col_names if the column
290
+ names are a MultiIndex.
291
+
292
+ Parameters
293
+ ----------
294
+ header: list of lists
295
+ The header rows
296
+ index_names: list, optional
297
+ The names of the future index
298
+ passed_names: bool, default False
299
+ A flag specifying if names where passed
300
+
301
+ """
302
+ if len(header) < 2:
303
+ return header[0], index_names, None, passed_names
304
+
305
+ # the names are the tuples of the header that are not the index cols
306
+ # 0 is the name of the index, assuming index_col is a list of column
307
+ # numbers
308
+ ic = self.index_col
309
+ if ic is None:
310
+ ic = []
311
+
312
+ if not isinstance(ic, (list, tuple, np.ndarray)):
313
+ ic = [ic]
314
+ sic = set(ic)
315
+
316
+ # clean the index_names
317
+ index_names = header.pop(-1)
318
+ index_names, _, _ = self._clean_index_names(index_names, self.index_col)
319
+
320
+ # extract the columns
321
+ field_count = len(header[0])
322
+
323
+ # check if header lengths are equal
324
+ if not all(len(header_iter) == field_count for header_iter in header[1:]):
325
+ raise ParserError("Header rows must have an equal number of columns.")
326
+
327
+ def extract(r):
328
+ return tuple(r[i] for i in range(field_count) if i not in sic)
329
+
330
+ columns = list(zip(*(extract(r) for r in header)))
331
+ names = columns.copy()
332
+ for single_ic in sorted(ic):
333
+ names.insert(single_ic, single_ic)
334
+
335
+ # Clean the column names (if we have an index_col).
336
+ if len(ic):
337
+ col_names = [
338
+ r[ic[0]]
339
+ if ((r[ic[0]] is not None) and r[ic[0]] not in self.unnamed_cols)
340
+ else None
341
+ for r in header
342
+ ]
343
+ else:
344
+ col_names = [None] * len(header)
345
+
346
+ passed_names = True
347
+
348
+ return names, index_names, col_names, passed_names
349
+
350
+ @final
351
+ def _maybe_make_multi_index_columns(
352
+ self,
353
+ columns: Sequence[Hashable],
354
+ col_names: Sequence[Hashable] | None = None,
355
+ ) -> Sequence[Hashable] | MultiIndex:
356
+ # possibly create a column mi here
357
+ if is_potential_multi_index(columns):
358
+ list_columns = cast(list[tuple], columns)
359
+ return MultiIndex.from_tuples(list_columns, names=col_names)
360
+ return columns
361
+
362
+ @final
363
+ def _make_index(
364
+ self, data, alldata, columns, indexnamerow: list[Scalar] | None = None
365
+ ) -> tuple[Index | None, Sequence[Hashable] | MultiIndex]:
366
+ index: Index | None
367
+ if not is_index_col(self.index_col) or not self.index_col:
368
+ index = None
369
+
370
+ elif not self._has_complex_date_col:
371
+ simple_index = self._get_simple_index(alldata, columns)
372
+ index = self._agg_index(simple_index)
373
+ elif self._has_complex_date_col:
374
+ if not self._name_processed:
375
+ (self.index_names, _, self.index_col) = self._clean_index_names(
376
+ list(columns), self.index_col
377
+ )
378
+ self._name_processed = True
379
+ date_index = self._get_complex_date_index(data, columns)
380
+ index = self._agg_index(date_index, try_parse_dates=False)
381
+
382
+ # add names for the index
383
+ if indexnamerow:
384
+ coffset = len(indexnamerow) - len(columns)
385
+ assert index is not None
386
+ index = index.set_names(indexnamerow[:coffset])
387
+
388
+ # maybe create a mi on the columns
389
+ columns = self._maybe_make_multi_index_columns(columns, self.col_names)
390
+
391
+ return index, columns
392
+
393
+ @final
394
+ def _get_simple_index(self, data, columns):
395
+ def ix(col):
396
+ if not isinstance(col, str):
397
+ return col
398
+ raise ValueError(f"Index {col} invalid")
399
+
400
+ to_remove = []
401
+ index = []
402
+ for idx in self.index_col:
403
+ i = ix(idx)
404
+ to_remove.append(i)
405
+ index.append(data[i])
406
+
407
+ # remove index items from content and columns, don't pop in
408
+ # loop
409
+ for i in sorted(to_remove, reverse=True):
410
+ data.pop(i)
411
+ if not self._implicit_index:
412
+ columns.pop(i)
413
+
414
+ return index
415
+
416
+ @final
417
+ def _get_complex_date_index(self, data, col_names):
418
+ def _get_name(icol):
419
+ if isinstance(icol, str):
420
+ return icol
421
+
422
+ if col_names is None:
423
+ raise ValueError(f"Must supply column order to use {icol!s} as index")
424
+
425
+ for i, c in enumerate(col_names):
426
+ if i == icol:
427
+ return c
428
+
429
+ to_remove = []
430
+ index = []
431
+ for idx in self.index_col:
432
+ name = _get_name(idx)
433
+ to_remove.append(name)
434
+ index.append(data[name])
435
+
436
+ # remove index items from content and columns, don't pop in
437
+ # loop
438
+ for c in sorted(to_remove, reverse=True):
439
+ data.pop(c)
440
+ col_names.remove(c)
441
+
442
+ return index
443
+
444
+ @final
445
+ def _clean_mapping(self, mapping):
446
+ """converts col numbers to names"""
447
+ if not isinstance(mapping, dict):
448
+ return mapping
449
+ clean = {}
450
+ # for mypy
451
+ assert self.orig_names is not None
452
+
453
+ for col, v in mapping.items():
454
+ if isinstance(col, int) and col not in self.orig_names:
455
+ col = self.orig_names[col]
456
+ clean[col] = v
457
+ if isinstance(mapping, defaultdict):
458
+ remaining_cols = set(self.orig_names) - set(clean.keys())
459
+ clean.update({col: mapping[col] for col in remaining_cols})
460
+ return clean
461
+
462
+ @final
463
+ def _agg_index(self, index, try_parse_dates: bool = True) -> Index:
464
+ arrays = []
465
+ converters = self._clean_mapping(self.converters)
466
+
467
+ for i, arr in enumerate(index):
468
+ if try_parse_dates and self._should_parse_dates(i):
469
+ arr = self._date_conv(
470
+ arr,
471
+ col=self.index_names[i] if self.index_names is not None else None,
472
+ )
473
+
474
+ if self.na_filter:
475
+ col_na_values = self.na_values
476
+ col_na_fvalues = self.na_fvalues
477
+ else:
478
+ col_na_values = set()
479
+ col_na_fvalues = set()
480
+
481
+ if isinstance(self.na_values, dict):
482
+ assert self.index_names is not None
483
+ col_name = self.index_names[i]
484
+ if col_name is not None:
485
+ col_na_values, col_na_fvalues = _get_na_values(
486
+ col_name, self.na_values, self.na_fvalues, self.keep_default_na
487
+ )
488
+
489
+ clean_dtypes = self._clean_mapping(self.dtype)
490
+
491
+ cast_type = None
492
+ index_converter = False
493
+ if self.index_names is not None:
494
+ if isinstance(clean_dtypes, dict):
495
+ cast_type = clean_dtypes.get(self.index_names[i], None)
496
+
497
+ if isinstance(converters, dict):
498
+ index_converter = converters.get(self.index_names[i]) is not None
499
+
500
+ try_num_bool = not (
501
+ cast_type and is_string_dtype(cast_type) or index_converter
502
+ )
503
+
504
+ arr, _ = self._infer_types(
505
+ arr, col_na_values | col_na_fvalues, cast_type is None, try_num_bool
506
+ )
507
+ arrays.append(arr)
508
+
509
+ names = self.index_names
510
+ index = ensure_index_from_sequences(arrays, names)
511
+
512
+ return index
513
+
514
+ @final
515
+ def _convert_to_ndarrays(
516
+ self,
517
+ dct: Mapping,
518
+ na_values,
519
+ na_fvalues,
520
+ verbose: bool = False,
521
+ converters=None,
522
+ dtypes=None,
523
+ ):
524
+ result = {}
525
+ for c, values in dct.items():
526
+ conv_f = None if converters is None else converters.get(c, None)
527
+ if isinstance(dtypes, dict):
528
+ cast_type = dtypes.get(c, None)
529
+ else:
530
+ # single dtype or None
531
+ cast_type = dtypes
532
+
533
+ if self.na_filter:
534
+ col_na_values, col_na_fvalues = _get_na_values(
535
+ c, na_values, na_fvalues, self.keep_default_na
536
+ )
537
+ else:
538
+ col_na_values, col_na_fvalues = set(), set()
539
+
540
+ if c in self._parse_date_cols:
541
+ # GH#26203 Do not convert columns which get converted to dates
542
+ # but replace nans to ensure to_datetime works
543
+ mask = algorithms.isin(values, set(col_na_values) | col_na_fvalues)
544
+ np.putmask(values, mask, np.nan)
545
+ result[c] = values
546
+ continue
547
+
548
+ if conv_f is not None:
549
+ # conv_f applied to data before inference
550
+ if cast_type is not None:
551
+ warnings.warn(
552
+ (
553
+ "Both a converter and dtype were specified "
554
+ f"for column {c} - only the converter will be used."
555
+ ),
556
+ ParserWarning,
557
+ stacklevel=find_stack_level(),
558
+ )
559
+
560
+ try:
561
+ values = lib.map_infer(values, conv_f)
562
+ except ValueError:
563
+ mask = algorithms.isin(values, list(na_values)).view(np.uint8)
564
+ values = lib.map_infer_mask(values, conv_f, mask)
565
+
566
+ cvals, na_count = self._infer_types(
567
+ values,
568
+ set(col_na_values) | col_na_fvalues,
569
+ cast_type is None,
570
+ try_num_bool=False,
571
+ )
572
+ else:
573
+ is_ea = is_extension_array_dtype(cast_type)
574
+ is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type)
575
+ # skip inference if specified dtype is object
576
+ # or casting to an EA
577
+ try_num_bool = not (cast_type and is_str_or_ea_dtype)
578
+
579
+ # general type inference and conversion
580
+ cvals, na_count = self._infer_types(
581
+ values,
582
+ set(col_na_values) | col_na_fvalues,
583
+ cast_type is None,
584
+ try_num_bool,
585
+ )
586
+
587
+ # type specified in dtype param or cast_type is an EA
588
+ if cast_type is not None:
589
+ cast_type = pandas_dtype(cast_type)
590
+ if cast_type and (cvals.dtype != cast_type or is_ea):
591
+ if not is_ea and na_count > 0:
592
+ if is_bool_dtype(cast_type):
593
+ raise ValueError(f"Bool column has NA values in column {c}")
594
+ cvals = self._cast_types(cvals, cast_type, c)
595
+
596
+ result[c] = cvals
597
+ if verbose and na_count:
598
+ print(f"Filled {na_count} NA values in column {c!s}")
599
+ return result
600
+
601
+ @final
602
+ def _set_noconvert_dtype_columns(
603
+ self, col_indices: list[int], names: Sequence[Hashable]
604
+ ) -> set[int]:
605
+ """
606
+ Set the columns that should not undergo dtype conversions.
607
+
608
+ Currently, any column that is involved with date parsing will not
609
+ undergo such conversions. If usecols is specified, the positions of the columns
610
+ not to cast is relative to the usecols not to all columns.
611
+
612
+ Parameters
613
+ ----------
614
+ col_indices: The indices specifying order and positions of the columns
615
+ names: The column names which order is corresponding with the order
616
+ of col_indices
617
+
618
+ Returns
619
+ -------
620
+ A set of integers containing the positions of the columns not to convert.
621
+ """
622
+ usecols: list[int] | list[str] | None
623
+ noconvert_columns = set()
624
+ if self.usecols_dtype == "integer":
625
+ # A set of integers will be converted to a list in
626
+ # the correct order every single time.
627
+ usecols = sorted(self.usecols)
628
+ elif callable(self.usecols) or self.usecols_dtype not in ("empty", None):
629
+ # The names attribute should have the correct columns
630
+ # in the proper order for indexing with parse_dates.
631
+ usecols = col_indices
632
+ else:
633
+ # Usecols is empty.
634
+ usecols = None
635
+
636
+ def _set(x) -> int:
637
+ if usecols is not None and is_integer(x):
638
+ x = usecols[x]
639
+
640
+ if not is_integer(x):
641
+ x = col_indices[names.index(x)]
642
+
643
+ return x
644
+
645
+ if isinstance(self.parse_dates, list):
646
+ for val in self.parse_dates:
647
+ if isinstance(val, list):
648
+ for k in val:
649
+ noconvert_columns.add(_set(k))
650
+ else:
651
+ noconvert_columns.add(_set(val))
652
+
653
+ elif isinstance(self.parse_dates, dict):
654
+ for val in self.parse_dates.values():
655
+ if isinstance(val, list):
656
+ for k in val:
657
+ noconvert_columns.add(_set(k))
658
+ else:
659
+ noconvert_columns.add(_set(val))
660
+
661
+ elif self.parse_dates:
662
+ if isinstance(self.index_col, list):
663
+ for k in self.index_col:
664
+ noconvert_columns.add(_set(k))
665
+ elif self.index_col is not None:
666
+ noconvert_columns.add(_set(self.index_col))
667
+
668
+ return noconvert_columns
669
+
670
+ @final
671
+ def _infer_types(
672
+ self, values, na_values, no_dtype_specified, try_num_bool: bool = True
673
+ ) -> tuple[ArrayLike, int]:
674
+ """
675
+ Infer types of values, possibly casting
676
+
677
+ Parameters
678
+ ----------
679
+ values : ndarray
680
+ na_values : set
681
+ no_dtype_specified: Specifies if we want to cast explicitly
682
+ try_num_bool : bool, default try
683
+ try to cast values to numeric (first preference) or boolean
684
+
685
+ Returns
686
+ -------
687
+ converted : ndarray or ExtensionArray
688
+ na_count : int
689
+ """
690
+ na_count = 0
691
+ if issubclass(values.dtype.type, (np.number, np.bool_)):
692
+ # If our array has numeric dtype, we don't have to check for strings in isin
693
+ na_values = np.array([val for val in na_values if not isinstance(val, str)])
694
+ mask = algorithms.isin(values, na_values)
695
+ na_count = mask.astype("uint8", copy=False).sum()
696
+ if na_count > 0:
697
+ if is_integer_dtype(values):
698
+ values = values.astype(np.float64)
699
+ np.putmask(values, mask, np.nan)
700
+ return values, na_count
701
+
702
+ dtype_backend = self.dtype_backend
703
+ non_default_dtype_backend = (
704
+ no_dtype_specified and dtype_backend is not lib.no_default
705
+ )
706
+ result: ArrayLike
707
+
708
+ if try_num_bool and is_object_dtype(values.dtype):
709
+ # exclude e.g DatetimeIndex here
710
+ try:
711
+ result, result_mask = lib.maybe_convert_numeric(
712
+ values,
713
+ na_values,
714
+ False,
715
+ convert_to_masked_nullable=non_default_dtype_backend, # type: ignore[arg-type]
716
+ )
717
+ except (ValueError, TypeError):
718
+ # e.g. encountering datetime string gets ValueError
719
+ # TypeError can be raised in floatify
720
+ na_count = parsers.sanitize_objects(values, na_values)
721
+ result = values
722
+ else:
723
+ if non_default_dtype_backend:
724
+ if result_mask is None:
725
+ result_mask = np.zeros(result.shape, dtype=np.bool_)
726
+
727
+ if result_mask.all():
728
+ result = IntegerArray(
729
+ np.ones(result_mask.shape, dtype=np.int64), result_mask
730
+ )
731
+ elif is_integer_dtype(result):
732
+ result = IntegerArray(result, result_mask)
733
+ elif is_bool_dtype(result):
734
+ result = BooleanArray(result, result_mask)
735
+ elif is_float_dtype(result):
736
+ result = FloatingArray(result, result_mask)
737
+
738
+ na_count = result_mask.sum()
739
+ else:
740
+ na_count = isna(result).sum()
741
+ else:
742
+ result = values
743
+ if values.dtype == np.object_:
744
+ na_count = parsers.sanitize_objects(values, na_values)
745
+
746
+ if result.dtype == np.object_ and try_num_bool:
747
+ result, bool_mask = libops.maybe_convert_bool(
748
+ np.asarray(values),
749
+ true_values=self.true_values,
750
+ false_values=self.false_values,
751
+ convert_to_masked_nullable=non_default_dtype_backend, # type: ignore[arg-type]
752
+ )
753
+ if result.dtype == np.bool_ and non_default_dtype_backend:
754
+ if bool_mask is None:
755
+ bool_mask = np.zeros(result.shape, dtype=np.bool_)
756
+ result = BooleanArray(result, bool_mask)
757
+ elif result.dtype == np.object_ and non_default_dtype_backend:
758
+ # read_excel sends array of datetime objects
759
+ if not lib.is_datetime_array(result, skipna=True):
760
+ dtype = StringDtype()
761
+ cls = dtype.construct_array_type()
762
+ result = cls._from_sequence(values, dtype=dtype)
763
+
764
+ if dtype_backend == "pyarrow":
765
+ pa = import_optional_dependency("pyarrow")
766
+ if isinstance(result, np.ndarray):
767
+ result = ArrowExtensionArray(pa.array(result, from_pandas=True))
768
+ elif isinstance(result, BaseMaskedArray):
769
+ if result._mask.all():
770
+ # We want an arrow null array here
771
+ result = ArrowExtensionArray(pa.array([None] * len(result)))
772
+ else:
773
+ result = ArrowExtensionArray(
774
+ pa.array(result._data, mask=result._mask)
775
+ )
776
+ else:
777
+ result = ArrowExtensionArray(
778
+ pa.array(result.to_numpy(), from_pandas=True)
779
+ )
780
+
781
+ return result, na_count
782
+
783
+ @final
784
+ def _cast_types(self, values: ArrayLike, cast_type: DtypeObj, column) -> ArrayLike:
785
+ """
786
+ Cast values to specified type
787
+
788
+ Parameters
789
+ ----------
790
+ values : ndarray or ExtensionArray
791
+ cast_type : np.dtype or ExtensionDtype
792
+ dtype to cast values to
793
+ column : string
794
+ column name - used only for error reporting
795
+
796
+ Returns
797
+ -------
798
+ converted : ndarray or ExtensionArray
799
+ """
800
+ if isinstance(cast_type, CategoricalDtype):
801
+ known_cats = cast_type.categories is not None
802
+
803
+ if not is_object_dtype(values.dtype) and not known_cats:
804
+ # TODO: this is for consistency with
805
+ # c-parser which parses all categories
806
+ # as strings
807
+ values = lib.ensure_string_array(
808
+ values, skipna=False, convert_na_value=False
809
+ )
810
+
811
+ cats = Index(values).unique().dropna()
812
+ values = Categorical._from_inferred_categories(
813
+ cats, cats.get_indexer(values), cast_type, true_values=self.true_values
814
+ )
815
+
816
+ # use the EA's implementation of casting
817
+ elif isinstance(cast_type, ExtensionDtype):
818
+ array_type = cast_type.construct_array_type()
819
+ try:
820
+ if isinstance(cast_type, BooleanDtype):
821
+ # error: Unexpected keyword argument "true_values" for
822
+ # "_from_sequence_of_strings" of "ExtensionArray"
823
+ return array_type._from_sequence_of_strings( # type: ignore[call-arg]
824
+ values,
825
+ dtype=cast_type,
826
+ true_values=self.true_values,
827
+ false_values=self.false_values,
828
+ )
829
+ else:
830
+ return array_type._from_sequence_of_strings(values, dtype=cast_type)
831
+ except NotImplementedError as err:
832
+ raise NotImplementedError(
833
+ f"Extension Array: {array_type} must implement "
834
+ "_from_sequence_of_strings in order to be used in parser methods"
835
+ ) from err
836
+
837
+ elif isinstance(values, ExtensionArray):
838
+ values = values.astype(cast_type, copy=False)
839
+ elif issubclass(cast_type.type, str):
840
+ # TODO: why skipna=True here and False above? some tests depend
841
+ # on it here, but nothing fails if we change it above
842
+ # (as no tests get there as of 2022-12-06)
843
+ values = lib.ensure_string_array(
844
+ values, skipna=True, convert_na_value=False
845
+ )
846
+ else:
847
+ try:
848
+ values = astype_array(values, cast_type, copy=True)
849
+ except ValueError as err:
850
+ raise ValueError(
851
+ f"Unable to convert column {column} to type {cast_type}"
852
+ ) from err
853
+ return values
854
+
855
+ @overload
856
+ def _do_date_conversions(
857
+ self,
858
+ names: Index,
859
+ data: DataFrame,
860
+ ) -> tuple[Sequence[Hashable] | Index, DataFrame]:
861
+ ...
862
+
863
+ @overload
864
+ def _do_date_conversions(
865
+ self,
866
+ names: Sequence[Hashable],
867
+ data: Mapping[Hashable, ArrayLike],
868
+ ) -> tuple[Sequence[Hashable], Mapping[Hashable, ArrayLike]]:
869
+ ...
870
+
871
+ @final
872
+ def _do_date_conversions(
873
+ self,
874
+ names: Sequence[Hashable] | Index,
875
+ data: Mapping[Hashable, ArrayLike] | DataFrame,
876
+ ) -> tuple[Sequence[Hashable] | Index, Mapping[Hashable, ArrayLike] | DataFrame]:
877
+ # returns data, columns
878
+
879
+ if self.parse_dates is not None:
880
+ data, names = _process_date_conversion(
881
+ data,
882
+ self._date_conv,
883
+ self.parse_dates,
884
+ self.index_col,
885
+ self.index_names,
886
+ names,
887
+ keep_date_col=self.keep_date_col,
888
+ dtype_backend=self.dtype_backend,
889
+ )
890
+
891
+ return names, data
892
+
893
+ @final
894
+ def _check_data_length(
895
+ self,
896
+ columns: Sequence[Hashable],
897
+ data: Sequence[ArrayLike],
898
+ ) -> None:
899
+ """Checks if length of data is equal to length of column names.
900
+
901
+ One set of trailing commas is allowed. self.index_col not False
902
+ results in a ParserError previously when lengths do not match.
903
+
904
+ Parameters
905
+ ----------
906
+ columns: list of column names
907
+ data: list of array-likes containing the data column-wise.
908
+ """
909
+ if not self.index_col and len(columns) != len(data) and columns:
910
+ empty_str = is_object_dtype(data[-1]) and data[-1] == ""
911
+ # error: No overload variant of "__ror__" of "ndarray" matches
912
+ # argument type "ExtensionArray"
913
+ empty_str_or_na = empty_str | isna(data[-1]) # type: ignore[operator]
914
+ if len(columns) == len(data) - 1 and np.all(empty_str_or_na):
915
+ return
916
+ warnings.warn(
917
+ "Length of header or names does not match length of data. This leads "
918
+ "to a loss of data with index_col=False.",
919
+ ParserWarning,
920
+ stacklevel=find_stack_level(),
921
+ )
922
+
923
+ @overload
924
+ def _evaluate_usecols(
925
+ self,
926
+ usecols: set[int] | Callable[[Hashable], object],
927
+ names: Sequence[Hashable],
928
+ ) -> set[int]:
929
+ ...
930
+
931
+ @overload
932
+ def _evaluate_usecols(
933
+ self, usecols: set[str], names: Sequence[Hashable]
934
+ ) -> set[str]:
935
+ ...
936
+
937
+ @final
938
+ def _evaluate_usecols(
939
+ self,
940
+ usecols: Callable[[Hashable], object] | set[str] | set[int],
941
+ names: Sequence[Hashable],
942
+ ) -> set[str] | set[int]:
943
+ """
944
+ Check whether or not the 'usecols' parameter
945
+ is a callable. If so, enumerates the 'names'
946
+ parameter and returns a set of indices for
947
+ each entry in 'names' that evaluates to True.
948
+ If not a callable, returns 'usecols'.
949
+ """
950
+ if callable(usecols):
951
+ return {i for i, name in enumerate(names) if usecols(name)}
952
+ return usecols
953
+
954
+ @final
955
+ def _validate_usecols_names(self, usecols, names: Sequence):
956
+ """
957
+ Validates that all usecols are present in a given
958
+ list of names. If not, raise a ValueError that
959
+ shows what usecols are missing.
960
+
961
+ Parameters
962
+ ----------
963
+ usecols : iterable of usecols
964
+ The columns to validate are present in names.
965
+ names : iterable of names
966
+ The column names to check against.
967
+
968
+ Returns
969
+ -------
970
+ usecols : iterable of usecols
971
+ The `usecols` parameter if the validation succeeds.
972
+
973
+ Raises
974
+ ------
975
+ ValueError : Columns were missing. Error message will list them.
976
+ """
977
+ missing = [c for c in usecols if c not in names]
978
+ if len(missing) > 0:
979
+ raise ValueError(
980
+ f"Usecols do not match columns, columns expected but not found: "
981
+ f"{missing}"
982
+ )
983
+
984
+ return usecols
985
+
986
+ @final
987
+ def _validate_usecols_arg(self, usecols):
988
+ """
989
+ Validate the 'usecols' parameter.
990
+
991
+ Checks whether or not the 'usecols' parameter contains all integers
992
+ (column selection by index), strings (column by name) or is a callable.
993
+ Raises a ValueError if that is not the case.
994
+
995
+ Parameters
996
+ ----------
997
+ usecols : list-like, callable, or None
998
+ List of columns to use when parsing or a callable that can be used
999
+ to filter a list of table columns.
1000
+
1001
+ Returns
1002
+ -------
1003
+ usecols_tuple : tuple
1004
+ A tuple of (verified_usecols, usecols_dtype).
1005
+
1006
+ 'verified_usecols' is either a set if an array-like is passed in or
1007
+ 'usecols' if a callable or None is passed in.
1008
+
1009
+ 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like
1010
+ is passed in or None if a callable or None is passed in.
1011
+ """
1012
+ msg = (
1013
+ "'usecols' must either be list-like of all strings, all unicode, "
1014
+ "all integers or a callable."
1015
+ )
1016
+ if usecols is not None:
1017
+ if callable(usecols):
1018
+ return usecols, None
1019
+
1020
+ if not is_list_like(usecols):
1021
+ # see gh-20529
1022
+ #
1023
+ # Ensure it is iterable container but not string.
1024
+ raise ValueError(msg)
1025
+
1026
+ usecols_dtype = lib.infer_dtype(usecols, skipna=False)
1027
+
1028
+ if usecols_dtype not in ("empty", "integer", "string"):
1029
+ raise ValueError(msg)
1030
+
1031
+ usecols = set(usecols)
1032
+
1033
+ return usecols, usecols_dtype
1034
+ return usecols, None
1035
+
1036
+ @final
1037
+ def _clean_index_names(self, columns, index_col) -> tuple[list | None, list, list]:
1038
+ if not is_index_col(index_col):
1039
+ return None, columns, index_col
1040
+
1041
+ columns = list(columns)
1042
+
1043
+ # In case of no rows and multiindex columns we have to set index_names to
1044
+ # list of Nones GH#38292
1045
+ if not columns:
1046
+ return [None] * len(index_col), columns, index_col
1047
+
1048
+ cp_cols = list(columns)
1049
+ index_names: list[str | int | None] = []
1050
+
1051
+ # don't mutate
1052
+ index_col = list(index_col)
1053
+
1054
+ for i, c in enumerate(index_col):
1055
+ if isinstance(c, str):
1056
+ index_names.append(c)
1057
+ for j, name in enumerate(cp_cols):
1058
+ if name == c:
1059
+ index_col[i] = j
1060
+ columns.remove(name)
1061
+ break
1062
+ else:
1063
+ name = cp_cols[c]
1064
+ columns.remove(name)
1065
+ index_names.append(name)
1066
+
1067
+ # Only clean index names that were placeholders.
1068
+ for i, name in enumerate(index_names):
1069
+ if isinstance(name, str) and name in self.unnamed_cols:
1070
+ index_names[i] = None
1071
+
1072
+ return index_names, columns, index_col
1073
+
1074
+ @final
1075
+ def _get_empty_meta(self, columns, dtype: DtypeArg | None = None):
1076
+ columns = list(columns)
1077
+
1078
+ index_col = self.index_col
1079
+ index_names = self.index_names
1080
+
1081
+ # Convert `dtype` to a defaultdict of some kind.
1082
+ # This will enable us to write `dtype[col_name]`
1083
+ # without worrying about KeyError issues later on.
1084
+ dtype_dict: defaultdict[Hashable, Any]
1085
+ if not is_dict_like(dtype):
1086
+ # if dtype == None, default will be object.
1087
+ default_dtype = dtype or object
1088
+ dtype_dict = defaultdict(lambda: default_dtype)
1089
+ else:
1090
+ dtype = cast(dict, dtype)
1091
+ dtype_dict = defaultdict(
1092
+ lambda: object,
1093
+ {columns[k] if is_integer(k) else k: v for k, v in dtype.items()},
1094
+ )
1095
+
1096
+ # Even though we have no data, the "index" of the empty DataFrame
1097
+ # could for example still be an empty MultiIndex. Thus, we need to
1098
+ # check whether we have any index columns specified, via either:
1099
+ #
1100
+ # 1) index_col (column indices)
1101
+ # 2) index_names (column names)
1102
+ #
1103
+ # Both must be non-null to ensure a successful construction. Otherwise,
1104
+ # we have to create a generic empty Index.
1105
+ index: Index
1106
+ if (index_col is None or index_col is False) or index_names is None:
1107
+ index = default_index(0)
1108
+ else:
1109
+ data = [Series([], dtype=dtype_dict[name]) for name in index_names]
1110
+ index = ensure_index_from_sequences(data, names=index_names)
1111
+ index_col.sort()
1112
+
1113
+ for i, n in enumerate(index_col):
1114
+ columns.pop(n - i)
1115
+
1116
+ col_dict = {
1117
+ col_name: Series([], dtype=dtype_dict[col_name]) for col_name in columns
1118
+ }
1119
+
1120
+ return index, columns, col_dict
1121
+
1122
+
1123
+ def _make_date_converter(
1124
+ date_parser=lib.no_default,
1125
+ dayfirst: bool = False,
1126
+ cache_dates: bool = True,
1127
+ date_format: dict[Hashable, str] | str | None = None,
1128
+ ):
1129
+ if date_parser is not lib.no_default:
1130
+ warnings.warn(
1131
+ "The argument 'date_parser' is deprecated and will "
1132
+ "be removed in a future version. "
1133
+ "Please use 'date_format' instead, or read your data in as 'object' dtype "
1134
+ "and then call 'to_datetime'.",
1135
+ FutureWarning,
1136
+ stacklevel=find_stack_level(),
1137
+ )
1138
+ if date_parser is not lib.no_default and date_format is not None:
1139
+ raise TypeError("Cannot use both 'date_parser' and 'date_format'")
1140
+
1141
+ def unpack_if_single_element(arg):
1142
+ # NumPy 1.25 deprecation: https://github.com/numpy/numpy/pull/10615
1143
+ if isinstance(arg, np.ndarray) and arg.ndim == 1 and len(arg) == 1:
1144
+ return arg[0]
1145
+ return arg
1146
+
1147
+ def converter(*date_cols, col: Hashable):
1148
+ if len(date_cols) == 1 and date_cols[0].dtype.kind in "Mm":
1149
+ return date_cols[0]
1150
+
1151
+ if date_parser is lib.no_default:
1152
+ strs = parsing.concat_date_cols(date_cols)
1153
+ date_fmt = (
1154
+ date_format.get(col) if isinstance(date_format, dict) else date_format
1155
+ )
1156
+
1157
+ with warnings.catch_warnings():
1158
+ warnings.filterwarnings(
1159
+ "ignore",
1160
+ ".*parsing datetimes with mixed time zones will raise an error",
1161
+ category=FutureWarning,
1162
+ )
1163
+ str_objs = ensure_object(strs)
1164
+ try:
1165
+ result = tools.to_datetime(
1166
+ str_objs,
1167
+ format=date_fmt,
1168
+ utc=False,
1169
+ dayfirst=dayfirst,
1170
+ cache=cache_dates,
1171
+ )
1172
+ except (ValueError, TypeError):
1173
+ # test_usecols_with_parse_dates4
1174
+ return str_objs
1175
+
1176
+ if isinstance(result, DatetimeIndex):
1177
+ arr = result.to_numpy()
1178
+ arr.flags.writeable = True
1179
+ return arr
1180
+ return result._values
1181
+ else:
1182
+ try:
1183
+ with warnings.catch_warnings():
1184
+ warnings.filterwarnings(
1185
+ "ignore",
1186
+ ".*parsing datetimes with mixed time zones "
1187
+ "will raise an error",
1188
+ category=FutureWarning,
1189
+ )
1190
+ pre_parsed = date_parser(
1191
+ *(unpack_if_single_element(arg) for arg in date_cols)
1192
+ )
1193
+ try:
1194
+ result = tools.to_datetime(
1195
+ pre_parsed,
1196
+ cache=cache_dates,
1197
+ )
1198
+ except (ValueError, TypeError):
1199
+ # test_read_csv_with_custom_date_parser
1200
+ result = pre_parsed
1201
+ if isinstance(result, datetime.datetime):
1202
+ raise Exception("scalar parser")
1203
+ return result
1204
+ except Exception:
1205
+ # e.g. test_datetime_fractional_seconds
1206
+ with warnings.catch_warnings():
1207
+ warnings.filterwarnings(
1208
+ "ignore",
1209
+ ".*parsing datetimes with mixed time zones "
1210
+ "will raise an error",
1211
+ category=FutureWarning,
1212
+ )
1213
+ pre_parsed = parsing.try_parse_dates(
1214
+ parsing.concat_date_cols(date_cols),
1215
+ parser=date_parser,
1216
+ )
1217
+ try:
1218
+ return tools.to_datetime(pre_parsed)
1219
+ except (ValueError, TypeError):
1220
+ # TODO: not reached in tests 2023-10-27; needed?
1221
+ return pre_parsed
1222
+
1223
+ return converter
1224
+
1225
+
1226
+ parser_defaults = {
1227
+ "delimiter": None,
1228
+ "escapechar": None,
1229
+ "quotechar": '"',
1230
+ "quoting": csv.QUOTE_MINIMAL,
1231
+ "doublequote": True,
1232
+ "skipinitialspace": False,
1233
+ "lineterminator": None,
1234
+ "header": "infer",
1235
+ "index_col": None,
1236
+ "names": None,
1237
+ "skiprows": None,
1238
+ "skipfooter": 0,
1239
+ "nrows": None,
1240
+ "na_values": None,
1241
+ "keep_default_na": True,
1242
+ "true_values": None,
1243
+ "false_values": None,
1244
+ "converters": None,
1245
+ "dtype": None,
1246
+ "cache_dates": True,
1247
+ "thousands": None,
1248
+ "comment": None,
1249
+ "decimal": ".",
1250
+ # 'engine': 'c',
1251
+ "parse_dates": False,
1252
+ "keep_date_col": False,
1253
+ "dayfirst": False,
1254
+ "date_parser": lib.no_default,
1255
+ "date_format": None,
1256
+ "usecols": None,
1257
+ # 'iterator': False,
1258
+ "chunksize": None,
1259
+ "verbose": False,
1260
+ "encoding": None,
1261
+ "compression": None,
1262
+ "skip_blank_lines": True,
1263
+ "encoding_errors": "strict",
1264
+ "on_bad_lines": ParserBase.BadLineHandleMethod.ERROR,
1265
+ "dtype_backend": lib.no_default,
1266
+ }
1267
+
1268
+
1269
+ def _process_date_conversion(
1270
+ data_dict,
1271
+ converter: Callable,
1272
+ parse_spec,
1273
+ index_col,
1274
+ index_names,
1275
+ columns,
1276
+ keep_date_col: bool = False,
1277
+ dtype_backend=lib.no_default,
1278
+ ):
1279
+ def _isindex(colspec):
1280
+ return (isinstance(index_col, list) and colspec in index_col) or (
1281
+ isinstance(index_names, list) and colspec in index_names
1282
+ )
1283
+
1284
+ new_cols = []
1285
+ new_data = {}
1286
+
1287
+ orig_names = columns
1288
+ columns = list(columns)
1289
+
1290
+ date_cols = set()
1291
+
1292
+ if parse_spec is None or isinstance(parse_spec, bool):
1293
+ return data_dict, columns
1294
+
1295
+ if isinstance(parse_spec, list):
1296
+ # list of column lists
1297
+ for colspec in parse_spec:
1298
+ if is_scalar(colspec) or isinstance(colspec, tuple):
1299
+ if isinstance(colspec, int) and colspec not in data_dict:
1300
+ colspec = orig_names[colspec]
1301
+ if _isindex(colspec):
1302
+ continue
1303
+ elif dtype_backend == "pyarrow":
1304
+ import pyarrow as pa
1305
+
1306
+ dtype = data_dict[colspec].dtype
1307
+ if isinstance(dtype, ArrowDtype) and (
1308
+ pa.types.is_timestamp(dtype.pyarrow_dtype)
1309
+ or pa.types.is_date(dtype.pyarrow_dtype)
1310
+ ):
1311
+ continue
1312
+
1313
+ # Pyarrow engine returns Series which we need to convert to
1314
+ # numpy array before converter, its a no-op for other parsers
1315
+ data_dict[colspec] = converter(
1316
+ np.asarray(data_dict[colspec]), col=colspec
1317
+ )
1318
+ else:
1319
+ new_name, col, old_names = _try_convert_dates(
1320
+ converter, colspec, data_dict, orig_names
1321
+ )
1322
+ if new_name in data_dict:
1323
+ raise ValueError(f"New date column already in dict {new_name}")
1324
+ new_data[new_name] = col
1325
+ new_cols.append(new_name)
1326
+ date_cols.update(old_names)
1327
+
1328
+ elif isinstance(parse_spec, dict):
1329
+ # dict of new name to column list
1330
+ for new_name, colspec in parse_spec.items():
1331
+ if new_name in data_dict:
1332
+ raise ValueError(f"Date column {new_name} already in dict")
1333
+
1334
+ _, col, old_names = _try_convert_dates(
1335
+ converter,
1336
+ colspec,
1337
+ data_dict,
1338
+ orig_names,
1339
+ target_name=new_name,
1340
+ )
1341
+
1342
+ new_data[new_name] = col
1343
+
1344
+ # If original column can be converted to date we keep the converted values
1345
+ # This can only happen if values are from single column
1346
+ if len(colspec) == 1:
1347
+ new_data[colspec[0]] = col
1348
+
1349
+ new_cols.append(new_name)
1350
+ date_cols.update(old_names)
1351
+
1352
+ if isinstance(data_dict, DataFrame):
1353
+ data_dict = concat([DataFrame(new_data), data_dict], axis=1, copy=False)
1354
+ else:
1355
+ data_dict.update(new_data)
1356
+ new_cols.extend(columns)
1357
+
1358
+ if not keep_date_col:
1359
+ for c in list(date_cols):
1360
+ data_dict.pop(c)
1361
+ new_cols.remove(c)
1362
+
1363
+ return data_dict, new_cols
1364
+
1365
+
1366
+ def _try_convert_dates(
1367
+ parser: Callable, colspec, data_dict, columns, target_name: str | None = None
1368
+ ):
1369
+ colset = set(columns)
1370
+ colnames = []
1371
+
1372
+ for c in colspec:
1373
+ if c in colset:
1374
+ colnames.append(c)
1375
+ elif isinstance(c, int) and c not in columns:
1376
+ colnames.append(columns[c])
1377
+ else:
1378
+ colnames.append(c)
1379
+
1380
+ new_name: tuple | str
1381
+ if all(isinstance(x, tuple) for x in colnames):
1382
+ new_name = tuple(map("_".join, zip(*colnames)))
1383
+ else:
1384
+ new_name = "_".join([str(x) for x in colnames])
1385
+ to_parse = [np.asarray(data_dict[c]) for c in colnames if c in data_dict]
1386
+
1387
+ new_col = parser(*to_parse, col=new_name if target_name is None else target_name)
1388
+ return new_name, new_col, colnames
1389
+
1390
+
1391
+ def _get_na_values(col, na_values, na_fvalues, keep_default_na: bool):
1392
+ """
1393
+ Get the NaN values for a given column.
1394
+
1395
+ Parameters
1396
+ ----------
1397
+ col : str
1398
+ The name of the column.
1399
+ na_values : array-like, dict
1400
+ The object listing the NaN values as strings.
1401
+ na_fvalues : array-like, dict
1402
+ The object listing the NaN values as floats.
1403
+ keep_default_na : bool
1404
+ If `na_values` is a dict, and the column is not mapped in the
1405
+ dictionary, whether to return the default NaN values or the empty set.
1406
+
1407
+ Returns
1408
+ -------
1409
+ nan_tuple : A length-two tuple composed of
1410
+
1411
+ 1) na_values : the string NaN values for that column.
1412
+ 2) na_fvalues : the float NaN values for that column.
1413
+ """
1414
+ if isinstance(na_values, dict):
1415
+ if col in na_values:
1416
+ return na_values[col], na_fvalues[col]
1417
+ else:
1418
+ if keep_default_na:
1419
+ return STR_NA_VALUES, set()
1420
+
1421
+ return set(), set()
1422
+ else:
1423
+ return na_values, na_fvalues
1424
+
1425
+
1426
+ def _validate_parse_dates_arg(parse_dates):
1427
+ """
1428
+ Check whether or not the 'parse_dates' parameter
1429
+ is a non-boolean scalar. Raises a ValueError if
1430
+ that is the case.
1431
+ """
1432
+ msg = (
1433
+ "Only booleans, lists, and dictionaries are accepted "
1434
+ "for the 'parse_dates' parameter"
1435
+ )
1436
+
1437
+ if not (
1438
+ parse_dates is None
1439
+ or lib.is_bool(parse_dates)
1440
+ or isinstance(parse_dates, (list, dict))
1441
+ ):
1442
+ raise TypeError(msg)
1443
+
1444
+ return parse_dates
1445
+
1446
+
1447
+ def is_index_col(col) -> bool:
1448
+ return col is not None and col is not False
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/c_parser_wrapper.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections import defaultdict
4
+ from typing import TYPE_CHECKING
5
+ import warnings
6
+
7
+ import numpy as np
8
+
9
+ from pandas._libs import (
10
+ lib,
11
+ parsers,
12
+ )
13
+ from pandas.compat._optional import import_optional_dependency
14
+ from pandas.errors import DtypeWarning
15
+ from pandas.util._exceptions import find_stack_level
16
+
17
+ from pandas.core.dtypes.common import pandas_dtype
18
+ from pandas.core.dtypes.concat import (
19
+ concat_compat,
20
+ union_categoricals,
21
+ )
22
+ from pandas.core.dtypes.dtypes import CategoricalDtype
23
+
24
+ from pandas.core.indexes.api import ensure_index_from_sequences
25
+
26
+ from pandas.io.common import (
27
+ dedup_names,
28
+ is_potential_multi_index,
29
+ )
30
+ from pandas.io.parsers.base_parser import (
31
+ ParserBase,
32
+ ParserError,
33
+ is_index_col,
34
+ )
35
+
36
+ if TYPE_CHECKING:
37
+ from collections.abc import (
38
+ Hashable,
39
+ Mapping,
40
+ Sequence,
41
+ )
42
+
43
+ from pandas._typing import (
44
+ ArrayLike,
45
+ DtypeArg,
46
+ DtypeObj,
47
+ ReadCsvBuffer,
48
+ )
49
+
50
+ from pandas import (
51
+ Index,
52
+ MultiIndex,
53
+ )
54
+
55
+
56
+ class CParserWrapper(ParserBase):
57
+ low_memory: bool
58
+ _reader: parsers.TextReader
59
+
60
+ def __init__(self, src: ReadCsvBuffer[str], **kwds) -> None:
61
+ super().__init__(kwds)
62
+ self.kwds = kwds
63
+ kwds = kwds.copy()
64
+
65
+ self.low_memory = kwds.pop("low_memory", False)
66
+
67
+ # #2442
68
+ # error: Cannot determine type of 'index_col'
69
+ kwds["allow_leading_cols"] = (
70
+ self.index_col is not False # type: ignore[has-type]
71
+ )
72
+
73
+ # GH20529, validate usecol arg before TextReader
74
+ kwds["usecols"] = self.usecols
75
+
76
+ # Have to pass int, would break tests using TextReader directly otherwise :(
77
+ kwds["on_bad_lines"] = self.on_bad_lines.value
78
+
79
+ for key in (
80
+ "storage_options",
81
+ "encoding",
82
+ "memory_map",
83
+ "compression",
84
+ ):
85
+ kwds.pop(key, None)
86
+
87
+ kwds["dtype"] = ensure_dtype_objs(kwds.get("dtype", None))
88
+ if "dtype_backend" not in kwds or kwds["dtype_backend"] is lib.no_default:
89
+ kwds["dtype_backend"] = "numpy"
90
+ if kwds["dtype_backend"] == "pyarrow":
91
+ # Fail here loudly instead of in cython after reading
92
+ import_optional_dependency("pyarrow")
93
+ self._reader = parsers.TextReader(src, **kwds)
94
+
95
+ self.unnamed_cols = self._reader.unnamed_cols
96
+
97
+ # error: Cannot determine type of 'names'
98
+ passed_names = self.names is None # type: ignore[has-type]
99
+
100
+ if self._reader.header is None:
101
+ self.names = None
102
+ else:
103
+ # error: Cannot determine type of 'names'
104
+ # error: Cannot determine type of 'index_names'
105
+ (
106
+ self.names, # type: ignore[has-type]
107
+ self.index_names,
108
+ self.col_names,
109
+ passed_names,
110
+ ) = self._extract_multi_indexer_columns(
111
+ self._reader.header,
112
+ self.index_names, # type: ignore[has-type]
113
+ passed_names,
114
+ )
115
+
116
+ # error: Cannot determine type of 'names'
117
+ if self.names is None: # type: ignore[has-type]
118
+ self.names = list(range(self._reader.table_width))
119
+
120
+ # gh-9755
121
+ #
122
+ # need to set orig_names here first
123
+ # so that proper indexing can be done
124
+ # with _set_noconvert_columns
125
+ #
126
+ # once names has been filtered, we will
127
+ # then set orig_names again to names
128
+ # error: Cannot determine type of 'names'
129
+ self.orig_names = self.names[:] # type: ignore[has-type]
130
+
131
+ if self.usecols:
132
+ usecols = self._evaluate_usecols(self.usecols, self.orig_names)
133
+
134
+ # GH 14671
135
+ # assert for mypy, orig_names is List or None, None would error in issubset
136
+ assert self.orig_names is not None
137
+ if self.usecols_dtype == "string" and not set(usecols).issubset(
138
+ self.orig_names
139
+ ):
140
+ self._validate_usecols_names(usecols, self.orig_names)
141
+
142
+ # error: Cannot determine type of 'names'
143
+ if len(self.names) > len(usecols): # type: ignore[has-type]
144
+ # error: Cannot determine type of 'names'
145
+ self.names = [ # type: ignore[has-type]
146
+ n
147
+ # error: Cannot determine type of 'names'
148
+ for i, n in enumerate(self.names) # type: ignore[has-type]
149
+ if (i in usecols or n in usecols)
150
+ ]
151
+
152
+ # error: Cannot determine type of 'names'
153
+ if len(self.names) < len(usecols): # type: ignore[has-type]
154
+ # error: Cannot determine type of 'names'
155
+ self._validate_usecols_names(
156
+ usecols,
157
+ self.names, # type: ignore[has-type]
158
+ )
159
+
160
+ # error: Cannot determine type of 'names'
161
+ self._validate_parse_dates_presence(self.names) # type: ignore[has-type]
162
+ self._set_noconvert_columns()
163
+
164
+ # error: Cannot determine type of 'names'
165
+ self.orig_names = self.names # type: ignore[has-type]
166
+
167
+ if not self._has_complex_date_col:
168
+ # error: Cannot determine type of 'index_col'
169
+ if self._reader.leading_cols == 0 and is_index_col(
170
+ self.index_col # type: ignore[has-type]
171
+ ):
172
+ self._name_processed = True
173
+ (
174
+ index_names,
175
+ # error: Cannot determine type of 'names'
176
+ self.names, # type: ignore[has-type]
177
+ self.index_col,
178
+ ) = self._clean_index_names(
179
+ # error: Cannot determine type of 'names'
180
+ self.names, # type: ignore[has-type]
181
+ # error: Cannot determine type of 'index_col'
182
+ self.index_col, # type: ignore[has-type]
183
+ )
184
+
185
+ if self.index_names is None:
186
+ self.index_names = index_names
187
+
188
+ if self._reader.header is None and not passed_names:
189
+ assert self.index_names is not None
190
+ self.index_names = [None] * len(self.index_names)
191
+
192
+ self._implicit_index = self._reader.leading_cols > 0
193
+
194
+ def close(self) -> None:
195
+ # close handles opened by C parser
196
+ try:
197
+ self._reader.close()
198
+ except ValueError:
199
+ pass
200
+
201
+ def _set_noconvert_columns(self) -> None:
202
+ """
203
+ Set the columns that should not undergo dtype conversions.
204
+
205
+ Currently, any column that is involved with date parsing will not
206
+ undergo such conversions.
207
+ """
208
+ assert self.orig_names is not None
209
+ # error: Cannot determine type of 'names'
210
+
211
+ # much faster than using orig_names.index(x) xref GH#44106
212
+ names_dict = {x: i for i, x in enumerate(self.orig_names)}
213
+ col_indices = [names_dict[x] for x in self.names] # type: ignore[has-type]
214
+ # error: Cannot determine type of 'names'
215
+ noconvert_columns = self._set_noconvert_dtype_columns(
216
+ col_indices,
217
+ self.names, # type: ignore[has-type]
218
+ )
219
+ for col in noconvert_columns:
220
+ self._reader.set_noconvert(col)
221
+
222
+ def read(
223
+ self,
224
+ nrows: int | None = None,
225
+ ) -> tuple[
226
+ Index | MultiIndex | None,
227
+ Sequence[Hashable] | MultiIndex,
228
+ Mapping[Hashable, ArrayLike],
229
+ ]:
230
+ index: Index | MultiIndex | None
231
+ column_names: Sequence[Hashable] | MultiIndex
232
+ try:
233
+ if self.low_memory:
234
+ chunks = self._reader.read_low_memory(nrows)
235
+ # destructive to chunks
236
+ data = _concatenate_chunks(chunks)
237
+
238
+ else:
239
+ data = self._reader.read(nrows)
240
+ except StopIteration:
241
+ if self._first_chunk:
242
+ self._first_chunk = False
243
+ names = dedup_names(
244
+ self.orig_names,
245
+ is_potential_multi_index(self.orig_names, self.index_col),
246
+ )
247
+ index, columns, col_dict = self._get_empty_meta(
248
+ names,
249
+ dtype=self.dtype,
250
+ )
251
+ columns = self._maybe_make_multi_index_columns(columns, self.col_names)
252
+
253
+ if self.usecols is not None:
254
+ columns = self._filter_usecols(columns)
255
+
256
+ col_dict = {k: v for k, v in col_dict.items() if k in columns}
257
+
258
+ return index, columns, col_dict
259
+
260
+ else:
261
+ self.close()
262
+ raise
263
+
264
+ # Done with first read, next time raise StopIteration
265
+ self._first_chunk = False
266
+
267
+ # error: Cannot determine type of 'names'
268
+ names = self.names # type: ignore[has-type]
269
+
270
+ if self._reader.leading_cols:
271
+ if self._has_complex_date_col:
272
+ raise NotImplementedError("file structure not yet supported")
273
+
274
+ # implicit index, no index names
275
+ arrays = []
276
+
277
+ if self.index_col and self._reader.leading_cols != len(self.index_col):
278
+ raise ParserError(
279
+ "Could not construct index. Requested to use "
280
+ f"{len(self.index_col)} number of columns, but "
281
+ f"{self._reader.leading_cols} left to parse."
282
+ )
283
+
284
+ for i in range(self._reader.leading_cols):
285
+ if self.index_col is None:
286
+ values = data.pop(i)
287
+ else:
288
+ values = data.pop(self.index_col[i])
289
+
290
+ values = self._maybe_parse_dates(values, i, try_parse_dates=True)
291
+ arrays.append(values)
292
+
293
+ index = ensure_index_from_sequences(arrays)
294
+
295
+ if self.usecols is not None:
296
+ names = self._filter_usecols(names)
297
+
298
+ names = dedup_names(names, is_potential_multi_index(names, self.index_col))
299
+
300
+ # rename dict keys
301
+ data_tups = sorted(data.items())
302
+ data = {k: v for k, (i, v) in zip(names, data_tups)}
303
+
304
+ column_names, date_data = self._do_date_conversions(names, data)
305
+
306
+ # maybe create a mi on the columns
307
+ column_names = self._maybe_make_multi_index_columns(
308
+ column_names, self.col_names
309
+ )
310
+
311
+ else:
312
+ # rename dict keys
313
+ data_tups = sorted(data.items())
314
+
315
+ # ugh, mutation
316
+
317
+ # assert for mypy, orig_names is List or None, None would error in list(...)
318
+ assert self.orig_names is not None
319
+ names = list(self.orig_names)
320
+ names = dedup_names(names, is_potential_multi_index(names, self.index_col))
321
+
322
+ if self.usecols is not None:
323
+ names = self._filter_usecols(names)
324
+
325
+ # columns as list
326
+ alldata = [x[1] for x in data_tups]
327
+ if self.usecols is None:
328
+ self._check_data_length(names, alldata)
329
+
330
+ data = {k: v for k, (i, v) in zip(names, data_tups)}
331
+
332
+ names, date_data = self._do_date_conversions(names, data)
333
+ index, column_names = self._make_index(date_data, alldata, names)
334
+
335
+ return index, column_names, date_data
336
+
337
+ def _filter_usecols(self, names: Sequence[Hashable]) -> Sequence[Hashable]:
338
+ # hackish
339
+ usecols = self._evaluate_usecols(self.usecols, names)
340
+ if usecols is not None and len(names) != len(usecols):
341
+ names = [
342
+ name for i, name in enumerate(names) if i in usecols or name in usecols
343
+ ]
344
+ return names
345
+
346
+ def _maybe_parse_dates(self, values, index: int, try_parse_dates: bool = True):
347
+ if try_parse_dates and self._should_parse_dates(index):
348
+ values = self._date_conv(
349
+ values,
350
+ col=self.index_names[index] if self.index_names is not None else None,
351
+ )
352
+ return values
353
+
354
+
355
+ def _concatenate_chunks(chunks: list[dict[int, ArrayLike]]) -> dict:
356
+ """
357
+ Concatenate chunks of data read with low_memory=True.
358
+
359
+ The tricky part is handling Categoricals, where different chunks
360
+ may have different inferred categories.
361
+ """
362
+ names = list(chunks[0].keys())
363
+ warning_columns = []
364
+
365
+ result: dict = {}
366
+ for name in names:
367
+ arrs = [chunk.pop(name) for chunk in chunks]
368
+ # Check each arr for consistent types.
369
+ dtypes = {a.dtype for a in arrs}
370
+ non_cat_dtypes = {x for x in dtypes if not isinstance(x, CategoricalDtype)}
371
+
372
+ dtype = dtypes.pop()
373
+ if isinstance(dtype, CategoricalDtype):
374
+ result[name] = union_categoricals(arrs, sort_categories=False)
375
+ else:
376
+ result[name] = concat_compat(arrs)
377
+ if len(non_cat_dtypes) > 1 and result[name].dtype == np.dtype(object):
378
+ warning_columns.append(str(name))
379
+
380
+ if warning_columns:
381
+ warning_names = ",".join(warning_columns)
382
+ warning_message = " ".join(
383
+ [
384
+ f"Columns ({warning_names}) have mixed types. "
385
+ f"Specify dtype option on import or set low_memory=False."
386
+ ]
387
+ )
388
+ warnings.warn(warning_message, DtypeWarning, stacklevel=find_stack_level())
389
+ return result
390
+
391
+
392
+ def ensure_dtype_objs(
393
+ dtype: DtypeArg | dict[Hashable, DtypeArg] | None
394
+ ) -> DtypeObj | dict[Hashable, DtypeObj] | None:
395
+ """
396
+ Ensure we have either None, a dtype object, or a dictionary mapping to
397
+ dtype objects.
398
+ """
399
+ if isinstance(dtype, defaultdict):
400
+ # "None" not callable [misc]
401
+ default_dtype = pandas_dtype(dtype.default_factory()) # type: ignore[misc]
402
+ dtype_converted: defaultdict = defaultdict(lambda: default_dtype)
403
+ for key in dtype.keys():
404
+ dtype_converted[key] = pandas_dtype(dtype[key])
405
+ return dtype_converted
406
+ elif isinstance(dtype, dict):
407
+ return {k: pandas_dtype(dtype[k]) for k in dtype}
408
+ elif dtype is not None:
409
+ return pandas_dtype(dtype)
410
+ return dtype
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/python_parser.py ADDED
@@ -0,0 +1,1387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections import (
4
+ abc,
5
+ defaultdict,
6
+ )
7
+ from collections.abc import (
8
+ Hashable,
9
+ Iterator,
10
+ Mapping,
11
+ Sequence,
12
+ )
13
+ import csv
14
+ from io import StringIO
15
+ import re
16
+ from typing import (
17
+ IO,
18
+ TYPE_CHECKING,
19
+ DefaultDict,
20
+ Literal,
21
+ cast,
22
+ )
23
+ import warnings
24
+
25
+ import numpy as np
26
+
27
+ from pandas._libs import lib
28
+ from pandas.errors import (
29
+ EmptyDataError,
30
+ ParserError,
31
+ ParserWarning,
32
+ )
33
+ from pandas.util._decorators import cache_readonly
34
+ from pandas.util._exceptions import find_stack_level
35
+
36
+ from pandas.core.dtypes.common import (
37
+ is_bool_dtype,
38
+ is_integer,
39
+ is_numeric_dtype,
40
+ )
41
+ from pandas.core.dtypes.inference import is_dict_like
42
+
43
+ from pandas.io.common import (
44
+ dedup_names,
45
+ is_potential_multi_index,
46
+ )
47
+ from pandas.io.parsers.base_parser import (
48
+ ParserBase,
49
+ parser_defaults,
50
+ )
51
+
52
+ if TYPE_CHECKING:
53
+ from pandas._typing import (
54
+ ArrayLike,
55
+ ReadCsvBuffer,
56
+ Scalar,
57
+ )
58
+
59
+ from pandas import (
60
+ Index,
61
+ MultiIndex,
62
+ )
63
+
64
+ # BOM character (byte order mark)
65
+ # This exists at the beginning of a file to indicate endianness
66
+ # of a file (stream). Unfortunately, this marker screws up parsing,
67
+ # so we need to remove it if we see it.
68
+ _BOM = "\ufeff"
69
+
70
+
71
+ class PythonParser(ParserBase):
72
+ _no_thousands_columns: set[int]
73
+
74
+ def __init__(self, f: ReadCsvBuffer[str] | list, **kwds) -> None:
75
+ """
76
+ Workhorse function for processing nested list into DataFrame
77
+ """
78
+ super().__init__(kwds)
79
+
80
+ self.data: Iterator[str] | None = None
81
+ self.buf: list = []
82
+ self.pos = 0
83
+ self.line_pos = 0
84
+
85
+ self.skiprows = kwds["skiprows"]
86
+
87
+ if callable(self.skiprows):
88
+ self.skipfunc = self.skiprows
89
+ else:
90
+ self.skipfunc = lambda x: x in self.skiprows
91
+
92
+ self.skipfooter = _validate_skipfooter_arg(kwds["skipfooter"])
93
+ self.delimiter = kwds["delimiter"]
94
+
95
+ self.quotechar = kwds["quotechar"]
96
+ if isinstance(self.quotechar, str):
97
+ self.quotechar = str(self.quotechar)
98
+
99
+ self.escapechar = kwds["escapechar"]
100
+ self.doublequote = kwds["doublequote"]
101
+ self.skipinitialspace = kwds["skipinitialspace"]
102
+ self.lineterminator = kwds["lineterminator"]
103
+ self.quoting = kwds["quoting"]
104
+ self.skip_blank_lines = kwds["skip_blank_lines"]
105
+
106
+ self.has_index_names = False
107
+ if "has_index_names" in kwds:
108
+ self.has_index_names = kwds["has_index_names"]
109
+
110
+ self.verbose = kwds["verbose"]
111
+
112
+ self.thousands = kwds["thousands"]
113
+ self.decimal = kwds["decimal"]
114
+
115
+ self.comment = kwds["comment"]
116
+
117
+ # Set self.data to something that can read lines.
118
+ if isinstance(f, list):
119
+ # read_excel: f is a list
120
+ self.data = cast(Iterator[str], f)
121
+ else:
122
+ assert hasattr(f, "readline")
123
+ self.data = self._make_reader(f)
124
+
125
+ # Get columns in two steps: infer from data, then
126
+ # infer column indices from self.usecols if it is specified.
127
+ self._col_indices: list[int] | None = None
128
+ columns: list[list[Scalar | None]]
129
+ (
130
+ columns,
131
+ self.num_original_columns,
132
+ self.unnamed_cols,
133
+ ) = self._infer_columns()
134
+
135
+ # Now self.columns has the set of columns that we will process.
136
+ # The original set is stored in self.original_columns.
137
+ # error: Cannot determine type of 'index_names'
138
+ (
139
+ self.columns,
140
+ self.index_names,
141
+ self.col_names,
142
+ _,
143
+ ) = self._extract_multi_indexer_columns(
144
+ columns,
145
+ self.index_names, # type: ignore[has-type]
146
+ )
147
+
148
+ # get popped off for index
149
+ self.orig_names: list[Hashable] = list(self.columns)
150
+
151
+ # needs to be cleaned/refactored
152
+ # multiple date column thing turning into a real spaghetti factory
153
+
154
+ if not self._has_complex_date_col:
155
+ (index_names, self.orig_names, self.columns) = self._get_index_name()
156
+ self._name_processed = True
157
+ if self.index_names is None:
158
+ self.index_names = index_names
159
+
160
+ if self._col_indices is None:
161
+ self._col_indices = list(range(len(self.columns)))
162
+
163
+ self._parse_date_cols = self._validate_parse_dates_presence(self.columns)
164
+ self._no_thousands_columns = self._set_no_thousand_columns()
165
+
166
+ if len(self.decimal) != 1:
167
+ raise ValueError("Only length-1 decimal markers supported")
168
+
169
+ @cache_readonly
170
+ def num(self) -> re.Pattern:
171
+ decimal = re.escape(self.decimal)
172
+ if self.thousands is None:
173
+ regex = rf"^[\-\+]?[0-9]*({decimal}[0-9]*)?([0-9]?(E|e)\-?[0-9]+)?$"
174
+ else:
175
+ thousands = re.escape(self.thousands)
176
+ regex = (
177
+ rf"^[\-\+]?([0-9]+{thousands}|[0-9])*({decimal}[0-9]*)?"
178
+ rf"([0-9]?(E|e)\-?[0-9]+)?$"
179
+ )
180
+ return re.compile(regex)
181
+
182
+ def _make_reader(self, f: IO[str] | ReadCsvBuffer[str]):
183
+ sep = self.delimiter
184
+
185
+ if sep is None or len(sep) == 1:
186
+ if self.lineterminator:
187
+ raise ValueError(
188
+ "Custom line terminators not supported in python parser (yet)"
189
+ )
190
+
191
+ class MyDialect(csv.Dialect):
192
+ delimiter = self.delimiter
193
+ quotechar = self.quotechar
194
+ escapechar = self.escapechar
195
+ doublequote = self.doublequote
196
+ skipinitialspace = self.skipinitialspace
197
+ quoting = self.quoting
198
+ lineterminator = "\n"
199
+
200
+ dia = MyDialect
201
+
202
+ if sep is not None:
203
+ dia.delimiter = sep
204
+ else:
205
+ # attempt to sniff the delimiter from the first valid line,
206
+ # i.e. no comment line and not in skiprows
207
+ line = f.readline()
208
+ lines = self._check_comments([[line]])[0]
209
+ while self.skipfunc(self.pos) or not lines:
210
+ self.pos += 1
211
+ line = f.readline()
212
+ lines = self._check_comments([[line]])[0]
213
+ lines_str = cast(list[str], lines)
214
+
215
+ # since `line` was a string, lines will be a list containing
216
+ # only a single string
217
+ line = lines_str[0]
218
+
219
+ self.pos += 1
220
+ self.line_pos += 1
221
+ sniffed = csv.Sniffer().sniff(line)
222
+ dia.delimiter = sniffed.delimiter
223
+
224
+ # Note: encoding is irrelevant here
225
+ line_rdr = csv.reader(StringIO(line), dialect=dia)
226
+ self.buf.extend(list(line_rdr))
227
+
228
+ # Note: encoding is irrelevant here
229
+ reader = csv.reader(f, dialect=dia, strict=True)
230
+
231
+ else:
232
+
233
+ def _read():
234
+ line = f.readline()
235
+ pat = re.compile(sep)
236
+
237
+ yield pat.split(line.strip())
238
+
239
+ for line in f:
240
+ yield pat.split(line.strip())
241
+
242
+ reader = _read()
243
+
244
+ return reader
245
+
246
+ def read(
247
+ self, rows: int | None = None
248
+ ) -> tuple[
249
+ Index | None, Sequence[Hashable] | MultiIndex, Mapping[Hashable, ArrayLike]
250
+ ]:
251
+ try:
252
+ content = self._get_lines(rows)
253
+ except StopIteration:
254
+ if self._first_chunk:
255
+ content = []
256
+ else:
257
+ self.close()
258
+ raise
259
+
260
+ # done with first read, next time raise StopIteration
261
+ self._first_chunk = False
262
+
263
+ columns: Sequence[Hashable] = list(self.orig_names)
264
+ if not len(content): # pragma: no cover
265
+ # DataFrame with the right metadata, even though it's length 0
266
+ # error: Cannot determine type of 'index_col'
267
+ names = dedup_names(
268
+ self.orig_names,
269
+ is_potential_multi_index(
270
+ self.orig_names,
271
+ self.index_col, # type: ignore[has-type]
272
+ ),
273
+ )
274
+ index, columns, col_dict = self._get_empty_meta(
275
+ names,
276
+ self.dtype,
277
+ )
278
+ conv_columns = self._maybe_make_multi_index_columns(columns, self.col_names)
279
+ return index, conv_columns, col_dict
280
+
281
+ # handle new style for names in index
282
+ count_empty_content_vals = count_empty_vals(content[0])
283
+ indexnamerow = None
284
+ if self.has_index_names and count_empty_content_vals == len(columns):
285
+ indexnamerow = content[0]
286
+ content = content[1:]
287
+
288
+ alldata = self._rows_to_cols(content)
289
+ data, columns = self._exclude_implicit_index(alldata)
290
+
291
+ conv_data = self._convert_data(data)
292
+ columns, conv_data = self._do_date_conversions(columns, conv_data)
293
+
294
+ index, result_columns = self._make_index(
295
+ conv_data, alldata, columns, indexnamerow
296
+ )
297
+
298
+ return index, result_columns, conv_data
299
+
300
+ def _exclude_implicit_index(
301
+ self,
302
+ alldata: list[np.ndarray],
303
+ ) -> tuple[Mapping[Hashable, np.ndarray], Sequence[Hashable]]:
304
+ # error: Cannot determine type of 'index_col'
305
+ names = dedup_names(
306
+ self.orig_names,
307
+ is_potential_multi_index(
308
+ self.orig_names,
309
+ self.index_col, # type: ignore[has-type]
310
+ ),
311
+ )
312
+
313
+ offset = 0
314
+ if self._implicit_index:
315
+ # error: Cannot determine type of 'index_col'
316
+ offset = len(self.index_col) # type: ignore[has-type]
317
+
318
+ len_alldata = len(alldata)
319
+ self._check_data_length(names, alldata)
320
+
321
+ return {
322
+ name: alldata[i + offset] for i, name in enumerate(names) if i < len_alldata
323
+ }, names
324
+
325
+ # legacy
326
+ def get_chunk(
327
+ self, size: int | None = None
328
+ ) -> tuple[
329
+ Index | None, Sequence[Hashable] | MultiIndex, Mapping[Hashable, ArrayLike]
330
+ ]:
331
+ if size is None:
332
+ # error: "PythonParser" has no attribute "chunksize"
333
+ size = self.chunksize # type: ignore[attr-defined]
334
+ return self.read(rows=size)
335
+
336
+ def _convert_data(
337
+ self,
338
+ data: Mapping[Hashable, np.ndarray],
339
+ ) -> Mapping[Hashable, ArrayLike]:
340
+ # apply converters
341
+ clean_conv = self._clean_mapping(self.converters)
342
+ clean_dtypes = self._clean_mapping(self.dtype)
343
+
344
+ # Apply NA values.
345
+ clean_na_values = {}
346
+ clean_na_fvalues = {}
347
+
348
+ if isinstance(self.na_values, dict):
349
+ for col in self.na_values:
350
+ na_value = self.na_values[col]
351
+ na_fvalue = self.na_fvalues[col]
352
+
353
+ if isinstance(col, int) and col not in self.orig_names:
354
+ col = self.orig_names[col]
355
+
356
+ clean_na_values[col] = na_value
357
+ clean_na_fvalues[col] = na_fvalue
358
+ else:
359
+ clean_na_values = self.na_values
360
+ clean_na_fvalues = self.na_fvalues
361
+
362
+ return self._convert_to_ndarrays(
363
+ data,
364
+ clean_na_values,
365
+ clean_na_fvalues,
366
+ self.verbose,
367
+ clean_conv,
368
+ clean_dtypes,
369
+ )
370
+
371
+ @cache_readonly
372
+ def _have_mi_columns(self) -> bool:
373
+ if self.header is None:
374
+ return False
375
+
376
+ header = self.header
377
+ if isinstance(header, (list, tuple, np.ndarray)):
378
+ return len(header) > 1
379
+ else:
380
+ return False
381
+
382
+ def _infer_columns(
383
+ self,
384
+ ) -> tuple[list[list[Scalar | None]], int, set[Scalar | None]]:
385
+ names = self.names
386
+ num_original_columns = 0
387
+ clear_buffer = True
388
+ unnamed_cols: set[Scalar | None] = set()
389
+
390
+ if self.header is not None:
391
+ header = self.header
392
+ have_mi_columns = self._have_mi_columns
393
+
394
+ if isinstance(header, (list, tuple, np.ndarray)):
395
+ # we have a mi columns, so read an extra line
396
+ if have_mi_columns:
397
+ header = list(header) + [header[-1] + 1]
398
+ else:
399
+ header = [header]
400
+
401
+ columns: list[list[Scalar | None]] = []
402
+ for level, hr in enumerate(header):
403
+ try:
404
+ line = self._buffered_line()
405
+
406
+ while self.line_pos <= hr:
407
+ line = self._next_line()
408
+
409
+ except StopIteration as err:
410
+ if 0 < self.line_pos <= hr and (
411
+ not have_mi_columns or hr != header[-1]
412
+ ):
413
+ # If no rows we want to raise a different message and if
414
+ # we have mi columns, the last line is not part of the header
415
+ joi = list(map(str, header[:-1] if have_mi_columns else header))
416
+ msg = f"[{','.join(joi)}], len of {len(joi)}, "
417
+ raise ValueError(
418
+ f"Passed header={msg}"
419
+ f"but only {self.line_pos} lines in file"
420
+ ) from err
421
+
422
+ # We have an empty file, so check
423
+ # if columns are provided. That will
424
+ # serve as the 'line' for parsing
425
+ if have_mi_columns and hr > 0:
426
+ if clear_buffer:
427
+ self._clear_buffer()
428
+ columns.append([None] * len(columns[-1]))
429
+ return columns, num_original_columns, unnamed_cols
430
+
431
+ if not self.names:
432
+ raise EmptyDataError("No columns to parse from file") from err
433
+
434
+ line = self.names[:]
435
+
436
+ this_columns: list[Scalar | None] = []
437
+ this_unnamed_cols = []
438
+
439
+ for i, c in enumerate(line):
440
+ if c == "":
441
+ if have_mi_columns:
442
+ col_name = f"Unnamed: {i}_level_{level}"
443
+ else:
444
+ col_name = f"Unnamed: {i}"
445
+
446
+ this_unnamed_cols.append(i)
447
+ this_columns.append(col_name)
448
+ else:
449
+ this_columns.append(c)
450
+
451
+ if not have_mi_columns:
452
+ counts: DefaultDict = defaultdict(int)
453
+ # Ensure that regular columns are used before unnamed ones
454
+ # to keep given names and mangle unnamed columns
455
+ col_loop_order = [
456
+ i
457
+ for i in range(len(this_columns))
458
+ if i not in this_unnamed_cols
459
+ ] + this_unnamed_cols
460
+
461
+ # TODO: Use pandas.io.common.dedup_names instead (see #50371)
462
+ for i in col_loop_order:
463
+ col = this_columns[i]
464
+ old_col = col
465
+ cur_count = counts[col]
466
+
467
+ if cur_count > 0:
468
+ while cur_count > 0:
469
+ counts[old_col] = cur_count + 1
470
+ col = f"{old_col}.{cur_count}"
471
+ if col in this_columns:
472
+ cur_count += 1
473
+ else:
474
+ cur_count = counts[col]
475
+
476
+ if (
477
+ self.dtype is not None
478
+ and is_dict_like(self.dtype)
479
+ and self.dtype.get(old_col) is not None
480
+ and self.dtype.get(col) is None
481
+ ):
482
+ self.dtype.update({col: self.dtype.get(old_col)})
483
+ this_columns[i] = col
484
+ counts[col] = cur_count + 1
485
+ elif have_mi_columns:
486
+ # if we have grabbed an extra line, but its not in our
487
+ # format so save in the buffer, and create an blank extra
488
+ # line for the rest of the parsing code
489
+ if hr == header[-1]:
490
+ lc = len(this_columns)
491
+ # error: Cannot determine type of 'index_col'
492
+ sic = self.index_col # type: ignore[has-type]
493
+ ic = len(sic) if sic is not None else 0
494
+ unnamed_count = len(this_unnamed_cols)
495
+
496
+ # if wrong number of blanks or no index, not our format
497
+ if (lc != unnamed_count and lc - ic > unnamed_count) or ic == 0:
498
+ clear_buffer = False
499
+ this_columns = [None] * lc
500
+ self.buf = [self.buf[-1]]
501
+
502
+ columns.append(this_columns)
503
+ unnamed_cols.update({this_columns[i] for i in this_unnamed_cols})
504
+
505
+ if len(columns) == 1:
506
+ num_original_columns = len(this_columns)
507
+
508
+ if clear_buffer:
509
+ self._clear_buffer()
510
+
511
+ first_line: list[Scalar] | None
512
+ if names is not None:
513
+ # Read first row after header to check if data are longer
514
+ try:
515
+ first_line = self._next_line()
516
+ except StopIteration:
517
+ first_line = None
518
+
519
+ len_first_data_row = 0 if first_line is None else len(first_line)
520
+
521
+ if len(names) > len(columns[0]) and len(names) > len_first_data_row:
522
+ raise ValueError(
523
+ "Number of passed names did not match "
524
+ "number of header fields in the file"
525
+ )
526
+ if len(columns) > 1:
527
+ raise TypeError("Cannot pass names with multi-index columns")
528
+
529
+ if self.usecols is not None:
530
+ # Set _use_cols. We don't store columns because they are
531
+ # overwritten.
532
+ self._handle_usecols(columns, names, num_original_columns)
533
+ else:
534
+ num_original_columns = len(names)
535
+ if self._col_indices is not None and len(names) != len(
536
+ self._col_indices
537
+ ):
538
+ columns = [[names[i] for i in sorted(self._col_indices)]]
539
+ else:
540
+ columns = [names]
541
+ else:
542
+ columns = self._handle_usecols(
543
+ columns, columns[0], num_original_columns
544
+ )
545
+ else:
546
+ ncols = len(self._header_line)
547
+ num_original_columns = ncols
548
+
549
+ if not names:
550
+ columns = [list(range(ncols))]
551
+ columns = self._handle_usecols(columns, columns[0], ncols)
552
+ elif self.usecols is None or len(names) >= ncols:
553
+ columns = self._handle_usecols([names], names, ncols)
554
+ num_original_columns = len(names)
555
+ elif not callable(self.usecols) and len(names) != len(self.usecols):
556
+ raise ValueError(
557
+ "Number of passed names did not match number of "
558
+ "header fields in the file"
559
+ )
560
+ else:
561
+ # Ignore output but set used columns.
562
+ columns = [names]
563
+ self._handle_usecols(columns, columns[0], ncols)
564
+
565
+ return columns, num_original_columns, unnamed_cols
566
+
567
+ @cache_readonly
568
+ def _header_line(self):
569
+ # Store line for reuse in _get_index_name
570
+ if self.header is not None:
571
+ return None
572
+
573
+ try:
574
+ line = self._buffered_line()
575
+ except StopIteration as err:
576
+ if not self.names:
577
+ raise EmptyDataError("No columns to parse from file") from err
578
+
579
+ line = self.names[:]
580
+ return line
581
+
582
+ def _handle_usecols(
583
+ self,
584
+ columns: list[list[Scalar | None]],
585
+ usecols_key: list[Scalar | None],
586
+ num_original_columns: int,
587
+ ) -> list[list[Scalar | None]]:
588
+ """
589
+ Sets self._col_indices
590
+
591
+ usecols_key is used if there are string usecols.
592
+ """
593
+ col_indices: set[int] | list[int]
594
+ if self.usecols is not None:
595
+ if callable(self.usecols):
596
+ col_indices = self._evaluate_usecols(self.usecols, usecols_key)
597
+ elif any(isinstance(u, str) for u in self.usecols):
598
+ if len(columns) > 1:
599
+ raise ValueError(
600
+ "If using multiple headers, usecols must be integers."
601
+ )
602
+ col_indices = []
603
+
604
+ for col in self.usecols:
605
+ if isinstance(col, str):
606
+ try:
607
+ col_indices.append(usecols_key.index(col))
608
+ except ValueError:
609
+ self._validate_usecols_names(self.usecols, usecols_key)
610
+ else:
611
+ col_indices.append(col)
612
+ else:
613
+ missing_usecols = [
614
+ col for col in self.usecols if col >= num_original_columns
615
+ ]
616
+ if missing_usecols:
617
+ raise ParserError(
618
+ "Defining usecols with out-of-bounds indices is not allowed. "
619
+ f"{missing_usecols} are out-of-bounds.",
620
+ )
621
+ col_indices = self.usecols
622
+
623
+ columns = [
624
+ [n for i, n in enumerate(column) if i in col_indices]
625
+ for column in columns
626
+ ]
627
+ self._col_indices = sorted(col_indices)
628
+ return columns
629
+
630
+ def _buffered_line(self) -> list[Scalar]:
631
+ """
632
+ Return a line from buffer, filling buffer if required.
633
+ """
634
+ if len(self.buf) > 0:
635
+ return self.buf[0]
636
+ else:
637
+ return self._next_line()
638
+
639
+ def _check_for_bom(self, first_row: list[Scalar]) -> list[Scalar]:
640
+ """
641
+ Checks whether the file begins with the BOM character.
642
+ If it does, remove it. In addition, if there is quoting
643
+ in the field subsequent to the BOM, remove it as well
644
+ because it technically takes place at the beginning of
645
+ the name, not the middle of it.
646
+ """
647
+ # first_row will be a list, so we need to check
648
+ # that that list is not empty before proceeding.
649
+ if not first_row:
650
+ return first_row
651
+
652
+ # The first element of this row is the one that could have the
653
+ # BOM that we want to remove. Check that the first element is a
654
+ # string before proceeding.
655
+ if not isinstance(first_row[0], str):
656
+ return first_row
657
+
658
+ # Check that the string is not empty, as that would
659
+ # obviously not have a BOM at the start of it.
660
+ if not first_row[0]:
661
+ return first_row
662
+
663
+ # Since the string is non-empty, check that it does
664
+ # in fact begin with a BOM.
665
+ first_elt = first_row[0][0]
666
+ if first_elt != _BOM:
667
+ return first_row
668
+
669
+ first_row_bom = first_row[0]
670
+ new_row: str
671
+
672
+ if len(first_row_bom) > 1 and first_row_bom[1] == self.quotechar:
673
+ start = 2
674
+ quote = first_row_bom[1]
675
+ end = first_row_bom[2:].index(quote) + 2
676
+
677
+ # Extract the data between the quotation marks
678
+ new_row = first_row_bom[start:end]
679
+
680
+ # Extract any remaining data after the second
681
+ # quotation mark.
682
+ if len(first_row_bom) > end + 1:
683
+ new_row += first_row_bom[end + 1 :]
684
+
685
+ else:
686
+ # No quotation so just remove BOM from first element
687
+ new_row = first_row_bom[1:]
688
+
689
+ new_row_list: list[Scalar] = [new_row]
690
+ return new_row_list + first_row[1:]
691
+
692
+ def _is_line_empty(self, line: list[Scalar]) -> bool:
693
+ """
694
+ Check if a line is empty or not.
695
+
696
+ Parameters
697
+ ----------
698
+ line : str, array-like
699
+ The line of data to check.
700
+
701
+ Returns
702
+ -------
703
+ boolean : Whether or not the line is empty.
704
+ """
705
+ return not line or all(not x for x in line)
706
+
707
+ def _next_line(self) -> list[Scalar]:
708
+ if isinstance(self.data, list):
709
+ while self.skipfunc(self.pos):
710
+ if self.pos >= len(self.data):
711
+ break
712
+ self.pos += 1
713
+
714
+ while True:
715
+ try:
716
+ line = self._check_comments([self.data[self.pos]])[0]
717
+ self.pos += 1
718
+ # either uncommented or blank to begin with
719
+ if not self.skip_blank_lines and (
720
+ self._is_line_empty(self.data[self.pos - 1]) or line
721
+ ):
722
+ break
723
+ if self.skip_blank_lines:
724
+ ret = self._remove_empty_lines([line])
725
+ if ret:
726
+ line = ret[0]
727
+ break
728
+ except IndexError:
729
+ raise StopIteration
730
+ else:
731
+ while self.skipfunc(self.pos):
732
+ self.pos += 1
733
+ # assert for mypy, data is Iterator[str] or None, would error in next
734
+ assert self.data is not None
735
+ next(self.data)
736
+
737
+ while True:
738
+ orig_line = self._next_iter_line(row_num=self.pos + 1)
739
+ self.pos += 1
740
+
741
+ if orig_line is not None:
742
+ line = self._check_comments([orig_line])[0]
743
+
744
+ if self.skip_blank_lines:
745
+ ret = self._remove_empty_lines([line])
746
+
747
+ if ret:
748
+ line = ret[0]
749
+ break
750
+ elif self._is_line_empty(orig_line) or line:
751
+ break
752
+
753
+ # This was the first line of the file,
754
+ # which could contain the BOM at the
755
+ # beginning of it.
756
+ if self.pos == 1:
757
+ line = self._check_for_bom(line)
758
+
759
+ self.line_pos += 1
760
+ self.buf.append(line)
761
+ return line
762
+
763
+ def _alert_malformed(self, msg: str, row_num: int) -> None:
764
+ """
765
+ Alert a user about a malformed row, depending on value of
766
+ `self.on_bad_lines` enum.
767
+
768
+ If `self.on_bad_lines` is ERROR, the alert will be `ParserError`.
769
+ If `self.on_bad_lines` is WARN, the alert will be printed out.
770
+
771
+ Parameters
772
+ ----------
773
+ msg: str
774
+ The error message to display.
775
+ row_num: int
776
+ The row number where the parsing error occurred.
777
+ Because this row number is displayed, we 1-index,
778
+ even though we 0-index internally.
779
+ """
780
+ if self.on_bad_lines == self.BadLineHandleMethod.ERROR:
781
+ raise ParserError(msg)
782
+ if self.on_bad_lines == self.BadLineHandleMethod.WARN:
783
+ warnings.warn(
784
+ f"Skipping line {row_num}: {msg}\n",
785
+ ParserWarning,
786
+ stacklevel=find_stack_level(),
787
+ )
788
+
789
+ def _next_iter_line(self, row_num: int) -> list[Scalar] | None:
790
+ """
791
+ Wrapper around iterating through `self.data` (CSV source).
792
+
793
+ When a CSV error is raised, we check for specific
794
+ error messages that allow us to customize the
795
+ error message displayed to the user.
796
+
797
+ Parameters
798
+ ----------
799
+ row_num: int
800
+ The row number of the line being parsed.
801
+ """
802
+ try:
803
+ # assert for mypy, data is Iterator[str] or None, would error in next
804
+ assert self.data is not None
805
+ line = next(self.data)
806
+ # for mypy
807
+ assert isinstance(line, list)
808
+ return line
809
+ except csv.Error as e:
810
+ if self.on_bad_lines in (
811
+ self.BadLineHandleMethod.ERROR,
812
+ self.BadLineHandleMethod.WARN,
813
+ ):
814
+ msg = str(e)
815
+
816
+ if "NULL byte" in msg or "line contains NUL" in msg:
817
+ msg = (
818
+ "NULL byte detected. This byte "
819
+ "cannot be processed in Python's "
820
+ "native csv library at the moment, "
821
+ "so please pass in engine='c' instead"
822
+ )
823
+
824
+ if self.skipfooter > 0:
825
+ reason = (
826
+ "Error could possibly be due to "
827
+ "parsing errors in the skipped footer rows "
828
+ "(the skipfooter keyword is only applied "
829
+ "after Python's csv library has parsed "
830
+ "all rows)."
831
+ )
832
+ msg += ". " + reason
833
+
834
+ self._alert_malformed(msg, row_num)
835
+ return None
836
+
837
+ def _check_comments(self, lines: list[list[Scalar]]) -> list[list[Scalar]]:
838
+ if self.comment is None:
839
+ return lines
840
+ ret = []
841
+ for line in lines:
842
+ rl = []
843
+ for x in line:
844
+ if (
845
+ not isinstance(x, str)
846
+ or self.comment not in x
847
+ or x in self.na_values
848
+ ):
849
+ rl.append(x)
850
+ else:
851
+ x = x[: x.find(self.comment)]
852
+ if len(x) > 0:
853
+ rl.append(x)
854
+ break
855
+ ret.append(rl)
856
+ return ret
857
+
858
+ def _remove_empty_lines(self, lines: list[list[Scalar]]) -> list[list[Scalar]]:
859
+ """
860
+ Iterate through the lines and remove any that are
861
+ either empty or contain only one whitespace value
862
+
863
+ Parameters
864
+ ----------
865
+ lines : list of list of Scalars
866
+ The array of lines that we are to filter.
867
+
868
+ Returns
869
+ -------
870
+ filtered_lines : list of list of Scalars
871
+ The same array of lines with the "empty" ones removed.
872
+ """
873
+ # Remove empty lines and lines with only one whitespace value
874
+ ret = [
875
+ line
876
+ for line in lines
877
+ if (
878
+ len(line) > 1
879
+ or len(line) == 1
880
+ and (not isinstance(line[0], str) or line[0].strip())
881
+ )
882
+ ]
883
+ return ret
884
+
885
+ def _check_thousands(self, lines: list[list[Scalar]]) -> list[list[Scalar]]:
886
+ if self.thousands is None:
887
+ return lines
888
+
889
+ return self._search_replace_num_columns(
890
+ lines=lines, search=self.thousands, replace=""
891
+ )
892
+
893
+ def _search_replace_num_columns(
894
+ self, lines: list[list[Scalar]], search: str, replace: str
895
+ ) -> list[list[Scalar]]:
896
+ ret = []
897
+ for line in lines:
898
+ rl = []
899
+ for i, x in enumerate(line):
900
+ if (
901
+ not isinstance(x, str)
902
+ or search not in x
903
+ or i in self._no_thousands_columns
904
+ or not self.num.search(x.strip())
905
+ ):
906
+ rl.append(x)
907
+ else:
908
+ rl.append(x.replace(search, replace))
909
+ ret.append(rl)
910
+ return ret
911
+
912
+ def _check_decimal(self, lines: list[list[Scalar]]) -> list[list[Scalar]]:
913
+ if self.decimal == parser_defaults["decimal"]:
914
+ return lines
915
+
916
+ return self._search_replace_num_columns(
917
+ lines=lines, search=self.decimal, replace="."
918
+ )
919
+
920
+ def _clear_buffer(self) -> None:
921
+ self.buf = []
922
+
923
+ def _get_index_name(
924
+ self,
925
+ ) -> tuple[Sequence[Hashable] | None, list[Hashable], list[Hashable]]:
926
+ """
927
+ Try several cases to get lines:
928
+
929
+ 0) There are headers on row 0 and row 1 and their
930
+ total summed lengths equals the length of the next line.
931
+ Treat row 0 as columns and row 1 as indices
932
+ 1) Look for implicit index: there are more columns
933
+ on row 1 than row 0. If this is true, assume that row
934
+ 1 lists index columns and row 0 lists normal columns.
935
+ 2) Get index from the columns if it was listed.
936
+ """
937
+ columns: Sequence[Hashable] = self.orig_names
938
+ orig_names = list(columns)
939
+ columns = list(columns)
940
+
941
+ line: list[Scalar] | None
942
+ if self._header_line is not None:
943
+ line = self._header_line
944
+ else:
945
+ try:
946
+ line = self._next_line()
947
+ except StopIteration:
948
+ line = None
949
+
950
+ next_line: list[Scalar] | None
951
+ try:
952
+ next_line = self._next_line()
953
+ except StopIteration:
954
+ next_line = None
955
+
956
+ # implicitly index_col=0 b/c 1 fewer column names
957
+ implicit_first_cols = 0
958
+ if line is not None:
959
+ # leave it 0, #2442
960
+ # Case 1
961
+ # error: Cannot determine type of 'index_col'
962
+ index_col = self.index_col # type: ignore[has-type]
963
+ if index_col is not False:
964
+ implicit_first_cols = len(line) - self.num_original_columns
965
+
966
+ # Case 0
967
+ if (
968
+ next_line is not None
969
+ and self.header is not None
970
+ and index_col is not False
971
+ ):
972
+ if len(next_line) == len(line) + self.num_original_columns:
973
+ # column and index names on diff rows
974
+ self.index_col = list(range(len(line)))
975
+ self.buf = self.buf[1:]
976
+
977
+ for c in reversed(line):
978
+ columns.insert(0, c)
979
+
980
+ # Update list of original names to include all indices.
981
+ orig_names = list(columns)
982
+ self.num_original_columns = len(columns)
983
+ return line, orig_names, columns
984
+
985
+ if implicit_first_cols > 0:
986
+ # Case 1
987
+ self._implicit_index = True
988
+ if self.index_col is None:
989
+ self.index_col = list(range(implicit_first_cols))
990
+
991
+ index_name = None
992
+
993
+ else:
994
+ # Case 2
995
+ (index_name, _, self.index_col) = self._clean_index_names(
996
+ columns, self.index_col
997
+ )
998
+
999
+ return index_name, orig_names, columns
1000
+
1001
+ def _rows_to_cols(self, content: list[list[Scalar]]) -> list[np.ndarray]:
1002
+ col_len = self.num_original_columns
1003
+
1004
+ if self._implicit_index:
1005
+ col_len += len(self.index_col)
1006
+
1007
+ max_len = max(len(row) for row in content)
1008
+
1009
+ # Check that there are no rows with too many
1010
+ # elements in their row (rows with too few
1011
+ # elements are padded with NaN).
1012
+ # error: Non-overlapping identity check (left operand type: "List[int]",
1013
+ # right operand type: "Literal[False]")
1014
+ if (
1015
+ max_len > col_len
1016
+ and self.index_col is not False # type: ignore[comparison-overlap]
1017
+ and self.usecols is None
1018
+ ):
1019
+ footers = self.skipfooter if self.skipfooter else 0
1020
+ bad_lines = []
1021
+
1022
+ iter_content = enumerate(content)
1023
+ content_len = len(content)
1024
+ content = []
1025
+
1026
+ for i, _content in iter_content:
1027
+ actual_len = len(_content)
1028
+
1029
+ if actual_len > col_len:
1030
+ if callable(self.on_bad_lines):
1031
+ new_l = self.on_bad_lines(_content)
1032
+ if new_l is not None:
1033
+ content.append(new_l)
1034
+ elif self.on_bad_lines in (
1035
+ self.BadLineHandleMethod.ERROR,
1036
+ self.BadLineHandleMethod.WARN,
1037
+ ):
1038
+ row_num = self.pos - (content_len - i + footers)
1039
+ bad_lines.append((row_num, actual_len))
1040
+
1041
+ if self.on_bad_lines == self.BadLineHandleMethod.ERROR:
1042
+ break
1043
+ else:
1044
+ content.append(_content)
1045
+
1046
+ for row_num, actual_len in bad_lines:
1047
+ msg = (
1048
+ f"Expected {col_len} fields in line {row_num + 1}, saw "
1049
+ f"{actual_len}"
1050
+ )
1051
+ if (
1052
+ self.delimiter
1053
+ and len(self.delimiter) > 1
1054
+ and self.quoting != csv.QUOTE_NONE
1055
+ ):
1056
+ # see gh-13374
1057
+ reason = (
1058
+ "Error could possibly be due to quotes being "
1059
+ "ignored when a multi-char delimiter is used."
1060
+ )
1061
+ msg += ". " + reason
1062
+
1063
+ self._alert_malformed(msg, row_num + 1)
1064
+
1065
+ # see gh-13320
1066
+ zipped_content = list(lib.to_object_array(content, min_width=col_len).T)
1067
+
1068
+ if self.usecols:
1069
+ assert self._col_indices is not None
1070
+ col_indices = self._col_indices
1071
+
1072
+ if self._implicit_index:
1073
+ zipped_content = [
1074
+ a
1075
+ for i, a in enumerate(zipped_content)
1076
+ if (
1077
+ i < len(self.index_col)
1078
+ or i - len(self.index_col) in col_indices
1079
+ )
1080
+ ]
1081
+ else:
1082
+ zipped_content = [
1083
+ a for i, a in enumerate(zipped_content) if i in col_indices
1084
+ ]
1085
+ return zipped_content
1086
+
1087
+ def _get_lines(self, rows: int | None = None) -> list[list[Scalar]]:
1088
+ lines = self.buf
1089
+ new_rows = None
1090
+
1091
+ # already fetched some number
1092
+ if rows is not None:
1093
+ # we already have the lines in the buffer
1094
+ if len(self.buf) >= rows:
1095
+ new_rows, self.buf = self.buf[:rows], self.buf[rows:]
1096
+
1097
+ # need some lines
1098
+ else:
1099
+ rows -= len(self.buf)
1100
+
1101
+ if new_rows is None:
1102
+ if isinstance(self.data, list):
1103
+ if self.pos > len(self.data):
1104
+ raise StopIteration
1105
+ if rows is None:
1106
+ new_rows = self.data[self.pos :]
1107
+ new_pos = len(self.data)
1108
+ else:
1109
+ new_rows = self.data[self.pos : self.pos + rows]
1110
+ new_pos = self.pos + rows
1111
+
1112
+ new_rows = self._remove_skipped_rows(new_rows)
1113
+ lines.extend(new_rows)
1114
+ self.pos = new_pos
1115
+
1116
+ else:
1117
+ new_rows = []
1118
+ try:
1119
+ if rows is not None:
1120
+ row_index = 0
1121
+ row_ct = 0
1122
+ offset = self.pos if self.pos is not None else 0
1123
+ while row_ct < rows:
1124
+ # assert for mypy, data is Iterator[str] or None, would
1125
+ # error in next
1126
+ assert self.data is not None
1127
+ new_row = next(self.data)
1128
+ if not self.skipfunc(offset + row_index):
1129
+ row_ct += 1
1130
+ row_index += 1
1131
+ new_rows.append(new_row)
1132
+
1133
+ len_new_rows = len(new_rows)
1134
+ new_rows = self._remove_skipped_rows(new_rows)
1135
+ lines.extend(new_rows)
1136
+ else:
1137
+ rows = 0
1138
+
1139
+ while True:
1140
+ next_row = self._next_iter_line(row_num=self.pos + rows + 1)
1141
+ rows += 1
1142
+
1143
+ if next_row is not None:
1144
+ new_rows.append(next_row)
1145
+ len_new_rows = len(new_rows)
1146
+
1147
+ except StopIteration:
1148
+ len_new_rows = len(new_rows)
1149
+ new_rows = self._remove_skipped_rows(new_rows)
1150
+ lines.extend(new_rows)
1151
+ if len(lines) == 0:
1152
+ raise
1153
+ self.pos += len_new_rows
1154
+
1155
+ self.buf = []
1156
+ else:
1157
+ lines = new_rows
1158
+
1159
+ if self.skipfooter:
1160
+ lines = lines[: -self.skipfooter]
1161
+
1162
+ lines = self._check_comments(lines)
1163
+ if self.skip_blank_lines:
1164
+ lines = self._remove_empty_lines(lines)
1165
+ lines = self._check_thousands(lines)
1166
+ return self._check_decimal(lines)
1167
+
1168
+ def _remove_skipped_rows(self, new_rows: list[list[Scalar]]) -> list[list[Scalar]]:
1169
+ if self.skiprows:
1170
+ return [
1171
+ row for i, row in enumerate(new_rows) if not self.skipfunc(i + self.pos)
1172
+ ]
1173
+ return new_rows
1174
+
1175
+ def _set_no_thousand_columns(self) -> set[int]:
1176
+ no_thousands_columns: set[int] = set()
1177
+ if self.columns and self.parse_dates:
1178
+ assert self._col_indices is not None
1179
+ no_thousands_columns = self._set_noconvert_dtype_columns(
1180
+ self._col_indices, self.columns
1181
+ )
1182
+ if self.columns and self.dtype:
1183
+ assert self._col_indices is not None
1184
+ for i, col in zip(self._col_indices, self.columns):
1185
+ if not isinstance(self.dtype, dict) and not is_numeric_dtype(
1186
+ self.dtype
1187
+ ):
1188
+ no_thousands_columns.add(i)
1189
+ if (
1190
+ isinstance(self.dtype, dict)
1191
+ and col in self.dtype
1192
+ and (
1193
+ not is_numeric_dtype(self.dtype[col])
1194
+ or is_bool_dtype(self.dtype[col])
1195
+ )
1196
+ ):
1197
+ no_thousands_columns.add(i)
1198
+ return no_thousands_columns
1199
+
1200
+
1201
+ class FixedWidthReader(abc.Iterator):
1202
+ """
1203
+ A reader of fixed-width lines.
1204
+ """
1205
+
1206
+ def __init__(
1207
+ self,
1208
+ f: IO[str] | ReadCsvBuffer[str],
1209
+ colspecs: list[tuple[int, int]] | Literal["infer"],
1210
+ delimiter: str | None,
1211
+ comment: str | None,
1212
+ skiprows: set[int] | None = None,
1213
+ infer_nrows: int = 100,
1214
+ ) -> None:
1215
+ self.f = f
1216
+ self.buffer: Iterator | None = None
1217
+ self.delimiter = "\r\n" + delimiter if delimiter else "\n\r\t "
1218
+ self.comment = comment
1219
+ if colspecs == "infer":
1220
+ self.colspecs = self.detect_colspecs(
1221
+ infer_nrows=infer_nrows, skiprows=skiprows
1222
+ )
1223
+ else:
1224
+ self.colspecs = colspecs
1225
+
1226
+ if not isinstance(self.colspecs, (tuple, list)):
1227
+ raise TypeError(
1228
+ "column specifications must be a list or tuple, "
1229
+ f"input was a {type(colspecs).__name__}"
1230
+ )
1231
+
1232
+ for colspec in self.colspecs:
1233
+ if not (
1234
+ isinstance(colspec, (tuple, list))
1235
+ and len(colspec) == 2
1236
+ and isinstance(colspec[0], (int, np.integer, type(None)))
1237
+ and isinstance(colspec[1], (int, np.integer, type(None)))
1238
+ ):
1239
+ raise TypeError(
1240
+ "Each column specification must be "
1241
+ "2 element tuple or list of integers"
1242
+ )
1243
+
1244
+ def get_rows(self, infer_nrows: int, skiprows: set[int] | None = None) -> list[str]:
1245
+ """
1246
+ Read rows from self.f, skipping as specified.
1247
+
1248
+ We distinguish buffer_rows (the first <= infer_nrows
1249
+ lines) from the rows returned to detect_colspecs
1250
+ because it's simpler to leave the other locations
1251
+ with skiprows logic alone than to modify them to
1252
+ deal with the fact we skipped some rows here as
1253
+ well.
1254
+
1255
+ Parameters
1256
+ ----------
1257
+ infer_nrows : int
1258
+ Number of rows to read from self.f, not counting
1259
+ rows that are skipped.
1260
+ skiprows: set, optional
1261
+ Indices of rows to skip.
1262
+
1263
+ Returns
1264
+ -------
1265
+ detect_rows : list of str
1266
+ A list containing the rows to read.
1267
+
1268
+ """
1269
+ if skiprows is None:
1270
+ skiprows = set()
1271
+ buffer_rows = []
1272
+ detect_rows = []
1273
+ for i, row in enumerate(self.f):
1274
+ if i not in skiprows:
1275
+ detect_rows.append(row)
1276
+ buffer_rows.append(row)
1277
+ if len(detect_rows) >= infer_nrows:
1278
+ break
1279
+ self.buffer = iter(buffer_rows)
1280
+ return detect_rows
1281
+
1282
+ def detect_colspecs(
1283
+ self, infer_nrows: int = 100, skiprows: set[int] | None = None
1284
+ ) -> list[tuple[int, int]]:
1285
+ # Regex escape the delimiters
1286
+ delimiters = "".join([rf"\{x}" for x in self.delimiter])
1287
+ pattern = re.compile(f"([^{delimiters}]+)")
1288
+ rows = self.get_rows(infer_nrows, skiprows)
1289
+ if not rows:
1290
+ raise EmptyDataError("No rows from which to infer column width")
1291
+ max_len = max(map(len, rows))
1292
+ mask = np.zeros(max_len + 1, dtype=int)
1293
+ if self.comment is not None:
1294
+ rows = [row.partition(self.comment)[0] for row in rows]
1295
+ for row in rows:
1296
+ for m in pattern.finditer(row):
1297
+ mask[m.start() : m.end()] = 1
1298
+ shifted = np.roll(mask, 1)
1299
+ shifted[0] = 0
1300
+ edges = np.where((mask ^ shifted) == 1)[0]
1301
+ edge_pairs = list(zip(edges[::2], edges[1::2]))
1302
+ return edge_pairs
1303
+
1304
+ def __next__(self) -> list[str]:
1305
+ # Argument 1 to "next" has incompatible type "Union[IO[str],
1306
+ # ReadCsvBuffer[str]]"; expected "SupportsNext[str]"
1307
+ if self.buffer is not None:
1308
+ try:
1309
+ line = next(self.buffer)
1310
+ except StopIteration:
1311
+ self.buffer = None
1312
+ line = next(self.f) # type: ignore[arg-type]
1313
+ else:
1314
+ line = next(self.f) # type: ignore[arg-type]
1315
+ # Note: 'colspecs' is a sequence of half-open intervals.
1316
+ return [line[from_:to].strip(self.delimiter) for (from_, to) in self.colspecs]
1317
+
1318
+
1319
+ class FixedWidthFieldParser(PythonParser):
1320
+ """
1321
+ Specialization that Converts fixed-width fields into DataFrames.
1322
+ See PythonParser for details.
1323
+ """
1324
+
1325
+ def __init__(self, f: ReadCsvBuffer[str], **kwds) -> None:
1326
+ # Support iterators, convert to a list.
1327
+ self.colspecs = kwds.pop("colspecs")
1328
+ self.infer_nrows = kwds.pop("infer_nrows")
1329
+ PythonParser.__init__(self, f, **kwds)
1330
+
1331
+ def _make_reader(self, f: IO[str] | ReadCsvBuffer[str]) -> FixedWidthReader:
1332
+ return FixedWidthReader(
1333
+ f,
1334
+ self.colspecs,
1335
+ self.delimiter,
1336
+ self.comment,
1337
+ self.skiprows,
1338
+ self.infer_nrows,
1339
+ )
1340
+
1341
+ def _remove_empty_lines(self, lines: list[list[Scalar]]) -> list[list[Scalar]]:
1342
+ """
1343
+ Returns the list of lines without the empty ones. With fixed-width
1344
+ fields, empty lines become arrays of empty strings.
1345
+
1346
+ See PythonParser._remove_empty_lines.
1347
+ """
1348
+ return [
1349
+ line
1350
+ for line in lines
1351
+ if any(not isinstance(e, str) or e.strip() for e in line)
1352
+ ]
1353
+
1354
+
1355
+ def count_empty_vals(vals) -> int:
1356
+ return sum(1 for v in vals if v == "" or v is None)
1357
+
1358
+
1359
+ def _validate_skipfooter_arg(skipfooter: int) -> int:
1360
+ """
1361
+ Validate the 'skipfooter' parameter.
1362
+
1363
+ Checks whether 'skipfooter' is a non-negative integer.
1364
+ Raises a ValueError if that is not the case.
1365
+
1366
+ Parameters
1367
+ ----------
1368
+ skipfooter : non-negative integer
1369
+ The number of rows to skip at the end of the file.
1370
+
1371
+ Returns
1372
+ -------
1373
+ validated_skipfooter : non-negative integer
1374
+ The original input if the validation succeeds.
1375
+
1376
+ Raises
1377
+ ------
1378
+ ValueError : 'skipfooter' was not a non-negative integer.
1379
+ """
1380
+ if not is_integer(skipfooter):
1381
+ raise ValueError("skipfooter must be an integer")
1382
+
1383
+ if skipfooter < 0:
1384
+ raise ValueError("skipfooter cannot be negative")
1385
+
1386
+ # Incompatible return value type (got "Union[int, integer[Any]]", expected "int")
1387
+ return skipfooter # type: ignore[return-value]
env-llmeval/lib/python3.10/site-packages/pandas/io/parsers/readers.py ADDED
@@ -0,0 +1,2383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Module contains tools for processing files into DataFrames or other objects
3
+
4
+ GH#48849 provides a convenient way of deprecating keyword arguments
5
+ """
6
+ from __future__ import annotations
7
+
8
+ from collections import (
9
+ abc,
10
+ defaultdict,
11
+ )
12
+ import csv
13
+ import sys
14
+ from textwrap import fill
15
+ from typing import (
16
+ IO,
17
+ TYPE_CHECKING,
18
+ Any,
19
+ Callable,
20
+ Literal,
21
+ NamedTuple,
22
+ TypedDict,
23
+ overload,
24
+ )
25
+ import warnings
26
+
27
+ import numpy as np
28
+
29
+ from pandas._config import using_copy_on_write
30
+
31
+ from pandas._libs import lib
32
+ from pandas._libs.parsers import STR_NA_VALUES
33
+ from pandas.errors import (
34
+ AbstractMethodError,
35
+ ParserWarning,
36
+ )
37
+ from pandas.util._decorators import Appender
38
+ from pandas.util._exceptions import find_stack_level
39
+ from pandas.util._validators import check_dtype_backend
40
+
41
+ from pandas.core.dtypes.common import (
42
+ is_file_like,
43
+ is_float,
44
+ is_hashable,
45
+ is_integer,
46
+ is_list_like,
47
+ pandas_dtype,
48
+ )
49
+
50
+ from pandas import Series
51
+ from pandas.core.frame import DataFrame
52
+ from pandas.core.indexes.api import RangeIndex
53
+ from pandas.core.shared_docs import _shared_docs
54
+
55
+ from pandas.io.common import (
56
+ IOHandles,
57
+ get_handle,
58
+ stringify_path,
59
+ validate_header_arg,
60
+ )
61
+ from pandas.io.parsers.arrow_parser_wrapper import ArrowParserWrapper
62
+ from pandas.io.parsers.base_parser import (
63
+ ParserBase,
64
+ is_index_col,
65
+ parser_defaults,
66
+ )
67
+ from pandas.io.parsers.c_parser_wrapper import CParserWrapper
68
+ from pandas.io.parsers.python_parser import (
69
+ FixedWidthFieldParser,
70
+ PythonParser,
71
+ )
72
+
73
+ if TYPE_CHECKING:
74
+ from collections.abc import (
75
+ Hashable,
76
+ Iterable,
77
+ Mapping,
78
+ Sequence,
79
+ )
80
+ from types import TracebackType
81
+
82
+ from pandas._typing import (
83
+ CompressionOptions,
84
+ CSVEngine,
85
+ DtypeArg,
86
+ DtypeBackend,
87
+ FilePath,
88
+ IndexLabel,
89
+ ReadCsvBuffer,
90
+ Self,
91
+ StorageOptions,
92
+ UsecolsArgType,
93
+ )
94
+ _doc_read_csv_and_table = (
95
+ r"""
96
+ {summary}
97
+
98
+ Also supports optionally iterating or breaking of the file
99
+ into chunks.
100
+
101
+ Additional help can be found in the online docs for
102
+ `IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
103
+
104
+ Parameters
105
+ ----------
106
+ filepath_or_buffer : str, path object or file-like object
107
+ Any valid string path is acceptable. The string could be a URL. Valid
108
+ URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
109
+ expected. A local file could be: file://localhost/path/to/table.csv.
110
+
111
+ If you want to pass in a path object, pandas accepts any ``os.PathLike``.
112
+
113
+ By file-like object, we refer to objects with a ``read()`` method, such as
114
+ a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
115
+ sep : str, default {_default_sep}
116
+ Character or regex pattern to treat as the delimiter. If ``sep=None``, the
117
+ C engine cannot automatically detect
118
+ the separator, but the Python parsing engine can, meaning the latter will
119
+ be used and automatically detect the separator from only the first valid
120
+ row of the file by Python's builtin sniffer tool, ``csv.Sniffer``.
121
+ In addition, separators longer than 1 character and different from
122
+ ``'\s+'`` will be interpreted as regular expressions and will also force
123
+ the use of the Python parsing engine. Note that regex delimiters are prone
124
+ to ignoring quoted data. Regex example: ``'\r\t'``.
125
+ delimiter : str, optional
126
+ Alias for ``sep``.
127
+ header : int, Sequence of int, 'infer' or None, default 'infer'
128
+ Row number(s) containing column labels and marking the start of the
129
+ data (zero-indexed). Default behavior is to infer the column names: if no ``names``
130
+ are passed the behavior is identical to ``header=0`` and column
131
+ names are inferred from the first line of the file, if column
132
+ names are passed explicitly to ``names`` then the behavior is identical to
133
+ ``header=None``. Explicitly pass ``header=0`` to be able to
134
+ replace existing names. The header can be a list of integers that
135
+ specify row locations for a :class:`~pandas.MultiIndex` on the columns
136
+ e.g. ``[0, 1, 3]``. Intervening rows that are not specified will be
137
+ skipped (e.g. 2 in this example is skipped). Note that this
138
+ parameter ignores commented lines and empty lines if
139
+ ``skip_blank_lines=True``, so ``header=0`` denotes the first line of
140
+ data rather than the first line of the file.
141
+ names : Sequence of Hashable, optional
142
+ Sequence of column labels to apply. If the file contains a header row,
143
+ then you should explicitly pass ``header=0`` to override the column names.
144
+ Duplicates in this list are not allowed.
145
+ index_col : Hashable, Sequence of Hashable or False, optional
146
+ Column(s) to use as row label(s), denoted either by column labels or column
147
+ indices. If a sequence of labels or indices is given, :class:`~pandas.MultiIndex`
148
+ will be formed for the row labels.
149
+
150
+ Note: ``index_col=False`` can be used to force pandas to *not* use the first
151
+ column as the index, e.g., when you have a malformed file with delimiters at
152
+ the end of each line.
153
+ usecols : Sequence of Hashable or Callable, optional
154
+ Subset of columns to select, denoted either by column labels or column indices.
155
+ If list-like, all elements must either
156
+ be positional (i.e. integer indices into the document columns) or strings
157
+ that correspond to column names provided either by the user in ``names`` or
158
+ inferred from the document header row(s). If ``names`` are given, the document
159
+ header row(s) are not taken into account. For example, a valid list-like
160
+ ``usecols`` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
161
+ Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
162
+ To instantiate a :class:`~pandas.DataFrame` from ``data`` with element order
163
+ preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]``
164
+ for columns in ``['foo', 'bar']`` order or
165
+ ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
166
+ for ``['bar', 'foo']`` order.
167
+
168
+ If callable, the callable function will be evaluated against the column
169
+ names, returning names where the callable function evaluates to ``True``. An
170
+ example of a valid callable argument would be ``lambda x: x.upper() in
171
+ ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
172
+ parsing time and lower memory usage.
173
+ dtype : dtype or dict of {{Hashable : dtype}}, optional
174
+ Data type(s) to apply to either the whole dataset or individual columns.
175
+ E.g., ``{{'a': np.float64, 'b': np.int32, 'c': 'Int64'}}``
176
+ Use ``str`` or ``object`` together with suitable ``na_values`` settings
177
+ to preserve and not interpret ``dtype``.
178
+ If ``converters`` are specified, they will be applied INSTEAD
179
+ of ``dtype`` conversion.
180
+
181
+ .. versionadded:: 1.5.0
182
+
183
+ Support for ``defaultdict`` was added. Specify a ``defaultdict`` as input where
184
+ the default determines the ``dtype`` of the columns which are not explicitly
185
+ listed.
186
+ engine : {{'c', 'python', 'pyarrow'}}, optional
187
+ Parser engine to use. The C and pyarrow engines are faster, while the python engine
188
+ is currently more feature-complete. Multithreading is currently only supported by
189
+ the pyarrow engine.
190
+
191
+ .. versionadded:: 1.4.0
192
+
193
+ The 'pyarrow' engine was added as an *experimental* engine, and some features
194
+ are unsupported, or may not work correctly, with this engine.
195
+ converters : dict of {{Hashable : Callable}}, optional
196
+ Functions for converting values in specified columns. Keys can either
197
+ be column labels or column indices.
198
+ true_values : list, optional
199
+ Values to consider as ``True`` in addition to case-insensitive variants of 'True'.
200
+ false_values : list, optional
201
+ Values to consider as ``False`` in addition to case-insensitive variants of 'False'.
202
+ skipinitialspace : bool, default False
203
+ Skip spaces after delimiter.
204
+ skiprows : int, list of int or Callable, optional
205
+ Line numbers to skip (0-indexed) or number of lines to skip (``int``)
206
+ at the start of the file.
207
+
208
+ If callable, the callable function will be evaluated against the row
209
+ indices, returning ``True`` if the row should be skipped and ``False`` otherwise.
210
+ An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
211
+ skipfooter : int, default 0
212
+ Number of lines at bottom of file to skip (Unsupported with ``engine='c'``).
213
+ nrows : int, optional
214
+ Number of rows of file to read. Useful for reading pieces of large files.
215
+ na_values : Hashable, Iterable of Hashable or dict of {{Hashable : Iterable}}, optional
216
+ Additional strings to recognize as ``NA``/``NaN``. If ``dict`` passed, specific
217
+ per-column ``NA`` values. By default the following values are interpreted as
218
+ ``NaN``: " """
219
+ + fill('", "'.join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ")
220
+ + """ ".
221
+
222
+ keep_default_na : bool, default True
223
+ Whether or not to include the default ``NaN`` values when parsing the data.
224
+ Depending on whether ``na_values`` is passed in, the behavior is as follows:
225
+
226
+ * If ``keep_default_na`` is ``True``, and ``na_values`` are specified, ``na_values``
227
+ is appended to the default ``NaN`` values used for parsing.
228
+ * If ``keep_default_na`` is ``True``, and ``na_values`` are not specified, only
229
+ the default ``NaN`` values are used for parsing.
230
+ * If ``keep_default_na`` is ``False``, and ``na_values`` are specified, only
231
+ the ``NaN`` values specified ``na_values`` are used for parsing.
232
+ * If ``keep_default_na`` is ``False``, and ``na_values`` are not specified, no
233
+ strings will be parsed as ``NaN``.
234
+
235
+ Note that if ``na_filter`` is passed in as ``False``, the ``keep_default_na`` and
236
+ ``na_values`` parameters will be ignored.
237
+ na_filter : bool, default True
238
+ Detect missing value markers (empty strings and the value of ``na_values``). In
239
+ data without any ``NA`` values, passing ``na_filter=False`` can improve the
240
+ performance of reading a large file.
241
+ verbose : bool, default False
242
+ Indicate number of ``NA`` values placed in non-numeric columns.
243
+
244
+ .. deprecated:: 2.2.0
245
+ skip_blank_lines : bool, default True
246
+ If ``True``, skip over blank lines rather than interpreting as ``NaN`` values.
247
+ parse_dates : bool, list of Hashable, list of lists or dict of {{Hashable : list}}, \
248
+ default False
249
+ The behavior is as follows:
250
+
251
+ * ``bool``. If ``True`` -> try parsing the index. Note: Automatically set to
252
+ ``True`` if ``date_format`` or ``date_parser`` arguments have been passed.
253
+ * ``list`` of ``int`` or names. e.g. If ``[1, 2, 3]`` -> try parsing columns 1, 2, 3
254
+ each as a separate date column.
255
+ * ``list`` of ``list``. e.g. If ``[[1, 3]]`` -> combine columns 1 and 3 and parse
256
+ as a single date column. Values are joined with a space before parsing.
257
+ * ``dict``, e.g. ``{{'foo' : [1, 3]}}`` -> parse columns 1, 3 as date and call
258
+ result 'foo'. Values are joined with a space before parsing.
259
+
260
+ If a column or index cannot be represented as an array of ``datetime``,
261
+ say because of an unparsable value or a mixture of timezones, the column
262
+ or index will be returned unaltered as an ``object`` data type. For
263
+ non-standard ``datetime`` parsing, use :func:`~pandas.to_datetime` after
264
+ :func:`~pandas.read_csv`.
265
+
266
+ Note: A fast-path exists for iso8601-formatted dates.
267
+ infer_datetime_format : bool, default False
268
+ If ``True`` and ``parse_dates`` is enabled, pandas will attempt to infer the
269
+ format of the ``datetime`` strings in the columns, and if it can be inferred,
270
+ switch to a faster method of parsing them. In some cases this can increase
271
+ the parsing speed by 5-10x.
272
+
273
+ .. deprecated:: 2.0.0
274
+ A strict version of this argument is now the default, passing it has no effect.
275
+
276
+ keep_date_col : bool, default False
277
+ If ``True`` and ``parse_dates`` specifies combining multiple columns then
278
+ keep the original columns.
279
+ date_parser : Callable, optional
280
+ Function to use for converting a sequence of string columns to an array of
281
+ ``datetime`` instances. The default uses ``dateutil.parser.parser`` to do the
282
+ conversion. pandas will try to call ``date_parser`` in three different ways,
283
+ advancing to the next if an exception occurs: 1) Pass one or more arrays
284
+ (as defined by ``parse_dates``) as arguments; 2) concatenate (row-wise) the
285
+ string values from the columns defined by ``parse_dates`` into a single array
286
+ and pass that; and 3) call ``date_parser`` once for each row using one or
287
+ more strings (corresponding to the columns defined by ``parse_dates``) as
288
+ arguments.
289
+
290
+ .. deprecated:: 2.0.0
291
+ Use ``date_format`` instead, or read in as ``object`` and then apply
292
+ :func:`~pandas.to_datetime` as-needed.
293
+ date_format : str or dict of column -> format, optional
294
+ Format to use for parsing dates when used in conjunction with ``parse_dates``.
295
+ The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See
296
+ `strftime documentation
297
+ <https://docs.python.org/3/library/datetime.html
298
+ #strftime-and-strptime-behavior>`_ for more information on choices, though
299
+ note that :const:`"%f"` will parse all the way up to nanoseconds.
300
+ You can also pass:
301
+
302
+ - "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_
303
+ time string (not necessarily in exactly the same format);
304
+ - "mixed", to infer the format for each element individually. This is risky,
305
+ and you should probably use it along with `dayfirst`.
306
+
307
+ .. versionadded:: 2.0.0
308
+ dayfirst : bool, default False
309
+ DD/MM format dates, international and European format.
310
+ cache_dates : bool, default True
311
+ If ``True``, use a cache of unique, converted dates to apply the ``datetime``
312
+ conversion. May produce significant speed-up when parsing duplicate
313
+ date strings, especially ones with timezone offsets.
314
+
315
+ iterator : bool, default False
316
+ Return ``TextFileReader`` object for iteration or getting chunks with
317
+ ``get_chunk()``.
318
+ chunksize : int, optional
319
+ Number of lines to read from the file per chunk. Passing a value will cause the
320
+ function to return a ``TextFileReader`` object for iteration.
321
+ See the `IO Tools docs
322
+ <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
323
+ for more information on ``iterator`` and ``chunksize``.
324
+
325
+ {decompression_options}
326
+
327
+ .. versionchanged:: 1.4.0 Zstandard support.
328
+
329
+ thousands : str (length 1), optional
330
+ Character acting as the thousands separator in numerical values.
331
+ decimal : str (length 1), default '.'
332
+ Character to recognize as decimal point (e.g., use ',' for European data).
333
+ lineterminator : str (length 1), optional
334
+ Character used to denote a line break. Only valid with C parser.
335
+ quotechar : str (length 1), optional
336
+ Character used to denote the start and end of a quoted item. Quoted
337
+ items can include the ``delimiter`` and it will be ignored.
338
+ quoting : {{0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL, 2 or csv.QUOTE_NONNUMERIC, \
339
+ 3 or csv.QUOTE_NONE}}, default csv.QUOTE_MINIMAL
340
+ Control field quoting behavior per ``csv.QUOTE_*`` constants. Default is
341
+ ``csv.QUOTE_MINIMAL`` (i.e., 0) which implies that only fields containing special
342
+ characters are quoted (e.g., characters defined in ``quotechar``, ``delimiter``,
343
+ or ``lineterminator``.
344
+ doublequote : bool, default True
345
+ When ``quotechar`` is specified and ``quoting`` is not ``QUOTE_NONE``, indicate
346
+ whether or not to interpret two consecutive ``quotechar`` elements INSIDE a
347
+ field as a single ``quotechar`` element.
348
+ escapechar : str (length 1), optional
349
+ Character used to escape other characters.
350
+ comment : str (length 1), optional
351
+ Character indicating that the remainder of line should not be parsed.
352
+ If found at the beginning
353
+ of a line, the line will be ignored altogether. This parameter must be a
354
+ single character. Like empty lines (as long as ``skip_blank_lines=True``),
355
+ fully commented lines are ignored by the parameter ``header`` but not by
356
+ ``skiprows``. For example, if ``comment='#'``, parsing
357
+ ``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in ``'a,b,c'`` being
358
+ treated as the header.
359
+ encoding : str, optional, default 'utf-8'
360
+ Encoding to use for UTF when reading/writing (ex. ``'utf-8'``). `List of Python
361
+ standard encodings
362
+ <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .
363
+
364
+ encoding_errors : str, optional, default 'strict'
365
+ How encoding errors are treated. `List of possible values
366
+ <https://docs.python.org/3/library/codecs.html#error-handlers>`_ .
367
+
368
+ .. versionadded:: 1.3.0
369
+
370
+ dialect : str or csv.Dialect, optional
371
+ If provided, this parameter will override values (default or not) for the
372
+ following parameters: ``delimiter``, ``doublequote``, ``escapechar``,
373
+ ``skipinitialspace``, ``quotechar``, and ``quoting``. If it is necessary to
374
+ override values, a ``ParserWarning`` will be issued. See ``csv.Dialect``
375
+ documentation for more details.
376
+ on_bad_lines : {{'error', 'warn', 'skip'}} or Callable, default 'error'
377
+ Specifies what to do upon encountering a bad line (a line with too many fields).
378
+ Allowed values are :
379
+
380
+ - ``'error'``, raise an Exception when a bad line is encountered.
381
+ - ``'warn'``, raise a warning when a bad line is encountered and skip that line.
382
+ - ``'skip'``, skip bad lines without raising or warning when they are encountered.
383
+
384
+ .. versionadded:: 1.3.0
385
+
386
+ .. versionadded:: 1.4.0
387
+
388
+ - Callable, function with signature
389
+ ``(bad_line: list[str]) -> list[str] | None`` that will process a single
390
+ bad line. ``bad_line`` is a list of strings split by the ``sep``.
391
+ If the function returns ``None``, the bad line will be ignored.
392
+ If the function returns a new ``list`` of strings with more elements than
393
+ expected, a ``ParserWarning`` will be emitted while dropping extra elements.
394
+ Only supported when ``engine='python'``
395
+
396
+ .. versionchanged:: 2.2.0
397
+
398
+ - Callable, function with signature
399
+ as described in `pyarrow documentation
400
+ <https://arrow.apache.org/docs/python/generated/pyarrow.csv.ParseOptions.html
401
+ #pyarrow.csv.ParseOptions.invalid_row_handler>`_ when ``engine='pyarrow'``
402
+
403
+ delim_whitespace : bool, default False
404
+ Specifies whether or not whitespace (e.g. ``' '`` or ``'\\t'``) will be
405
+ used as the ``sep`` delimiter. Equivalent to setting ``sep='\\s+'``. If this option
406
+ is set to ``True``, nothing should be passed in for the ``delimiter``
407
+ parameter.
408
+
409
+ .. deprecated:: 2.2.0
410
+ Use ``sep="\\s+"`` instead.
411
+ low_memory : bool, default True
412
+ Internally process the file in chunks, resulting in lower memory use
413
+ while parsing, but possibly mixed type inference. To ensure no mixed
414
+ types either set ``False``, or specify the type with the ``dtype`` parameter.
415
+ Note that the entire file is read into a single :class:`~pandas.DataFrame`
416
+ regardless, use the ``chunksize`` or ``iterator`` parameter to return the data in
417
+ chunks. (Only valid with C parser).
418
+ memory_map : bool, default False
419
+ If a filepath is provided for ``filepath_or_buffer``, map the file object
420
+ directly onto memory and access the data directly from there. Using this
421
+ option can improve performance because there is no longer any I/O overhead.
422
+ float_precision : {{'high', 'legacy', 'round_trip'}}, optional
423
+ Specifies which converter the C engine should use for floating-point
424
+ values. The options are ``None`` or ``'high'`` for the ordinary converter,
425
+ ``'legacy'`` for the original lower precision pandas converter, and
426
+ ``'round_trip'`` for the round-trip converter.
427
+
428
+ {storage_options}
429
+
430
+ dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
431
+ Back-end data type applied to the resultant :class:`DataFrame`
432
+ (still experimental). Behaviour is as follows:
433
+
434
+ * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
435
+ (default).
436
+ * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
437
+ DataFrame.
438
+
439
+ .. versionadded:: 2.0
440
+
441
+ Returns
442
+ -------
443
+ DataFrame or TextFileReader
444
+ A comma-separated values (csv) file is returned as two-dimensional
445
+ data structure with labeled axes.
446
+
447
+ See Also
448
+ --------
449
+ DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
450
+ {see_also_func_name} : {see_also_func_summary}
451
+ read_fwf : Read a table of fixed-width formatted lines into DataFrame.
452
+
453
+ Examples
454
+ --------
455
+ >>> pd.{func_name}('data.csv') # doctest: +SKIP
456
+ """
457
+ )
458
+
459
+
460
+ class _C_Parser_Defaults(TypedDict):
461
+ delim_whitespace: Literal[False]
462
+ na_filter: Literal[True]
463
+ low_memory: Literal[True]
464
+ memory_map: Literal[False]
465
+ float_precision: None
466
+
467
+
468
+ _c_parser_defaults: _C_Parser_Defaults = {
469
+ "delim_whitespace": False,
470
+ "na_filter": True,
471
+ "low_memory": True,
472
+ "memory_map": False,
473
+ "float_precision": None,
474
+ }
475
+
476
+
477
+ class _Fwf_Defaults(TypedDict):
478
+ colspecs: Literal["infer"]
479
+ infer_nrows: Literal[100]
480
+ widths: None
481
+
482
+
483
+ _fwf_defaults: _Fwf_Defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None}
484
+ _c_unsupported = {"skipfooter"}
485
+ _python_unsupported = {"low_memory", "float_precision"}
486
+ _pyarrow_unsupported = {
487
+ "skipfooter",
488
+ "float_precision",
489
+ "chunksize",
490
+ "comment",
491
+ "nrows",
492
+ "thousands",
493
+ "memory_map",
494
+ "dialect",
495
+ "delim_whitespace",
496
+ "quoting",
497
+ "lineterminator",
498
+ "converters",
499
+ "iterator",
500
+ "dayfirst",
501
+ "verbose",
502
+ "skipinitialspace",
503
+ "low_memory",
504
+ }
505
+
506
+
507
+ class _DeprecationConfig(NamedTuple):
508
+ default_value: Any
509
+ msg: str | None
510
+
511
+
512
+ @overload
513
+ def validate_integer(name: str, val: None, min_val: int = ...) -> None:
514
+ ...
515
+
516
+
517
+ @overload
518
+ def validate_integer(name: str, val: float, min_val: int = ...) -> int:
519
+ ...
520
+
521
+
522
+ @overload
523
+ def validate_integer(name: str, val: int | None, min_val: int = ...) -> int | None:
524
+ ...
525
+
526
+
527
+ def validate_integer(
528
+ name: str, val: int | float | None, min_val: int = 0
529
+ ) -> int | None:
530
+ """
531
+ Checks whether the 'name' parameter for parsing is either
532
+ an integer OR float that can SAFELY be cast to an integer
533
+ without losing accuracy. Raises a ValueError if that is
534
+ not the case.
535
+
536
+ Parameters
537
+ ----------
538
+ name : str
539
+ Parameter name (used for error reporting)
540
+ val : int or float
541
+ The value to check
542
+ min_val : int
543
+ Minimum allowed value (val < min_val will result in a ValueError)
544
+ """
545
+ if val is None:
546
+ return val
547
+
548
+ msg = f"'{name:s}' must be an integer >={min_val:d}"
549
+ if is_float(val):
550
+ if int(val) != val:
551
+ raise ValueError(msg)
552
+ val = int(val)
553
+ elif not (is_integer(val) and val >= min_val):
554
+ raise ValueError(msg)
555
+
556
+ return int(val)
557
+
558
+
559
+ def _validate_names(names: Sequence[Hashable] | None) -> None:
560
+ """
561
+ Raise ValueError if the `names` parameter contains duplicates or has an
562
+ invalid data type.
563
+
564
+ Parameters
565
+ ----------
566
+ names : array-like or None
567
+ An array containing a list of the names used for the output DataFrame.
568
+
569
+ Raises
570
+ ------
571
+ ValueError
572
+ If names are not unique or are not ordered (e.g. set).
573
+ """
574
+ if names is not None:
575
+ if len(names) != len(set(names)):
576
+ raise ValueError("Duplicate names are not allowed.")
577
+ if not (
578
+ is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView)
579
+ ):
580
+ raise ValueError("Names should be an ordered collection.")
581
+
582
+
583
+ def _read(
584
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], kwds
585
+ ) -> DataFrame | TextFileReader:
586
+ """Generic reader of line files."""
587
+ # if we pass a date_parser and parse_dates=False, we should not parse the
588
+ # dates GH#44366
589
+ if kwds.get("parse_dates", None) is None:
590
+ if (
591
+ kwds.get("date_parser", lib.no_default) is lib.no_default
592
+ and kwds.get("date_format", None) is None
593
+ ):
594
+ kwds["parse_dates"] = False
595
+ else:
596
+ kwds["parse_dates"] = True
597
+
598
+ # Extract some of the arguments (pass chunksize on).
599
+ iterator = kwds.get("iterator", False)
600
+ chunksize = kwds.get("chunksize", None)
601
+ if kwds.get("engine") == "pyarrow":
602
+ if iterator:
603
+ raise ValueError(
604
+ "The 'iterator' option is not supported with the 'pyarrow' engine"
605
+ )
606
+
607
+ if chunksize is not None:
608
+ raise ValueError(
609
+ "The 'chunksize' option is not supported with the 'pyarrow' engine"
610
+ )
611
+ else:
612
+ chunksize = validate_integer("chunksize", chunksize, 1)
613
+
614
+ nrows = kwds.get("nrows", None)
615
+
616
+ # Check for duplicates in names.
617
+ _validate_names(kwds.get("names", None))
618
+
619
+ # Create the parser.
620
+ parser = TextFileReader(filepath_or_buffer, **kwds)
621
+
622
+ if chunksize or iterator:
623
+ return parser
624
+
625
+ with parser:
626
+ return parser.read(nrows)
627
+
628
+
629
+ # iterator=True -> TextFileReader
630
+ @overload
631
+ def read_csv(
632
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
633
+ *,
634
+ sep: str | None | lib.NoDefault = ...,
635
+ delimiter: str | None | lib.NoDefault = ...,
636
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
637
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
638
+ index_col: IndexLabel | Literal[False] | None = ...,
639
+ usecols: UsecolsArgType = ...,
640
+ dtype: DtypeArg | None = ...,
641
+ engine: CSVEngine | None = ...,
642
+ converters: Mapping[Hashable, Callable] | None = ...,
643
+ true_values: list | None = ...,
644
+ false_values: list | None = ...,
645
+ skipinitialspace: bool = ...,
646
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
647
+ skipfooter: int = ...,
648
+ nrows: int | None = ...,
649
+ na_values: Hashable
650
+ | Iterable[Hashable]
651
+ | Mapping[Hashable, Iterable[Hashable]]
652
+ | None = ...,
653
+ na_filter: bool = ...,
654
+ verbose: bool | lib.NoDefault = ...,
655
+ skip_blank_lines: bool = ...,
656
+ parse_dates: bool | Sequence[Hashable] | None = ...,
657
+ infer_datetime_format: bool | lib.NoDefault = ...,
658
+ keep_date_col: bool | lib.NoDefault = ...,
659
+ date_parser: Callable | lib.NoDefault = ...,
660
+ date_format: str | dict[Hashable, str] | None = ...,
661
+ dayfirst: bool = ...,
662
+ cache_dates: bool = ...,
663
+ iterator: Literal[True],
664
+ chunksize: int | None = ...,
665
+ compression: CompressionOptions = ...,
666
+ thousands: str | None = ...,
667
+ decimal: str = ...,
668
+ lineterminator: str | None = ...,
669
+ quotechar: str = ...,
670
+ quoting: int = ...,
671
+ doublequote: bool = ...,
672
+ escapechar: str | None = ...,
673
+ comment: str | None = ...,
674
+ encoding: str | None = ...,
675
+ encoding_errors: str | None = ...,
676
+ dialect: str | csv.Dialect | None = ...,
677
+ on_bad_lines=...,
678
+ delim_whitespace: bool | lib.NoDefault = ...,
679
+ low_memory: bool = ...,
680
+ memory_map: bool = ...,
681
+ float_precision: Literal["high", "legacy"] | None = ...,
682
+ storage_options: StorageOptions = ...,
683
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
684
+ ) -> TextFileReader:
685
+ ...
686
+
687
+
688
+ # chunksize=int -> TextFileReader
689
+ @overload
690
+ def read_csv(
691
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
692
+ *,
693
+ sep: str | None | lib.NoDefault = ...,
694
+ delimiter: str | None | lib.NoDefault = ...,
695
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
696
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
697
+ index_col: IndexLabel | Literal[False] | None = ...,
698
+ usecols: UsecolsArgType = ...,
699
+ dtype: DtypeArg | None = ...,
700
+ engine: CSVEngine | None = ...,
701
+ converters: Mapping[Hashable, Callable] | None = ...,
702
+ true_values: list | None = ...,
703
+ false_values: list | None = ...,
704
+ skipinitialspace: bool = ...,
705
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
706
+ skipfooter: int = ...,
707
+ nrows: int | None = ...,
708
+ na_values: Hashable
709
+ | Iterable[Hashable]
710
+ | Mapping[Hashable, Iterable[Hashable]]
711
+ | None = ...,
712
+ keep_default_na: bool = ...,
713
+ na_filter: bool = ...,
714
+ verbose: bool | lib.NoDefault = ...,
715
+ skip_blank_lines: bool = ...,
716
+ parse_dates: bool | Sequence[Hashable] | None = ...,
717
+ infer_datetime_format: bool | lib.NoDefault = ...,
718
+ keep_date_col: bool | lib.NoDefault = ...,
719
+ date_parser: Callable | lib.NoDefault = ...,
720
+ date_format: str | dict[Hashable, str] | None = ...,
721
+ dayfirst: bool = ...,
722
+ cache_dates: bool = ...,
723
+ iterator: bool = ...,
724
+ chunksize: int,
725
+ compression: CompressionOptions = ...,
726
+ thousands: str | None = ...,
727
+ decimal: str = ...,
728
+ lineterminator: str | None = ...,
729
+ quotechar: str = ...,
730
+ quoting: int = ...,
731
+ doublequote: bool = ...,
732
+ escapechar: str | None = ...,
733
+ comment: str | None = ...,
734
+ encoding: str | None = ...,
735
+ encoding_errors: str | None = ...,
736
+ dialect: str | csv.Dialect | None = ...,
737
+ on_bad_lines=...,
738
+ delim_whitespace: bool | lib.NoDefault = ...,
739
+ low_memory: bool = ...,
740
+ memory_map: bool = ...,
741
+ float_precision: Literal["high", "legacy"] | None = ...,
742
+ storage_options: StorageOptions = ...,
743
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
744
+ ) -> TextFileReader:
745
+ ...
746
+
747
+
748
+ # default case -> DataFrame
749
+ @overload
750
+ def read_csv(
751
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
752
+ *,
753
+ sep: str | None | lib.NoDefault = ...,
754
+ delimiter: str | None | lib.NoDefault = ...,
755
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
756
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
757
+ index_col: IndexLabel | Literal[False] | None = ...,
758
+ usecols: UsecolsArgType = ...,
759
+ dtype: DtypeArg | None = ...,
760
+ engine: CSVEngine | None = ...,
761
+ converters: Mapping[Hashable, Callable] | None = ...,
762
+ true_values: list | None = ...,
763
+ false_values: list | None = ...,
764
+ skipinitialspace: bool = ...,
765
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
766
+ skipfooter: int = ...,
767
+ nrows: int | None = ...,
768
+ na_values: Hashable
769
+ | Iterable[Hashable]
770
+ | Mapping[Hashable, Iterable[Hashable]]
771
+ | None = ...,
772
+ keep_default_na: bool = ...,
773
+ na_filter: bool = ...,
774
+ verbose: bool | lib.NoDefault = ...,
775
+ skip_blank_lines: bool = ...,
776
+ parse_dates: bool | Sequence[Hashable] | None = ...,
777
+ infer_datetime_format: bool | lib.NoDefault = ...,
778
+ keep_date_col: bool | lib.NoDefault = ...,
779
+ date_parser: Callable | lib.NoDefault = ...,
780
+ date_format: str | dict[Hashable, str] | None = ...,
781
+ dayfirst: bool = ...,
782
+ cache_dates: bool = ...,
783
+ iterator: Literal[False] = ...,
784
+ chunksize: None = ...,
785
+ compression: CompressionOptions = ...,
786
+ thousands: str | None = ...,
787
+ decimal: str = ...,
788
+ lineterminator: str | None = ...,
789
+ quotechar: str = ...,
790
+ quoting: int = ...,
791
+ doublequote: bool = ...,
792
+ escapechar: str | None = ...,
793
+ comment: str | None = ...,
794
+ encoding: str | None = ...,
795
+ encoding_errors: str | None = ...,
796
+ dialect: str | csv.Dialect | None = ...,
797
+ on_bad_lines=...,
798
+ delim_whitespace: bool | lib.NoDefault = ...,
799
+ low_memory: bool = ...,
800
+ memory_map: bool = ...,
801
+ float_precision: Literal["high", "legacy"] | None = ...,
802
+ storage_options: StorageOptions = ...,
803
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
804
+ ) -> DataFrame:
805
+ ...
806
+
807
+
808
+ # Unions -> DataFrame | TextFileReader
809
+ @overload
810
+ def read_csv(
811
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
812
+ *,
813
+ sep: str | None | lib.NoDefault = ...,
814
+ delimiter: str | None | lib.NoDefault = ...,
815
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
816
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
817
+ index_col: IndexLabel | Literal[False] | None = ...,
818
+ usecols: UsecolsArgType = ...,
819
+ dtype: DtypeArg | None = ...,
820
+ engine: CSVEngine | None = ...,
821
+ converters: Mapping[Hashable, Callable] | None = ...,
822
+ true_values: list | None = ...,
823
+ false_values: list | None = ...,
824
+ skipinitialspace: bool = ...,
825
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
826
+ skipfooter: int = ...,
827
+ nrows: int | None = ...,
828
+ na_values: Hashable
829
+ | Iterable[Hashable]
830
+ | Mapping[Hashable, Iterable[Hashable]]
831
+ | None = ...,
832
+ keep_default_na: bool = ...,
833
+ na_filter: bool = ...,
834
+ verbose: bool | lib.NoDefault = ...,
835
+ skip_blank_lines: bool = ...,
836
+ parse_dates: bool | Sequence[Hashable] | None = ...,
837
+ infer_datetime_format: bool | lib.NoDefault = ...,
838
+ keep_date_col: bool | lib.NoDefault = ...,
839
+ date_parser: Callable | lib.NoDefault = ...,
840
+ date_format: str | dict[Hashable, str] | None = ...,
841
+ dayfirst: bool = ...,
842
+ cache_dates: bool = ...,
843
+ iterator: bool = ...,
844
+ chunksize: int | None = ...,
845
+ compression: CompressionOptions = ...,
846
+ thousands: str | None = ...,
847
+ decimal: str = ...,
848
+ lineterminator: str | None = ...,
849
+ quotechar: str = ...,
850
+ quoting: int = ...,
851
+ doublequote: bool = ...,
852
+ escapechar: str | None = ...,
853
+ comment: str | None = ...,
854
+ encoding: str | None = ...,
855
+ encoding_errors: str | None = ...,
856
+ dialect: str | csv.Dialect | None = ...,
857
+ on_bad_lines=...,
858
+ delim_whitespace: bool | lib.NoDefault = ...,
859
+ low_memory: bool = ...,
860
+ memory_map: bool = ...,
861
+ float_precision: Literal["high", "legacy"] | None = ...,
862
+ storage_options: StorageOptions = ...,
863
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
864
+ ) -> DataFrame | TextFileReader:
865
+ ...
866
+
867
+
868
+ @Appender(
869
+ _doc_read_csv_and_table.format(
870
+ func_name="read_csv",
871
+ summary="Read a comma-separated values (csv) file into DataFrame.",
872
+ see_also_func_name="read_table",
873
+ see_also_func_summary="Read general delimited file into DataFrame.",
874
+ _default_sep="','",
875
+ storage_options=_shared_docs["storage_options"],
876
+ decompression_options=_shared_docs["decompression_options"]
877
+ % "filepath_or_buffer",
878
+ )
879
+ )
880
+ def read_csv(
881
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
882
+ *,
883
+ sep: str | None | lib.NoDefault = lib.no_default,
884
+ delimiter: str | None | lib.NoDefault = None,
885
+ # Column and Index Locations and Names
886
+ header: int | Sequence[int] | None | Literal["infer"] = "infer",
887
+ names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default,
888
+ index_col: IndexLabel | Literal[False] | None = None,
889
+ usecols: UsecolsArgType = None,
890
+ # General Parsing Configuration
891
+ dtype: DtypeArg | None = None,
892
+ engine: CSVEngine | None = None,
893
+ converters: Mapping[Hashable, Callable] | None = None,
894
+ true_values: list | None = None,
895
+ false_values: list | None = None,
896
+ skipinitialspace: bool = False,
897
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = None,
898
+ skipfooter: int = 0,
899
+ nrows: int | None = None,
900
+ # NA and Missing Data Handling
901
+ na_values: Hashable
902
+ | Iterable[Hashable]
903
+ | Mapping[Hashable, Iterable[Hashable]]
904
+ | None = None,
905
+ keep_default_na: bool = True,
906
+ na_filter: bool = True,
907
+ verbose: bool | lib.NoDefault = lib.no_default,
908
+ skip_blank_lines: bool = True,
909
+ # Datetime Handling
910
+ parse_dates: bool | Sequence[Hashable] | None = None,
911
+ infer_datetime_format: bool | lib.NoDefault = lib.no_default,
912
+ keep_date_col: bool | lib.NoDefault = lib.no_default,
913
+ date_parser: Callable | lib.NoDefault = lib.no_default,
914
+ date_format: str | dict[Hashable, str] | None = None,
915
+ dayfirst: bool = False,
916
+ cache_dates: bool = True,
917
+ # Iteration
918
+ iterator: bool = False,
919
+ chunksize: int | None = None,
920
+ # Quoting, Compression, and File Format
921
+ compression: CompressionOptions = "infer",
922
+ thousands: str | None = None,
923
+ decimal: str = ".",
924
+ lineterminator: str | None = None,
925
+ quotechar: str = '"',
926
+ quoting: int = csv.QUOTE_MINIMAL,
927
+ doublequote: bool = True,
928
+ escapechar: str | None = None,
929
+ comment: str | None = None,
930
+ encoding: str | None = None,
931
+ encoding_errors: str | None = "strict",
932
+ dialect: str | csv.Dialect | None = None,
933
+ # Error Handling
934
+ on_bad_lines: str = "error",
935
+ # Internal
936
+ delim_whitespace: bool | lib.NoDefault = lib.no_default,
937
+ low_memory: bool = _c_parser_defaults["low_memory"],
938
+ memory_map: bool = False,
939
+ float_precision: Literal["high", "legacy"] | None = None,
940
+ storage_options: StorageOptions | None = None,
941
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
942
+ ) -> DataFrame | TextFileReader:
943
+ if keep_date_col is not lib.no_default:
944
+ # GH#55569
945
+ warnings.warn(
946
+ "The 'keep_date_col' keyword in pd.read_csv is deprecated and "
947
+ "will be removed in a future version. Explicitly remove unwanted "
948
+ "columns after parsing instead.",
949
+ FutureWarning,
950
+ stacklevel=find_stack_level(),
951
+ )
952
+ else:
953
+ keep_date_col = False
954
+
955
+ if lib.is_list_like(parse_dates):
956
+ # GH#55569
957
+ depr = False
958
+ # error: Item "bool" of "bool | Sequence[Hashable] | None" has no
959
+ # attribute "__iter__" (not iterable)
960
+ if not all(is_hashable(x) for x in parse_dates): # type: ignore[union-attr]
961
+ depr = True
962
+ elif isinstance(parse_dates, dict) and any(
963
+ lib.is_list_like(x) for x in parse_dates.values()
964
+ ):
965
+ depr = True
966
+ if depr:
967
+ warnings.warn(
968
+ "Support for nested sequences for 'parse_dates' in pd.read_csv "
969
+ "is deprecated. Combine the desired columns with pd.to_datetime "
970
+ "after parsing instead.",
971
+ FutureWarning,
972
+ stacklevel=find_stack_level(),
973
+ )
974
+
975
+ if infer_datetime_format is not lib.no_default:
976
+ warnings.warn(
977
+ "The argument 'infer_datetime_format' is deprecated and will "
978
+ "be removed in a future version. "
979
+ "A strict version of it is now the default, see "
980
+ "https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
981
+ "You can safely remove this argument.",
982
+ FutureWarning,
983
+ stacklevel=find_stack_level(),
984
+ )
985
+
986
+ if delim_whitespace is not lib.no_default:
987
+ # GH#55569
988
+ warnings.warn(
989
+ "The 'delim_whitespace' keyword in pd.read_csv is deprecated and "
990
+ "will be removed in a future version. Use ``sep='\\s+'`` instead",
991
+ FutureWarning,
992
+ stacklevel=find_stack_level(),
993
+ )
994
+ else:
995
+ delim_whitespace = False
996
+
997
+ if verbose is not lib.no_default:
998
+ # GH#55569
999
+ warnings.warn(
1000
+ "The 'verbose' keyword in pd.read_csv is deprecated and "
1001
+ "will be removed in a future version.",
1002
+ FutureWarning,
1003
+ stacklevel=find_stack_level(),
1004
+ )
1005
+ else:
1006
+ verbose = False
1007
+
1008
+ # locals() should never be modified
1009
+ kwds = locals().copy()
1010
+ del kwds["filepath_or_buffer"]
1011
+ del kwds["sep"]
1012
+
1013
+ kwds_defaults = _refine_defaults_read(
1014
+ dialect,
1015
+ delimiter,
1016
+ delim_whitespace,
1017
+ engine,
1018
+ sep,
1019
+ on_bad_lines,
1020
+ names,
1021
+ defaults={"delimiter": ","},
1022
+ dtype_backend=dtype_backend,
1023
+ )
1024
+ kwds.update(kwds_defaults)
1025
+
1026
+ return _read(filepath_or_buffer, kwds)
1027
+
1028
+
1029
+ # iterator=True -> TextFileReader
1030
+ @overload
1031
+ def read_table(
1032
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1033
+ *,
1034
+ sep: str | None | lib.NoDefault = ...,
1035
+ delimiter: str | None | lib.NoDefault = ...,
1036
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
1037
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
1038
+ index_col: IndexLabel | Literal[False] | None = ...,
1039
+ usecols: UsecolsArgType = ...,
1040
+ dtype: DtypeArg | None = ...,
1041
+ engine: CSVEngine | None = ...,
1042
+ converters: Mapping[Hashable, Callable] | None = ...,
1043
+ true_values: list | None = ...,
1044
+ false_values: list | None = ...,
1045
+ skipinitialspace: bool = ...,
1046
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
1047
+ skipfooter: int = ...,
1048
+ nrows: int | None = ...,
1049
+ na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
1050
+ keep_default_na: bool = ...,
1051
+ na_filter: bool = ...,
1052
+ verbose: bool | lib.NoDefault = ...,
1053
+ skip_blank_lines: bool = ...,
1054
+ parse_dates: bool | Sequence[Hashable] = ...,
1055
+ infer_datetime_format: bool | lib.NoDefault = ...,
1056
+ keep_date_col: bool | lib.NoDefault = ...,
1057
+ date_parser: Callable | lib.NoDefault = ...,
1058
+ date_format: str | dict[Hashable, str] | None = ...,
1059
+ dayfirst: bool = ...,
1060
+ cache_dates: bool = ...,
1061
+ iterator: Literal[True],
1062
+ chunksize: int | None = ...,
1063
+ compression: CompressionOptions = ...,
1064
+ thousands: str | None = ...,
1065
+ decimal: str = ...,
1066
+ lineterminator: str | None = ...,
1067
+ quotechar: str = ...,
1068
+ quoting: int = ...,
1069
+ doublequote: bool = ...,
1070
+ escapechar: str | None = ...,
1071
+ comment: str | None = ...,
1072
+ encoding: str | None = ...,
1073
+ encoding_errors: str | None = ...,
1074
+ dialect: str | csv.Dialect | None = ...,
1075
+ on_bad_lines=...,
1076
+ delim_whitespace: bool = ...,
1077
+ low_memory: bool = ...,
1078
+ memory_map: bool = ...,
1079
+ float_precision: str | None = ...,
1080
+ storage_options: StorageOptions = ...,
1081
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
1082
+ ) -> TextFileReader:
1083
+ ...
1084
+
1085
+
1086
+ # chunksize=int -> TextFileReader
1087
+ @overload
1088
+ def read_table(
1089
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1090
+ *,
1091
+ sep: str | None | lib.NoDefault = ...,
1092
+ delimiter: str | None | lib.NoDefault = ...,
1093
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
1094
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
1095
+ index_col: IndexLabel | Literal[False] | None = ...,
1096
+ usecols: UsecolsArgType = ...,
1097
+ dtype: DtypeArg | None = ...,
1098
+ engine: CSVEngine | None = ...,
1099
+ converters: Mapping[Hashable, Callable] | None = ...,
1100
+ true_values: list | None = ...,
1101
+ false_values: list | None = ...,
1102
+ skipinitialspace: bool = ...,
1103
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
1104
+ skipfooter: int = ...,
1105
+ nrows: int | None = ...,
1106
+ na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
1107
+ keep_default_na: bool = ...,
1108
+ na_filter: bool = ...,
1109
+ verbose: bool | lib.NoDefault = ...,
1110
+ skip_blank_lines: bool = ...,
1111
+ parse_dates: bool | Sequence[Hashable] = ...,
1112
+ infer_datetime_format: bool | lib.NoDefault = ...,
1113
+ keep_date_col: bool | lib.NoDefault = ...,
1114
+ date_parser: Callable | lib.NoDefault = ...,
1115
+ date_format: str | dict[Hashable, str] | None = ...,
1116
+ dayfirst: bool = ...,
1117
+ cache_dates: bool = ...,
1118
+ iterator: bool = ...,
1119
+ chunksize: int,
1120
+ compression: CompressionOptions = ...,
1121
+ thousands: str | None = ...,
1122
+ decimal: str = ...,
1123
+ lineterminator: str | None = ...,
1124
+ quotechar: str = ...,
1125
+ quoting: int = ...,
1126
+ doublequote: bool = ...,
1127
+ escapechar: str | None = ...,
1128
+ comment: str | None = ...,
1129
+ encoding: str | None = ...,
1130
+ encoding_errors: str | None = ...,
1131
+ dialect: str | csv.Dialect | None = ...,
1132
+ on_bad_lines=...,
1133
+ delim_whitespace: bool = ...,
1134
+ low_memory: bool = ...,
1135
+ memory_map: bool = ...,
1136
+ float_precision: str | None = ...,
1137
+ storage_options: StorageOptions = ...,
1138
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
1139
+ ) -> TextFileReader:
1140
+ ...
1141
+
1142
+
1143
+ # default -> DataFrame
1144
+ @overload
1145
+ def read_table(
1146
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1147
+ *,
1148
+ sep: str | None | lib.NoDefault = ...,
1149
+ delimiter: str | None | lib.NoDefault = ...,
1150
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
1151
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
1152
+ index_col: IndexLabel | Literal[False] | None = ...,
1153
+ usecols: UsecolsArgType = ...,
1154
+ dtype: DtypeArg | None = ...,
1155
+ engine: CSVEngine | None = ...,
1156
+ converters: Mapping[Hashable, Callable] | None = ...,
1157
+ true_values: list | None = ...,
1158
+ false_values: list | None = ...,
1159
+ skipinitialspace: bool = ...,
1160
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
1161
+ skipfooter: int = ...,
1162
+ nrows: int | None = ...,
1163
+ na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
1164
+ keep_default_na: bool = ...,
1165
+ na_filter: bool = ...,
1166
+ verbose: bool | lib.NoDefault = ...,
1167
+ skip_blank_lines: bool = ...,
1168
+ parse_dates: bool | Sequence[Hashable] = ...,
1169
+ infer_datetime_format: bool | lib.NoDefault = ...,
1170
+ keep_date_col: bool | lib.NoDefault = ...,
1171
+ date_parser: Callable | lib.NoDefault = ...,
1172
+ date_format: str | dict[Hashable, str] | None = ...,
1173
+ dayfirst: bool = ...,
1174
+ cache_dates: bool = ...,
1175
+ iterator: Literal[False] = ...,
1176
+ chunksize: None = ...,
1177
+ compression: CompressionOptions = ...,
1178
+ thousands: str | None = ...,
1179
+ decimal: str = ...,
1180
+ lineterminator: str | None = ...,
1181
+ quotechar: str = ...,
1182
+ quoting: int = ...,
1183
+ doublequote: bool = ...,
1184
+ escapechar: str | None = ...,
1185
+ comment: str | None = ...,
1186
+ encoding: str | None = ...,
1187
+ encoding_errors: str | None = ...,
1188
+ dialect: str | csv.Dialect | None = ...,
1189
+ on_bad_lines=...,
1190
+ delim_whitespace: bool = ...,
1191
+ low_memory: bool = ...,
1192
+ memory_map: bool = ...,
1193
+ float_precision: str | None = ...,
1194
+ storage_options: StorageOptions = ...,
1195
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
1196
+ ) -> DataFrame:
1197
+ ...
1198
+
1199
+
1200
+ # Unions -> DataFrame | TextFileReader
1201
+ @overload
1202
+ def read_table(
1203
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1204
+ *,
1205
+ sep: str | None | lib.NoDefault = ...,
1206
+ delimiter: str | None | lib.NoDefault = ...,
1207
+ header: int | Sequence[int] | None | Literal["infer"] = ...,
1208
+ names: Sequence[Hashable] | None | lib.NoDefault = ...,
1209
+ index_col: IndexLabel | Literal[False] | None = ...,
1210
+ usecols: UsecolsArgType = ...,
1211
+ dtype: DtypeArg | None = ...,
1212
+ engine: CSVEngine | None = ...,
1213
+ converters: Mapping[Hashable, Callable] | None = ...,
1214
+ true_values: list | None = ...,
1215
+ false_values: list | None = ...,
1216
+ skipinitialspace: bool = ...,
1217
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
1218
+ skipfooter: int = ...,
1219
+ nrows: int | None = ...,
1220
+ na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
1221
+ keep_default_na: bool = ...,
1222
+ na_filter: bool = ...,
1223
+ verbose: bool | lib.NoDefault = ...,
1224
+ skip_blank_lines: bool = ...,
1225
+ parse_dates: bool | Sequence[Hashable] = ...,
1226
+ infer_datetime_format: bool | lib.NoDefault = ...,
1227
+ keep_date_col: bool | lib.NoDefault = ...,
1228
+ date_parser: Callable | lib.NoDefault = ...,
1229
+ date_format: str | dict[Hashable, str] | None = ...,
1230
+ dayfirst: bool = ...,
1231
+ cache_dates: bool = ...,
1232
+ iterator: bool = ...,
1233
+ chunksize: int | None = ...,
1234
+ compression: CompressionOptions = ...,
1235
+ thousands: str | None = ...,
1236
+ decimal: str = ...,
1237
+ lineterminator: str | None = ...,
1238
+ quotechar: str = ...,
1239
+ quoting: int = ...,
1240
+ doublequote: bool = ...,
1241
+ escapechar: str | None = ...,
1242
+ comment: str | None = ...,
1243
+ encoding: str | None = ...,
1244
+ encoding_errors: str | None = ...,
1245
+ dialect: str | csv.Dialect | None = ...,
1246
+ on_bad_lines=...,
1247
+ delim_whitespace: bool = ...,
1248
+ low_memory: bool = ...,
1249
+ memory_map: bool = ...,
1250
+ float_precision: str | None = ...,
1251
+ storage_options: StorageOptions = ...,
1252
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
1253
+ ) -> DataFrame | TextFileReader:
1254
+ ...
1255
+
1256
+
1257
+ @Appender(
1258
+ _doc_read_csv_and_table.format(
1259
+ func_name="read_table",
1260
+ summary="Read general delimited file into DataFrame.",
1261
+ see_also_func_name="read_csv",
1262
+ see_also_func_summary=(
1263
+ "Read a comma-separated values (csv) file into DataFrame."
1264
+ ),
1265
+ _default_sep=r"'\\t' (tab-stop)",
1266
+ storage_options=_shared_docs["storage_options"],
1267
+ decompression_options=_shared_docs["decompression_options"]
1268
+ % "filepath_or_buffer",
1269
+ )
1270
+ )
1271
+ def read_table(
1272
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1273
+ *,
1274
+ sep: str | None | lib.NoDefault = lib.no_default,
1275
+ delimiter: str | None | lib.NoDefault = None,
1276
+ # Column and Index Locations and Names
1277
+ header: int | Sequence[int] | None | Literal["infer"] = "infer",
1278
+ names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default,
1279
+ index_col: IndexLabel | Literal[False] | None = None,
1280
+ usecols: UsecolsArgType = None,
1281
+ # General Parsing Configuration
1282
+ dtype: DtypeArg | None = None,
1283
+ engine: CSVEngine | None = None,
1284
+ converters: Mapping[Hashable, Callable] | None = None,
1285
+ true_values: list | None = None,
1286
+ false_values: list | None = None,
1287
+ skipinitialspace: bool = False,
1288
+ skiprows: list[int] | int | Callable[[Hashable], bool] | None = None,
1289
+ skipfooter: int = 0,
1290
+ nrows: int | None = None,
1291
+ # NA and Missing Data Handling
1292
+ na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = None,
1293
+ keep_default_na: bool = True,
1294
+ na_filter: bool = True,
1295
+ verbose: bool | lib.NoDefault = lib.no_default,
1296
+ skip_blank_lines: bool = True,
1297
+ # Datetime Handling
1298
+ parse_dates: bool | Sequence[Hashable] = False,
1299
+ infer_datetime_format: bool | lib.NoDefault = lib.no_default,
1300
+ keep_date_col: bool | lib.NoDefault = lib.no_default,
1301
+ date_parser: Callable | lib.NoDefault = lib.no_default,
1302
+ date_format: str | dict[Hashable, str] | None = None,
1303
+ dayfirst: bool = False,
1304
+ cache_dates: bool = True,
1305
+ # Iteration
1306
+ iterator: bool = False,
1307
+ chunksize: int | None = None,
1308
+ # Quoting, Compression, and File Format
1309
+ compression: CompressionOptions = "infer",
1310
+ thousands: str | None = None,
1311
+ decimal: str = ".",
1312
+ lineterminator: str | None = None,
1313
+ quotechar: str = '"',
1314
+ quoting: int = csv.QUOTE_MINIMAL,
1315
+ doublequote: bool = True,
1316
+ escapechar: str | None = None,
1317
+ comment: str | None = None,
1318
+ encoding: str | None = None,
1319
+ encoding_errors: str | None = "strict",
1320
+ dialect: str | csv.Dialect | None = None,
1321
+ # Error Handling
1322
+ on_bad_lines: str = "error",
1323
+ # Internal
1324
+ delim_whitespace: bool | lib.NoDefault = lib.no_default,
1325
+ low_memory: bool = _c_parser_defaults["low_memory"],
1326
+ memory_map: bool = False,
1327
+ float_precision: str | None = None,
1328
+ storage_options: StorageOptions | None = None,
1329
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
1330
+ ) -> DataFrame | TextFileReader:
1331
+ if keep_date_col is not lib.no_default:
1332
+ # GH#55569
1333
+ warnings.warn(
1334
+ "The 'keep_date_col' keyword in pd.read_table is deprecated and "
1335
+ "will be removed in a future version. Explicitly remove unwanted "
1336
+ "columns after parsing instead.",
1337
+ FutureWarning,
1338
+ stacklevel=find_stack_level(),
1339
+ )
1340
+ else:
1341
+ keep_date_col = False
1342
+
1343
+ # error: Item "bool" of "bool | Sequence[Hashable]" has no attribute "__iter__"
1344
+ if lib.is_list_like(parse_dates) and not all(is_hashable(x) for x in parse_dates): # type: ignore[union-attr]
1345
+ # GH#55569
1346
+ warnings.warn(
1347
+ "Support for nested sequences for 'parse_dates' in pd.read_table "
1348
+ "is deprecated. Combine the desired columns with pd.to_datetime "
1349
+ "after parsing instead.",
1350
+ FutureWarning,
1351
+ stacklevel=find_stack_level(),
1352
+ )
1353
+
1354
+ if infer_datetime_format is not lib.no_default:
1355
+ warnings.warn(
1356
+ "The argument 'infer_datetime_format' is deprecated and will "
1357
+ "be removed in a future version. "
1358
+ "A strict version of it is now the default, see "
1359
+ "https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
1360
+ "You can safely remove this argument.",
1361
+ FutureWarning,
1362
+ stacklevel=find_stack_level(),
1363
+ )
1364
+
1365
+ if delim_whitespace is not lib.no_default:
1366
+ # GH#55569
1367
+ warnings.warn(
1368
+ "The 'delim_whitespace' keyword in pd.read_table is deprecated and "
1369
+ "will be removed in a future version. Use ``sep='\\s+'`` instead",
1370
+ FutureWarning,
1371
+ stacklevel=find_stack_level(),
1372
+ )
1373
+ else:
1374
+ delim_whitespace = False
1375
+
1376
+ if verbose is not lib.no_default:
1377
+ # GH#55569
1378
+ warnings.warn(
1379
+ "The 'verbose' keyword in pd.read_table is deprecated and "
1380
+ "will be removed in a future version.",
1381
+ FutureWarning,
1382
+ stacklevel=find_stack_level(),
1383
+ )
1384
+ else:
1385
+ verbose = False
1386
+
1387
+ # locals() should never be modified
1388
+ kwds = locals().copy()
1389
+ del kwds["filepath_or_buffer"]
1390
+ del kwds["sep"]
1391
+
1392
+ kwds_defaults = _refine_defaults_read(
1393
+ dialect,
1394
+ delimiter,
1395
+ delim_whitespace,
1396
+ engine,
1397
+ sep,
1398
+ on_bad_lines,
1399
+ names,
1400
+ defaults={"delimiter": "\t"},
1401
+ dtype_backend=dtype_backend,
1402
+ )
1403
+ kwds.update(kwds_defaults)
1404
+
1405
+ return _read(filepath_or_buffer, kwds)
1406
+
1407
+
1408
+ @overload
1409
+ def read_fwf(
1410
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1411
+ *,
1412
+ colspecs: Sequence[tuple[int, int]] | str | None = ...,
1413
+ widths: Sequence[int] | None = ...,
1414
+ infer_nrows: int = ...,
1415
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
1416
+ iterator: Literal[True],
1417
+ chunksize: int | None = ...,
1418
+ **kwds,
1419
+ ) -> TextFileReader:
1420
+ ...
1421
+
1422
+
1423
+ @overload
1424
+ def read_fwf(
1425
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1426
+ *,
1427
+ colspecs: Sequence[tuple[int, int]] | str | None = ...,
1428
+ widths: Sequence[int] | None = ...,
1429
+ infer_nrows: int = ...,
1430
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
1431
+ iterator: bool = ...,
1432
+ chunksize: int,
1433
+ **kwds,
1434
+ ) -> TextFileReader:
1435
+ ...
1436
+
1437
+
1438
+ @overload
1439
+ def read_fwf(
1440
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1441
+ *,
1442
+ colspecs: Sequence[tuple[int, int]] | str | None = ...,
1443
+ widths: Sequence[int] | None = ...,
1444
+ infer_nrows: int = ...,
1445
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
1446
+ iterator: Literal[False] = ...,
1447
+ chunksize: None = ...,
1448
+ **kwds,
1449
+ ) -> DataFrame:
1450
+ ...
1451
+
1452
+
1453
+ def read_fwf(
1454
+ filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
1455
+ *,
1456
+ colspecs: Sequence[tuple[int, int]] | str | None = "infer",
1457
+ widths: Sequence[int] | None = None,
1458
+ infer_nrows: int = 100,
1459
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
1460
+ iterator: bool = False,
1461
+ chunksize: int | None = None,
1462
+ **kwds,
1463
+ ) -> DataFrame | TextFileReader:
1464
+ r"""
1465
+ Read a table of fixed-width formatted lines into DataFrame.
1466
+
1467
+ Also supports optionally iterating or breaking of the file
1468
+ into chunks.
1469
+
1470
+ Additional help can be found in the `online docs for IO Tools
1471
+ <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
1472
+
1473
+ Parameters
1474
+ ----------
1475
+ filepath_or_buffer : str, path object, or file-like object
1476
+ String, path object (implementing ``os.PathLike[str]``), or file-like
1477
+ object implementing a text ``read()`` function.The string could be a URL.
1478
+ Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
1479
+ expected. A local file could be:
1480
+ ``file://localhost/path/to/table.csv``.
1481
+ colspecs : list of tuple (int, int) or 'infer'. optional
1482
+ A list of tuples giving the extents of the fixed-width
1483
+ fields of each line as half-open intervals (i.e., [from, to[ ).
1484
+ String value 'infer' can be used to instruct the parser to try
1485
+ detecting the column specifications from the first 100 rows of
1486
+ the data which are not being skipped via skiprows (default='infer').
1487
+ widths : list of int, optional
1488
+ A list of field widths which can be used instead of 'colspecs' if
1489
+ the intervals are contiguous.
1490
+ infer_nrows : int, default 100
1491
+ The number of rows to consider when letting the parser determine the
1492
+ `colspecs`.
1493
+ dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
1494
+ Back-end data type applied to the resultant :class:`DataFrame`
1495
+ (still experimental). Behaviour is as follows:
1496
+
1497
+ * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
1498
+ (default).
1499
+ * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
1500
+ DataFrame.
1501
+
1502
+ .. versionadded:: 2.0
1503
+
1504
+ **kwds : optional
1505
+ Optional keyword arguments can be passed to ``TextFileReader``.
1506
+
1507
+ Returns
1508
+ -------
1509
+ DataFrame or TextFileReader
1510
+ A comma-separated values (csv) file is returned as two-dimensional
1511
+ data structure with labeled axes.
1512
+
1513
+ See Also
1514
+ --------
1515
+ DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
1516
+ read_csv : Read a comma-separated values (csv) file into DataFrame.
1517
+
1518
+ Examples
1519
+ --------
1520
+ >>> pd.read_fwf('data.csv') # doctest: +SKIP
1521
+ """
1522
+ # Check input arguments.
1523
+ if colspecs is None and widths is None:
1524
+ raise ValueError("Must specify either colspecs or widths")
1525
+ if colspecs not in (None, "infer") and widths is not None:
1526
+ raise ValueError("You must specify only one of 'widths' and 'colspecs'")
1527
+
1528
+ # Compute 'colspecs' from 'widths', if specified.
1529
+ if widths is not None:
1530
+ colspecs, col = [], 0
1531
+ for w in widths:
1532
+ colspecs.append((col, col + w))
1533
+ col += w
1534
+
1535
+ # for mypy
1536
+ assert colspecs is not None
1537
+
1538
+ # GH#40830
1539
+ # Ensure length of `colspecs` matches length of `names`
1540
+ names = kwds.get("names")
1541
+ if names is not None:
1542
+ if len(names) != len(colspecs) and colspecs != "infer":
1543
+ # need to check len(index_col) as it might contain
1544
+ # unnamed indices, in which case it's name is not required
1545
+ len_index = 0
1546
+ if kwds.get("index_col") is not None:
1547
+ index_col: Any = kwds.get("index_col")
1548
+ if index_col is not False:
1549
+ if not is_list_like(index_col):
1550
+ len_index = 1
1551
+ else:
1552
+ len_index = len(index_col)
1553
+ if kwds.get("usecols") is None and len(names) + len_index != len(colspecs):
1554
+ # If usecols is used colspec may be longer than names
1555
+ raise ValueError("Length of colspecs must match length of names")
1556
+
1557
+ kwds["colspecs"] = colspecs
1558
+ kwds["infer_nrows"] = infer_nrows
1559
+ kwds["engine"] = "python-fwf"
1560
+ kwds["iterator"] = iterator
1561
+ kwds["chunksize"] = chunksize
1562
+
1563
+ check_dtype_backend(dtype_backend)
1564
+ kwds["dtype_backend"] = dtype_backend
1565
+ return _read(filepath_or_buffer, kwds)
1566
+
1567
+
1568
+ class TextFileReader(abc.Iterator):
1569
+ """
1570
+
1571
+ Passed dialect overrides any of the related parser options
1572
+
1573
+ """
1574
+
1575
+ def __init__(
1576
+ self,
1577
+ f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list,
1578
+ engine: CSVEngine | None = None,
1579
+ **kwds,
1580
+ ) -> None:
1581
+ if engine is not None:
1582
+ engine_specified = True
1583
+ else:
1584
+ engine = "python"
1585
+ engine_specified = False
1586
+ self.engine = engine
1587
+ self._engine_specified = kwds.get("engine_specified", engine_specified)
1588
+
1589
+ _validate_skipfooter(kwds)
1590
+
1591
+ dialect = _extract_dialect(kwds)
1592
+ if dialect is not None:
1593
+ if engine == "pyarrow":
1594
+ raise ValueError(
1595
+ "The 'dialect' option is not supported with the 'pyarrow' engine"
1596
+ )
1597
+ kwds = _merge_with_dialect_properties(dialect, kwds)
1598
+
1599
+ if kwds.get("header", "infer") == "infer":
1600
+ kwds["header"] = 0 if kwds.get("names") is None else None
1601
+
1602
+ self.orig_options = kwds
1603
+
1604
+ # miscellanea
1605
+ self._currow = 0
1606
+
1607
+ options = self._get_options_with_defaults(engine)
1608
+ options["storage_options"] = kwds.get("storage_options", None)
1609
+
1610
+ self.chunksize = options.pop("chunksize", None)
1611
+ self.nrows = options.pop("nrows", None)
1612
+
1613
+ self._check_file_or_buffer(f, engine)
1614
+ self.options, self.engine = self._clean_options(options, engine)
1615
+
1616
+ if "has_index_names" in kwds:
1617
+ self.options["has_index_names"] = kwds["has_index_names"]
1618
+
1619
+ self.handles: IOHandles | None = None
1620
+ self._engine = self._make_engine(f, self.engine)
1621
+
1622
+ def close(self) -> None:
1623
+ if self.handles is not None:
1624
+ self.handles.close()
1625
+ self._engine.close()
1626
+
1627
+ def _get_options_with_defaults(self, engine: CSVEngine) -> dict[str, Any]:
1628
+ kwds = self.orig_options
1629
+
1630
+ options = {}
1631
+ default: object | None
1632
+
1633
+ for argname, default in parser_defaults.items():
1634
+ value = kwds.get(argname, default)
1635
+
1636
+ # see gh-12935
1637
+ if (
1638
+ engine == "pyarrow"
1639
+ and argname in _pyarrow_unsupported
1640
+ and value != default
1641
+ and value != getattr(value, "value", default)
1642
+ ):
1643
+ raise ValueError(
1644
+ f"The {repr(argname)} option is not supported with the "
1645
+ f"'pyarrow' engine"
1646
+ )
1647
+ options[argname] = value
1648
+
1649
+ for argname, default in _c_parser_defaults.items():
1650
+ if argname in kwds:
1651
+ value = kwds[argname]
1652
+
1653
+ if engine != "c" and value != default:
1654
+ # TODO: Refactor this logic, its pretty convoluted
1655
+ if "python" in engine and argname not in _python_unsupported:
1656
+ pass
1657
+ elif "pyarrow" in engine and argname not in _pyarrow_unsupported:
1658
+ pass
1659
+ else:
1660
+ raise ValueError(
1661
+ f"The {repr(argname)} option is not supported with the "
1662
+ f"{repr(engine)} engine"
1663
+ )
1664
+ else:
1665
+ value = default
1666
+ options[argname] = value
1667
+
1668
+ if engine == "python-fwf":
1669
+ for argname, default in _fwf_defaults.items():
1670
+ options[argname] = kwds.get(argname, default)
1671
+
1672
+ return options
1673
+
1674
+ def _check_file_or_buffer(self, f, engine: CSVEngine) -> None:
1675
+ # see gh-16530
1676
+ if is_file_like(f) and engine != "c" and not hasattr(f, "__iter__"):
1677
+ # The C engine doesn't need the file-like to have the "__iter__"
1678
+ # attribute. However, the Python engine needs "__iter__(...)"
1679
+ # when iterating through such an object, meaning it
1680
+ # needs to have that attribute
1681
+ raise ValueError(
1682
+ "The 'python' engine cannot iterate through this file buffer."
1683
+ )
1684
+
1685
+ def _clean_options(
1686
+ self, options: dict[str, Any], engine: CSVEngine
1687
+ ) -> tuple[dict[str, Any], CSVEngine]:
1688
+ result = options.copy()
1689
+
1690
+ fallback_reason = None
1691
+
1692
+ # C engine not supported yet
1693
+ if engine == "c":
1694
+ if options["skipfooter"] > 0:
1695
+ fallback_reason = "the 'c' engine does not support skipfooter"
1696
+ engine = "python"
1697
+
1698
+ sep = options["delimiter"]
1699
+ delim_whitespace = options["delim_whitespace"]
1700
+
1701
+ if sep is None and not delim_whitespace:
1702
+ if engine in ("c", "pyarrow"):
1703
+ fallback_reason = (
1704
+ f"the '{engine}' engine does not support "
1705
+ "sep=None with delim_whitespace=False"
1706
+ )
1707
+ engine = "python"
1708
+ elif sep is not None and len(sep) > 1:
1709
+ if engine == "c" and sep == r"\s+":
1710
+ result["delim_whitespace"] = True
1711
+ del result["delimiter"]
1712
+ elif engine not in ("python", "python-fwf"):
1713
+ # wait until regex engine integrated
1714
+ fallback_reason = (
1715
+ f"the '{engine}' engine does not support "
1716
+ "regex separators (separators > 1 char and "
1717
+ r"different from '\s+' are interpreted as regex)"
1718
+ )
1719
+ engine = "python"
1720
+ elif delim_whitespace:
1721
+ if "python" in engine:
1722
+ result["delimiter"] = r"\s+"
1723
+ elif sep is not None:
1724
+ encodeable = True
1725
+ encoding = sys.getfilesystemencoding() or "utf-8"
1726
+ try:
1727
+ if len(sep.encode(encoding)) > 1:
1728
+ encodeable = False
1729
+ except UnicodeDecodeError:
1730
+ encodeable = False
1731
+ if not encodeable and engine not in ("python", "python-fwf"):
1732
+ fallback_reason = (
1733
+ f"the separator encoded in {encoding} "
1734
+ f"is > 1 char long, and the '{engine}' engine "
1735
+ "does not support such separators"
1736
+ )
1737
+ engine = "python"
1738
+
1739
+ quotechar = options["quotechar"]
1740
+ if quotechar is not None and isinstance(quotechar, (str, bytes)):
1741
+ if (
1742
+ len(quotechar) == 1
1743
+ and ord(quotechar) > 127
1744
+ and engine not in ("python", "python-fwf")
1745
+ ):
1746
+ fallback_reason = (
1747
+ "ord(quotechar) > 127, meaning the "
1748
+ "quotechar is larger than one byte, "
1749
+ f"and the '{engine}' engine does not support such quotechars"
1750
+ )
1751
+ engine = "python"
1752
+
1753
+ if fallback_reason and self._engine_specified:
1754
+ raise ValueError(fallback_reason)
1755
+
1756
+ if engine == "c":
1757
+ for arg in _c_unsupported:
1758
+ del result[arg]
1759
+
1760
+ if "python" in engine:
1761
+ for arg in _python_unsupported:
1762
+ if fallback_reason and result[arg] != _c_parser_defaults.get(arg):
1763
+ raise ValueError(
1764
+ "Falling back to the 'python' engine because "
1765
+ f"{fallback_reason}, but this causes {repr(arg)} to be "
1766
+ "ignored as it is not supported by the 'python' engine."
1767
+ )
1768
+ del result[arg]
1769
+
1770
+ if fallback_reason:
1771
+ warnings.warn(
1772
+ (
1773
+ "Falling back to the 'python' engine because "
1774
+ f"{fallback_reason}; you can avoid this warning by specifying "
1775
+ "engine='python'."
1776
+ ),
1777
+ ParserWarning,
1778
+ stacklevel=find_stack_level(),
1779
+ )
1780
+
1781
+ index_col = options["index_col"]
1782
+ names = options["names"]
1783
+ converters = options["converters"]
1784
+ na_values = options["na_values"]
1785
+ skiprows = options["skiprows"]
1786
+
1787
+ validate_header_arg(options["header"])
1788
+
1789
+ if index_col is True:
1790
+ raise ValueError("The value of index_col couldn't be 'True'")
1791
+ if is_index_col(index_col):
1792
+ if not isinstance(index_col, (list, tuple, np.ndarray)):
1793
+ index_col = [index_col]
1794
+ result["index_col"] = index_col
1795
+
1796
+ names = list(names) if names is not None else names
1797
+
1798
+ # type conversion-related
1799
+ if converters is not None:
1800
+ if not isinstance(converters, dict):
1801
+ raise TypeError(
1802
+ "Type converters must be a dict or subclass, "
1803
+ f"input was a {type(converters).__name__}"
1804
+ )
1805
+ else:
1806
+ converters = {}
1807
+
1808
+ # Converting values to NA
1809
+ keep_default_na = options["keep_default_na"]
1810
+ floatify = engine != "pyarrow"
1811
+ na_values, na_fvalues = _clean_na_values(
1812
+ na_values, keep_default_na, floatify=floatify
1813
+ )
1814
+
1815
+ # handle skiprows; this is internally handled by the
1816
+ # c-engine, so only need for python and pyarrow parsers
1817
+ if engine == "pyarrow":
1818
+ if not is_integer(skiprows) and skiprows is not None:
1819
+ # pyarrow expects skiprows to be passed as an integer
1820
+ raise ValueError(
1821
+ "skiprows argument must be an integer when using "
1822
+ "engine='pyarrow'"
1823
+ )
1824
+ else:
1825
+ if is_integer(skiprows):
1826
+ skiprows = list(range(skiprows))
1827
+ if skiprows is None:
1828
+ skiprows = set()
1829
+ elif not callable(skiprows):
1830
+ skiprows = set(skiprows)
1831
+
1832
+ # put stuff back
1833
+ result["names"] = names
1834
+ result["converters"] = converters
1835
+ result["na_values"] = na_values
1836
+ result["na_fvalues"] = na_fvalues
1837
+ result["skiprows"] = skiprows
1838
+
1839
+ return result, engine
1840
+
1841
+ def __next__(self) -> DataFrame:
1842
+ try:
1843
+ return self.get_chunk()
1844
+ except StopIteration:
1845
+ self.close()
1846
+ raise
1847
+
1848
+ def _make_engine(
1849
+ self,
1850
+ f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list | IO,
1851
+ engine: CSVEngine = "c",
1852
+ ) -> ParserBase:
1853
+ mapping: dict[str, type[ParserBase]] = {
1854
+ "c": CParserWrapper,
1855
+ "python": PythonParser,
1856
+ "pyarrow": ArrowParserWrapper,
1857
+ "python-fwf": FixedWidthFieldParser,
1858
+ }
1859
+ if engine not in mapping:
1860
+ raise ValueError(
1861
+ f"Unknown engine: {engine} (valid options are {mapping.keys()})"
1862
+ )
1863
+ if not isinstance(f, list):
1864
+ # open file here
1865
+ is_text = True
1866
+ mode = "r"
1867
+ if engine == "pyarrow":
1868
+ is_text = False
1869
+ mode = "rb"
1870
+ elif (
1871
+ engine == "c"
1872
+ and self.options.get("encoding", "utf-8") == "utf-8"
1873
+ and isinstance(stringify_path(f), str)
1874
+ ):
1875
+ # c engine can decode utf-8 bytes, adding TextIOWrapper makes
1876
+ # the c-engine especially for memory_map=True far slower
1877
+ is_text = False
1878
+ if "b" not in mode:
1879
+ mode += "b"
1880
+ self.handles = get_handle(
1881
+ f,
1882
+ mode,
1883
+ encoding=self.options.get("encoding", None),
1884
+ compression=self.options.get("compression", None),
1885
+ memory_map=self.options.get("memory_map", False),
1886
+ is_text=is_text,
1887
+ errors=self.options.get("encoding_errors", "strict"),
1888
+ storage_options=self.options.get("storage_options", None),
1889
+ )
1890
+ assert self.handles is not None
1891
+ f = self.handles.handle
1892
+
1893
+ elif engine != "python":
1894
+ msg = f"Invalid file path or buffer object type: {type(f)}"
1895
+ raise ValueError(msg)
1896
+
1897
+ try:
1898
+ return mapping[engine](f, **self.options)
1899
+ except Exception:
1900
+ if self.handles is not None:
1901
+ self.handles.close()
1902
+ raise
1903
+
1904
+ def _failover_to_python(self) -> None:
1905
+ raise AbstractMethodError(self)
1906
+
1907
+ def read(self, nrows: int | None = None) -> DataFrame:
1908
+ if self.engine == "pyarrow":
1909
+ try:
1910
+ # error: "ParserBase" has no attribute "read"
1911
+ df = self._engine.read() # type: ignore[attr-defined]
1912
+ except Exception:
1913
+ self.close()
1914
+ raise
1915
+ else:
1916
+ nrows = validate_integer("nrows", nrows)
1917
+ try:
1918
+ # error: "ParserBase" has no attribute "read"
1919
+ (
1920
+ index,
1921
+ columns,
1922
+ col_dict,
1923
+ ) = self._engine.read( # type: ignore[attr-defined]
1924
+ nrows
1925
+ )
1926
+ except Exception:
1927
+ self.close()
1928
+ raise
1929
+
1930
+ if index is None:
1931
+ if col_dict:
1932
+ # Any column is actually fine:
1933
+ new_rows = len(next(iter(col_dict.values())))
1934
+ index = RangeIndex(self._currow, self._currow + new_rows)
1935
+ else:
1936
+ new_rows = 0
1937
+ else:
1938
+ new_rows = len(index)
1939
+
1940
+ if hasattr(self, "orig_options"):
1941
+ dtype_arg = self.orig_options.get("dtype", None)
1942
+ else:
1943
+ dtype_arg = None
1944
+
1945
+ if isinstance(dtype_arg, dict):
1946
+ dtype = defaultdict(lambda: None) # type: ignore[var-annotated]
1947
+ dtype.update(dtype_arg)
1948
+ elif dtype_arg is not None and pandas_dtype(dtype_arg) in (
1949
+ np.str_,
1950
+ np.object_,
1951
+ ):
1952
+ dtype = defaultdict(lambda: dtype_arg)
1953
+ else:
1954
+ dtype = None
1955
+
1956
+ if dtype is not None:
1957
+ new_col_dict = {}
1958
+ for k, v in col_dict.items():
1959
+ d = (
1960
+ dtype[k]
1961
+ if pandas_dtype(dtype[k]) in (np.str_, np.object_)
1962
+ else None
1963
+ )
1964
+ new_col_dict[k] = Series(v, index=index, dtype=d, copy=False)
1965
+ else:
1966
+ new_col_dict = col_dict
1967
+
1968
+ df = DataFrame(
1969
+ new_col_dict,
1970
+ columns=columns,
1971
+ index=index,
1972
+ copy=not using_copy_on_write(),
1973
+ )
1974
+
1975
+ self._currow += new_rows
1976
+ return df
1977
+
1978
+ def get_chunk(self, size: int | None = None) -> DataFrame:
1979
+ if size is None:
1980
+ size = self.chunksize
1981
+ if self.nrows is not None:
1982
+ if self._currow >= self.nrows:
1983
+ raise StopIteration
1984
+ size = min(size, self.nrows - self._currow)
1985
+ return self.read(nrows=size)
1986
+
1987
+ def __enter__(self) -> Self:
1988
+ return self
1989
+
1990
+ def __exit__(
1991
+ self,
1992
+ exc_type: type[BaseException] | None,
1993
+ exc_value: BaseException | None,
1994
+ traceback: TracebackType | None,
1995
+ ) -> None:
1996
+ self.close()
1997
+
1998
+
1999
+ def TextParser(*args, **kwds) -> TextFileReader:
2000
+ """
2001
+ Converts lists of lists/tuples into DataFrames with proper type inference
2002
+ and optional (e.g. string to datetime) conversion. Also enables iterating
2003
+ lazily over chunks of large files
2004
+
2005
+ Parameters
2006
+ ----------
2007
+ data : file-like object or list
2008
+ delimiter : separator character to use
2009
+ dialect : str or csv.Dialect instance, optional
2010
+ Ignored if delimiter is longer than 1 character
2011
+ names : sequence, default
2012
+ header : int, default 0
2013
+ Row to use to parse column labels. Defaults to the first row. Prior
2014
+ rows will be discarded
2015
+ index_col : int or list, optional
2016
+ Column or columns to use as the (possibly hierarchical) index
2017
+ has_index_names: bool, default False
2018
+ True if the cols defined in index_col have an index name and are
2019
+ not in the header.
2020
+ na_values : scalar, str, list-like, or dict, optional
2021
+ Additional strings to recognize as NA/NaN.
2022
+ keep_default_na : bool, default True
2023
+ thousands : str, optional
2024
+ Thousands separator
2025
+ comment : str, optional
2026
+ Comment out remainder of line
2027
+ parse_dates : bool, default False
2028
+ keep_date_col : bool, default False
2029
+ date_parser : function, optional
2030
+
2031
+ .. deprecated:: 2.0.0
2032
+ date_format : str or dict of column -> format, default ``None``
2033
+
2034
+ .. versionadded:: 2.0.0
2035
+ skiprows : list of integers
2036
+ Row numbers to skip
2037
+ skipfooter : int
2038
+ Number of line at bottom of file to skip
2039
+ converters : dict, optional
2040
+ Dict of functions for converting values in certain columns. Keys can
2041
+ either be integers or column labels, values are functions that take one
2042
+ input argument, the cell (not column) content, and return the
2043
+ transformed content.
2044
+ encoding : str, optional
2045
+ Encoding to use for UTF when reading/writing (ex. 'utf-8')
2046
+ float_precision : str, optional
2047
+ Specifies which converter the C engine should use for floating-point
2048
+ values. The options are `None` or `high` for the ordinary converter,
2049
+ `legacy` for the original lower precision pandas converter, and
2050
+ `round_trip` for the round-trip converter.
2051
+ """
2052
+ kwds["engine"] = "python"
2053
+ return TextFileReader(*args, **kwds)
2054
+
2055
+
2056
+ def _clean_na_values(na_values, keep_default_na: bool = True, floatify: bool = True):
2057
+ na_fvalues: set | dict
2058
+ if na_values is None:
2059
+ if keep_default_na:
2060
+ na_values = STR_NA_VALUES
2061
+ else:
2062
+ na_values = set()
2063
+ na_fvalues = set()
2064
+ elif isinstance(na_values, dict):
2065
+ old_na_values = na_values.copy()
2066
+ na_values = {} # Prevent aliasing.
2067
+
2068
+ # Convert the values in the na_values dictionary
2069
+ # into array-likes for further use. This is also
2070
+ # where we append the default NaN values, provided
2071
+ # that `keep_default_na=True`.
2072
+ for k, v in old_na_values.items():
2073
+ if not is_list_like(v):
2074
+ v = [v]
2075
+
2076
+ if keep_default_na:
2077
+ v = set(v) | STR_NA_VALUES
2078
+
2079
+ na_values[k] = v
2080
+ na_fvalues = {k: _floatify_na_values(v) for k, v in na_values.items()}
2081
+ else:
2082
+ if not is_list_like(na_values):
2083
+ na_values = [na_values]
2084
+ na_values = _stringify_na_values(na_values, floatify)
2085
+ if keep_default_na:
2086
+ na_values = na_values | STR_NA_VALUES
2087
+
2088
+ na_fvalues = _floatify_na_values(na_values)
2089
+
2090
+ return na_values, na_fvalues
2091
+
2092
+
2093
+ def _floatify_na_values(na_values):
2094
+ # create float versions of the na_values
2095
+ result = set()
2096
+ for v in na_values:
2097
+ try:
2098
+ v = float(v)
2099
+ if not np.isnan(v):
2100
+ result.add(v)
2101
+ except (TypeError, ValueError, OverflowError):
2102
+ pass
2103
+ return result
2104
+
2105
+
2106
+ def _stringify_na_values(na_values, floatify: bool):
2107
+ """return a stringified and numeric for these values"""
2108
+ result: list[str | float] = []
2109
+ for x in na_values:
2110
+ result.append(str(x))
2111
+ result.append(x)
2112
+ try:
2113
+ v = float(x)
2114
+
2115
+ # we are like 999 here
2116
+ if v == int(v):
2117
+ v = int(v)
2118
+ result.append(f"{v}.0")
2119
+ result.append(str(v))
2120
+
2121
+ if floatify:
2122
+ result.append(v)
2123
+ except (TypeError, ValueError, OverflowError):
2124
+ pass
2125
+ if floatify:
2126
+ try:
2127
+ result.append(int(x))
2128
+ except (TypeError, ValueError, OverflowError):
2129
+ pass
2130
+ return set(result)
2131
+
2132
+
2133
+ def _refine_defaults_read(
2134
+ dialect: str | csv.Dialect | None,
2135
+ delimiter: str | None | lib.NoDefault,
2136
+ delim_whitespace: bool,
2137
+ engine: CSVEngine | None,
2138
+ sep: str | None | lib.NoDefault,
2139
+ on_bad_lines: str | Callable,
2140
+ names: Sequence[Hashable] | None | lib.NoDefault,
2141
+ defaults: dict[str, Any],
2142
+ dtype_backend: DtypeBackend | lib.NoDefault,
2143
+ ):
2144
+ """Validate/refine default values of input parameters of read_csv, read_table.
2145
+
2146
+ Parameters
2147
+ ----------
2148
+ dialect : str or csv.Dialect
2149
+ If provided, this parameter will override values (default or not) for the
2150
+ following parameters: `delimiter`, `doublequote`, `escapechar`,
2151
+ `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
2152
+ override values, a ParserWarning will be issued. See csv.Dialect
2153
+ documentation for more details.
2154
+ delimiter : str or object
2155
+ Alias for sep.
2156
+ delim_whitespace : bool
2157
+ Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be
2158
+ used as the sep. Equivalent to setting ``sep='\\s+'``. If this option
2159
+ is set to True, nothing should be passed in for the ``delimiter``
2160
+ parameter.
2161
+
2162
+ .. deprecated:: 2.2.0
2163
+ Use ``sep="\\s+"`` instead.
2164
+ engine : {{'c', 'python'}}
2165
+ Parser engine to use. The C engine is faster while the python engine is
2166
+ currently more feature-complete.
2167
+ sep : str or object
2168
+ A delimiter provided by the user (str) or a sentinel value, i.e.
2169
+ pandas._libs.lib.no_default.
2170
+ on_bad_lines : str, callable
2171
+ An option for handling bad lines or a sentinel value(None).
2172
+ names : array-like, optional
2173
+ List of column names to use. If the file contains a header row,
2174
+ then you should explicitly pass ``header=0`` to override the column names.
2175
+ Duplicates in this list are not allowed.
2176
+ defaults: dict
2177
+ Default values of input parameters.
2178
+
2179
+ Returns
2180
+ -------
2181
+ kwds : dict
2182
+ Input parameters with correct values.
2183
+
2184
+ Raises
2185
+ ------
2186
+ ValueError :
2187
+ If a delimiter was specified with ``sep`` (or ``delimiter``) and
2188
+ ``delim_whitespace=True``.
2189
+ """
2190
+ # fix types for sep, delimiter to Union(str, Any)
2191
+ delim_default = defaults["delimiter"]
2192
+ kwds: dict[str, Any] = {}
2193
+ # gh-23761
2194
+ #
2195
+ # When a dialect is passed, it overrides any of the overlapping
2196
+ # parameters passed in directly. We don't want to warn if the
2197
+ # default parameters were passed in (since it probably means
2198
+ # that the user didn't pass them in explicitly in the first place).
2199
+ #
2200
+ # "delimiter" is the annoying corner case because we alias it to
2201
+ # "sep" before doing comparison to the dialect values later on.
2202
+ # Thus, we need a flag to indicate that we need to "override"
2203
+ # the comparison to dialect values by checking if default values
2204
+ # for BOTH "delimiter" and "sep" were provided.
2205
+ if dialect is not None:
2206
+ kwds["sep_override"] = delimiter is None and (
2207
+ sep is lib.no_default or sep == delim_default
2208
+ )
2209
+
2210
+ if delimiter and (sep is not lib.no_default):
2211
+ raise ValueError("Specified a sep and a delimiter; you can only specify one.")
2212
+
2213
+ kwds["names"] = None if names is lib.no_default else names
2214
+
2215
+ # Alias sep -> delimiter.
2216
+ if delimiter is None:
2217
+ delimiter = sep
2218
+
2219
+ if delim_whitespace and (delimiter is not lib.no_default):
2220
+ raise ValueError(
2221
+ "Specified a delimiter with both sep and "
2222
+ "delim_whitespace=True; you can only specify one."
2223
+ )
2224
+
2225
+ if delimiter == "\n":
2226
+ raise ValueError(
2227
+ r"Specified \n as separator or delimiter. This forces the python engine "
2228
+ "which does not accept a line terminator. Hence it is not allowed to use "
2229
+ "the line terminator as separator.",
2230
+ )
2231
+
2232
+ if delimiter is lib.no_default:
2233
+ # assign default separator value
2234
+ kwds["delimiter"] = delim_default
2235
+ else:
2236
+ kwds["delimiter"] = delimiter
2237
+
2238
+ if engine is not None:
2239
+ kwds["engine_specified"] = True
2240
+ else:
2241
+ kwds["engine"] = "c"
2242
+ kwds["engine_specified"] = False
2243
+
2244
+ if on_bad_lines == "error":
2245
+ kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.ERROR
2246
+ elif on_bad_lines == "warn":
2247
+ kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.WARN
2248
+ elif on_bad_lines == "skip":
2249
+ kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.SKIP
2250
+ elif callable(on_bad_lines):
2251
+ if engine not in ["python", "pyarrow"]:
2252
+ raise ValueError(
2253
+ "on_bad_line can only be a callable function "
2254
+ "if engine='python' or 'pyarrow'"
2255
+ )
2256
+ kwds["on_bad_lines"] = on_bad_lines
2257
+ else:
2258
+ raise ValueError(f"Argument {on_bad_lines} is invalid for on_bad_lines")
2259
+
2260
+ check_dtype_backend(dtype_backend)
2261
+
2262
+ kwds["dtype_backend"] = dtype_backend
2263
+
2264
+ return kwds
2265
+
2266
+
2267
+ def _extract_dialect(kwds: dict[str, Any]) -> csv.Dialect | None:
2268
+ """
2269
+ Extract concrete csv dialect instance.
2270
+
2271
+ Returns
2272
+ -------
2273
+ csv.Dialect or None
2274
+ """
2275
+ if kwds.get("dialect") is None:
2276
+ return None
2277
+
2278
+ dialect = kwds["dialect"]
2279
+ if dialect in csv.list_dialects():
2280
+ dialect = csv.get_dialect(dialect)
2281
+
2282
+ _validate_dialect(dialect)
2283
+
2284
+ return dialect
2285
+
2286
+
2287
+ MANDATORY_DIALECT_ATTRS = (
2288
+ "delimiter",
2289
+ "doublequote",
2290
+ "escapechar",
2291
+ "skipinitialspace",
2292
+ "quotechar",
2293
+ "quoting",
2294
+ )
2295
+
2296
+
2297
+ def _validate_dialect(dialect: csv.Dialect) -> None:
2298
+ """
2299
+ Validate csv dialect instance.
2300
+
2301
+ Raises
2302
+ ------
2303
+ ValueError
2304
+ If incorrect dialect is provided.
2305
+ """
2306
+ for param in MANDATORY_DIALECT_ATTRS:
2307
+ if not hasattr(dialect, param):
2308
+ raise ValueError(f"Invalid dialect {dialect} provided")
2309
+
2310
+
2311
+ def _merge_with_dialect_properties(
2312
+ dialect: csv.Dialect,
2313
+ defaults: dict[str, Any],
2314
+ ) -> dict[str, Any]:
2315
+ """
2316
+ Merge default kwargs in TextFileReader with dialect parameters.
2317
+
2318
+ Parameters
2319
+ ----------
2320
+ dialect : csv.Dialect
2321
+ Concrete csv dialect. See csv.Dialect documentation for more details.
2322
+ defaults : dict
2323
+ Keyword arguments passed to TextFileReader.
2324
+
2325
+ Returns
2326
+ -------
2327
+ kwds : dict
2328
+ Updated keyword arguments, merged with dialect parameters.
2329
+ """
2330
+ kwds = defaults.copy()
2331
+
2332
+ for param in MANDATORY_DIALECT_ATTRS:
2333
+ dialect_val = getattr(dialect, param)
2334
+
2335
+ parser_default = parser_defaults[param]
2336
+ provided = kwds.get(param, parser_default)
2337
+
2338
+ # Messages for conflicting values between the dialect
2339
+ # instance and the actual parameters provided.
2340
+ conflict_msgs = []
2341
+
2342
+ # Don't warn if the default parameter was passed in,
2343
+ # even if it conflicts with the dialect (gh-23761).
2344
+ if provided not in (parser_default, dialect_val):
2345
+ msg = (
2346
+ f"Conflicting values for '{param}': '{provided}' was "
2347
+ f"provided, but the dialect specifies '{dialect_val}'. "
2348
+ "Using the dialect-specified value."
2349
+ )
2350
+
2351
+ # Annoying corner case for not warning about
2352
+ # conflicts between dialect and delimiter parameter.
2353
+ # Refer to the outer "_read_" function for more info.
2354
+ if not (param == "delimiter" and kwds.pop("sep_override", False)):
2355
+ conflict_msgs.append(msg)
2356
+
2357
+ if conflict_msgs:
2358
+ warnings.warn(
2359
+ "\n\n".join(conflict_msgs), ParserWarning, stacklevel=find_stack_level()
2360
+ )
2361
+ kwds[param] = dialect_val
2362
+ return kwds
2363
+
2364
+
2365
+ def _validate_skipfooter(kwds: dict[str, Any]) -> None:
2366
+ """
2367
+ Check whether skipfooter is compatible with other kwargs in TextFileReader.
2368
+
2369
+ Parameters
2370
+ ----------
2371
+ kwds : dict
2372
+ Keyword arguments passed to TextFileReader.
2373
+
2374
+ Raises
2375
+ ------
2376
+ ValueError
2377
+ If skipfooter is not compatible with other parameters.
2378
+ """
2379
+ if kwds.get("skipfooter"):
2380
+ if kwds.get("iterator") or kwds.get("chunksize"):
2381
+ raise ValueError("'skipfooter' not supported for iteration")
2382
+ if kwds.get("nrows"):
2383
+ raise ValueError("'skipfooter' not supported with 'nrows'")
env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (181 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_api.cpython-310.pyc ADDED
Binary file (7.84 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_types.cpython-310.pyc ADDED
Binary file (1.89 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/api/test_api.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import pytest
4
+
5
+ import pandas as pd
6
+ from pandas import api
7
+ import pandas._testing as tm
8
+ from pandas.api import (
9
+ extensions as api_extensions,
10
+ indexers as api_indexers,
11
+ interchange as api_interchange,
12
+ types as api_types,
13
+ typing as api_typing,
14
+ )
15
+
16
+
17
+ class Base:
18
+ def check(self, namespace, expected, ignored=None):
19
+ # see which names are in the namespace, minus optional
20
+ # ignored ones
21
+ # compare vs the expected
22
+
23
+ result = sorted(
24
+ f for f in dir(namespace) if not f.startswith("__") and f != "annotations"
25
+ )
26
+ if ignored is not None:
27
+ result = sorted(set(result) - set(ignored))
28
+
29
+ expected = sorted(expected)
30
+ tm.assert_almost_equal(result, expected)
31
+
32
+
33
+ class TestPDApi(Base):
34
+ # these are optionally imported based on testing
35
+ # & need to be ignored
36
+ ignored = ["tests", "locale", "conftest", "_version_meson"]
37
+
38
+ # top-level sub-packages
39
+ public_lib = [
40
+ "api",
41
+ "arrays",
42
+ "options",
43
+ "test",
44
+ "testing",
45
+ "errors",
46
+ "plotting",
47
+ "io",
48
+ "tseries",
49
+ ]
50
+ private_lib = ["compat", "core", "pandas", "util", "_built_with_meson"]
51
+
52
+ # misc
53
+ misc = ["IndexSlice", "NaT", "NA"]
54
+
55
+ # top-level classes
56
+ classes = [
57
+ "ArrowDtype",
58
+ "Categorical",
59
+ "CategoricalIndex",
60
+ "DataFrame",
61
+ "DateOffset",
62
+ "DatetimeIndex",
63
+ "ExcelFile",
64
+ "ExcelWriter",
65
+ "Flags",
66
+ "Grouper",
67
+ "HDFStore",
68
+ "Index",
69
+ "MultiIndex",
70
+ "Period",
71
+ "PeriodIndex",
72
+ "RangeIndex",
73
+ "Series",
74
+ "SparseDtype",
75
+ "StringDtype",
76
+ "Timedelta",
77
+ "TimedeltaIndex",
78
+ "Timestamp",
79
+ "Interval",
80
+ "IntervalIndex",
81
+ "CategoricalDtype",
82
+ "PeriodDtype",
83
+ "IntervalDtype",
84
+ "DatetimeTZDtype",
85
+ "BooleanDtype",
86
+ "Int8Dtype",
87
+ "Int16Dtype",
88
+ "Int32Dtype",
89
+ "Int64Dtype",
90
+ "UInt8Dtype",
91
+ "UInt16Dtype",
92
+ "UInt32Dtype",
93
+ "UInt64Dtype",
94
+ "Float32Dtype",
95
+ "Float64Dtype",
96
+ "NamedAgg",
97
+ ]
98
+
99
+ # these are already deprecated; awaiting removal
100
+ deprecated_classes: list[str] = []
101
+
102
+ # external modules exposed in pandas namespace
103
+ modules: list[str] = []
104
+
105
+ # top-level functions
106
+ funcs = [
107
+ "array",
108
+ "bdate_range",
109
+ "concat",
110
+ "crosstab",
111
+ "cut",
112
+ "date_range",
113
+ "interval_range",
114
+ "eval",
115
+ "factorize",
116
+ "get_dummies",
117
+ "from_dummies",
118
+ "infer_freq",
119
+ "isna",
120
+ "isnull",
121
+ "lreshape",
122
+ "melt",
123
+ "notna",
124
+ "notnull",
125
+ "offsets",
126
+ "merge",
127
+ "merge_ordered",
128
+ "merge_asof",
129
+ "period_range",
130
+ "pivot",
131
+ "pivot_table",
132
+ "qcut",
133
+ "show_versions",
134
+ "timedelta_range",
135
+ "unique",
136
+ "value_counts",
137
+ "wide_to_long",
138
+ ]
139
+
140
+ # top-level option funcs
141
+ funcs_option = [
142
+ "reset_option",
143
+ "describe_option",
144
+ "get_option",
145
+ "option_context",
146
+ "set_option",
147
+ "set_eng_float_format",
148
+ ]
149
+
150
+ # top-level read_* funcs
151
+ funcs_read = [
152
+ "read_clipboard",
153
+ "read_csv",
154
+ "read_excel",
155
+ "read_fwf",
156
+ "read_gbq",
157
+ "read_hdf",
158
+ "read_html",
159
+ "read_xml",
160
+ "read_json",
161
+ "read_pickle",
162
+ "read_sas",
163
+ "read_sql",
164
+ "read_sql_query",
165
+ "read_sql_table",
166
+ "read_stata",
167
+ "read_table",
168
+ "read_feather",
169
+ "read_parquet",
170
+ "read_orc",
171
+ "read_spss",
172
+ ]
173
+
174
+ # top-level json funcs
175
+ funcs_json = ["json_normalize"]
176
+
177
+ # top-level to_* funcs
178
+ funcs_to = ["to_datetime", "to_numeric", "to_pickle", "to_timedelta"]
179
+
180
+ # top-level to deprecate in the future
181
+ deprecated_funcs_in_future: list[str] = []
182
+
183
+ # these are already deprecated; awaiting removal
184
+ deprecated_funcs: list[str] = []
185
+
186
+ # private modules in pandas namespace
187
+ private_modules = [
188
+ "_config",
189
+ "_libs",
190
+ "_is_numpy_dev",
191
+ "_pandas_datetime_CAPI",
192
+ "_pandas_parser_CAPI",
193
+ "_testing",
194
+ "_typing",
195
+ ]
196
+ if not pd._built_with_meson:
197
+ private_modules.append("_version")
198
+
199
+ def test_api(self):
200
+ checkthese = (
201
+ self.public_lib
202
+ + self.private_lib
203
+ + self.misc
204
+ + self.modules
205
+ + self.classes
206
+ + self.funcs
207
+ + self.funcs_option
208
+ + self.funcs_read
209
+ + self.funcs_json
210
+ + self.funcs_to
211
+ + self.private_modules
212
+ )
213
+ self.check(namespace=pd, expected=checkthese, ignored=self.ignored)
214
+
215
+ def test_api_all(self):
216
+ expected = set(
217
+ self.public_lib
218
+ + self.misc
219
+ + self.modules
220
+ + self.classes
221
+ + self.funcs
222
+ + self.funcs_option
223
+ + self.funcs_read
224
+ + self.funcs_json
225
+ + self.funcs_to
226
+ ) - set(self.deprecated_classes)
227
+ actual = set(pd.__all__)
228
+
229
+ extraneous = actual - expected
230
+ assert not extraneous
231
+
232
+ missing = expected - actual
233
+ assert not missing
234
+
235
+ def test_depr(self):
236
+ deprecated_list = (
237
+ self.deprecated_classes
238
+ + self.deprecated_funcs
239
+ + self.deprecated_funcs_in_future
240
+ )
241
+ for depr in deprecated_list:
242
+ with tm.assert_produces_warning(FutureWarning):
243
+ _ = getattr(pd, depr)
244
+
245
+
246
+ class TestApi(Base):
247
+ allowed_api_dirs = [
248
+ "types",
249
+ "extensions",
250
+ "indexers",
251
+ "interchange",
252
+ "typing",
253
+ ]
254
+ allowed_typing = [
255
+ "DataFrameGroupBy",
256
+ "DatetimeIndexResamplerGroupby",
257
+ "Expanding",
258
+ "ExpandingGroupby",
259
+ "ExponentialMovingWindow",
260
+ "ExponentialMovingWindowGroupby",
261
+ "JsonReader",
262
+ "NaTType",
263
+ "NAType",
264
+ "PeriodIndexResamplerGroupby",
265
+ "Resampler",
266
+ "Rolling",
267
+ "RollingGroupby",
268
+ "SeriesGroupBy",
269
+ "StataReader",
270
+ "TimedeltaIndexResamplerGroupby",
271
+ "TimeGrouper",
272
+ "Window",
273
+ ]
274
+ allowed_api_types = [
275
+ "is_any_real_numeric_dtype",
276
+ "is_array_like",
277
+ "is_bool",
278
+ "is_bool_dtype",
279
+ "is_categorical_dtype",
280
+ "is_complex",
281
+ "is_complex_dtype",
282
+ "is_datetime64_any_dtype",
283
+ "is_datetime64_dtype",
284
+ "is_datetime64_ns_dtype",
285
+ "is_datetime64tz_dtype",
286
+ "is_dict_like",
287
+ "is_dtype_equal",
288
+ "is_extension_array_dtype",
289
+ "is_file_like",
290
+ "is_float",
291
+ "is_float_dtype",
292
+ "is_hashable",
293
+ "is_int64_dtype",
294
+ "is_integer",
295
+ "is_integer_dtype",
296
+ "is_interval",
297
+ "is_interval_dtype",
298
+ "is_iterator",
299
+ "is_list_like",
300
+ "is_named_tuple",
301
+ "is_number",
302
+ "is_numeric_dtype",
303
+ "is_object_dtype",
304
+ "is_period_dtype",
305
+ "is_re",
306
+ "is_re_compilable",
307
+ "is_scalar",
308
+ "is_signed_integer_dtype",
309
+ "is_sparse",
310
+ "is_string_dtype",
311
+ "is_timedelta64_dtype",
312
+ "is_timedelta64_ns_dtype",
313
+ "is_unsigned_integer_dtype",
314
+ "pandas_dtype",
315
+ "infer_dtype",
316
+ "union_categoricals",
317
+ "CategoricalDtype",
318
+ "DatetimeTZDtype",
319
+ "IntervalDtype",
320
+ "PeriodDtype",
321
+ ]
322
+ allowed_api_interchange = ["from_dataframe", "DataFrame"]
323
+ allowed_api_indexers = [
324
+ "check_array_indexer",
325
+ "BaseIndexer",
326
+ "FixedForwardWindowIndexer",
327
+ "VariableOffsetWindowIndexer",
328
+ ]
329
+ allowed_api_extensions = [
330
+ "no_default",
331
+ "ExtensionDtype",
332
+ "register_extension_dtype",
333
+ "register_dataframe_accessor",
334
+ "register_index_accessor",
335
+ "register_series_accessor",
336
+ "take",
337
+ "ExtensionArray",
338
+ "ExtensionScalarOpsMixin",
339
+ ]
340
+
341
+ def test_api(self):
342
+ self.check(api, self.allowed_api_dirs)
343
+
344
+ def test_api_typing(self):
345
+ self.check(api_typing, self.allowed_typing)
346
+
347
+ def test_api_types(self):
348
+ self.check(api_types, self.allowed_api_types)
349
+
350
+ def test_api_interchange(self):
351
+ self.check(api_interchange, self.allowed_api_interchange)
352
+
353
+ def test_api_indexers(self):
354
+ self.check(api_indexers, self.allowed_api_indexers)
355
+
356
+ def test_api_extensions(self):
357
+ self.check(api_extensions, self.allowed_api_extensions)
358
+
359
+
360
+ class TestTesting(Base):
361
+ funcs = [
362
+ "assert_frame_equal",
363
+ "assert_series_equal",
364
+ "assert_index_equal",
365
+ "assert_extension_array_equal",
366
+ ]
367
+
368
+ def test_testing(self):
369
+ from pandas import testing
370
+
371
+ self.check(testing, self.funcs)
372
+
373
+ def test_util_in_top_level(self):
374
+ with pytest.raises(AttributeError, match="foo"):
375
+ pd.util.foo
376
+
377
+
378
+ def test_pandas_array_alias():
379
+ msg = "PandasArray has been renamed NumpyExtensionArray"
380
+ with tm.assert_produces_warning(FutureWarning, match=msg):
381
+ res = pd.arrays.PandasArray
382
+
383
+ assert res is pd.arrays.NumpyExtensionArray
env-llmeval/lib/python3.10/site-packages/pandas/tests/api/test_types.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import pandas._testing as tm
4
+ from pandas.api import types
5
+ from pandas.tests.api.test_api import Base
6
+
7
+
8
+ class TestTypes(Base):
9
+ allowed = [
10
+ "is_any_real_numeric_dtype",
11
+ "is_bool",
12
+ "is_bool_dtype",
13
+ "is_categorical_dtype",
14
+ "is_complex",
15
+ "is_complex_dtype",
16
+ "is_datetime64_any_dtype",
17
+ "is_datetime64_dtype",
18
+ "is_datetime64_ns_dtype",
19
+ "is_datetime64tz_dtype",
20
+ "is_dtype_equal",
21
+ "is_float",
22
+ "is_float_dtype",
23
+ "is_int64_dtype",
24
+ "is_integer",
25
+ "is_integer_dtype",
26
+ "is_number",
27
+ "is_numeric_dtype",
28
+ "is_object_dtype",
29
+ "is_scalar",
30
+ "is_sparse",
31
+ "is_string_dtype",
32
+ "is_signed_integer_dtype",
33
+ "is_timedelta64_dtype",
34
+ "is_timedelta64_ns_dtype",
35
+ "is_unsigned_integer_dtype",
36
+ "is_period_dtype",
37
+ "is_interval",
38
+ "is_interval_dtype",
39
+ "is_re",
40
+ "is_re_compilable",
41
+ "is_dict_like",
42
+ "is_iterator",
43
+ "is_file_like",
44
+ "is_list_like",
45
+ "is_hashable",
46
+ "is_array_like",
47
+ "is_named_tuple",
48
+ "pandas_dtype",
49
+ "union_categoricals",
50
+ "infer_dtype",
51
+ "is_extension_array_dtype",
52
+ ]
53
+ deprecated: list[str] = []
54
+ dtypes = ["CategoricalDtype", "DatetimeTZDtype", "PeriodDtype", "IntervalDtype"]
55
+
56
+ def test_types(self):
57
+ self.check(types, self.allowed + self.dtypes + self.deprecated)
58
+
59
+ def test_deprecated_from_api_types(self):
60
+ for t in self.deprecated:
61
+ with tm.assert_produces_warning(FutureWarning):
62
+ getattr(types, t)(1)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_algos.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize("ordered", [True, False])
9
+ @pytest.mark.parametrize("categories", [["b", "a", "c"], ["a", "b", "c", "d"]])
10
+ def test_factorize(categories, ordered):
11
+ cat = pd.Categorical(
12
+ ["b", "b", "a", "c", None], categories=categories, ordered=ordered
13
+ )
14
+ codes, uniques = pd.factorize(cat)
15
+ expected_codes = np.array([0, 0, 1, 2, -1], dtype=np.intp)
16
+ expected_uniques = pd.Categorical(
17
+ ["b", "a", "c"], categories=categories, ordered=ordered
18
+ )
19
+
20
+ tm.assert_numpy_array_equal(codes, expected_codes)
21
+ tm.assert_categorical_equal(uniques, expected_uniques)
22
+
23
+
24
+ def test_factorized_sort():
25
+ cat = pd.Categorical(["b", "b", None, "a"])
26
+ codes, uniques = pd.factorize(cat, sort=True)
27
+ expected_codes = np.array([1, 1, -1, 0], dtype=np.intp)
28
+ expected_uniques = pd.Categorical(["a", "b"])
29
+
30
+ tm.assert_numpy_array_equal(codes, expected_codes)
31
+ tm.assert_categorical_equal(uniques, expected_uniques)
32
+
33
+
34
+ def test_factorized_sort_ordered():
35
+ cat = pd.Categorical(
36
+ ["b", "b", None, "a"], categories=["c", "b", "a"], ordered=True
37
+ )
38
+
39
+ codes, uniques = pd.factorize(cat, sort=True)
40
+ expected_codes = np.array([0, 0, -1, 1], dtype=np.intp)
41
+ expected_uniques = pd.Categorical(
42
+ ["b", "a"], categories=["c", "b", "a"], ordered=True
43
+ )
44
+
45
+ tm.assert_numpy_array_equal(codes, expected_codes)
46
+ tm.assert_categorical_equal(uniques, expected_uniques)
47
+
48
+
49
+ def test_isin_cats():
50
+ # GH2003
51
+ cat = pd.Categorical(["a", "b", np.nan])
52
+
53
+ result = cat.isin(["a", np.nan])
54
+ expected = np.array([True, False, True], dtype=bool)
55
+ tm.assert_numpy_array_equal(expected, result)
56
+
57
+ result = cat.isin(["a", "c"])
58
+ expected = np.array([True, False, False], dtype=bool)
59
+ tm.assert_numpy_array_equal(expected, result)
60
+
61
+
62
+ @pytest.mark.parametrize("value", [[""], [None, ""], [pd.NaT, ""]])
63
+ def test_isin_cats_corner_cases(value):
64
+ # GH36550
65
+ cat = pd.Categorical([""])
66
+ result = cat.isin(value)
67
+ expected = np.array([True], dtype=bool)
68
+ tm.assert_numpy_array_equal(expected, result)
69
+
70
+
71
+ @pytest.mark.parametrize("empty", [[], pd.Series(dtype=object), np.array([])])
72
+ def test_isin_empty(empty):
73
+ s = pd.Categorical(["a", "b"])
74
+ expected = np.array([False, False], dtype=bool)
75
+
76
+ result = s.isin(empty)
77
+ tm.assert_numpy_array_equal(expected, result)
78
+
79
+
80
+ def test_diff():
81
+ ser = pd.Series([1, 2, 3], dtype="category")
82
+
83
+ msg = "Convert to a suitable dtype"
84
+ with pytest.raises(TypeError, match=msg):
85
+ ser.diff()
86
+
87
+ df = ser.to_frame(name="A")
88
+ with pytest.raises(TypeError, match=msg):
89
+ df.diff()
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_analytics.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import sys
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pandas.compat import PYPY
8
+
9
+ from pandas import (
10
+ Categorical,
11
+ CategoricalDtype,
12
+ DataFrame,
13
+ Index,
14
+ NaT,
15
+ Series,
16
+ date_range,
17
+ )
18
+ import pandas._testing as tm
19
+ from pandas.api.types import is_scalar
20
+
21
+
22
+ class TestCategoricalAnalytics:
23
+ @pytest.mark.parametrize("aggregation", ["min", "max"])
24
+ def test_min_max_not_ordered_raises(self, aggregation):
25
+ # unordered cats have no min/max
26
+ cat = Categorical(["a", "b", "c", "d"], ordered=False)
27
+ msg = f"Categorical is not ordered for operation {aggregation}"
28
+ agg_func = getattr(cat, aggregation)
29
+
30
+ with pytest.raises(TypeError, match=msg):
31
+ agg_func()
32
+
33
+ ufunc = np.minimum if aggregation == "min" else np.maximum
34
+ with pytest.raises(TypeError, match=msg):
35
+ ufunc.reduce(cat)
36
+
37
+ def test_min_max_ordered(self, index_or_series_or_array):
38
+ cat = Categorical(["a", "b", "c", "d"], ordered=True)
39
+ obj = index_or_series_or_array(cat)
40
+ _min = obj.min()
41
+ _max = obj.max()
42
+ assert _min == "a"
43
+ assert _max == "d"
44
+
45
+ assert np.minimum.reduce(obj) == "a"
46
+ assert np.maximum.reduce(obj) == "d"
47
+ # TODO: raises if we pass axis=0 (on Index and Categorical, not Series)
48
+
49
+ cat = Categorical(
50
+ ["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True
51
+ )
52
+ obj = index_or_series_or_array(cat)
53
+ _min = obj.min()
54
+ _max = obj.max()
55
+ assert _min == "d"
56
+ assert _max == "a"
57
+ assert np.minimum.reduce(obj) == "d"
58
+ assert np.maximum.reduce(obj) == "a"
59
+
60
+ def test_min_max_reduce(self):
61
+ # GH52788
62
+ cat = Categorical(["a", "b", "c", "d"], ordered=True)
63
+ df = DataFrame(cat)
64
+
65
+ result_max = df.agg("max")
66
+ expected_max = Series(Categorical(["d"], dtype=cat.dtype))
67
+ tm.assert_series_equal(result_max, expected_max)
68
+
69
+ result_min = df.agg("min")
70
+ expected_min = Series(Categorical(["a"], dtype=cat.dtype))
71
+ tm.assert_series_equal(result_min, expected_min)
72
+
73
+ @pytest.mark.parametrize(
74
+ "categories,expected",
75
+ [
76
+ (list("ABC"), np.nan),
77
+ ([1, 2, 3], np.nan),
78
+ pytest.param(
79
+ Series(date_range("2020-01-01", periods=3), dtype="category"),
80
+ NaT,
81
+ marks=pytest.mark.xfail(
82
+ reason="https://github.com/pandas-dev/pandas/issues/29962"
83
+ ),
84
+ ),
85
+ ],
86
+ )
87
+ @pytest.mark.parametrize("aggregation", ["min", "max"])
88
+ def test_min_max_ordered_empty(self, categories, expected, aggregation):
89
+ # GH 30227
90
+ cat = Categorical([], categories=categories, ordered=True)
91
+
92
+ agg_func = getattr(cat, aggregation)
93
+ result = agg_func()
94
+ assert result is expected
95
+
96
+ @pytest.mark.parametrize(
97
+ "values, categories",
98
+ [(["a", "b", "c", np.nan], list("cba")), ([1, 2, 3, np.nan], [3, 2, 1])],
99
+ )
100
+ @pytest.mark.parametrize("skipna", [True, False])
101
+ @pytest.mark.parametrize("function", ["min", "max"])
102
+ def test_min_max_with_nan(self, values, categories, function, skipna):
103
+ # GH 25303
104
+ cat = Categorical(values, categories=categories, ordered=True)
105
+ result = getattr(cat, function)(skipna=skipna)
106
+
107
+ if skipna is False:
108
+ assert result is np.nan
109
+ else:
110
+ expected = categories[0] if function == "min" else categories[2]
111
+ assert result == expected
112
+
113
+ @pytest.mark.parametrize("function", ["min", "max"])
114
+ @pytest.mark.parametrize("skipna", [True, False])
115
+ def test_min_max_only_nan(self, function, skipna):
116
+ # https://github.com/pandas-dev/pandas/issues/33450
117
+ cat = Categorical([np.nan], categories=[1, 2], ordered=True)
118
+ result = getattr(cat, function)(skipna=skipna)
119
+ assert result is np.nan
120
+
121
+ @pytest.mark.parametrize("method", ["min", "max"])
122
+ def test_numeric_only_min_max_raises(self, method):
123
+ # GH 25303
124
+ cat = Categorical(
125
+ [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
126
+ )
127
+ with pytest.raises(TypeError, match=".* got an unexpected keyword"):
128
+ getattr(cat, method)(numeric_only=True)
129
+
130
+ @pytest.mark.parametrize("method", ["min", "max"])
131
+ def test_numpy_min_max_raises(self, method):
132
+ cat = Categorical(["a", "b", "c", "b"], ordered=False)
133
+ msg = (
134
+ f"Categorical is not ordered for operation {method}\n"
135
+ "you can use .as_ordered() to change the Categorical to an ordered one"
136
+ )
137
+ method = getattr(np, method)
138
+ with pytest.raises(TypeError, match=re.escape(msg)):
139
+ method(cat)
140
+
141
+ @pytest.mark.parametrize("kwarg", ["axis", "out", "keepdims"])
142
+ @pytest.mark.parametrize("method", ["min", "max"])
143
+ def test_numpy_min_max_unsupported_kwargs_raises(self, method, kwarg):
144
+ cat = Categorical(["a", "b", "c", "b"], ordered=True)
145
+ msg = (
146
+ f"the '{kwarg}' parameter is not supported in the pandas implementation "
147
+ f"of {method}"
148
+ )
149
+ if kwarg == "axis":
150
+ msg = r"`axis` must be fewer than the number of dimensions \(1\)"
151
+ kwargs = {kwarg: 42}
152
+ method = getattr(np, method)
153
+ with pytest.raises(ValueError, match=msg):
154
+ method(cat, **kwargs)
155
+
156
+ @pytest.mark.parametrize("method, expected", [("min", "a"), ("max", "c")])
157
+ def test_numpy_min_max_axis_equals_none(self, method, expected):
158
+ cat = Categorical(["a", "b", "c", "b"], ordered=True)
159
+ method = getattr(np, method)
160
+ result = method(cat, axis=None)
161
+ assert result == expected
162
+
163
+ @pytest.mark.parametrize(
164
+ "values,categories,exp_mode",
165
+ [
166
+ ([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]),
167
+ ([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]),
168
+ ([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]),
169
+ ([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]),
170
+ ([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
171
+ ([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
172
+ ],
173
+ )
174
+ def test_mode(self, values, categories, exp_mode):
175
+ cat = Categorical(values, categories=categories, ordered=True)
176
+ res = Series(cat).mode()._values
177
+ exp = Categorical(exp_mode, categories=categories, ordered=True)
178
+ tm.assert_categorical_equal(res, exp)
179
+
180
+ def test_searchsorted(self, ordered):
181
+ # https://github.com/pandas-dev/pandas/issues/8420
182
+ # https://github.com/pandas-dev/pandas/issues/14522
183
+
184
+ cat = Categorical(
185
+ ["cheese", "milk", "apple", "bread", "bread"],
186
+ categories=["cheese", "milk", "apple", "bread"],
187
+ ordered=ordered,
188
+ )
189
+ ser = Series(cat)
190
+
191
+ # Searching for single item argument, side='left' (default)
192
+ res_cat = cat.searchsorted("apple")
193
+ assert res_cat == 2
194
+ assert is_scalar(res_cat)
195
+
196
+ res_ser = ser.searchsorted("apple")
197
+ assert res_ser == 2
198
+ assert is_scalar(res_ser)
199
+
200
+ # Searching for single item array, side='left' (default)
201
+ res_cat = cat.searchsorted(["bread"])
202
+ res_ser = ser.searchsorted(["bread"])
203
+ exp = np.array([3], dtype=np.intp)
204
+ tm.assert_numpy_array_equal(res_cat, exp)
205
+ tm.assert_numpy_array_equal(res_ser, exp)
206
+
207
+ # Searching for several items array, side='right'
208
+ res_cat = cat.searchsorted(["apple", "bread"], side="right")
209
+ res_ser = ser.searchsorted(["apple", "bread"], side="right")
210
+ exp = np.array([3, 5], dtype=np.intp)
211
+ tm.assert_numpy_array_equal(res_cat, exp)
212
+ tm.assert_numpy_array_equal(res_ser, exp)
213
+
214
+ # Searching for a single value that is not from the Categorical
215
+ with pytest.raises(TypeError, match="cucumber"):
216
+ cat.searchsorted("cucumber")
217
+ with pytest.raises(TypeError, match="cucumber"):
218
+ ser.searchsorted("cucumber")
219
+
220
+ # Searching for multiple values one of each is not from the Categorical
221
+ msg = (
222
+ "Cannot setitem on a Categorical with a new category, "
223
+ "set the categories first"
224
+ )
225
+ with pytest.raises(TypeError, match=msg):
226
+ cat.searchsorted(["bread", "cucumber"])
227
+ with pytest.raises(TypeError, match=msg):
228
+ ser.searchsorted(["bread", "cucumber"])
229
+
230
+ def test_unique(self, ordered):
231
+ # GH38140
232
+ dtype = CategoricalDtype(["a", "b", "c"], ordered=ordered)
233
+
234
+ # categories are reordered based on value when ordered=False
235
+ cat = Categorical(["a", "b", "c"], dtype=dtype)
236
+ res = cat.unique()
237
+ tm.assert_categorical_equal(res, cat)
238
+
239
+ cat = Categorical(["a", "b", "a", "a"], dtype=dtype)
240
+ res = cat.unique()
241
+ tm.assert_categorical_equal(res, Categorical(["a", "b"], dtype=dtype))
242
+
243
+ cat = Categorical(["c", "a", "b", "a", "a"], dtype=dtype)
244
+ res = cat.unique()
245
+ exp_cat = Categorical(["c", "a", "b"], dtype=dtype)
246
+ tm.assert_categorical_equal(res, exp_cat)
247
+
248
+ # nan must be removed
249
+ cat = Categorical(["b", np.nan, "b", np.nan, "a"], dtype=dtype)
250
+ res = cat.unique()
251
+ exp_cat = Categorical(["b", np.nan, "a"], dtype=dtype)
252
+ tm.assert_categorical_equal(res, exp_cat)
253
+
254
+ def test_unique_index_series(self, ordered):
255
+ # GH38140
256
+ dtype = CategoricalDtype([3, 2, 1], ordered=ordered)
257
+
258
+ c = Categorical([3, 1, 2, 2, 1], dtype=dtype)
259
+ # Categorical.unique sorts categories by appearance order
260
+ # if ordered=False
261
+ exp = Categorical([3, 1, 2], dtype=dtype)
262
+ tm.assert_categorical_equal(c.unique(), exp)
263
+
264
+ tm.assert_index_equal(Index(c).unique(), Index(exp))
265
+ tm.assert_categorical_equal(Series(c).unique(), exp)
266
+
267
+ c = Categorical([1, 1, 2, 2], dtype=dtype)
268
+ exp = Categorical([1, 2], dtype=dtype)
269
+ tm.assert_categorical_equal(c.unique(), exp)
270
+ tm.assert_index_equal(Index(c).unique(), Index(exp))
271
+ tm.assert_categorical_equal(Series(c).unique(), exp)
272
+
273
+ def test_shift(self):
274
+ # GH 9416
275
+ cat = Categorical(["a", "b", "c", "d", "a"])
276
+
277
+ # shift forward
278
+ sp1 = cat.shift(1)
279
+ xp1 = Categorical([np.nan, "a", "b", "c", "d"])
280
+ tm.assert_categorical_equal(sp1, xp1)
281
+ tm.assert_categorical_equal(cat[:-1], sp1[1:])
282
+
283
+ # shift back
284
+ sn2 = cat.shift(-2)
285
+ xp2 = Categorical(
286
+ ["c", "d", "a", np.nan, np.nan], categories=["a", "b", "c", "d"]
287
+ )
288
+ tm.assert_categorical_equal(sn2, xp2)
289
+ tm.assert_categorical_equal(cat[2:], sn2[:-2])
290
+
291
+ # shift by zero
292
+ tm.assert_categorical_equal(cat, cat.shift(0))
293
+
294
+ def test_nbytes(self):
295
+ cat = Categorical([1, 2, 3])
296
+ exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories
297
+ assert cat.nbytes == exp
298
+
299
+ def test_memory_usage(self):
300
+ cat = Categorical([1, 2, 3])
301
+
302
+ # .categories is an index, so we include the hashtable
303
+ assert 0 < cat.nbytes <= cat.memory_usage()
304
+ assert 0 < cat.nbytes <= cat.memory_usage(deep=True)
305
+
306
+ cat = Categorical(["foo", "foo", "bar"])
307
+ assert cat.memory_usage(deep=True) > cat.nbytes
308
+
309
+ if not PYPY:
310
+ # sys.getsizeof will call the .memory_usage with
311
+ # deep=True, and add on some GC overhead
312
+ diff = cat.memory_usage(deep=True) - sys.getsizeof(cat)
313
+ assert abs(diff) < 100
314
+
315
+ def test_map(self):
316
+ c = Categorical(list("ABABC"), categories=list("CBA"), ordered=True)
317
+ result = c.map(lambda x: x.lower(), na_action=None)
318
+ exp = Categorical(list("ababc"), categories=list("cba"), ordered=True)
319
+ tm.assert_categorical_equal(result, exp)
320
+
321
+ c = Categorical(list("ABABC"), categories=list("ABC"), ordered=False)
322
+ result = c.map(lambda x: x.lower(), na_action=None)
323
+ exp = Categorical(list("ababc"), categories=list("abc"), ordered=False)
324
+ tm.assert_categorical_equal(result, exp)
325
+
326
+ result = c.map(lambda x: 1, na_action=None)
327
+ # GH 12766: Return an index not an array
328
+ tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64)))
329
+
330
+ @pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
331
+ def test_validate_inplace_raises(self, value):
332
+ cat = Categorical(["A", "B", "B", "C", "A"])
333
+ msg = (
334
+ 'For argument "inplace" expected type bool, '
335
+ f"received type {type(value).__name__}"
336
+ )
337
+
338
+ with pytest.raises(ValueError, match=msg):
339
+ cat.sort_values(inplace=value)
340
+
341
+ def test_quantile_empty(self):
342
+ # make sure we have correct itemsize on resulting codes
343
+ cat = Categorical(["A", "B"])
344
+ idx = Index([0.0, 0.5])
345
+ result = cat[:0]._quantile(idx, interpolation="linear")
346
+ assert result._codes.dtype == np.int8
347
+
348
+ expected = cat.take([-1, -1], allow_fill=True)
349
+ tm.assert_extension_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_missing.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas.core.dtypes.dtypes import CategoricalDtype
7
+
8
+ import pandas as pd
9
+ from pandas import (
10
+ Categorical,
11
+ DataFrame,
12
+ Index,
13
+ Series,
14
+ isna,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ class TestCategoricalMissing:
20
+ def test_isna(self):
21
+ exp = np.array([False, False, True])
22
+ cat = Categorical(["a", "b", np.nan])
23
+ res = cat.isna()
24
+
25
+ tm.assert_numpy_array_equal(res, exp)
26
+
27
+ def test_na_flags_int_categories(self):
28
+ # #1457
29
+
30
+ categories = list(range(10))
31
+ labels = np.random.default_rng(2).integers(0, 10, 20)
32
+ labels[::5] = -1
33
+
34
+ cat = Categorical(labels, categories)
35
+ repr(cat)
36
+
37
+ tm.assert_numpy_array_equal(isna(cat), labels == -1)
38
+
39
+ def test_nan_handling(self):
40
+ # Nans are represented as -1 in codes
41
+ c = Categorical(["a", "b", np.nan, "a"])
42
+ tm.assert_index_equal(c.categories, Index(["a", "b"]))
43
+ tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8))
44
+ c[1] = np.nan
45
+ tm.assert_index_equal(c.categories, Index(["a", "b"]))
46
+ tm.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0], dtype=np.int8))
47
+
48
+ # Adding nan to categories should make assigned nan point to the
49
+ # category!
50
+ c = Categorical(["a", "b", np.nan, "a"])
51
+ tm.assert_index_equal(c.categories, Index(["a", "b"]))
52
+ tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8))
53
+
54
+ def test_set_dtype_nans(self):
55
+ c = Categorical(["a", "b", np.nan])
56
+ result = c._set_dtype(CategoricalDtype(["a", "c"]))
57
+ tm.assert_numpy_array_equal(result.codes, np.array([0, -1, -1], dtype="int8"))
58
+
59
+ def test_set_item_nan(self):
60
+ cat = Categorical([1, 2, 3])
61
+ cat[1] = np.nan
62
+
63
+ exp = Categorical([1, np.nan, 3], categories=[1, 2, 3])
64
+ tm.assert_categorical_equal(cat, exp)
65
+
66
+ @pytest.mark.parametrize(
67
+ "fillna_kwargs, msg",
68
+ [
69
+ (
70
+ {"value": 1, "method": "ffill"},
71
+ "Cannot specify both 'value' and 'method'.",
72
+ ),
73
+ ({}, "Must specify a fill 'value' or 'method'."),
74
+ ({"method": "bad"}, "Invalid fill method. Expecting .* bad"),
75
+ (
76
+ {"value": Series([1, 2, 3, 4, "a"])},
77
+ "Cannot setitem on a Categorical with a new category",
78
+ ),
79
+ ],
80
+ )
81
+ def test_fillna_raises(self, fillna_kwargs, msg):
82
+ # https://github.com/pandas-dev/pandas/issues/19682
83
+ # https://github.com/pandas-dev/pandas/issues/13628
84
+ cat = Categorical([1, 2, 3, None, None])
85
+
86
+ if len(fillna_kwargs) == 1 and "value" in fillna_kwargs:
87
+ err = TypeError
88
+ else:
89
+ err = ValueError
90
+
91
+ with pytest.raises(err, match=msg):
92
+ cat.fillna(**fillna_kwargs)
93
+
94
+ @pytest.mark.parametrize("named", [True, False])
95
+ def test_fillna_iterable_category(self, named):
96
+ # https://github.com/pandas-dev/pandas/issues/21097
97
+ if named:
98
+ Point = collections.namedtuple("Point", "x y")
99
+ else:
100
+ Point = lambda *args: args # tuple
101
+ cat = Categorical(np.array([Point(0, 0), Point(0, 1), None], dtype=object))
102
+ result = cat.fillna(Point(0, 0))
103
+ expected = Categorical([Point(0, 0), Point(0, 1), Point(0, 0)])
104
+
105
+ tm.assert_categorical_equal(result, expected)
106
+
107
+ # Case where the Point is not among our categories; we want ValueError,
108
+ # not NotImplementedError GH#41914
109
+ cat = Categorical(np.array([Point(1, 0), Point(0, 1), None], dtype=object))
110
+ msg = "Cannot setitem on a Categorical with a new category"
111
+ with pytest.raises(TypeError, match=msg):
112
+ cat.fillna(Point(0, 0))
113
+
114
+ def test_fillna_array(self):
115
+ # accept Categorical or ndarray value if it holds appropriate values
116
+ cat = Categorical(["A", "B", "C", None, None])
117
+
118
+ other = cat.fillna("C")
119
+ result = cat.fillna(other)
120
+ tm.assert_categorical_equal(result, other)
121
+ assert isna(cat[-1]) # didn't modify original inplace
122
+
123
+ other = np.array(["A", "B", "C", "B", "A"])
124
+ result = cat.fillna(other)
125
+ expected = Categorical(["A", "B", "C", "B", "A"], dtype=cat.dtype)
126
+ tm.assert_categorical_equal(result, expected)
127
+ assert isna(cat[-1]) # didn't modify original inplace
128
+
129
+ @pytest.mark.parametrize(
130
+ "values, expected",
131
+ [
132
+ ([1, 2, 3], np.array([False, False, False])),
133
+ ([1, 2, np.nan], np.array([False, False, True])),
134
+ ([1, 2, np.inf], np.array([False, False, True])),
135
+ ([1, 2, pd.NA], np.array([False, False, True])),
136
+ ],
137
+ )
138
+ def test_use_inf_as_na(self, values, expected):
139
+ # https://github.com/pandas-dev/pandas/issues/33594
140
+ msg = "use_inf_as_na option is deprecated"
141
+ with tm.assert_produces_warning(FutureWarning, match=msg):
142
+ with pd.option_context("mode.use_inf_as_na", True):
143
+ cat = Categorical(values)
144
+ result = cat.isna()
145
+ tm.assert_numpy_array_equal(result, expected)
146
+
147
+ result = Series(cat).isna()
148
+ expected = Series(expected)
149
+ tm.assert_series_equal(result, expected)
150
+
151
+ result = DataFrame(cat).isna()
152
+ expected = DataFrame(expected)
153
+ tm.assert_frame_equal(result, expected)
154
+
155
+ @pytest.mark.parametrize(
156
+ "values, expected",
157
+ [
158
+ ([1, 2, 3], np.array([False, False, False])),
159
+ ([1, 2, np.nan], np.array([False, False, True])),
160
+ ([1, 2, np.inf], np.array([False, False, True])),
161
+ ([1, 2, pd.NA], np.array([False, False, True])),
162
+ ],
163
+ )
164
+ def test_use_inf_as_na_outside_context(self, values, expected):
165
+ # https://github.com/pandas-dev/pandas/issues/33594
166
+ # Using isna directly for Categorical will fail in general here
167
+ cat = Categorical(values)
168
+
169
+ msg = "use_inf_as_na option is deprecated"
170
+ with tm.assert_produces_warning(FutureWarning, match=msg):
171
+ with pd.option_context("mode.use_inf_as_na", True):
172
+ result = isna(cat)
173
+ tm.assert_numpy_array_equal(result, expected)
174
+
175
+ result = isna(Series(cat))
176
+ expected = Series(expected)
177
+ tm.assert_series_equal(result, expected)
178
+
179
+ result = isna(DataFrame(cat))
180
+ expected = DataFrame(expected)
181
+ tm.assert_frame_equal(result, expected)
182
+
183
+ @pytest.mark.parametrize(
184
+ "a1, a2, categories",
185
+ [
186
+ (["a", "b", "c"], [np.nan, "a", "b"], ["a", "b", "c"]),
187
+ ([1, 2, 3], [np.nan, 1, 2], [1, 2, 3]),
188
+ ],
189
+ )
190
+ def test_compare_categorical_with_missing(self, a1, a2, categories):
191
+ # GH 28384
192
+ cat_type = CategoricalDtype(categories)
193
+
194
+ # !=
195
+ result = Series(a1, dtype=cat_type) != Series(a2, dtype=cat_type)
196
+ expected = Series(a1) != Series(a2)
197
+ tm.assert_series_equal(result, expected)
198
+
199
+ # ==
200
+ result = Series(a1, dtype=cat_type) == Series(a2, dtype=cat_type)
201
+ expected = Series(a1) == Series(a2)
202
+ tm.assert_series_equal(result, expected)
203
+
204
+ @pytest.mark.parametrize(
205
+ "na_value, dtype",
206
+ [
207
+ (pd.NaT, "datetime64[ns]"),
208
+ (None, "float64"),
209
+ (np.nan, "float64"),
210
+ (pd.NA, "float64"),
211
+ ],
212
+ )
213
+ def test_categorical_only_missing_values_no_cast(self, na_value, dtype):
214
+ # GH#44900
215
+ result = Categorical([na_value, na_value])
216
+ tm.assert_index_equal(result.categories, Index([], dtype=dtype))
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_replace.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ from pandas import Categorical
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize(
9
+ "to_replace,value,expected,flip_categories",
10
+ [
11
+ # one-to-one
12
+ (1, 2, [2, 2, 3], False),
13
+ (1, 4, [4, 2, 3], False),
14
+ (4, 1, [1, 2, 3], False),
15
+ (5, 6, [1, 2, 3], False),
16
+ # many-to-one
17
+ ([1], 2, [2, 2, 3], False),
18
+ ([1, 2], 3, [3, 3, 3], False),
19
+ ([1, 2], 4, [4, 4, 3], False),
20
+ ((1, 2, 4), 5, [5, 5, 3], False),
21
+ ((5, 6), 2, [1, 2, 3], False),
22
+ ([1], [2], [2, 2, 3], False),
23
+ ([1, 4], [5, 2], [5, 2, 3], False),
24
+ # GH49404: overlap between to_replace and value
25
+ ([1, 2, 3], [2, 3, 4], [2, 3, 4], False),
26
+ # GH50872, GH46884: replace with null
27
+ (1, None, [None, 2, 3], False),
28
+ (1, pd.NA, [None, 2, 3], False),
29
+ # check_categorical sorts categories, which crashes on mixed dtypes
30
+ (3, "4", [1, 2, "4"], False),
31
+ ([1, 2, "3"], "5", ["5", "5", 3], True),
32
+ ],
33
+ )
34
+ @pytest.mark.filterwarnings(
35
+ "ignore:.*with CategoricalDtype is deprecated:FutureWarning"
36
+ )
37
+ def test_replace_categorical_series(to_replace, value, expected, flip_categories):
38
+ # GH 31720
39
+
40
+ ser = pd.Series([1, 2, 3], dtype="category")
41
+ result = ser.replace(to_replace, value)
42
+ expected = pd.Series(expected, dtype="category")
43
+ ser.replace(to_replace, value, inplace=True)
44
+
45
+ if flip_categories:
46
+ expected = expected.cat.set_categories(expected.cat.categories[::-1])
47
+
48
+ tm.assert_series_equal(expected, result, check_category_order=False)
49
+ tm.assert_series_equal(expected, ser, check_category_order=False)
50
+
51
+
52
+ @pytest.mark.parametrize(
53
+ "to_replace, value, result, expected_error_msg",
54
+ [
55
+ ("b", "c", ["a", "c"], "Categorical.categories are different"),
56
+ ("c", "d", ["a", "b"], None),
57
+ # https://github.com/pandas-dev/pandas/issues/33288
58
+ ("a", "a", ["a", "b"], None),
59
+ ("b", None, ["a", None], "Categorical.categories length are different"),
60
+ ],
61
+ )
62
+ def test_replace_categorical(to_replace, value, result, expected_error_msg):
63
+ # GH#26988
64
+ cat = Categorical(["a", "b"])
65
+ expected = Categorical(result)
66
+ msg = (
67
+ r"The behavior of Series\.replace \(and DataFrame.replace\) "
68
+ "with CategoricalDtype"
69
+ )
70
+ warn = FutureWarning if expected_error_msg is not None else None
71
+ with tm.assert_produces_warning(warn, match=msg):
72
+ result = pd.Series(cat, copy=False).replace(to_replace, value)._values
73
+
74
+ tm.assert_categorical_equal(result, expected)
75
+ if to_replace == "b": # the "c" test is supposed to be unchanged
76
+ with pytest.raises(AssertionError, match=expected_error_msg):
77
+ # ensure non-inplace call does not affect original
78
+ tm.assert_categorical_equal(cat, expected)
79
+
80
+ ser = pd.Series(cat, copy=False)
81
+ with tm.assert_produces_warning(warn, match=msg):
82
+ ser.replace(to_replace, value, inplace=True)
83
+ tm.assert_categorical_equal(cat, expected)
84
+
85
+
86
+ def test_replace_categorical_ea_dtype():
87
+ # GH49404
88
+ cat = Categorical(pd.array(["a", "b"], dtype="string"))
89
+ msg = (
90
+ r"The behavior of Series\.replace \(and DataFrame.replace\) "
91
+ "with CategoricalDtype"
92
+ )
93
+ with tm.assert_produces_warning(FutureWarning, match=msg):
94
+ result = pd.Series(cat).replace(["a", "b"], ["c", pd.NA])._values
95
+ expected = Categorical(pd.array(["c", pd.NA], dtype="string"))
96
+ tm.assert_categorical_equal(result, expected)
97
+
98
+
99
+ def test_replace_maintain_ordering():
100
+ # GH51016
101
+ dtype = pd.CategoricalDtype([0, 1, 2], ordered=True)
102
+ ser = pd.Series([0, 1, 2], dtype=dtype)
103
+ msg = (
104
+ r"The behavior of Series\.replace \(and DataFrame.replace\) "
105
+ "with CategoricalDtype"
106
+ )
107
+ with tm.assert_produces_warning(FutureWarning, match=msg):
108
+ result = ser.replace(0, 2)
109
+ expected_dtype = pd.CategoricalDtype([1, 2], ordered=True)
110
+ expected = pd.Series([2, 1, 2], dtype=expected_dtype)
111
+ tm.assert_series_equal(expected, result, check_category_order=True)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_repr.py ADDED
@@ -0,0 +1,550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._config import using_pyarrow_string_dtype
5
+
6
+ from pandas import (
7
+ Categorical,
8
+ CategoricalDtype,
9
+ CategoricalIndex,
10
+ Index,
11
+ Series,
12
+ date_range,
13
+ option_context,
14
+ period_range,
15
+ timedelta_range,
16
+ )
17
+
18
+
19
+ class TestCategoricalReprWithFactor:
20
+ def test_print(self, using_infer_string):
21
+ factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
22
+ if using_infer_string:
23
+ expected = [
24
+ "['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']",
25
+ "Categories (3, string): [a < b < c]",
26
+ ]
27
+ else:
28
+ expected = [
29
+ "['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']",
30
+ "Categories (3, object): ['a' < 'b' < 'c']",
31
+ ]
32
+ expected = "\n".join(expected)
33
+ actual = repr(factor)
34
+ assert actual == expected
35
+
36
+
37
+ class TestCategoricalRepr:
38
+ def test_big_print(self):
39
+ codes = np.array([0, 1, 2, 0, 1, 2] * 100)
40
+ dtype = CategoricalDtype(categories=Index(["a", "b", "c"], dtype=object))
41
+ factor = Categorical.from_codes(codes, dtype=dtype)
42
+ expected = [
43
+ "['a', 'b', 'c', 'a', 'b', ..., 'b', 'c', 'a', 'b', 'c']",
44
+ "Length: 600",
45
+ "Categories (3, object): ['a', 'b', 'c']",
46
+ ]
47
+ expected = "\n".join(expected)
48
+
49
+ actual = repr(factor)
50
+
51
+ assert actual == expected
52
+
53
+ def test_empty_print(self):
54
+ factor = Categorical([], Index(["a", "b", "c"], dtype=object))
55
+ expected = "[], Categories (3, object): ['a', 'b', 'c']"
56
+ actual = repr(factor)
57
+ assert actual == expected
58
+
59
+ assert expected == actual
60
+ factor = Categorical([], Index(["a", "b", "c"], dtype=object), ordered=True)
61
+ expected = "[], Categories (3, object): ['a' < 'b' < 'c']"
62
+ actual = repr(factor)
63
+ assert expected == actual
64
+
65
+ factor = Categorical([], [])
66
+ expected = "[], Categories (0, object): []"
67
+ assert expected == repr(factor)
68
+
69
+ def test_print_none_width(self):
70
+ # GH10087
71
+ a = Series(Categorical([1, 2, 3, 4]))
72
+ exp = (
73
+ "0 1\n1 2\n2 3\n3 4\n"
74
+ "dtype: category\nCategories (4, int64): [1, 2, 3, 4]"
75
+ )
76
+
77
+ with option_context("display.width", None):
78
+ assert exp == repr(a)
79
+
80
+ @pytest.mark.skipif(
81
+ using_pyarrow_string_dtype(),
82
+ reason="Change once infer_string is set to True by default",
83
+ )
84
+ def test_unicode_print(self):
85
+ c = Categorical(["aaaaa", "bb", "cccc"] * 20)
86
+ expected = """\
87
+ ['aaaaa', 'bb', 'cccc', 'aaaaa', 'bb', ..., 'bb', 'cccc', 'aaaaa', 'bb', 'cccc']
88
+ Length: 60
89
+ Categories (3, object): ['aaaaa', 'bb', 'cccc']"""
90
+
91
+ assert repr(c) == expected
92
+
93
+ c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20)
94
+ expected = """\
95
+ ['ああああ', 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', ..., 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', 'ううううううう']
96
+ Length: 60
97
+ Categories (3, object): ['ああああ', 'いいいいい', 'ううううううう']""" # noqa: E501
98
+
99
+ assert repr(c) == expected
100
+
101
+ # unicode option should not affect to Categorical, as it doesn't care
102
+ # the repr width
103
+ with option_context("display.unicode.east_asian_width", True):
104
+ c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20)
105
+ expected = """['ああああ', 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', ..., 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', 'ううううううう']
106
+ Length: 60
107
+ Categories (3, object): ['ああああ', 'いいいいい', 'ううううううう']""" # noqa: E501
108
+
109
+ assert repr(c) == expected
110
+
111
+ def test_categorical_repr(self):
112
+ c = Categorical([1, 2, 3])
113
+ exp = """[1, 2, 3]
114
+ Categories (3, int64): [1, 2, 3]"""
115
+
116
+ assert repr(c) == exp
117
+
118
+ c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3])
119
+ exp = """[1, 2, 3, 1, 2, 3]
120
+ Categories (3, int64): [1, 2, 3]"""
121
+
122
+ assert repr(c) == exp
123
+
124
+ c = Categorical([1, 2, 3, 4, 5] * 10)
125
+ exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5]
126
+ Length: 50
127
+ Categories (5, int64): [1, 2, 3, 4, 5]"""
128
+
129
+ assert repr(c) == exp
130
+
131
+ c = Categorical(np.arange(20, dtype=np.int64))
132
+ exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19]
133
+ Length: 20
134
+ Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]"""
135
+
136
+ assert repr(c) == exp
137
+
138
+ def test_categorical_repr_ordered(self):
139
+ c = Categorical([1, 2, 3], ordered=True)
140
+ exp = """[1, 2, 3]
141
+ Categories (3, int64): [1 < 2 < 3]"""
142
+
143
+ assert repr(c) == exp
144
+
145
+ c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True)
146
+ exp = """[1, 2, 3, 1, 2, 3]
147
+ Categories (3, int64): [1 < 2 < 3]"""
148
+
149
+ assert repr(c) == exp
150
+
151
+ c = Categorical([1, 2, 3, 4, 5] * 10, ordered=True)
152
+ exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5]
153
+ Length: 50
154
+ Categories (5, int64): [1 < 2 < 3 < 4 < 5]"""
155
+
156
+ assert repr(c) == exp
157
+
158
+ c = Categorical(np.arange(20, dtype=np.int64), ordered=True)
159
+ exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19]
160
+ Length: 20
161
+ Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]"""
162
+
163
+ assert repr(c) == exp
164
+
165
+ def test_categorical_repr_datetime(self):
166
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
167
+ c = Categorical(idx)
168
+
169
+ exp = (
170
+ "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, "
171
+ "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n"
172
+ "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, "
173
+ "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n"
174
+ " 2011-01-01 12:00:00, "
175
+ "2011-01-01 13:00:00]"
176
+ ""
177
+ )
178
+ assert repr(c) == exp
179
+
180
+ c = Categorical(idx.append(idx), categories=idx)
181
+ exp = (
182
+ "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, "
183
+ "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, "
184
+ "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, "
185
+ "2011-01-01 13:00:00]\n"
186
+ "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, "
187
+ "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n"
188
+ " 2011-01-01 12:00:00, "
189
+ "2011-01-01 13:00:00]"
190
+ )
191
+
192
+ assert repr(c) == exp
193
+
194
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
195
+ c = Categorical(idx)
196
+ exp = (
197
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, "
198
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, "
199
+ "2011-01-01 13:00:00-05:00]\n"
200
+ "Categories (5, datetime64[ns, US/Eastern]): "
201
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n"
202
+ " "
203
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n"
204
+ " "
205
+ "2011-01-01 13:00:00-05:00]"
206
+ )
207
+
208
+ assert repr(c) == exp
209
+
210
+ c = Categorical(idx.append(idx), categories=idx)
211
+ exp = (
212
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, "
213
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, "
214
+ "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, "
215
+ "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, "
216
+ "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n"
217
+ "Categories (5, datetime64[ns, US/Eastern]): "
218
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n"
219
+ " "
220
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n"
221
+ " "
222
+ "2011-01-01 13:00:00-05:00]"
223
+ )
224
+
225
+ assert repr(c) == exp
226
+
227
+ def test_categorical_repr_datetime_ordered(self):
228
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
229
+ c = Categorical(idx, ordered=True)
230
+ exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]
231
+ Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
232
+ 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa: E501
233
+
234
+ assert repr(c) == exp
235
+
236
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
237
+ exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]
238
+ Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
239
+ 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa: E501
240
+
241
+ assert repr(c) == exp
242
+
243
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
244
+ c = Categorical(idx, ordered=True)
245
+ exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]
246
+ Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
247
+ 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
248
+ 2011-01-01 13:00:00-05:00]""" # noqa: E501
249
+
250
+ assert repr(c) == exp
251
+
252
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
253
+ exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]
254
+ Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
255
+ 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
256
+ 2011-01-01 13:00:00-05:00]""" # noqa: E501
257
+
258
+ assert repr(c) == exp
259
+
260
+ def test_categorical_repr_int_with_nan(self):
261
+ c = Categorical([1, 2, np.nan])
262
+ c_exp = """[1, 2, NaN]\nCategories (2, int64): [1, 2]"""
263
+ assert repr(c) == c_exp
264
+
265
+ s = Series([1, 2, np.nan], dtype="object").astype("category")
266
+ s_exp = """0 1\n1 2\n2 NaN
267
+ dtype: category
268
+ Categories (2, int64): [1, 2]"""
269
+ assert repr(s) == s_exp
270
+
271
+ def test_categorical_repr_period(self):
272
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
273
+ c = Categorical(idx)
274
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
275
+ Categories (5, period[h]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
276
+ 2011-01-01 13:00]""" # noqa: E501
277
+
278
+ assert repr(c) == exp
279
+
280
+ c = Categorical(idx.append(idx), categories=idx)
281
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
282
+ Categories (5, period[h]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
283
+ 2011-01-01 13:00]""" # noqa: E501
284
+
285
+ assert repr(c) == exp
286
+
287
+ idx = period_range("2011-01", freq="M", periods=5)
288
+ c = Categorical(idx)
289
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
290
+ Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]"""
291
+
292
+ assert repr(c) == exp
293
+
294
+ c = Categorical(idx.append(idx), categories=idx)
295
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
296
+ Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" # noqa: E501
297
+
298
+ assert repr(c) == exp
299
+
300
+ def test_categorical_repr_period_ordered(self):
301
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
302
+ c = Categorical(idx, ordered=True)
303
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
304
+ Categories (5, period[h]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
305
+ 2011-01-01 13:00]""" # noqa: E501
306
+
307
+ assert repr(c) == exp
308
+
309
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
310
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
311
+ Categories (5, period[h]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
312
+ 2011-01-01 13:00]""" # noqa: E501
313
+
314
+ assert repr(c) == exp
315
+
316
+ idx = period_range("2011-01", freq="M", periods=5)
317
+ c = Categorical(idx, ordered=True)
318
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
319
+ Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]"""
320
+
321
+ assert repr(c) == exp
322
+
323
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
324
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
325
+ Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" # noqa: E501
326
+
327
+ assert repr(c) == exp
328
+
329
+ def test_categorical_repr_timedelta(self):
330
+ idx = timedelta_range("1 days", periods=5)
331
+ c = Categorical(idx)
332
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days]
333
+ Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]"""
334
+
335
+ assert repr(c) == exp
336
+
337
+ c = Categorical(idx.append(idx), categories=idx)
338
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days]
339
+ Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" # noqa: E501
340
+
341
+ assert repr(c) == exp
342
+
343
+ idx = timedelta_range("1 hours", periods=20)
344
+ c = Categorical(idx)
345
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
346
+ Length: 20
347
+ Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
348
+ 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00,
349
+ 18 days 01:00:00, 19 days 01:00:00]""" # noqa: E501
350
+
351
+ assert repr(c) == exp
352
+
353
+ c = Categorical(idx.append(idx), categories=idx)
354
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
355
+ Length: 40
356
+ Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
357
+ 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00,
358
+ 18 days 01:00:00, 19 days 01:00:00]""" # noqa: E501
359
+
360
+ assert repr(c) == exp
361
+
362
+ def test_categorical_repr_timedelta_ordered(self):
363
+ idx = timedelta_range("1 days", periods=5)
364
+ c = Categorical(idx, ordered=True)
365
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days]
366
+ Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]"""
367
+
368
+ assert repr(c) == exp
369
+
370
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
371
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days]
372
+ Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" # noqa: E501
373
+
374
+ assert repr(c) == exp
375
+
376
+ idx = timedelta_range("1 hours", periods=20)
377
+ c = Categorical(idx, ordered=True)
378
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
379
+ Length: 20
380
+ Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
381
+ 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 <
382
+ 18 days 01:00:00 < 19 days 01:00:00]""" # noqa: E501
383
+
384
+ assert repr(c) == exp
385
+
386
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
387
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
388
+ Length: 40
389
+ Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
390
+ 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 <
391
+ 18 days 01:00:00 < 19 days 01:00:00]""" # noqa: E501
392
+
393
+ assert repr(c) == exp
394
+
395
+ def test_categorical_index_repr(self):
396
+ idx = CategoricalIndex(Categorical([1, 2, 3]))
397
+ exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" # noqa: E501
398
+ assert repr(idx) == exp
399
+
400
+ i = CategoricalIndex(Categorical(np.arange(10, dtype=np.int64)))
401
+ exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, ..., 6, 7, 8, 9], ordered=False, dtype='category')""" # noqa: E501
402
+ assert repr(i) == exp
403
+
404
+ def test_categorical_index_repr_ordered(self):
405
+ i = CategoricalIndex(Categorical([1, 2, 3], ordered=True))
406
+ exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" # noqa: E501
407
+ assert repr(i) == exp
408
+
409
+ i = CategoricalIndex(Categorical(np.arange(10, dtype=np.int64), ordered=True))
410
+ exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, ..., 6, 7, 8, 9], ordered=True, dtype='category')""" # noqa: E501
411
+ assert repr(i) == exp
412
+
413
+ def test_categorical_index_repr_datetime(self):
414
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
415
+ i = CategoricalIndex(Categorical(idx))
416
+ exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00',
417
+ '2011-01-01 11:00:00', '2011-01-01 12:00:00',
418
+ '2011-01-01 13:00:00'],
419
+ categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" # noqa: E501
420
+
421
+ assert repr(i) == exp
422
+
423
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
424
+ i = CategoricalIndex(Categorical(idx))
425
+ exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
426
+ '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
427
+ '2011-01-01 13:00:00-05:00'],
428
+ categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" # noqa: E501
429
+
430
+ assert repr(i) == exp
431
+
432
+ def test_categorical_index_repr_datetime_ordered(self):
433
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
434
+ i = CategoricalIndex(Categorical(idx, ordered=True))
435
+ exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00',
436
+ '2011-01-01 11:00:00', '2011-01-01 12:00:00',
437
+ '2011-01-01 13:00:00'],
438
+ categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" # noqa: E501
439
+
440
+ assert repr(i) == exp
441
+
442
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
443
+ i = CategoricalIndex(Categorical(idx, ordered=True))
444
+ exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
445
+ '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
446
+ '2011-01-01 13:00:00-05:00'],
447
+ categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa: E501
448
+
449
+ assert repr(i) == exp
450
+
451
+ i = CategoricalIndex(Categorical(idx.append(idx), ordered=True))
452
+ exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
453
+ '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
454
+ '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00',
455
+ '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00',
456
+ '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'],
457
+ categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa: E501
458
+
459
+ assert repr(i) == exp
460
+
461
+ def test_categorical_index_repr_period(self):
462
+ # test all length
463
+ idx = period_range("2011-01-01 09:00", freq="h", periods=1)
464
+ i = CategoricalIndex(Categorical(idx))
465
+ exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" # noqa: E501
466
+ assert repr(i) == exp
467
+
468
+ idx = period_range("2011-01-01 09:00", freq="h", periods=2)
469
+ i = CategoricalIndex(Categorical(idx))
470
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" # noqa: E501
471
+ assert repr(i) == exp
472
+
473
+ idx = period_range("2011-01-01 09:00", freq="h", periods=3)
474
+ i = CategoricalIndex(Categorical(idx))
475
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" # noqa: E501
476
+ assert repr(i) == exp
477
+
478
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
479
+ i = CategoricalIndex(Categorical(idx))
480
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
481
+ '2011-01-01 12:00', '2011-01-01 13:00'],
482
+ categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa: E501
483
+
484
+ assert repr(i) == exp
485
+
486
+ i = CategoricalIndex(Categorical(idx.append(idx)))
487
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
488
+ '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00',
489
+ '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00',
490
+ '2011-01-01 13:00'],
491
+ categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa: E501
492
+
493
+ assert repr(i) == exp
494
+
495
+ idx = period_range("2011-01", freq="M", periods=5)
496
+ i = CategoricalIndex(Categorical(idx))
497
+ exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" # noqa: E501
498
+ assert repr(i) == exp
499
+
500
+ def test_categorical_index_repr_period_ordered(self):
501
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
502
+ i = CategoricalIndex(Categorical(idx, ordered=True))
503
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
504
+ '2011-01-01 12:00', '2011-01-01 13:00'],
505
+ categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" # noqa: E501
506
+
507
+ assert repr(i) == exp
508
+
509
+ idx = period_range("2011-01", freq="M", periods=5)
510
+ i = CategoricalIndex(Categorical(idx, ordered=True))
511
+ exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" # noqa: E501
512
+ assert repr(i) == exp
513
+
514
+ def test_categorical_index_repr_timedelta(self):
515
+ idx = timedelta_range("1 days", periods=5)
516
+ i = CategoricalIndex(Categorical(idx))
517
+ exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days, 2 days, 3 days, 4 days, 5 days], ordered=False, dtype='category')""" # noqa: E501
518
+ assert repr(i) == exp
519
+
520
+ idx = timedelta_range("1 hours", periods=10)
521
+ i = CategoricalIndex(Categorical(idx))
522
+ exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00',
523
+ '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00',
524
+ '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00',
525
+ '9 days 01:00:00'],
526
+ categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00], ordered=False, dtype='category')""" # noqa: E501
527
+
528
+ assert repr(i) == exp
529
+
530
+ def test_categorical_index_repr_timedelta_ordered(self):
531
+ idx = timedelta_range("1 days", periods=5)
532
+ i = CategoricalIndex(Categorical(idx, ordered=True))
533
+ exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days, 2 days, 3 days, 4 days, 5 days], ordered=True, dtype='category')""" # noqa: E501
534
+ assert repr(i) == exp
535
+
536
+ idx = timedelta_range("1 hours", periods=10)
537
+ i = CategoricalIndex(Categorical(idx, ordered=True))
538
+ exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00',
539
+ '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00',
540
+ '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00',
541
+ '9 days 01:00:00'],
542
+ categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00], ordered=True, dtype='category')""" # noqa: E501
543
+
544
+ assert repr(i) == exp
545
+
546
+ def test_categorical_str_repr(self):
547
+ # GH 33676
548
+ result = repr(Categorical([1, "2", 3, 4]))
549
+ expected = "[1, '2', 3, 4]\nCategories (4, object): [1, 3, 4, '2']"
550
+ assert result == expected
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import decimal
3
+ import re
4
+
5
+ import numpy as np
6
+ import pytest
7
+ import pytz
8
+
9
+ import pandas as pd
10
+ import pandas._testing as tm
11
+ from pandas.api.extensions import register_extension_dtype
12
+ from pandas.arrays import (
13
+ BooleanArray,
14
+ DatetimeArray,
15
+ FloatingArray,
16
+ IntegerArray,
17
+ IntervalArray,
18
+ SparseArray,
19
+ TimedeltaArray,
20
+ )
21
+ from pandas.core.arrays import (
22
+ NumpyExtensionArray,
23
+ period_array,
24
+ )
25
+ from pandas.tests.extension.decimal import (
26
+ DecimalArray,
27
+ DecimalDtype,
28
+ to_decimal,
29
+ )
30
+
31
+
32
+ @pytest.mark.parametrize("dtype_unit", ["M8[h]", "M8[m]", "m8[h]", "M8[m]"])
33
+ def test_dt64_array(dtype_unit):
34
+ # PR 53817
35
+ dtype_var = np.dtype(dtype_unit)
36
+ msg = (
37
+ r"datetime64 and timedelta64 dtype resolutions other than "
38
+ r"'s', 'ms', 'us', and 'ns' are deprecated. "
39
+ r"In future releases passing unsupported resolutions will "
40
+ r"raise an exception."
41
+ )
42
+ with tm.assert_produces_warning(FutureWarning, match=re.escape(msg)):
43
+ pd.array([], dtype=dtype_var)
44
+
45
+
46
+ @pytest.mark.parametrize(
47
+ "data, dtype, expected",
48
+ [
49
+ # Basic NumPy defaults.
50
+ ([], None, FloatingArray._from_sequence([], dtype="Float64")),
51
+ ([1, 2], None, IntegerArray._from_sequence([1, 2], dtype="Int64")),
52
+ ([1, 2], object, NumpyExtensionArray(np.array([1, 2], dtype=object))),
53
+ (
54
+ [1, 2],
55
+ np.dtype("float32"),
56
+ NumpyExtensionArray(np.array([1.0, 2.0], dtype=np.dtype("float32"))),
57
+ ),
58
+ (
59
+ np.array([], dtype=object),
60
+ None,
61
+ NumpyExtensionArray(np.array([], dtype=object)),
62
+ ),
63
+ (
64
+ np.array([1, 2], dtype="int64"),
65
+ None,
66
+ IntegerArray._from_sequence([1, 2], dtype="Int64"),
67
+ ),
68
+ (
69
+ np.array([1.0, 2.0], dtype="float64"),
70
+ None,
71
+ FloatingArray._from_sequence([1.0, 2.0], dtype="Float64"),
72
+ ),
73
+ # String alias passes through to NumPy
74
+ ([1, 2], "float32", NumpyExtensionArray(np.array([1, 2], dtype="float32"))),
75
+ ([1, 2], "int64", NumpyExtensionArray(np.array([1, 2], dtype=np.int64))),
76
+ # GH#44715 FloatingArray does not support float16, so fall
77
+ # back to NumpyExtensionArray
78
+ (
79
+ np.array([1, 2], dtype=np.float16),
80
+ None,
81
+ NumpyExtensionArray(np.array([1, 2], dtype=np.float16)),
82
+ ),
83
+ # idempotency with e.g. pd.array(pd.array([1, 2], dtype="int64"))
84
+ (
85
+ NumpyExtensionArray(np.array([1, 2], dtype=np.int32)),
86
+ None,
87
+ NumpyExtensionArray(np.array([1, 2], dtype=np.int32)),
88
+ ),
89
+ # Period alias
90
+ (
91
+ [pd.Period("2000", "D"), pd.Period("2001", "D")],
92
+ "Period[D]",
93
+ period_array(["2000", "2001"], freq="D"),
94
+ ),
95
+ # Period dtype
96
+ (
97
+ [pd.Period("2000", "D")],
98
+ pd.PeriodDtype("D"),
99
+ period_array(["2000"], freq="D"),
100
+ ),
101
+ # Datetime (naive)
102
+ (
103
+ [1, 2],
104
+ np.dtype("datetime64[ns]"),
105
+ DatetimeArray._from_sequence(
106
+ np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]"
107
+ ),
108
+ ),
109
+ (
110
+ [1, 2],
111
+ np.dtype("datetime64[s]"),
112
+ DatetimeArray._from_sequence(
113
+ np.array([1, 2], dtype="M8[s]"), dtype="M8[s]"
114
+ ),
115
+ ),
116
+ (
117
+ np.array([1, 2], dtype="datetime64[ns]"),
118
+ None,
119
+ DatetimeArray._from_sequence(
120
+ np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]"
121
+ ),
122
+ ),
123
+ (
124
+ pd.DatetimeIndex(["2000", "2001"]),
125
+ np.dtype("datetime64[ns]"),
126
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
127
+ ),
128
+ (
129
+ pd.DatetimeIndex(["2000", "2001"]),
130
+ None,
131
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
132
+ ),
133
+ (
134
+ ["2000", "2001"],
135
+ np.dtype("datetime64[ns]"),
136
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
137
+ ),
138
+ # Datetime (tz-aware)
139
+ (
140
+ ["2000", "2001"],
141
+ pd.DatetimeTZDtype(tz="CET"),
142
+ DatetimeArray._from_sequence(
143
+ ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET")
144
+ ),
145
+ ),
146
+ # Timedelta
147
+ (
148
+ ["1h", "2h"],
149
+ np.dtype("timedelta64[ns]"),
150
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
151
+ ),
152
+ (
153
+ pd.TimedeltaIndex(["1h", "2h"]),
154
+ np.dtype("timedelta64[ns]"),
155
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
156
+ ),
157
+ (
158
+ np.array([1, 2], dtype="m8[s]"),
159
+ np.dtype("timedelta64[s]"),
160
+ TimedeltaArray._from_sequence(
161
+ np.array([1, 2], dtype="m8[s]"), dtype="m8[s]"
162
+ ),
163
+ ),
164
+ (
165
+ pd.TimedeltaIndex(["1h", "2h"]),
166
+ None,
167
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
168
+ ),
169
+ (
170
+ # preserve non-nano, i.e. don't cast to NumpyExtensionArray
171
+ TimedeltaArray._simple_new(
172
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
173
+ ),
174
+ None,
175
+ TimedeltaArray._simple_new(
176
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
177
+ ),
178
+ ),
179
+ (
180
+ # preserve non-nano, i.e. don't cast to NumpyExtensionArray
181
+ TimedeltaArray._simple_new(
182
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
183
+ ),
184
+ np.dtype("m8[s]"),
185
+ TimedeltaArray._simple_new(
186
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
187
+ ),
188
+ ),
189
+ # Category
190
+ (["a", "b"], "category", pd.Categorical(["a", "b"])),
191
+ (
192
+ ["a", "b"],
193
+ pd.CategoricalDtype(None, ordered=True),
194
+ pd.Categorical(["a", "b"], ordered=True),
195
+ ),
196
+ # Interval
197
+ (
198
+ [pd.Interval(1, 2), pd.Interval(3, 4)],
199
+ "interval",
200
+ IntervalArray.from_tuples([(1, 2), (3, 4)]),
201
+ ),
202
+ # Sparse
203
+ ([0, 1], "Sparse[int64]", SparseArray([0, 1], dtype="int64")),
204
+ # IntegerNA
205
+ ([1, None], "Int16", pd.array([1, None], dtype="Int16")),
206
+ (
207
+ pd.Series([1, 2]),
208
+ None,
209
+ NumpyExtensionArray(np.array([1, 2], dtype=np.int64)),
210
+ ),
211
+ # String
212
+ (
213
+ ["a", None],
214
+ "string",
215
+ pd.StringDtype()
216
+ .construct_array_type()
217
+ ._from_sequence(["a", None], dtype=pd.StringDtype()),
218
+ ),
219
+ (
220
+ ["a", None],
221
+ pd.StringDtype(),
222
+ pd.StringDtype()
223
+ .construct_array_type()
224
+ ._from_sequence(["a", None], dtype=pd.StringDtype()),
225
+ ),
226
+ # Boolean
227
+ (
228
+ [True, None],
229
+ "boolean",
230
+ BooleanArray._from_sequence([True, None], dtype="boolean"),
231
+ ),
232
+ (
233
+ [True, None],
234
+ pd.BooleanDtype(),
235
+ BooleanArray._from_sequence([True, None], dtype="boolean"),
236
+ ),
237
+ # Index
238
+ (pd.Index([1, 2]), None, NumpyExtensionArray(np.array([1, 2], dtype=np.int64))),
239
+ # Series[EA] returns the EA
240
+ (
241
+ pd.Series(pd.Categorical(["a", "b"], categories=["a", "b", "c"])),
242
+ None,
243
+ pd.Categorical(["a", "b"], categories=["a", "b", "c"]),
244
+ ),
245
+ # "3rd party" EAs work
246
+ ([decimal.Decimal(0), decimal.Decimal(1)], "decimal", to_decimal([0, 1])),
247
+ # pass an ExtensionArray, but a different dtype
248
+ (
249
+ period_array(["2000", "2001"], freq="D"),
250
+ "category",
251
+ pd.Categorical([pd.Period("2000", "D"), pd.Period("2001", "D")]),
252
+ ),
253
+ ],
254
+ )
255
+ def test_array(data, dtype, expected):
256
+ result = pd.array(data, dtype=dtype)
257
+ tm.assert_equal(result, expected)
258
+
259
+
260
+ def test_array_copy():
261
+ a = np.array([1, 2])
262
+ # default is to copy
263
+ b = pd.array(a, dtype=a.dtype)
264
+ assert not tm.shares_memory(a, b)
265
+
266
+ # copy=True
267
+ b = pd.array(a, dtype=a.dtype, copy=True)
268
+ assert not tm.shares_memory(a, b)
269
+
270
+ # copy=False
271
+ b = pd.array(a, dtype=a.dtype, copy=False)
272
+ assert tm.shares_memory(a, b)
273
+
274
+
275
+ cet = pytz.timezone("CET")
276
+
277
+
278
+ @pytest.mark.parametrize(
279
+ "data, expected",
280
+ [
281
+ # period
282
+ (
283
+ [pd.Period("2000", "D"), pd.Period("2001", "D")],
284
+ period_array(["2000", "2001"], freq="D"),
285
+ ),
286
+ # interval
287
+ ([pd.Interval(0, 1), pd.Interval(1, 2)], IntervalArray.from_breaks([0, 1, 2])),
288
+ # datetime
289
+ (
290
+ [pd.Timestamp("2000"), pd.Timestamp("2001")],
291
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
292
+ ),
293
+ (
294
+ [datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1)],
295
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
296
+ ),
297
+ (
298
+ np.array([1, 2], dtype="M8[ns]"),
299
+ DatetimeArray._from_sequence(np.array([1, 2], dtype="M8[ns]")),
300
+ ),
301
+ (
302
+ np.array([1, 2], dtype="M8[us]"),
303
+ DatetimeArray._simple_new(
304
+ np.array([1, 2], dtype="M8[us]"), dtype=np.dtype("M8[us]")
305
+ ),
306
+ ),
307
+ # datetimetz
308
+ (
309
+ [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2001", tz="CET")],
310
+ DatetimeArray._from_sequence(
311
+ ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET", unit="ns")
312
+ ),
313
+ ),
314
+ (
315
+ [
316
+ datetime.datetime(2000, 1, 1, tzinfo=cet),
317
+ datetime.datetime(2001, 1, 1, tzinfo=cet),
318
+ ],
319
+ DatetimeArray._from_sequence(
320
+ ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz=cet, unit="ns")
321
+ ),
322
+ ),
323
+ # timedelta
324
+ (
325
+ [pd.Timedelta("1h"), pd.Timedelta("2h")],
326
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
327
+ ),
328
+ (
329
+ np.array([1, 2], dtype="m8[ns]"),
330
+ TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[ns]")),
331
+ ),
332
+ (
333
+ np.array([1, 2], dtype="m8[us]"),
334
+ TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[us]")),
335
+ ),
336
+ # integer
337
+ ([1, 2], IntegerArray._from_sequence([1, 2], dtype="Int64")),
338
+ ([1, None], IntegerArray._from_sequence([1, None], dtype="Int64")),
339
+ ([1, pd.NA], IntegerArray._from_sequence([1, pd.NA], dtype="Int64")),
340
+ ([1, np.nan], IntegerArray._from_sequence([1, np.nan], dtype="Int64")),
341
+ # float
342
+ ([0.1, 0.2], FloatingArray._from_sequence([0.1, 0.2], dtype="Float64")),
343
+ ([0.1, None], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
344
+ ([0.1, np.nan], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
345
+ ([0.1, pd.NA], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
346
+ # integer-like float
347
+ ([1.0, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")),
348
+ ([1.0, None], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
349
+ ([1.0, np.nan], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
350
+ ([1.0, pd.NA], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
351
+ # mixed-integer-float
352
+ ([1, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")),
353
+ (
354
+ [1, np.nan, 2.0],
355
+ FloatingArray._from_sequence([1.0, None, 2.0], dtype="Float64"),
356
+ ),
357
+ # string
358
+ (
359
+ ["a", "b"],
360
+ pd.StringDtype()
361
+ .construct_array_type()
362
+ ._from_sequence(["a", "b"], dtype=pd.StringDtype()),
363
+ ),
364
+ (
365
+ ["a", None],
366
+ pd.StringDtype()
367
+ .construct_array_type()
368
+ ._from_sequence(["a", None], dtype=pd.StringDtype()),
369
+ ),
370
+ # Boolean
371
+ ([True, False], BooleanArray._from_sequence([True, False], dtype="boolean")),
372
+ ([True, None], BooleanArray._from_sequence([True, None], dtype="boolean")),
373
+ ],
374
+ )
375
+ def test_array_inference(data, expected):
376
+ result = pd.array(data)
377
+ tm.assert_equal(result, expected)
378
+
379
+
380
+ @pytest.mark.parametrize(
381
+ "data",
382
+ [
383
+ # mix of frequencies
384
+ [pd.Period("2000", "D"), pd.Period("2001", "Y")],
385
+ # mix of closed
386
+ [pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right")],
387
+ # Mix of timezones
388
+ [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000", tz="UTC")],
389
+ # Mix of tz-aware and tz-naive
390
+ [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000")],
391
+ np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]),
392
+ ],
393
+ )
394
+ def test_array_inference_fails(data):
395
+ result = pd.array(data)
396
+ expected = NumpyExtensionArray(np.array(data, dtype=object))
397
+ tm.assert_extension_array_equal(result, expected)
398
+
399
+
400
+ @pytest.mark.parametrize("data", [np.array(0)])
401
+ def test_nd_raises(data):
402
+ with pytest.raises(ValueError, match="NumpyExtensionArray must be 1-dimensional"):
403
+ pd.array(data, dtype="int64")
404
+
405
+
406
+ def test_scalar_raises():
407
+ with pytest.raises(ValueError, match="Cannot pass scalar '1'"):
408
+ pd.array(1)
409
+
410
+
411
+ def test_dataframe_raises():
412
+ # GH#51167 don't accidentally cast to StringArray by doing inference on columns
413
+ df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
414
+ msg = "Cannot pass DataFrame to 'pandas.array'"
415
+ with pytest.raises(TypeError, match=msg):
416
+ pd.array(df)
417
+
418
+
419
+ def test_bounds_check():
420
+ # GH21796
421
+ with pytest.raises(
422
+ TypeError, match=r"cannot safely cast non-equivalent int(32|64) to uint16"
423
+ ):
424
+ pd.array([-1, 2, 3], dtype="UInt16")
425
+
426
+
427
+ # ---------------------------------------------------------------------------
428
+ # A couple dummy classes to ensure that Series and Indexes are unboxed before
429
+ # getting to the EA classes.
430
+
431
+
432
+ @register_extension_dtype
433
+ class DecimalDtype2(DecimalDtype):
434
+ name = "decimal2"
435
+
436
+ @classmethod
437
+ def construct_array_type(cls):
438
+ """
439
+ Return the array type associated with this dtype.
440
+
441
+ Returns
442
+ -------
443
+ type
444
+ """
445
+ return DecimalArray2
446
+
447
+
448
+ class DecimalArray2(DecimalArray):
449
+ @classmethod
450
+ def _from_sequence(cls, scalars, *, dtype=None, copy=False):
451
+ if isinstance(scalars, (pd.Series, pd.Index)):
452
+ raise TypeError("scalars should not be of type pd.Series or pd.Index")
453
+
454
+ return super()._from_sequence(scalars, dtype=dtype, copy=copy)
455
+
456
+
457
+ def test_array_unboxes(index_or_series):
458
+ box = index_or_series
459
+
460
+ data = box([decimal.Decimal("1"), decimal.Decimal("2")])
461
+ dtype = DecimalDtype2()
462
+ # make sure it works
463
+ with pytest.raises(
464
+ TypeError, match="scalars should not be of type pd.Series or pd.Index"
465
+ ):
466
+ DecimalArray2._from_sequence(data, dtype=dtype)
467
+
468
+ result = pd.array(data, dtype="decimal2")
469
+ expected = DecimalArray2._from_sequence(data.values, dtype=dtype)
470
+ tm.assert_equal(result, expected)
471
+
472
+
473
+ def test_array_to_numpy_na():
474
+ # GH#40638
475
+ arr = pd.array([pd.NA, 1], dtype="string[python]")
476
+ result = arr.to_numpy(na_value=True, dtype=bool)
477
+ expected = np.array([True, True])
478
+ tm.assert_numpy_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimelike.py ADDED
@@ -0,0 +1,1340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import re
4
+ import warnings
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas._libs import (
10
+ NaT,
11
+ OutOfBoundsDatetime,
12
+ Timestamp,
13
+ )
14
+ from pandas._libs.tslibs.dtypes import freq_to_period_freqstr
15
+ from pandas.compat.numpy import np_version_gt2
16
+
17
+ import pandas as pd
18
+ from pandas import (
19
+ DatetimeIndex,
20
+ Period,
21
+ PeriodIndex,
22
+ TimedeltaIndex,
23
+ )
24
+ import pandas._testing as tm
25
+ from pandas.core.arrays import (
26
+ DatetimeArray,
27
+ NumpyExtensionArray,
28
+ PeriodArray,
29
+ TimedeltaArray,
30
+ )
31
+
32
+
33
+ # TODO: more freq variants
34
+ @pytest.fixture(params=["D", "B", "W", "ME", "QE", "YE"])
35
+ def freqstr(request):
36
+ """Fixture returning parametrized frequency in string format."""
37
+ return request.param
38
+
39
+
40
+ @pytest.fixture
41
+ def period_index(freqstr):
42
+ """
43
+ A fixture to provide PeriodIndex objects with different frequencies.
44
+
45
+ Most PeriodArray behavior is already tested in PeriodIndex tests,
46
+ so here we just test that the PeriodArray behavior matches
47
+ the PeriodIndex behavior.
48
+ """
49
+ # TODO: non-monotone indexes; NaTs, different start dates
50
+ with warnings.catch_warnings():
51
+ # suppress deprecation of Period[B]
52
+ warnings.filterwarnings(
53
+ "ignore", message="Period with BDay freq", category=FutureWarning
54
+ )
55
+ freqstr = freq_to_period_freqstr(1, freqstr)
56
+ pi = pd.period_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
57
+ return pi
58
+
59
+
60
+ @pytest.fixture
61
+ def datetime_index(freqstr):
62
+ """
63
+ A fixture to provide DatetimeIndex objects with different frequencies.
64
+
65
+ Most DatetimeArray behavior is already tested in DatetimeIndex tests,
66
+ so here we just test that the DatetimeArray behavior matches
67
+ the DatetimeIndex behavior.
68
+ """
69
+ # TODO: non-monotone indexes; NaTs, different start dates, timezones
70
+ dti = pd.date_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
71
+ return dti
72
+
73
+
74
+ @pytest.fixture
75
+ def timedelta_index():
76
+ """
77
+ A fixture to provide TimedeltaIndex objects with different frequencies.
78
+ Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
79
+ so here we just test that the TimedeltaArray behavior matches
80
+ the TimedeltaIndex behavior.
81
+ """
82
+ # TODO: flesh this out
83
+ return TimedeltaIndex(["1 Day", "3 Hours", "NaT"])
84
+
85
+
86
+ class SharedTests:
87
+ index_cls: type[DatetimeIndex | PeriodIndex | TimedeltaIndex]
88
+
89
+ @pytest.fixture
90
+ def arr1d(self):
91
+ """Fixture returning DatetimeArray with daily frequency."""
92
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
93
+ if self.array_cls is PeriodArray:
94
+ arr = self.array_cls(data, freq="D")
95
+ else:
96
+ arr = self.index_cls(data, freq="D")._data
97
+ return arr
98
+
99
+ def test_compare_len1_raises(self, arr1d):
100
+ # make sure we raise when comparing with different lengths, specific
101
+ # to the case where one has length-1, which numpy would broadcast
102
+ arr = arr1d
103
+ idx = self.index_cls(arr)
104
+
105
+ with pytest.raises(ValueError, match="Lengths must match"):
106
+ arr == arr[:1]
107
+
108
+ # test the index classes while we're at it, GH#23078
109
+ with pytest.raises(ValueError, match="Lengths must match"):
110
+ idx <= idx[[0]]
111
+
112
+ @pytest.mark.parametrize(
113
+ "result",
114
+ [
115
+ pd.date_range("2020", periods=3),
116
+ pd.date_range("2020", periods=3, tz="UTC"),
117
+ pd.timedelta_range("0 days", periods=3),
118
+ pd.period_range("2020Q1", periods=3, freq="Q"),
119
+ ],
120
+ )
121
+ def test_compare_with_Categorical(self, result):
122
+ expected = pd.Categorical(result)
123
+ assert all(result == expected)
124
+ assert not any(result != expected)
125
+
126
+ @pytest.mark.parametrize("reverse", [True, False])
127
+ @pytest.mark.parametrize("as_index", [True, False])
128
+ def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered):
129
+ other = pd.Categorical(arr1d, ordered=ordered)
130
+ if as_index:
131
+ other = pd.CategoricalIndex(other)
132
+
133
+ left, right = arr1d, other
134
+ if reverse:
135
+ left, right = right, left
136
+
137
+ ones = np.ones(arr1d.shape, dtype=bool)
138
+ zeros = ~ones
139
+
140
+ result = left == right
141
+ tm.assert_numpy_array_equal(result, ones)
142
+
143
+ result = left != right
144
+ tm.assert_numpy_array_equal(result, zeros)
145
+
146
+ if not reverse and not as_index:
147
+ # Otherwise Categorical raises TypeError bc it is not ordered
148
+ # TODO: we should probably get the same behavior regardless?
149
+ result = left < right
150
+ tm.assert_numpy_array_equal(result, zeros)
151
+
152
+ result = left <= right
153
+ tm.assert_numpy_array_equal(result, ones)
154
+
155
+ result = left > right
156
+ tm.assert_numpy_array_equal(result, zeros)
157
+
158
+ result = left >= right
159
+ tm.assert_numpy_array_equal(result, ones)
160
+
161
+ def test_take(self):
162
+ data = np.arange(100, dtype="i8") * 24 * 3600 * 10**9
163
+ np.random.default_rng(2).shuffle(data)
164
+
165
+ if self.array_cls is PeriodArray:
166
+ arr = PeriodArray(data, dtype="period[D]")
167
+ else:
168
+ arr = self.index_cls(data)._data
169
+ idx = self.index_cls._simple_new(arr)
170
+
171
+ takers = [1, 4, 94]
172
+ result = arr.take(takers)
173
+ expected = idx.take(takers)
174
+
175
+ tm.assert_index_equal(self.index_cls(result), expected)
176
+
177
+ takers = np.array([1, 4, 94])
178
+ result = arr.take(takers)
179
+ expected = idx.take(takers)
180
+
181
+ tm.assert_index_equal(self.index_cls(result), expected)
182
+
183
+ @pytest.mark.parametrize("fill_value", [2, 2.0, Timestamp(2021, 1, 1, 12).time])
184
+ def test_take_fill_raises(self, fill_value, arr1d):
185
+ msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
186
+ with pytest.raises(TypeError, match=msg):
187
+ arr1d.take([0, 1], allow_fill=True, fill_value=fill_value)
188
+
189
+ def test_take_fill(self, arr1d):
190
+ arr = arr1d
191
+
192
+ result = arr.take([-1, 1], allow_fill=True, fill_value=None)
193
+ assert result[0] is NaT
194
+
195
+ result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
196
+ assert result[0] is NaT
197
+
198
+ result = arr.take([-1, 1], allow_fill=True, fill_value=NaT)
199
+ assert result[0] is NaT
200
+
201
+ @pytest.mark.filterwarnings(
202
+ "ignore:Period with BDay freq is deprecated:FutureWarning"
203
+ )
204
+ def test_take_fill_str(self, arr1d):
205
+ # Cast str fill_value matching other fill_value-taking methods
206
+ result = arr1d.take([-1, 1], allow_fill=True, fill_value=str(arr1d[-1]))
207
+ expected = arr1d[[-1, 1]]
208
+ tm.assert_equal(result, expected)
209
+
210
+ msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
211
+ with pytest.raises(TypeError, match=msg):
212
+ arr1d.take([-1, 1], allow_fill=True, fill_value="foo")
213
+
214
+ def test_concat_same_type(self, arr1d):
215
+ arr = arr1d
216
+ idx = self.index_cls(arr)
217
+ idx = idx.insert(0, NaT)
218
+ arr = arr1d
219
+
220
+ result = arr._concat_same_type([arr[:-1], arr[1:], arr])
221
+ arr2 = arr.astype(object)
222
+ expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]))
223
+
224
+ tm.assert_index_equal(self.index_cls(result), expected)
225
+
226
+ def test_unbox_scalar(self, arr1d):
227
+ result = arr1d._unbox_scalar(arr1d[0])
228
+ expected = arr1d._ndarray.dtype.type
229
+ assert isinstance(result, expected)
230
+
231
+ result = arr1d._unbox_scalar(NaT)
232
+ assert isinstance(result, expected)
233
+
234
+ msg = f"'value' should be a {self.scalar_type.__name__}."
235
+ with pytest.raises(ValueError, match=msg):
236
+ arr1d._unbox_scalar("foo")
237
+
238
+ def test_check_compatible_with(self, arr1d):
239
+ arr1d._check_compatible_with(arr1d[0])
240
+ arr1d._check_compatible_with(arr1d[:1])
241
+ arr1d._check_compatible_with(NaT)
242
+
243
+ def test_scalar_from_string(self, arr1d):
244
+ result = arr1d._scalar_from_string(str(arr1d[0]))
245
+ assert result == arr1d[0]
246
+
247
+ def test_reduce_invalid(self, arr1d):
248
+ msg = "does not support reduction 'not a method'"
249
+ with pytest.raises(TypeError, match=msg):
250
+ arr1d._reduce("not a method")
251
+
252
+ @pytest.mark.parametrize("method", ["pad", "backfill"])
253
+ def test_fillna_method_doesnt_change_orig(self, method):
254
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
255
+ if self.array_cls is PeriodArray:
256
+ arr = self.array_cls(data, dtype="period[D]")
257
+ else:
258
+ arr = self.array_cls._from_sequence(data)
259
+ arr[4] = NaT
260
+
261
+ fill_value = arr[3] if method == "pad" else arr[5]
262
+
263
+ result = arr._pad_or_backfill(method=method)
264
+ assert result[4] == fill_value
265
+
266
+ # check that the original was not changed
267
+ assert arr[4] is NaT
268
+
269
+ def test_searchsorted(self):
270
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
271
+ if self.array_cls is PeriodArray:
272
+ arr = self.array_cls(data, dtype="period[D]")
273
+ else:
274
+ arr = self.array_cls._from_sequence(data)
275
+
276
+ # scalar
277
+ result = arr.searchsorted(arr[1])
278
+ assert result == 1
279
+
280
+ result = arr.searchsorted(arr[2], side="right")
281
+ assert result == 3
282
+
283
+ # own-type
284
+ result = arr.searchsorted(arr[1:3])
285
+ expected = np.array([1, 2], dtype=np.intp)
286
+ tm.assert_numpy_array_equal(result, expected)
287
+
288
+ result = arr.searchsorted(arr[1:3], side="right")
289
+ expected = np.array([2, 3], dtype=np.intp)
290
+ tm.assert_numpy_array_equal(result, expected)
291
+
292
+ # GH#29884 match numpy convention on whether NaT goes
293
+ # at the end or the beginning
294
+ result = arr.searchsorted(NaT)
295
+ assert result == 10
296
+
297
+ @pytest.mark.parametrize("box", [None, "index", "series"])
298
+ def test_searchsorted_castable_strings(self, arr1d, box, string_storage):
299
+ arr = arr1d
300
+ if box is None:
301
+ pass
302
+ elif box == "index":
303
+ # Test the equivalent Index.searchsorted method while we're here
304
+ arr = self.index_cls(arr)
305
+ else:
306
+ # Test the equivalent Series.searchsorted method while we're here
307
+ arr = pd.Series(arr)
308
+
309
+ # scalar
310
+ result = arr.searchsorted(str(arr[1]))
311
+ assert result == 1
312
+
313
+ result = arr.searchsorted(str(arr[2]), side="right")
314
+ assert result == 3
315
+
316
+ result = arr.searchsorted([str(x) for x in arr[1:3]])
317
+ expected = np.array([1, 2], dtype=np.intp)
318
+ tm.assert_numpy_array_equal(result, expected)
319
+
320
+ with pytest.raises(
321
+ TypeError,
322
+ match=re.escape(
323
+ f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
324
+ "or array of those. Got 'str' instead."
325
+ ),
326
+ ):
327
+ arr.searchsorted("foo")
328
+
329
+ with pd.option_context("string_storage", string_storage):
330
+ with pytest.raises(
331
+ TypeError,
332
+ match=re.escape(
333
+ f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
334
+ "or array of those. Got string array instead."
335
+ ),
336
+ ):
337
+ arr.searchsorted([str(arr[1]), "baz"])
338
+
339
+ def test_getitem_near_implementation_bounds(self):
340
+ # We only check tz-naive for DTA bc the bounds are slightly different
341
+ # for other tzs
342
+ i8vals = np.asarray([NaT._value + n for n in range(1, 5)], dtype="i8")
343
+ if self.array_cls is PeriodArray:
344
+ arr = self.array_cls(i8vals, dtype="period[ns]")
345
+ else:
346
+ arr = self.index_cls(i8vals, freq="ns")._data
347
+ arr[0] # should not raise OutOfBoundsDatetime
348
+
349
+ index = pd.Index(arr)
350
+ index[0] # should not raise OutOfBoundsDatetime
351
+
352
+ ser = pd.Series(arr)
353
+ ser[0] # should not raise OutOfBoundsDatetime
354
+
355
+ def test_getitem_2d(self, arr1d):
356
+ # 2d slicing on a 1D array
357
+ expected = type(arr1d)._simple_new(
358
+ arr1d._ndarray[:, np.newaxis], dtype=arr1d.dtype
359
+ )
360
+ result = arr1d[:, np.newaxis]
361
+ tm.assert_equal(result, expected)
362
+
363
+ # Lookup on a 2D array
364
+ arr2d = expected
365
+ expected = type(arr2d)._simple_new(arr2d._ndarray[:3, 0], dtype=arr2d.dtype)
366
+ result = arr2d[:3, 0]
367
+ tm.assert_equal(result, expected)
368
+
369
+ # Scalar lookup
370
+ result = arr2d[-1, 0]
371
+ expected = arr1d[-1]
372
+ assert result == expected
373
+
374
+ def test_iter_2d(self, arr1d):
375
+ data2d = arr1d._ndarray[:3, np.newaxis]
376
+ arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
377
+ result = list(arr2d)
378
+ assert len(result) == 3
379
+ for x in result:
380
+ assert isinstance(x, type(arr1d))
381
+ assert x.ndim == 1
382
+ assert x.dtype == arr1d.dtype
383
+
384
+ def test_repr_2d(self, arr1d):
385
+ data2d = arr1d._ndarray[:3, np.newaxis]
386
+ arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
387
+
388
+ result = repr(arr2d)
389
+
390
+ if isinstance(arr2d, TimedeltaArray):
391
+ expected = (
392
+ f"<{type(arr2d).__name__}>\n"
393
+ "[\n"
394
+ f"['{arr1d[0]._repr_base()}'],\n"
395
+ f"['{arr1d[1]._repr_base()}'],\n"
396
+ f"['{arr1d[2]._repr_base()}']\n"
397
+ "]\n"
398
+ f"Shape: (3, 1), dtype: {arr1d.dtype}"
399
+ )
400
+ else:
401
+ expected = (
402
+ f"<{type(arr2d).__name__}>\n"
403
+ "[\n"
404
+ f"['{arr1d[0]}'],\n"
405
+ f"['{arr1d[1]}'],\n"
406
+ f"['{arr1d[2]}']\n"
407
+ "]\n"
408
+ f"Shape: (3, 1), dtype: {arr1d.dtype}"
409
+ )
410
+
411
+ assert result == expected
412
+
413
+ def test_setitem(self):
414
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
415
+ if self.array_cls is PeriodArray:
416
+ arr = self.array_cls(data, dtype="period[D]")
417
+ else:
418
+ arr = self.index_cls(data, freq="D")._data
419
+
420
+ arr[0] = arr[1]
421
+ expected = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
422
+ expected[0] = expected[1]
423
+
424
+ tm.assert_numpy_array_equal(arr.asi8, expected)
425
+
426
+ arr[:2] = arr[-2:]
427
+ expected[:2] = expected[-2:]
428
+ tm.assert_numpy_array_equal(arr.asi8, expected)
429
+
430
+ @pytest.mark.parametrize(
431
+ "box",
432
+ [
433
+ pd.Index,
434
+ pd.Series,
435
+ np.array,
436
+ list,
437
+ NumpyExtensionArray,
438
+ ],
439
+ )
440
+ def test_setitem_object_dtype(self, box, arr1d):
441
+ expected = arr1d.copy()[::-1]
442
+ if expected.dtype.kind in ["m", "M"]:
443
+ expected = expected._with_freq(None)
444
+
445
+ vals = expected
446
+ if box is list:
447
+ vals = list(vals)
448
+ elif box is np.array:
449
+ # if we do np.array(x).astype(object) then dt64 and td64 cast to ints
450
+ vals = np.array(vals.astype(object))
451
+ elif box is NumpyExtensionArray:
452
+ vals = box(np.asarray(vals, dtype=object))
453
+ else:
454
+ vals = box(vals).astype(object)
455
+
456
+ arr1d[:] = vals
457
+
458
+ tm.assert_equal(arr1d, expected)
459
+
460
+ def test_setitem_strs(self, arr1d):
461
+ # Check that we parse strs in both scalar and listlike
462
+
463
+ # Setting list-like of strs
464
+ expected = arr1d.copy()
465
+ expected[[0, 1]] = arr1d[-2:]
466
+
467
+ result = arr1d.copy()
468
+ result[:2] = [str(x) for x in arr1d[-2:]]
469
+ tm.assert_equal(result, expected)
470
+
471
+ # Same thing but now for just a scalar str
472
+ expected = arr1d.copy()
473
+ expected[0] = arr1d[-1]
474
+
475
+ result = arr1d.copy()
476
+ result[0] = str(arr1d[-1])
477
+ tm.assert_equal(result, expected)
478
+
479
+ @pytest.mark.parametrize("as_index", [True, False])
480
+ def test_setitem_categorical(self, arr1d, as_index):
481
+ expected = arr1d.copy()[::-1]
482
+ if not isinstance(expected, PeriodArray):
483
+ expected = expected._with_freq(None)
484
+
485
+ cat = pd.Categorical(arr1d)
486
+ if as_index:
487
+ cat = pd.CategoricalIndex(cat)
488
+
489
+ arr1d[:] = cat[::-1]
490
+
491
+ tm.assert_equal(arr1d, expected)
492
+
493
+ def test_setitem_raises(self, arr1d):
494
+ arr = arr1d[:10]
495
+ val = arr[0]
496
+
497
+ with pytest.raises(IndexError, match="index 12 is out of bounds"):
498
+ arr[12] = val
499
+
500
+ with pytest.raises(TypeError, match="value should be a.* 'object'"):
501
+ arr[0] = object()
502
+
503
+ msg = "cannot set using a list-like indexer with a different length"
504
+ with pytest.raises(ValueError, match=msg):
505
+ # GH#36339
506
+ arr[[]] = [arr[1]]
507
+
508
+ msg = "cannot set using a slice indexer with a different length than"
509
+ with pytest.raises(ValueError, match=msg):
510
+ # GH#36339
511
+ arr[1:1] = arr[:3]
512
+
513
+ @pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series])
514
+ def test_setitem_numeric_raises(self, arr1d, box):
515
+ # We dont case e.g. int64 to our own dtype for setitem
516
+
517
+ msg = (
518
+ f"value should be a '{arr1d._scalar_type.__name__}', "
519
+ "'NaT', or array of those. Got"
520
+ )
521
+ with pytest.raises(TypeError, match=msg):
522
+ arr1d[:2] = box([0, 1])
523
+
524
+ with pytest.raises(TypeError, match=msg):
525
+ arr1d[:2] = box([0.0, 1.0])
526
+
527
+ def test_inplace_arithmetic(self):
528
+ # GH#24115 check that iadd and isub are actually in-place
529
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
530
+ if self.array_cls is PeriodArray:
531
+ arr = self.array_cls(data, dtype="period[D]")
532
+ else:
533
+ arr = self.index_cls(data, freq="D")._data
534
+
535
+ expected = arr + pd.Timedelta(days=1)
536
+ arr += pd.Timedelta(days=1)
537
+ tm.assert_equal(arr, expected)
538
+
539
+ expected = arr - pd.Timedelta(days=1)
540
+ arr -= pd.Timedelta(days=1)
541
+ tm.assert_equal(arr, expected)
542
+
543
+ def test_shift_fill_int_deprecated(self, arr1d):
544
+ # GH#31971, enforced in 2.0
545
+ with pytest.raises(TypeError, match="value should be a"):
546
+ arr1d.shift(1, fill_value=1)
547
+
548
+ def test_median(self, arr1d):
549
+ arr = arr1d
550
+ if len(arr) % 2 == 0:
551
+ # make it easier to define `expected`
552
+ arr = arr[:-1]
553
+
554
+ expected = arr[len(arr) // 2]
555
+
556
+ result = arr.median()
557
+ assert type(result) is type(expected)
558
+ assert result == expected
559
+
560
+ arr[len(arr) // 2] = NaT
561
+ if not isinstance(expected, Period):
562
+ expected = arr[len(arr) // 2 - 1 : len(arr) // 2 + 2].mean()
563
+
564
+ assert arr.median(skipna=False) is NaT
565
+
566
+ result = arr.median()
567
+ assert type(result) is type(expected)
568
+ assert result == expected
569
+
570
+ assert arr[:0].median() is NaT
571
+ assert arr[:0].median(skipna=False) is NaT
572
+
573
+ # 2d Case
574
+ arr2 = arr.reshape(-1, 1)
575
+
576
+ result = arr2.median(axis=None)
577
+ assert type(result) is type(expected)
578
+ assert result == expected
579
+
580
+ assert arr2.median(axis=None, skipna=False) is NaT
581
+
582
+ result = arr2.median(axis=0)
583
+ expected2 = type(arr)._from_sequence([expected], dtype=arr.dtype)
584
+ tm.assert_equal(result, expected2)
585
+
586
+ result = arr2.median(axis=0, skipna=False)
587
+ expected2 = type(arr)._from_sequence([NaT], dtype=arr.dtype)
588
+ tm.assert_equal(result, expected2)
589
+
590
+ result = arr2.median(axis=1)
591
+ tm.assert_equal(result, arr)
592
+
593
+ result = arr2.median(axis=1, skipna=False)
594
+ tm.assert_equal(result, arr)
595
+
596
+ def test_from_integer_array(self):
597
+ arr = np.array([1, 2, 3], dtype=np.int64)
598
+ data = pd.array(arr, dtype="Int64")
599
+ if self.array_cls is PeriodArray:
600
+ expected = self.array_cls(arr, dtype=self.example_dtype)
601
+ result = self.array_cls(data, dtype=self.example_dtype)
602
+ else:
603
+ expected = self.array_cls._from_sequence(arr, dtype=self.example_dtype)
604
+ result = self.array_cls._from_sequence(data, dtype=self.example_dtype)
605
+
606
+ tm.assert_extension_array_equal(result, expected)
607
+
608
+
609
+ class TestDatetimeArray(SharedTests):
610
+ index_cls = DatetimeIndex
611
+ array_cls = DatetimeArray
612
+ scalar_type = Timestamp
613
+ example_dtype = "M8[ns]"
614
+
615
+ @pytest.fixture
616
+ def arr1d(self, tz_naive_fixture, freqstr):
617
+ """
618
+ Fixture returning DatetimeArray with parametrized frequency and
619
+ timezones
620
+ """
621
+ tz = tz_naive_fixture
622
+ dti = pd.date_range("2016-01-01 01:01:00", periods=5, freq=freqstr, tz=tz)
623
+ dta = dti._data
624
+ return dta
625
+
626
+ def test_round(self, arr1d):
627
+ # GH#24064
628
+ dti = self.index_cls(arr1d)
629
+
630
+ result = dti.round(freq="2min")
631
+ expected = dti - pd.Timedelta(minutes=1)
632
+ expected = expected._with_freq(None)
633
+ tm.assert_index_equal(result, expected)
634
+
635
+ dta = dti._data
636
+ result = dta.round(freq="2min")
637
+ expected = expected._data._with_freq(None)
638
+ tm.assert_datetime_array_equal(result, expected)
639
+
640
+ def test_array_interface(self, datetime_index):
641
+ arr = datetime_index._data
642
+ copy_false = None if np_version_gt2 else False
643
+
644
+ # default asarray gives the same underlying data (for tz naive)
645
+ result = np.asarray(arr)
646
+ expected = arr._ndarray
647
+ assert result is expected
648
+ tm.assert_numpy_array_equal(result, expected)
649
+ result = np.array(arr, copy=copy_false)
650
+ assert result is expected
651
+ tm.assert_numpy_array_equal(result, expected)
652
+
653
+ # specifying M8[ns] gives the same result as default
654
+ result = np.asarray(arr, dtype="datetime64[ns]")
655
+ expected = arr._ndarray
656
+ assert result is expected
657
+ tm.assert_numpy_array_equal(result, expected)
658
+ result = np.array(arr, dtype="datetime64[ns]", copy=copy_false)
659
+ assert result is expected
660
+ tm.assert_numpy_array_equal(result, expected)
661
+ result = np.array(arr, dtype="datetime64[ns]")
662
+ assert result is not expected
663
+ tm.assert_numpy_array_equal(result, expected)
664
+
665
+ # to object dtype
666
+ result = np.asarray(arr, dtype=object)
667
+ expected = np.array(list(arr), dtype=object)
668
+ tm.assert_numpy_array_equal(result, expected)
669
+
670
+ # to other dtype always copies
671
+ result = np.asarray(arr, dtype="int64")
672
+ assert result is not arr.asi8
673
+ assert not np.may_share_memory(arr, result)
674
+ expected = arr.asi8.copy()
675
+ tm.assert_numpy_array_equal(result, expected)
676
+
677
+ # other dtypes handled by numpy
678
+ for dtype in ["float64", str]:
679
+ result = np.asarray(arr, dtype=dtype)
680
+ expected = np.asarray(arr).astype(dtype)
681
+ tm.assert_numpy_array_equal(result, expected)
682
+
683
+ def test_array_object_dtype(self, arr1d):
684
+ # GH#23524
685
+ arr = arr1d
686
+ dti = self.index_cls(arr1d)
687
+
688
+ expected = np.array(list(dti))
689
+
690
+ result = np.array(arr, dtype=object)
691
+ tm.assert_numpy_array_equal(result, expected)
692
+
693
+ # also test the DatetimeIndex method while we're at it
694
+ result = np.array(dti, dtype=object)
695
+ tm.assert_numpy_array_equal(result, expected)
696
+
697
+ def test_array_tz(self, arr1d):
698
+ # GH#23524
699
+ arr = arr1d
700
+ dti = self.index_cls(arr1d)
701
+ copy_false = None if np_version_gt2 else False
702
+
703
+ expected = dti.asi8.view("M8[ns]")
704
+ result = np.array(arr, dtype="M8[ns]")
705
+ tm.assert_numpy_array_equal(result, expected)
706
+
707
+ result = np.array(arr, dtype="datetime64[ns]")
708
+ tm.assert_numpy_array_equal(result, expected)
709
+
710
+ # check that we are not making copies when setting copy=copy_false
711
+ result = np.array(arr, dtype="M8[ns]", copy=copy_false)
712
+ assert result.base is expected.base
713
+ assert result.base is not None
714
+ result = np.array(arr, dtype="datetime64[ns]", copy=copy_false)
715
+ assert result.base is expected.base
716
+ assert result.base is not None
717
+
718
+ def test_array_i8_dtype(self, arr1d):
719
+ arr = arr1d
720
+ dti = self.index_cls(arr1d)
721
+ copy_false = None if np_version_gt2 else False
722
+
723
+ expected = dti.asi8
724
+ result = np.array(arr, dtype="i8")
725
+ tm.assert_numpy_array_equal(result, expected)
726
+
727
+ result = np.array(arr, dtype=np.int64)
728
+ tm.assert_numpy_array_equal(result, expected)
729
+
730
+ # check that we are still making copies when setting copy=copy_false
731
+ result = np.array(arr, dtype="i8", copy=copy_false)
732
+ assert result.base is not expected.base
733
+ assert result.base is None
734
+
735
+ def test_from_array_keeps_base(self):
736
+ # Ensure that DatetimeArray._ndarray.base isn't lost.
737
+ arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
738
+ dta = DatetimeArray._from_sequence(arr)
739
+
740
+ assert dta._ndarray is arr
741
+ dta = DatetimeArray._from_sequence(arr[:0])
742
+ assert dta._ndarray.base is arr
743
+
744
+ def test_from_dti(self, arr1d):
745
+ arr = arr1d
746
+ dti = self.index_cls(arr1d)
747
+ assert list(dti) == list(arr)
748
+
749
+ # Check that Index.__new__ knows what to do with DatetimeArray
750
+ dti2 = pd.Index(arr)
751
+ assert isinstance(dti2, DatetimeIndex)
752
+ assert list(dti2) == list(arr)
753
+
754
+ def test_astype_object(self, arr1d):
755
+ arr = arr1d
756
+ dti = self.index_cls(arr1d)
757
+
758
+ asobj = arr.astype("O")
759
+ assert isinstance(asobj, np.ndarray)
760
+ assert asobj.dtype == "O"
761
+ assert list(asobj) == list(dti)
762
+
763
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
764
+ def test_to_period(self, datetime_index, freqstr):
765
+ dti = datetime_index
766
+ arr = dti._data
767
+
768
+ freqstr = freq_to_period_freqstr(1, freqstr)
769
+ expected = dti.to_period(freq=freqstr)
770
+ result = arr.to_period(freq=freqstr)
771
+ assert isinstance(result, PeriodArray)
772
+
773
+ tm.assert_equal(result, expected._data)
774
+
775
+ def test_to_period_2d(self, arr1d):
776
+ arr2d = arr1d.reshape(1, -1)
777
+
778
+ warn = None if arr1d.tz is None else UserWarning
779
+ with tm.assert_produces_warning(warn):
780
+ result = arr2d.to_period("D")
781
+ expected = arr1d.to_period("D").reshape(1, -1)
782
+ tm.assert_period_array_equal(result, expected)
783
+
784
+ @pytest.mark.parametrize("propname", DatetimeArray._bool_ops)
785
+ def test_bool_properties(self, arr1d, propname):
786
+ # in this case _bool_ops is just `is_leap_year`
787
+ dti = self.index_cls(arr1d)
788
+ arr = arr1d
789
+ assert dti.freq == arr.freq
790
+
791
+ result = getattr(arr, propname)
792
+ expected = np.array(getattr(dti, propname), dtype=result.dtype)
793
+
794
+ tm.assert_numpy_array_equal(result, expected)
795
+
796
+ @pytest.mark.parametrize("propname", DatetimeArray._field_ops)
797
+ def test_int_properties(self, arr1d, propname):
798
+ dti = self.index_cls(arr1d)
799
+ arr = arr1d
800
+
801
+ result = getattr(arr, propname)
802
+ expected = np.array(getattr(dti, propname), dtype=result.dtype)
803
+
804
+ tm.assert_numpy_array_equal(result, expected)
805
+
806
+ def test_take_fill_valid(self, arr1d, fixed_now_ts):
807
+ arr = arr1d
808
+ dti = self.index_cls(arr1d)
809
+
810
+ now = fixed_now_ts.tz_localize(dti.tz)
811
+ result = arr.take([-1, 1], allow_fill=True, fill_value=now)
812
+ assert result[0] == now
813
+
814
+ msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
815
+ with pytest.raises(TypeError, match=msg):
816
+ # fill_value Timedelta invalid
817
+ arr.take([-1, 1], allow_fill=True, fill_value=now - now)
818
+
819
+ with pytest.raises(TypeError, match=msg):
820
+ # fill_value Period invalid
821
+ arr.take([-1, 1], allow_fill=True, fill_value=Period("2014Q1"))
822
+
823
+ tz = None if dti.tz is not None else "US/Eastern"
824
+ now = fixed_now_ts.tz_localize(tz)
825
+ msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
826
+ with pytest.raises(TypeError, match=msg):
827
+ # Timestamp with mismatched tz-awareness
828
+ arr.take([-1, 1], allow_fill=True, fill_value=now)
829
+
830
+ value = NaT._value
831
+ msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
832
+ with pytest.raises(TypeError, match=msg):
833
+ # require NaT, not iNaT, as it could be confused with an integer
834
+ arr.take([-1, 1], allow_fill=True, fill_value=value)
835
+
836
+ value = np.timedelta64("NaT", "ns")
837
+ with pytest.raises(TypeError, match=msg):
838
+ # require appropriate-dtype if we have a NA value
839
+ arr.take([-1, 1], allow_fill=True, fill_value=value)
840
+
841
+ if arr.tz is not None:
842
+ # GH#37356
843
+ # Assuming here that arr1d fixture does not include Australia/Melbourne
844
+ value = fixed_now_ts.tz_localize("Australia/Melbourne")
845
+ result = arr.take([-1, 1], allow_fill=True, fill_value=value)
846
+
847
+ expected = arr.take(
848
+ [-1, 1],
849
+ allow_fill=True,
850
+ fill_value=value.tz_convert(arr.dtype.tz),
851
+ )
852
+ tm.assert_equal(result, expected)
853
+
854
+ def test_concat_same_type_invalid(self, arr1d):
855
+ # different timezones
856
+ arr = arr1d
857
+
858
+ if arr.tz is None:
859
+ other = arr.tz_localize("UTC")
860
+ else:
861
+ other = arr.tz_localize(None)
862
+
863
+ with pytest.raises(ValueError, match="to_concat must have the same"):
864
+ arr._concat_same_type([arr, other])
865
+
866
+ def test_concat_same_type_different_freq(self, unit):
867
+ # we *can* concatenate DTI with different freqs.
868
+ a = pd.date_range("2000", periods=2, freq="D", tz="US/Central", unit=unit)._data
869
+ b = pd.date_range("2000", periods=2, freq="h", tz="US/Central", unit=unit)._data
870
+ result = DatetimeArray._concat_same_type([a, b])
871
+ expected = (
872
+ pd.to_datetime(
873
+ [
874
+ "2000-01-01 00:00:00",
875
+ "2000-01-02 00:00:00",
876
+ "2000-01-01 00:00:00",
877
+ "2000-01-01 01:00:00",
878
+ ]
879
+ )
880
+ .tz_localize("US/Central")
881
+ .as_unit(unit)
882
+ ._data
883
+ )
884
+
885
+ tm.assert_datetime_array_equal(result, expected)
886
+
887
+ def test_strftime(self, arr1d):
888
+ arr = arr1d
889
+
890
+ result = arr.strftime("%Y %b")
891
+ expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object)
892
+ tm.assert_numpy_array_equal(result, expected)
893
+
894
+ def test_strftime_nat(self):
895
+ # GH 29578
896
+ arr = DatetimeIndex(["2019-01-01", NaT])._data
897
+
898
+ result = arr.strftime("%Y-%m-%d")
899
+ expected = np.array(["2019-01-01", np.nan], dtype=object)
900
+ tm.assert_numpy_array_equal(result, expected)
901
+
902
+
903
+ class TestTimedeltaArray(SharedTests):
904
+ index_cls = TimedeltaIndex
905
+ array_cls = TimedeltaArray
906
+ scalar_type = pd.Timedelta
907
+ example_dtype = "m8[ns]"
908
+
909
+ def test_from_tdi(self):
910
+ tdi = TimedeltaIndex(["1 Day", "3 Hours"])
911
+ arr = tdi._data
912
+ assert list(arr) == list(tdi)
913
+
914
+ # Check that Index.__new__ knows what to do with TimedeltaArray
915
+ tdi2 = pd.Index(arr)
916
+ assert isinstance(tdi2, TimedeltaIndex)
917
+ assert list(tdi2) == list(arr)
918
+
919
+ def test_astype_object(self):
920
+ tdi = TimedeltaIndex(["1 Day", "3 Hours"])
921
+ arr = tdi._data
922
+ asobj = arr.astype("O")
923
+ assert isinstance(asobj, np.ndarray)
924
+ assert asobj.dtype == "O"
925
+ assert list(asobj) == list(tdi)
926
+
927
+ def test_to_pytimedelta(self, timedelta_index):
928
+ tdi = timedelta_index
929
+ arr = tdi._data
930
+
931
+ expected = tdi.to_pytimedelta()
932
+ result = arr.to_pytimedelta()
933
+
934
+ tm.assert_numpy_array_equal(result, expected)
935
+
936
+ def test_total_seconds(self, timedelta_index):
937
+ tdi = timedelta_index
938
+ arr = tdi._data
939
+
940
+ expected = tdi.total_seconds()
941
+ result = arr.total_seconds()
942
+
943
+ tm.assert_numpy_array_equal(result, expected.values)
944
+
945
+ @pytest.mark.parametrize("propname", TimedeltaArray._field_ops)
946
+ def test_int_properties(self, timedelta_index, propname):
947
+ tdi = timedelta_index
948
+ arr = tdi._data
949
+
950
+ result = getattr(arr, propname)
951
+ expected = np.array(getattr(tdi, propname), dtype=result.dtype)
952
+
953
+ tm.assert_numpy_array_equal(result, expected)
954
+
955
+ def test_array_interface(self, timedelta_index):
956
+ arr = timedelta_index._data
957
+ copy_false = None if np_version_gt2 else False
958
+
959
+ # default asarray gives the same underlying data
960
+ result = np.asarray(arr)
961
+ expected = arr._ndarray
962
+ assert result is expected
963
+ tm.assert_numpy_array_equal(result, expected)
964
+ result = np.array(arr, copy=copy_false)
965
+ assert result is expected
966
+ tm.assert_numpy_array_equal(result, expected)
967
+
968
+ # specifying m8[ns] gives the same result as default
969
+ result = np.asarray(arr, dtype="timedelta64[ns]")
970
+ expected = arr._ndarray
971
+ assert result is expected
972
+ tm.assert_numpy_array_equal(result, expected)
973
+ result = np.array(arr, dtype="timedelta64[ns]", copy=copy_false)
974
+ assert result is expected
975
+ tm.assert_numpy_array_equal(result, expected)
976
+ result = np.array(arr, dtype="timedelta64[ns]")
977
+ assert result is not expected
978
+ tm.assert_numpy_array_equal(result, expected)
979
+
980
+ # to object dtype
981
+ result = np.asarray(arr, dtype=object)
982
+ expected = np.array(list(arr), dtype=object)
983
+ tm.assert_numpy_array_equal(result, expected)
984
+
985
+ # to other dtype always copies
986
+ result = np.asarray(arr, dtype="int64")
987
+ assert result is not arr.asi8
988
+ assert not np.may_share_memory(arr, result)
989
+ expected = arr.asi8.copy()
990
+ tm.assert_numpy_array_equal(result, expected)
991
+
992
+ # other dtypes handled by numpy
993
+ for dtype in ["float64", str]:
994
+ result = np.asarray(arr, dtype=dtype)
995
+ expected = np.asarray(arr).astype(dtype)
996
+ tm.assert_numpy_array_equal(result, expected)
997
+
998
+ def test_take_fill_valid(self, timedelta_index, fixed_now_ts):
999
+ tdi = timedelta_index
1000
+ arr = tdi._data
1001
+
1002
+ td1 = pd.Timedelta(days=1)
1003
+ result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
1004
+ assert result[0] == td1
1005
+
1006
+ value = fixed_now_ts
1007
+ msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got"
1008
+ with pytest.raises(TypeError, match=msg):
1009
+ # fill_value Timestamp invalid
1010
+ arr.take([0, 1], allow_fill=True, fill_value=value)
1011
+
1012
+ value = fixed_now_ts.to_period("D")
1013
+ with pytest.raises(TypeError, match=msg):
1014
+ # fill_value Period invalid
1015
+ arr.take([0, 1], allow_fill=True, fill_value=value)
1016
+
1017
+ value = np.datetime64("NaT", "ns")
1018
+ with pytest.raises(TypeError, match=msg):
1019
+ # require appropriate-dtype if we have a NA value
1020
+ arr.take([-1, 1], allow_fill=True, fill_value=value)
1021
+
1022
+
1023
+ @pytest.mark.filterwarnings(r"ignore:Period with BDay freq is deprecated:FutureWarning")
1024
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
1025
+ class TestPeriodArray(SharedTests):
1026
+ index_cls = PeriodIndex
1027
+ array_cls = PeriodArray
1028
+ scalar_type = Period
1029
+ example_dtype = PeriodIndex([], freq="W").dtype
1030
+
1031
+ @pytest.fixture
1032
+ def arr1d(self, period_index):
1033
+ """
1034
+ Fixture returning DatetimeArray from parametrized PeriodIndex objects
1035
+ """
1036
+ return period_index._data
1037
+
1038
+ def test_from_pi(self, arr1d):
1039
+ pi = self.index_cls(arr1d)
1040
+ arr = arr1d
1041
+ assert list(arr) == list(pi)
1042
+
1043
+ # Check that Index.__new__ knows what to do with PeriodArray
1044
+ pi2 = pd.Index(arr)
1045
+ assert isinstance(pi2, PeriodIndex)
1046
+ assert list(pi2) == list(arr)
1047
+
1048
+ def test_astype_object(self, arr1d):
1049
+ pi = self.index_cls(arr1d)
1050
+ arr = arr1d
1051
+ asobj = arr.astype("O")
1052
+ assert isinstance(asobj, np.ndarray)
1053
+ assert asobj.dtype == "O"
1054
+ assert list(asobj) == list(pi)
1055
+
1056
+ def test_take_fill_valid(self, arr1d):
1057
+ arr = arr1d
1058
+
1059
+ value = NaT._value
1060
+ msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
1061
+ with pytest.raises(TypeError, match=msg):
1062
+ # require NaT, not iNaT, as it could be confused with an integer
1063
+ arr.take([-1, 1], allow_fill=True, fill_value=value)
1064
+
1065
+ value = np.timedelta64("NaT", "ns")
1066
+ with pytest.raises(TypeError, match=msg):
1067
+ # require appropriate-dtype if we have a NA value
1068
+ arr.take([-1, 1], allow_fill=True, fill_value=value)
1069
+
1070
+ @pytest.mark.parametrize("how", ["S", "E"])
1071
+ def test_to_timestamp(self, how, arr1d):
1072
+ pi = self.index_cls(arr1d)
1073
+ arr = arr1d
1074
+
1075
+ expected = DatetimeIndex(pi.to_timestamp(how=how))._data
1076
+ result = arr.to_timestamp(how=how)
1077
+ assert isinstance(result, DatetimeArray)
1078
+
1079
+ tm.assert_equal(result, expected)
1080
+
1081
+ def test_to_timestamp_roundtrip_bday(self):
1082
+ # Case where infer_freq inside would choose "D" instead of "B"
1083
+ dta = pd.date_range("2021-10-18", periods=3, freq="B")._data
1084
+ parr = dta.to_period()
1085
+ result = parr.to_timestamp()
1086
+ assert result.freq == "B"
1087
+ tm.assert_extension_array_equal(result, dta)
1088
+
1089
+ dta2 = dta[::2]
1090
+ parr2 = dta2.to_period()
1091
+ result2 = parr2.to_timestamp()
1092
+ assert result2.freq == "2B"
1093
+ tm.assert_extension_array_equal(result2, dta2)
1094
+
1095
+ parr3 = dta.to_period("2B")
1096
+ result3 = parr3.to_timestamp()
1097
+ assert result3.freq == "B"
1098
+ tm.assert_extension_array_equal(result3, dta)
1099
+
1100
+ def test_to_timestamp_out_of_bounds(self):
1101
+ # GH#19643 previously overflowed silently
1102
+ pi = pd.period_range("1500", freq="Y", periods=3)
1103
+ msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00"
1104
+ with pytest.raises(OutOfBoundsDatetime, match=msg):
1105
+ pi.to_timestamp()
1106
+
1107
+ with pytest.raises(OutOfBoundsDatetime, match=msg):
1108
+ pi._data.to_timestamp()
1109
+
1110
+ @pytest.mark.parametrize("propname", PeriodArray._bool_ops)
1111
+ def test_bool_properties(self, arr1d, propname):
1112
+ # in this case _bool_ops is just `is_leap_year`
1113
+ pi = self.index_cls(arr1d)
1114
+ arr = arr1d
1115
+
1116
+ result = getattr(arr, propname)
1117
+ expected = np.array(getattr(pi, propname))
1118
+
1119
+ tm.assert_numpy_array_equal(result, expected)
1120
+
1121
+ @pytest.mark.parametrize("propname", PeriodArray._field_ops)
1122
+ def test_int_properties(self, arr1d, propname):
1123
+ pi = self.index_cls(arr1d)
1124
+ arr = arr1d
1125
+
1126
+ result = getattr(arr, propname)
1127
+ expected = np.array(getattr(pi, propname))
1128
+
1129
+ tm.assert_numpy_array_equal(result, expected)
1130
+
1131
+ def test_array_interface(self, arr1d):
1132
+ arr = arr1d
1133
+
1134
+ # default asarray gives objects
1135
+ result = np.asarray(arr)
1136
+ expected = np.array(list(arr), dtype=object)
1137
+ tm.assert_numpy_array_equal(result, expected)
1138
+
1139
+ # to object dtype (same as default)
1140
+ result = np.asarray(arr, dtype=object)
1141
+ tm.assert_numpy_array_equal(result, expected)
1142
+
1143
+ result = np.asarray(arr, dtype="int64")
1144
+ tm.assert_numpy_array_equal(result, arr.asi8)
1145
+
1146
+ # to other dtypes
1147
+ msg = r"float\(\) argument must be a string or a( real)? number, not 'Period'"
1148
+ with pytest.raises(TypeError, match=msg):
1149
+ np.asarray(arr, dtype="float64")
1150
+
1151
+ result = np.asarray(arr, dtype="S20")
1152
+ expected = np.asarray(arr).astype("S20")
1153
+ tm.assert_numpy_array_equal(result, expected)
1154
+
1155
+ def test_strftime(self, arr1d):
1156
+ arr = arr1d
1157
+
1158
+ result = arr.strftime("%Y")
1159
+ expected = np.array([per.strftime("%Y") for per in arr], dtype=object)
1160
+ tm.assert_numpy_array_equal(result, expected)
1161
+
1162
+ def test_strftime_nat(self):
1163
+ # GH 29578
1164
+ arr = PeriodArray(PeriodIndex(["2019-01-01", NaT], dtype="period[D]"))
1165
+
1166
+ result = arr.strftime("%Y-%m-%d")
1167
+ expected = np.array(["2019-01-01", np.nan], dtype=object)
1168
+ tm.assert_numpy_array_equal(result, expected)
1169
+
1170
+
1171
+ @pytest.mark.parametrize(
1172
+ "arr,casting_nats",
1173
+ [
1174
+ (
1175
+ TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
1176
+ (NaT, np.timedelta64("NaT", "ns")),
1177
+ ),
1178
+ (
1179
+ pd.date_range("2000-01-01", periods=3, freq="D")._data,
1180
+ (NaT, np.datetime64("NaT", "ns")),
1181
+ ),
1182
+ (pd.period_range("2000-01-01", periods=3, freq="D")._data, (NaT,)),
1183
+ ],
1184
+ ids=lambda x: type(x).__name__,
1185
+ )
1186
+ def test_casting_nat_setitem_array(arr, casting_nats):
1187
+ expected = type(arr)._from_sequence([NaT, arr[1], arr[2]], dtype=arr.dtype)
1188
+
1189
+ for nat in casting_nats:
1190
+ arr = arr.copy()
1191
+ arr[0] = nat
1192
+ tm.assert_equal(arr, expected)
1193
+
1194
+
1195
+ @pytest.mark.parametrize(
1196
+ "arr,non_casting_nats",
1197
+ [
1198
+ (
1199
+ TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
1200
+ (np.datetime64("NaT", "ns"), NaT._value),
1201
+ ),
1202
+ (
1203
+ pd.date_range("2000-01-01", periods=3, freq="D")._data,
1204
+ (np.timedelta64("NaT", "ns"), NaT._value),
1205
+ ),
1206
+ (
1207
+ pd.period_range("2000-01-01", periods=3, freq="D")._data,
1208
+ (np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), NaT._value),
1209
+ ),
1210
+ ],
1211
+ ids=lambda x: type(x).__name__,
1212
+ )
1213
+ def test_invalid_nat_setitem_array(arr, non_casting_nats):
1214
+ msg = (
1215
+ "value should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. "
1216
+ "Got '(timedelta64|datetime64|int)' instead."
1217
+ )
1218
+
1219
+ for nat in non_casting_nats:
1220
+ with pytest.raises(TypeError, match=msg):
1221
+ arr[0] = nat
1222
+
1223
+
1224
+ @pytest.mark.parametrize(
1225
+ "arr",
1226
+ [
1227
+ pd.date_range("2000", periods=4).array,
1228
+ pd.timedelta_range("2000", periods=4).array,
1229
+ ],
1230
+ )
1231
+ def test_to_numpy_extra(arr):
1232
+ arr[0] = NaT
1233
+ original = arr.copy()
1234
+
1235
+ result = arr.to_numpy()
1236
+ assert np.isnan(result[0])
1237
+
1238
+ result = arr.to_numpy(dtype="int64")
1239
+ assert result[0] == -9223372036854775808
1240
+
1241
+ result = arr.to_numpy(dtype="int64", na_value=0)
1242
+ assert result[0] == 0
1243
+
1244
+ result = arr.to_numpy(na_value=arr[1].to_numpy())
1245
+ assert result[0] == result[1]
1246
+
1247
+ result = arr.to_numpy(na_value=arr[1].to_numpy(copy=False))
1248
+ assert result[0] == result[1]
1249
+
1250
+ tm.assert_equal(arr, original)
1251
+
1252
+
1253
+ @pytest.mark.parametrize("as_index", [True, False])
1254
+ @pytest.mark.parametrize(
1255
+ "values",
1256
+ [
1257
+ pd.to_datetime(["2020-01-01", "2020-02-01"]),
1258
+ pd.to_timedelta([1, 2], unit="D"),
1259
+ PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
1260
+ ],
1261
+ )
1262
+ @pytest.mark.parametrize(
1263
+ "klass",
1264
+ [
1265
+ list,
1266
+ np.array,
1267
+ pd.array,
1268
+ pd.Series,
1269
+ pd.Index,
1270
+ pd.Categorical,
1271
+ pd.CategoricalIndex,
1272
+ ],
1273
+ )
1274
+ def test_searchsorted_datetimelike_with_listlike(values, klass, as_index):
1275
+ # https://github.com/pandas-dev/pandas/issues/32762
1276
+ if not as_index:
1277
+ values = values._data
1278
+
1279
+ result = values.searchsorted(klass(values))
1280
+ expected = np.array([0, 1], dtype=result.dtype)
1281
+
1282
+ tm.assert_numpy_array_equal(result, expected)
1283
+
1284
+
1285
+ @pytest.mark.parametrize(
1286
+ "values",
1287
+ [
1288
+ pd.to_datetime(["2020-01-01", "2020-02-01"]),
1289
+ pd.to_timedelta([1, 2], unit="D"),
1290
+ PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
1291
+ ],
1292
+ )
1293
+ @pytest.mark.parametrize(
1294
+ "arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2]
1295
+ )
1296
+ def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg):
1297
+ # https://github.com/pandas-dev/pandas/issues/32762
1298
+ msg = "[Unexpected type|Cannot compare]"
1299
+ with pytest.raises(TypeError, match=msg):
1300
+ values.searchsorted(arg)
1301
+
1302
+
1303
+ @pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series])
1304
+ def test_period_index_construction_from_strings(klass):
1305
+ # https://github.com/pandas-dev/pandas/issues/26109
1306
+ strings = ["2020Q1", "2020Q2"] * 2
1307
+ data = klass(strings)
1308
+ result = PeriodIndex(data, freq="Q")
1309
+ expected = PeriodIndex([Period(s) for s in strings])
1310
+ tm.assert_index_equal(result, expected)
1311
+
1312
+
1313
+ @pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
1314
+ def test_from_pandas_array(dtype):
1315
+ # GH#24615
1316
+ data = np.array([1, 2, 3], dtype=dtype)
1317
+ arr = NumpyExtensionArray(data)
1318
+
1319
+ cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype]
1320
+
1321
+ depr_msg = f"{cls.__name__}.__init__ is deprecated"
1322
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
1323
+ result = cls(arr)
1324
+ expected = cls(data)
1325
+ tm.assert_extension_array_equal(result, expected)
1326
+
1327
+ result = cls._from_sequence(arr, dtype=dtype)
1328
+ expected = cls._from_sequence(data, dtype=dtype)
1329
+ tm.assert_extension_array_equal(result, expected)
1330
+
1331
+ func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype]
1332
+ result = func(arr).array
1333
+ expected = func(data).array
1334
+ tm.assert_equal(result, expected)
1335
+
1336
+ # Let's check the Indexes while we're here
1337
+ idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype]
1338
+ result = idx_cls(arr)
1339
+ expected = idx_cls(data)
1340
+ tm.assert_index_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimes.py ADDED
@@ -0,0 +1,840 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for DatetimeArray
3
+ """
4
+ from __future__ import annotations
5
+
6
+ from datetime import timedelta
7
+ import operator
8
+
9
+ try:
10
+ from zoneinfo import ZoneInfo
11
+ except ImportError:
12
+ # Cannot assign to a type
13
+ ZoneInfo = None # type: ignore[misc, assignment]
14
+
15
+ import numpy as np
16
+ import pytest
17
+
18
+ from pandas._libs.tslibs import tz_compare
19
+
20
+ from pandas.core.dtypes.dtypes import DatetimeTZDtype
21
+
22
+ import pandas as pd
23
+ import pandas._testing as tm
24
+ from pandas.core.arrays import (
25
+ DatetimeArray,
26
+ TimedeltaArray,
27
+ )
28
+
29
+
30
+ class TestNonNano:
31
+ @pytest.fixture(params=["s", "ms", "us"])
32
+ def unit(self, request):
33
+ """Fixture returning parametrized time units"""
34
+ return request.param
35
+
36
+ @pytest.fixture
37
+ def dtype(self, unit, tz_naive_fixture):
38
+ tz = tz_naive_fixture
39
+ if tz is None:
40
+ return np.dtype(f"datetime64[{unit}]")
41
+ else:
42
+ return DatetimeTZDtype(unit=unit, tz=tz)
43
+
44
+ @pytest.fixture
45
+ def dta_dti(self, unit, dtype):
46
+ tz = getattr(dtype, "tz", None)
47
+
48
+ dti = pd.date_range("2016-01-01", periods=55, freq="D", tz=tz)
49
+ if tz is None:
50
+ arr = np.asarray(dti).astype(f"M8[{unit}]")
51
+ else:
52
+ arr = np.asarray(dti.tz_convert("UTC").tz_localize(None)).astype(
53
+ f"M8[{unit}]"
54
+ )
55
+
56
+ dta = DatetimeArray._simple_new(arr, dtype=dtype)
57
+ return dta, dti
58
+
59
+ @pytest.fixture
60
+ def dta(self, dta_dti):
61
+ dta, dti = dta_dti
62
+ return dta
63
+
64
+ def test_non_nano(self, unit, dtype):
65
+ arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]")
66
+ dta = DatetimeArray._simple_new(arr, dtype=dtype)
67
+
68
+ assert dta.dtype == dtype
69
+ assert dta[0].unit == unit
70
+ assert tz_compare(dta.tz, dta[0].tz)
71
+ assert (dta[0] == dta[:1]).all()
72
+
73
+ @pytest.mark.parametrize(
74
+ "field", DatetimeArray._field_ops + DatetimeArray._bool_ops
75
+ )
76
+ def test_fields(self, unit, field, dtype, dta_dti):
77
+ dta, dti = dta_dti
78
+
79
+ assert (dti == dta).all()
80
+
81
+ res = getattr(dta, field)
82
+ expected = getattr(dti._data, field)
83
+ tm.assert_numpy_array_equal(res, expected)
84
+
85
+ def test_normalize(self, unit):
86
+ dti = pd.date_range("2016-01-01 06:00:00", periods=55, freq="D")
87
+ arr = np.asarray(dti).astype(f"M8[{unit}]")
88
+
89
+ dta = DatetimeArray._simple_new(arr, dtype=arr.dtype)
90
+
91
+ assert not dta.is_normalized
92
+
93
+ # TODO: simplify once we can just .astype to other unit
94
+ exp = np.asarray(dti.normalize()).astype(f"M8[{unit}]")
95
+ expected = DatetimeArray._simple_new(exp, dtype=exp.dtype)
96
+
97
+ res = dta.normalize()
98
+ tm.assert_extension_array_equal(res, expected)
99
+
100
+ def test_simple_new_requires_match(self, unit):
101
+ arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]")
102
+ dtype = DatetimeTZDtype(unit, "UTC")
103
+
104
+ dta = DatetimeArray._simple_new(arr, dtype=dtype)
105
+ assert dta.dtype == dtype
106
+
107
+ wrong = DatetimeTZDtype("ns", "UTC")
108
+ with pytest.raises(AssertionError, match=""):
109
+ DatetimeArray._simple_new(arr, dtype=wrong)
110
+
111
+ def test_std_non_nano(self, unit):
112
+ dti = pd.date_range("2016-01-01", periods=55, freq="D")
113
+ arr = np.asarray(dti).astype(f"M8[{unit}]")
114
+
115
+ dta = DatetimeArray._simple_new(arr, dtype=arr.dtype)
116
+
117
+ # we should match the nano-reso std, but floored to our reso.
118
+ res = dta.std()
119
+ assert res._creso == dta._creso
120
+ assert res == dti.std().floor(unit)
121
+
122
+ @pytest.mark.filterwarnings("ignore:Converting to PeriodArray.*:UserWarning")
123
+ def test_to_period(self, dta_dti):
124
+ dta, dti = dta_dti
125
+ result = dta.to_period("D")
126
+ expected = dti._data.to_period("D")
127
+
128
+ tm.assert_extension_array_equal(result, expected)
129
+
130
+ def test_iter(self, dta):
131
+ res = next(iter(dta))
132
+ expected = dta[0]
133
+
134
+ assert type(res) is pd.Timestamp
135
+ assert res._value == expected._value
136
+ assert res._creso == expected._creso
137
+ assert res == expected
138
+
139
+ def test_astype_object(self, dta):
140
+ result = dta.astype(object)
141
+ assert all(x._creso == dta._creso for x in result)
142
+ assert all(x == y for x, y in zip(result, dta))
143
+
144
+ def test_to_pydatetime(self, dta_dti):
145
+ dta, dti = dta_dti
146
+
147
+ result = dta.to_pydatetime()
148
+ expected = dti.to_pydatetime()
149
+ tm.assert_numpy_array_equal(result, expected)
150
+
151
+ @pytest.mark.parametrize("meth", ["time", "timetz", "date"])
152
+ def test_time_date(self, dta_dti, meth):
153
+ dta, dti = dta_dti
154
+
155
+ result = getattr(dta, meth)
156
+ expected = getattr(dti, meth)
157
+ tm.assert_numpy_array_equal(result, expected)
158
+
159
+ def test_format_native_types(self, unit, dtype, dta_dti):
160
+ # In this case we should get the same formatted values with our nano
161
+ # version dti._data as we do with the non-nano dta
162
+ dta, dti = dta_dti
163
+
164
+ res = dta._format_native_types()
165
+ exp = dti._data._format_native_types()
166
+ tm.assert_numpy_array_equal(res, exp)
167
+
168
+ def test_repr(self, dta_dti, unit):
169
+ dta, dti = dta_dti
170
+
171
+ assert repr(dta) == repr(dti._data).replace("[ns", f"[{unit}")
172
+
173
+ # TODO: tests with td64
174
+ def test_compare_mismatched_resolutions(self, comparison_op):
175
+ # comparison that numpy gets wrong bc of silent overflows
176
+ op = comparison_op
177
+
178
+ iinfo = np.iinfo(np.int64)
179
+ vals = np.array([iinfo.min, iinfo.min + 1, iinfo.max], dtype=np.int64)
180
+
181
+ # Construct so that arr2[1] < arr[1] < arr[2] < arr2[2]
182
+ arr = np.array(vals).view("M8[ns]")
183
+ arr2 = arr.view("M8[s]")
184
+
185
+ left = DatetimeArray._simple_new(arr, dtype=arr.dtype)
186
+ right = DatetimeArray._simple_new(arr2, dtype=arr2.dtype)
187
+
188
+ if comparison_op is operator.eq:
189
+ expected = np.array([False, False, False])
190
+ elif comparison_op is operator.ne:
191
+ expected = np.array([True, True, True])
192
+ elif comparison_op in [operator.lt, operator.le]:
193
+ expected = np.array([False, False, True])
194
+ else:
195
+ expected = np.array([False, True, False])
196
+
197
+ result = op(left, right)
198
+ tm.assert_numpy_array_equal(result, expected)
199
+
200
+ result = op(left[1], right)
201
+ tm.assert_numpy_array_equal(result, expected)
202
+
203
+ if op not in [operator.eq, operator.ne]:
204
+ # check that numpy still gets this wrong; if it is fixed we may be
205
+ # able to remove compare_mismatched_resolutions
206
+ np_res = op(left._ndarray, right._ndarray)
207
+ tm.assert_numpy_array_equal(np_res[1:], ~expected[1:])
208
+
209
+ def test_add_mismatched_reso_doesnt_downcast(self):
210
+ # https://github.com/pandas-dev/pandas/pull/48748#issuecomment-1260181008
211
+ td = pd.Timedelta(microseconds=1)
212
+ dti = pd.date_range("2016-01-01", periods=3) - td
213
+ dta = dti._data.as_unit("us")
214
+
215
+ res = dta + td.as_unit("us")
216
+ # even though the result is an even number of days
217
+ # (so we _could_ downcast to unit="s"), we do not.
218
+ assert res.unit == "us"
219
+
220
+ @pytest.mark.parametrize(
221
+ "scalar",
222
+ [
223
+ timedelta(hours=2),
224
+ pd.Timedelta(hours=2),
225
+ np.timedelta64(2, "h"),
226
+ np.timedelta64(2 * 3600 * 1000, "ms"),
227
+ pd.offsets.Minute(120),
228
+ pd.offsets.Hour(2),
229
+ ],
230
+ )
231
+ def test_add_timedeltalike_scalar_mismatched_reso(self, dta_dti, scalar):
232
+ dta, dti = dta_dti
233
+
234
+ td = pd.Timedelta(scalar)
235
+ exp_unit = tm.get_finest_unit(dta.unit, td.unit)
236
+
237
+ expected = (dti + td)._data.as_unit(exp_unit)
238
+ result = dta + scalar
239
+ tm.assert_extension_array_equal(result, expected)
240
+
241
+ result = scalar + dta
242
+ tm.assert_extension_array_equal(result, expected)
243
+
244
+ expected = (dti - td)._data.as_unit(exp_unit)
245
+ result = dta - scalar
246
+ tm.assert_extension_array_equal(result, expected)
247
+
248
+ def test_sub_datetimelike_scalar_mismatch(self):
249
+ dti = pd.date_range("2016-01-01", periods=3)
250
+ dta = dti._data.as_unit("us")
251
+
252
+ ts = dta[0].as_unit("s")
253
+
254
+ result = dta - ts
255
+ expected = (dti - dti[0])._data.as_unit("us")
256
+ assert result.dtype == "m8[us]"
257
+ tm.assert_extension_array_equal(result, expected)
258
+
259
+ def test_sub_datetime64_reso_mismatch(self):
260
+ dti = pd.date_range("2016-01-01", periods=3)
261
+ left = dti._data.as_unit("s")
262
+ right = left.as_unit("ms")
263
+
264
+ result = left - right
265
+ exp_values = np.array([0, 0, 0], dtype="m8[ms]")
266
+ expected = TimedeltaArray._simple_new(
267
+ exp_values,
268
+ dtype=exp_values.dtype,
269
+ )
270
+ tm.assert_extension_array_equal(result, expected)
271
+ result2 = right - left
272
+ tm.assert_extension_array_equal(result2, expected)
273
+
274
+
275
+ class TestDatetimeArrayComparisons:
276
+ # TODO: merge this into tests/arithmetic/test_datetime64 once it is
277
+ # sufficiently robust
278
+
279
+ def test_cmp_dt64_arraylike_tznaive(self, comparison_op):
280
+ # arbitrary tz-naive DatetimeIndex
281
+ op = comparison_op
282
+
283
+ dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None)
284
+ arr = dti._data
285
+ assert arr.freq == dti.freq
286
+ assert arr.tz == dti.tz
287
+
288
+ right = dti
289
+
290
+ expected = np.ones(len(arr), dtype=bool)
291
+ if comparison_op.__name__ in ["ne", "gt", "lt"]:
292
+ # for these the comparisons should be all-False
293
+ expected = ~expected
294
+
295
+ result = op(arr, arr)
296
+ tm.assert_numpy_array_equal(result, expected)
297
+ for other in [
298
+ right,
299
+ np.array(right),
300
+ list(right),
301
+ tuple(right),
302
+ right.astype(object),
303
+ ]:
304
+ result = op(arr, other)
305
+ tm.assert_numpy_array_equal(result, expected)
306
+
307
+ result = op(other, arr)
308
+ tm.assert_numpy_array_equal(result, expected)
309
+
310
+
311
+ class TestDatetimeArray:
312
+ def test_astype_ns_to_ms_near_bounds(self):
313
+ # GH#55979
314
+ ts = pd.Timestamp("1677-09-21 00:12:43.145225")
315
+ target = ts.as_unit("ms")
316
+
317
+ dta = DatetimeArray._from_sequence([ts], dtype="M8[ns]")
318
+ assert (dta.view("i8") == ts.as_unit("ns").value).all()
319
+
320
+ result = dta.astype("M8[ms]")
321
+ assert result[0] == target
322
+
323
+ expected = DatetimeArray._from_sequence([ts], dtype="M8[ms]")
324
+ assert (expected.view("i8") == target._value).all()
325
+
326
+ tm.assert_datetime_array_equal(result, expected)
327
+
328
+ def test_astype_non_nano_tznaive(self):
329
+ dti = pd.date_range("2016-01-01", periods=3)
330
+
331
+ res = dti.astype("M8[s]")
332
+ assert res.dtype == "M8[s]"
333
+
334
+ dta = dti._data
335
+ res = dta.astype("M8[s]")
336
+ assert res.dtype == "M8[s]"
337
+ assert isinstance(res, pd.core.arrays.DatetimeArray) # used to be ndarray
338
+
339
+ def test_astype_non_nano_tzaware(self):
340
+ dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
341
+
342
+ res = dti.astype("M8[s, US/Pacific]")
343
+ assert res.dtype == "M8[s, US/Pacific]"
344
+
345
+ dta = dti._data
346
+ res = dta.astype("M8[s, US/Pacific]")
347
+ assert res.dtype == "M8[s, US/Pacific]"
348
+
349
+ # from non-nano to non-nano, preserving reso
350
+ res2 = res.astype("M8[s, UTC]")
351
+ assert res2.dtype == "M8[s, UTC]"
352
+ assert not tm.shares_memory(res2, res)
353
+
354
+ res3 = res.astype("M8[s, UTC]", copy=False)
355
+ assert res2.dtype == "M8[s, UTC]"
356
+ assert tm.shares_memory(res3, res)
357
+
358
+ def test_astype_to_same(self):
359
+ arr = DatetimeArray._from_sequence(
360
+ ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
361
+ )
362
+ result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False)
363
+ assert result is arr
364
+
365
+ @pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"])
366
+ @pytest.mark.parametrize(
367
+ "other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"]
368
+ )
369
+ def test_astype_copies(self, dtype, other):
370
+ # https://github.com/pandas-dev/pandas/pull/32490
371
+ ser = pd.Series([1, 2], dtype=dtype)
372
+ orig = ser.copy()
373
+
374
+ err = False
375
+ if (dtype == "datetime64[ns]") ^ (other == "datetime64[ns]"):
376
+ # deprecated in favor of tz_localize
377
+ err = True
378
+
379
+ if err:
380
+ if dtype == "datetime64[ns]":
381
+ msg = "Use obj.tz_localize instead or series.dt.tz_localize instead"
382
+ else:
383
+ msg = "from timezone-aware dtype to timezone-naive dtype"
384
+ with pytest.raises(TypeError, match=msg):
385
+ ser.astype(other)
386
+ else:
387
+ t = ser.astype(other)
388
+ t[:] = pd.NaT
389
+ tm.assert_series_equal(ser, orig)
390
+
391
+ @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
392
+ def test_astype_int(self, dtype):
393
+ arr = DatetimeArray._from_sequence(
394
+ [pd.Timestamp("2000"), pd.Timestamp("2001")], dtype="M8[ns]"
395
+ )
396
+
397
+ if np.dtype(dtype) != np.int64:
398
+ with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
399
+ arr.astype(dtype)
400
+ return
401
+
402
+ result = arr.astype(dtype)
403
+ expected = arr._ndarray.view("i8")
404
+ tm.assert_numpy_array_equal(result, expected)
405
+
406
+ def test_astype_to_sparse_dt64(self):
407
+ # GH#50082
408
+ dti = pd.date_range("2016-01-01", periods=4)
409
+ dta = dti._data
410
+ result = dta.astype("Sparse[datetime64[ns]]")
411
+
412
+ assert result.dtype == "Sparse[datetime64[ns]]"
413
+ assert (result == dta).all()
414
+
415
+ def test_tz_setter_raises(self):
416
+ arr = DatetimeArray._from_sequence(
417
+ ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
418
+ )
419
+ with pytest.raises(AttributeError, match="tz_localize"):
420
+ arr.tz = "UTC"
421
+
422
+ def test_setitem_str_impute_tz(self, tz_naive_fixture):
423
+ # Like for getitem, if we are passed a naive-like string, we impute
424
+ # our own timezone.
425
+ tz = tz_naive_fixture
426
+
427
+ data = np.array([1, 2, 3], dtype="M8[ns]")
428
+ dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz)
429
+ arr = DatetimeArray._from_sequence(data, dtype=dtype)
430
+ expected = arr.copy()
431
+
432
+ ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz)
433
+ setter = str(ts.tz_localize(None))
434
+
435
+ # Setting a scalar tznaive string
436
+ expected[0] = ts
437
+ arr[0] = setter
438
+ tm.assert_equal(arr, expected)
439
+
440
+ # Setting a listlike of tznaive strings
441
+ expected[1] = ts
442
+ arr[:2] = [setter, setter]
443
+ tm.assert_equal(arr, expected)
444
+
445
+ def test_setitem_different_tz_raises(self):
446
+ # pre-2.0 we required exact tz match, in 2.0 we require only
447
+ # tzawareness-match
448
+ data = np.array([1, 2, 3], dtype="M8[ns]")
449
+ arr = DatetimeArray._from_sequence(
450
+ data, copy=False, dtype=DatetimeTZDtype(tz="US/Central")
451
+ )
452
+ with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"):
453
+ arr[0] = pd.Timestamp("2000")
454
+
455
+ ts = pd.Timestamp("2000", tz="US/Eastern")
456
+ arr[0] = ts
457
+ assert arr[0] == ts.tz_convert("US/Central")
458
+
459
+ def test_setitem_clears_freq(self):
460
+ a = pd.date_range("2000", periods=2, freq="D", tz="US/Central")._data
461
+ a[0] = pd.Timestamp("2000", tz="US/Central")
462
+ assert a.freq is None
463
+
464
+ @pytest.mark.parametrize(
465
+ "obj",
466
+ [
467
+ pd.Timestamp("2021-01-01"),
468
+ pd.Timestamp("2021-01-01").to_datetime64(),
469
+ pd.Timestamp("2021-01-01").to_pydatetime(),
470
+ ],
471
+ )
472
+ def test_setitem_objects(self, obj):
473
+ # make sure we accept datetime64 and datetime in addition to Timestamp
474
+ dti = pd.date_range("2000", periods=2, freq="D")
475
+ arr = dti._data
476
+
477
+ arr[0] = obj
478
+ assert arr[0] == obj
479
+
480
+ def test_repeat_preserves_tz(self):
481
+ dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
482
+ arr = dti._data
483
+
484
+ repeated = arr.repeat([1, 1])
485
+
486
+ # preserves tz and values, but not freq
487
+ expected = DatetimeArray._from_sequence(arr.asi8, dtype=arr.dtype)
488
+ tm.assert_equal(repeated, expected)
489
+
490
+ def test_value_counts_preserves_tz(self):
491
+ dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
492
+ arr = dti._data.repeat([4, 3])
493
+
494
+ result = arr.value_counts()
495
+
496
+ # Note: not tm.assert_index_equal, since `freq`s do not match
497
+ assert result.index.equals(dti)
498
+
499
+ arr[-2] = pd.NaT
500
+ result = arr.value_counts(dropna=False)
501
+ expected = pd.Series([4, 2, 1], index=[dti[0], dti[1], pd.NaT], name="count")
502
+ tm.assert_series_equal(result, expected)
503
+
504
+ @pytest.mark.parametrize("method", ["pad", "backfill"])
505
+ def test_fillna_preserves_tz(self, method):
506
+ dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central")
507
+ arr = DatetimeArray._from_sequence(dti, copy=True)
508
+ arr[2] = pd.NaT
509
+
510
+ fill_val = dti[1] if method == "pad" else dti[3]
511
+ expected = DatetimeArray._from_sequence(
512
+ [dti[0], dti[1], fill_val, dti[3], dti[4]],
513
+ dtype=DatetimeTZDtype(tz="US/Central"),
514
+ )
515
+
516
+ result = arr._pad_or_backfill(method=method)
517
+ tm.assert_extension_array_equal(result, expected)
518
+
519
+ # assert that arr and dti were not modified in-place
520
+ assert arr[2] is pd.NaT
521
+ assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central")
522
+
523
+ def test_fillna_2d(self):
524
+ dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
525
+ dta = dti._data.reshape(3, 2).copy()
526
+ dta[0, 1] = pd.NaT
527
+ dta[1, 0] = pd.NaT
528
+
529
+ res1 = dta._pad_or_backfill(method="pad")
530
+ expected1 = dta.copy()
531
+ expected1[1, 0] = dta[0, 0]
532
+ tm.assert_extension_array_equal(res1, expected1)
533
+
534
+ res2 = dta._pad_or_backfill(method="backfill")
535
+ expected2 = dta.copy()
536
+ expected2 = dta.copy()
537
+ expected2[1, 0] = dta[2, 0]
538
+ expected2[0, 1] = dta[1, 1]
539
+ tm.assert_extension_array_equal(res2, expected2)
540
+
541
+ # with different ordering for underlying ndarray; behavior should
542
+ # be unchanged
543
+ dta2 = dta._from_backing_data(dta._ndarray.copy(order="F"))
544
+ assert dta2._ndarray.flags["F_CONTIGUOUS"]
545
+ assert not dta2._ndarray.flags["C_CONTIGUOUS"]
546
+ tm.assert_extension_array_equal(dta, dta2)
547
+
548
+ res3 = dta2._pad_or_backfill(method="pad")
549
+ tm.assert_extension_array_equal(res3, expected1)
550
+
551
+ res4 = dta2._pad_or_backfill(method="backfill")
552
+ tm.assert_extension_array_equal(res4, expected2)
553
+
554
+ # test the DataFrame method while we're here
555
+ df = pd.DataFrame(dta)
556
+ res = df.ffill()
557
+ expected = pd.DataFrame(expected1)
558
+ tm.assert_frame_equal(res, expected)
559
+
560
+ res = df.bfill()
561
+ expected = pd.DataFrame(expected2)
562
+ tm.assert_frame_equal(res, expected)
563
+
564
+ def test_array_interface_tz(self):
565
+ tz = "US/Central"
566
+ data = pd.date_range("2017", periods=2, tz=tz)._data
567
+ result = np.asarray(data)
568
+
569
+ expected = np.array(
570
+ [
571
+ pd.Timestamp("2017-01-01T00:00:00", tz=tz),
572
+ pd.Timestamp("2017-01-02T00:00:00", tz=tz),
573
+ ],
574
+ dtype=object,
575
+ )
576
+ tm.assert_numpy_array_equal(result, expected)
577
+
578
+ result = np.asarray(data, dtype=object)
579
+ tm.assert_numpy_array_equal(result, expected)
580
+
581
+ result = np.asarray(data, dtype="M8[ns]")
582
+
583
+ expected = np.array(
584
+ ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]"
585
+ )
586
+ tm.assert_numpy_array_equal(result, expected)
587
+
588
+ def test_array_interface(self):
589
+ data = pd.date_range("2017", periods=2)._data
590
+ expected = np.array(
591
+ ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]"
592
+ )
593
+
594
+ result = np.asarray(data)
595
+ tm.assert_numpy_array_equal(result, expected)
596
+
597
+ result = np.asarray(data, dtype=object)
598
+ expected = np.array(
599
+ [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")],
600
+ dtype=object,
601
+ )
602
+ tm.assert_numpy_array_equal(result, expected)
603
+
604
+ @pytest.mark.parametrize("index", [True, False])
605
+ def test_searchsorted_different_tz(self, index):
606
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
607
+ arr = pd.DatetimeIndex(data, freq="D")._data.tz_localize("Asia/Tokyo")
608
+ if index:
609
+ arr = pd.Index(arr)
610
+
611
+ expected = arr.searchsorted(arr[2])
612
+ result = arr.searchsorted(arr[2].tz_convert("UTC"))
613
+ assert result == expected
614
+
615
+ expected = arr.searchsorted(arr[2:6])
616
+ result = arr.searchsorted(arr[2:6].tz_convert("UTC"))
617
+ tm.assert_equal(result, expected)
618
+
619
+ @pytest.mark.parametrize("index", [True, False])
620
+ def test_searchsorted_tzawareness_compat(self, index):
621
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
622
+ arr = pd.DatetimeIndex(data, freq="D")._data
623
+ if index:
624
+ arr = pd.Index(arr)
625
+
626
+ mismatch = arr.tz_localize("Asia/Tokyo")
627
+
628
+ msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
629
+ with pytest.raises(TypeError, match=msg):
630
+ arr.searchsorted(mismatch[0])
631
+ with pytest.raises(TypeError, match=msg):
632
+ arr.searchsorted(mismatch)
633
+
634
+ with pytest.raises(TypeError, match=msg):
635
+ mismatch.searchsorted(arr[0])
636
+ with pytest.raises(TypeError, match=msg):
637
+ mismatch.searchsorted(arr)
638
+
639
+ @pytest.mark.parametrize(
640
+ "other",
641
+ [
642
+ 1,
643
+ np.int64(1),
644
+ 1.0,
645
+ np.timedelta64("NaT"),
646
+ pd.Timedelta(days=2),
647
+ "invalid",
648
+ np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
649
+ np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10**9,
650
+ pd.Timestamp("2021-01-01").to_period("D"),
651
+ ],
652
+ )
653
+ @pytest.mark.parametrize("index", [True, False])
654
+ def test_searchsorted_invalid_types(self, other, index):
655
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
656
+ arr = pd.DatetimeIndex(data, freq="D")._data
657
+ if index:
658
+ arr = pd.Index(arr)
659
+
660
+ msg = "|".join(
661
+ [
662
+ "searchsorted requires compatible dtype or scalar",
663
+ "value should be a 'Timestamp', 'NaT', or array of those. Got",
664
+ ]
665
+ )
666
+ with pytest.raises(TypeError, match=msg):
667
+ arr.searchsorted(other)
668
+
669
+ def test_shift_fill_value(self):
670
+ dti = pd.date_range("2016-01-01", periods=3)
671
+
672
+ dta = dti._data
673
+ expected = DatetimeArray._from_sequence(np.roll(dta._ndarray, 1))
674
+
675
+ fv = dta[-1]
676
+ for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
677
+ result = dta.shift(1, fill_value=fill_value)
678
+ tm.assert_datetime_array_equal(result, expected)
679
+
680
+ dta = dta.tz_localize("UTC")
681
+ expected = expected.tz_localize("UTC")
682
+ fv = dta[-1]
683
+ for fill_value in [fv, fv.to_pydatetime()]:
684
+ result = dta.shift(1, fill_value=fill_value)
685
+ tm.assert_datetime_array_equal(result, expected)
686
+
687
+ def test_shift_value_tzawareness_mismatch(self):
688
+ dti = pd.date_range("2016-01-01", periods=3)
689
+
690
+ dta = dti._data
691
+
692
+ fv = dta[-1].tz_localize("UTC")
693
+ for invalid in [fv, fv.to_pydatetime()]:
694
+ with pytest.raises(TypeError, match="Cannot compare"):
695
+ dta.shift(1, fill_value=invalid)
696
+
697
+ dta = dta.tz_localize("UTC")
698
+ fv = dta[-1].tz_localize(None)
699
+ for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
700
+ with pytest.raises(TypeError, match="Cannot compare"):
701
+ dta.shift(1, fill_value=invalid)
702
+
703
+ def test_shift_requires_tzmatch(self):
704
+ # pre-2.0 we required exact tz match, in 2.0 we require just
705
+ # matching tzawareness
706
+ dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
707
+ dta = dti._data
708
+
709
+ fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific")
710
+
711
+ result = dta.shift(1, fill_value=fill_value)
712
+ expected = dta.shift(1, fill_value=fill_value.tz_convert("UTC"))
713
+ tm.assert_equal(result, expected)
714
+
715
+ def test_tz_localize_t2d(self):
716
+ dti = pd.date_range("1994-05-12", periods=12, tz="US/Pacific")
717
+ dta = dti._data.reshape(3, 4)
718
+ result = dta.tz_localize(None)
719
+
720
+ expected = dta.ravel().tz_localize(None).reshape(dta.shape)
721
+ tm.assert_datetime_array_equal(result, expected)
722
+
723
+ roundtrip = expected.tz_localize("US/Pacific")
724
+ tm.assert_datetime_array_equal(roundtrip, dta)
725
+
726
+ easts = ["US/Eastern", "dateutil/US/Eastern"]
727
+ if ZoneInfo is not None:
728
+ try:
729
+ tz = ZoneInfo("US/Eastern")
730
+ except KeyError:
731
+ # no tzdata
732
+ pass
733
+ else:
734
+ # Argument 1 to "append" of "list" has incompatible type "ZoneInfo";
735
+ # expected "str"
736
+ easts.append(tz) # type: ignore[arg-type]
737
+
738
+ @pytest.mark.parametrize("tz", easts)
739
+ def test_iter_zoneinfo_fold(self, tz):
740
+ # GH#49684
741
+ utc_vals = np.array(
742
+ [1320552000, 1320555600, 1320559200, 1320562800], dtype=np.int64
743
+ )
744
+ utc_vals *= 1_000_000_000
745
+
746
+ dta = DatetimeArray._from_sequence(utc_vals).tz_localize("UTC").tz_convert(tz)
747
+
748
+ left = dta[2]
749
+ right = list(dta)[2]
750
+ assert str(left) == str(right)
751
+ # previously there was a bug where with non-pytz right would be
752
+ # Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern')
753
+ # while left would be
754
+ # Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern')
755
+ # The .value's would match (so they would compare as equal),
756
+ # but the folds would not
757
+ assert left.utcoffset() == right.utcoffset()
758
+
759
+ # The same bug in ints_to_pydatetime affected .astype, so we test
760
+ # that here.
761
+ right2 = dta.astype(object)[2]
762
+ assert str(left) == str(right2)
763
+ assert left.utcoffset() == right2.utcoffset()
764
+
765
+ @pytest.mark.parametrize(
766
+ "freq, freq_depr",
767
+ [
768
+ ("2ME", "2M"),
769
+ ("2SME", "2SM"),
770
+ ("2SME", "2sm"),
771
+ ("2QE", "2Q"),
772
+ ("2QE-SEP", "2Q-SEP"),
773
+ ("1YE", "1Y"),
774
+ ("2YE-MAR", "2Y-MAR"),
775
+ ("1YE", "1A"),
776
+ ("2YE-MAR", "2A-MAR"),
777
+ ("2ME", "2m"),
778
+ ("2QE-SEP", "2q-sep"),
779
+ ("2YE-MAR", "2a-mar"),
780
+ ("2YE", "2y"),
781
+ ],
782
+ )
783
+ def test_date_range_frequency_M_Q_Y_A_deprecated(self, freq, freq_depr):
784
+ # GH#9586, GH#54275
785
+ depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed "
786
+ f"in a future version, please use '{freq[1:]}' instead."
787
+
788
+ expected = pd.date_range("1/1/2000", periods=4, freq=freq)
789
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
790
+ result = pd.date_range("1/1/2000", periods=4, freq=freq_depr)
791
+ tm.assert_index_equal(result, expected)
792
+
793
+ @pytest.mark.parametrize("freq_depr", ["2H", "2CBH", "2MIN", "2S", "2mS", "2Us"])
794
+ def test_date_range_uppercase_frequency_deprecated(self, freq_depr):
795
+ # GH#9586, GH#54939
796
+ depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a "
797
+ f"future version. Please use '{freq_depr.lower()[1:]}' instead."
798
+
799
+ expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.lower())
800
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
801
+ result = pd.date_range("1/1/2000", periods=4, freq=freq_depr)
802
+ tm.assert_index_equal(result, expected)
803
+
804
+ @pytest.mark.parametrize(
805
+ "freq_depr",
806
+ [
807
+ "2ye-mar",
808
+ "2ys",
809
+ "2qe",
810
+ "2qs-feb",
811
+ "2bqs",
812
+ "2sms",
813
+ "2bms",
814
+ "2cbme",
815
+ "2me",
816
+ "2w",
817
+ ],
818
+ )
819
+ def test_date_range_lowercase_frequency_deprecated(self, freq_depr):
820
+ # GH#9586, GH#54939
821
+ depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a "
822
+ f"future version, please use '{freq_depr.upper()[1:]}' instead."
823
+
824
+ expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.upper())
825
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
826
+ result = pd.date_range("1/1/2000", periods=4, freq=freq_depr)
827
+ tm.assert_index_equal(result, expected)
828
+
829
+
830
+ def test_factorize_sort_without_freq():
831
+ dta = DatetimeArray._from_sequence([0, 2, 1], dtype="M8[ns]")
832
+
833
+ msg = r"call pd.factorize\(obj, sort=True\) instead"
834
+ with pytest.raises(NotImplementedError, match=msg):
835
+ dta.factorize(sort=True)
836
+
837
+ # Do TimedeltaArray while we're here
838
+ tda = dta - dta[0]
839
+ with pytest.raises(NotImplementedError, match=msg):
840
+ tda.factorize(sort=True)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/test_timedeltas.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ from pandas import Timedelta
8
+ import pandas._testing as tm
9
+ from pandas.core.arrays import (
10
+ DatetimeArray,
11
+ TimedeltaArray,
12
+ )
13
+
14
+
15
+ class TestNonNano:
16
+ @pytest.fixture(params=["s", "ms", "us"])
17
+ def unit(self, request):
18
+ return request.param
19
+
20
+ @pytest.fixture
21
+ def tda(self, unit):
22
+ arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
23
+ return TimedeltaArray._simple_new(arr, dtype=arr.dtype)
24
+
25
+ def test_non_nano(self, unit):
26
+ arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
27
+ tda = TimedeltaArray._simple_new(arr, dtype=arr.dtype)
28
+
29
+ assert tda.dtype == arr.dtype
30
+ assert tda[0].unit == unit
31
+
32
+ def test_as_unit_raises(self, tda):
33
+ # GH#50616
34
+ with pytest.raises(ValueError, match="Supported units"):
35
+ tda.as_unit("D")
36
+
37
+ tdi = pd.Index(tda)
38
+ with pytest.raises(ValueError, match="Supported units"):
39
+ tdi.as_unit("D")
40
+
41
+ @pytest.mark.parametrize("field", TimedeltaArray._field_ops)
42
+ def test_fields(self, tda, field):
43
+ as_nano = tda._ndarray.astype("m8[ns]")
44
+ tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
45
+
46
+ result = getattr(tda, field)
47
+ expected = getattr(tda_nano, field)
48
+ tm.assert_numpy_array_equal(result, expected)
49
+
50
+ def test_to_pytimedelta(self, tda):
51
+ as_nano = tda._ndarray.astype("m8[ns]")
52
+ tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
53
+
54
+ result = tda.to_pytimedelta()
55
+ expected = tda_nano.to_pytimedelta()
56
+ tm.assert_numpy_array_equal(result, expected)
57
+
58
+ def test_total_seconds(self, unit, tda):
59
+ as_nano = tda._ndarray.astype("m8[ns]")
60
+ tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
61
+
62
+ result = tda.total_seconds()
63
+ expected = tda_nano.total_seconds()
64
+ tm.assert_numpy_array_equal(result, expected)
65
+
66
+ def test_timedelta_array_total_seconds(self):
67
+ # GH34290
68
+ expected = Timedelta("2 min").total_seconds()
69
+
70
+ result = pd.array([Timedelta("2 min")]).total_seconds()[0]
71
+ assert result == expected
72
+
73
+ def test_total_seconds_nanoseconds(self):
74
+ # issue #48521
75
+ start_time = pd.Series(["2145-11-02 06:00:00"]).astype("datetime64[ns]")
76
+ end_time = pd.Series(["2145-11-02 07:06:00"]).astype("datetime64[ns]")
77
+ expected = (end_time - start_time).values / np.timedelta64(1, "s")
78
+ result = (end_time - start_time).dt.total_seconds().values
79
+ assert result == expected
80
+
81
+ @pytest.mark.parametrize(
82
+ "nat", [np.datetime64("NaT", "ns"), np.datetime64("NaT", "us")]
83
+ )
84
+ def test_add_nat_datetimelike_scalar(self, nat, tda):
85
+ result = tda + nat
86
+ assert isinstance(result, DatetimeArray)
87
+ assert result._creso == tda._creso
88
+ assert result.isna().all()
89
+
90
+ result = nat + tda
91
+ assert isinstance(result, DatetimeArray)
92
+ assert result._creso == tda._creso
93
+ assert result.isna().all()
94
+
95
+ def test_add_pdnat(self, tda):
96
+ result = tda + pd.NaT
97
+ assert isinstance(result, TimedeltaArray)
98
+ assert result._creso == tda._creso
99
+ assert result.isna().all()
100
+
101
+ result = pd.NaT + tda
102
+ assert isinstance(result, TimedeltaArray)
103
+ assert result._creso == tda._creso
104
+ assert result.isna().all()
105
+
106
+ # TODO: 2022-07-11 this is the only test that gets to DTA.tz_convert
107
+ # or tz_localize with non-nano; implement tests specific to that.
108
+ def test_add_datetimelike_scalar(self, tda, tz_naive_fixture):
109
+ ts = pd.Timestamp("2016-01-01", tz=tz_naive_fixture).as_unit("ns")
110
+
111
+ expected = tda.as_unit("ns") + ts
112
+ res = tda + ts
113
+ tm.assert_extension_array_equal(res, expected)
114
+ res = ts + tda
115
+ tm.assert_extension_array_equal(res, expected)
116
+
117
+ ts += Timedelta(1) # case where we can't cast losslessly
118
+
119
+ exp_values = tda._ndarray + ts.asm8
120
+ expected = (
121
+ DatetimeArray._simple_new(exp_values, dtype=exp_values.dtype)
122
+ .tz_localize("UTC")
123
+ .tz_convert(ts.tz)
124
+ )
125
+
126
+ result = tda + ts
127
+ tm.assert_extension_array_equal(result, expected)
128
+
129
+ result = ts + tda
130
+ tm.assert_extension_array_equal(result, expected)
131
+
132
+ def test_mul_scalar(self, tda):
133
+ other = 2
134
+ result = tda * other
135
+ expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
136
+ tm.assert_extension_array_equal(result, expected)
137
+ assert result._creso == tda._creso
138
+
139
+ def test_mul_listlike(self, tda):
140
+ other = np.arange(len(tda))
141
+ result = tda * other
142
+ expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
143
+ tm.assert_extension_array_equal(result, expected)
144
+ assert result._creso == tda._creso
145
+
146
+ def test_mul_listlike_object(self, tda):
147
+ other = np.arange(len(tda))
148
+ result = tda * other.astype(object)
149
+ expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
150
+ tm.assert_extension_array_equal(result, expected)
151
+ assert result._creso == tda._creso
152
+
153
+ def test_div_numeric_scalar(self, tda):
154
+ other = 2
155
+ result = tda / other
156
+ expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
157
+ tm.assert_extension_array_equal(result, expected)
158
+ assert result._creso == tda._creso
159
+
160
+ def test_div_td_scalar(self, tda):
161
+ other = timedelta(seconds=1)
162
+ result = tda / other
163
+ expected = tda._ndarray / np.timedelta64(1, "s")
164
+ tm.assert_numpy_array_equal(result, expected)
165
+
166
+ def test_div_numeric_array(self, tda):
167
+ other = np.arange(len(tda))
168
+ result = tda / other
169
+ expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
170
+ tm.assert_extension_array_equal(result, expected)
171
+ assert result._creso == tda._creso
172
+
173
+ def test_div_td_array(self, tda):
174
+ other = tda._ndarray + tda._ndarray[-1]
175
+ result = tda / other
176
+ expected = tda._ndarray / other
177
+ tm.assert_numpy_array_equal(result, expected)
178
+
179
+ def test_add_timedeltaarraylike(self, tda):
180
+ tda_nano = tda.astype("m8[ns]")
181
+
182
+ expected = tda_nano * 2
183
+ res = tda_nano + tda
184
+ tm.assert_extension_array_equal(res, expected)
185
+ res = tda + tda_nano
186
+ tm.assert_extension_array_equal(res, expected)
187
+
188
+ expected = tda_nano * 0
189
+ res = tda - tda_nano
190
+ tm.assert_extension_array_equal(res, expected)
191
+
192
+ res = tda_nano - tda
193
+ tm.assert_extension_array_equal(res, expected)
194
+
195
+
196
+ class TestTimedeltaArray:
197
+ @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
198
+ def test_astype_int(self, dtype):
199
+ arr = TimedeltaArray._from_sequence(
200
+ [Timedelta("1h"), Timedelta("2h")], dtype="m8[ns]"
201
+ )
202
+
203
+ if np.dtype(dtype) != np.int64:
204
+ with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
205
+ arr.astype(dtype)
206
+ return
207
+
208
+ result = arr.astype(dtype)
209
+ expected = arr._ndarray.view("i8")
210
+ tm.assert_numpy_array_equal(result, expected)
211
+
212
+ def test_setitem_clears_freq(self):
213
+ a = pd.timedelta_range("1h", periods=2, freq="h")._data
214
+ a[0] = Timedelta("1h")
215
+ assert a.freq is None
216
+
217
+ @pytest.mark.parametrize(
218
+ "obj",
219
+ [
220
+ Timedelta(seconds=1),
221
+ Timedelta(seconds=1).to_timedelta64(),
222
+ Timedelta(seconds=1).to_pytimedelta(),
223
+ ],
224
+ )
225
+ def test_setitem_objects(self, obj):
226
+ # make sure we accept timedelta64 and timedelta in addition to Timedelta
227
+ tdi = pd.timedelta_range("2 Days", periods=4, freq="h")
228
+ arr = tdi._data
229
+
230
+ arr[0] = obj
231
+ assert arr[0] == Timedelta(seconds=1)
232
+
233
+ @pytest.mark.parametrize(
234
+ "other",
235
+ [
236
+ 1,
237
+ np.int64(1),
238
+ 1.0,
239
+ np.datetime64("NaT"),
240
+ pd.Timestamp("2021-01-01"),
241
+ "invalid",
242
+ np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
243
+ (np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"),
244
+ pd.Timestamp("2021-01-01").to_period("D"),
245
+ ],
246
+ )
247
+ @pytest.mark.parametrize("index", [True, False])
248
+ def test_searchsorted_invalid_types(self, other, index):
249
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
250
+ arr = pd.TimedeltaIndex(data, freq="D")._data
251
+ if index:
252
+ arr = pd.Index(arr)
253
+
254
+ msg = "|".join(
255
+ [
256
+ "searchsorted requires compatible dtype or scalar",
257
+ "value should be a 'Timedelta', 'NaT', or array of those. Got",
258
+ ]
259
+ )
260
+ with pytest.raises(TypeError, match=msg):
261
+ arr.searchsorted(other)
262
+
263
+
264
+ class TestUnaryOps:
265
+ def test_abs(self):
266
+ vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
267
+ arr = TimedeltaArray._from_sequence(vals)
268
+
269
+ evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
270
+ expected = TimedeltaArray._from_sequence(evals)
271
+
272
+ result = abs(arr)
273
+ tm.assert_timedelta_array_equal(result, expected)
274
+
275
+ result2 = np.abs(arr)
276
+ tm.assert_timedelta_array_equal(result2, expected)
277
+
278
+ def test_pos(self):
279
+ vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
280
+ arr = TimedeltaArray._from_sequence(vals)
281
+
282
+ result = +arr
283
+ tm.assert_timedelta_array_equal(result, arr)
284
+ assert not tm.shares_memory(result, arr)
285
+
286
+ result2 = np.positive(arr)
287
+ tm.assert_timedelta_array_equal(result2, arr)
288
+ assert not tm.shares_memory(result2, arr)
289
+
290
+ def test_neg(self):
291
+ vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
292
+ arr = TimedeltaArray._from_sequence(vals)
293
+
294
+ evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]")
295
+ expected = TimedeltaArray._from_sequence(evals)
296
+
297
+ result = -arr
298
+ tm.assert_timedelta_array_equal(result, expected)
299
+
300
+ result2 = np.negative(arr)
301
+ tm.assert_timedelta_array_equal(result2, expected)
302
+
303
+ def test_neg_freq(self):
304
+ tdi = pd.timedelta_range("2 Days", periods=4, freq="h")
305
+ arr = tdi._data
306
+
307
+ expected = -tdi._data
308
+
309
+ result = -arr
310
+ tm.assert_timedelta_array_equal(result, expected)
311
+
312
+ result2 = np.negative(arr)
313
+ tm.assert_timedelta_array_equal(result2, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/config/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/config/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/config/__pycache__/test_config.cpython-310.pyc ADDED
Binary file (12.9 kB). View file