peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/pandas
/io
/pickle.py
""" pickle compat """ | |
from __future__ import annotations | |
import pickle | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
) | |
import warnings | |
from pandas.compat import pickle_compat as pc | |
from pandas.util._decorators import doc | |
from pandas.core.shared_docs import _shared_docs | |
from pandas.io.common import get_handle | |
if TYPE_CHECKING: | |
from pandas._typing import ( | |
CompressionOptions, | |
FilePath, | |
ReadPickleBuffer, | |
StorageOptions, | |
WriteBuffer, | |
) | |
from pandas import ( | |
DataFrame, | |
Series, | |
) | |
def to_pickle( | |
obj: Any, | |
filepath_or_buffer: FilePath | WriteBuffer[bytes], | |
compression: CompressionOptions = "infer", | |
protocol: int = pickle.HIGHEST_PROTOCOL, | |
storage_options: StorageOptions | None = None, | |
) -> None: | |
""" | |
Pickle (serialize) object to file. | |
Parameters | |
---------- | |
obj : any object | |
Any python object. | |
filepath_or_buffer : str, path object, or file-like object | |
String, path object (implementing ``os.PathLike[str]``), or file-like | |
object implementing a binary ``write()`` function. | |
Also accepts URL. URL has to be of S3 or GCS. | |
{compression_options} | |
.. versionchanged:: 1.4.0 Zstandard support. | |
protocol : int | |
Int which indicates which protocol should be used by the pickler, | |
default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible | |
values for this parameter depend on the version of Python. For Python | |
2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value. | |
For Python >= 3.4, 4 is a valid value. A negative value for the | |
protocol parameter is equivalent to setting its value to | |
HIGHEST_PROTOCOL. | |
{storage_options} | |
.. [1] https://docs.python.org/3/library/pickle.html | |
See Also | |
-------- | |
read_pickle : Load pickled pandas object (or any object) from file. | |
DataFrame.to_hdf : Write DataFrame to an HDF5 file. | |
DataFrame.to_sql : Write DataFrame to a SQL database. | |
DataFrame.to_parquet : Write a DataFrame to the binary parquet format. | |
Examples | |
-------- | |
>>> original_df = pd.DataFrame({{"foo": range(5), "bar": range(5, 10)}}) # doctest: +SKIP | |
>>> original_df # doctest: +SKIP | |
foo bar | |
0 0 5 | |
1 1 6 | |
2 2 7 | |
3 3 8 | |
4 4 9 | |
>>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP | |
>>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP | |
>>> unpickled_df # doctest: +SKIP | |
foo bar | |
0 0 5 | |
1 1 6 | |
2 2 7 | |
3 3 8 | |
4 4 9 | |
""" # noqa: E501 | |
if protocol < 0: | |
protocol = pickle.HIGHEST_PROTOCOL | |
with get_handle( | |
filepath_or_buffer, | |
"wb", | |
compression=compression, | |
is_text=False, | |
storage_options=storage_options, | |
) as handles: | |
# letting pickle write directly to the buffer is more memory-efficient | |
pickle.dump(obj, handles.handle, protocol=protocol) | |
def read_pickle( | |
filepath_or_buffer: FilePath | ReadPickleBuffer, | |
compression: CompressionOptions = "infer", | |
storage_options: StorageOptions | None = None, | |
) -> DataFrame | Series: | |
""" | |
Load pickled pandas object (or any object) from file. | |
.. warning:: | |
Loading pickled data received from untrusted sources can be | |
unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__. | |
Parameters | |
---------- | |
filepath_or_buffer : str, path object, or file-like object | |
String, path object (implementing ``os.PathLike[str]``), or file-like | |
object implementing a binary ``readlines()`` function. | |
Also accepts URL. URL is not limited to S3 and GCS. | |
{decompression_options} | |
.. versionchanged:: 1.4.0 Zstandard support. | |
{storage_options} | |
Returns | |
------- | |
same type as object stored in file | |
See Also | |
-------- | |
DataFrame.to_pickle : Pickle (serialize) DataFrame object to file. | |
Series.to_pickle : Pickle (serialize) Series object to file. | |
read_hdf : Read HDF5 file into a DataFrame. | |
read_sql : Read SQL query or database table into a DataFrame. | |
read_parquet : Load a parquet object, returning a DataFrame. | |
Notes | |
----- | |
read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3 | |
provided the object was serialized with to_pickle. | |
Examples | |
-------- | |
>>> original_df = pd.DataFrame( | |
... {{"foo": range(5), "bar": range(5, 10)}} | |
... ) # doctest: +SKIP | |
>>> original_df # doctest: +SKIP | |
foo bar | |
0 0 5 | |
1 1 6 | |
2 2 7 | |
3 3 8 | |
4 4 9 | |
>>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP | |
>>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP | |
>>> unpickled_df # doctest: +SKIP | |
foo bar | |
0 0 5 | |
1 1 6 | |
2 2 7 | |
3 3 8 | |
4 4 9 | |
""" | |
excs_to_catch = (AttributeError, ImportError, ModuleNotFoundError, TypeError) | |
with get_handle( | |
filepath_or_buffer, | |
"rb", | |
compression=compression, | |
is_text=False, | |
storage_options=storage_options, | |
) as handles: | |
# 1) try standard library Pickle | |
# 2) try pickle_compat (older pandas version) to handle subclass changes | |
# 3) try pickle_compat with latin-1 encoding upon a UnicodeDecodeError | |
try: | |
# TypeError for Cython complaints about object.__new__ vs Tick.__new__ | |
try: | |
with warnings.catch_warnings(record=True): | |
# We want to silence any warnings about, e.g. moved modules. | |
warnings.simplefilter("ignore", Warning) | |
return pickle.load(handles.handle) | |
except excs_to_catch: | |
# e.g. | |
# "No module named 'pandas.core.sparse.series'" | |
# "Can't get attribute '__nat_unpickle' on <module 'pandas._libs.tslib" | |
return pc.load(handles.handle, encoding=None) | |
except UnicodeDecodeError: | |
# e.g. can occur for files written in py27; see GH#28645 and GH#31988 | |
return pc.load(handles.handle, encoding="latin-1") | |