peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/pandas
/io
/sas
/sasreader.py
""" | |
Read SAS sas7bdat or xport files. | |
""" | |
from __future__ import annotations | |
from abc import ( | |
ABC, | |
abstractmethod, | |
) | |
from typing import ( | |
TYPE_CHECKING, | |
overload, | |
) | |
from pandas.util._decorators import doc | |
from pandas.core.shared_docs import _shared_docs | |
from pandas.io.common import stringify_path | |
if TYPE_CHECKING: | |
from collections.abc import Hashable | |
from types import TracebackType | |
from pandas._typing import ( | |
CompressionOptions, | |
FilePath, | |
ReadBuffer, | |
Self, | |
) | |
from pandas import DataFrame | |
class ReaderBase(ABC): | |
""" | |
Protocol for XportReader and SAS7BDATReader classes. | |
""" | |
def read(self, nrows: int | None = None) -> DataFrame: | |
... | |
def close(self) -> None: | |
... | |
def __enter__(self) -> Self: | |
return self | |
def __exit__( | |
self, | |
exc_type: type[BaseException] | None, | |
exc_value: BaseException | None, | |
traceback: TracebackType | None, | |
) -> None: | |
self.close() | |
def read_sas( | |
filepath_or_buffer: FilePath | ReadBuffer[bytes], | |
*, | |
format: str | None = ..., | |
index: Hashable | None = ..., | |
encoding: str | None = ..., | |
chunksize: int = ..., | |
iterator: bool = ..., | |
compression: CompressionOptions = ..., | |
) -> ReaderBase: | |
... | |
def read_sas( | |
filepath_or_buffer: FilePath | ReadBuffer[bytes], | |
*, | |
format: str | None = ..., | |
index: Hashable | None = ..., | |
encoding: str | None = ..., | |
chunksize: None = ..., | |
iterator: bool = ..., | |
compression: CompressionOptions = ..., | |
) -> DataFrame | ReaderBase: | |
... | |
def read_sas( | |
filepath_or_buffer: FilePath | ReadBuffer[bytes], | |
*, | |
format: str | None = None, | |
index: Hashable | None = None, | |
encoding: str | None = None, | |
chunksize: int | None = None, | |
iterator: bool = False, | |
compression: CompressionOptions = "infer", | |
) -> DataFrame | ReaderBase: | |
""" | |
Read SAS files stored as either XPORT or SAS7BDAT format files. | |
Parameters | |
---------- | |
filepath_or_buffer : str, path object, or file-like object | |
String, path object (implementing ``os.PathLike[str]``), or file-like | |
object implementing a binary ``read()`` function. The string could be a URL. | |
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is | |
expected. A local file could be: | |
``file://localhost/path/to/table.sas7bdat``. | |
format : str {{'xport', 'sas7bdat'}} or None | |
If None, file format is inferred from file extension. If 'xport' or | |
'sas7bdat', uses the corresponding format. | |
index : identifier of index column, defaults to None | |
Identifier of column that should be used as index of the DataFrame. | |
encoding : str, default is None | |
Encoding for text data. If None, text data are stored as raw bytes. | |
chunksize : int | |
Read file `chunksize` lines at a time, returns iterator. | |
iterator : bool, defaults to False | |
If True, returns an iterator for reading the file incrementally. | |
{decompression_options} | |
Returns | |
------- | |
DataFrame if iterator=False and chunksize=None, else SAS7BDATReader | |
or XportReader | |
Examples | |
-------- | |
>>> df = pd.read_sas("sas_data.sas7bdat") # doctest: +SKIP | |
""" | |
if format is None: | |
buffer_error_msg = ( | |
"If this is a buffer object rather " | |
"than a string name, you must specify a format string" | |
) | |
filepath_or_buffer = stringify_path(filepath_or_buffer) | |
if not isinstance(filepath_or_buffer, str): | |
raise ValueError(buffer_error_msg) | |
fname = filepath_or_buffer.lower() | |
if ".xpt" in fname: | |
format = "xport" | |
elif ".sas7bdat" in fname: | |
format = "sas7bdat" | |
else: | |
raise ValueError( | |
f"unable to infer format of SAS file from filename: {repr(fname)}" | |
) | |
reader: ReaderBase | |
if format.lower() == "xport": | |
from pandas.io.sas.sas_xport import XportReader | |
reader = XportReader( | |
filepath_or_buffer, | |
index=index, | |
encoding=encoding, | |
chunksize=chunksize, | |
compression=compression, | |
) | |
elif format.lower() == "sas7bdat": | |
from pandas.io.sas.sas7bdat import SAS7BDATReader | |
reader = SAS7BDATReader( | |
filepath_or_buffer, | |
index=index, | |
encoding=encoding, | |
chunksize=chunksize, | |
compression=compression, | |
) | |
else: | |
raise ValueError("unknown SAS format") | |
if iterator or chunksize: | |
return reader | |
with reader: | |
return reader.read() | |