peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/pandas
/io
/spss.py
from __future__ import annotations | |
from typing import TYPE_CHECKING | |
from pandas._libs import lib | |
from pandas.compat._optional import import_optional_dependency | |
from pandas.util._validators import check_dtype_backend | |
from pandas.core.dtypes.inference import is_list_like | |
from pandas.io.common import stringify_path | |
if TYPE_CHECKING: | |
from collections.abc import Sequence | |
from pathlib import Path | |
from pandas._typing import DtypeBackend | |
from pandas import DataFrame | |
def read_spss( | |
path: str | Path, | |
usecols: Sequence[str] | None = None, | |
convert_categoricals: bool = True, | |
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, | |
) -> DataFrame: | |
""" | |
Load an SPSS file from the file path, returning a DataFrame. | |
Parameters | |
---------- | |
path : str or Path | |
File path. | |
usecols : list-like, optional | |
Return a subset of the columns. If None, return all columns. | |
convert_categoricals : bool, default is True | |
Convert categorical columns into pd.Categorical. | |
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' | |
Back-end data type applied to the resultant :class:`DataFrame` | |
(still experimental). Behaviour is as follows: | |
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` | |
(default). | |
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` | |
DataFrame. | |
.. versionadded:: 2.0 | |
Returns | |
------- | |
DataFrame | |
Examples | |
-------- | |
>>> df = pd.read_spss("spss_data.sav") # doctest: +SKIP | |
""" | |
pyreadstat = import_optional_dependency("pyreadstat") | |
check_dtype_backend(dtype_backend) | |
if usecols is not None: | |
if not is_list_like(usecols): | |
raise TypeError("usecols must be list-like.") | |
usecols = list(usecols) # pyreadstat requires a list | |
df, metadata = pyreadstat.read_sav( | |
stringify_path(path), usecols=usecols, apply_value_formats=convert_categoricals | |
) | |
df.attrs = metadata.__dict__ | |
if dtype_backend is not lib.no_default: | |
df = df.convert_dtypes(dtype_backend=dtype_backend) | |
return df | |