peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/diffgeom
/diffgeom.py
| from __future__ import annotations | |
| from typing import Any | |
| from functools import reduce | |
| from itertools import permutations | |
| from sympy.combinatorics import Permutation | |
| from sympy.core import ( | |
| Basic, Expr, Function, diff, | |
| Pow, Mul, Add, Lambda, S, Tuple, Dict | |
| ) | |
| from sympy.core.cache import cacheit | |
| from sympy.core.symbol import Symbol, Dummy | |
| from sympy.core.symbol import Str | |
| from sympy.core.sympify import _sympify | |
| from sympy.functions import factorial | |
| from sympy.matrices import ImmutableDenseMatrix as Matrix | |
| from sympy.solvers import solve | |
| from sympy.utilities.exceptions import (sympy_deprecation_warning, | |
| SymPyDeprecationWarning, | |
| ignore_warnings) | |
| # TODO you are a bit excessive in the use of Dummies | |
| # TODO dummy point, literal field | |
| # TODO too often one needs to call doit or simplify on the output, check the | |
| # tests and find out why | |
| from sympy.tensor.array import ImmutableDenseNDimArray | |
| class Manifold(Basic): | |
| """ | |
| A mathematical manifold. | |
| Explanation | |
| =========== | |
| A manifold is a topological space that locally resembles | |
| Euclidean space near each point [1]. | |
| This class does not provide any means to study the topological | |
| characteristics of the manifold that it represents, though. | |
| Parameters | |
| ========== | |
| name : str | |
| The name of the manifold. | |
| dim : int | |
| The dimension of the manifold. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom import Manifold | |
| >>> m = Manifold('M', 2) | |
| >>> m | |
| M | |
| >>> m.dim | |
| 2 | |
| References | |
| ========== | |
| .. [1] https://en.wikipedia.org/wiki/Manifold | |
| """ | |
| def __new__(cls, name, dim, **kwargs): | |
| if not isinstance(name, Str): | |
| name = Str(name) | |
| dim = _sympify(dim) | |
| obj = super().__new__(cls, name, dim) | |
| obj.patches = _deprecated_list( | |
| """ | |
| Manifold.patches is deprecated. The Manifold object is now | |
| immutable. Instead use a separate list to keep track of the | |
| patches. | |
| """, []) | |
| return obj | |
| def name(self): | |
| return self.args[0] | |
| def dim(self): | |
| return self.args[1] | |
| class Patch(Basic): | |
| """ | |
| A patch on a manifold. | |
| Explanation | |
| =========== | |
| Coordinate patch, or patch in short, is a simply-connected open set around | |
| a point in the manifold [1]. On a manifold one can have many patches that | |
| do not always include the whole manifold. On these patches coordinate | |
| charts can be defined that permit the parameterization of any point on the | |
| patch in terms of a tuple of real numbers (the coordinates). | |
| This class does not provide any means to study the topological | |
| characteristics of the patch that it represents. | |
| Parameters | |
| ========== | |
| name : str | |
| The name of the patch. | |
| manifold : Manifold | |
| The manifold on which the patch is defined. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom import Manifold, Patch | |
| >>> m = Manifold('M', 2) | |
| >>> p = Patch('P', m) | |
| >>> p | |
| P | |
| >>> p.dim | |
| 2 | |
| References | |
| ========== | |
| .. [1] G. Sussman, J. Wisdom, W. Farr, Functional Differential Geometry | |
| (2013) | |
| """ | |
| def __new__(cls, name, manifold, **kwargs): | |
| if not isinstance(name, Str): | |
| name = Str(name) | |
| obj = super().__new__(cls, name, manifold) | |
| obj.manifold.patches.append(obj) # deprecated | |
| obj.coord_systems = _deprecated_list( | |
| """ | |
| Patch.coord_systms is deprecated. The Patch class is now | |
| immutable. Instead use a separate list to keep track of coordinate | |
| systems. | |
| """, []) | |
| return obj | |
| def name(self): | |
| return self.args[0] | |
| def manifold(self): | |
| return self.args[1] | |
| def dim(self): | |
| return self.manifold.dim | |
| class CoordSystem(Basic): | |
| """ | |
| A coordinate system defined on the patch. | |
| Explanation | |
| =========== | |
| Coordinate system is a system that uses one or more coordinates to uniquely | |
| determine the position of the points or other geometric elements on a | |
| manifold [1]. | |
| By passing ``Symbols`` to *symbols* parameter, user can define the name and | |
| assumptions of coordinate symbols of the coordinate system. If not passed, | |
| these symbols are generated automatically and are assumed to be real valued. | |
| By passing *relations* parameter, user can define the transform relations of | |
| coordinate systems. Inverse transformation and indirect transformation can | |
| be found automatically. If this parameter is not passed, coordinate | |
| transformation cannot be done. | |
| Parameters | |
| ========== | |
| name : str | |
| The name of the coordinate system. | |
| patch : Patch | |
| The patch where the coordinate system is defined. | |
| symbols : list of Symbols, optional | |
| Defines the names and assumptions of coordinate symbols. | |
| relations : dict, optional | |
| Key is a tuple of two strings, who are the names of the systems where | |
| the coordinates transform from and transform to. | |
| Value is a tuple of the symbols before transformation and a tuple of | |
| the expressions after transformation. | |
| Examples | |
| ======== | |
| We define two-dimensional Cartesian coordinate system and polar coordinate | |
| system. | |
| >>> from sympy import symbols, pi, sqrt, atan2, cos, sin | |
| >>> from sympy.diffgeom import Manifold, Patch, CoordSystem | |
| >>> m = Manifold('M', 2) | |
| >>> p = Patch('P', m) | |
| >>> x, y = symbols('x y', real=True) | |
| >>> r, theta = symbols('r theta', nonnegative=True) | |
| >>> relation_dict = { | |
| ... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))], | |
| ... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))] | |
| ... } | |
| >>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict) | |
| >>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict) | |
| ``symbols`` property returns ``CoordinateSymbol`` instances. These symbols | |
| are not same with the symbols used to construct the coordinate system. | |
| >>> Car2D | |
| Car2D | |
| >>> Car2D.dim | |
| 2 | |
| >>> Car2D.symbols | |
| (x, y) | |
| >>> _[0].func | |
| <class 'sympy.diffgeom.diffgeom.CoordinateSymbol'> | |
| ``transformation()`` method returns the transformation function from | |
| one coordinate system to another. ``transform()`` method returns the | |
| transformed coordinates. | |
| >>> Car2D.transformation(Pol) | |
| Lambda((x, y), Matrix([ | |
| [sqrt(x**2 + y**2)], | |
| [ atan2(y, x)]])) | |
| >>> Car2D.transform(Pol) | |
| Matrix([ | |
| [sqrt(x**2 + y**2)], | |
| [ atan2(y, x)]]) | |
| >>> Car2D.transform(Pol, [1, 2]) | |
| Matrix([ | |
| [sqrt(5)], | |
| [atan(2)]]) | |
| ``jacobian()`` method returns the Jacobian matrix of coordinate | |
| transformation between two systems. ``jacobian_determinant()`` method | |
| returns the Jacobian determinant of coordinate transformation between two | |
| systems. | |
| >>> Pol.jacobian(Car2D) | |
| Matrix([ | |
| [cos(theta), -r*sin(theta)], | |
| [sin(theta), r*cos(theta)]]) | |
| >>> Pol.jacobian(Car2D, [1, pi/2]) | |
| Matrix([ | |
| [0, -1], | |
| [1, 0]]) | |
| >>> Car2D.jacobian_determinant(Pol) | |
| 1/sqrt(x**2 + y**2) | |
| >>> Car2D.jacobian_determinant(Pol, [1,0]) | |
| 1 | |
| References | |
| ========== | |
| .. [1] https://en.wikipedia.org/wiki/Coordinate_system | |
| """ | |
| def __new__(cls, name, patch, symbols=None, relations={}, **kwargs): | |
| if not isinstance(name, Str): | |
| name = Str(name) | |
| # canonicallize the symbols | |
| if symbols is None: | |
| names = kwargs.get('names', None) | |
| if names is None: | |
| symbols = Tuple( | |
| *[Symbol('%s_%s' % (name.name, i), real=True) | |
| for i in range(patch.dim)] | |
| ) | |
| else: | |
| sympy_deprecation_warning( | |
| f""" | |
| The 'names' argument to CoordSystem is deprecated. Use 'symbols' instead. That | |
| is, replace | |
| CoordSystem(..., names={names}) | |
| with | |
| CoordSystem(..., symbols=[{', '.join(["Symbol(" + repr(n) + ", real=True)" for n in names])}]) | |
| """, | |
| deprecated_since_version="1.7", | |
| active_deprecations_target="deprecated-diffgeom-mutable", | |
| ) | |
| symbols = Tuple( | |
| *[Symbol(n, real=True) for n in names] | |
| ) | |
| else: | |
| syms = [] | |
| for s in symbols: | |
| if isinstance(s, Symbol): | |
| syms.append(Symbol(s.name, **s._assumptions.generator)) | |
| elif isinstance(s, str): | |
| sympy_deprecation_warning( | |
| f""" | |
| Passing a string as the coordinate symbol name to CoordSystem is deprecated. | |
| Pass a Symbol with the appropriate name and assumptions instead. | |
| That is, replace {s} with Symbol({s!r}, real=True). | |
| """, | |
| deprecated_since_version="1.7", | |
| active_deprecations_target="deprecated-diffgeom-mutable", | |
| ) | |
| syms.append(Symbol(s, real=True)) | |
| symbols = Tuple(*syms) | |
| # canonicallize the relations | |
| rel_temp = {} | |
| for k,v in relations.items(): | |
| s1, s2 = k | |
| if not isinstance(s1, Str): | |
| s1 = Str(s1) | |
| if not isinstance(s2, Str): | |
| s2 = Str(s2) | |
| key = Tuple(s1, s2) | |
| # Old version used Lambda as a value. | |
| if isinstance(v, Lambda): | |
| v = (tuple(v.signature), tuple(v.expr)) | |
| else: | |
| v = (tuple(v[0]), tuple(v[1])) | |
| rel_temp[key] = v | |
| relations = Dict(rel_temp) | |
| # construct the object | |
| obj = super().__new__(cls, name, patch, symbols, relations) | |
| # Add deprecated attributes | |
| obj.transforms = _deprecated_dict( | |
| """ | |
| CoordSystem.transforms is deprecated. The CoordSystem class is now | |
| immutable. Use the 'relations' keyword argument to the | |
| CoordSystems() constructor to specify relations. | |
| """, {}) | |
| obj._names = [str(n) for n in symbols] | |
| obj.patch.coord_systems.append(obj) # deprecated | |
| obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated | |
| obj._dummy = Dummy() | |
| return obj | |
| def name(self): | |
| return self.args[0] | |
| def patch(self): | |
| return self.args[1] | |
| def manifold(self): | |
| return self.patch.manifold | |
| def symbols(self): | |
| return tuple(CoordinateSymbol(self, i, **s._assumptions.generator) | |
| for i,s in enumerate(self.args[2])) | |
| def relations(self): | |
| return self.args[3] | |
| def dim(self): | |
| return self.patch.dim | |
| ########################################################################## | |
| # Finding transformation relation | |
| ########################################################################## | |
| def transformation(self, sys): | |
| """ | |
| Return coordinate transformation function from *self* to *sys*. | |
| Parameters | |
| ========== | |
| sys : CoordSystem | |
| Returns | |
| ======= | |
| sympy.Lambda | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r, R2_p | |
| >>> R2_r.transformation(R2_p) | |
| Lambda((x, y), Matrix([ | |
| [sqrt(x**2 + y**2)], | |
| [ atan2(y, x)]])) | |
| """ | |
| signature = self.args[2] | |
| key = Tuple(self.name, sys.name) | |
| if self == sys: | |
| expr = Matrix(self.symbols) | |
| elif key in self.relations: | |
| expr = Matrix(self.relations[key][1]) | |
| elif key[::-1] in self.relations: | |
| expr = Matrix(self._inverse_transformation(sys, self)) | |
| else: | |
| expr = Matrix(self._indirect_transformation(self, sys)) | |
| return Lambda(signature, expr) | |
| def _solve_inverse(sym1, sym2, exprs, sys1_name, sys2_name): | |
| ret = solve( | |
| [t[0] - t[1] for t in zip(sym2, exprs)], | |
| list(sym1), dict=True) | |
| if len(ret) == 0: | |
| temp = "Cannot solve inverse relation from {} to {}." | |
| raise NotImplementedError(temp.format(sys1_name, sys2_name)) | |
| elif len(ret) > 1: | |
| temp = "Obtained multiple inverse relation from {} to {}." | |
| raise ValueError(temp.format(sys1_name, sys2_name)) | |
| return ret[0] | |
| def _inverse_transformation(cls, sys1, sys2): | |
| # Find the transformation relation from sys2 to sys1 | |
| forward = sys1.transform(sys2) | |
| inv_results = cls._solve_inverse(sys1.symbols, sys2.symbols, forward, | |
| sys1.name, sys2.name) | |
| signature = tuple(sys1.symbols) | |
| return [inv_results[s] for s in signature] | |
| def _indirect_transformation(cls, sys1, sys2): | |
| # Find the transformation relation between two indirectly connected | |
| # coordinate systems | |
| rel = sys1.relations | |
| path = cls._dijkstra(sys1, sys2) | |
| transforms = [] | |
| for s1, s2 in zip(path, path[1:]): | |
| if (s1, s2) in rel: | |
| transforms.append(rel[(s1, s2)]) | |
| else: | |
| sym2, inv_exprs = rel[(s2, s1)] | |
| sym1 = tuple(Dummy() for i in sym2) | |
| ret = cls._solve_inverse(sym2, sym1, inv_exprs, s2, s1) | |
| ret = tuple(ret[s] for s in sym2) | |
| transforms.append((sym1, ret)) | |
| syms = sys1.args[2] | |
| exprs = syms | |
| for newsyms, newexprs in transforms: | |
| exprs = tuple(e.subs(zip(newsyms, exprs)) for e in newexprs) | |
| return exprs | |
| def _dijkstra(sys1, sys2): | |
| # Use Dijkstra algorithm to find the shortest path between two indirectly-connected | |
| # coordinate systems | |
| # return value is the list of the names of the systems. | |
| relations = sys1.relations | |
| graph = {} | |
| for s1, s2 in relations.keys(): | |
| if s1 not in graph: | |
| graph[s1] = {s2} | |
| else: | |
| graph[s1].add(s2) | |
| if s2 not in graph: | |
| graph[s2] = {s1} | |
| else: | |
| graph[s2].add(s1) | |
| path_dict = {sys:[0, [], 0] for sys in graph} # minimum distance, path, times of visited | |
| def visit(sys): | |
| path_dict[sys][2] = 1 | |
| for newsys in graph[sys]: | |
| distance = path_dict[sys][0] + 1 | |
| if path_dict[newsys][0] >= distance or not path_dict[newsys][1]: | |
| path_dict[newsys][0] = distance | |
| path_dict[newsys][1] = list(path_dict[sys][1]) | |
| path_dict[newsys][1].append(sys) | |
| visit(sys1.name) | |
| while True: | |
| min_distance = max(path_dict.values(), key=lambda x:x[0])[0] | |
| newsys = None | |
| for sys, lst in path_dict.items(): | |
| if 0 < lst[0] <= min_distance and not lst[2]: | |
| min_distance = lst[0] | |
| newsys = sys | |
| if newsys is None: | |
| break | |
| visit(newsys) | |
| result = path_dict[sys2.name][1] | |
| result.append(sys2.name) | |
| if result == [sys2.name]: | |
| raise KeyError("Two coordinate systems are not connected.") | |
| return result | |
| def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False): | |
| sympy_deprecation_warning( | |
| """ | |
| The CoordSystem.connect_to() method is deprecated. Instead, | |
| generate a new instance of CoordSystem with the 'relations' | |
| keyword argument (CoordSystem classes are now immutable). | |
| """, | |
| deprecated_since_version="1.7", | |
| active_deprecations_target="deprecated-diffgeom-mutable", | |
| ) | |
| from_coords, to_exprs = dummyfy(from_coords, to_exprs) | |
| self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs) | |
| if inverse: | |
| to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs) | |
| if fill_in_gaps: | |
| self._fill_gaps_in_transformations() | |
| def _inv_transf(from_coords, to_exprs): | |
| # Will be removed when connect_to is removed | |
| inv_from = [i.as_dummy() for i in from_coords] | |
| inv_to = solve( | |
| [t[0] - t[1] for t in zip(inv_from, to_exprs)], | |
| list(from_coords), dict=True)[0] | |
| inv_to = [inv_to[fc] for fc in from_coords] | |
| return Matrix(inv_from), Matrix(inv_to) | |
| def _fill_gaps_in_transformations(): | |
| # Will be removed when connect_to is removed | |
| raise NotImplementedError | |
| ########################################################################## | |
| # Coordinate transformations | |
| ########################################################################## | |
| def transform(self, sys, coordinates=None): | |
| """ | |
| Return the result of coordinate transformation from *self* to *sys*. | |
| If coordinates are not given, coordinate symbols of *self* are used. | |
| Parameters | |
| ========== | |
| sys : CoordSystem | |
| coordinates : Any iterable, optional. | |
| Returns | |
| ======= | |
| sympy.ImmutableDenseMatrix containing CoordinateSymbol | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r, R2_p | |
| >>> R2_r.transform(R2_p) | |
| Matrix([ | |
| [sqrt(x**2 + y**2)], | |
| [ atan2(y, x)]]) | |
| >>> R2_r.transform(R2_p, [0, 1]) | |
| Matrix([ | |
| [ 1], | |
| [pi/2]]) | |
| """ | |
| if coordinates is None: | |
| coordinates = self.symbols | |
| if self != sys: | |
| transf = self.transformation(sys) | |
| coordinates = transf(*coordinates) | |
| else: | |
| coordinates = Matrix(coordinates) | |
| return coordinates | |
| def coord_tuple_transform_to(self, to_sys, coords): | |
| """Transform ``coords`` to coord system ``to_sys``.""" | |
| sympy_deprecation_warning( | |
| """ | |
| The CoordSystem.coord_tuple_transform_to() method is deprecated. | |
| Use the CoordSystem.transform() method instead. | |
| """, | |
| deprecated_since_version="1.7", | |
| active_deprecations_target="deprecated-diffgeom-mutable", | |
| ) | |
| coords = Matrix(coords) | |
| if self != to_sys: | |
| with ignore_warnings(SymPyDeprecationWarning): | |
| transf = self.transforms[to_sys] | |
| coords = transf[1].subs(list(zip(transf[0], coords))) | |
| return coords | |
| def jacobian(self, sys, coordinates=None): | |
| """ | |
| Return the jacobian matrix of a transformation on given coordinates. | |
| If coordinates are not given, coordinate symbols of *self* are used. | |
| Parameters | |
| ========== | |
| sys : CoordSystem | |
| coordinates : Any iterable, optional. | |
| Returns | |
| ======= | |
| sympy.ImmutableDenseMatrix | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r, R2_p | |
| >>> R2_p.jacobian(R2_r) | |
| Matrix([ | |
| [cos(theta), -rho*sin(theta)], | |
| [sin(theta), rho*cos(theta)]]) | |
| >>> R2_p.jacobian(R2_r, [1, 0]) | |
| Matrix([ | |
| [1, 0], | |
| [0, 1]]) | |
| """ | |
| result = self.transform(sys).jacobian(self.symbols) | |
| if coordinates is not None: | |
| result = result.subs(list(zip(self.symbols, coordinates))) | |
| return result | |
| jacobian_matrix = jacobian | |
| def jacobian_determinant(self, sys, coordinates=None): | |
| """ | |
| Return the jacobian determinant of a transformation on given | |
| coordinates. If coordinates are not given, coordinate symbols of *self* | |
| are used. | |
| Parameters | |
| ========== | |
| sys : CoordSystem | |
| coordinates : Any iterable, optional. | |
| Returns | |
| ======= | |
| sympy.Expr | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r, R2_p | |
| >>> R2_r.jacobian_determinant(R2_p) | |
| 1/sqrt(x**2 + y**2) | |
| >>> R2_r.jacobian_determinant(R2_p, [1, 0]) | |
| 1 | |
| """ | |
| return self.jacobian(sys, coordinates).det() | |
| ########################################################################## | |
| # Points | |
| ########################################################################## | |
| def point(self, coords): | |
| """Create a ``Point`` with coordinates given in this coord system.""" | |
| return Point(self, coords) | |
| def point_to_coords(self, point): | |
| """Calculate the coordinates of a point in this coord system.""" | |
| return point.coords(self) | |
| ########################################################################## | |
| # Base fields. | |
| ########################################################################## | |
| def base_scalar(self, coord_index): | |
| """Return ``BaseScalarField`` that takes a point and returns one of the coordinates.""" | |
| return BaseScalarField(self, coord_index) | |
| coord_function = base_scalar | |
| def base_scalars(self): | |
| """Returns a list of all coordinate functions. | |
| For more details see the ``base_scalar`` method of this class.""" | |
| return [self.base_scalar(i) for i in range(self.dim)] | |
| coord_functions = base_scalars | |
| def base_vector(self, coord_index): | |
| """Return a basis vector field. | |
| The basis vector field for this coordinate system. It is also an | |
| operator on scalar fields.""" | |
| return BaseVectorField(self, coord_index) | |
| def base_vectors(self): | |
| """Returns a list of all base vectors. | |
| For more details see the ``base_vector`` method of this class.""" | |
| return [self.base_vector(i) for i in range(self.dim)] | |
| def base_oneform(self, coord_index): | |
| """Return a basis 1-form field. | |
| The basis one-form field for this coordinate system. It is also an | |
| operator on vector fields.""" | |
| return Differential(self.coord_function(coord_index)) | |
| def base_oneforms(self): | |
| """Returns a list of all base oneforms. | |
| For more details see the ``base_oneform`` method of this class.""" | |
| return [self.base_oneform(i) for i in range(self.dim)] | |
| class CoordinateSymbol(Symbol): | |
| """A symbol which denotes an abstract value of i-th coordinate of | |
| the coordinate system with given context. | |
| Explanation | |
| =========== | |
| Each coordinates in coordinate system are represented by unique symbol, | |
| such as x, y, z in Cartesian coordinate system. | |
| You may not construct this class directly. Instead, use `symbols` method | |
| of CoordSystem. | |
| Parameters | |
| ========== | |
| coord_sys : CoordSystem | |
| index : integer | |
| Examples | |
| ======== | |
| >>> from sympy import symbols, Lambda, Matrix, sqrt, atan2, cos, sin | |
| >>> from sympy.diffgeom import Manifold, Patch, CoordSystem | |
| >>> m = Manifold('M', 2) | |
| >>> p = Patch('P', m) | |
| >>> x, y = symbols('x y', real=True) | |
| >>> r, theta = symbols('r theta', nonnegative=True) | |
| >>> relation_dict = { | |
| ... ('Car2D', 'Pol'): Lambda((x, y), Matrix([sqrt(x**2 + y**2), atan2(y, x)])), | |
| ... ('Pol', 'Car2D'): Lambda((r, theta), Matrix([r*cos(theta), r*sin(theta)])) | |
| ... } | |
| >>> Car2D = CoordSystem('Car2D', p, [x, y], relation_dict) | |
| >>> Pol = CoordSystem('Pol', p, [r, theta], relation_dict) | |
| >>> x, y = Car2D.symbols | |
| ``CoordinateSymbol`` contains its coordinate symbol and index. | |
| >>> x.name | |
| 'x' | |
| >>> x.coord_sys == Car2D | |
| True | |
| >>> x.index | |
| 0 | |
| >>> x.is_real | |
| True | |
| You can transform ``CoordinateSymbol`` into other coordinate system using | |
| ``rewrite()`` method. | |
| >>> x.rewrite(Pol) | |
| r*cos(theta) | |
| >>> sqrt(x**2 + y**2).rewrite(Pol).simplify() | |
| r | |
| """ | |
| def __new__(cls, coord_sys, index, **assumptions): | |
| name = coord_sys.args[2][index].name | |
| obj = super().__new__(cls, name, **assumptions) | |
| obj.coord_sys = coord_sys | |
| obj.index = index | |
| return obj | |
| def __getnewargs__(self): | |
| return (self.coord_sys, self.index) | |
| def _hashable_content(self): | |
| return ( | |
| self.coord_sys, self.index | |
| ) + tuple(sorted(self.assumptions0.items())) | |
| def _eval_rewrite(self, rule, args, **hints): | |
| if isinstance(rule, CoordSystem): | |
| return rule.transform(self.coord_sys)[self.index] | |
| return super()._eval_rewrite(rule, args, **hints) | |
| class Point(Basic): | |
| """Point defined in a coordinate system. | |
| Explanation | |
| =========== | |
| Mathematically, point is defined in the manifold and does not have any coordinates | |
| by itself. Coordinate system is what imbues the coordinates to the point by coordinate | |
| chart. However, due to the difficulty of realizing such logic, you must supply | |
| a coordinate system and coordinates to define a Point here. | |
| The usage of this object after its definition is independent of the | |
| coordinate system that was used in order to define it, however due to | |
| limitations in the simplification routines you can arrive at complicated | |
| expressions if you use inappropriate coordinate systems. | |
| Parameters | |
| ========== | |
| coord_sys : CoordSystem | |
| coords : list | |
| The coordinates of the point. | |
| Examples | |
| ======== | |
| >>> from sympy import pi | |
| >>> from sympy.diffgeom import Point | |
| >>> from sympy.diffgeom.rn import R2, R2_r, R2_p | |
| >>> rho, theta = R2_p.symbols | |
| >>> p = Point(R2_p, [rho, 3*pi/4]) | |
| >>> p.manifold == R2 | |
| True | |
| >>> p.coords() | |
| Matrix([ | |
| [ rho], | |
| [3*pi/4]]) | |
| >>> p.coords(R2_r) | |
| Matrix([ | |
| [-sqrt(2)*rho/2], | |
| [ sqrt(2)*rho/2]]) | |
| """ | |
| def __new__(cls, coord_sys, coords, **kwargs): | |
| coords = Matrix(coords) | |
| obj = super().__new__(cls, coord_sys, coords) | |
| obj._coord_sys = coord_sys | |
| obj._coords = coords | |
| return obj | |
| def patch(self): | |
| return self._coord_sys.patch | |
| def manifold(self): | |
| return self._coord_sys.manifold | |
| def dim(self): | |
| return self.manifold.dim | |
| def coords(self, sys=None): | |
| """ | |
| Coordinates of the point in given coordinate system. If coordinate system | |
| is not passed, it returns the coordinates in the coordinate system in which | |
| the poin was defined. | |
| """ | |
| if sys is None: | |
| return self._coords | |
| else: | |
| return self._coord_sys.transform(sys, self._coords) | |
| def free_symbols(self): | |
| return self._coords.free_symbols | |
| class BaseScalarField(Expr): | |
| """Base scalar field over a manifold for a given coordinate system. | |
| Explanation | |
| =========== | |
| A scalar field takes a point as an argument and returns a scalar. | |
| A base scalar field of a coordinate system takes a point and returns one of | |
| the coordinates of that point in the coordinate system in question. | |
| To define a scalar field you need to choose the coordinate system and the | |
| index of the coordinate. | |
| The use of the scalar field after its definition is independent of the | |
| coordinate system in which it was defined, however due to limitations in | |
| the simplification routines you may arrive at more complicated | |
| expression if you use unappropriate coordinate systems. | |
| You can build complicated scalar fields by just building up SymPy | |
| expressions containing ``BaseScalarField`` instances. | |
| Parameters | |
| ========== | |
| coord_sys : CoordSystem | |
| index : integer | |
| Examples | |
| ======== | |
| >>> from sympy import Function, pi | |
| >>> from sympy.diffgeom import BaseScalarField | |
| >>> from sympy.diffgeom.rn import R2_r, R2_p | |
| >>> rho, _ = R2_p.symbols | |
| >>> point = R2_p.point([rho, 0]) | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> ftheta = BaseScalarField(R2_r, 1) | |
| >>> fx(point) | |
| rho | |
| >>> fy(point) | |
| 0 | |
| >>> (fx**2+fy**2).rcall(point) | |
| rho**2 | |
| >>> g = Function('g') | |
| >>> fg = g(ftheta-pi) | |
| >>> fg.rcall(point) | |
| g(-pi) | |
| """ | |
| is_commutative = True | |
| def __new__(cls, coord_sys, index, **kwargs): | |
| index = _sympify(index) | |
| obj = super().__new__(cls, coord_sys, index) | |
| obj._coord_sys = coord_sys | |
| obj._index = index | |
| return obj | |
| def coord_sys(self): | |
| return self.args[0] | |
| def index(self): | |
| return self.args[1] | |
| def patch(self): | |
| return self.coord_sys.patch | |
| def manifold(self): | |
| return self.coord_sys.manifold | |
| def dim(self): | |
| return self.manifold.dim | |
| def __call__(self, *args): | |
| """Evaluating the field at a point or doing nothing. | |
| If the argument is a ``Point`` instance, the field is evaluated at that | |
| point. The field is returned itself if the argument is any other | |
| object. It is so in order to have working recursive calling mechanics | |
| for all fields (check the ``__call__`` method of ``Expr``). | |
| """ | |
| point = args[0] | |
| if len(args) != 1 or not isinstance(point, Point): | |
| return self | |
| coords = point.coords(self._coord_sys) | |
| # XXX Calling doit is necessary with all the Subs expressions | |
| # XXX Calling simplify is necessary with all the trig expressions | |
| return simplify(coords[self._index]).doit() | |
| # XXX Workaround for limitations on the content of args | |
| free_symbols: set[Any] = set() | |
| class BaseVectorField(Expr): | |
| r"""Base vector field over a manifold for a given coordinate system. | |
| Explanation | |
| =========== | |
| A vector field is an operator taking a scalar field and returning a | |
| directional derivative (which is also a scalar field). | |
| A base vector field is the same type of operator, however the derivation is | |
| specifically done with respect to a chosen coordinate. | |
| To define a base vector field you need to choose the coordinate system and | |
| the index of the coordinate. | |
| The use of the vector field after its definition is independent of the | |
| coordinate system in which it was defined, however due to limitations in the | |
| simplification routines you may arrive at more complicated expression if you | |
| use unappropriate coordinate systems. | |
| Parameters | |
| ========== | |
| coord_sys : CoordSystem | |
| index : integer | |
| Examples | |
| ======== | |
| >>> from sympy import Function | |
| >>> from sympy.diffgeom.rn import R2_p, R2_r | |
| >>> from sympy.diffgeom import BaseVectorField | |
| >>> from sympy import pprint | |
| >>> x, y = R2_r.symbols | |
| >>> rho, theta = R2_p.symbols | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> point_p = R2_p.point([rho, theta]) | |
| >>> point_r = R2_r.point([x, y]) | |
| >>> g = Function('g') | |
| >>> s_field = g(fx, fy) | |
| >>> v = BaseVectorField(R2_r, 1) | |
| >>> pprint(v(s_field)) | |
| / d \| | |
| |---(g(x, xi))|| | |
| \dxi /|xi=y | |
| >>> pprint(v(s_field).rcall(point_r).doit()) | |
| d | |
| --(g(x, y)) | |
| dy | |
| >>> pprint(v(s_field).rcall(point_p)) | |
| / d \| | |
| |---(g(rho*cos(theta), xi))|| | |
| \dxi /|xi=rho*sin(theta) | |
| """ | |
| is_commutative = False | |
| def __new__(cls, coord_sys, index, **kwargs): | |
| index = _sympify(index) | |
| obj = super().__new__(cls, coord_sys, index) | |
| obj._coord_sys = coord_sys | |
| obj._index = index | |
| return obj | |
| def coord_sys(self): | |
| return self.args[0] | |
| def index(self): | |
| return self.args[1] | |
| def patch(self): | |
| return self.coord_sys.patch | |
| def manifold(self): | |
| return self.coord_sys.manifold | |
| def dim(self): | |
| return self.manifold.dim | |
| def __call__(self, scalar_field): | |
| """Apply on a scalar field. | |
| The action of a vector field on a scalar field is a directional | |
| differentiation. | |
| If the argument is not a scalar field an error is raised. | |
| """ | |
| if covariant_order(scalar_field) or contravariant_order(scalar_field): | |
| raise ValueError('Only scalar fields can be supplied as arguments to vector fields.') | |
| if scalar_field is None: | |
| return self | |
| base_scalars = list(scalar_field.atoms(BaseScalarField)) | |
| # First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r) | |
| d_var = self._coord_sys._dummy | |
| # TODO: you need a real dummy function for the next line | |
| d_funcs = [Function('_#_%s' % i)(d_var) for i, | |
| b in enumerate(base_scalars)] | |
| d_result = scalar_field.subs(list(zip(base_scalars, d_funcs))) | |
| d_result = d_result.diff(d_var) | |
| # Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y)) | |
| coords = self._coord_sys.symbols | |
| d_funcs_deriv = [f.diff(d_var) for f in d_funcs] | |
| d_funcs_deriv_sub = [] | |
| for b in base_scalars: | |
| jac = self._coord_sys.jacobian(b._coord_sys, coords) | |
| d_funcs_deriv_sub.append(jac[b._index, self._index]) | |
| d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub))) | |
| # Remove the dummies | |
| result = d_result.subs(list(zip(d_funcs, base_scalars))) | |
| result = result.subs(list(zip(coords, self._coord_sys.coord_functions()))) | |
| return result.doit() | |
| def _find_coords(expr): | |
| # Finds CoordinateSystems existing in expr | |
| fields = expr.atoms(BaseScalarField, BaseVectorField) | |
| result = set() | |
| for f in fields: | |
| result.add(f._coord_sys) | |
| return result | |
| class Commutator(Expr): | |
| r"""Commutator of two vector fields. | |
| Explanation | |
| =========== | |
| The commutator of two vector fields `v_1` and `v_2` is defined as the | |
| vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal | |
| to `v_1(v_2(f)) - v_2(v_1(f))`. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_p, R2_r | |
| >>> from sympy.diffgeom import Commutator | |
| >>> from sympy import simplify | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> e_x, e_y = R2_r.base_vectors() | |
| >>> e_r = R2_p.base_vector(0) | |
| >>> c_xy = Commutator(e_x, e_y) | |
| >>> c_xr = Commutator(e_x, e_r) | |
| >>> c_xy | |
| 0 | |
| Unfortunately, the current code is not able to compute everything: | |
| >>> c_xr | |
| Commutator(e_x, e_rho) | |
| >>> simplify(c_xr(fy**2)) | |
| -2*cos(theta)*y**2/(x**2 + y**2) | |
| """ | |
| def __new__(cls, v1, v2): | |
| if (covariant_order(v1) or contravariant_order(v1) != 1 | |
| or covariant_order(v2) or contravariant_order(v2) != 1): | |
| raise ValueError( | |
| 'Only commutators of vector fields are supported.') | |
| if v1 == v2: | |
| return S.Zero | |
| coord_sys = set().union(*[_find_coords(v) for v in (v1, v2)]) | |
| if len(coord_sys) == 1: | |
| # Only one coordinate systems is used, hence it is easy enough to | |
| # actually evaluate the commutator. | |
| if all(isinstance(v, BaseVectorField) for v in (v1, v2)): | |
| return S.Zero | |
| bases_1, bases_2 = [list(v.atoms(BaseVectorField)) | |
| for v in (v1, v2)] | |
| coeffs_1 = [v1.expand().coeff(b) for b in bases_1] | |
| coeffs_2 = [v2.expand().coeff(b) for b in bases_2] | |
| res = 0 | |
| for c1, b1 in zip(coeffs_1, bases_1): | |
| for c2, b2 in zip(coeffs_2, bases_2): | |
| res += c1*b1(c2)*b2 - c2*b2(c1)*b1 | |
| return res | |
| else: | |
| obj = super().__new__(cls, v1, v2) | |
| obj._v1 = v1 # deprecated assignment | |
| obj._v2 = v2 # deprecated assignment | |
| return obj | |
| def v1(self): | |
| return self.args[0] | |
| def v2(self): | |
| return self.args[1] | |
| def __call__(self, scalar_field): | |
| """Apply on a scalar field. | |
| If the argument is not a scalar field an error is raised. | |
| """ | |
| return self.v1(self.v2(scalar_field)) - self.v2(self.v1(scalar_field)) | |
| class Differential(Expr): | |
| r"""Return the differential (exterior derivative) of a form field. | |
| Explanation | |
| =========== | |
| The differential of a form (i.e. the exterior derivative) has a complicated | |
| definition in the general case. | |
| The differential `df` of the 0-form `f` is defined for any vector field `v` | |
| as `df(v) = v(f)`. | |
| Examples | |
| ======== | |
| >>> from sympy import Function | |
| >>> from sympy.diffgeom.rn import R2_r | |
| >>> from sympy.diffgeom import Differential | |
| >>> from sympy import pprint | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> e_x, e_y = R2_r.base_vectors() | |
| >>> g = Function('g') | |
| >>> s_field = g(fx, fy) | |
| >>> dg = Differential(s_field) | |
| >>> dg | |
| d(g(x, y)) | |
| >>> pprint(dg(e_x)) | |
| / d \| | |
| |---(g(xi, y))|| | |
| \dxi /|xi=x | |
| >>> pprint(dg(e_y)) | |
| / d \| | |
| |---(g(x, xi))|| | |
| \dxi /|xi=y | |
| Applying the exterior derivative operator twice always results in: | |
| >>> Differential(dg) | |
| 0 | |
| """ | |
| is_commutative = False | |
| def __new__(cls, form_field): | |
| if contravariant_order(form_field): | |
| raise ValueError( | |
| 'A vector field was supplied as an argument to Differential.') | |
| if isinstance(form_field, Differential): | |
| return S.Zero | |
| else: | |
| obj = super().__new__(cls, form_field) | |
| obj._form_field = form_field # deprecated assignment | |
| return obj | |
| def form_field(self): | |
| return self.args[0] | |
| def __call__(self, *vector_fields): | |
| """Apply on a list of vector_fields. | |
| Explanation | |
| =========== | |
| If the number of vector fields supplied is not equal to 1 + the order of | |
| the form field inside the differential the result is undefined. | |
| For 1-forms (i.e. differentials of scalar fields) the evaluation is | |
| done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector | |
| field, the differential is returned unchanged. This is done in order to | |
| permit partial contractions for higher forms. | |
| In the general case the evaluation is done by applying the form field | |
| inside the differential on a list with one less elements than the number | |
| of elements in the original list. Lowering the number of vector fields | |
| is achieved through replacing each pair of fields by their | |
| commutator. | |
| If the arguments are not vectors or ``None``s an error is raised. | |
| """ | |
| if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None | |
| for a in vector_fields): | |
| raise ValueError('The arguments supplied to Differential should be vector fields or Nones.') | |
| k = len(vector_fields) | |
| if k == 1: | |
| if vector_fields[0]: | |
| return vector_fields[0].rcall(self._form_field) | |
| return self | |
| else: | |
| # For higher form it is more complicated: | |
| # Invariant formula: | |
| # https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula | |
| # df(v1, ... vn) = +/- vi(f(v1..no i..vn)) | |
| # +/- f([vi,vj],v1..no i, no j..vn) | |
| f = self._form_field | |
| v = vector_fields | |
| ret = 0 | |
| for i in range(k): | |
| t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:])) | |
| ret += (-1)**i*t | |
| for j in range(i + 1, k): | |
| c = Commutator(v[i], v[j]) | |
| if c: # TODO this is ugly - the Commutator can be Zero and | |
| # this causes the next line to fail | |
| t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:]) | |
| ret += (-1)**(i + j)*t | |
| return ret | |
| class TensorProduct(Expr): | |
| """Tensor product of forms. | |
| Explanation | |
| =========== | |
| The tensor product permits the creation of multilinear functionals (i.e. | |
| higher order tensors) out of lower order fields (e.g. 1-forms and vector | |
| fields). However, the higher tensors thus created lack the interesting | |
| features provided by the other type of product, the wedge product, namely | |
| they are not antisymmetric and hence are not form fields. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r | |
| >>> from sympy.diffgeom import TensorProduct | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> e_x, e_y = R2_r.base_vectors() | |
| >>> dx, dy = R2_r.base_oneforms() | |
| >>> TensorProduct(dx, dy)(e_x, e_y) | |
| 1 | |
| >>> TensorProduct(dx, dy)(e_y, e_x) | |
| 0 | |
| >>> TensorProduct(dx, fx*dy)(fx*e_x, e_y) | |
| x**2 | |
| >>> TensorProduct(e_x, e_y)(fx**2, fy**2) | |
| 4*x*y | |
| >>> TensorProduct(e_y, dx)(fy) | |
| dx | |
| You can nest tensor products. | |
| >>> tp1 = TensorProduct(dx, dy) | |
| >>> TensorProduct(tp1, dx)(e_x, e_y, e_x) | |
| 1 | |
| You can make partial contraction for instance when 'raising an index'. | |
| Putting ``None`` in the second argument of ``rcall`` means that the | |
| respective position in the tensor product is left as it is. | |
| >>> TP = TensorProduct | |
| >>> metric = TP(dx, dx) + 3*TP(dy, dy) | |
| >>> metric.rcall(e_y, None) | |
| 3*dy | |
| Or automatically pad the args with ``None`` without specifying them. | |
| >>> metric.rcall(e_y) | |
| 3*dy | |
| """ | |
| def __new__(cls, *args): | |
| scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0]) | |
| multifields = [m for m in args if covariant_order(m) + contravariant_order(m)] | |
| if multifields: | |
| if len(multifields) == 1: | |
| return scalar*multifields[0] | |
| return scalar*super().__new__(cls, *multifields) | |
| else: | |
| return scalar | |
| def __call__(self, *fields): | |
| """Apply on a list of fields. | |
| If the number of input fields supplied is not equal to the order of | |
| the tensor product field, the list of arguments is padded with ``None``'s. | |
| The list of arguments is divided in sublists depending on the order of | |
| the forms inside the tensor product. The sublists are provided as | |
| arguments to these forms and the resulting expressions are given to the | |
| constructor of ``TensorProduct``. | |
| """ | |
| tot_order = covariant_order(self) + contravariant_order(self) | |
| tot_args = len(fields) | |
| if tot_args != tot_order: | |
| fields = list(fields) + [None]*(tot_order - tot_args) | |
| orders = [covariant_order(f) + contravariant_order(f) for f in self._args] | |
| indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)] | |
| fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])] | |
| multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)] | |
| return TensorProduct(*multipliers) | |
| class WedgeProduct(TensorProduct): | |
| """Wedge product of forms. | |
| Explanation | |
| =========== | |
| In the context of integration only completely antisymmetric forms make | |
| sense. The wedge product permits the creation of such forms. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r | |
| >>> from sympy.diffgeom import WedgeProduct | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> e_x, e_y = R2_r.base_vectors() | |
| >>> dx, dy = R2_r.base_oneforms() | |
| >>> WedgeProduct(dx, dy)(e_x, e_y) | |
| 1 | |
| >>> WedgeProduct(dx, dy)(e_y, e_x) | |
| -1 | |
| >>> WedgeProduct(dx, fx*dy)(fx*e_x, e_y) | |
| x**2 | |
| >>> WedgeProduct(e_x, e_y)(fy, None) | |
| -e_x | |
| You can nest wedge products. | |
| >>> wp1 = WedgeProduct(dx, dy) | |
| >>> WedgeProduct(wp1, dx)(e_x, e_y, e_x) | |
| 0 | |
| """ | |
| # TODO the calculation of signatures is slow | |
| # TODO you do not need all these permutations (neither the prefactor) | |
| def __call__(self, *fields): | |
| """Apply on a list of vector_fields. | |
| The expression is rewritten internally in terms of tensor products and evaluated.""" | |
| orders = (covariant_order(e) + contravariant_order(e) for e in self.args) | |
| mul = 1/Mul(*(factorial(o) for o in orders)) | |
| perms = permutations(fields) | |
| perms_par = (Permutation( | |
| p).signature() for p in permutations(range(len(fields)))) | |
| tensor_prod = TensorProduct(*self.args) | |
| return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)]) | |
| class LieDerivative(Expr): | |
| """Lie derivative with respect to a vector field. | |
| Explanation | |
| =========== | |
| The transport operator that defines the Lie derivative is the pushforward of | |
| the field to be derived along the integral curve of the field with respect | |
| to which one derives. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r, R2_p | |
| >>> from sympy.diffgeom import (LieDerivative, TensorProduct) | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> e_x, e_y = R2_r.base_vectors() | |
| >>> e_rho, e_theta = R2_p.base_vectors() | |
| >>> dx, dy = R2_r.base_oneforms() | |
| >>> LieDerivative(e_x, fy) | |
| 0 | |
| >>> LieDerivative(e_x, fx) | |
| 1 | |
| >>> LieDerivative(e_x, e_x) | |
| 0 | |
| The Lie derivative of a tensor field by another tensor field is equal to | |
| their commutator: | |
| >>> LieDerivative(e_x, e_rho) | |
| Commutator(e_x, e_rho) | |
| >>> LieDerivative(e_x + e_y, fx) | |
| 1 | |
| >>> tp = TensorProduct(dx, dy) | |
| >>> LieDerivative(e_x, tp) | |
| LieDerivative(e_x, TensorProduct(dx, dy)) | |
| >>> LieDerivative(e_x, tp) | |
| LieDerivative(e_x, TensorProduct(dx, dy)) | |
| """ | |
| def __new__(cls, v_field, expr): | |
| expr_form_ord = covariant_order(expr) | |
| if contravariant_order(v_field) != 1 or covariant_order(v_field): | |
| raise ValueError('Lie derivatives are defined only with respect to' | |
| ' vector fields. The supplied argument was not a ' | |
| 'vector field.') | |
| if expr_form_ord > 0: | |
| obj = super().__new__(cls, v_field, expr) | |
| # deprecated assignments | |
| obj._v_field = v_field | |
| obj._expr = expr | |
| return obj | |
| if expr.atoms(BaseVectorField): | |
| return Commutator(v_field, expr) | |
| else: | |
| return v_field.rcall(expr) | |
| def v_field(self): | |
| return self.args[0] | |
| def expr(self): | |
| return self.args[1] | |
| def __call__(self, *args): | |
| v = self.v_field | |
| expr = self.expr | |
| lead_term = v(expr(*args)) | |
| rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:]) | |
| for i in range(len(args))]) | |
| return lead_term - rest | |
| class BaseCovarDerivativeOp(Expr): | |
| """Covariant derivative operator with respect to a base vector. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r | |
| >>> from sympy.diffgeom import BaseCovarDerivativeOp | |
| >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct | |
| >>> TP = TensorProduct | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> e_x, e_y = R2_r.base_vectors() | |
| >>> dx, dy = R2_r.base_oneforms() | |
| >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy)) | |
| >>> ch | |
| [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] | |
| >>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch) | |
| >>> cvd(fx) | |
| 1 | |
| >>> cvd(fx*e_x) | |
| e_x | |
| """ | |
| def __new__(cls, coord_sys, index, christoffel): | |
| index = _sympify(index) | |
| christoffel = ImmutableDenseNDimArray(christoffel) | |
| obj = super().__new__(cls, coord_sys, index, christoffel) | |
| # deprecated assignments | |
| obj._coord_sys = coord_sys | |
| obj._index = index | |
| obj._christoffel = christoffel | |
| return obj | |
| def coord_sys(self): | |
| return self.args[0] | |
| def index(self): | |
| return self.args[1] | |
| def christoffel(self): | |
| return self.args[2] | |
| def __call__(self, field): | |
| """Apply on a scalar field. | |
| The action of a vector field on a scalar field is a directional | |
| differentiation. | |
| If the argument is not a scalar field the behaviour is undefined. | |
| """ | |
| if covariant_order(field) != 0: | |
| raise NotImplementedError() | |
| field = vectors_in_basis(field, self._coord_sys) | |
| wrt_vector = self._coord_sys.base_vector(self._index) | |
| wrt_scalar = self._coord_sys.coord_function(self._index) | |
| vectors = list(field.atoms(BaseVectorField)) | |
| # First step: replace all vectors with something susceptible to | |
| # derivation and do the derivation | |
| # TODO: you need a real dummy function for the next line | |
| d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i, | |
| b in enumerate(vectors)] | |
| d_result = field.subs(list(zip(vectors, d_funcs))) | |
| d_result = wrt_vector(d_result) | |
| # Second step: backsubstitute the vectors in | |
| d_result = d_result.subs(list(zip(d_funcs, vectors))) | |
| # Third step: evaluate the derivatives of the vectors | |
| derivs = [] | |
| for v in vectors: | |
| d = Add(*[(self._christoffel[k, wrt_vector._index, v._index] | |
| *v._coord_sys.base_vector(k)) | |
| for k in range(v._coord_sys.dim)]) | |
| derivs.append(d) | |
| to_subs = [wrt_vector(d) for d in d_funcs] | |
| # XXX: This substitution can fail when there are Dummy symbols and the | |
| # cache is disabled: https://github.com/sympy/sympy/issues/17794 | |
| result = d_result.subs(list(zip(to_subs, derivs))) | |
| # Remove the dummies | |
| result = result.subs(list(zip(d_funcs, vectors))) | |
| return result.doit() | |
| class CovarDerivativeOp(Expr): | |
| """Covariant derivative operator. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2_r | |
| >>> from sympy.diffgeom import CovarDerivativeOp | |
| >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct | |
| >>> TP = TensorProduct | |
| >>> fx, fy = R2_r.base_scalars() | |
| >>> e_x, e_y = R2_r.base_vectors() | |
| >>> dx, dy = R2_r.base_oneforms() | |
| >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy)) | |
| >>> ch | |
| [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] | |
| >>> cvd = CovarDerivativeOp(fx*e_x, ch) | |
| >>> cvd(fx) | |
| x | |
| >>> cvd(fx*e_x) | |
| x*e_x | |
| """ | |
| def __new__(cls, wrt, christoffel): | |
| if len({v._coord_sys for v in wrt.atoms(BaseVectorField)}) > 1: | |
| raise NotImplementedError() | |
| if contravariant_order(wrt) != 1 or covariant_order(wrt): | |
| raise ValueError('Covariant derivatives are defined only with ' | |
| 'respect to vector fields. The supplied argument ' | |
| 'was not a vector field.') | |
| christoffel = ImmutableDenseNDimArray(christoffel) | |
| obj = super().__new__(cls, wrt, christoffel) | |
| # deprecated assignments | |
| obj._wrt = wrt | |
| obj._christoffel = christoffel | |
| return obj | |
| def wrt(self): | |
| return self.args[0] | |
| def christoffel(self): | |
| return self.args[1] | |
| def __call__(self, field): | |
| vectors = list(self._wrt.atoms(BaseVectorField)) | |
| base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel) | |
| for v in vectors] | |
| return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field) | |
| ############################################################################### | |
| # Integral curves on vector fields | |
| ############################################################################### | |
| def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False): | |
| r"""Return the series expansion for an integral curve of the field. | |
| Explanation | |
| =========== | |
| Integral curve is a function `\gamma` taking a parameter in `R` to a point | |
| in the manifold. It verifies the equation: | |
| `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)` | |
| where the given ``vector_field`` is denoted as `V`. This holds for any | |
| value `t` for the parameter and any scalar field `f`. | |
| This equation can also be decomposed of a basis of coordinate functions | |
| `V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i` | |
| This function returns a series expansion of `\gamma(t)` in terms of the | |
| coordinate system ``coord_sys``. The equations and expansions are necessarily | |
| done in coordinate-system-dependent way as there is no other way to | |
| represent movement between points on the manifold (i.e. there is no such | |
| thing as a difference of points for a general manifold). | |
| Parameters | |
| ========== | |
| vector_field | |
| the vector field for which an integral curve will be given | |
| param | |
| the argument of the function `\gamma` from R to the curve | |
| start_point | |
| the point which corresponds to `\gamma(0)` | |
| n | |
| the order to which to expand | |
| coord_sys | |
| the coordinate system in which to expand | |
| coeffs (default False) - if True return a list of elements of the expansion | |
| Examples | |
| ======== | |
| Use the predefined R2 manifold: | |
| >>> from sympy.abc import t, x, y | |
| >>> from sympy.diffgeom.rn import R2_p, R2_r | |
| >>> from sympy.diffgeom import intcurve_series | |
| Specify a starting point and a vector field: | |
| >>> start_point = R2_r.point([x, y]) | |
| >>> vector_field = R2_r.e_x | |
| Calculate the series: | |
| >>> intcurve_series(vector_field, t, start_point, n=3) | |
| Matrix([ | |
| [t + x], | |
| [ y]]) | |
| Or get the elements of the expansion in a list: | |
| >>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True) | |
| >>> series[0] | |
| Matrix([ | |
| [x], | |
| [y]]) | |
| >>> series[1] | |
| Matrix([ | |
| [t], | |
| [0]]) | |
| >>> series[2] | |
| Matrix([ | |
| [0], | |
| [0]]) | |
| The series in the polar coordinate system: | |
| >>> series = intcurve_series(vector_field, t, start_point, | |
| ... n=3, coord_sys=R2_p, coeffs=True) | |
| >>> series[0] | |
| Matrix([ | |
| [sqrt(x**2 + y**2)], | |
| [ atan2(y, x)]]) | |
| >>> series[1] | |
| Matrix([ | |
| [t*x/sqrt(x**2 + y**2)], | |
| [ -t*y/(x**2 + y**2)]]) | |
| >>> series[2] | |
| Matrix([ | |
| [t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2], | |
| [ t**2*x*y/(x**2 + y**2)**2]]) | |
| See Also | |
| ======== | |
| intcurve_diffequ | |
| """ | |
| if contravariant_order(vector_field) != 1 or covariant_order(vector_field): | |
| raise ValueError('The supplied field was not a vector field.') | |
| def iter_vfield(scalar_field, i): | |
| """Return ``vector_field`` called `i` times on ``scalar_field``.""" | |
| return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field) | |
| def taylor_terms_per_coord(coord_function): | |
| """Return the series for one of the coordinates.""" | |
| return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i) | |
| for i in range(n)] | |
| coord_sys = coord_sys if coord_sys else start_point._coord_sys | |
| coord_functions = coord_sys.coord_functions() | |
| taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions] | |
| if coeffs: | |
| return [Matrix(t) for t in zip(*taylor_terms)] | |
| else: | |
| return Matrix([sum(c) for c in taylor_terms]) | |
| def intcurve_diffequ(vector_field, param, start_point, coord_sys=None): | |
| r"""Return the differential equation for an integral curve of the field. | |
| Explanation | |
| =========== | |
| Integral curve is a function `\gamma` taking a parameter in `R` to a point | |
| in the manifold. It verifies the equation: | |
| `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)` | |
| where the given ``vector_field`` is denoted as `V`. This holds for any | |
| value `t` for the parameter and any scalar field `f`. | |
| This function returns the differential equation of `\gamma(t)` in terms of the | |
| coordinate system ``coord_sys``. The equations and expansions are necessarily | |
| done in coordinate-system-dependent way as there is no other way to | |
| represent movement between points on the manifold (i.e. there is no such | |
| thing as a difference of points for a general manifold). | |
| Parameters | |
| ========== | |
| vector_field | |
| the vector field for which an integral curve will be given | |
| param | |
| the argument of the function `\gamma` from R to the curve | |
| start_point | |
| the point which corresponds to `\gamma(0)` | |
| coord_sys | |
| the coordinate system in which to give the equations | |
| Returns | |
| ======= | |
| a tuple of (equations, initial conditions) | |
| Examples | |
| ======== | |
| Use the predefined R2 manifold: | |
| >>> from sympy.abc import t | |
| >>> from sympy.diffgeom.rn import R2, R2_p, R2_r | |
| >>> from sympy.diffgeom import intcurve_diffequ | |
| Specify a starting point and a vector field: | |
| >>> start_point = R2_r.point([0, 1]) | |
| >>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y | |
| Get the equation: | |
| >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point) | |
| >>> equations | |
| [f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)] | |
| >>> init_cond | |
| [f_0(0), f_1(0) - 1] | |
| The series in the polar coordinate system: | |
| >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) | |
| >>> equations | |
| [Derivative(f_0(t), t), Derivative(f_1(t), t) - 1] | |
| >>> init_cond | |
| [f_0(0) - 1, f_1(0) - pi/2] | |
| See Also | |
| ======== | |
| intcurve_series | |
| """ | |
| if contravariant_order(vector_field) != 1 or covariant_order(vector_field): | |
| raise ValueError('The supplied field was not a vector field.') | |
| coord_sys = coord_sys if coord_sys else start_point._coord_sys | |
| gammas = [Function('f_%d' % i)(param) for i in range( | |
| start_point._coord_sys.dim)] | |
| arbitrary_p = Point(coord_sys, gammas) | |
| coord_functions = coord_sys.coord_functions() | |
| equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p)) | |
| for cf in coord_functions] | |
| init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point)) | |
| for cf in coord_functions] | |
| return equations, init_cond | |
| ############################################################################### | |
| # Helpers | |
| ############################################################################### | |
| def dummyfy(args, exprs): | |
| # TODO Is this a good idea? | |
| d_args = Matrix([s.as_dummy() for s in args]) | |
| reps = dict(zip(args, d_args)) | |
| d_exprs = Matrix([_sympify(expr).subs(reps) for expr in exprs]) | |
| return d_args, d_exprs | |
| ############################################################################### | |
| # Helpers | |
| ############################################################################### | |
| def contravariant_order(expr, _strict=False): | |
| """Return the contravariant order of an expression. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom import contravariant_order | |
| >>> from sympy.diffgeom.rn import R2 | |
| >>> from sympy.abc import a | |
| >>> contravariant_order(a) | |
| 0 | |
| >>> contravariant_order(a*R2.x + 2) | |
| 0 | |
| >>> contravariant_order(a*R2.x*R2.e_y + R2.e_x) | |
| 1 | |
| """ | |
| # TODO move some of this to class methods. | |
| # TODO rewrite using the .as_blah_blah methods | |
| if isinstance(expr, Add): | |
| orders = [contravariant_order(e) for e in expr.args] | |
| if len(set(orders)) != 1: | |
| raise ValueError('Misformed expression containing contravariant fields of varying order.') | |
| return orders[0] | |
| elif isinstance(expr, Mul): | |
| orders = [contravariant_order(e) for e in expr.args] | |
| not_zero = [o for o in orders if o != 0] | |
| if len(not_zero) > 1: | |
| raise ValueError('Misformed expression containing multiplication between vectors.') | |
| return 0 if not not_zero else not_zero[0] | |
| elif isinstance(expr, Pow): | |
| if covariant_order(expr.base) or covariant_order(expr.exp): | |
| raise ValueError( | |
| 'Misformed expression containing a power of a vector.') | |
| return 0 | |
| elif isinstance(expr, BaseVectorField): | |
| return 1 | |
| elif isinstance(expr, TensorProduct): | |
| return sum(contravariant_order(a) for a in expr.args) | |
| elif not _strict or expr.atoms(BaseScalarField): | |
| return 0 | |
| else: # If it does not contain anything related to the diffgeom module and it is _strict | |
| return -1 | |
| def covariant_order(expr, _strict=False): | |
| """Return the covariant order of an expression. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom import covariant_order | |
| >>> from sympy.diffgeom.rn import R2 | |
| >>> from sympy.abc import a | |
| >>> covariant_order(a) | |
| 0 | |
| >>> covariant_order(a*R2.x + 2) | |
| 0 | |
| >>> covariant_order(a*R2.x*R2.dy + R2.dx) | |
| 1 | |
| """ | |
| # TODO move some of this to class methods. | |
| # TODO rewrite using the .as_blah_blah methods | |
| if isinstance(expr, Add): | |
| orders = [covariant_order(e) for e in expr.args] | |
| if len(set(orders)) != 1: | |
| raise ValueError('Misformed expression containing form fields of varying order.') | |
| return orders[0] | |
| elif isinstance(expr, Mul): | |
| orders = [covariant_order(e) for e in expr.args] | |
| not_zero = [o for o in orders if o != 0] | |
| if len(not_zero) > 1: | |
| raise ValueError('Misformed expression containing multiplication between forms.') | |
| return 0 if not not_zero else not_zero[0] | |
| elif isinstance(expr, Pow): | |
| if covariant_order(expr.base) or covariant_order(expr.exp): | |
| raise ValueError( | |
| 'Misformed expression containing a power of a form.') | |
| return 0 | |
| elif isinstance(expr, Differential): | |
| return covariant_order(*expr.args) + 1 | |
| elif isinstance(expr, TensorProduct): | |
| return sum(covariant_order(a) for a in expr.args) | |
| elif not _strict or expr.atoms(BaseScalarField): | |
| return 0 | |
| else: # If it does not contain anything related to the diffgeom module and it is _strict | |
| return -1 | |
| ############################################################################### | |
| # Coordinate transformation functions | |
| ############################################################################### | |
| def vectors_in_basis(expr, to_sys): | |
| """Transform all base vectors in base vectors of a specified coord basis. | |
| While the new base vectors are in the new coordinate system basis, any | |
| coefficients are kept in the old system. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom import vectors_in_basis | |
| >>> from sympy.diffgeom.rn import R2_r, R2_p | |
| >>> vectors_in_basis(R2_r.e_x, R2_p) | |
| -y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2) | |
| >>> vectors_in_basis(R2_p.e_r, R2_r) | |
| sin(theta)*e_y + cos(theta)*e_x | |
| """ | |
| vectors = list(expr.atoms(BaseVectorField)) | |
| new_vectors = [] | |
| for v in vectors: | |
| cs = v._coord_sys | |
| jac = cs.jacobian(to_sys, cs.coord_functions()) | |
| new = (jac.T*Matrix(to_sys.base_vectors()))[v._index] | |
| new_vectors.append(new) | |
| return expr.subs(list(zip(vectors, new_vectors))) | |
| ############################################################################### | |
| # Coordinate-dependent functions | |
| ############################################################################### | |
| def twoform_to_matrix(expr): | |
| """Return the matrix representing the twoform. | |
| For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`, | |
| where `e_i` is the i-th base vector field for the coordinate system in | |
| which the expression of `w` is given. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2 | |
| >>> from sympy.diffgeom import twoform_to_matrix, TensorProduct | |
| >>> TP = TensorProduct | |
| >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| Matrix([ | |
| [1, 0], | |
| [0, 1]]) | |
| >>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| Matrix([ | |
| [x, 0], | |
| [0, 1]]) | |
| >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2) | |
| Matrix([ | |
| [ 1, 0], | |
| [-1/2, 1]]) | |
| """ | |
| if covariant_order(expr) != 2 or contravariant_order(expr): | |
| raise ValueError('The input expression is not a two-form.') | |
| coord_sys = _find_coords(expr) | |
| if len(coord_sys) != 1: | |
| raise ValueError('The input expression concerns more than one ' | |
| 'coordinate systems, hence there is no unambiguous ' | |
| 'way to choose a coordinate system for the matrix.') | |
| coord_sys = coord_sys.pop() | |
| vectors = coord_sys.base_vectors() | |
| expr = expr.expand() | |
| matrix_content = [[expr.rcall(v1, v2) for v1 in vectors] | |
| for v2 in vectors] | |
| return Matrix(matrix_content) | |
| def metric_to_Christoffel_1st(expr): | |
| """Return the nested list of Christoffel symbols for the given metric. | |
| This returns the Christoffel symbol of first kind that represents the | |
| Levi-Civita connection for the given metric. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2 | |
| >>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct | |
| >>> TP = TensorProduct | |
| >>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] | |
| >>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| [[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]] | |
| """ | |
| matrix = twoform_to_matrix(expr) | |
| if not matrix.is_symmetric(): | |
| raise ValueError( | |
| 'The two-form representing the metric is not symmetric.') | |
| coord_sys = _find_coords(expr).pop() | |
| deriv_matrices = [matrix.applyfunc(d) for d in coord_sys.base_vectors()] | |
| indices = list(range(coord_sys.dim)) | |
| christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2 | |
| for k in indices] | |
| for j in indices] | |
| for i in indices] | |
| return ImmutableDenseNDimArray(christoffel) | |
| def metric_to_Christoffel_2nd(expr): | |
| """Return the nested list of Christoffel symbols for the given metric. | |
| This returns the Christoffel symbol of second kind that represents the | |
| Levi-Civita connection for the given metric. | |
| Examples | |
| ======== | |
| >>> from sympy.diffgeom.rn import R2 | |
| >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct | |
| >>> TP = TensorProduct | |
| >>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] | |
| >>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| [[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]] | |
| """ | |
| ch_1st = metric_to_Christoffel_1st(expr) | |
| coord_sys = _find_coords(expr).pop() | |
| indices = list(range(coord_sys.dim)) | |
| # XXX workaround, inverting a matrix does not work if it contains non | |
| # symbols | |
| #matrix = twoform_to_matrix(expr).inv() | |
| matrix = twoform_to_matrix(expr) | |
| s_fields = set() | |
| for e in matrix: | |
| s_fields.update(e.atoms(BaseScalarField)) | |
| s_fields = list(s_fields) | |
| dums = coord_sys.symbols | |
| matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields))) | |
| # XXX end of workaround | |
| christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices]) | |
| for k in indices] | |
| for j in indices] | |
| for i in indices] | |
| return ImmutableDenseNDimArray(christoffel) | |
| def metric_to_Riemann_components(expr): | |
| """Return the components of the Riemann tensor expressed in a given basis. | |
| Given a metric it calculates the components of the Riemann tensor in the | |
| canonical basis of the coordinate system in which the metric expression is | |
| given. | |
| Examples | |
| ======== | |
| >>> from sympy import exp | |
| >>> from sympy.diffgeom.rn import R2 | |
| >>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct | |
| >>> TP = TensorProduct | |
| >>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]] | |
| >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \ | |
| R2.r**2*TP(R2.dtheta, R2.dtheta) | |
| >>> non_trivial_metric | |
| exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta) | |
| >>> riemann = metric_to_Riemann_components(non_trivial_metric) | |
| >>> riemann[0, :, :, :] | |
| [[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]] | |
| >>> riemann[1, :, :, :] | |
| [[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]] | |
| """ | |
| ch_2nd = metric_to_Christoffel_2nd(expr) | |
| coord_sys = _find_coords(expr).pop() | |
| indices = list(range(coord_sys.dim)) | |
| deriv_ch = [[[[d(ch_2nd[i, j, k]) | |
| for d in coord_sys.base_vectors()] | |
| for k in indices] | |
| for j in indices] | |
| for i in indices] | |
| riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu] | |
| for nu in indices] | |
| for mu in indices] | |
| for sig in indices] | |
| for rho in indices] | |
| riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices]) | |
| for nu in indices] | |
| for mu in indices] | |
| for sig in indices] | |
| for rho in indices] | |
| riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu] | |
| for nu in indices] | |
| for mu in indices] | |
| for sig in indices] | |
| for rho in indices] | |
| return ImmutableDenseNDimArray(riemann) | |
| def metric_to_Ricci_components(expr): | |
| """Return the components of the Ricci tensor expressed in a given basis. | |
| Given a metric it calculates the components of the Ricci tensor in the | |
| canonical basis of the coordinate system in which the metric expression is | |
| given. | |
| Examples | |
| ======== | |
| >>> from sympy import exp | |
| >>> from sympy.diffgeom.rn import R2 | |
| >>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct | |
| >>> TP = TensorProduct | |
| >>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) | |
| [[0, 0], [0, 0]] | |
| >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \ | |
| R2.r**2*TP(R2.dtheta, R2.dtheta) | |
| >>> non_trivial_metric | |
| exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta) | |
| >>> metric_to_Ricci_components(non_trivial_metric) | |
| [[1/rho, 0], [0, exp(-2*rho)*rho]] | |
| """ | |
| riemann = metric_to_Riemann_components(expr) | |
| coord_sys = _find_coords(expr).pop() | |
| indices = list(range(coord_sys.dim)) | |
| ricci = [[Add(*[riemann[k, i, k, j] for k in indices]) | |
| for j in indices] | |
| for i in indices] | |
| return ImmutableDenseNDimArray(ricci) | |
| ############################################################################### | |
| # Classes for deprecation | |
| ############################################################################### | |
| class _deprecated_container: | |
| # This class gives deprecation warning. | |
| # When deprecated features are completely deleted, this should be removed as well. | |
| # See https://github.com/sympy/sympy/pull/19368 | |
| def __init__(self, message, data): | |
| super().__init__(data) | |
| self.message = message | |
| def warn(self): | |
| sympy_deprecation_warning( | |
| self.message, | |
| deprecated_since_version="1.7", | |
| active_deprecations_target="deprecated-diffgeom-mutable", | |
| stacklevel=4 | |
| ) | |
| def __iter__(self): | |
| self.warn() | |
| return super().__iter__() | |
| def __getitem__(self, key): | |
| self.warn() | |
| return super().__getitem__(key) | |
| def __contains__(self, key): | |
| self.warn() | |
| return super().__contains__(key) | |
| class _deprecated_list(_deprecated_container, list): | |
| pass | |
| class _deprecated_dict(_deprecated_container, dict): | |
| pass | |
| # Import at end to avoid cyclic imports | |
| from sympy.simplify.simplify import simplify | |