applied-ai-018 commited on
Commit
72e4051
·
verified ·
1 Parent(s): c3816c6

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/__init__.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/abc.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/conftest.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/galgebra.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/release.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/this.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/core/_print_helpers.py +65 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/core/add.py +1287 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/core/alphabets.py +4 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/core/assumptions_generated.py +1615 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/core/decorators.py +238 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/core/expr.py +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/core/function.py +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/core/mod.py +238 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/core/multidimensional.py +131 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/core/power.py +2004 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/core/rules.py +66 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/core/symbol.py +945 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__init__.py +19 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/diffgeom.py +2273 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_function_diffgeom_book.py +145 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_hyperbolic_space.py +91 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/__init__.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_comprehension.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_derivatives.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/arrayop.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/dense_ndim_array.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/mutable_ndim_array.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/ndim_array.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/sparse_ndim_array.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/__init__.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/array_expressions.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/arrayexpr_derivatives.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_indexed.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_matrix.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_indexed_to_array.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_matrix_to_array.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_indexed.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_matrix.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_indexed_to_array.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_matrix_to_array.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/utils.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/array_expressions.py +1967 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_indexed.py +12 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_matrix.py +6 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_indexed_to_array.py +4 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_matrix_to_array.py +4 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_indexed.py +84 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_matrix.py +1003 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_matrix_to_array.py +87 -0
env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (28.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/abc.cpython-310.pyc ADDED
Binary file (3.53 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (2.55 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/galgebra.cpython-310.pyc ADDED
Binary file (282 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/release.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/__pycache__/this.cpython-310.pyc ADDED
Binary file (730 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/core/_print_helpers.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Base class to provide str and repr hooks that `init_printing` can overwrite.
3
+
4
+ This is exposed publicly in the `printing.defaults` module,
5
+ but cannot be defined there without causing circular imports.
6
+ """
7
+
8
+ class Printable:
9
+ """
10
+ The default implementation of printing for SymPy classes.
11
+
12
+ This implements a hack that allows us to print elements of built-in
13
+ Python containers in a readable way. Natively Python uses ``repr()``
14
+ even if ``str()`` was explicitly requested. Mix in this trait into
15
+ a class to get proper default printing.
16
+
17
+ This also adds support for LaTeX printing in jupyter notebooks.
18
+ """
19
+
20
+ # Since this class is used as a mixin we set empty slots. That means that
21
+ # instances of any subclasses that use slots will not need to have a
22
+ # __dict__.
23
+ __slots__ = ()
24
+
25
+ # Note, we always use the default ordering (lex) in __str__ and __repr__,
26
+ # regardless of the global setting. See issue 5487.
27
+ def __str__(self):
28
+ from sympy.printing.str import sstr
29
+ return sstr(self, order=None)
30
+
31
+ __repr__ = __str__
32
+
33
+ def _repr_disabled(self):
34
+ """
35
+ No-op repr function used to disable jupyter display hooks.
36
+
37
+ When :func:`sympy.init_printing` is used to disable certain display
38
+ formats, this function is copied into the appropriate ``_repr_*_``
39
+ attributes.
40
+
41
+ While we could just set the attributes to `None``, doing it this way
42
+ allows derived classes to call `super()`.
43
+ """
44
+ return None
45
+
46
+ # We don't implement _repr_png_ here because it would add a large amount of
47
+ # data to any notebook containing SymPy expressions, without adding
48
+ # anything useful to the notebook. It can still enabled manually, e.g.,
49
+ # for the qtconsole, with init_printing().
50
+ _repr_png_ = _repr_disabled
51
+
52
+ _repr_svg_ = _repr_disabled
53
+
54
+ def _repr_latex_(self):
55
+ """
56
+ IPython/Jupyter LaTeX printing
57
+
58
+ To change the behavior of this (e.g., pass in some settings to LaTeX),
59
+ use init_printing(). init_printing() will also enable LaTeX printing
60
+ for built in numeric types like ints and container types that contain
61
+ SymPy objects, like lists and dictionaries of expressions.
62
+ """
63
+ from sympy.printing.latex import latex
64
+ s = latex(self, mode='plain')
65
+ return "$\\displaystyle %s$" % s
env-llmeval/lib/python3.10/site-packages/sympy/core/add.py ADDED
@@ -0,0 +1,1287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple as tTuple
2
+ from collections import defaultdict
3
+ from functools import cmp_to_key, reduce
4
+ from operator import attrgetter
5
+ from .basic import Basic
6
+ from .parameters import global_parameters
7
+ from .logic import _fuzzy_group, fuzzy_or, fuzzy_not
8
+ from .singleton import S
9
+ from .operations import AssocOp, AssocOpDispatcher
10
+ from .cache import cacheit
11
+ from .numbers import ilcm, igcd, equal_valued
12
+ from .expr import Expr
13
+ from .kind import UndefinedKind
14
+ from sympy.utilities.iterables import is_sequence, sift
15
+
16
+ # Key for sorting commutative args in canonical order
17
+ _args_sortkey = cmp_to_key(Basic.compare)
18
+
19
+
20
+ def _could_extract_minus_sign(expr):
21
+ # assume expr is Add-like
22
+ # We choose the one with less arguments with minus signs
23
+ negative_args = sum(1 for i in expr.args
24
+ if i.could_extract_minus_sign())
25
+ positive_args = len(expr.args) - negative_args
26
+ if positive_args > negative_args:
27
+ return False
28
+ elif positive_args < negative_args:
29
+ return True
30
+ # choose based on .sort_key() to prefer
31
+ # x - 1 instead of 1 - x and
32
+ # 3 - sqrt(2) instead of -3 + sqrt(2)
33
+ return bool(expr.sort_key() < (-expr).sort_key())
34
+
35
+
36
+ def _addsort(args):
37
+ # in-place sorting of args
38
+ args.sort(key=_args_sortkey)
39
+
40
+
41
+ def _unevaluated_Add(*args):
42
+ """Return a well-formed unevaluated Add: Numbers are collected and
43
+ put in slot 0 and args are sorted. Use this when args have changed
44
+ but you still want to return an unevaluated Add.
45
+
46
+ Examples
47
+ ========
48
+
49
+ >>> from sympy.core.add import _unevaluated_Add as uAdd
50
+ >>> from sympy import S, Add
51
+ >>> from sympy.abc import x, y
52
+ >>> a = uAdd(*[S(1.0), x, S(2)])
53
+ >>> a.args[0]
54
+ 3.00000000000000
55
+ >>> a.args[1]
56
+ x
57
+
58
+ Beyond the Number being in slot 0, there is no other assurance of
59
+ order for the arguments since they are hash sorted. So, for testing
60
+ purposes, output produced by this in some other function can only
61
+ be tested against the output of this function or as one of several
62
+ options:
63
+
64
+ >>> opts = (Add(x, y, evaluate=False), Add(y, x, evaluate=False))
65
+ >>> a = uAdd(x, y)
66
+ >>> assert a in opts and a == uAdd(x, y)
67
+ >>> uAdd(x + 1, x + 2)
68
+ x + x + 3
69
+ """
70
+ args = list(args)
71
+ newargs = []
72
+ co = S.Zero
73
+ while args:
74
+ a = args.pop()
75
+ if a.is_Add:
76
+ # this will keep nesting from building up
77
+ # so that x + (x + 1) -> x + x + 1 (3 args)
78
+ args.extend(a.args)
79
+ elif a.is_Number:
80
+ co += a
81
+ else:
82
+ newargs.append(a)
83
+ _addsort(newargs)
84
+ if co:
85
+ newargs.insert(0, co)
86
+ return Add._from_args(newargs)
87
+
88
+
89
+ class Add(Expr, AssocOp):
90
+ """
91
+ Expression representing addition operation for algebraic group.
92
+
93
+ .. deprecated:: 1.7
94
+
95
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
96
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
97
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
98
+
99
+ Every argument of ``Add()`` must be ``Expr``. Infix operator ``+``
100
+ on most scalar objects in SymPy calls this class.
101
+
102
+ Another use of ``Add()`` is to represent the structure of abstract
103
+ addition so that its arguments can be substituted to return different
104
+ class. Refer to examples section for this.
105
+
106
+ ``Add()`` evaluates the argument unless ``evaluate=False`` is passed.
107
+ The evaluation logic includes:
108
+
109
+ 1. Flattening
110
+ ``Add(x, Add(y, z))`` -> ``Add(x, y, z)``
111
+
112
+ 2. Identity removing
113
+ ``Add(x, 0, y)`` -> ``Add(x, y)``
114
+
115
+ 3. Coefficient collecting by ``.as_coeff_Mul()``
116
+ ``Add(x, 2*x)`` -> ``Mul(3, x)``
117
+
118
+ 4. Term sorting
119
+ ``Add(y, x, 2)`` -> ``Add(2, x, y)``
120
+
121
+ If no argument is passed, identity element 0 is returned. If single
122
+ element is passed, that element is returned.
123
+
124
+ Note that ``Add(*args)`` is more efficient than ``sum(args)`` because
125
+ it flattens the arguments. ``sum(a, b, c, ...)`` recursively adds the
126
+ arguments as ``a + (b + (c + ...))``, which has quadratic complexity.
127
+ On the other hand, ``Add(a, b, c, d)`` does not assume nested
128
+ structure, making the complexity linear.
129
+
130
+ Since addition is group operation, every argument should have the
131
+ same :obj:`sympy.core.kind.Kind()`.
132
+
133
+ Examples
134
+ ========
135
+
136
+ >>> from sympy import Add, I
137
+ >>> from sympy.abc import x, y
138
+ >>> Add(x, 1)
139
+ x + 1
140
+ >>> Add(x, x)
141
+ 2*x
142
+ >>> 2*x**2 + 3*x + I*y + 2*y + 2*x/5 + 1.0*y + 1
143
+ 2*x**2 + 17*x/5 + 3.0*y + I*y + 1
144
+
145
+ If ``evaluate=False`` is passed, result is not evaluated.
146
+
147
+ >>> Add(1, 2, evaluate=False)
148
+ 1 + 2
149
+ >>> Add(x, x, evaluate=False)
150
+ x + x
151
+
152
+ ``Add()`` also represents the general structure of addition operation.
153
+
154
+ >>> from sympy import MatrixSymbol
155
+ >>> A,B = MatrixSymbol('A', 2,2), MatrixSymbol('B', 2,2)
156
+ >>> expr = Add(x,y).subs({x:A, y:B})
157
+ >>> expr
158
+ A + B
159
+ >>> type(expr)
160
+ <class 'sympy.matrices.expressions.matadd.MatAdd'>
161
+
162
+ Note that the printers do not display in args order.
163
+
164
+ >>> Add(x, 1)
165
+ x + 1
166
+ >>> Add(x, 1).args
167
+ (1, x)
168
+
169
+ See Also
170
+ ========
171
+
172
+ MatAdd
173
+
174
+ """
175
+
176
+ __slots__ = ()
177
+
178
+ args: tTuple[Expr, ...]
179
+
180
+ is_Add = True
181
+
182
+ _args_type = Expr
183
+
184
+ @classmethod
185
+ def flatten(cls, seq):
186
+ """
187
+ Takes the sequence "seq" of nested Adds and returns a flatten list.
188
+
189
+ Returns: (commutative_part, noncommutative_part, order_symbols)
190
+
191
+ Applies associativity, all terms are commutable with respect to
192
+ addition.
193
+
194
+ NB: the removal of 0 is already handled by AssocOp.__new__
195
+
196
+ See Also
197
+ ========
198
+
199
+ sympy.core.mul.Mul.flatten
200
+
201
+ """
202
+ from sympy.calculus.accumulationbounds import AccumBounds
203
+ from sympy.matrices.expressions import MatrixExpr
204
+ from sympy.tensor.tensor import TensExpr
205
+ rv = None
206
+ if len(seq) == 2:
207
+ a, b = seq
208
+ if b.is_Rational:
209
+ a, b = b, a
210
+ if a.is_Rational:
211
+ if b.is_Mul:
212
+ rv = [a, b], [], None
213
+ if rv:
214
+ if all(s.is_commutative for s in rv[0]):
215
+ return rv
216
+ return [], rv[0], None
217
+
218
+ terms = {} # term -> coeff
219
+ # e.g. x**2 -> 5 for ... + 5*x**2 + ...
220
+
221
+ coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0
222
+ # e.g. 3 + ...
223
+ order_factors = []
224
+
225
+ extra = []
226
+
227
+ for o in seq:
228
+
229
+ # O(x)
230
+ if o.is_Order:
231
+ if o.expr.is_zero:
232
+ continue
233
+ for o1 in order_factors:
234
+ if o1.contains(o):
235
+ o = None
236
+ break
237
+ if o is None:
238
+ continue
239
+ order_factors = [o] + [
240
+ o1 for o1 in order_factors if not o.contains(o1)]
241
+ continue
242
+
243
+ # 3 or NaN
244
+ elif o.is_Number:
245
+ if (o is S.NaN or coeff is S.ComplexInfinity and
246
+ o.is_finite is False) and not extra:
247
+ # we know for sure the result will be nan
248
+ return [S.NaN], [], None
249
+ if coeff.is_Number or isinstance(coeff, AccumBounds):
250
+ coeff += o
251
+ if coeff is S.NaN and not extra:
252
+ # we know for sure the result will be nan
253
+ return [S.NaN], [], None
254
+ continue
255
+
256
+ elif isinstance(o, AccumBounds):
257
+ coeff = o.__add__(coeff)
258
+ continue
259
+
260
+ elif isinstance(o, MatrixExpr):
261
+ # can't add 0 to Matrix so make sure coeff is not 0
262
+ extra.append(o)
263
+ continue
264
+
265
+ elif isinstance(o, TensExpr):
266
+ coeff = o.__add__(coeff) if coeff else o
267
+ continue
268
+
269
+ elif o is S.ComplexInfinity:
270
+ if coeff.is_finite is False and not extra:
271
+ # we know for sure the result will be nan
272
+ return [S.NaN], [], None
273
+ coeff = S.ComplexInfinity
274
+ continue
275
+
276
+ # Add([...])
277
+ elif o.is_Add:
278
+ # NB: here we assume Add is always commutative
279
+ seq.extend(o.args) # TODO zerocopy?
280
+ continue
281
+
282
+ # Mul([...])
283
+ elif o.is_Mul:
284
+ c, s = o.as_coeff_Mul()
285
+
286
+ # check for unevaluated Pow, e.g. 2**3 or 2**(-1/2)
287
+ elif o.is_Pow:
288
+ b, e = o.as_base_exp()
289
+ if b.is_Number and (e.is_Integer or
290
+ (e.is_Rational and e.is_negative)):
291
+ seq.append(b**e)
292
+ continue
293
+ c, s = S.One, o
294
+
295
+ else:
296
+ # everything else
297
+ c = S.One
298
+ s = o
299
+
300
+ # now we have:
301
+ # o = c*s, where
302
+ #
303
+ # c is a Number
304
+ # s is an expression with number factor extracted
305
+ # let's collect terms with the same s, so e.g.
306
+ # 2*x**2 + 3*x**2 -> 5*x**2
307
+ if s in terms:
308
+ terms[s] += c
309
+ if terms[s] is S.NaN and not extra:
310
+ # we know for sure the result will be nan
311
+ return [S.NaN], [], None
312
+ else:
313
+ terms[s] = c
314
+
315
+ # now let's construct new args:
316
+ # [2*x**2, x**3, 7*x**4, pi, ...]
317
+ newseq = []
318
+ noncommutative = False
319
+ for s, c in terms.items():
320
+ # 0*s
321
+ if c.is_zero:
322
+ continue
323
+ # 1*s
324
+ elif c is S.One:
325
+ newseq.append(s)
326
+ # c*s
327
+ else:
328
+ if s.is_Mul:
329
+ # Mul, already keeps its arguments in perfect order.
330
+ # so we can simply put c in slot0 and go the fast way.
331
+ cs = s._new_rawargs(*((c,) + s.args))
332
+ newseq.append(cs)
333
+ elif s.is_Add:
334
+ # we just re-create the unevaluated Mul
335
+ newseq.append(Mul(c, s, evaluate=False))
336
+ else:
337
+ # alternatively we have to call all Mul's machinery (slow)
338
+ newseq.append(Mul(c, s))
339
+
340
+ noncommutative = noncommutative or not s.is_commutative
341
+
342
+ # oo, -oo
343
+ if coeff is S.Infinity:
344
+ newseq = [f for f in newseq if not (f.is_extended_nonnegative or f.is_real)]
345
+
346
+ elif coeff is S.NegativeInfinity:
347
+ newseq = [f for f in newseq if not (f.is_extended_nonpositive or f.is_real)]
348
+
349
+ if coeff is S.ComplexInfinity:
350
+ # zoo might be
351
+ # infinite_real + finite_im
352
+ # finite_real + infinite_im
353
+ # infinite_real + infinite_im
354
+ # addition of a finite real or imaginary number won't be able to
355
+ # change the zoo nature; adding an infinite qualtity would result
356
+ # in a NaN condition if it had sign opposite of the infinite
357
+ # portion of zoo, e.g., infinite_real - infinite_real.
358
+ newseq = [c for c in newseq if not (c.is_finite and
359
+ c.is_extended_real is not None)]
360
+
361
+ # process O(x)
362
+ if order_factors:
363
+ newseq2 = []
364
+ for t in newseq:
365
+ for o in order_factors:
366
+ # x + O(x) -> O(x)
367
+ if o.contains(t):
368
+ t = None
369
+ break
370
+ # x + O(x**2) -> x + O(x**2)
371
+ if t is not None:
372
+ newseq2.append(t)
373
+ newseq = newseq2 + order_factors
374
+ # 1 + O(1) -> O(1)
375
+ for o in order_factors:
376
+ if o.contains(coeff):
377
+ coeff = S.Zero
378
+ break
379
+
380
+ # order args canonically
381
+ _addsort(newseq)
382
+
383
+ # current code expects coeff to be first
384
+ if coeff is not S.Zero:
385
+ newseq.insert(0, coeff)
386
+
387
+ if extra:
388
+ newseq += extra
389
+ noncommutative = True
390
+
391
+ # we are done
392
+ if noncommutative:
393
+ return [], newseq, None
394
+ else:
395
+ return newseq, [], None
396
+
397
+ @classmethod
398
+ def class_key(cls):
399
+ return 3, 1, cls.__name__
400
+
401
+ @property
402
+ def kind(self):
403
+ k = attrgetter('kind')
404
+ kinds = map(k, self.args)
405
+ kinds = frozenset(kinds)
406
+ if len(kinds) != 1:
407
+ # Since addition is group operator, kind must be same.
408
+ # We know that this is unexpected signature, so return this.
409
+ result = UndefinedKind
410
+ else:
411
+ result, = kinds
412
+ return result
413
+
414
+ def could_extract_minus_sign(self):
415
+ return _could_extract_minus_sign(self)
416
+
417
+ @cacheit
418
+ def as_coeff_add(self, *deps):
419
+ """
420
+ Returns a tuple (coeff, args) where self is treated as an Add and coeff
421
+ is the Number term and args is a tuple of all other terms.
422
+
423
+ Examples
424
+ ========
425
+
426
+ >>> from sympy.abc import x
427
+ >>> (7 + 3*x).as_coeff_add()
428
+ (7, (3*x,))
429
+ >>> (7*x).as_coeff_add()
430
+ (0, (7*x,))
431
+ """
432
+ if deps:
433
+ l1, l2 = sift(self.args, lambda x: x.has_free(*deps), binary=True)
434
+ return self._new_rawargs(*l2), tuple(l1)
435
+ coeff, notrat = self.args[0].as_coeff_add()
436
+ if coeff is not S.Zero:
437
+ return coeff, notrat + self.args[1:]
438
+ return S.Zero, self.args
439
+
440
+ def as_coeff_Add(self, rational=False, deps=None):
441
+ """
442
+ Efficiently extract the coefficient of a summation.
443
+ """
444
+ coeff, args = self.args[0], self.args[1:]
445
+
446
+ if coeff.is_Number and not rational or coeff.is_Rational:
447
+ return coeff, self._new_rawargs(*args)
448
+ return S.Zero, self
449
+
450
+ # Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we
451
+ # let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See
452
+ # issue 5524.
453
+
454
+ def _eval_power(self, e):
455
+ from .evalf import pure_complex
456
+ from .relational import is_eq
457
+ if len(self.args) == 2 and any(_.is_infinite for _ in self.args):
458
+ if e.is_zero is False and is_eq(e, S.One) is False:
459
+ # looking for literal a + I*b
460
+ a, b = self.args
461
+ if a.coeff(S.ImaginaryUnit):
462
+ a, b = b, a
463
+ ico = b.coeff(S.ImaginaryUnit)
464
+ if ico and ico.is_extended_real and a.is_extended_real:
465
+ if e.is_extended_negative:
466
+ return S.Zero
467
+ if e.is_extended_positive:
468
+ return S.ComplexInfinity
469
+ return
470
+ if e.is_Rational and self.is_number:
471
+ ri = pure_complex(self)
472
+ if ri:
473
+ r, i = ri
474
+ if e.q == 2:
475
+ from sympy.functions.elementary.miscellaneous import sqrt
476
+ D = sqrt(r**2 + i**2)
477
+ if D.is_Rational:
478
+ from .exprtools import factor_terms
479
+ from sympy.functions.elementary.complexes import sign
480
+ from .function import expand_multinomial
481
+ # (r, i, D) is a Pythagorean triple
482
+ root = sqrt(factor_terms((D - r)/2))**e.p
483
+ return root*expand_multinomial((
484
+ # principle value
485
+ (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p)
486
+ elif e == -1:
487
+ return _unevaluated_Mul(
488
+ r - i*S.ImaginaryUnit,
489
+ 1/(r**2 + i**2))
490
+ elif e.is_Number and abs(e) != 1:
491
+ # handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e
492
+ c, m = zip(*[i.as_coeff_Mul() for i in self.args])
493
+ if any(i.is_Float for i in c): # XXX should this always be done?
494
+ big = -1
495
+ for i in c:
496
+ if abs(i) >= big:
497
+ big = abs(i)
498
+ if big > 0 and not equal_valued(big, 1):
499
+ from sympy.functions.elementary.complexes import sign
500
+ bigs = (big, -big)
501
+ c = [sign(i) if i in bigs else i/big for i in c]
502
+ addpow = Add(*[c*m for c, m in zip(c, m)])**e
503
+ return big**e*addpow
504
+
505
+ @cacheit
506
+ def _eval_derivative(self, s):
507
+ return self.func(*[a.diff(s) for a in self.args])
508
+
509
+ def _eval_nseries(self, x, n, logx, cdir=0):
510
+ terms = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args]
511
+ return self.func(*terms)
512
+
513
+ def _matches_simple(self, expr, repl_dict):
514
+ # handle (w+3).matches('x+5') -> {w: x+2}
515
+ coeff, terms = self.as_coeff_add()
516
+ if len(terms) == 1:
517
+ return terms[0].matches(expr - coeff, repl_dict)
518
+ return
519
+
520
+ def matches(self, expr, repl_dict=None, old=False):
521
+ return self._matches_commutative(expr, repl_dict, old)
522
+
523
+ @staticmethod
524
+ def _combine_inverse(lhs, rhs):
525
+ """
526
+ Returns lhs - rhs, but treats oo like a symbol so oo - oo
527
+ returns 0, instead of a nan.
528
+ """
529
+ from sympy.simplify.simplify import signsimp
530
+ inf = (S.Infinity, S.NegativeInfinity)
531
+ if lhs.has(*inf) or rhs.has(*inf):
532
+ from .symbol import Dummy
533
+ oo = Dummy('oo')
534
+ reps = {
535
+ S.Infinity: oo,
536
+ S.NegativeInfinity: -oo}
537
+ ireps = {v: k for k, v in reps.items()}
538
+ eq = lhs.xreplace(reps) - rhs.xreplace(reps)
539
+ if eq.has(oo):
540
+ eq = eq.replace(
541
+ lambda x: x.is_Pow and x.base is oo,
542
+ lambda x: x.base)
543
+ rv = eq.xreplace(ireps)
544
+ else:
545
+ rv = lhs - rhs
546
+ srv = signsimp(rv)
547
+ return srv if srv.is_Number else rv
548
+
549
+ @cacheit
550
+ def as_two_terms(self):
551
+ """Return head and tail of self.
552
+
553
+ This is the most efficient way to get the head and tail of an
554
+ expression.
555
+
556
+ - if you want only the head, use self.args[0];
557
+ - if you want to process the arguments of the tail then use
558
+ self.as_coef_add() which gives the head and a tuple containing
559
+ the arguments of the tail when treated as an Add.
560
+ - if you want the coefficient when self is treated as a Mul
561
+ then use self.as_coeff_mul()[0]
562
+
563
+ >>> from sympy.abc import x, y
564
+ >>> (3*x - 2*y + 5).as_two_terms()
565
+ (5, 3*x - 2*y)
566
+ """
567
+ return self.args[0], self._new_rawargs(*self.args[1:])
568
+
569
+ def as_numer_denom(self):
570
+ """
571
+ Decomposes an expression to its numerator part and its
572
+ denominator part.
573
+
574
+ Examples
575
+ ========
576
+
577
+ >>> from sympy.abc import x, y, z
578
+ >>> (x*y/z).as_numer_denom()
579
+ (x*y, z)
580
+ >>> (x*(y + 1)/y**7).as_numer_denom()
581
+ (x*(y + 1), y**7)
582
+
583
+ See Also
584
+ ========
585
+
586
+ sympy.core.expr.Expr.as_numer_denom
587
+ """
588
+ # clear rational denominator
589
+ content, expr = self.primitive()
590
+ if not isinstance(expr, Add):
591
+ return Mul(content, expr, evaluate=False).as_numer_denom()
592
+ ncon, dcon = content.as_numer_denom()
593
+
594
+ # collect numerators and denominators of the terms
595
+ nd = defaultdict(list)
596
+ for f in expr.args:
597
+ ni, di = f.as_numer_denom()
598
+ nd[di].append(ni)
599
+
600
+ # check for quick exit
601
+ if len(nd) == 1:
602
+ d, n = nd.popitem()
603
+ return self.func(
604
+ *[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d)
605
+
606
+ # sum up the terms having a common denominator
607
+ for d, n in nd.items():
608
+ if len(n) == 1:
609
+ nd[d] = n[0]
610
+ else:
611
+ nd[d] = self.func(*n)
612
+
613
+ # assemble single numerator and denominator
614
+ denoms, numers = [list(i) for i in zip(*iter(nd.items()))]
615
+ n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:]))
616
+ for i in range(len(numers))]), Mul(*denoms)
617
+
618
+ return _keep_coeff(ncon, n), _keep_coeff(dcon, d)
619
+
620
+ def _eval_is_polynomial(self, syms):
621
+ return all(term._eval_is_polynomial(syms) for term in self.args)
622
+
623
+ def _eval_is_rational_function(self, syms):
624
+ return all(term._eval_is_rational_function(syms) for term in self.args)
625
+
626
+ def _eval_is_meromorphic(self, x, a):
627
+ return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
628
+ quick_exit=True)
629
+
630
+ def _eval_is_algebraic_expr(self, syms):
631
+ return all(term._eval_is_algebraic_expr(syms) for term in self.args)
632
+
633
+ # assumption methods
634
+ _eval_is_real = lambda self: _fuzzy_group(
635
+ (a.is_real for a in self.args), quick_exit=True)
636
+ _eval_is_extended_real = lambda self: _fuzzy_group(
637
+ (a.is_extended_real for a in self.args), quick_exit=True)
638
+ _eval_is_complex = lambda self: _fuzzy_group(
639
+ (a.is_complex for a in self.args), quick_exit=True)
640
+ _eval_is_antihermitian = lambda self: _fuzzy_group(
641
+ (a.is_antihermitian for a in self.args), quick_exit=True)
642
+ _eval_is_finite = lambda self: _fuzzy_group(
643
+ (a.is_finite for a in self.args), quick_exit=True)
644
+ _eval_is_hermitian = lambda self: _fuzzy_group(
645
+ (a.is_hermitian for a in self.args), quick_exit=True)
646
+ _eval_is_integer = lambda self: _fuzzy_group(
647
+ (a.is_integer for a in self.args), quick_exit=True)
648
+ _eval_is_rational = lambda self: _fuzzy_group(
649
+ (a.is_rational for a in self.args), quick_exit=True)
650
+ _eval_is_algebraic = lambda self: _fuzzy_group(
651
+ (a.is_algebraic for a in self.args), quick_exit=True)
652
+ _eval_is_commutative = lambda self: _fuzzy_group(
653
+ a.is_commutative for a in self.args)
654
+
655
+ def _eval_is_infinite(self):
656
+ sawinf = False
657
+ for a in self.args:
658
+ ainf = a.is_infinite
659
+ if ainf is None:
660
+ return None
661
+ elif ainf is True:
662
+ # infinite+infinite might not be infinite
663
+ if sawinf is True:
664
+ return None
665
+ sawinf = True
666
+ return sawinf
667
+
668
+ def _eval_is_imaginary(self):
669
+ nz = []
670
+ im_I = []
671
+ for a in self.args:
672
+ if a.is_extended_real:
673
+ if a.is_zero:
674
+ pass
675
+ elif a.is_zero is False:
676
+ nz.append(a)
677
+ else:
678
+ return
679
+ elif a.is_imaginary:
680
+ im_I.append(a*S.ImaginaryUnit)
681
+ elif a.is_Mul and S.ImaginaryUnit in a.args:
682
+ coeff, ai = a.as_coeff_mul(S.ImaginaryUnit)
683
+ if ai == (S.ImaginaryUnit,) and coeff.is_extended_real:
684
+ im_I.append(-coeff)
685
+ else:
686
+ return
687
+ else:
688
+ return
689
+ b = self.func(*nz)
690
+ if b != self:
691
+ if b.is_zero:
692
+ return fuzzy_not(self.func(*im_I).is_zero)
693
+ elif b.is_zero is False:
694
+ return False
695
+
696
+ def _eval_is_zero(self):
697
+ if self.is_commutative is False:
698
+ # issue 10528: there is no way to know if a nc symbol
699
+ # is zero or not
700
+ return
701
+ nz = []
702
+ z = 0
703
+ im_or_z = False
704
+ im = 0
705
+ for a in self.args:
706
+ if a.is_extended_real:
707
+ if a.is_zero:
708
+ z += 1
709
+ elif a.is_zero is False:
710
+ nz.append(a)
711
+ else:
712
+ return
713
+ elif a.is_imaginary:
714
+ im += 1
715
+ elif a.is_Mul and S.ImaginaryUnit in a.args:
716
+ coeff, ai = a.as_coeff_mul(S.ImaginaryUnit)
717
+ if ai == (S.ImaginaryUnit,) and coeff.is_extended_real:
718
+ im_or_z = True
719
+ else:
720
+ return
721
+ else:
722
+ return
723
+ if z == len(self.args):
724
+ return True
725
+ if len(nz) in [0, len(self.args)]:
726
+ return None
727
+ b = self.func(*nz)
728
+ if b.is_zero:
729
+ if not im_or_z:
730
+ if im == 0:
731
+ return True
732
+ elif im == 1:
733
+ return False
734
+ if b.is_zero is False:
735
+ return False
736
+
737
+ def _eval_is_odd(self):
738
+ l = [f for f in self.args if not (f.is_even is True)]
739
+ if not l:
740
+ return False
741
+ if l[0].is_odd:
742
+ return self._new_rawargs(*l[1:]).is_even
743
+
744
+ def _eval_is_irrational(self):
745
+ for t in self.args:
746
+ a = t.is_irrational
747
+ if a:
748
+ others = list(self.args)
749
+ others.remove(t)
750
+ if all(x.is_rational is True for x in others):
751
+ return True
752
+ return None
753
+ if a is None:
754
+ return
755
+ return False
756
+
757
+ def _all_nonneg_or_nonppos(self):
758
+ nn = np = 0
759
+ for a in self.args:
760
+ if a.is_nonnegative:
761
+ if np:
762
+ return False
763
+ nn = 1
764
+ elif a.is_nonpositive:
765
+ if nn:
766
+ return False
767
+ np = 1
768
+ else:
769
+ break
770
+ else:
771
+ return True
772
+
773
+ def _eval_is_extended_positive(self):
774
+ if self.is_number:
775
+ return super()._eval_is_extended_positive()
776
+ c, a = self.as_coeff_Add()
777
+ if not c.is_zero:
778
+ from .exprtools import _monotonic_sign
779
+ v = _monotonic_sign(a)
780
+ if v is not None:
781
+ s = v + c
782
+ if s != self and s.is_extended_positive and a.is_extended_nonnegative:
783
+ return True
784
+ if len(self.free_symbols) == 1:
785
+ v = _monotonic_sign(self)
786
+ if v is not None and v != self and v.is_extended_positive:
787
+ return True
788
+ pos = nonneg = nonpos = unknown_sign = False
789
+ saw_INF = set()
790
+ args = [a for a in self.args if not a.is_zero]
791
+ if not args:
792
+ return False
793
+ for a in args:
794
+ ispos = a.is_extended_positive
795
+ infinite = a.is_infinite
796
+ if infinite:
797
+ saw_INF.add(fuzzy_or((ispos, a.is_extended_nonnegative)))
798
+ if True in saw_INF and False in saw_INF:
799
+ return
800
+ if ispos:
801
+ pos = True
802
+ continue
803
+ elif a.is_extended_nonnegative:
804
+ nonneg = True
805
+ continue
806
+ elif a.is_extended_nonpositive:
807
+ nonpos = True
808
+ continue
809
+
810
+ if infinite is None:
811
+ return
812
+ unknown_sign = True
813
+
814
+ if saw_INF:
815
+ if len(saw_INF) > 1:
816
+ return
817
+ return saw_INF.pop()
818
+ elif unknown_sign:
819
+ return
820
+ elif not nonpos and not nonneg and pos:
821
+ return True
822
+ elif not nonpos and pos:
823
+ return True
824
+ elif not pos and not nonneg:
825
+ return False
826
+
827
+ def _eval_is_extended_nonnegative(self):
828
+ if not self.is_number:
829
+ c, a = self.as_coeff_Add()
830
+ if not c.is_zero and a.is_extended_nonnegative:
831
+ from .exprtools import _monotonic_sign
832
+ v = _monotonic_sign(a)
833
+ if v is not None:
834
+ s = v + c
835
+ if s != self and s.is_extended_nonnegative:
836
+ return True
837
+ if len(self.free_symbols) == 1:
838
+ v = _monotonic_sign(self)
839
+ if v is not None and v != self and v.is_extended_nonnegative:
840
+ return True
841
+
842
+ def _eval_is_extended_nonpositive(self):
843
+ if not self.is_number:
844
+ c, a = self.as_coeff_Add()
845
+ if not c.is_zero and a.is_extended_nonpositive:
846
+ from .exprtools import _monotonic_sign
847
+ v = _monotonic_sign(a)
848
+ if v is not None:
849
+ s = v + c
850
+ if s != self and s.is_extended_nonpositive:
851
+ return True
852
+ if len(self.free_symbols) == 1:
853
+ v = _monotonic_sign(self)
854
+ if v is not None and v != self and v.is_extended_nonpositive:
855
+ return True
856
+
857
+ def _eval_is_extended_negative(self):
858
+ if self.is_number:
859
+ return super()._eval_is_extended_negative()
860
+ c, a = self.as_coeff_Add()
861
+ if not c.is_zero:
862
+ from .exprtools import _monotonic_sign
863
+ v = _monotonic_sign(a)
864
+ if v is not None:
865
+ s = v + c
866
+ if s != self and s.is_extended_negative and a.is_extended_nonpositive:
867
+ return True
868
+ if len(self.free_symbols) == 1:
869
+ v = _monotonic_sign(self)
870
+ if v is not None and v != self and v.is_extended_negative:
871
+ return True
872
+ neg = nonpos = nonneg = unknown_sign = False
873
+ saw_INF = set()
874
+ args = [a for a in self.args if not a.is_zero]
875
+ if not args:
876
+ return False
877
+ for a in args:
878
+ isneg = a.is_extended_negative
879
+ infinite = a.is_infinite
880
+ if infinite:
881
+ saw_INF.add(fuzzy_or((isneg, a.is_extended_nonpositive)))
882
+ if True in saw_INF and False in saw_INF:
883
+ return
884
+ if isneg:
885
+ neg = True
886
+ continue
887
+ elif a.is_extended_nonpositive:
888
+ nonpos = True
889
+ continue
890
+ elif a.is_extended_nonnegative:
891
+ nonneg = True
892
+ continue
893
+
894
+ if infinite is None:
895
+ return
896
+ unknown_sign = True
897
+
898
+ if saw_INF:
899
+ if len(saw_INF) > 1:
900
+ return
901
+ return saw_INF.pop()
902
+ elif unknown_sign:
903
+ return
904
+ elif not nonneg and not nonpos and neg:
905
+ return True
906
+ elif not nonneg and neg:
907
+ return True
908
+ elif not neg and not nonpos:
909
+ return False
910
+
911
+ def _eval_subs(self, old, new):
912
+ if not old.is_Add:
913
+ if old is S.Infinity and -old in self.args:
914
+ # foo - oo is foo + (-oo) internally
915
+ return self.xreplace({-old: -new})
916
+ return None
917
+
918
+ coeff_self, terms_self = self.as_coeff_Add()
919
+ coeff_old, terms_old = old.as_coeff_Add()
920
+
921
+ if coeff_self.is_Rational and coeff_old.is_Rational:
922
+ if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y
923
+ return self.func(new, coeff_self, -coeff_old)
924
+ if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y
925
+ return self.func(-new, coeff_self, coeff_old)
926
+
927
+ if coeff_self.is_Rational and coeff_old.is_Rational \
928
+ or coeff_self == coeff_old:
929
+ args_old, args_self = self.func.make_args(
930
+ terms_old), self.func.make_args(terms_self)
931
+ if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x
932
+ self_set = set(args_self)
933
+ old_set = set(args_old)
934
+
935
+ if old_set < self_set:
936
+ ret_set = self_set - old_set
937
+ return self.func(new, coeff_self, -coeff_old,
938
+ *[s._subs(old, new) for s in ret_set])
939
+
940
+ args_old = self.func.make_args(
941
+ -terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d
942
+ old_set = set(args_old)
943
+ if old_set < self_set:
944
+ ret_set = self_set - old_set
945
+ return self.func(-new, coeff_self, coeff_old,
946
+ *[s._subs(old, new) for s in ret_set])
947
+
948
+ def removeO(self):
949
+ args = [a for a in self.args if not a.is_Order]
950
+ return self._new_rawargs(*args)
951
+
952
+ def getO(self):
953
+ args = [a for a in self.args if a.is_Order]
954
+ if args:
955
+ return self._new_rawargs(*args)
956
+
957
+ @cacheit
958
+ def extract_leading_order(self, symbols, point=None):
959
+ """
960
+ Returns the leading term and its order.
961
+
962
+ Examples
963
+ ========
964
+
965
+ >>> from sympy.abc import x
966
+ >>> (x + 1 + 1/x**5).extract_leading_order(x)
967
+ ((x**(-5), O(x**(-5))),)
968
+ >>> (1 + x).extract_leading_order(x)
969
+ ((1, O(1)),)
970
+ >>> (x + x**2).extract_leading_order(x)
971
+ ((x, O(x)),)
972
+
973
+ """
974
+ from sympy.series.order import Order
975
+ lst = []
976
+ symbols = list(symbols if is_sequence(symbols) else [symbols])
977
+ if not point:
978
+ point = [0]*len(symbols)
979
+ seq = [(f, Order(f, *zip(symbols, point))) for f in self.args]
980
+ for ef, of in seq:
981
+ for e, o in lst:
982
+ if o.contains(of) and o != of:
983
+ of = None
984
+ break
985
+ if of is None:
986
+ continue
987
+ new_lst = [(ef, of)]
988
+ for e, o in lst:
989
+ if of.contains(o) and o != of:
990
+ continue
991
+ new_lst.append((e, o))
992
+ lst = new_lst
993
+ return tuple(lst)
994
+
995
+ def as_real_imag(self, deep=True, **hints):
996
+ """
997
+ Return a tuple representing a complex number.
998
+
999
+ Examples
1000
+ ========
1001
+
1002
+ >>> from sympy import I
1003
+ >>> (7 + 9*I).as_real_imag()
1004
+ (7, 9)
1005
+ >>> ((1 + I)/(1 - I)).as_real_imag()
1006
+ (0, 1)
1007
+ >>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
1008
+ (-5, 5)
1009
+ """
1010
+ sargs = self.args
1011
+ re_part, im_part = [], []
1012
+ for term in sargs:
1013
+ re, im = term.as_real_imag(deep=deep)
1014
+ re_part.append(re)
1015
+ im_part.append(im)
1016
+ return (self.func(*re_part), self.func(*im_part))
1017
+
1018
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
1019
+ from sympy.core.symbol import Dummy, Symbol
1020
+ from sympy.series.order import Order
1021
+ from sympy.functions.elementary.exponential import log
1022
+ from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
1023
+ from .function import expand_mul
1024
+
1025
+ o = self.getO()
1026
+ if o is None:
1027
+ o = Order(0)
1028
+ old = self.removeO()
1029
+
1030
+ if old.has(Piecewise):
1031
+ old = piecewise_fold(old)
1032
+
1033
+ # This expansion is the last part of expand_log. expand_log also calls
1034
+ # expand_mul with factor=True, which would be more expensive
1035
+ if any(isinstance(a, log) for a in self.args):
1036
+ logflags = {"deep": True, "log": True, "mul": False, "power_exp": False,
1037
+ "power_base": False, "multinomial": False, "basic": False, "force": False,
1038
+ "factor": False}
1039
+ old = old.expand(**logflags)
1040
+ expr = expand_mul(old)
1041
+
1042
+ if not expr.is_Add:
1043
+ return expr.as_leading_term(x, logx=logx, cdir=cdir)
1044
+
1045
+ infinite = [t for t in expr.args if t.is_infinite]
1046
+
1047
+ _logx = Dummy('logx') if logx is None else logx
1048
+ leading_terms = [t.as_leading_term(x, logx=_logx, cdir=cdir) for t in expr.args]
1049
+
1050
+ min, new_expr = Order(0), 0
1051
+
1052
+ try:
1053
+ for term in leading_terms:
1054
+ order = Order(term, x)
1055
+ if not min or order not in min:
1056
+ min = order
1057
+ new_expr = term
1058
+ elif min in order:
1059
+ new_expr += term
1060
+
1061
+ except TypeError:
1062
+ return expr
1063
+
1064
+ if logx is None:
1065
+ new_expr = new_expr.subs(_logx, log(x))
1066
+
1067
+ is_zero = new_expr.is_zero
1068
+ if is_zero is None:
1069
+ new_expr = new_expr.trigsimp().cancel()
1070
+ is_zero = new_expr.is_zero
1071
+ if is_zero is True:
1072
+ # simple leading term analysis gave us cancelled terms but we have to send
1073
+ # back a term, so compute the leading term (via series)
1074
+ try:
1075
+ n0 = min.getn()
1076
+ except NotImplementedError:
1077
+ n0 = S.One
1078
+ if n0.has(Symbol):
1079
+ n0 = S.One
1080
+ res = Order(1)
1081
+ incr = S.One
1082
+ while res.is_Order:
1083
+ res = old._eval_nseries(x, n=n0+incr, logx=logx, cdir=cdir).cancel().powsimp().trigsimp()
1084
+ incr *= 2
1085
+ return res.as_leading_term(x, logx=logx, cdir=cdir)
1086
+
1087
+ elif new_expr is S.NaN:
1088
+ return old.func._from_args(infinite) + o
1089
+
1090
+ else:
1091
+ return new_expr
1092
+
1093
+ def _eval_adjoint(self):
1094
+ return self.func(*[t.adjoint() for t in self.args])
1095
+
1096
+ def _eval_conjugate(self):
1097
+ return self.func(*[t.conjugate() for t in self.args])
1098
+
1099
+ def _eval_transpose(self):
1100
+ return self.func(*[t.transpose() for t in self.args])
1101
+
1102
+ def primitive(self):
1103
+ """
1104
+ Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```.
1105
+
1106
+ ``R`` is collected only from the leading coefficient of each term.
1107
+
1108
+ Examples
1109
+ ========
1110
+
1111
+ >>> from sympy.abc import x, y
1112
+
1113
+ >>> (2*x + 4*y).primitive()
1114
+ (2, x + 2*y)
1115
+
1116
+ >>> (2*x/3 + 4*y/9).primitive()
1117
+ (2/9, 3*x + 2*y)
1118
+
1119
+ >>> (2*x/3 + 4.2*y).primitive()
1120
+ (1/3, 2*x + 12.6*y)
1121
+
1122
+ No subprocessing of term factors is performed:
1123
+
1124
+ >>> ((2 + 2*x)*x + 2).primitive()
1125
+ (1, x*(2*x + 2) + 2)
1126
+
1127
+ Recursive processing can be done with the ``as_content_primitive()``
1128
+ method:
1129
+
1130
+ >>> ((2 + 2*x)*x + 2).as_content_primitive()
1131
+ (2, x*(x + 1) + 1)
1132
+
1133
+ See also: primitive() function in polytools.py
1134
+
1135
+ """
1136
+
1137
+ terms = []
1138
+ inf = False
1139
+ for a in self.args:
1140
+ c, m = a.as_coeff_Mul()
1141
+ if not c.is_Rational:
1142
+ c = S.One
1143
+ m = a
1144
+ inf = inf or m is S.ComplexInfinity
1145
+ terms.append((c.p, c.q, m))
1146
+
1147
+ if not inf:
1148
+ ngcd = reduce(igcd, [t[0] for t in terms], 0)
1149
+ dlcm = reduce(ilcm, [t[1] for t in terms], 1)
1150
+ else:
1151
+ ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0)
1152
+ dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1)
1153
+
1154
+ if ngcd == dlcm == 1:
1155
+ return S.One, self
1156
+ if not inf:
1157
+ for i, (p, q, term) in enumerate(terms):
1158
+ terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
1159
+ else:
1160
+ for i, (p, q, term) in enumerate(terms):
1161
+ if q:
1162
+ terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
1163
+ else:
1164
+ terms[i] = _keep_coeff(Rational(p, q), term)
1165
+
1166
+ # we don't need a complete re-flattening since no new terms will join
1167
+ # so we just use the same sort as is used in Add.flatten. When the
1168
+ # coefficient changes, the ordering of terms may change, e.g.
1169
+ # (3*x, 6*y) -> (2*y, x)
1170
+ #
1171
+ # We do need to make sure that term[0] stays in position 0, however.
1172
+ #
1173
+ if terms[0].is_Number or terms[0] is S.ComplexInfinity:
1174
+ c = terms.pop(0)
1175
+ else:
1176
+ c = None
1177
+ _addsort(terms)
1178
+ if c:
1179
+ terms.insert(0, c)
1180
+ return Rational(ngcd, dlcm), self._new_rawargs(*terms)
1181
+
1182
+ def as_content_primitive(self, radical=False, clear=True):
1183
+ """Return the tuple (R, self/R) where R is the positive Rational
1184
+ extracted from self. If radical is True (default is False) then
1185
+ common radicals will be removed and included as a factor of the
1186
+ primitive expression.
1187
+
1188
+ Examples
1189
+ ========
1190
+
1191
+ >>> from sympy import sqrt
1192
+ >>> (3 + 3*sqrt(2)).as_content_primitive()
1193
+ (3, 1 + sqrt(2))
1194
+
1195
+ Radical content can also be factored out of the primitive:
1196
+
1197
+ >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
1198
+ (2, sqrt(2)*(1 + 2*sqrt(5)))
1199
+
1200
+ See docstring of Expr.as_content_primitive for more examples.
1201
+ """
1202
+ con, prim = self.func(*[_keep_coeff(*a.as_content_primitive(
1203
+ radical=radical, clear=clear)) for a in self.args]).primitive()
1204
+ if not clear and not con.is_Integer and prim.is_Add:
1205
+ con, d = con.as_numer_denom()
1206
+ _p = prim/d
1207
+ if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args):
1208
+ prim = _p
1209
+ else:
1210
+ con /= d
1211
+ if radical and prim.is_Add:
1212
+ # look for common radicals that can be removed
1213
+ args = prim.args
1214
+ rads = []
1215
+ common_q = None
1216
+ for m in args:
1217
+ term_rads = defaultdict(list)
1218
+ for ai in Mul.make_args(m):
1219
+ if ai.is_Pow:
1220
+ b, e = ai.as_base_exp()
1221
+ if e.is_Rational and b.is_Integer:
1222
+ term_rads[e.q].append(abs(int(b))**e.p)
1223
+ if not term_rads:
1224
+ break
1225
+ if common_q is None:
1226
+ common_q = set(term_rads.keys())
1227
+ else:
1228
+ common_q = common_q & set(term_rads.keys())
1229
+ if not common_q:
1230
+ break
1231
+ rads.append(term_rads)
1232
+ else:
1233
+ # process rads
1234
+ # keep only those in common_q
1235
+ for r in rads:
1236
+ for q in list(r.keys()):
1237
+ if q not in common_q:
1238
+ r.pop(q)
1239
+ for q in r:
1240
+ r[q] = Mul(*r[q])
1241
+ # find the gcd of bases for each q
1242
+ G = []
1243
+ for q in common_q:
1244
+ g = reduce(igcd, [r[q] for r in rads], 0)
1245
+ if g != 1:
1246
+ G.append(g**Rational(1, q))
1247
+ if G:
1248
+ G = Mul(*G)
1249
+ args = [ai/G for ai in args]
1250
+ prim = G*prim.func(*args)
1251
+
1252
+ return con, prim
1253
+
1254
+ @property
1255
+ def _sorted_args(self):
1256
+ from .sorting import default_sort_key
1257
+ return tuple(sorted(self.args, key=default_sort_key))
1258
+
1259
+ def _eval_difference_delta(self, n, step):
1260
+ from sympy.series.limitseq import difference_delta as dd
1261
+ return self.func(*[dd(a, n, step) for a in self.args])
1262
+
1263
+ @property
1264
+ def _mpc_(self):
1265
+ """
1266
+ Convert self to an mpmath mpc if possible
1267
+ """
1268
+ from .numbers import Float
1269
+ re_part, rest = self.as_coeff_Add()
1270
+ im_part, imag_unit = rest.as_coeff_Mul()
1271
+ if not imag_unit == S.ImaginaryUnit:
1272
+ # ValueError may seem more reasonable but since it's a @property,
1273
+ # we need to use AttributeError to keep from confusing things like
1274
+ # hasattr.
1275
+ raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I")
1276
+
1277
+ return (Float(re_part)._mpf_, Float(im_part)._mpf_)
1278
+
1279
+ def __neg__(self):
1280
+ if not global_parameters.distribute:
1281
+ return super().__neg__()
1282
+ return Mul(S.NegativeOne, self)
1283
+
1284
+ add = AssocOpDispatcher('add')
1285
+
1286
+ from .mul import Mul, _keep_coeff, _unevaluated_Mul
1287
+ from .numbers import Rational
env-llmeval/lib/python3.10/site-packages/sympy/core/alphabets.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ greeks = ('alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta',
2
+ 'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu',
3
+ 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon',
4
+ 'phi', 'chi', 'psi', 'omega')
env-llmeval/lib/python3.10/site-packages/sympy/core/assumptions_generated.py ADDED
@@ -0,0 +1,1615 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Do NOT manually edit this file.
3
+ Instead, run ./bin/ask_update.py.
4
+ """
5
+
6
+ defined_facts = [
7
+ 'algebraic',
8
+ 'antihermitian',
9
+ 'commutative',
10
+ 'complex',
11
+ 'composite',
12
+ 'even',
13
+ 'extended_negative',
14
+ 'extended_nonnegative',
15
+ 'extended_nonpositive',
16
+ 'extended_nonzero',
17
+ 'extended_positive',
18
+ 'extended_real',
19
+ 'finite',
20
+ 'hermitian',
21
+ 'imaginary',
22
+ 'infinite',
23
+ 'integer',
24
+ 'irrational',
25
+ 'negative',
26
+ 'noninteger',
27
+ 'nonnegative',
28
+ 'nonpositive',
29
+ 'nonzero',
30
+ 'odd',
31
+ 'positive',
32
+ 'prime',
33
+ 'rational',
34
+ 'real',
35
+ 'transcendental',
36
+ 'zero',
37
+ ] # defined_facts
38
+
39
+
40
+ full_implications = dict( [
41
+ # Implications of algebraic = True:
42
+ (('algebraic', True), set( (
43
+ ('commutative', True),
44
+ ('complex', True),
45
+ ('finite', True),
46
+ ('infinite', False),
47
+ ('transcendental', False),
48
+ ) ),
49
+ ),
50
+ # Implications of algebraic = False:
51
+ (('algebraic', False), set( (
52
+ ('composite', False),
53
+ ('even', False),
54
+ ('integer', False),
55
+ ('odd', False),
56
+ ('prime', False),
57
+ ('rational', False),
58
+ ('zero', False),
59
+ ) ),
60
+ ),
61
+ # Implications of antihermitian = True:
62
+ (('antihermitian', True), set( (
63
+ ) ),
64
+ ),
65
+ # Implications of antihermitian = False:
66
+ (('antihermitian', False), set( (
67
+ ('imaginary', False),
68
+ ) ),
69
+ ),
70
+ # Implications of commutative = True:
71
+ (('commutative', True), set( (
72
+ ) ),
73
+ ),
74
+ # Implications of commutative = False:
75
+ (('commutative', False), set( (
76
+ ('algebraic', False),
77
+ ('complex', False),
78
+ ('composite', False),
79
+ ('even', False),
80
+ ('extended_negative', False),
81
+ ('extended_nonnegative', False),
82
+ ('extended_nonpositive', False),
83
+ ('extended_nonzero', False),
84
+ ('extended_positive', False),
85
+ ('extended_real', False),
86
+ ('imaginary', False),
87
+ ('integer', False),
88
+ ('irrational', False),
89
+ ('negative', False),
90
+ ('noninteger', False),
91
+ ('nonnegative', False),
92
+ ('nonpositive', False),
93
+ ('nonzero', False),
94
+ ('odd', False),
95
+ ('positive', False),
96
+ ('prime', False),
97
+ ('rational', False),
98
+ ('real', False),
99
+ ('transcendental', False),
100
+ ('zero', False),
101
+ ) ),
102
+ ),
103
+ # Implications of complex = True:
104
+ (('complex', True), set( (
105
+ ('commutative', True),
106
+ ('finite', True),
107
+ ('infinite', False),
108
+ ) ),
109
+ ),
110
+ # Implications of complex = False:
111
+ (('complex', False), set( (
112
+ ('algebraic', False),
113
+ ('composite', False),
114
+ ('even', False),
115
+ ('imaginary', False),
116
+ ('integer', False),
117
+ ('irrational', False),
118
+ ('negative', False),
119
+ ('nonnegative', False),
120
+ ('nonpositive', False),
121
+ ('nonzero', False),
122
+ ('odd', False),
123
+ ('positive', False),
124
+ ('prime', False),
125
+ ('rational', False),
126
+ ('real', False),
127
+ ('transcendental', False),
128
+ ('zero', False),
129
+ ) ),
130
+ ),
131
+ # Implications of composite = True:
132
+ (('composite', True), set( (
133
+ ('algebraic', True),
134
+ ('commutative', True),
135
+ ('complex', True),
136
+ ('extended_negative', False),
137
+ ('extended_nonnegative', True),
138
+ ('extended_nonpositive', False),
139
+ ('extended_nonzero', True),
140
+ ('extended_positive', True),
141
+ ('extended_real', True),
142
+ ('finite', True),
143
+ ('hermitian', True),
144
+ ('imaginary', False),
145
+ ('infinite', False),
146
+ ('integer', True),
147
+ ('irrational', False),
148
+ ('negative', False),
149
+ ('noninteger', False),
150
+ ('nonnegative', True),
151
+ ('nonpositive', False),
152
+ ('nonzero', True),
153
+ ('positive', True),
154
+ ('prime', False),
155
+ ('rational', True),
156
+ ('real', True),
157
+ ('transcendental', False),
158
+ ('zero', False),
159
+ ) ),
160
+ ),
161
+ # Implications of composite = False:
162
+ (('composite', False), set( (
163
+ ) ),
164
+ ),
165
+ # Implications of even = True:
166
+ (('even', True), set( (
167
+ ('algebraic', True),
168
+ ('commutative', True),
169
+ ('complex', True),
170
+ ('extended_real', True),
171
+ ('finite', True),
172
+ ('hermitian', True),
173
+ ('imaginary', False),
174
+ ('infinite', False),
175
+ ('integer', True),
176
+ ('irrational', False),
177
+ ('noninteger', False),
178
+ ('odd', False),
179
+ ('rational', True),
180
+ ('real', True),
181
+ ('transcendental', False),
182
+ ) ),
183
+ ),
184
+ # Implications of even = False:
185
+ (('even', False), set( (
186
+ ('zero', False),
187
+ ) ),
188
+ ),
189
+ # Implications of extended_negative = True:
190
+ (('extended_negative', True), set( (
191
+ ('commutative', True),
192
+ ('composite', False),
193
+ ('extended_nonnegative', False),
194
+ ('extended_nonpositive', True),
195
+ ('extended_nonzero', True),
196
+ ('extended_positive', False),
197
+ ('extended_real', True),
198
+ ('imaginary', False),
199
+ ('nonnegative', False),
200
+ ('positive', False),
201
+ ('prime', False),
202
+ ('zero', False),
203
+ ) ),
204
+ ),
205
+ # Implications of extended_negative = False:
206
+ (('extended_negative', False), set( (
207
+ ('negative', False),
208
+ ) ),
209
+ ),
210
+ # Implications of extended_nonnegative = True:
211
+ (('extended_nonnegative', True), set( (
212
+ ('commutative', True),
213
+ ('extended_negative', False),
214
+ ('extended_real', True),
215
+ ('imaginary', False),
216
+ ('negative', False),
217
+ ) ),
218
+ ),
219
+ # Implications of extended_nonnegative = False:
220
+ (('extended_nonnegative', False), set( (
221
+ ('composite', False),
222
+ ('extended_positive', False),
223
+ ('nonnegative', False),
224
+ ('positive', False),
225
+ ('prime', False),
226
+ ('zero', False),
227
+ ) ),
228
+ ),
229
+ # Implications of extended_nonpositive = True:
230
+ (('extended_nonpositive', True), set( (
231
+ ('commutative', True),
232
+ ('composite', False),
233
+ ('extended_positive', False),
234
+ ('extended_real', True),
235
+ ('imaginary', False),
236
+ ('positive', False),
237
+ ('prime', False),
238
+ ) ),
239
+ ),
240
+ # Implications of extended_nonpositive = False:
241
+ (('extended_nonpositive', False), set( (
242
+ ('extended_negative', False),
243
+ ('negative', False),
244
+ ('nonpositive', False),
245
+ ('zero', False),
246
+ ) ),
247
+ ),
248
+ # Implications of extended_nonzero = True:
249
+ (('extended_nonzero', True), set( (
250
+ ('commutative', True),
251
+ ('extended_real', True),
252
+ ('imaginary', False),
253
+ ('zero', False),
254
+ ) ),
255
+ ),
256
+ # Implications of extended_nonzero = False:
257
+ (('extended_nonzero', False), set( (
258
+ ('composite', False),
259
+ ('extended_negative', False),
260
+ ('extended_positive', False),
261
+ ('negative', False),
262
+ ('nonzero', False),
263
+ ('positive', False),
264
+ ('prime', False),
265
+ ) ),
266
+ ),
267
+ # Implications of extended_positive = True:
268
+ (('extended_positive', True), set( (
269
+ ('commutative', True),
270
+ ('extended_negative', False),
271
+ ('extended_nonnegative', True),
272
+ ('extended_nonpositive', False),
273
+ ('extended_nonzero', True),
274
+ ('extended_real', True),
275
+ ('imaginary', False),
276
+ ('negative', False),
277
+ ('nonpositive', False),
278
+ ('zero', False),
279
+ ) ),
280
+ ),
281
+ # Implications of extended_positive = False:
282
+ (('extended_positive', False), set( (
283
+ ('composite', False),
284
+ ('positive', False),
285
+ ('prime', False),
286
+ ) ),
287
+ ),
288
+ # Implications of extended_real = True:
289
+ (('extended_real', True), set( (
290
+ ('commutative', True),
291
+ ('imaginary', False),
292
+ ) ),
293
+ ),
294
+ # Implications of extended_real = False:
295
+ (('extended_real', False), set( (
296
+ ('composite', False),
297
+ ('even', False),
298
+ ('extended_negative', False),
299
+ ('extended_nonnegative', False),
300
+ ('extended_nonpositive', False),
301
+ ('extended_nonzero', False),
302
+ ('extended_positive', False),
303
+ ('integer', False),
304
+ ('irrational', False),
305
+ ('negative', False),
306
+ ('noninteger', False),
307
+ ('nonnegative', False),
308
+ ('nonpositive', False),
309
+ ('nonzero', False),
310
+ ('odd', False),
311
+ ('positive', False),
312
+ ('prime', False),
313
+ ('rational', False),
314
+ ('real', False),
315
+ ('zero', False),
316
+ ) ),
317
+ ),
318
+ # Implications of finite = True:
319
+ (('finite', True), set( (
320
+ ('infinite', False),
321
+ ) ),
322
+ ),
323
+ # Implications of finite = False:
324
+ (('finite', False), set( (
325
+ ('algebraic', False),
326
+ ('complex', False),
327
+ ('composite', False),
328
+ ('even', False),
329
+ ('imaginary', False),
330
+ ('infinite', True),
331
+ ('integer', False),
332
+ ('irrational', False),
333
+ ('negative', False),
334
+ ('nonnegative', False),
335
+ ('nonpositive', False),
336
+ ('nonzero', False),
337
+ ('odd', False),
338
+ ('positive', False),
339
+ ('prime', False),
340
+ ('rational', False),
341
+ ('real', False),
342
+ ('transcendental', False),
343
+ ('zero', False),
344
+ ) ),
345
+ ),
346
+ # Implications of hermitian = True:
347
+ (('hermitian', True), set( (
348
+ ) ),
349
+ ),
350
+ # Implications of hermitian = False:
351
+ (('hermitian', False), set( (
352
+ ('composite', False),
353
+ ('even', False),
354
+ ('integer', False),
355
+ ('irrational', False),
356
+ ('negative', False),
357
+ ('nonnegative', False),
358
+ ('nonpositive', False),
359
+ ('nonzero', False),
360
+ ('odd', False),
361
+ ('positive', False),
362
+ ('prime', False),
363
+ ('rational', False),
364
+ ('real', False),
365
+ ('zero', False),
366
+ ) ),
367
+ ),
368
+ # Implications of imaginary = True:
369
+ (('imaginary', True), set( (
370
+ ('antihermitian', True),
371
+ ('commutative', True),
372
+ ('complex', True),
373
+ ('composite', False),
374
+ ('even', False),
375
+ ('extended_negative', False),
376
+ ('extended_nonnegative', False),
377
+ ('extended_nonpositive', False),
378
+ ('extended_nonzero', False),
379
+ ('extended_positive', False),
380
+ ('extended_real', False),
381
+ ('finite', True),
382
+ ('infinite', False),
383
+ ('integer', False),
384
+ ('irrational', False),
385
+ ('negative', False),
386
+ ('noninteger', False),
387
+ ('nonnegative', False),
388
+ ('nonpositive', False),
389
+ ('nonzero', False),
390
+ ('odd', False),
391
+ ('positive', False),
392
+ ('prime', False),
393
+ ('rational', False),
394
+ ('real', False),
395
+ ('zero', False),
396
+ ) ),
397
+ ),
398
+ # Implications of imaginary = False:
399
+ (('imaginary', False), set( (
400
+ ) ),
401
+ ),
402
+ # Implications of infinite = True:
403
+ (('infinite', True), set( (
404
+ ('algebraic', False),
405
+ ('complex', False),
406
+ ('composite', False),
407
+ ('even', False),
408
+ ('finite', False),
409
+ ('imaginary', False),
410
+ ('integer', False),
411
+ ('irrational', False),
412
+ ('negative', False),
413
+ ('nonnegative', False),
414
+ ('nonpositive', False),
415
+ ('nonzero', False),
416
+ ('odd', False),
417
+ ('positive', False),
418
+ ('prime', False),
419
+ ('rational', False),
420
+ ('real', False),
421
+ ('transcendental', False),
422
+ ('zero', False),
423
+ ) ),
424
+ ),
425
+ # Implications of infinite = False:
426
+ (('infinite', False), set( (
427
+ ('finite', True),
428
+ ) ),
429
+ ),
430
+ # Implications of integer = True:
431
+ (('integer', True), set( (
432
+ ('algebraic', True),
433
+ ('commutative', True),
434
+ ('complex', True),
435
+ ('extended_real', True),
436
+ ('finite', True),
437
+ ('hermitian', True),
438
+ ('imaginary', False),
439
+ ('infinite', False),
440
+ ('irrational', False),
441
+ ('noninteger', False),
442
+ ('rational', True),
443
+ ('real', True),
444
+ ('transcendental', False),
445
+ ) ),
446
+ ),
447
+ # Implications of integer = False:
448
+ (('integer', False), set( (
449
+ ('composite', False),
450
+ ('even', False),
451
+ ('odd', False),
452
+ ('prime', False),
453
+ ('zero', False),
454
+ ) ),
455
+ ),
456
+ # Implications of irrational = True:
457
+ (('irrational', True), set( (
458
+ ('commutative', True),
459
+ ('complex', True),
460
+ ('composite', False),
461
+ ('even', False),
462
+ ('extended_nonzero', True),
463
+ ('extended_real', True),
464
+ ('finite', True),
465
+ ('hermitian', True),
466
+ ('imaginary', False),
467
+ ('infinite', False),
468
+ ('integer', False),
469
+ ('noninteger', True),
470
+ ('nonzero', True),
471
+ ('odd', False),
472
+ ('prime', False),
473
+ ('rational', False),
474
+ ('real', True),
475
+ ('zero', False),
476
+ ) ),
477
+ ),
478
+ # Implications of irrational = False:
479
+ (('irrational', False), set( (
480
+ ) ),
481
+ ),
482
+ # Implications of negative = True:
483
+ (('negative', True), set( (
484
+ ('commutative', True),
485
+ ('complex', True),
486
+ ('composite', False),
487
+ ('extended_negative', True),
488
+ ('extended_nonnegative', False),
489
+ ('extended_nonpositive', True),
490
+ ('extended_nonzero', True),
491
+ ('extended_positive', False),
492
+ ('extended_real', True),
493
+ ('finite', True),
494
+ ('hermitian', True),
495
+ ('imaginary', False),
496
+ ('infinite', False),
497
+ ('nonnegative', False),
498
+ ('nonpositive', True),
499
+ ('nonzero', True),
500
+ ('positive', False),
501
+ ('prime', False),
502
+ ('real', True),
503
+ ('zero', False),
504
+ ) ),
505
+ ),
506
+ # Implications of negative = False:
507
+ (('negative', False), set( (
508
+ ) ),
509
+ ),
510
+ # Implications of noninteger = True:
511
+ (('noninteger', True), set( (
512
+ ('commutative', True),
513
+ ('composite', False),
514
+ ('even', False),
515
+ ('extended_nonzero', True),
516
+ ('extended_real', True),
517
+ ('imaginary', False),
518
+ ('integer', False),
519
+ ('odd', False),
520
+ ('prime', False),
521
+ ('zero', False),
522
+ ) ),
523
+ ),
524
+ # Implications of noninteger = False:
525
+ (('noninteger', False), set( (
526
+ ) ),
527
+ ),
528
+ # Implications of nonnegative = True:
529
+ (('nonnegative', True), set( (
530
+ ('commutative', True),
531
+ ('complex', True),
532
+ ('extended_negative', False),
533
+ ('extended_nonnegative', True),
534
+ ('extended_real', True),
535
+ ('finite', True),
536
+ ('hermitian', True),
537
+ ('imaginary', False),
538
+ ('infinite', False),
539
+ ('negative', False),
540
+ ('real', True),
541
+ ) ),
542
+ ),
543
+ # Implications of nonnegative = False:
544
+ (('nonnegative', False), set( (
545
+ ('composite', False),
546
+ ('positive', False),
547
+ ('prime', False),
548
+ ('zero', False),
549
+ ) ),
550
+ ),
551
+ # Implications of nonpositive = True:
552
+ (('nonpositive', True), set( (
553
+ ('commutative', True),
554
+ ('complex', True),
555
+ ('composite', False),
556
+ ('extended_nonpositive', True),
557
+ ('extended_positive', False),
558
+ ('extended_real', True),
559
+ ('finite', True),
560
+ ('hermitian', True),
561
+ ('imaginary', False),
562
+ ('infinite', False),
563
+ ('positive', False),
564
+ ('prime', False),
565
+ ('real', True),
566
+ ) ),
567
+ ),
568
+ # Implications of nonpositive = False:
569
+ (('nonpositive', False), set( (
570
+ ('negative', False),
571
+ ('zero', False),
572
+ ) ),
573
+ ),
574
+ # Implications of nonzero = True:
575
+ (('nonzero', True), set( (
576
+ ('commutative', True),
577
+ ('complex', True),
578
+ ('extended_nonzero', True),
579
+ ('extended_real', True),
580
+ ('finite', True),
581
+ ('hermitian', True),
582
+ ('imaginary', False),
583
+ ('infinite', False),
584
+ ('real', True),
585
+ ('zero', False),
586
+ ) ),
587
+ ),
588
+ # Implications of nonzero = False:
589
+ (('nonzero', False), set( (
590
+ ('composite', False),
591
+ ('negative', False),
592
+ ('positive', False),
593
+ ('prime', False),
594
+ ) ),
595
+ ),
596
+ # Implications of odd = True:
597
+ (('odd', True), set( (
598
+ ('algebraic', True),
599
+ ('commutative', True),
600
+ ('complex', True),
601
+ ('even', False),
602
+ ('extended_nonzero', True),
603
+ ('extended_real', True),
604
+ ('finite', True),
605
+ ('hermitian', True),
606
+ ('imaginary', False),
607
+ ('infinite', False),
608
+ ('integer', True),
609
+ ('irrational', False),
610
+ ('noninteger', False),
611
+ ('nonzero', True),
612
+ ('rational', True),
613
+ ('real', True),
614
+ ('transcendental', False),
615
+ ('zero', False),
616
+ ) ),
617
+ ),
618
+ # Implications of odd = False:
619
+ (('odd', False), set( (
620
+ ) ),
621
+ ),
622
+ # Implications of positive = True:
623
+ (('positive', True), set( (
624
+ ('commutative', True),
625
+ ('complex', True),
626
+ ('extended_negative', False),
627
+ ('extended_nonnegative', True),
628
+ ('extended_nonpositive', False),
629
+ ('extended_nonzero', True),
630
+ ('extended_positive', True),
631
+ ('extended_real', True),
632
+ ('finite', True),
633
+ ('hermitian', True),
634
+ ('imaginary', False),
635
+ ('infinite', False),
636
+ ('negative', False),
637
+ ('nonnegative', True),
638
+ ('nonpositive', False),
639
+ ('nonzero', True),
640
+ ('real', True),
641
+ ('zero', False),
642
+ ) ),
643
+ ),
644
+ # Implications of positive = False:
645
+ (('positive', False), set( (
646
+ ('composite', False),
647
+ ('prime', False),
648
+ ) ),
649
+ ),
650
+ # Implications of prime = True:
651
+ (('prime', True), set( (
652
+ ('algebraic', True),
653
+ ('commutative', True),
654
+ ('complex', True),
655
+ ('composite', False),
656
+ ('extended_negative', False),
657
+ ('extended_nonnegative', True),
658
+ ('extended_nonpositive', False),
659
+ ('extended_nonzero', True),
660
+ ('extended_positive', True),
661
+ ('extended_real', True),
662
+ ('finite', True),
663
+ ('hermitian', True),
664
+ ('imaginary', False),
665
+ ('infinite', False),
666
+ ('integer', True),
667
+ ('irrational', False),
668
+ ('negative', False),
669
+ ('noninteger', False),
670
+ ('nonnegative', True),
671
+ ('nonpositive', False),
672
+ ('nonzero', True),
673
+ ('positive', True),
674
+ ('rational', True),
675
+ ('real', True),
676
+ ('transcendental', False),
677
+ ('zero', False),
678
+ ) ),
679
+ ),
680
+ # Implications of prime = False:
681
+ (('prime', False), set( (
682
+ ) ),
683
+ ),
684
+ # Implications of rational = True:
685
+ (('rational', True), set( (
686
+ ('algebraic', True),
687
+ ('commutative', True),
688
+ ('complex', True),
689
+ ('extended_real', True),
690
+ ('finite', True),
691
+ ('hermitian', True),
692
+ ('imaginary', False),
693
+ ('infinite', False),
694
+ ('irrational', False),
695
+ ('real', True),
696
+ ('transcendental', False),
697
+ ) ),
698
+ ),
699
+ # Implications of rational = False:
700
+ (('rational', False), set( (
701
+ ('composite', False),
702
+ ('even', False),
703
+ ('integer', False),
704
+ ('odd', False),
705
+ ('prime', False),
706
+ ('zero', False),
707
+ ) ),
708
+ ),
709
+ # Implications of real = True:
710
+ (('real', True), set( (
711
+ ('commutative', True),
712
+ ('complex', True),
713
+ ('extended_real', True),
714
+ ('finite', True),
715
+ ('hermitian', True),
716
+ ('imaginary', False),
717
+ ('infinite', False),
718
+ ) ),
719
+ ),
720
+ # Implications of real = False:
721
+ (('real', False), set( (
722
+ ('composite', False),
723
+ ('even', False),
724
+ ('integer', False),
725
+ ('irrational', False),
726
+ ('negative', False),
727
+ ('nonnegative', False),
728
+ ('nonpositive', False),
729
+ ('nonzero', False),
730
+ ('odd', False),
731
+ ('positive', False),
732
+ ('prime', False),
733
+ ('rational', False),
734
+ ('zero', False),
735
+ ) ),
736
+ ),
737
+ # Implications of transcendental = True:
738
+ (('transcendental', True), set( (
739
+ ('algebraic', False),
740
+ ('commutative', True),
741
+ ('complex', True),
742
+ ('composite', False),
743
+ ('even', False),
744
+ ('finite', True),
745
+ ('infinite', False),
746
+ ('integer', False),
747
+ ('odd', False),
748
+ ('prime', False),
749
+ ('rational', False),
750
+ ('zero', False),
751
+ ) ),
752
+ ),
753
+ # Implications of transcendental = False:
754
+ (('transcendental', False), set( (
755
+ ) ),
756
+ ),
757
+ # Implications of zero = True:
758
+ (('zero', True), set( (
759
+ ('algebraic', True),
760
+ ('commutative', True),
761
+ ('complex', True),
762
+ ('composite', False),
763
+ ('even', True),
764
+ ('extended_negative', False),
765
+ ('extended_nonnegative', True),
766
+ ('extended_nonpositive', True),
767
+ ('extended_nonzero', False),
768
+ ('extended_positive', False),
769
+ ('extended_real', True),
770
+ ('finite', True),
771
+ ('hermitian', True),
772
+ ('imaginary', False),
773
+ ('infinite', False),
774
+ ('integer', True),
775
+ ('irrational', False),
776
+ ('negative', False),
777
+ ('noninteger', False),
778
+ ('nonnegative', True),
779
+ ('nonpositive', True),
780
+ ('nonzero', False),
781
+ ('odd', False),
782
+ ('positive', False),
783
+ ('prime', False),
784
+ ('rational', True),
785
+ ('real', True),
786
+ ('transcendental', False),
787
+ ) ),
788
+ ),
789
+ # Implications of zero = False:
790
+ (('zero', False), set( (
791
+ ) ),
792
+ ),
793
+ ] ) # full_implications
794
+
795
+
796
+ prereq = {
797
+
798
+ # facts that could determine the value of algebraic
799
+ 'algebraic': {
800
+ 'commutative',
801
+ 'complex',
802
+ 'composite',
803
+ 'even',
804
+ 'finite',
805
+ 'infinite',
806
+ 'integer',
807
+ 'odd',
808
+ 'prime',
809
+ 'rational',
810
+ 'transcendental',
811
+ 'zero',
812
+ },
813
+
814
+ # facts that could determine the value of antihermitian
815
+ 'antihermitian': {
816
+ 'imaginary',
817
+ },
818
+
819
+ # facts that could determine the value of commutative
820
+ 'commutative': {
821
+ 'algebraic',
822
+ 'complex',
823
+ 'composite',
824
+ 'even',
825
+ 'extended_negative',
826
+ 'extended_nonnegative',
827
+ 'extended_nonpositive',
828
+ 'extended_nonzero',
829
+ 'extended_positive',
830
+ 'extended_real',
831
+ 'imaginary',
832
+ 'integer',
833
+ 'irrational',
834
+ 'negative',
835
+ 'noninteger',
836
+ 'nonnegative',
837
+ 'nonpositive',
838
+ 'nonzero',
839
+ 'odd',
840
+ 'positive',
841
+ 'prime',
842
+ 'rational',
843
+ 'real',
844
+ 'transcendental',
845
+ 'zero',
846
+ },
847
+
848
+ # facts that could determine the value of complex
849
+ 'complex': {
850
+ 'algebraic',
851
+ 'commutative',
852
+ 'composite',
853
+ 'even',
854
+ 'finite',
855
+ 'imaginary',
856
+ 'infinite',
857
+ 'integer',
858
+ 'irrational',
859
+ 'negative',
860
+ 'nonnegative',
861
+ 'nonpositive',
862
+ 'nonzero',
863
+ 'odd',
864
+ 'positive',
865
+ 'prime',
866
+ 'rational',
867
+ 'real',
868
+ 'transcendental',
869
+ 'zero',
870
+ },
871
+
872
+ # facts that could determine the value of composite
873
+ 'composite': {
874
+ 'algebraic',
875
+ 'commutative',
876
+ 'complex',
877
+ 'extended_negative',
878
+ 'extended_nonnegative',
879
+ 'extended_nonpositive',
880
+ 'extended_nonzero',
881
+ 'extended_positive',
882
+ 'extended_real',
883
+ 'finite',
884
+ 'hermitian',
885
+ 'imaginary',
886
+ 'infinite',
887
+ 'integer',
888
+ 'irrational',
889
+ 'negative',
890
+ 'noninteger',
891
+ 'nonnegative',
892
+ 'nonpositive',
893
+ 'nonzero',
894
+ 'positive',
895
+ 'prime',
896
+ 'rational',
897
+ 'real',
898
+ 'transcendental',
899
+ 'zero',
900
+ },
901
+
902
+ # facts that could determine the value of even
903
+ 'even': {
904
+ 'algebraic',
905
+ 'commutative',
906
+ 'complex',
907
+ 'extended_real',
908
+ 'finite',
909
+ 'hermitian',
910
+ 'imaginary',
911
+ 'infinite',
912
+ 'integer',
913
+ 'irrational',
914
+ 'noninteger',
915
+ 'odd',
916
+ 'rational',
917
+ 'real',
918
+ 'transcendental',
919
+ 'zero',
920
+ },
921
+
922
+ # facts that could determine the value of extended_negative
923
+ 'extended_negative': {
924
+ 'commutative',
925
+ 'composite',
926
+ 'extended_nonnegative',
927
+ 'extended_nonpositive',
928
+ 'extended_nonzero',
929
+ 'extended_positive',
930
+ 'extended_real',
931
+ 'imaginary',
932
+ 'negative',
933
+ 'nonnegative',
934
+ 'positive',
935
+ 'prime',
936
+ 'zero',
937
+ },
938
+
939
+ # facts that could determine the value of extended_nonnegative
940
+ 'extended_nonnegative': {
941
+ 'commutative',
942
+ 'composite',
943
+ 'extended_negative',
944
+ 'extended_positive',
945
+ 'extended_real',
946
+ 'imaginary',
947
+ 'negative',
948
+ 'nonnegative',
949
+ 'positive',
950
+ 'prime',
951
+ 'zero',
952
+ },
953
+
954
+ # facts that could determine the value of extended_nonpositive
955
+ 'extended_nonpositive': {
956
+ 'commutative',
957
+ 'composite',
958
+ 'extended_negative',
959
+ 'extended_positive',
960
+ 'extended_real',
961
+ 'imaginary',
962
+ 'negative',
963
+ 'nonpositive',
964
+ 'positive',
965
+ 'prime',
966
+ 'zero',
967
+ },
968
+
969
+ # facts that could determine the value of extended_nonzero
970
+ 'extended_nonzero': {
971
+ 'commutative',
972
+ 'composite',
973
+ 'extended_negative',
974
+ 'extended_positive',
975
+ 'extended_real',
976
+ 'imaginary',
977
+ 'irrational',
978
+ 'negative',
979
+ 'noninteger',
980
+ 'nonzero',
981
+ 'odd',
982
+ 'positive',
983
+ 'prime',
984
+ 'zero',
985
+ },
986
+
987
+ # facts that could determine the value of extended_positive
988
+ 'extended_positive': {
989
+ 'commutative',
990
+ 'composite',
991
+ 'extended_negative',
992
+ 'extended_nonnegative',
993
+ 'extended_nonpositive',
994
+ 'extended_nonzero',
995
+ 'extended_real',
996
+ 'imaginary',
997
+ 'negative',
998
+ 'nonpositive',
999
+ 'positive',
1000
+ 'prime',
1001
+ 'zero',
1002
+ },
1003
+
1004
+ # facts that could determine the value of extended_real
1005
+ 'extended_real': {
1006
+ 'commutative',
1007
+ 'composite',
1008
+ 'even',
1009
+ 'extended_negative',
1010
+ 'extended_nonnegative',
1011
+ 'extended_nonpositive',
1012
+ 'extended_nonzero',
1013
+ 'extended_positive',
1014
+ 'imaginary',
1015
+ 'integer',
1016
+ 'irrational',
1017
+ 'negative',
1018
+ 'noninteger',
1019
+ 'nonnegative',
1020
+ 'nonpositive',
1021
+ 'nonzero',
1022
+ 'odd',
1023
+ 'positive',
1024
+ 'prime',
1025
+ 'rational',
1026
+ 'real',
1027
+ 'zero',
1028
+ },
1029
+
1030
+ # facts that could determine the value of finite
1031
+ 'finite': {
1032
+ 'algebraic',
1033
+ 'complex',
1034
+ 'composite',
1035
+ 'even',
1036
+ 'imaginary',
1037
+ 'infinite',
1038
+ 'integer',
1039
+ 'irrational',
1040
+ 'negative',
1041
+ 'nonnegative',
1042
+ 'nonpositive',
1043
+ 'nonzero',
1044
+ 'odd',
1045
+ 'positive',
1046
+ 'prime',
1047
+ 'rational',
1048
+ 'real',
1049
+ 'transcendental',
1050
+ 'zero',
1051
+ },
1052
+
1053
+ # facts that could determine the value of hermitian
1054
+ 'hermitian': {
1055
+ 'composite',
1056
+ 'even',
1057
+ 'integer',
1058
+ 'irrational',
1059
+ 'negative',
1060
+ 'nonnegative',
1061
+ 'nonpositive',
1062
+ 'nonzero',
1063
+ 'odd',
1064
+ 'positive',
1065
+ 'prime',
1066
+ 'rational',
1067
+ 'real',
1068
+ 'zero',
1069
+ },
1070
+
1071
+ # facts that could determine the value of imaginary
1072
+ 'imaginary': {
1073
+ 'antihermitian',
1074
+ 'commutative',
1075
+ 'complex',
1076
+ 'composite',
1077
+ 'even',
1078
+ 'extended_negative',
1079
+ 'extended_nonnegative',
1080
+ 'extended_nonpositive',
1081
+ 'extended_nonzero',
1082
+ 'extended_positive',
1083
+ 'extended_real',
1084
+ 'finite',
1085
+ 'infinite',
1086
+ 'integer',
1087
+ 'irrational',
1088
+ 'negative',
1089
+ 'noninteger',
1090
+ 'nonnegative',
1091
+ 'nonpositive',
1092
+ 'nonzero',
1093
+ 'odd',
1094
+ 'positive',
1095
+ 'prime',
1096
+ 'rational',
1097
+ 'real',
1098
+ 'zero',
1099
+ },
1100
+
1101
+ # facts that could determine the value of infinite
1102
+ 'infinite': {
1103
+ 'algebraic',
1104
+ 'complex',
1105
+ 'composite',
1106
+ 'even',
1107
+ 'finite',
1108
+ 'imaginary',
1109
+ 'integer',
1110
+ 'irrational',
1111
+ 'negative',
1112
+ 'nonnegative',
1113
+ 'nonpositive',
1114
+ 'nonzero',
1115
+ 'odd',
1116
+ 'positive',
1117
+ 'prime',
1118
+ 'rational',
1119
+ 'real',
1120
+ 'transcendental',
1121
+ 'zero',
1122
+ },
1123
+
1124
+ # facts that could determine the value of integer
1125
+ 'integer': {
1126
+ 'algebraic',
1127
+ 'commutative',
1128
+ 'complex',
1129
+ 'composite',
1130
+ 'even',
1131
+ 'extended_real',
1132
+ 'finite',
1133
+ 'hermitian',
1134
+ 'imaginary',
1135
+ 'infinite',
1136
+ 'irrational',
1137
+ 'noninteger',
1138
+ 'odd',
1139
+ 'prime',
1140
+ 'rational',
1141
+ 'real',
1142
+ 'transcendental',
1143
+ 'zero',
1144
+ },
1145
+
1146
+ # facts that could determine the value of irrational
1147
+ 'irrational': {
1148
+ 'commutative',
1149
+ 'complex',
1150
+ 'composite',
1151
+ 'even',
1152
+ 'extended_real',
1153
+ 'finite',
1154
+ 'hermitian',
1155
+ 'imaginary',
1156
+ 'infinite',
1157
+ 'integer',
1158
+ 'odd',
1159
+ 'prime',
1160
+ 'rational',
1161
+ 'real',
1162
+ 'zero',
1163
+ },
1164
+
1165
+ # facts that could determine the value of negative
1166
+ 'negative': {
1167
+ 'commutative',
1168
+ 'complex',
1169
+ 'composite',
1170
+ 'extended_negative',
1171
+ 'extended_nonnegative',
1172
+ 'extended_nonpositive',
1173
+ 'extended_nonzero',
1174
+ 'extended_positive',
1175
+ 'extended_real',
1176
+ 'finite',
1177
+ 'hermitian',
1178
+ 'imaginary',
1179
+ 'infinite',
1180
+ 'nonnegative',
1181
+ 'nonpositive',
1182
+ 'nonzero',
1183
+ 'positive',
1184
+ 'prime',
1185
+ 'real',
1186
+ 'zero',
1187
+ },
1188
+
1189
+ # facts that could determine the value of noninteger
1190
+ 'noninteger': {
1191
+ 'commutative',
1192
+ 'composite',
1193
+ 'even',
1194
+ 'extended_real',
1195
+ 'imaginary',
1196
+ 'integer',
1197
+ 'irrational',
1198
+ 'odd',
1199
+ 'prime',
1200
+ 'zero',
1201
+ },
1202
+
1203
+ # facts that could determine the value of nonnegative
1204
+ 'nonnegative': {
1205
+ 'commutative',
1206
+ 'complex',
1207
+ 'composite',
1208
+ 'extended_negative',
1209
+ 'extended_nonnegative',
1210
+ 'extended_real',
1211
+ 'finite',
1212
+ 'hermitian',
1213
+ 'imaginary',
1214
+ 'infinite',
1215
+ 'negative',
1216
+ 'positive',
1217
+ 'prime',
1218
+ 'real',
1219
+ 'zero',
1220
+ },
1221
+
1222
+ # facts that could determine the value of nonpositive
1223
+ 'nonpositive': {
1224
+ 'commutative',
1225
+ 'complex',
1226
+ 'composite',
1227
+ 'extended_nonpositive',
1228
+ 'extended_positive',
1229
+ 'extended_real',
1230
+ 'finite',
1231
+ 'hermitian',
1232
+ 'imaginary',
1233
+ 'infinite',
1234
+ 'negative',
1235
+ 'positive',
1236
+ 'prime',
1237
+ 'real',
1238
+ 'zero',
1239
+ },
1240
+
1241
+ # facts that could determine the value of nonzero
1242
+ 'nonzero': {
1243
+ 'commutative',
1244
+ 'complex',
1245
+ 'composite',
1246
+ 'extended_nonzero',
1247
+ 'extended_real',
1248
+ 'finite',
1249
+ 'hermitian',
1250
+ 'imaginary',
1251
+ 'infinite',
1252
+ 'irrational',
1253
+ 'negative',
1254
+ 'odd',
1255
+ 'positive',
1256
+ 'prime',
1257
+ 'real',
1258
+ 'zero',
1259
+ },
1260
+
1261
+ # facts that could determine the value of odd
1262
+ 'odd': {
1263
+ 'algebraic',
1264
+ 'commutative',
1265
+ 'complex',
1266
+ 'even',
1267
+ 'extended_real',
1268
+ 'finite',
1269
+ 'hermitian',
1270
+ 'imaginary',
1271
+ 'infinite',
1272
+ 'integer',
1273
+ 'irrational',
1274
+ 'noninteger',
1275
+ 'rational',
1276
+ 'real',
1277
+ 'transcendental',
1278
+ 'zero',
1279
+ },
1280
+
1281
+ # facts that could determine the value of positive
1282
+ 'positive': {
1283
+ 'commutative',
1284
+ 'complex',
1285
+ 'composite',
1286
+ 'extended_negative',
1287
+ 'extended_nonnegative',
1288
+ 'extended_nonpositive',
1289
+ 'extended_nonzero',
1290
+ 'extended_positive',
1291
+ 'extended_real',
1292
+ 'finite',
1293
+ 'hermitian',
1294
+ 'imaginary',
1295
+ 'infinite',
1296
+ 'negative',
1297
+ 'nonnegative',
1298
+ 'nonpositive',
1299
+ 'nonzero',
1300
+ 'prime',
1301
+ 'real',
1302
+ 'zero',
1303
+ },
1304
+
1305
+ # facts that could determine the value of prime
1306
+ 'prime': {
1307
+ 'algebraic',
1308
+ 'commutative',
1309
+ 'complex',
1310
+ 'composite',
1311
+ 'extended_negative',
1312
+ 'extended_nonnegative',
1313
+ 'extended_nonpositive',
1314
+ 'extended_nonzero',
1315
+ 'extended_positive',
1316
+ 'extended_real',
1317
+ 'finite',
1318
+ 'hermitian',
1319
+ 'imaginary',
1320
+ 'infinite',
1321
+ 'integer',
1322
+ 'irrational',
1323
+ 'negative',
1324
+ 'noninteger',
1325
+ 'nonnegative',
1326
+ 'nonpositive',
1327
+ 'nonzero',
1328
+ 'positive',
1329
+ 'rational',
1330
+ 'real',
1331
+ 'transcendental',
1332
+ 'zero',
1333
+ },
1334
+
1335
+ # facts that could determine the value of rational
1336
+ 'rational': {
1337
+ 'algebraic',
1338
+ 'commutative',
1339
+ 'complex',
1340
+ 'composite',
1341
+ 'even',
1342
+ 'extended_real',
1343
+ 'finite',
1344
+ 'hermitian',
1345
+ 'imaginary',
1346
+ 'infinite',
1347
+ 'integer',
1348
+ 'irrational',
1349
+ 'odd',
1350
+ 'prime',
1351
+ 'real',
1352
+ 'transcendental',
1353
+ 'zero',
1354
+ },
1355
+
1356
+ # facts that could determine the value of real
1357
+ 'real': {
1358
+ 'commutative',
1359
+ 'complex',
1360
+ 'composite',
1361
+ 'even',
1362
+ 'extended_real',
1363
+ 'finite',
1364
+ 'hermitian',
1365
+ 'imaginary',
1366
+ 'infinite',
1367
+ 'integer',
1368
+ 'irrational',
1369
+ 'negative',
1370
+ 'nonnegative',
1371
+ 'nonpositive',
1372
+ 'nonzero',
1373
+ 'odd',
1374
+ 'positive',
1375
+ 'prime',
1376
+ 'rational',
1377
+ 'zero',
1378
+ },
1379
+
1380
+ # facts that could determine the value of transcendental
1381
+ 'transcendental': {
1382
+ 'algebraic',
1383
+ 'commutative',
1384
+ 'complex',
1385
+ 'composite',
1386
+ 'even',
1387
+ 'finite',
1388
+ 'infinite',
1389
+ 'integer',
1390
+ 'odd',
1391
+ 'prime',
1392
+ 'rational',
1393
+ 'zero',
1394
+ },
1395
+
1396
+ # facts that could determine the value of zero
1397
+ 'zero': {
1398
+ 'algebraic',
1399
+ 'commutative',
1400
+ 'complex',
1401
+ 'composite',
1402
+ 'even',
1403
+ 'extended_negative',
1404
+ 'extended_nonnegative',
1405
+ 'extended_nonpositive',
1406
+ 'extended_nonzero',
1407
+ 'extended_positive',
1408
+ 'extended_real',
1409
+ 'finite',
1410
+ 'hermitian',
1411
+ 'imaginary',
1412
+ 'infinite',
1413
+ 'integer',
1414
+ 'irrational',
1415
+ 'negative',
1416
+ 'noninteger',
1417
+ 'nonnegative',
1418
+ 'nonpositive',
1419
+ 'nonzero',
1420
+ 'odd',
1421
+ 'positive',
1422
+ 'prime',
1423
+ 'rational',
1424
+ 'real',
1425
+ 'transcendental',
1426
+ },
1427
+
1428
+ } # prereq
1429
+
1430
+
1431
+ # Note: the order of the beta rules is used in the beta_triggers
1432
+ beta_rules = [
1433
+
1434
+ # Rules implying composite = True
1435
+ ({('even', True), ('positive', True), ('prime', False)},
1436
+ ('composite', True)),
1437
+
1438
+ # Rules implying even = False
1439
+ ({('composite', False), ('positive', True), ('prime', False)},
1440
+ ('even', False)),
1441
+
1442
+ # Rules implying even = True
1443
+ ({('integer', True), ('odd', False)},
1444
+ ('even', True)),
1445
+
1446
+ # Rules implying extended_negative = True
1447
+ ({('extended_positive', False), ('extended_real', True), ('zero', False)},
1448
+ ('extended_negative', True)),
1449
+ ({('extended_nonpositive', True), ('extended_nonzero', True)},
1450
+ ('extended_negative', True)),
1451
+
1452
+ # Rules implying extended_nonnegative = True
1453
+ ({('extended_negative', False), ('extended_real', True)},
1454
+ ('extended_nonnegative', True)),
1455
+
1456
+ # Rules implying extended_nonpositive = True
1457
+ ({('extended_positive', False), ('extended_real', True)},
1458
+ ('extended_nonpositive', True)),
1459
+
1460
+ # Rules implying extended_nonzero = True
1461
+ ({('extended_real', True), ('zero', False)},
1462
+ ('extended_nonzero', True)),
1463
+
1464
+ # Rules implying extended_positive = True
1465
+ ({('extended_negative', False), ('extended_real', True), ('zero', False)},
1466
+ ('extended_positive', True)),
1467
+ ({('extended_nonnegative', True), ('extended_nonzero', True)},
1468
+ ('extended_positive', True)),
1469
+
1470
+ # Rules implying extended_real = False
1471
+ ({('infinite', False), ('real', False)},
1472
+ ('extended_real', False)),
1473
+ ({('extended_negative', False), ('extended_positive', False), ('zero', False)},
1474
+ ('extended_real', False)),
1475
+
1476
+ # Rules implying infinite = True
1477
+ ({('extended_real', True), ('real', False)},
1478
+ ('infinite', True)),
1479
+
1480
+ # Rules implying irrational = True
1481
+ ({('rational', False), ('real', True)},
1482
+ ('irrational', True)),
1483
+
1484
+ # Rules implying negative = True
1485
+ ({('positive', False), ('real', True), ('zero', False)},
1486
+ ('negative', True)),
1487
+ ({('nonpositive', True), ('nonzero', True)},
1488
+ ('negative', True)),
1489
+ ({('extended_negative', True), ('finite', True)},
1490
+ ('negative', True)),
1491
+
1492
+ # Rules implying noninteger = True
1493
+ ({('extended_real', True), ('integer', False)},
1494
+ ('noninteger', True)),
1495
+
1496
+ # Rules implying nonnegative = True
1497
+ ({('negative', False), ('real', True)},
1498
+ ('nonnegative', True)),
1499
+ ({('extended_nonnegative', True), ('finite', True)},
1500
+ ('nonnegative', True)),
1501
+
1502
+ # Rules implying nonpositive = True
1503
+ ({('positive', False), ('real', True)},
1504
+ ('nonpositive', True)),
1505
+ ({('extended_nonpositive', True), ('finite', True)},
1506
+ ('nonpositive', True)),
1507
+
1508
+ # Rules implying nonzero = True
1509
+ ({('extended_nonzero', True), ('finite', True)},
1510
+ ('nonzero', True)),
1511
+
1512
+ # Rules implying odd = True
1513
+ ({('even', False), ('integer', True)},
1514
+ ('odd', True)),
1515
+
1516
+ # Rules implying positive = False
1517
+ ({('composite', False), ('even', True), ('prime', False)},
1518
+ ('positive', False)),
1519
+
1520
+ # Rules implying positive = True
1521
+ ({('negative', False), ('real', True), ('zero', False)},
1522
+ ('positive', True)),
1523
+ ({('nonnegative', True), ('nonzero', True)},
1524
+ ('positive', True)),
1525
+ ({('extended_positive', True), ('finite', True)},
1526
+ ('positive', True)),
1527
+
1528
+ # Rules implying prime = True
1529
+ ({('composite', False), ('even', True), ('positive', True)},
1530
+ ('prime', True)),
1531
+
1532
+ # Rules implying real = False
1533
+ ({('negative', False), ('positive', False), ('zero', False)},
1534
+ ('real', False)),
1535
+
1536
+ # Rules implying real = True
1537
+ ({('extended_real', True), ('infinite', False)},
1538
+ ('real', True)),
1539
+ ({('extended_real', True), ('finite', True)},
1540
+ ('real', True)),
1541
+
1542
+ # Rules implying transcendental = True
1543
+ ({('algebraic', False), ('complex', True)},
1544
+ ('transcendental', True)),
1545
+
1546
+ # Rules implying zero = True
1547
+ ({('extended_negative', False), ('extended_positive', False), ('extended_real', True)},
1548
+ ('zero', True)),
1549
+ ({('negative', False), ('positive', False), ('real', True)},
1550
+ ('zero', True)),
1551
+ ({('extended_nonnegative', True), ('extended_nonpositive', True)},
1552
+ ('zero', True)),
1553
+ ({('nonnegative', True), ('nonpositive', True)},
1554
+ ('zero', True)),
1555
+
1556
+ ] # beta_rules
1557
+ beta_triggers = {
1558
+ ('algebraic', False): [32, 11, 3, 8, 29, 14, 25, 13, 17, 7],
1559
+ ('algebraic', True): [10, 30, 31, 27, 16, 21, 19, 22],
1560
+ ('antihermitian', False): [],
1561
+ ('commutative', False): [],
1562
+ ('complex', False): [10, 12, 11, 3, 8, 17, 7],
1563
+ ('complex', True): [32, 10, 30, 31, 27, 16, 21, 19, 22],
1564
+ ('composite', False): [1, 28, 24],
1565
+ ('composite', True): [23, 2],
1566
+ ('even', False): [23, 11, 3, 8, 29, 14, 25, 7],
1567
+ ('even', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 0, 28, 24, 7],
1568
+ ('extended_negative', False): [11, 33, 8, 5, 29, 34, 25, 18],
1569
+ ('extended_negative', True): [30, 12, 31, 29, 14, 20, 16, 21, 22, 17],
1570
+ ('extended_nonnegative', False): [11, 3, 6, 29, 14, 20, 7],
1571
+ ('extended_nonnegative', True): [30, 12, 31, 33, 8, 9, 6, 29, 34, 25, 18, 19, 35, 17, 7],
1572
+ ('extended_nonpositive', False): [11, 8, 5, 29, 25, 18, 7],
1573
+ ('extended_nonpositive', True): [30, 12, 31, 3, 33, 4, 5, 29, 14, 34, 20, 21, 35, 17, 7],
1574
+ ('extended_nonzero', False): [11, 33, 6, 5, 29, 34, 20, 18],
1575
+ ('extended_nonzero', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22, 17],
1576
+ ('extended_positive', False): [11, 3, 33, 6, 29, 14, 34, 20],
1577
+ ('extended_positive', True): [30, 12, 31, 29, 25, 18, 27, 19, 22, 17],
1578
+ ('extended_real', False): [],
1579
+ ('extended_real', True): [30, 12, 31, 3, 33, 8, 6, 5, 17, 7],
1580
+ ('finite', False): [11, 3, 8, 17, 7],
1581
+ ('finite', True): [10, 30, 31, 27, 16, 21, 19, 22],
1582
+ ('hermitian', False): [10, 12, 11, 3, 8, 17, 7],
1583
+ ('imaginary', True): [32],
1584
+ ('infinite', False): [10, 30, 31, 27, 16, 21, 19, 22],
1585
+ ('infinite', True): [11, 3, 8, 17, 7],
1586
+ ('integer', False): [11, 3, 8, 29, 14, 25, 17, 7],
1587
+ ('integer', True): [23, 2, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 7],
1588
+ ('irrational', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
1589
+ ('negative', False): [29, 34, 25, 18],
1590
+ ('negative', True): [32, 13, 17],
1591
+ ('noninteger', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22],
1592
+ ('nonnegative', False): [11, 3, 8, 29, 14, 20, 7],
1593
+ ('nonnegative', True): [32, 33, 8, 9, 6, 34, 25, 26, 20, 27, 21, 22, 35, 36, 13, 17, 7],
1594
+ ('nonpositive', False): [11, 3, 8, 29, 25, 18, 7],
1595
+ ('nonpositive', True): [32, 3, 33, 4, 5, 14, 34, 15, 18, 16, 19, 22, 35, 36, 13, 17, 7],
1596
+ ('nonzero', False): [29, 34, 20, 18],
1597
+ ('nonzero', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19, 13, 17],
1598
+ ('odd', False): [2],
1599
+ ('odd', True): [3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
1600
+ ('positive', False): [29, 14, 34, 20],
1601
+ ('positive', True): [32, 0, 1, 28, 13, 17],
1602
+ ('prime', False): [0, 1, 24],
1603
+ ('prime', True): [23, 2],
1604
+ ('rational', False): [11, 3, 8, 29, 14, 25, 13, 17, 7],
1605
+ ('rational', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 17, 7],
1606
+ ('real', False): [10, 12, 11, 3, 8, 17, 7],
1607
+ ('real', True): [32, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 13, 17, 7],
1608
+ ('transcendental', True): [10, 30, 31, 11, 3, 8, 29, 14, 25, 27, 16, 21, 19, 22, 13, 17, 7],
1609
+ ('zero', False): [11, 3, 8, 29, 14, 25, 7],
1610
+ ('zero', True): [],
1611
+ } # beta_triggers
1612
+
1613
+
1614
+ generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,
1615
+ 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}
env-llmeval/lib/python3.10/site-packages/sympy/core/decorators.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ SymPy core decorators.
3
+
4
+ The purpose of this module is to expose decorators without any other
5
+ dependencies, so that they can be easily imported anywhere in sympy/core.
6
+ """
7
+
8
+ from functools import wraps
9
+ from .sympify import SympifyError, sympify
10
+
11
+
12
+ def _sympifyit(arg, retval=None):
13
+ """
14
+ decorator to smartly _sympify function arguments
15
+
16
+ Explanation
17
+ ===========
18
+
19
+ @_sympifyit('other', NotImplemented)
20
+ def add(self, other):
21
+ ...
22
+
23
+ In add, other can be thought of as already being a SymPy object.
24
+
25
+ If it is not, the code is likely to catch an exception, then other will
26
+ be explicitly _sympified, and the whole code restarted.
27
+
28
+ if _sympify(arg) fails, NotImplemented will be returned
29
+
30
+ See also
31
+ ========
32
+
33
+ __sympifyit
34
+ """
35
+ def deco(func):
36
+ return __sympifyit(func, arg, retval)
37
+
38
+ return deco
39
+
40
+
41
+ def __sympifyit(func, arg, retval=None):
42
+ """Decorator to _sympify `arg` argument for function `func`.
43
+
44
+ Do not use directly -- use _sympifyit instead.
45
+ """
46
+
47
+ # we support f(a,b) only
48
+ if not func.__code__.co_argcount:
49
+ raise LookupError("func not found")
50
+ # only b is _sympified
51
+ assert func.__code__.co_varnames[1] == arg
52
+ if retval is None:
53
+ @wraps(func)
54
+ def __sympifyit_wrapper(a, b):
55
+ return func(a, sympify(b, strict=True))
56
+
57
+ else:
58
+ @wraps(func)
59
+ def __sympifyit_wrapper(a, b):
60
+ try:
61
+ # If an external class has _op_priority, it knows how to deal
62
+ # with SymPy objects. Otherwise, it must be converted.
63
+ if not hasattr(b, '_op_priority'):
64
+ b = sympify(b, strict=True)
65
+ return func(a, b)
66
+ except SympifyError:
67
+ return retval
68
+
69
+ return __sympifyit_wrapper
70
+
71
+
72
+ def call_highest_priority(method_name):
73
+ """A decorator for binary special methods to handle _op_priority.
74
+
75
+ Explanation
76
+ ===========
77
+
78
+ Binary special methods in Expr and its subclasses use a special attribute
79
+ '_op_priority' to determine whose special method will be called to
80
+ handle the operation. In general, the object having the highest value of
81
+ '_op_priority' will handle the operation. Expr and subclasses that define
82
+ custom binary special methods (__mul__, etc.) should decorate those
83
+ methods with this decorator to add the priority logic.
84
+
85
+ The ``method_name`` argument is the name of the method of the other class
86
+ that will be called. Use this decorator in the following manner::
87
+
88
+ # Call other.__rmul__ if other._op_priority > self._op_priority
89
+ @call_highest_priority('__rmul__')
90
+ def __mul__(self, other):
91
+ ...
92
+
93
+ # Call other.__mul__ if other._op_priority > self._op_priority
94
+ @call_highest_priority('__mul__')
95
+ def __rmul__(self, other):
96
+ ...
97
+ """
98
+ def priority_decorator(func):
99
+ @wraps(func)
100
+ def binary_op_wrapper(self, other):
101
+ if hasattr(other, '_op_priority'):
102
+ if other._op_priority > self._op_priority:
103
+ f = getattr(other, method_name, None)
104
+ if f is not None:
105
+ return f(self)
106
+ return func(self, other)
107
+ return binary_op_wrapper
108
+ return priority_decorator
109
+
110
+
111
+ def sympify_method_args(cls):
112
+ '''Decorator for a class with methods that sympify arguments.
113
+
114
+ Explanation
115
+ ===========
116
+
117
+ The sympify_method_args decorator is to be used with the sympify_return
118
+ decorator for automatic sympification of method arguments. This is
119
+ intended for the common idiom of writing a class like :
120
+
121
+ Examples
122
+ ========
123
+
124
+ >>> from sympy import Basic, SympifyError, S
125
+ >>> from sympy.core.sympify import _sympify
126
+
127
+ >>> class MyTuple(Basic):
128
+ ... def __add__(self, other):
129
+ ... try:
130
+ ... other = _sympify(other)
131
+ ... except SympifyError:
132
+ ... return NotImplemented
133
+ ... if not isinstance(other, MyTuple):
134
+ ... return NotImplemented
135
+ ... return MyTuple(*(self.args + other.args))
136
+
137
+ >>> MyTuple(S(1), S(2)) + MyTuple(S(3), S(4))
138
+ MyTuple(1, 2, 3, 4)
139
+
140
+ In the above it is important that we return NotImplemented when other is
141
+ not sympifiable and also when the sympified result is not of the expected
142
+ type. This allows the MyTuple class to be used cooperatively with other
143
+ classes that overload __add__ and want to do something else in combination
144
+ with instance of Tuple.
145
+
146
+ Using this decorator the above can be written as
147
+
148
+ >>> from sympy.core.decorators import sympify_method_args, sympify_return
149
+
150
+ >>> @sympify_method_args
151
+ ... class MyTuple(Basic):
152
+ ... @sympify_return([('other', 'MyTuple')], NotImplemented)
153
+ ... def __add__(self, other):
154
+ ... return MyTuple(*(self.args + other.args))
155
+
156
+ >>> MyTuple(S(1), S(2)) + MyTuple(S(3), S(4))
157
+ MyTuple(1, 2, 3, 4)
158
+
159
+ The idea here is that the decorators take care of the boiler-plate code
160
+ for making this happen in each method that potentially needs to accept
161
+ unsympified arguments. Then the body of e.g. the __add__ method can be
162
+ written without needing to worry about calling _sympify or checking the
163
+ type of the resulting object.
164
+
165
+ The parameters for sympify_return are a list of tuples of the form
166
+ (parameter_name, expected_type) and the value to return (e.g.
167
+ NotImplemented). The expected_type parameter can be a type e.g. Tuple or a
168
+ string 'Tuple'. Using a string is useful for specifying a Type within its
169
+ class body (as in the above example).
170
+
171
+ Notes: Currently sympify_return only works for methods that take a single
172
+ argument (not including self). Specifying an expected_type as a string
173
+ only works for the class in which the method is defined.
174
+ '''
175
+ # Extract the wrapped methods from each of the wrapper objects created by
176
+ # the sympify_return decorator. Doing this here allows us to provide the
177
+ # cls argument which is used for forward string referencing.
178
+ for attrname, obj in cls.__dict__.items():
179
+ if isinstance(obj, _SympifyWrapper):
180
+ setattr(cls, attrname, obj.make_wrapped(cls))
181
+ return cls
182
+
183
+
184
+ def sympify_return(*args):
185
+ '''Function/method decorator to sympify arguments automatically
186
+
187
+ See the docstring of sympify_method_args for explanation.
188
+ '''
189
+ # Store a wrapper object for the decorated method
190
+ def wrapper(func):
191
+ return _SympifyWrapper(func, args)
192
+ return wrapper
193
+
194
+
195
+ class _SympifyWrapper:
196
+ '''Internal class used by sympify_return and sympify_method_args'''
197
+
198
+ def __init__(self, func, args):
199
+ self.func = func
200
+ self.args = args
201
+
202
+ def make_wrapped(self, cls):
203
+ func = self.func
204
+ parameters, retval = self.args
205
+
206
+ # XXX: Handle more than one parameter?
207
+ [(parameter, expectedcls)] = parameters
208
+
209
+ # Handle forward references to the current class using strings
210
+ if expectedcls == cls.__name__:
211
+ expectedcls = cls
212
+
213
+ # Raise RuntimeError since this is a failure at import time and should
214
+ # not be recoverable.
215
+ nargs = func.__code__.co_argcount
216
+ # we support f(a, b) only
217
+ if nargs != 2:
218
+ raise RuntimeError('sympify_return can only be used with 2 argument functions')
219
+ # only b is _sympified
220
+ if func.__code__.co_varnames[1] != parameter:
221
+ raise RuntimeError('parameter name mismatch "%s" in %s' %
222
+ (parameter, func.__name__))
223
+
224
+ @wraps(func)
225
+ def _func(self, other):
226
+ # XXX: The check for _op_priority here should be removed. It is
227
+ # needed to stop mutable matrices from being sympified to
228
+ # immutable matrices which breaks things in quantum...
229
+ if not hasattr(other, '_op_priority'):
230
+ try:
231
+ other = sympify(other, strict=True)
232
+ except SympifyError:
233
+ return retval
234
+ if not isinstance(other, expectedcls):
235
+ return retval
236
+ return func(self, other)
237
+
238
+ return _func
env-llmeval/lib/python3.10/site-packages/sympy/core/expr.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/sympy/core/function.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/sympy/core/mod.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .add import Add
2
+ from .exprtools import gcd_terms
3
+ from .function import Function
4
+ from .kind import NumberKind
5
+ from .logic import fuzzy_and, fuzzy_not
6
+ from .mul import Mul
7
+ from .numbers import equal_valued
8
+ from .singleton import S
9
+
10
+
11
+ class Mod(Function):
12
+ """Represents a modulo operation on symbolic expressions.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ p : Expr
18
+ Dividend.
19
+
20
+ q : Expr
21
+ Divisor.
22
+
23
+ Notes
24
+ =====
25
+
26
+ The convention used is the same as Python's: the remainder always has the
27
+ same sign as the divisor.
28
+
29
+ Examples
30
+ ========
31
+
32
+ >>> from sympy.abc import x, y
33
+ >>> x**2 % y
34
+ Mod(x**2, y)
35
+ >>> _.subs({x: 5, y: 6})
36
+ 1
37
+
38
+ """
39
+
40
+ kind = NumberKind
41
+
42
+ @classmethod
43
+ def eval(cls, p, q):
44
+ def number_eval(p, q):
45
+ """Try to return p % q if both are numbers or +/-p is known
46
+ to be less than or equal q.
47
+ """
48
+
49
+ if q.is_zero:
50
+ raise ZeroDivisionError("Modulo by zero")
51
+ if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
52
+ return S.NaN
53
+ if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
54
+ return S.Zero
55
+
56
+ if q.is_Number:
57
+ if p.is_Number:
58
+ return p%q
59
+ if q == 2:
60
+ if p.is_even:
61
+ return S.Zero
62
+ elif p.is_odd:
63
+ return S.One
64
+
65
+ if hasattr(p, '_eval_Mod'):
66
+ rv = getattr(p, '_eval_Mod')(q)
67
+ if rv is not None:
68
+ return rv
69
+
70
+ # by ratio
71
+ r = p/q
72
+ if r.is_integer:
73
+ return S.Zero
74
+ try:
75
+ d = int(r)
76
+ except TypeError:
77
+ pass
78
+ else:
79
+ if isinstance(d, int):
80
+ rv = p - d*q
81
+ if (rv*q < 0) == True:
82
+ rv += q
83
+ return rv
84
+
85
+ # by difference
86
+ # -2|q| < p < 2|q|
87
+ d = abs(p)
88
+ for _ in range(2):
89
+ d -= abs(q)
90
+ if d.is_negative:
91
+ if q.is_positive:
92
+ if p.is_positive:
93
+ return d + q
94
+ elif p.is_negative:
95
+ return -d
96
+ elif q.is_negative:
97
+ if p.is_positive:
98
+ return d
99
+ elif p.is_negative:
100
+ return -d + q
101
+ break
102
+
103
+ rv = number_eval(p, q)
104
+ if rv is not None:
105
+ return rv
106
+
107
+ # denest
108
+ if isinstance(p, cls):
109
+ qinner = p.args[1]
110
+ if qinner % q == 0:
111
+ return cls(p.args[0], q)
112
+ elif (qinner*(q - qinner)).is_nonnegative:
113
+ # |qinner| < |q| and have same sign
114
+ return p
115
+ elif isinstance(-p, cls):
116
+ qinner = (-p).args[1]
117
+ if qinner % q == 0:
118
+ return cls(-(-p).args[0], q)
119
+ elif (qinner*(q + qinner)).is_nonpositive:
120
+ # |qinner| < |q| and have different sign
121
+ return p
122
+ elif isinstance(p, Add):
123
+ # separating into modulus and non modulus
124
+ both_l = non_mod_l, mod_l = [], []
125
+ for arg in p.args:
126
+ both_l[isinstance(arg, cls)].append(arg)
127
+ # if q same for all
128
+ if mod_l and all(inner.args[1] == q for inner in mod_l):
129
+ net = Add(*non_mod_l) + Add(*[i.args[0] for i in mod_l])
130
+ return cls(net, q)
131
+
132
+ elif isinstance(p, Mul):
133
+ # separating into modulus and non modulus
134
+ both_l = non_mod_l, mod_l = [], []
135
+ for arg in p.args:
136
+ both_l[isinstance(arg, cls)].append(arg)
137
+
138
+ if mod_l and all(inner.args[1] == q for inner in mod_l) and all(t.is_integer for t in p.args) and q.is_integer:
139
+ # finding distributive term
140
+ non_mod_l = [cls(x, q) for x in non_mod_l]
141
+ mod = []
142
+ non_mod = []
143
+ for j in non_mod_l:
144
+ if isinstance(j, cls):
145
+ mod.append(j.args[0])
146
+ else:
147
+ non_mod.append(j)
148
+ prod_mod = Mul(*mod)
149
+ prod_non_mod = Mul(*non_mod)
150
+ prod_mod1 = Mul(*[i.args[0] for i in mod_l])
151
+ net = prod_mod1*prod_mod
152
+ return prod_non_mod*cls(net, q)
153
+
154
+ if q.is_Integer and q is not S.One:
155
+ non_mod_l = [i % q if i.is_Integer and (i % q is not S.Zero) else i for
156
+ i in non_mod_l]
157
+
158
+ p = Mul(*(non_mod_l + mod_l))
159
+
160
+ # XXX other possibilities?
161
+
162
+ from sympy.polys.polyerrors import PolynomialError
163
+ from sympy.polys.polytools import gcd
164
+
165
+ # extract gcd; any further simplification should be done by the user
166
+ try:
167
+ G = gcd(p, q)
168
+ if not equal_valued(G, 1):
169
+ p, q = [gcd_terms(i/G, clear=False, fraction=False)
170
+ for i in (p, q)]
171
+ except PolynomialError: # issue 21373
172
+ G = S.One
173
+ pwas, qwas = p, q
174
+
175
+ # simplify terms
176
+ # (x + y + 2) % x -> Mod(y + 2, x)
177
+ if p.is_Add:
178
+ args = []
179
+ for i in p.args:
180
+ a = cls(i, q)
181
+ if a.count(cls) > i.count(cls):
182
+ args.append(i)
183
+ else:
184
+ args.append(a)
185
+ if args != list(p.args):
186
+ p = Add(*args)
187
+
188
+ else:
189
+ # handle coefficients if they are not Rational
190
+ # since those are not handled by factor_terms
191
+ # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y)
192
+ cp, p = p.as_coeff_Mul()
193
+ cq, q = q.as_coeff_Mul()
194
+ ok = False
195
+ if not cp.is_Rational or not cq.is_Rational:
196
+ r = cp % cq
197
+ if equal_valued(r, 0):
198
+ G *= cq
199
+ p *= int(cp/cq)
200
+ ok = True
201
+ if not ok:
202
+ p = cp*p
203
+ q = cq*q
204
+
205
+ # simple -1 extraction
206
+ if p.could_extract_minus_sign() and q.could_extract_minus_sign():
207
+ G, p, q = [-i for i in (G, p, q)]
208
+
209
+ # check again to see if p and q can now be handled as numbers
210
+ rv = number_eval(p, q)
211
+ if rv is not None:
212
+ return rv*G
213
+
214
+ # put 1.0 from G on inside
215
+ if G.is_Float and equal_valued(G, 1):
216
+ p *= G
217
+ return cls(p, q, evaluate=False)
218
+ elif G.is_Mul and G.args[0].is_Float and equal_valued(G.args[0], 1):
219
+ p = G.args[0]*p
220
+ G = Mul._from_args(G.args[1:])
221
+ return G*cls(p, q, evaluate=(p, q) != (pwas, qwas))
222
+
223
+ def _eval_is_integer(self):
224
+ p, q = self.args
225
+ if fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]):
226
+ return True
227
+
228
+ def _eval_is_nonnegative(self):
229
+ if self.args[1].is_positive:
230
+ return True
231
+
232
+ def _eval_is_nonpositive(self):
233
+ if self.args[1].is_negative:
234
+ return True
235
+
236
+ def _eval_rewrite_as_floor(self, a, b, **kwargs):
237
+ from sympy.functions.elementary.integers import floor
238
+ return a - b*floor(a/b)
env-llmeval/lib/python3.10/site-packages/sympy/core/multidimensional.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Provides functionality for multidimensional usage of scalar-functions.
3
+
4
+ Read the vectorize docstring for more details.
5
+ """
6
+
7
+ from functools import wraps
8
+
9
+
10
+ def apply_on_element(f, args, kwargs, n):
11
+ """
12
+ Returns a structure with the same dimension as the specified argument,
13
+ where each basic element is replaced by the function f applied on it. All
14
+ other arguments stay the same.
15
+ """
16
+ # Get the specified argument.
17
+ if isinstance(n, int):
18
+ structure = args[n]
19
+ is_arg = True
20
+ elif isinstance(n, str):
21
+ structure = kwargs[n]
22
+ is_arg = False
23
+
24
+ # Define reduced function that is only dependent on the specified argument.
25
+ def f_reduced(x):
26
+ if hasattr(x, "__iter__"):
27
+ return list(map(f_reduced, x))
28
+ else:
29
+ if is_arg:
30
+ args[n] = x
31
+ else:
32
+ kwargs[n] = x
33
+ return f(*args, **kwargs)
34
+
35
+ # f_reduced will call itself recursively so that in the end f is applied to
36
+ # all basic elements.
37
+ return list(map(f_reduced, structure))
38
+
39
+
40
+ def iter_copy(structure):
41
+ """
42
+ Returns a copy of an iterable object (also copying all embedded iterables).
43
+ """
44
+ return [iter_copy(i) if hasattr(i, "__iter__") else i for i in structure]
45
+
46
+
47
+ def structure_copy(structure):
48
+ """
49
+ Returns a copy of the given structure (numpy-array, list, iterable, ..).
50
+ """
51
+ if hasattr(structure, "copy"):
52
+ return structure.copy()
53
+ return iter_copy(structure)
54
+
55
+
56
+ class vectorize:
57
+ """
58
+ Generalizes a function taking scalars to accept multidimensional arguments.
59
+
60
+ Examples
61
+ ========
62
+
63
+ >>> from sympy import vectorize, diff, sin, symbols, Function
64
+ >>> x, y, z = symbols('x y z')
65
+ >>> f, g, h = list(map(Function, 'fgh'))
66
+
67
+ >>> @vectorize(0)
68
+ ... def vsin(x):
69
+ ... return sin(x)
70
+
71
+ >>> vsin([1, x, y])
72
+ [sin(1), sin(x), sin(y)]
73
+
74
+ >>> @vectorize(0, 1)
75
+ ... def vdiff(f, y):
76
+ ... return diff(f, y)
77
+
78
+ >>> vdiff([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z])
79
+ [[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y), Derivative(f(x, y, z), z)], [Derivative(g(x, y, z), x), Derivative(g(x, y, z), y), Derivative(g(x, y, z), z)], [Derivative(h(x, y, z), x), Derivative(h(x, y, z), y), Derivative(h(x, y, z), z)]]
80
+ """
81
+ def __init__(self, *mdargs):
82
+ """
83
+ The given numbers and strings characterize the arguments that will be
84
+ treated as data structures, where the decorated function will be applied
85
+ to every single element.
86
+ If no argument is given, everything is treated multidimensional.
87
+ """
88
+ for a in mdargs:
89
+ if not isinstance(a, (int, str)):
90
+ raise TypeError("a is of invalid type")
91
+ self.mdargs = mdargs
92
+
93
+ def __call__(self, f):
94
+ """
95
+ Returns a wrapper for the one-dimensional function that can handle
96
+ multidimensional arguments.
97
+ """
98
+ @wraps(f)
99
+ def wrapper(*args, **kwargs):
100
+ # Get arguments that should be treated multidimensional
101
+ if self.mdargs:
102
+ mdargs = self.mdargs
103
+ else:
104
+ mdargs = range(len(args)) + kwargs.keys()
105
+
106
+ arglength = len(args)
107
+
108
+ for n in mdargs:
109
+ if isinstance(n, int):
110
+ if n >= arglength:
111
+ continue
112
+ entry = args[n]
113
+ is_arg = True
114
+ elif isinstance(n, str):
115
+ try:
116
+ entry = kwargs[n]
117
+ except KeyError:
118
+ continue
119
+ is_arg = False
120
+ if hasattr(entry, "__iter__"):
121
+ # Create now a copy of the given array and manipulate then
122
+ # the entries directly.
123
+ if is_arg:
124
+ args = list(args)
125
+ args[n] = structure_copy(entry)
126
+ else:
127
+ kwargs[n] = structure_copy(entry)
128
+ result = apply_on_element(wrapper, args, kwargs, n)
129
+ return result
130
+ return f(*args, **kwargs)
131
+ return wrapper
env-llmeval/lib/python3.10/site-packages/sympy/core/power.py ADDED
@@ -0,0 +1,2004 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Callable
3
+ from math import log as _log, sqrt as _sqrt
4
+ from itertools import product
5
+
6
+ from .sympify import _sympify
7
+ from .cache import cacheit
8
+ from .singleton import S
9
+ from .expr import Expr
10
+ from .evalf import PrecisionExhausted
11
+ from .function import (expand_complex, expand_multinomial,
12
+ expand_mul, _mexpand, PoleError)
13
+ from .logic import fuzzy_bool, fuzzy_not, fuzzy_and, fuzzy_or
14
+ from .parameters import global_parameters
15
+ from .relational import is_gt, is_lt
16
+ from .kind import NumberKind, UndefinedKind
17
+ from sympy.external.gmpy import HAS_GMPY, gmpy
18
+ from sympy.utilities.iterables import sift
19
+ from sympy.utilities.exceptions import sympy_deprecation_warning
20
+ from sympy.utilities.misc import as_int
21
+ from sympy.multipledispatch import Dispatcher
22
+
23
+ from mpmath.libmp import sqrtrem as mpmath_sqrtrem
24
+
25
+
26
+
27
+ def isqrt(n):
28
+ """Return the largest integer less than or equal to sqrt(n)."""
29
+ if n < 0:
30
+ raise ValueError("n must be nonnegative")
31
+ n = int(n)
32
+
33
+ # Fast path: with IEEE 754 binary64 floats and a correctly-rounded
34
+ # math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n <
35
+ # 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either
36
+ # IEEE 754 format floats *or* correct rounding of math.sqrt, so check the
37
+ # answer and fall back to the slow method if necessary.
38
+ if n < 4503599761588224:
39
+ s = int(_sqrt(n))
40
+ if 0 <= n - s*s <= 2*s:
41
+ return s
42
+
43
+ return integer_nthroot(n, 2)[0]
44
+
45
+
46
+ def integer_nthroot(y, n):
47
+ """
48
+ Return a tuple containing x = floor(y**(1/n))
49
+ and a boolean indicating whether the result is exact (that is,
50
+ whether x**n == y).
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy import integer_nthroot
56
+ >>> integer_nthroot(16, 2)
57
+ (4, True)
58
+ >>> integer_nthroot(26, 2)
59
+ (5, False)
60
+
61
+ To simply determine if a number is a perfect square, the is_square
62
+ function should be used:
63
+
64
+ >>> from sympy.ntheory.primetest import is_square
65
+ >>> is_square(26)
66
+ False
67
+
68
+ See Also
69
+ ========
70
+ sympy.ntheory.primetest.is_square
71
+ integer_log
72
+ """
73
+ y, n = as_int(y), as_int(n)
74
+ if y < 0:
75
+ raise ValueError("y must be nonnegative")
76
+ if n < 1:
77
+ raise ValueError("n must be positive")
78
+ if HAS_GMPY and n < 2**63:
79
+ # Currently it works only for n < 2**63, else it produces TypeError
80
+ # sympy issue: https://github.com/sympy/sympy/issues/18374
81
+ # gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257
82
+ if HAS_GMPY >= 2:
83
+ x, t = gmpy.iroot(y, n)
84
+ else:
85
+ x, t = gmpy.root(y, n)
86
+ return as_int(x), bool(t)
87
+ return _integer_nthroot_python(y, n)
88
+
89
+ def _integer_nthroot_python(y, n):
90
+ if y in (0, 1):
91
+ return y, True
92
+ if n == 1:
93
+ return y, True
94
+ if n == 2:
95
+ x, rem = mpmath_sqrtrem(y)
96
+ return int(x), not rem
97
+ if n >= y.bit_length():
98
+ return 1, False
99
+ # Get initial estimate for Newton's method. Care must be taken to
100
+ # avoid overflow
101
+ try:
102
+ guess = int(y**(1./n) + 0.5)
103
+ except OverflowError:
104
+ exp = _log(y, 2)/n
105
+ if exp > 53:
106
+ shift = int(exp - 53)
107
+ guess = int(2.0**(exp - shift) + 1) << shift
108
+ else:
109
+ guess = int(2.0**exp)
110
+ if guess > 2**50:
111
+ # Newton iteration
112
+ xprev, x = -1, guess
113
+ while 1:
114
+ t = x**(n - 1)
115
+ xprev, x = x, ((n - 1)*x + y//t)//n
116
+ if abs(x - xprev) < 2:
117
+ break
118
+ else:
119
+ x = guess
120
+ # Compensate
121
+ t = x**n
122
+ while t < y:
123
+ x += 1
124
+ t = x**n
125
+ while t > y:
126
+ x -= 1
127
+ t = x**n
128
+ return int(x), t == y # int converts long to int if possible
129
+
130
+
131
+ def integer_log(y, x):
132
+ r"""
133
+ Returns ``(e, bool)`` where e is the largest nonnegative integer
134
+ such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$.
135
+
136
+ Examples
137
+ ========
138
+
139
+ >>> from sympy import integer_log
140
+ >>> integer_log(125, 5)
141
+ (3, True)
142
+ >>> integer_log(17, 9)
143
+ (1, False)
144
+ >>> integer_log(4, -2)
145
+ (2, True)
146
+ >>> integer_log(-125,-5)
147
+ (3, True)
148
+
149
+ See Also
150
+ ========
151
+ integer_nthroot
152
+ sympy.ntheory.primetest.is_square
153
+ sympy.ntheory.factor_.multiplicity
154
+ sympy.ntheory.factor_.perfect_power
155
+ """
156
+ if x == 1:
157
+ raise ValueError('x cannot take value as 1')
158
+ if y == 0:
159
+ raise ValueError('y cannot take value as 0')
160
+
161
+ if x in (-2, 2):
162
+ x = int(x)
163
+ y = as_int(y)
164
+ e = y.bit_length() - 1
165
+ return e, x**e == y
166
+ if x < 0:
167
+ n, b = integer_log(y if y > 0 else -y, -x)
168
+ return n, b and bool(n % 2 if y < 0 else not n % 2)
169
+
170
+ x = as_int(x)
171
+ y = as_int(y)
172
+ r = e = 0
173
+ while y >= x:
174
+ d = x
175
+ m = 1
176
+ while y >= d:
177
+ y, rem = divmod(y, d)
178
+ r = r or rem
179
+ e += m
180
+ if y > d:
181
+ d *= d
182
+ m *= 2
183
+ return e, r == 0 and y == 1
184
+
185
+
186
+ class Pow(Expr):
187
+ """
188
+ Defines the expression x**y as "x raised to a power y"
189
+
190
+ .. deprecated:: 1.7
191
+
192
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
193
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
194
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
195
+
196
+ Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):
197
+
198
+ +--------------+---------+-----------------------------------------------+
199
+ | expr | value | reason |
200
+ +==============+=========+===============================================+
201
+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. |
202
+ +--------------+---------+-----------------------------------------------+
203
+ | z**1 | z | |
204
+ +--------------+---------+-----------------------------------------------+
205
+ | (-oo)**(-1) | 0 | |
206
+ +--------------+---------+-----------------------------------------------+
207
+ | (-1)**-1 | -1 | |
208
+ +--------------+---------+-----------------------------------------------+
209
+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be |
210
+ | | | undefined, but is convenient in some contexts |
211
+ | | | where the base is assumed to be positive. |
212
+ +--------------+---------+-----------------------------------------------+
213
+ | 1**-1 | 1 | |
214
+ +--------------+---------+-----------------------------------------------+
215
+ | oo**-1 | 0 | |
216
+ +--------------+---------+-----------------------------------------------+
217
+ | 0**oo | 0 | Because for all complex numbers z near |
218
+ | | | 0, z**oo -> 0. |
219
+ +--------------+---------+-----------------------------------------------+
220
+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be |
221
+ | | | oscillating between positive and negative |
222
+ | | | values or rotating in the complex plane. |
223
+ | | | It is convenient, however, when the base |
224
+ | | | is positive. |
225
+ +--------------+---------+-----------------------------------------------+
226
+ | 1**oo | nan | Because there are various cases where |
227
+ | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), |
228
+ | | | but lim( x(t)**y(t), t) != 1. See [3]. |
229
+ +--------------+---------+-----------------------------------------------+
230
+ | b**zoo | nan | Because b**z has no limit as z -> zoo |
231
+ +--------------+---------+-----------------------------------------------+
232
+ | (-1)**oo | nan | Because of oscillations in the limit. |
233
+ | (-1)**(-oo) | | |
234
+ +--------------+---------+-----------------------------------------------+
235
+ | oo**oo | oo | |
236
+ +--------------+---------+-----------------------------------------------+
237
+ | oo**-oo | 0 | |
238
+ +--------------+---------+-----------------------------------------------+
239
+ | (-oo)**oo | nan | |
240
+ | (-oo)**-oo | | |
241
+ +--------------+---------+-----------------------------------------------+
242
+ | oo**I | nan | oo**e could probably be best thought of as |
243
+ | (-oo)**I | | the limit of x**e for real x as x tends to |
244
+ | | | oo. If e is I, then the limit does not exist |
245
+ | | | and nan is used to indicate that. |
246
+ +--------------+---------+-----------------------------------------------+
247
+ | oo**(1+I) | zoo | If the real part of e is positive, then the |
248
+ | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value |
249
+ | | | is zoo. |
250
+ +--------------+---------+-----------------------------------------------+
251
+ | oo**(-1+I) | 0 | If the real part of e is negative, then the |
252
+ | -oo**(-1+I) | | limit is 0. |
253
+ +--------------+---------+-----------------------------------------------+
254
+
255
+ Because symbolic computations are more flexible than floating point
256
+ calculations and we prefer to never return an incorrect answer,
257
+ we choose not to conform to all IEEE 754 conventions. This helps
258
+ us avoid extra test-case code in the calculation of limits.
259
+
260
+ See Also
261
+ ========
262
+
263
+ sympy.core.numbers.Infinity
264
+ sympy.core.numbers.NegativeInfinity
265
+ sympy.core.numbers.NaN
266
+
267
+ References
268
+ ==========
269
+
270
+ .. [1] https://en.wikipedia.org/wiki/Exponentiation
271
+ .. [2] https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero
272
+ .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms
273
+
274
+ """
275
+ is_Pow = True
276
+
277
+ __slots__ = ('is_commutative',)
278
+
279
+ args: tuple[Expr, Expr]
280
+ _args: tuple[Expr, Expr]
281
+
282
+ @cacheit
283
+ def __new__(cls, b, e, evaluate=None):
284
+ if evaluate is None:
285
+ evaluate = global_parameters.evaluate
286
+
287
+ b = _sympify(b)
288
+ e = _sympify(e)
289
+
290
+ # XXX: This can be removed when non-Expr args are disallowed rather
291
+ # than deprecated.
292
+ from .relational import Relational
293
+ if isinstance(b, Relational) or isinstance(e, Relational):
294
+ raise TypeError('Relational cannot be used in Pow')
295
+
296
+ # XXX: This should raise TypeError once deprecation period is over:
297
+ for arg in [b, e]:
298
+ if not isinstance(arg, Expr):
299
+ sympy_deprecation_warning(
300
+ f"""
301
+ Using non-Expr arguments in Pow is deprecated (in this case, one of the
302
+ arguments is of type {type(arg).__name__!r}).
303
+
304
+ If you really did intend to construct a power with this base, use the **
305
+ operator instead.""",
306
+ deprecated_since_version="1.7",
307
+ active_deprecations_target="non-expr-args-deprecated",
308
+ stacklevel=4,
309
+ )
310
+
311
+ if evaluate:
312
+ if e is S.ComplexInfinity:
313
+ return S.NaN
314
+ if e is S.Infinity:
315
+ if is_gt(b, S.One):
316
+ return S.Infinity
317
+ if is_gt(b, S.NegativeOne) and is_lt(b, S.One):
318
+ return S.Zero
319
+ if is_lt(b, S.NegativeOne):
320
+ if b.is_finite:
321
+ return S.ComplexInfinity
322
+ if b.is_finite is False:
323
+ return S.NaN
324
+ if e is S.Zero:
325
+ return S.One
326
+ elif e is S.One:
327
+ return b
328
+ elif e == -1 and not b:
329
+ return S.ComplexInfinity
330
+ elif e.__class__.__name__ == "AccumulationBounds":
331
+ if b == S.Exp1:
332
+ from sympy.calculus.accumulationbounds import AccumBounds
333
+ return AccumBounds(Pow(b, e.min), Pow(b, e.max))
334
+ # autosimplification if base is a number and exp odd/even
335
+ # if base is Number then the base will end up positive; we
336
+ # do not do this with arbitrary expressions since symbolic
337
+ # cancellation might occur as in (x - 1)/(1 - x) -> -1. If
338
+ # we returned Piecewise((-1, Ne(x, 1))) for such cases then
339
+ # we could do this...but we don't
340
+ elif (e.is_Symbol and e.is_integer or e.is_Integer
341
+ ) and (b.is_number and b.is_Mul or b.is_Number
342
+ ) and b.could_extract_minus_sign():
343
+ if e.is_even:
344
+ b = -b
345
+ elif e.is_odd:
346
+ return -Pow(-b, e)
347
+ if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0
348
+ return S.NaN
349
+ elif b is S.One:
350
+ if abs(e).is_infinite:
351
+ return S.NaN
352
+ return S.One
353
+ else:
354
+ # recognize base as E
355
+ from sympy.functions.elementary.exponential import exp_polar
356
+ if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar):
357
+ from .exprtools import factor_terms
358
+ from sympy.functions.elementary.exponential import log
359
+ from sympy.simplify.radsimp import fraction
360
+ c, ex = factor_terms(e, sign=False).as_coeff_Mul()
361
+ num, den = fraction(ex)
362
+ if isinstance(den, log) and den.args[0] == b:
363
+ return S.Exp1**(c*num)
364
+ elif den.is_Add:
365
+ from sympy.functions.elementary.complexes import sign, im
366
+ s = sign(im(b))
367
+ if s.is_Number and s and den == \
368
+ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi:
369
+ return S.Exp1**(c*num)
370
+
371
+ obj = b._eval_power(e)
372
+ if obj is not None:
373
+ return obj
374
+ obj = Expr.__new__(cls, b, e)
375
+ obj = cls._exec_constructor_postprocessors(obj)
376
+ if not isinstance(obj, Pow):
377
+ return obj
378
+ obj.is_commutative = (b.is_commutative and e.is_commutative)
379
+ return obj
380
+
381
+ def inverse(self, argindex=1):
382
+ if self.base == S.Exp1:
383
+ from sympy.functions.elementary.exponential import log
384
+ return log
385
+ return None
386
+
387
+ @property
388
+ def base(self) -> Expr:
389
+ return self._args[0]
390
+
391
+ @property
392
+ def exp(self) -> Expr:
393
+ return self._args[1]
394
+
395
+ @property
396
+ def kind(self):
397
+ if self.exp.kind is NumberKind:
398
+ return self.base.kind
399
+ else:
400
+ return UndefinedKind
401
+
402
+ @classmethod
403
+ def class_key(cls):
404
+ return 3, 2, cls.__name__
405
+
406
+ def _eval_refine(self, assumptions):
407
+ from sympy.assumptions.ask import ask, Q
408
+ b, e = self.as_base_exp()
409
+ if ask(Q.integer(e), assumptions) and b.could_extract_minus_sign():
410
+ if ask(Q.even(e), assumptions):
411
+ return Pow(-b, e)
412
+ elif ask(Q.odd(e), assumptions):
413
+ return -Pow(-b, e)
414
+
415
+ def _eval_power(self, other):
416
+ b, e = self.as_base_exp()
417
+ if b is S.NaN:
418
+ return (b**e)**other # let __new__ handle it
419
+
420
+ s = None
421
+ if other.is_integer:
422
+ s = 1
423
+ elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)...
424
+ s = 1
425
+ elif e.is_extended_real is not None:
426
+ from sympy.functions.elementary.complexes import arg, im, re, sign
427
+ from sympy.functions.elementary.exponential import exp, log
428
+ from sympy.functions.elementary.integers import floor
429
+ # helper functions ===========================
430
+ def _half(e):
431
+ """Return True if the exponent has a literal 2 as the
432
+ denominator, else None."""
433
+ if getattr(e, 'q', None) == 2:
434
+ return True
435
+ n, d = e.as_numer_denom()
436
+ if n.is_integer and d == 2:
437
+ return True
438
+ def _n2(e):
439
+ """Return ``e`` evaluated to a Number with 2 significant
440
+ digits, else None."""
441
+ try:
442
+ rv = e.evalf(2, strict=True)
443
+ if rv.is_Number:
444
+ return rv
445
+ except PrecisionExhausted:
446
+ pass
447
+ # ===================================================
448
+ if e.is_extended_real:
449
+ # we need _half(other) with constant floor or
450
+ # floor(S.Half - e*arg(b)/2/pi) == 0
451
+
452
+
453
+ # handle -1 as special case
454
+ if e == -1:
455
+ # floor arg. is 1/2 + arg(b)/2/pi
456
+ if _half(other):
457
+ if b.is_negative is True:
458
+ return S.NegativeOne**other*Pow(-b, e*other)
459
+ elif b.is_negative is False: # XXX ok if im(b) != 0?
460
+ return Pow(b, -other)
461
+ elif e.is_even:
462
+ if b.is_extended_real:
463
+ b = abs(b)
464
+ if b.is_imaginary:
465
+ b = abs(im(b))*S.ImaginaryUnit
466
+
467
+ if (abs(e) < 1) == True or e == 1:
468
+ s = 1 # floor = 0
469
+ elif b.is_extended_nonnegative:
470
+ s = 1 # floor = 0
471
+ elif re(b).is_extended_nonnegative and (abs(e) < 2) == True:
472
+ s = 1 # floor = 0
473
+ elif _half(other):
474
+ s = exp(2*S.Pi*S.ImaginaryUnit*other*floor(
475
+ S.Half - e*arg(b)/(2*S.Pi)))
476
+ if s.is_extended_real and _n2(sign(s) - s) == 0:
477
+ s = sign(s)
478
+ else:
479
+ s = None
480
+ else:
481
+ # e.is_extended_real is False requires:
482
+ # _half(other) with constant floor or
483
+ # floor(S.Half - im(e*log(b))/2/pi) == 0
484
+ try:
485
+ s = exp(2*S.ImaginaryUnit*S.Pi*other*
486
+ floor(S.Half - im(e*log(b))/2/S.Pi))
487
+ # be careful to test that s is -1 or 1 b/c sign(I) == I:
488
+ # so check that s is real
489
+ if s.is_extended_real and _n2(sign(s) - s) == 0:
490
+ s = sign(s)
491
+ else:
492
+ s = None
493
+ except PrecisionExhausted:
494
+ s = None
495
+
496
+ if s is not None:
497
+ return s*Pow(b, e*other)
498
+
499
+ def _eval_Mod(self, q):
500
+ r"""A dispatched function to compute `b^e \bmod q`, dispatched
501
+ by ``Mod``.
502
+
503
+ Notes
504
+ =====
505
+
506
+ Algorithms:
507
+
508
+ 1. For unevaluated integer power, use built-in ``pow`` function
509
+ with 3 arguments, if powers are not too large wrt base.
510
+
511
+ 2. For very large powers, use totient reduction if $e \ge \log(m)$.
512
+ Bound on m, is for safe factorization memory wise i.e. $m^{1/4}$.
513
+ For pollard-rho to be faster than built-in pow $\log(e) > m^{1/4}$
514
+ check is added.
515
+
516
+ 3. For any unevaluated power found in `b` or `e`, the step 2
517
+ will be recursed down to the base and the exponent
518
+ such that the $b \bmod q$ becomes the new base and
519
+ $\phi(q) + e \bmod \phi(q)$ becomes the new exponent, and then
520
+ the computation for the reduced expression can be done.
521
+ """
522
+
523
+ base, exp = self.base, self.exp
524
+
525
+ if exp.is_integer and exp.is_positive:
526
+ if q.is_integer and base % q == 0:
527
+ return S.Zero
528
+
529
+ from sympy.ntheory.factor_ import totient
530
+
531
+ if base.is_Integer and exp.is_Integer and q.is_Integer:
532
+ b, e, m = int(base), int(exp), int(q)
533
+ mb = m.bit_length()
534
+ if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
535
+ phi = int(totient(m))
536
+ return Integer(pow(b, phi + e%phi, m))
537
+ return Integer(pow(b, e, m))
538
+
539
+ from .mod import Mod
540
+
541
+ if isinstance(base, Pow) and base.is_integer and base.is_number:
542
+ base = Mod(base, q)
543
+ return Mod(Pow(base, exp, evaluate=False), q)
544
+
545
+ if isinstance(exp, Pow) and exp.is_integer and exp.is_number:
546
+ bit_length = int(q).bit_length()
547
+ # XXX Mod-Pow actually attempts to do a hanging evaluation
548
+ # if this dispatched function returns None.
549
+ # May need some fixes in the dispatcher itself.
550
+ if bit_length <= 80:
551
+ phi = totient(q)
552
+ exp = phi + Mod(exp, phi)
553
+ return Mod(Pow(base, exp, evaluate=False), q)
554
+
555
+ def _eval_is_even(self):
556
+ if self.exp.is_integer and self.exp.is_positive:
557
+ return self.base.is_even
558
+
559
+ def _eval_is_negative(self):
560
+ ext_neg = Pow._eval_is_extended_negative(self)
561
+ if ext_neg is True:
562
+ return self.is_finite
563
+ return ext_neg
564
+
565
+ def _eval_is_extended_positive(self):
566
+ if self.base == self.exp:
567
+ if self.base.is_extended_nonnegative:
568
+ return True
569
+ elif self.base.is_positive:
570
+ if self.exp.is_real:
571
+ return True
572
+ elif self.base.is_extended_negative:
573
+ if self.exp.is_even:
574
+ return True
575
+ if self.exp.is_odd:
576
+ return False
577
+ elif self.base.is_zero:
578
+ if self.exp.is_extended_real:
579
+ return self.exp.is_zero
580
+ elif self.base.is_extended_nonpositive:
581
+ if self.exp.is_odd:
582
+ return False
583
+ elif self.base.is_imaginary:
584
+ if self.exp.is_integer:
585
+ m = self.exp % 4
586
+ if m.is_zero:
587
+ return True
588
+ if m.is_integer and m.is_zero is False:
589
+ return False
590
+ if self.exp.is_imaginary:
591
+ from sympy.functions.elementary.exponential import log
592
+ return log(self.base).is_imaginary
593
+
594
+ def _eval_is_extended_negative(self):
595
+ if self.exp is S.Half:
596
+ if self.base.is_complex or self.base.is_extended_real:
597
+ return False
598
+ if self.base.is_extended_negative:
599
+ if self.exp.is_odd and self.base.is_finite:
600
+ return True
601
+ if self.exp.is_even:
602
+ return False
603
+ elif self.base.is_extended_positive:
604
+ if self.exp.is_extended_real:
605
+ return False
606
+ elif self.base.is_zero:
607
+ if self.exp.is_extended_real:
608
+ return False
609
+ elif self.base.is_extended_nonnegative:
610
+ if self.exp.is_extended_nonnegative:
611
+ return False
612
+ elif self.base.is_extended_nonpositive:
613
+ if self.exp.is_even:
614
+ return False
615
+ elif self.base.is_extended_real:
616
+ if self.exp.is_even:
617
+ return False
618
+
619
+ def _eval_is_zero(self):
620
+ if self.base.is_zero:
621
+ if self.exp.is_extended_positive:
622
+ return True
623
+ elif self.exp.is_extended_nonpositive:
624
+ return False
625
+ elif self.base == S.Exp1:
626
+ return self.exp is S.NegativeInfinity
627
+ elif self.base.is_zero is False:
628
+ if self.base.is_finite and self.exp.is_finite:
629
+ return False
630
+ elif self.exp.is_negative:
631
+ return self.base.is_infinite
632
+ elif self.exp.is_nonnegative:
633
+ return False
634
+ elif self.exp.is_infinite and self.exp.is_extended_real:
635
+ if (1 - abs(self.base)).is_extended_positive:
636
+ return self.exp.is_extended_positive
637
+ elif (1 - abs(self.base)).is_extended_negative:
638
+ return self.exp.is_extended_negative
639
+ elif self.base.is_finite and self.exp.is_negative:
640
+ # when self.base.is_zero is None
641
+ return False
642
+
643
+ def _eval_is_integer(self):
644
+ b, e = self.args
645
+ if b.is_rational:
646
+ if b.is_integer is False and e.is_positive:
647
+ return False # rat**nonneg
648
+ if b.is_integer and e.is_integer:
649
+ if b is S.NegativeOne:
650
+ return True
651
+ if e.is_nonnegative or e.is_positive:
652
+ return True
653
+ if b.is_integer and e.is_negative and (e.is_finite or e.is_integer):
654
+ if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero):
655
+ return False
656
+ if b.is_Number and e.is_Number:
657
+ check = self.func(*self.args)
658
+ return check.is_Integer
659
+ if e.is_negative and b.is_positive and (b - 1).is_positive:
660
+ return False
661
+ if e.is_negative and b.is_negative and (b + 1).is_negative:
662
+ return False
663
+
664
+ def _eval_is_extended_real(self):
665
+ if self.base is S.Exp1:
666
+ if self.exp.is_extended_real:
667
+ return True
668
+ elif self.exp.is_imaginary:
669
+ return (2*S.ImaginaryUnit*self.exp/S.Pi).is_even
670
+
671
+ from sympy.functions.elementary.exponential import log, exp
672
+ real_b = self.base.is_extended_real
673
+ if real_b is None:
674
+ if self.base.func == exp and self.base.exp.is_imaginary:
675
+ return self.exp.is_imaginary
676
+ if self.base.func == Pow and self.base.base is S.Exp1 and self.base.exp.is_imaginary:
677
+ return self.exp.is_imaginary
678
+ return
679
+ real_e = self.exp.is_extended_real
680
+ if real_e is None:
681
+ return
682
+ if real_b and real_e:
683
+ if self.base.is_extended_positive:
684
+ return True
685
+ elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative:
686
+ return True
687
+ elif self.exp.is_integer and self.base.is_extended_nonzero:
688
+ return True
689
+ elif self.exp.is_integer and self.exp.is_nonnegative:
690
+ return True
691
+ elif self.base.is_extended_negative:
692
+ if self.exp.is_Rational:
693
+ return False
694
+ if real_e and self.exp.is_extended_negative and self.base.is_zero is False:
695
+ return Pow(self.base, -self.exp).is_extended_real
696
+ im_b = self.base.is_imaginary
697
+ im_e = self.exp.is_imaginary
698
+ if im_b:
699
+ if self.exp.is_integer:
700
+ if self.exp.is_even:
701
+ return True
702
+ elif self.exp.is_odd:
703
+ return False
704
+ elif im_e and log(self.base).is_imaginary:
705
+ return True
706
+ elif self.exp.is_Add:
707
+ c, a = self.exp.as_coeff_Add()
708
+ if c and c.is_Integer:
709
+ return Mul(
710
+ self.base**c, self.base**a, evaluate=False).is_extended_real
711
+ elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit):
712
+ if (self.exp/2).is_integer is False:
713
+ return False
714
+ if real_b and im_e:
715
+ if self.base is S.NegativeOne:
716
+ return True
717
+ c = self.exp.coeff(S.ImaginaryUnit)
718
+ if c:
719
+ if self.base.is_rational and c.is_rational:
720
+ if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero:
721
+ return False
722
+ ok = (c*log(self.base)/S.Pi).is_integer
723
+ if ok is not None:
724
+ return ok
725
+
726
+ if real_b is False and real_e: # we already know it's not imag
727
+ from sympy.functions.elementary.complexes import arg
728
+ i = arg(self.base)*self.exp/S.Pi
729
+ if i.is_complex: # finite
730
+ return i.is_integer
731
+
732
+ def _eval_is_complex(self):
733
+
734
+ if self.base == S.Exp1:
735
+ return fuzzy_or([self.exp.is_complex, self.exp.is_extended_negative])
736
+
737
+ if all(a.is_complex for a in self.args) and self._eval_is_finite():
738
+ return True
739
+
740
+ def _eval_is_imaginary(self):
741
+ if self.base.is_commutative is False:
742
+ return False
743
+
744
+ if self.base.is_imaginary:
745
+ if self.exp.is_integer:
746
+ odd = self.exp.is_odd
747
+ if odd is not None:
748
+ return odd
749
+ return
750
+
751
+ if self.base == S.Exp1:
752
+ f = 2 * self.exp / (S.Pi*S.ImaginaryUnit)
753
+ # exp(pi*integer) = 1 or -1, so not imaginary
754
+ if f.is_even:
755
+ return False
756
+ # exp(pi*integer + pi/2) = I or -I, so it is imaginary
757
+ if f.is_odd:
758
+ return True
759
+ return None
760
+
761
+ if self.exp.is_imaginary:
762
+ from sympy.functions.elementary.exponential import log
763
+ imlog = log(self.base).is_imaginary
764
+ if imlog is not None:
765
+ return False # I**i -> real; (2*I)**i -> complex ==> not imaginary
766
+
767
+ if self.base.is_extended_real and self.exp.is_extended_real:
768
+ if self.base.is_positive:
769
+ return False
770
+ else:
771
+ rat = self.exp.is_rational
772
+ if not rat:
773
+ return rat
774
+ if self.exp.is_integer:
775
+ return False
776
+ else:
777
+ half = (2*self.exp).is_integer
778
+ if half:
779
+ return self.base.is_negative
780
+ return half
781
+
782
+ if self.base.is_extended_real is False: # we already know it's not imag
783
+ from sympy.functions.elementary.complexes import arg
784
+ i = arg(self.base)*self.exp/S.Pi
785
+ isodd = (2*i).is_odd
786
+ if isodd is not None:
787
+ return isodd
788
+
789
+ def _eval_is_odd(self):
790
+ if self.exp.is_integer:
791
+ if self.exp.is_positive:
792
+ return self.base.is_odd
793
+ elif self.exp.is_nonnegative and self.base.is_odd:
794
+ return True
795
+ elif self.base is S.NegativeOne:
796
+ return True
797
+
798
+ def _eval_is_finite(self):
799
+ if self.exp.is_negative:
800
+ if self.base.is_zero:
801
+ return False
802
+ if self.base.is_infinite or self.base.is_nonzero:
803
+ return True
804
+ c1 = self.base.is_finite
805
+ if c1 is None:
806
+ return
807
+ c2 = self.exp.is_finite
808
+ if c2 is None:
809
+ return
810
+ if c1 and c2:
811
+ if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero):
812
+ return True
813
+
814
+ def _eval_is_prime(self):
815
+ '''
816
+ An integer raised to the n(>=2)-th power cannot be a prime.
817
+ '''
818
+ if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive:
819
+ return False
820
+
821
+ def _eval_is_composite(self):
822
+ """
823
+ A power is composite if both base and exponent are greater than 1
824
+ """
825
+ if (self.base.is_integer and self.exp.is_integer and
826
+ ((self.base - 1).is_positive and (self.exp - 1).is_positive or
827
+ (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)):
828
+ return True
829
+
830
+ def _eval_is_polar(self):
831
+ return self.base.is_polar
832
+
833
+ def _eval_subs(self, old, new):
834
+ from sympy.calculus.accumulationbounds import AccumBounds
835
+
836
+ if isinstance(self.exp, AccumBounds):
837
+ b = self.base.subs(old, new)
838
+ e = self.exp.subs(old, new)
839
+ if isinstance(e, AccumBounds):
840
+ return e.__rpow__(b)
841
+ return self.func(b, e)
842
+
843
+ from sympy.functions.elementary.exponential import exp, log
844
+
845
+ def _check(ct1, ct2, old):
846
+ """Return (bool, pow, remainder_pow) where, if bool is True, then the
847
+ exponent of Pow `old` will combine with `pow` so the substitution
848
+ is valid, otherwise bool will be False.
849
+
850
+ For noncommutative objects, `pow` will be an integer, and a factor
851
+ `Pow(old.base, remainder_pow)` needs to be included. If there is
852
+ no such factor, None is returned. For commutative objects,
853
+ remainder_pow is always None.
854
+
855
+ cti are the coefficient and terms of an exponent of self or old
856
+ In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y)
857
+ will give y**2 since (b**x)**2 == b**(2*x); if that equality does
858
+ not hold then the substitution should not occur so `bool` will be
859
+ False.
860
+
861
+ """
862
+ coeff1, terms1 = ct1
863
+ coeff2, terms2 = ct2
864
+ if terms1 == terms2:
865
+ if old.is_commutative:
866
+ # Allow fractional powers for commutative objects
867
+ pow = coeff1/coeff2
868
+ try:
869
+ as_int(pow, strict=False)
870
+ combines = True
871
+ except ValueError:
872
+ b, e = old.as_base_exp()
873
+ # These conditions ensure that (b**e)**f == b**(e*f) for any f
874
+ combines = b.is_positive and e.is_real or b.is_nonnegative and e.is_nonnegative
875
+
876
+ return combines, pow, None
877
+ else:
878
+ # With noncommutative symbols, substitute only integer powers
879
+ if not isinstance(terms1, tuple):
880
+ terms1 = (terms1,)
881
+ if not all(term.is_integer for term in terms1):
882
+ return False, None, None
883
+
884
+ try:
885
+ # Round pow toward zero
886
+ pow, remainder = divmod(as_int(coeff1), as_int(coeff2))
887
+ if pow < 0 and remainder != 0:
888
+ pow += 1
889
+ remainder -= as_int(coeff2)
890
+
891
+ if remainder == 0:
892
+ remainder_pow = None
893
+ else:
894
+ remainder_pow = Mul(remainder, *terms1)
895
+
896
+ return True, pow, remainder_pow
897
+ except ValueError:
898
+ # Can't substitute
899
+ pass
900
+
901
+ return False, None, None
902
+
903
+ if old == self.base or (old == exp and self.base == S.Exp1):
904
+ if new.is_Function and isinstance(new, Callable):
905
+ return new(self.exp._subs(old, new))
906
+ else:
907
+ return new**self.exp._subs(old, new)
908
+
909
+ # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2
910
+ if isinstance(old, self.func) and self.exp == old.exp:
911
+ l = log(self.base, old.base)
912
+ if l.is_Number:
913
+ return Pow(new, l)
914
+
915
+ if isinstance(old, self.func) and self.base == old.base:
916
+ if self.exp.is_Add is False:
917
+ ct1 = self.exp.as_independent(Symbol, as_Add=False)
918
+ ct2 = old.exp.as_independent(Symbol, as_Add=False)
919
+ ok, pow, remainder_pow = _check(ct1, ct2, old)
920
+ if ok:
921
+ # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2
922
+ result = self.func(new, pow)
923
+ if remainder_pow is not None:
924
+ result = Mul(result, Pow(old.base, remainder_pow))
925
+ return result
926
+ else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a
927
+ # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2))
928
+ oarg = old.exp
929
+ new_l = []
930
+ o_al = []
931
+ ct2 = oarg.as_coeff_mul()
932
+ for a in self.exp.args:
933
+ newa = a._subs(old, new)
934
+ ct1 = newa.as_coeff_mul()
935
+ ok, pow, remainder_pow = _check(ct1, ct2, old)
936
+ if ok:
937
+ new_l.append(new**pow)
938
+ if remainder_pow is not None:
939
+ o_al.append(remainder_pow)
940
+ continue
941
+ elif not old.is_commutative and not newa.is_integer:
942
+ # If any term in the exponent is non-integer,
943
+ # we do not do any substitutions in the noncommutative case
944
+ return
945
+ o_al.append(newa)
946
+ if new_l:
947
+ expo = Add(*o_al)
948
+ new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base)
949
+ return Mul(*new_l)
950
+
951
+ if (isinstance(old, exp) or (old.is_Pow and old.base is S.Exp1)) and self.exp.is_extended_real and self.base.is_positive:
952
+ ct1 = old.exp.as_independent(Symbol, as_Add=False)
953
+ ct2 = (self.exp*log(self.base)).as_independent(
954
+ Symbol, as_Add=False)
955
+ ok, pow, remainder_pow = _check(ct1, ct2, old)
956
+ if ok:
957
+ result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
958
+ if remainder_pow is not None:
959
+ result = Mul(result, Pow(old.base, remainder_pow))
960
+ return result
961
+
962
+ def as_base_exp(self):
963
+ """Return base and exp of self.
964
+
965
+ Explanation
966
+ ===========
967
+
968
+ If base a Rational less than 1, then return 1/Rational, -exp.
969
+ If this extra processing is not needed, the base and exp
970
+ properties will give the raw arguments.
971
+
972
+ Examples
973
+ ========
974
+
975
+ >>> from sympy import Pow, S
976
+ >>> p = Pow(S.Half, 2, evaluate=False)
977
+ >>> p.as_base_exp()
978
+ (2, -2)
979
+ >>> p.args
980
+ (1/2, 2)
981
+ >>> p.base, p.exp
982
+ (1/2, 2)
983
+
984
+ """
985
+
986
+ b, e = self.args
987
+ if b.is_Rational and b.p < b.q and b.p > 0:
988
+ return 1/b, -e
989
+ return b, e
990
+
991
+ def _eval_adjoint(self):
992
+ from sympy.functions.elementary.complexes import adjoint
993
+ i, p = self.exp.is_integer, self.base.is_positive
994
+ if i:
995
+ return adjoint(self.base)**self.exp
996
+ if p:
997
+ return self.base**adjoint(self.exp)
998
+ if i is False and p is False:
999
+ expanded = expand_complex(self)
1000
+ if expanded != self:
1001
+ return adjoint(expanded)
1002
+
1003
+ def _eval_conjugate(self):
1004
+ from sympy.functions.elementary.complexes import conjugate as c
1005
+ i, p = self.exp.is_integer, self.base.is_positive
1006
+ if i:
1007
+ return c(self.base)**self.exp
1008
+ if p:
1009
+ return self.base**c(self.exp)
1010
+ if i is False and p is False:
1011
+ expanded = expand_complex(self)
1012
+ if expanded != self:
1013
+ return c(expanded)
1014
+ if self.is_extended_real:
1015
+ return self
1016
+
1017
+ def _eval_transpose(self):
1018
+ from sympy.functions.elementary.complexes import transpose
1019
+ if self.base == S.Exp1:
1020
+ return self.func(S.Exp1, self.exp.transpose())
1021
+ i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite)
1022
+ if p:
1023
+ return self.base**self.exp
1024
+ if i:
1025
+ return transpose(self.base)**self.exp
1026
+ if i is False and p is False:
1027
+ expanded = expand_complex(self)
1028
+ if expanded != self:
1029
+ return transpose(expanded)
1030
+
1031
+ def _eval_expand_power_exp(self, **hints):
1032
+ """a**(n + m) -> a**n*a**m"""
1033
+ b = self.base
1034
+ e = self.exp
1035
+ if b == S.Exp1:
1036
+ from sympy.concrete.summations import Sum
1037
+ if isinstance(e, Sum) and e.is_commutative:
1038
+ from sympy.concrete.products import Product
1039
+ return Product(self.func(b, e.function), *e.limits)
1040
+ if e.is_Add and (hints.get('force', False) or
1041
+ b.is_zero is False or e._all_nonneg_or_nonppos()):
1042
+ if e.is_commutative:
1043
+ return Mul(*[self.func(b, x) for x in e.args])
1044
+ if b.is_commutative:
1045
+ c, nc = sift(e.args, lambda x: x.is_commutative, binary=True)
1046
+ if c:
1047
+ return Mul(*[self.func(b, x) for x in c]
1048
+ )*b**Add._from_args(nc)
1049
+ return self
1050
+
1051
+ def _eval_expand_power_base(self, **hints):
1052
+ """(a*b)**n -> a**n * b**n"""
1053
+ force = hints.get('force', False)
1054
+
1055
+ b = self.base
1056
+ e = self.exp
1057
+ if not b.is_Mul:
1058
+ return self
1059
+
1060
+ cargs, nc = b.args_cnc(split_1=False)
1061
+
1062
+ # expand each term - this is top-level-only
1063
+ # expansion but we have to watch out for things
1064
+ # that don't have an _eval_expand method
1065
+ if nc:
1066
+ nc = [i._eval_expand_power_base(**hints)
1067
+ if hasattr(i, '_eval_expand_power_base') else i
1068
+ for i in nc]
1069
+
1070
+ if e.is_Integer:
1071
+ if e.is_positive:
1072
+ rv = Mul(*nc*e)
1073
+ else:
1074
+ rv = Mul(*[i**-1 for i in nc[::-1]]*-e)
1075
+ if cargs:
1076
+ rv *= Mul(*cargs)**e
1077
+ return rv
1078
+
1079
+ if not cargs:
1080
+ return self.func(Mul(*nc), e, evaluate=False)
1081
+
1082
+ nc = [Mul(*nc)]
1083
+
1084
+ # sift the commutative bases
1085
+ other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False,
1086
+ binary=True)
1087
+ def pred(x):
1088
+ if x is S.ImaginaryUnit:
1089
+ return S.ImaginaryUnit
1090
+ polar = x.is_polar
1091
+ if polar:
1092
+ return True
1093
+ if polar is None:
1094
+ return fuzzy_bool(x.is_extended_nonnegative)
1095
+ sifted = sift(maybe_real, pred)
1096
+ nonneg = sifted[True]
1097
+ other += sifted[None]
1098
+ neg = sifted[False]
1099
+ imag = sifted[S.ImaginaryUnit]
1100
+ if imag:
1101
+ I = S.ImaginaryUnit
1102
+ i = len(imag) % 4
1103
+ if i == 0:
1104
+ pass
1105
+ elif i == 1:
1106
+ other.append(I)
1107
+ elif i == 2:
1108
+ if neg:
1109
+ nonn = -neg.pop()
1110
+ if nonn is not S.One:
1111
+ nonneg.append(nonn)
1112
+ else:
1113
+ neg.append(S.NegativeOne)
1114
+ else:
1115
+ if neg:
1116
+ nonn = -neg.pop()
1117
+ if nonn is not S.One:
1118
+ nonneg.append(nonn)
1119
+ else:
1120
+ neg.append(S.NegativeOne)
1121
+ other.append(I)
1122
+ del imag
1123
+
1124
+ # bring out the bases that can be separated from the base
1125
+
1126
+ if force or e.is_integer:
1127
+ # treat all commutatives the same and put nc in other
1128
+ cargs = nonneg + neg + other
1129
+ other = nc
1130
+ else:
1131
+ # this is just like what is happening automatically, except
1132
+ # that now we are doing it for an arbitrary exponent for which
1133
+ # no automatic expansion is done
1134
+
1135
+ assert not e.is_Integer
1136
+
1137
+ # handle negatives by making them all positive and putting
1138
+ # the residual -1 in other
1139
+ if len(neg) > 1:
1140
+ o = S.One
1141
+ if not other and neg[0].is_Number:
1142
+ o *= neg.pop(0)
1143
+ if len(neg) % 2:
1144
+ o = -o
1145
+ for n in neg:
1146
+ nonneg.append(-n)
1147
+ if o is not S.One:
1148
+ other.append(o)
1149
+ elif neg and other:
1150
+ if neg[0].is_Number and neg[0] is not S.NegativeOne:
1151
+ other.append(S.NegativeOne)
1152
+ nonneg.append(-neg[0])
1153
+ else:
1154
+ other.extend(neg)
1155
+ else:
1156
+ other.extend(neg)
1157
+ del neg
1158
+
1159
+ cargs = nonneg
1160
+ other += nc
1161
+
1162
+ rv = S.One
1163
+ if cargs:
1164
+ if e.is_Rational:
1165
+ npow, cargs = sift(cargs, lambda x: x.is_Pow and
1166
+ x.exp.is_Rational and x.base.is_number,
1167
+ binary=True)
1168
+ rv = Mul(*[self.func(b.func(*b.args), e) for b in npow])
1169
+ rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs])
1170
+ if other:
1171
+ rv *= self.func(Mul(*other), e, evaluate=False)
1172
+ return rv
1173
+
1174
+ def _eval_expand_multinomial(self, **hints):
1175
+ """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
1176
+
1177
+ base, exp = self.args
1178
+ result = self
1179
+
1180
+ if exp.is_Rational and exp.p > 0 and base.is_Add:
1181
+ if not exp.is_Integer:
1182
+ n = Integer(exp.p // exp.q)
1183
+
1184
+ if not n:
1185
+ return result
1186
+ else:
1187
+ radical, result = self.func(base, exp - n), []
1188
+
1189
+ expanded_base_n = self.func(base, n)
1190
+ if expanded_base_n.is_Pow:
1191
+ expanded_base_n = \
1192
+ expanded_base_n._eval_expand_multinomial()
1193
+ for term in Add.make_args(expanded_base_n):
1194
+ result.append(term*radical)
1195
+
1196
+ return Add(*result)
1197
+
1198
+ n = int(exp)
1199
+
1200
+ if base.is_commutative:
1201
+ order_terms, other_terms = [], []
1202
+
1203
+ for b in base.args:
1204
+ if b.is_Order:
1205
+ order_terms.append(b)
1206
+ else:
1207
+ other_terms.append(b)
1208
+
1209
+ if order_terms:
1210
+ # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
1211
+ f = Add(*other_terms)
1212
+ o = Add(*order_terms)
1213
+
1214
+ if n == 2:
1215
+ return expand_multinomial(f**n, deep=False) + n*f*o
1216
+ else:
1217
+ g = expand_multinomial(f**(n - 1), deep=False)
1218
+ return expand_mul(f*g, deep=False) + n*g*o
1219
+
1220
+ if base.is_number:
1221
+ # Efficiently expand expressions of the form (a + b*I)**n
1222
+ # where 'a' and 'b' are real numbers and 'n' is integer.
1223
+ a, b = base.as_real_imag()
1224
+
1225
+ if a.is_Rational and b.is_Rational:
1226
+ if not a.is_Integer:
1227
+ if not b.is_Integer:
1228
+ k = self.func(a.q * b.q, n)
1229
+ a, b = a.p*b.q, a.q*b.p
1230
+ else:
1231
+ k = self.func(a.q, n)
1232
+ a, b = a.p, a.q*b
1233
+ elif not b.is_Integer:
1234
+ k = self.func(b.q, n)
1235
+ a, b = a*b.q, b.p
1236
+ else:
1237
+ k = 1
1238
+
1239
+ a, b, c, d = int(a), int(b), 1, 0
1240
+
1241
+ while n:
1242
+ if n & 1:
1243
+ c, d = a*c - b*d, b*c + a*d
1244
+ n -= 1
1245
+ a, b = a*a - b*b, 2*a*b
1246
+ n //= 2
1247
+
1248
+ I = S.ImaginaryUnit
1249
+
1250
+ if k == 1:
1251
+ return c + I*d
1252
+ else:
1253
+ return Integer(c)/k + I*d/k
1254
+
1255
+ p = other_terms
1256
+ # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
1257
+ # in this particular example:
1258
+ # p = [x,y]; n = 3
1259
+ # so now it's easy to get the correct result -- we get the
1260
+ # coefficients first:
1261
+ from sympy.ntheory.multinomial import multinomial_coefficients
1262
+ from sympy.polys.polyutils import basic_from_dict
1263
+ expansion_dict = multinomial_coefficients(len(p), n)
1264
+ # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
1265
+ # and now construct the expression.
1266
+ return basic_from_dict(expansion_dict, *p)
1267
+ else:
1268
+ if n == 2:
1269
+ return Add(*[f*g for f in base.args for g in base.args])
1270
+ else:
1271
+ multi = (base**(n - 1))._eval_expand_multinomial()
1272
+ if multi.is_Add:
1273
+ return Add(*[f*g for f in base.args
1274
+ for g in multi.args])
1275
+ else:
1276
+ # XXX can this ever happen if base was an Add?
1277
+ return Add(*[f*multi for f in base.args])
1278
+ elif (exp.is_Rational and exp.p < 0 and base.is_Add and
1279
+ abs(exp.p) > exp.q):
1280
+ return 1 / self.func(base, -exp)._eval_expand_multinomial()
1281
+ elif exp.is_Add and base.is_Number and (hints.get('force', False) or
1282
+ base.is_zero is False or exp._all_nonneg_or_nonppos()):
1283
+ # a + b a b
1284
+ # n --> n n, where n, a, b are Numbers
1285
+ # XXX should be in expand_power_exp?
1286
+ coeff, tail = [], []
1287
+ for term in exp.args:
1288
+ if term.is_Number:
1289
+ coeff.append(self.func(base, term))
1290
+ else:
1291
+ tail.append(term)
1292
+ return Mul(*(coeff + [self.func(base, Add._from_args(tail))]))
1293
+ else:
1294
+ return result
1295
+
1296
+ def as_real_imag(self, deep=True, **hints):
1297
+ if self.exp.is_Integer:
1298
+ from sympy.polys.polytools import poly
1299
+
1300
+ exp = self.exp
1301
+ re_e, im_e = self.base.as_real_imag(deep=deep)
1302
+ if not im_e:
1303
+ return self, S.Zero
1304
+ a, b = symbols('a b', cls=Dummy)
1305
+ if exp >= 0:
1306
+ if re_e.is_Number and im_e.is_Number:
1307
+ # We can be more efficient in this case
1308
+ expr = expand_multinomial(self.base**exp)
1309
+ if expr != self:
1310
+ return expr.as_real_imag()
1311
+
1312
+ expr = poly(
1313
+ (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
1314
+ else:
1315
+ mag = re_e**2 + im_e**2
1316
+ re_e, im_e = re_e/mag, -im_e/mag
1317
+ if re_e.is_Number and im_e.is_Number:
1318
+ # We can be more efficient in this case
1319
+ expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp)
1320
+ if expr != self:
1321
+ return expr.as_real_imag()
1322
+
1323
+ expr = poly((a + b)**-exp)
1324
+
1325
+ # Terms with even b powers will be real
1326
+ r = [i for i in expr.terms() if not i[0][1] % 2]
1327
+ re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
1328
+ # Terms with odd b powers will be imaginary
1329
+ r = [i for i in expr.terms() if i[0][1] % 4 == 1]
1330
+ im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
1331
+ r = [i for i in expr.terms() if i[0][1] % 4 == 3]
1332
+ im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
1333
+
1334
+ return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}),
1335
+ im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e}))
1336
+
1337
+ from sympy.functions.elementary.trigonometric import atan2, cos, sin
1338
+
1339
+ if self.exp.is_Rational:
1340
+ re_e, im_e = self.base.as_real_imag(deep=deep)
1341
+
1342
+ if im_e.is_zero and self.exp is S.Half:
1343
+ if re_e.is_extended_nonnegative:
1344
+ return self, S.Zero
1345
+ if re_e.is_extended_nonpositive:
1346
+ return S.Zero, (-self.base)**self.exp
1347
+
1348
+ # XXX: This is not totally correct since for x**(p/q) with
1349
+ # x being imaginary there are actually q roots, but
1350
+ # only a single one is returned from here.
1351
+ r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half)
1352
+
1353
+ t = atan2(im_e, re_e)
1354
+
1355
+ rp, tp = self.func(r, self.exp), t*self.exp
1356
+
1357
+ return rp*cos(tp), rp*sin(tp)
1358
+ elif self.base is S.Exp1:
1359
+ from sympy.functions.elementary.exponential import exp
1360
+ re_e, im_e = self.exp.as_real_imag()
1361
+ if deep:
1362
+ re_e = re_e.expand(deep, **hints)
1363
+ im_e = im_e.expand(deep, **hints)
1364
+ c, s = cos(im_e), sin(im_e)
1365
+ return exp(re_e)*c, exp(re_e)*s
1366
+ else:
1367
+ from sympy.functions.elementary.complexes import im, re
1368
+ if deep:
1369
+ hints['complex'] = False
1370
+
1371
+ expanded = self.expand(deep, **hints)
1372
+ if hints.get('ignore') == expanded:
1373
+ return None
1374
+ else:
1375
+ return (re(expanded), im(expanded))
1376
+ else:
1377
+ return re(self), im(self)
1378
+
1379
+ def _eval_derivative(self, s):
1380
+ from sympy.functions.elementary.exponential import log
1381
+ dbase = self.base.diff(s)
1382
+ dexp = self.exp.diff(s)
1383
+ return self * (dexp * log(self.base) + dbase * self.exp/self.base)
1384
+
1385
+ def _eval_evalf(self, prec):
1386
+ base, exp = self.as_base_exp()
1387
+ if base == S.Exp1:
1388
+ # Use mpmath function associated to class "exp":
1389
+ from sympy.functions.elementary.exponential import exp as exp_function
1390
+ return exp_function(self.exp, evaluate=False)._eval_evalf(prec)
1391
+ base = base._evalf(prec)
1392
+ if not exp.is_Integer:
1393
+ exp = exp._evalf(prec)
1394
+ if exp.is_negative and base.is_number and base.is_extended_real is False:
1395
+ base = base.conjugate() / (base * base.conjugate())._evalf(prec)
1396
+ exp = -exp
1397
+ return self.func(base, exp).expand()
1398
+ return self.func(base, exp)
1399
+
1400
+ def _eval_is_polynomial(self, syms):
1401
+ if self.exp.has(*syms):
1402
+ return False
1403
+
1404
+ if self.base.has(*syms):
1405
+ return bool(self.base._eval_is_polynomial(syms) and
1406
+ self.exp.is_Integer and (self.exp >= 0))
1407
+ else:
1408
+ return True
1409
+
1410
+ def _eval_is_rational(self):
1411
+ # The evaluation of self.func below can be very expensive in the case
1412
+ # of integer**integer if the exponent is large. We should try to exit
1413
+ # before that if possible:
1414
+ if (self.exp.is_integer and self.base.is_rational
1415
+ and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))):
1416
+ return True
1417
+ p = self.func(*self.as_base_exp()) # in case it's unevaluated
1418
+ if not p.is_Pow:
1419
+ return p.is_rational
1420
+ b, e = p.as_base_exp()
1421
+ if e.is_Rational and b.is_Rational:
1422
+ # we didn't check that e is not an Integer
1423
+ # because Rational**Integer autosimplifies
1424
+ return False
1425
+ if e.is_integer:
1426
+ if b.is_rational:
1427
+ if fuzzy_not(b.is_zero) or e.is_nonnegative:
1428
+ return True
1429
+ if b == e: # always rational, even for 0**0
1430
+ return True
1431
+ elif b.is_irrational:
1432
+ return e.is_zero
1433
+ if b is S.Exp1:
1434
+ if e.is_rational and e.is_nonzero:
1435
+ return False
1436
+
1437
+ def _eval_is_algebraic(self):
1438
+ def _is_one(expr):
1439
+ try:
1440
+ return (expr - 1).is_zero
1441
+ except ValueError:
1442
+ # when the operation is not allowed
1443
+ return False
1444
+
1445
+ if self.base.is_zero or _is_one(self.base):
1446
+ return True
1447
+ elif self.base is S.Exp1:
1448
+ s = self.func(*self.args)
1449
+ if s.func == self.func:
1450
+ if self.exp.is_nonzero:
1451
+ if self.exp.is_algebraic:
1452
+ return False
1453
+ elif (self.exp/S.Pi).is_rational:
1454
+ return False
1455
+ elif (self.exp/(S.ImaginaryUnit*S.Pi)).is_rational:
1456
+ return True
1457
+ else:
1458
+ return s.is_algebraic
1459
+ elif self.exp.is_rational:
1460
+ if self.base.is_algebraic is False:
1461
+ return self.exp.is_zero
1462
+ if self.base.is_zero is False:
1463
+ if self.exp.is_nonzero:
1464
+ return self.base.is_algebraic
1465
+ elif self.base.is_algebraic:
1466
+ return True
1467
+ if self.exp.is_positive:
1468
+ return self.base.is_algebraic
1469
+ elif self.base.is_algebraic and self.exp.is_algebraic:
1470
+ if ((fuzzy_not(self.base.is_zero)
1471
+ and fuzzy_not(_is_one(self.base)))
1472
+ or self.base.is_integer is False
1473
+ or self.base.is_irrational):
1474
+ return self.exp.is_rational
1475
+
1476
+ def _eval_is_rational_function(self, syms):
1477
+ if self.exp.has(*syms):
1478
+ return False
1479
+
1480
+ if self.base.has(*syms):
1481
+ return self.base._eval_is_rational_function(syms) and \
1482
+ self.exp.is_Integer
1483
+ else:
1484
+ return True
1485
+
1486
+ def _eval_is_meromorphic(self, x, a):
1487
+ # f**g is meromorphic if g is an integer and f is meromorphic.
1488
+ # E**(log(f)*g) is meromorphic if log(f)*g is meromorphic
1489
+ # and finite.
1490
+ base_merom = self.base._eval_is_meromorphic(x, a)
1491
+ exp_integer = self.exp.is_Integer
1492
+ if exp_integer:
1493
+ return base_merom
1494
+
1495
+ exp_merom = self.exp._eval_is_meromorphic(x, a)
1496
+ if base_merom is False:
1497
+ # f**g = E**(log(f)*g) may be meromorphic if the
1498
+ # singularities of log(f) and g cancel each other,
1499
+ # for example, if g = 1/log(f). Hence,
1500
+ return False if exp_merom else None
1501
+ elif base_merom is None:
1502
+ return None
1503
+
1504
+ b = self.base.subs(x, a)
1505
+ # b is extended complex as base is meromorphic.
1506
+ # log(base) is finite and meromorphic when b != 0, zoo.
1507
+ b_zero = b.is_zero
1508
+ if b_zero:
1509
+ log_defined = False
1510
+ else:
1511
+ log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero)))
1512
+
1513
+ if log_defined is False: # zero or pole of base
1514
+ return exp_integer # False or None
1515
+ elif log_defined is None:
1516
+ return None
1517
+
1518
+ if not exp_merom:
1519
+ return exp_merom # False or None
1520
+
1521
+ return self.exp.subs(x, a).is_finite
1522
+
1523
+ def _eval_is_algebraic_expr(self, syms):
1524
+ if self.exp.has(*syms):
1525
+ return False
1526
+
1527
+ if self.base.has(*syms):
1528
+ return self.base._eval_is_algebraic_expr(syms) and \
1529
+ self.exp.is_Rational
1530
+ else:
1531
+ return True
1532
+
1533
+ def _eval_rewrite_as_exp(self, base, expo, **kwargs):
1534
+ from sympy.functions.elementary.exponential import exp, log
1535
+
1536
+ if base.is_zero or base.has(exp) or expo.has(exp):
1537
+ return base**expo
1538
+
1539
+ if base.has(Symbol):
1540
+ # delay evaluation if expo is non symbolic
1541
+ # (as exp(x*log(5)) automatically reduces to x**5)
1542
+ if global_parameters.exp_is_pow:
1543
+ return Pow(S.Exp1, log(base)*expo, evaluate=expo.has(Symbol))
1544
+ else:
1545
+ return exp(log(base)*expo, evaluate=expo.has(Symbol))
1546
+
1547
+ else:
1548
+ from sympy.functions.elementary.complexes import arg, Abs
1549
+ return exp((log(Abs(base)) + S.ImaginaryUnit*arg(base))*expo)
1550
+
1551
+ def as_numer_denom(self):
1552
+ if not self.is_commutative:
1553
+ return self, S.One
1554
+ base, exp = self.as_base_exp()
1555
+ n, d = base.as_numer_denom()
1556
+ # this should be the same as ExpBase.as_numer_denom wrt
1557
+ # exponent handling
1558
+ neg_exp = exp.is_negative
1559
+ if exp.is_Mul and not neg_exp and not exp.is_positive:
1560
+ neg_exp = exp.could_extract_minus_sign()
1561
+ int_exp = exp.is_integer
1562
+ # the denominator cannot be separated from the numerator if
1563
+ # its sign is unknown unless the exponent is an integer, e.g.
1564
+ # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the
1565
+ # denominator is negative the numerator and denominator can
1566
+ # be negated and the denominator (now positive) separated.
1567
+ if not (d.is_extended_real or int_exp):
1568
+ n = base
1569
+ d = S.One
1570
+ dnonpos = d.is_nonpositive
1571
+ if dnonpos:
1572
+ n, d = -n, -d
1573
+ elif dnonpos is None and not int_exp:
1574
+ n = base
1575
+ d = S.One
1576
+ if neg_exp:
1577
+ n, d = d, n
1578
+ exp = -exp
1579
+ if exp.is_infinite:
1580
+ if n is S.One and d is not S.One:
1581
+ return n, self.func(d, exp)
1582
+ if n is not S.One and d is S.One:
1583
+ return self.func(n, exp), d
1584
+ return self.func(n, exp), self.func(d, exp)
1585
+
1586
+ def matches(self, expr, repl_dict=None, old=False):
1587
+ expr = _sympify(expr)
1588
+ if repl_dict is None:
1589
+ repl_dict = {}
1590
+
1591
+ # special case, pattern = 1 and expr.exp can match to 0
1592
+ if expr is S.One:
1593
+ d = self.exp.matches(S.Zero, repl_dict)
1594
+ if d is not None:
1595
+ return d
1596
+
1597
+ # make sure the expression to be matched is an Expr
1598
+ if not isinstance(expr, Expr):
1599
+ return None
1600
+
1601
+ b, e = expr.as_base_exp()
1602
+
1603
+ # special case number
1604
+ sb, se = self.as_base_exp()
1605
+ if sb.is_Symbol and se.is_Integer and expr:
1606
+ if e.is_rational:
1607
+ return sb.matches(b**(e/se), repl_dict)
1608
+ return sb.matches(expr**(1/se), repl_dict)
1609
+
1610
+ d = repl_dict.copy()
1611
+ d = self.base.matches(b, d)
1612
+ if d is None:
1613
+ return None
1614
+
1615
+ d = self.exp.xreplace(d).matches(e, d)
1616
+ if d is None:
1617
+ return Expr.matches(self, expr, repl_dict)
1618
+ return d
1619
+
1620
+ def _eval_nseries(self, x, n, logx, cdir=0):
1621
+ # NOTE! This function is an important part of the gruntz algorithm
1622
+ # for computing limits. It has to return a generalized power
1623
+ # series with coefficients in C(log, log(x)). In more detail:
1624
+ # It has to return an expression
1625
+ # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
1626
+ # where e_i are numbers (not necessarily integers) and c_i are
1627
+ # expressions involving only numbers, the log function, and log(x).
1628
+ # The series expansion of b**e is computed as follows:
1629
+ # 1) We express b as f*(1 + g) where f is the leading term of b.
1630
+ # g has order O(x**d) where d is strictly positive.
1631
+ # 2) Then b**e = (f**e)*((1 + g)**e).
1632
+ # (1 + g)**e is computed using binomial series.
1633
+ from sympy.functions.elementary.exponential import exp, log
1634
+ from sympy.series.limits import limit
1635
+ from sympy.series.order import Order
1636
+ from sympy.core.sympify import sympify
1637
+ if self.base is S.Exp1:
1638
+ e_series = self.exp.nseries(x, n=n, logx=logx)
1639
+ if e_series.is_Order:
1640
+ return 1 + e_series
1641
+ e0 = limit(e_series.removeO(), x, 0)
1642
+ if e0 is S.NegativeInfinity:
1643
+ return Order(x**n, x)
1644
+ if e0 is S.Infinity:
1645
+ return self
1646
+ t = e_series - e0
1647
+ exp_series = term = exp(e0)
1648
+ # series of exp(e0 + t) in t
1649
+ for i in range(1, n):
1650
+ term *= t/i
1651
+ term = term.nseries(x, n=n, logx=logx)
1652
+ exp_series += term
1653
+ exp_series += Order(t**n, x)
1654
+ from sympy.simplify.powsimp import powsimp
1655
+ return powsimp(exp_series, deep=True, combine='exp')
1656
+ from sympy.simplify.powsimp import powdenest
1657
+ from .numbers import _illegal
1658
+ self = powdenest(self, force=True).trigsimp()
1659
+ b, e = self.as_base_exp()
1660
+
1661
+ if e.has(*_illegal):
1662
+ raise PoleError()
1663
+
1664
+ if e.has(x):
1665
+ return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
1666
+
1667
+ if logx is not None and b.has(log):
1668
+ from .symbol import Wild
1669
+ c, ex = symbols('c, ex', cls=Wild, exclude=[x])
1670
+ b = b.replace(log(c*x**ex), log(c) + ex*logx)
1671
+ self = b**e
1672
+
1673
+ b = b.removeO()
1674
+ try:
1675
+ from sympy.functions.special.gamma_functions import polygamma
1676
+ if b.has(polygamma, S.EulerGamma) and logx is not None:
1677
+ raise ValueError()
1678
+ _, m = b.leadterm(x)
1679
+ except (ValueError, NotImplementedError, PoleError):
1680
+ b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO()
1681
+ if b.has(S.NaN, S.ComplexInfinity):
1682
+ raise NotImplementedError()
1683
+ _, m = b.leadterm(x)
1684
+
1685
+ if e.has(log):
1686
+ from sympy.simplify.simplify import logcombine
1687
+ e = logcombine(e).cancel()
1688
+
1689
+ if not (m.is_zero or e.is_number and e.is_real):
1690
+ if self == self._eval_as_leading_term(x, logx=logx, cdir=cdir):
1691
+ res = exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
1692
+ if res == exp(e*log(b)):
1693
+ return self
1694
+ return res
1695
+
1696
+ f = b.as_leading_term(x, logx=logx)
1697
+ g = (b/f - S.One).cancel(expand=False)
1698
+ if not m.is_number:
1699
+ raise NotImplementedError()
1700
+ maxpow = n - m*e
1701
+ if maxpow.has(Symbol):
1702
+ maxpow = sympify(n)
1703
+
1704
+ if maxpow.is_negative:
1705
+ return Order(x**(m*e), x)
1706
+
1707
+ if g.is_zero:
1708
+ r = f**e
1709
+ if r != self:
1710
+ r += Order(x**n, x)
1711
+ return r
1712
+
1713
+ def coeff_exp(term, x):
1714
+ coeff, exp = S.One, S.Zero
1715
+ for factor in Mul.make_args(term):
1716
+ if factor.has(x):
1717
+ base, exp = factor.as_base_exp()
1718
+ if base != x:
1719
+ try:
1720
+ return term.leadterm(x)
1721
+ except ValueError:
1722
+ return term, S.Zero
1723
+ else:
1724
+ coeff *= factor
1725
+ return coeff, exp
1726
+
1727
+ def mul(d1, d2):
1728
+ res = {}
1729
+ for e1, e2 in product(d1, d2):
1730
+ ex = e1 + e2
1731
+ if ex < maxpow:
1732
+ res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
1733
+ return res
1734
+
1735
+ try:
1736
+ c, d = g.leadterm(x, logx=logx)
1737
+ except (ValueError, NotImplementedError):
1738
+ if limit(g/x**maxpow, x, 0) == 0:
1739
+ # g has higher order zero
1740
+ return f**e + e*f**e*g # first term of binomial series
1741
+ else:
1742
+ raise NotImplementedError()
1743
+ if c.is_Float and d == S.Zero:
1744
+ # Convert floats like 0.5 to exact SymPy numbers like S.Half, to
1745
+ # prevent rounding errors which can induce wrong values of d leading
1746
+ # to a NotImplementedError being returned from the block below.
1747
+ from sympy.simplify.simplify import nsimplify
1748
+ _, d = nsimplify(g).leadterm(x, logx=logx)
1749
+ if not d.is_positive:
1750
+ g = g.simplify()
1751
+ if g.is_zero:
1752
+ return f**e
1753
+ _, d = g.leadterm(x, logx=logx)
1754
+ if not d.is_positive:
1755
+ g = ((b - f)/f).expand()
1756
+ _, d = g.leadterm(x, logx=logx)
1757
+ if not d.is_positive:
1758
+ raise NotImplementedError()
1759
+
1760
+ from sympy.functions.elementary.integers import ceiling
1761
+ gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO()
1762
+ gterms = {}
1763
+
1764
+ for term in Add.make_args(gpoly):
1765
+ co1, e1 = coeff_exp(term, x)
1766
+ gterms[e1] = gterms.get(e1, S.Zero) + co1
1767
+
1768
+ k = S.One
1769
+ terms = {S.Zero: S.One}
1770
+ tk = gterms
1771
+
1772
+ from sympy.functions.combinatorial.factorials import factorial, ff
1773
+
1774
+ while (k*d - maxpow).is_negative:
1775
+ coeff = ff(e, k)/factorial(k)
1776
+ for ex in tk:
1777
+ terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex]
1778
+ tk = mul(tk, gterms)
1779
+ k += S.One
1780
+
1781
+ from sympy.functions.elementary.complexes import im
1782
+
1783
+ if not e.is_integer and m.is_zero and f.is_negative:
1784
+ ndir = (b - f).dir(x, cdir)
1785
+ if im(ndir).is_negative:
1786
+ inco, inex = coeff_exp(f**e*(-1)**(-2*e), x)
1787
+ elif im(ndir).is_zero:
1788
+ inco, inex = coeff_exp(exp(e*log(b)).as_leading_term(x, logx=logx, cdir=cdir), x)
1789
+ else:
1790
+ inco, inex = coeff_exp(f**e, x)
1791
+ else:
1792
+ inco, inex = coeff_exp(f**e, x)
1793
+ res = S.Zero
1794
+
1795
+ for e1 in terms:
1796
+ ex = e1 + inex
1797
+ res += terms[e1]*inco*x**(ex)
1798
+
1799
+ if not (e.is_integer and e.is_positive and (e*d - n).is_nonpositive and
1800
+ res == _mexpand(self)):
1801
+ try:
1802
+ res += Order(x**n, x)
1803
+ except NotImplementedError:
1804
+ return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
1805
+ return res
1806
+
1807
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
1808
+ from sympy.functions.elementary.exponential import exp, log
1809
+ e = self.exp
1810
+ b = self.base
1811
+ if self.base is S.Exp1:
1812
+ arg = e.as_leading_term(x, logx=logx)
1813
+ arg0 = arg.subs(x, 0)
1814
+ if arg0 is S.NaN:
1815
+ arg0 = arg.limit(x, 0)
1816
+ if arg0.is_infinite is False:
1817
+ return S.Exp1**arg0
1818
+ raise PoleError("Cannot expand %s around 0" % (self))
1819
+ elif e.has(x):
1820
+ lt = exp(e * log(b))
1821
+ return lt.as_leading_term(x, logx=logx, cdir=cdir)
1822
+ else:
1823
+ from sympy.functions.elementary.complexes import im
1824
+ try:
1825
+ f = b.as_leading_term(x, logx=logx, cdir=cdir)
1826
+ except PoleError:
1827
+ return self
1828
+ if not e.is_integer and f.is_negative and not f.has(x):
1829
+ ndir = (b - f).dir(x, cdir)
1830
+ if im(ndir).is_negative:
1831
+ # Normally, f**e would evaluate to exp(e*log(f)) but on branch cuts
1832
+ # an other value is expected through the following computation
1833
+ # exp(e*(log(f) - 2*pi*I)) == f**e*exp(-2*e*pi*I) == f**e*(-1)**(-2*e).
1834
+ return self.func(f, e) * (-1)**(-2*e)
1835
+ elif im(ndir).is_zero:
1836
+ log_leadterm = log(b)._eval_as_leading_term(x, logx=logx, cdir=cdir)
1837
+ if log_leadterm.is_infinite is False:
1838
+ return exp(e*log_leadterm)
1839
+ return self.func(f, e)
1840
+
1841
+ @cacheit
1842
+ def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e
1843
+ from sympy.functions.combinatorial.factorials import binomial
1844
+ return binomial(self.exp, n) * self.func(x, n)
1845
+
1846
+ def taylor_term(self, n, x, *previous_terms):
1847
+ if self.base is not S.Exp1:
1848
+ return super().taylor_term(n, x, *previous_terms)
1849
+ if n < 0:
1850
+ return S.Zero
1851
+ if n == 0:
1852
+ return S.One
1853
+ from .sympify import sympify
1854
+ x = sympify(x)
1855
+ if previous_terms:
1856
+ p = previous_terms[-1]
1857
+ if p is not None:
1858
+ return p * x / n
1859
+ from sympy.functions.combinatorial.factorials import factorial
1860
+ return x**n/factorial(n)
1861
+
1862
+ def _eval_rewrite_as_sin(self, base, exp):
1863
+ if self.base is S.Exp1:
1864
+ from sympy.functions.elementary.trigonometric import sin
1865
+ return sin(S.ImaginaryUnit*self.exp + S.Pi/2) - S.ImaginaryUnit*sin(S.ImaginaryUnit*self.exp)
1866
+
1867
+ def _eval_rewrite_as_cos(self, base, exp):
1868
+ if self.base is S.Exp1:
1869
+ from sympy.functions.elementary.trigonometric import cos
1870
+ return cos(S.ImaginaryUnit*self.exp) + S.ImaginaryUnit*cos(S.ImaginaryUnit*self.exp + S.Pi/2)
1871
+
1872
+ def _eval_rewrite_as_tanh(self, base, exp):
1873
+ if self.base is S.Exp1:
1874
+ from sympy.functions.elementary.hyperbolic import tanh
1875
+ return (1 + tanh(self.exp/2))/(1 - tanh(self.exp/2))
1876
+
1877
+ def _eval_rewrite_as_sqrt(self, base, exp, **kwargs):
1878
+ from sympy.functions.elementary.trigonometric import sin, cos
1879
+ if base is not S.Exp1:
1880
+ return None
1881
+ if exp.is_Mul:
1882
+ coeff = exp.coeff(S.Pi * S.ImaginaryUnit)
1883
+ if coeff and coeff.is_number:
1884
+ cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff)
1885
+ if not isinstance(cosine, cos) and not isinstance (sine, sin):
1886
+ return cosine + S.ImaginaryUnit*sine
1887
+
1888
+ def as_content_primitive(self, radical=False, clear=True):
1889
+ """Return the tuple (R, self/R) where R is the positive Rational
1890
+ extracted from self.
1891
+
1892
+ Examples
1893
+ ========
1894
+
1895
+ >>> from sympy import sqrt
1896
+ >>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
1897
+ (2, sqrt(1 + sqrt(2)))
1898
+ >>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
1899
+ (1, sqrt(3)*sqrt(1 + sqrt(2)))
1900
+
1901
+ >>> from sympy import expand_power_base, powsimp, Mul
1902
+ >>> from sympy.abc import x, y
1903
+
1904
+ >>> ((2*x + 2)**2).as_content_primitive()
1905
+ (4, (x + 1)**2)
1906
+ >>> (4**((1 + y)/2)).as_content_primitive()
1907
+ (2, 4**(y/2))
1908
+ >>> (3**((1 + y)/2)).as_content_primitive()
1909
+ (1, 3**((y + 1)/2))
1910
+ >>> (3**((5 + y)/2)).as_content_primitive()
1911
+ (9, 3**((y + 1)/2))
1912
+ >>> eq = 3**(2 + 2*x)
1913
+ >>> powsimp(eq) == eq
1914
+ True
1915
+ >>> eq.as_content_primitive()
1916
+ (9, 3**(2*x))
1917
+ >>> powsimp(Mul(*_))
1918
+ 3**(2*x + 2)
1919
+
1920
+ >>> eq = (2 + 2*x)**y
1921
+ >>> s = expand_power_base(eq); s.is_Mul, s
1922
+ (False, (2*x + 2)**y)
1923
+ >>> eq.as_content_primitive()
1924
+ (1, (2*(x + 1))**y)
1925
+ >>> s = expand_power_base(_[1]); s.is_Mul, s
1926
+ (True, 2**y*(x + 1)**y)
1927
+
1928
+ See docstring of Expr.as_content_primitive for more examples.
1929
+ """
1930
+
1931
+ b, e = self.as_base_exp()
1932
+ b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear))
1933
+ ce, pe = e.as_content_primitive(radical=radical, clear=clear)
1934
+ if b.is_Rational:
1935
+ #e
1936
+ #= ce*pe
1937
+ #= ce*(h + t)
1938
+ #= ce*h + ce*t
1939
+ #=> self
1940
+ #= b**(ce*h)*b**(ce*t)
1941
+ #= b**(cehp/cehq)*b**(ce*t)
1942
+ #= b**(iceh + r/cehq)*b**(ce*t)
1943
+ #= b**(iceh)*b**(r/cehq)*b**(ce*t)
1944
+ #= b**(iceh)*b**(ce*t + r/cehq)
1945
+ h, t = pe.as_coeff_Add()
1946
+ if h.is_Rational and b != S.Zero:
1947
+ ceh = ce*h
1948
+ c = self.func(b, ceh)
1949
+ r = S.Zero
1950
+ if not c.is_Rational:
1951
+ iceh, r = divmod(ceh.p, ceh.q)
1952
+ c = self.func(b, iceh)
1953
+ return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q))
1954
+ e = _keep_coeff(ce, pe)
1955
+ # b**e = (h*t)**e = h**e*t**e = c*m*t**e
1956
+ if e.is_Rational and b.is_Mul:
1957
+ h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive
1958
+ c, m = self.func(h, e).as_coeff_Mul() # so c is positive
1959
+ m, me = m.as_base_exp()
1960
+ if m is S.One or me == e: # probably always true
1961
+ # return the following, not return c, m*Pow(t, e)
1962
+ # which would change Pow into Mul; we let SymPy
1963
+ # decide what to do by using the unevaluated Mul, e.g
1964
+ # should it stay as sqrt(2 + 2*sqrt(5)) or become
1965
+ # sqrt(2)*sqrt(1 + sqrt(5))
1966
+ return c, self.func(_keep_coeff(m, t), e)
1967
+ return S.One, self.func(b, e)
1968
+
1969
+ def is_constant(self, *wrt, **flags):
1970
+ expr = self
1971
+ if flags.get('simplify', True):
1972
+ expr = expr.simplify()
1973
+ b, e = expr.as_base_exp()
1974
+ bz = b.equals(0)
1975
+ if bz: # recalculate with assumptions in case it's unevaluated
1976
+ new = b**e
1977
+ if new != expr:
1978
+ return new.is_constant()
1979
+ econ = e.is_constant(*wrt)
1980
+ bcon = b.is_constant(*wrt)
1981
+ if bcon:
1982
+ if econ:
1983
+ return True
1984
+ bz = b.equals(0)
1985
+ if bz is False:
1986
+ return False
1987
+ elif bcon is None:
1988
+ return None
1989
+
1990
+ return e.equals(0)
1991
+
1992
+ def _eval_difference_delta(self, n, step):
1993
+ b, e = self.args
1994
+ if e.has(n) and not b.has(n):
1995
+ new_e = e.subs(n, n + step)
1996
+ return (b**(new_e - e) - 1) * self
1997
+
1998
+ power = Dispatcher('power')
1999
+ power.add((object, object), Pow)
2000
+
2001
+ from .add import Add
2002
+ from .numbers import Integer
2003
+ from .mul import Mul, _keep_coeff
2004
+ from .symbol import Symbol, Dummy, symbols
env-llmeval/lib/python3.10/site-packages/sympy/core/rules.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Replacement rules.
3
+ """
4
+
5
+ class Transform:
6
+ """
7
+ Immutable mapping that can be used as a generic transformation rule.
8
+
9
+ Parameters
10
+ ==========
11
+
12
+ transform : callable
13
+ Computes the value corresponding to any key.
14
+
15
+ filter : callable, optional
16
+ If supplied, specifies which objects are in the mapping.
17
+
18
+ Examples
19
+ ========
20
+
21
+ >>> from sympy.core.rules import Transform
22
+ >>> from sympy.abc import x
23
+
24
+ This Transform will return, as a value, one more than the key:
25
+
26
+ >>> add1 = Transform(lambda x: x + 1)
27
+ >>> add1[1]
28
+ 2
29
+ >>> add1[x]
30
+ x + 1
31
+
32
+ By default, all values are considered to be in the dictionary. If a filter
33
+ is supplied, only the objects for which it returns True are considered as
34
+ being in the dictionary:
35
+
36
+ >>> add1_odd = Transform(lambda x: x + 1, lambda x: x%2 == 1)
37
+ >>> 2 in add1_odd
38
+ False
39
+ >>> add1_odd.get(2, 0)
40
+ 0
41
+ >>> 3 in add1_odd
42
+ True
43
+ >>> add1_odd[3]
44
+ 4
45
+ >>> add1_odd.get(3, 0)
46
+ 4
47
+ """
48
+
49
+ def __init__(self, transform, filter=lambda x: True):
50
+ self._transform = transform
51
+ self._filter = filter
52
+
53
+ def __contains__(self, item):
54
+ return self._filter(item)
55
+
56
+ def __getitem__(self, key):
57
+ if self._filter(key):
58
+ return self._transform(key)
59
+ else:
60
+ raise KeyError(key)
61
+
62
+ def get(self, item, default=None):
63
+ if item in self:
64
+ return self[item]
65
+ else:
66
+ return default
env-llmeval/lib/python3.10/site-packages/sympy/core/symbol.py ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from .assumptions import StdFactKB, _assume_defined
4
+ from .basic import Basic, Atom
5
+ from .cache import cacheit
6
+ from .containers import Tuple
7
+ from .expr import Expr, AtomicExpr
8
+ from .function import AppliedUndef, FunctionClass
9
+ from .kind import NumberKind, UndefinedKind
10
+ from .logic import fuzzy_bool
11
+ from .singleton import S
12
+ from .sorting import ordered
13
+ from .sympify import sympify
14
+ from sympy.logic.boolalg import Boolean
15
+ from sympy.utilities.iterables import sift, is_sequence
16
+ from sympy.utilities.misc import filldedent
17
+
18
+ import string
19
+ import re as _re
20
+ import random
21
+ from itertools import product
22
+ from typing import Any
23
+
24
+
25
+ class Str(Atom):
26
+ """
27
+ Represents string in SymPy.
28
+
29
+ Explanation
30
+ ===========
31
+
32
+ Previously, ``Symbol`` was used where string is needed in ``args`` of SymPy
33
+ objects, e.g. denoting the name of the instance. However, since ``Symbol``
34
+ represents mathematical scalar, this class should be used instead.
35
+
36
+ """
37
+ __slots__ = ('name',)
38
+
39
+ def __new__(cls, name, **kwargs):
40
+ if not isinstance(name, str):
41
+ raise TypeError("name should be a string, not %s" % repr(type(name)))
42
+ obj = Expr.__new__(cls, **kwargs)
43
+ obj.name = name
44
+ return obj
45
+
46
+ def __getnewargs__(self):
47
+ return (self.name,)
48
+
49
+ def _hashable_content(self):
50
+ return (self.name,)
51
+
52
+
53
+ def _filter_assumptions(kwargs):
54
+ """Split the given dict into assumptions and non-assumptions.
55
+ Keys are taken as assumptions if they correspond to an
56
+ entry in ``_assume_defined``.
57
+ """
58
+ assumptions, nonassumptions = map(dict, sift(kwargs.items(),
59
+ lambda i: i[0] in _assume_defined,
60
+ binary=True))
61
+ Symbol._sanitize(assumptions)
62
+ return assumptions, nonassumptions
63
+
64
+ def _symbol(s, matching_symbol=None, **assumptions):
65
+ """Return s if s is a Symbol, else if s is a string, return either
66
+ the matching_symbol if the names are the same or else a new symbol
67
+ with the same assumptions as the matching symbol (or the
68
+ assumptions as provided).
69
+
70
+ Examples
71
+ ========
72
+
73
+ >>> from sympy import Symbol
74
+ >>> from sympy.core.symbol import _symbol
75
+ >>> _symbol('y')
76
+ y
77
+ >>> _.is_real is None
78
+ True
79
+ >>> _symbol('y', real=True).is_real
80
+ True
81
+
82
+ >>> x = Symbol('x')
83
+ >>> _symbol(x, real=True)
84
+ x
85
+ >>> _.is_real is None # ignore attribute if s is a Symbol
86
+ True
87
+
88
+ Below, the variable sym has the name 'foo':
89
+
90
+ >>> sym = Symbol('foo', real=True)
91
+
92
+ Since 'x' is not the same as sym's name, a new symbol is created:
93
+
94
+ >>> _symbol('x', sym).name
95
+ 'x'
96
+
97
+ It will acquire any assumptions give:
98
+
99
+ >>> _symbol('x', sym, real=False).is_real
100
+ False
101
+
102
+ Since 'foo' is the same as sym's name, sym is returned
103
+
104
+ >>> _symbol('foo', sym)
105
+ foo
106
+
107
+ Any assumptions given are ignored:
108
+
109
+ >>> _symbol('foo', sym, real=False).is_real
110
+ True
111
+
112
+ NB: the symbol here may not be the same as a symbol with the same
113
+ name defined elsewhere as a result of different assumptions.
114
+
115
+ See Also
116
+ ========
117
+
118
+ sympy.core.symbol.Symbol
119
+
120
+ """
121
+ if isinstance(s, str):
122
+ if matching_symbol and matching_symbol.name == s:
123
+ return matching_symbol
124
+ return Symbol(s, **assumptions)
125
+ elif isinstance(s, Symbol):
126
+ return s
127
+ else:
128
+ raise ValueError('symbol must be string for symbol name or Symbol')
129
+
130
+ def uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions):
131
+ """
132
+ Return a symbol whose name is derivated from *xname* but is unique
133
+ from any other symbols in *exprs*.
134
+
135
+ *xname* and symbol names in *exprs* are passed to *compare* to be
136
+ converted to comparable forms. If ``compare(xname)`` is not unique,
137
+ it is recursively passed to *modify* until unique name is acquired.
138
+
139
+ Parameters
140
+ ==========
141
+
142
+ xname : str or Symbol
143
+ Base name for the new symbol.
144
+
145
+ exprs : Expr or iterable of Expr
146
+ Expressions whose symbols are compared to *xname*.
147
+
148
+ compare : function
149
+ Unary function which transforms *xname* and symbol names from
150
+ *exprs* to comparable form.
151
+
152
+ modify : function
153
+ Unary function which modifies the string. Default is appending
154
+ the number, or increasing the number if exists.
155
+
156
+ Examples
157
+ ========
158
+
159
+ By default, a number is appended to *xname* to generate unique name.
160
+ If the number already exists, it is recursively increased.
161
+
162
+ >>> from sympy.core.symbol import uniquely_named_symbol, Symbol
163
+ >>> uniquely_named_symbol('x', Symbol('x'))
164
+ x0
165
+ >>> uniquely_named_symbol('x', (Symbol('x'), Symbol('x0')))
166
+ x1
167
+ >>> uniquely_named_symbol('x0', (Symbol('x1'), Symbol('x0')))
168
+ x2
169
+
170
+ Name generation can be controlled by passing *modify* parameter.
171
+
172
+ >>> from sympy.abc import x
173
+ >>> uniquely_named_symbol('x', x, modify=lambda s: 2*s)
174
+ xx
175
+
176
+ """
177
+ def numbered_string_incr(s, start=0):
178
+ if not s:
179
+ return str(start)
180
+ i = len(s) - 1
181
+ while i != -1:
182
+ if not s[i].isdigit():
183
+ break
184
+ i -= 1
185
+ n = str(int(s[i + 1:] or start - 1) + 1)
186
+ return s[:i + 1] + n
187
+
188
+ default = None
189
+ if is_sequence(xname):
190
+ xname, default = xname
191
+ x = compare(xname)
192
+ if not exprs:
193
+ return _symbol(x, default, **assumptions)
194
+ if not is_sequence(exprs):
195
+ exprs = [exprs]
196
+ names = set().union(
197
+ [i.name for e in exprs for i in e.atoms(Symbol)] +
198
+ [i.func.name for e in exprs for i in e.atoms(AppliedUndef)])
199
+ if modify is None:
200
+ modify = numbered_string_incr
201
+ while any(x == compare(s) for s in names):
202
+ x = modify(x)
203
+ return _symbol(x, default, **assumptions)
204
+ _uniquely_named_symbol = uniquely_named_symbol
205
+
206
+ class Symbol(AtomicExpr, Boolean):
207
+ """
208
+ Assumptions:
209
+ commutative = True
210
+
211
+ You can override the default assumptions in the constructor.
212
+
213
+ Examples
214
+ ========
215
+
216
+ >>> from sympy import symbols
217
+ >>> A,B = symbols('A,B', commutative = False)
218
+ >>> bool(A*B != B*A)
219
+ True
220
+ >>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative
221
+ True
222
+
223
+ """
224
+
225
+ is_comparable = False
226
+
227
+ __slots__ = ('name', '_assumptions_orig', '_assumptions0')
228
+
229
+ name: str
230
+
231
+ is_Symbol = True
232
+ is_symbol = True
233
+
234
+ @property
235
+ def kind(self):
236
+ if self.is_commutative:
237
+ return NumberKind
238
+ return UndefinedKind
239
+
240
+ @property
241
+ def _diff_wrt(self):
242
+ """Allow derivatives wrt Symbols.
243
+
244
+ Examples
245
+ ========
246
+
247
+ >>> from sympy import Symbol
248
+ >>> x = Symbol('x')
249
+ >>> x._diff_wrt
250
+ True
251
+ """
252
+ return True
253
+
254
+ @staticmethod
255
+ def _sanitize(assumptions, obj=None):
256
+ """Remove None, convert values to bool, check commutativity *in place*.
257
+ """
258
+
259
+ # be strict about commutativity: cannot be None
260
+ is_commutative = fuzzy_bool(assumptions.get('commutative', True))
261
+ if is_commutative is None:
262
+ whose = '%s ' % obj.__name__ if obj else ''
263
+ raise ValueError(
264
+ '%scommutativity must be True or False.' % whose)
265
+
266
+ # sanitize other assumptions so 1 -> True and 0 -> False
267
+ for key in list(assumptions.keys()):
268
+ v = assumptions[key]
269
+ if v is None:
270
+ assumptions.pop(key)
271
+ continue
272
+ assumptions[key] = bool(v)
273
+
274
+ def _merge(self, assumptions):
275
+ base = self.assumptions0
276
+ for k in set(assumptions) & set(base):
277
+ if assumptions[k] != base[k]:
278
+ raise ValueError(filldedent('''
279
+ non-matching assumptions for %s: existing value
280
+ is %s and new value is %s''' % (
281
+ k, base[k], assumptions[k])))
282
+ base.update(assumptions)
283
+ return base
284
+
285
+ def __new__(cls, name, **assumptions):
286
+ """Symbols are identified by name and assumptions::
287
+
288
+ >>> from sympy import Symbol
289
+ >>> Symbol("x") == Symbol("x")
290
+ True
291
+ >>> Symbol("x", real=True) == Symbol("x", real=False)
292
+ False
293
+
294
+ """
295
+ cls._sanitize(assumptions, cls)
296
+ return Symbol.__xnew_cached_(cls, name, **assumptions)
297
+
298
+ @staticmethod
299
+ def __xnew__(cls, name, **assumptions): # never cached (e.g. dummy)
300
+ if not isinstance(name, str):
301
+ raise TypeError("name should be a string, not %s" % repr(type(name)))
302
+
303
+ # This is retained purely so that srepr can include commutative=True if
304
+ # that was explicitly specified but not if it was not. Ideally srepr
305
+ # should not distinguish these cases because the symbols otherwise
306
+ # compare equal and are considered equivalent.
307
+ #
308
+ # See https://github.com/sympy/sympy/issues/8873
309
+ #
310
+ assumptions_orig = assumptions.copy()
311
+
312
+ # The only assumption that is assumed by default is comutative=True:
313
+ assumptions.setdefault('commutative', True)
314
+
315
+ assumptions_kb = StdFactKB(assumptions)
316
+ assumptions0 = dict(assumptions_kb)
317
+
318
+ obj = Expr.__new__(cls)
319
+ obj.name = name
320
+
321
+ obj._assumptions = assumptions_kb
322
+ obj._assumptions_orig = assumptions_orig
323
+ obj._assumptions0 = assumptions0
324
+
325
+ # The three assumptions dicts are all a little different:
326
+ #
327
+ # >>> from sympy import Symbol
328
+ # >>> x = Symbol('x', finite=True)
329
+ # >>> x.is_positive # query an assumption
330
+ # >>> x._assumptions
331
+ # {'finite': True, 'infinite': False, 'commutative': True, 'positive': None}
332
+ # >>> x._assumptions0
333
+ # {'finite': True, 'infinite': False, 'commutative': True}
334
+ # >>> x._assumptions_orig
335
+ # {'finite': True}
336
+ #
337
+ # Two symbols with the same name are equal if their _assumptions0 are
338
+ # the same. Arguably it should be _assumptions_orig that is being
339
+ # compared because that is more transparent to the user (it is
340
+ # what was passed to the constructor modulo changes made by _sanitize).
341
+
342
+ return obj
343
+
344
+ @staticmethod
345
+ @cacheit
346
+ def __xnew_cached_(cls, name, **assumptions): # symbols are always cached
347
+ return Symbol.__xnew__(cls, name, **assumptions)
348
+
349
+ def __getnewargs_ex__(self):
350
+ return ((self.name,), self._assumptions_orig)
351
+
352
+ # NOTE: __setstate__ is not needed for pickles created by __getnewargs_ex__
353
+ # but was used before Symbol was changed to use __getnewargs_ex__ in v1.9.
354
+ # Pickles created in previous SymPy versions will still need __setstate__
355
+ # so that they can be unpickled in SymPy > v1.9.
356
+
357
+ def __setstate__(self, state):
358
+ for name, value in state.items():
359
+ setattr(self, name, value)
360
+
361
+ def _hashable_content(self):
362
+ # Note: user-specified assumptions not hashed, just derived ones
363
+ return (self.name,) + tuple(sorted(self.assumptions0.items()))
364
+
365
+ def _eval_subs(self, old, new):
366
+ if old.is_Pow:
367
+ from sympy.core.power import Pow
368
+ return Pow(self, S.One, evaluate=False)._eval_subs(old, new)
369
+
370
+ def _eval_refine(self, assumptions):
371
+ return self
372
+
373
+ @property
374
+ def assumptions0(self):
375
+ return self._assumptions0.copy()
376
+
377
+ @cacheit
378
+ def sort_key(self, order=None):
379
+ return self.class_key(), (1, (self.name,)), S.One.sort_key(), S.One
380
+
381
+ def as_dummy(self):
382
+ # only put commutativity in explicitly if it is False
383
+ return Dummy(self.name) if self.is_commutative is not False \
384
+ else Dummy(self.name, commutative=self.is_commutative)
385
+
386
+ def as_real_imag(self, deep=True, **hints):
387
+ if hints.get('ignore') == self:
388
+ return None
389
+ else:
390
+ from sympy.functions.elementary.complexes import im, re
391
+ return (re(self), im(self))
392
+
393
+ def is_constant(self, *wrt, **flags):
394
+ if not wrt:
395
+ return False
396
+ return self not in wrt
397
+
398
+ @property
399
+ def free_symbols(self):
400
+ return {self}
401
+
402
+ binary_symbols = free_symbols # in this case, not always
403
+
404
+ def as_set(self):
405
+ return S.UniversalSet
406
+
407
+
408
+ class Dummy(Symbol):
409
+ """Dummy symbols are each unique, even if they have the same name:
410
+
411
+ Examples
412
+ ========
413
+
414
+ >>> from sympy import Dummy
415
+ >>> Dummy("x") == Dummy("x")
416
+ False
417
+
418
+ If a name is not supplied then a string value of an internal count will be
419
+ used. This is useful when a temporary variable is needed and the name
420
+ of the variable used in the expression is not important.
421
+
422
+ >>> Dummy() #doctest: +SKIP
423
+ _Dummy_10
424
+
425
+ """
426
+
427
+ # In the rare event that a Dummy object needs to be recreated, both the
428
+ # `name` and `dummy_index` should be passed. This is used by `srepr` for
429
+ # example:
430
+ # >>> d1 = Dummy()
431
+ # >>> d2 = eval(srepr(d1))
432
+ # >>> d2 == d1
433
+ # True
434
+ #
435
+ # If a new session is started between `srepr` and `eval`, there is a very
436
+ # small chance that `d2` will be equal to a previously-created Dummy.
437
+
438
+ _count = 0
439
+ _prng = random.Random()
440
+ _base_dummy_index = _prng.randint(10**6, 9*10**6)
441
+
442
+ __slots__ = ('dummy_index',)
443
+
444
+ is_Dummy = True
445
+
446
+ def __new__(cls, name=None, dummy_index=None, **assumptions):
447
+ if dummy_index is not None:
448
+ assert name is not None, "If you specify a dummy_index, you must also provide a name"
449
+
450
+ if name is None:
451
+ name = "Dummy_" + str(Dummy._count)
452
+
453
+ if dummy_index is None:
454
+ dummy_index = Dummy._base_dummy_index + Dummy._count
455
+ Dummy._count += 1
456
+
457
+ cls._sanitize(assumptions, cls)
458
+ obj = Symbol.__xnew__(cls, name, **assumptions)
459
+
460
+ obj.dummy_index = dummy_index
461
+
462
+ return obj
463
+
464
+ def __getnewargs_ex__(self):
465
+ return ((self.name, self.dummy_index), self._assumptions_orig)
466
+
467
+ @cacheit
468
+ def sort_key(self, order=None):
469
+ return self.class_key(), (
470
+ 2, (self.name, self.dummy_index)), S.One.sort_key(), S.One
471
+
472
+ def _hashable_content(self):
473
+ return Symbol._hashable_content(self) + (self.dummy_index,)
474
+
475
+
476
+ class Wild(Symbol):
477
+ """
478
+ A Wild symbol matches anything, or anything
479
+ without whatever is explicitly excluded.
480
+
481
+ Parameters
482
+ ==========
483
+
484
+ name : str
485
+ Name of the Wild instance.
486
+
487
+ exclude : iterable, optional
488
+ Instances in ``exclude`` will not be matched.
489
+
490
+ properties : iterable of functions, optional
491
+ Functions, each taking an expressions as input
492
+ and returns a ``bool``. All functions in ``properties``
493
+ need to return ``True`` in order for the Wild instance
494
+ to match the expression.
495
+
496
+ Examples
497
+ ========
498
+
499
+ >>> from sympy import Wild, WildFunction, cos, pi
500
+ >>> from sympy.abc import x, y, z
501
+ >>> a = Wild('a')
502
+ >>> x.match(a)
503
+ {a_: x}
504
+ >>> pi.match(a)
505
+ {a_: pi}
506
+ >>> (3*x**2).match(a*x)
507
+ {a_: 3*x}
508
+ >>> cos(x).match(a)
509
+ {a_: cos(x)}
510
+ >>> b = Wild('b', exclude=[x])
511
+ >>> (3*x**2).match(b*x)
512
+ >>> b.match(a)
513
+ {a_: b_}
514
+ >>> A = WildFunction('A')
515
+ >>> A.match(a)
516
+ {a_: A_}
517
+
518
+ Tips
519
+ ====
520
+
521
+ When using Wild, be sure to use the exclude
522
+ keyword to make the pattern more precise.
523
+ Without the exclude pattern, you may get matches
524
+ that are technically correct, but not what you
525
+ wanted. For example, using the above without
526
+ exclude:
527
+
528
+ >>> from sympy import symbols
529
+ >>> a, b = symbols('a b', cls=Wild)
530
+ >>> (2 + 3*y).match(a*x + b*y)
531
+ {a_: 2/x, b_: 3}
532
+
533
+ This is technically correct, because
534
+ (2/x)*x + 3*y == 2 + 3*y, but you probably
535
+ wanted it to not match at all. The issue is that
536
+ you really did not want a and b to include x and y,
537
+ and the exclude parameter lets you specify exactly
538
+ this. With the exclude parameter, the pattern will
539
+ not match.
540
+
541
+ >>> a = Wild('a', exclude=[x, y])
542
+ >>> b = Wild('b', exclude=[x, y])
543
+ >>> (2 + 3*y).match(a*x + b*y)
544
+
545
+ Exclude also helps remove ambiguity from matches.
546
+
547
+ >>> E = 2*x**3*y*z
548
+ >>> a, b = symbols('a b', cls=Wild)
549
+ >>> E.match(a*b)
550
+ {a_: 2*y*z, b_: x**3}
551
+ >>> a = Wild('a', exclude=[x, y])
552
+ >>> E.match(a*b)
553
+ {a_: z, b_: 2*x**3*y}
554
+ >>> a = Wild('a', exclude=[x, y, z])
555
+ >>> E.match(a*b)
556
+ {a_: 2, b_: x**3*y*z}
557
+
558
+ Wild also accepts a ``properties`` parameter:
559
+
560
+ >>> a = Wild('a', properties=[lambda k: k.is_Integer])
561
+ >>> E.match(a*b)
562
+ {a_: 2, b_: x**3*y*z}
563
+
564
+ """
565
+ is_Wild = True
566
+
567
+ __slots__ = ('exclude', 'properties')
568
+
569
+ def __new__(cls, name, exclude=(), properties=(), **assumptions):
570
+ exclude = tuple([sympify(x) for x in exclude])
571
+ properties = tuple(properties)
572
+ cls._sanitize(assumptions, cls)
573
+ return Wild.__xnew__(cls, name, exclude, properties, **assumptions)
574
+
575
+ def __getnewargs__(self):
576
+ return (self.name, self.exclude, self.properties)
577
+
578
+ @staticmethod
579
+ @cacheit
580
+ def __xnew__(cls, name, exclude, properties, **assumptions):
581
+ obj = Symbol.__xnew__(cls, name, **assumptions)
582
+ obj.exclude = exclude
583
+ obj.properties = properties
584
+ return obj
585
+
586
+ def _hashable_content(self):
587
+ return super()._hashable_content() + (self.exclude, self.properties)
588
+
589
+ # TODO add check against another Wild
590
+ def matches(self, expr, repl_dict=None, old=False):
591
+ if any(expr.has(x) for x in self.exclude):
592
+ return None
593
+ if not all(f(expr) for f in self.properties):
594
+ return None
595
+ if repl_dict is None:
596
+ repl_dict = {}
597
+ else:
598
+ repl_dict = repl_dict.copy()
599
+ repl_dict[self] = expr
600
+ return repl_dict
601
+
602
+
603
+ _range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])')
604
+
605
+
606
+ def symbols(names, *, cls=Symbol, **args) -> Any:
607
+ r"""
608
+ Transform strings into instances of :class:`Symbol` class.
609
+
610
+ :func:`symbols` function returns a sequence of symbols with names taken
611
+ from ``names`` argument, which can be a comma or whitespace delimited
612
+ string, or a sequence of strings::
613
+
614
+ >>> from sympy import symbols, Function
615
+
616
+ >>> x, y, z = symbols('x,y,z')
617
+ >>> a, b, c = symbols('a b c')
618
+
619
+ The type of output is dependent on the properties of input arguments::
620
+
621
+ >>> symbols('x')
622
+ x
623
+ >>> symbols('x,')
624
+ (x,)
625
+ >>> symbols('x,y')
626
+ (x, y)
627
+ >>> symbols(('a', 'b', 'c'))
628
+ (a, b, c)
629
+ >>> symbols(['a', 'b', 'c'])
630
+ [a, b, c]
631
+ >>> symbols({'a', 'b', 'c'})
632
+ {a, b, c}
633
+
634
+ If an iterable container is needed for a single symbol, set the ``seq``
635
+ argument to ``True`` or terminate the symbol name with a comma::
636
+
637
+ >>> symbols('x', seq=True)
638
+ (x,)
639
+
640
+ To reduce typing, range syntax is supported to create indexed symbols.
641
+ Ranges are indicated by a colon and the type of range is determined by
642
+ the character to the right of the colon. If the character is a digit
643
+ then all contiguous digits to the left are taken as the nonnegative
644
+ starting value (or 0 if there is no digit left of the colon) and all
645
+ contiguous digits to the right are taken as 1 greater than the ending
646
+ value::
647
+
648
+ >>> symbols('x:10')
649
+ (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
650
+
651
+ >>> symbols('x5:10')
652
+ (x5, x6, x7, x8, x9)
653
+ >>> symbols('x5(:2)')
654
+ (x50, x51)
655
+
656
+ >>> symbols('x5:10,y:5')
657
+ (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)
658
+
659
+ >>> symbols(('x5:10', 'y:5'))
660
+ ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))
661
+
662
+ If the character to the right of the colon is a letter, then the single
663
+ letter to the left (or 'a' if there is none) is taken as the start
664
+ and all characters in the lexicographic range *through* the letter to
665
+ the right are used as the range::
666
+
667
+ >>> symbols('x:z')
668
+ (x, y, z)
669
+ >>> symbols('x:c') # null range
670
+ ()
671
+ >>> symbols('x(:c)')
672
+ (xa, xb, xc)
673
+
674
+ >>> symbols(':c')
675
+ (a, b, c)
676
+
677
+ >>> symbols('a:d, x:z')
678
+ (a, b, c, d, x, y, z)
679
+
680
+ >>> symbols(('a:d', 'x:z'))
681
+ ((a, b, c, d), (x, y, z))
682
+
683
+ Multiple ranges are supported; contiguous numerical ranges should be
684
+ separated by parentheses to disambiguate the ending number of one
685
+ range from the starting number of the next::
686
+
687
+ >>> symbols('x:2(1:3)')
688
+ (x01, x02, x11, x12)
689
+ >>> symbols(':3:2') # parsing is from left to right
690
+ (00, 01, 10, 11, 20, 21)
691
+
692
+ Only one pair of parentheses surrounding ranges are removed, so to
693
+ include parentheses around ranges, double them. And to include spaces,
694
+ commas, or colons, escape them with a backslash::
695
+
696
+ >>> symbols('x((a:b))')
697
+ (x(a), x(b))
698
+ >>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))'
699
+ (x(0,0), x(0,1))
700
+
701
+ All newly created symbols have assumptions set according to ``args``::
702
+
703
+ >>> a = symbols('a', integer=True)
704
+ >>> a.is_integer
705
+ True
706
+
707
+ >>> x, y, z = symbols('x,y,z', real=True)
708
+ >>> x.is_real and y.is_real and z.is_real
709
+ True
710
+
711
+ Despite its name, :func:`symbols` can create symbol-like objects like
712
+ instances of Function or Wild classes. To achieve this, set ``cls``
713
+ keyword argument to the desired type::
714
+
715
+ >>> symbols('f,g,h', cls=Function)
716
+ (f, g, h)
717
+
718
+ >>> type(_[0])
719
+ <class 'sympy.core.function.UndefinedFunction'>
720
+
721
+ """
722
+ result = []
723
+
724
+ if isinstance(names, str):
725
+ marker = 0
726
+ splitters = r'\,', r'\:', r'\ '
727
+ literals: list[tuple[str, str]] = []
728
+ for splitter in splitters:
729
+ if splitter in names:
730
+ while chr(marker) in names:
731
+ marker += 1
732
+ lit_char = chr(marker)
733
+ marker += 1
734
+ names = names.replace(splitter, lit_char)
735
+ literals.append((lit_char, splitter[1:]))
736
+ def literal(s):
737
+ if literals:
738
+ for c, l in literals:
739
+ s = s.replace(c, l)
740
+ return s
741
+
742
+ names = names.strip()
743
+ as_seq = names.endswith(',')
744
+ if as_seq:
745
+ names = names[:-1].rstrip()
746
+ if not names:
747
+ raise ValueError('no symbols given')
748
+
749
+ # split on commas
750
+ names = [n.strip() for n in names.split(',')]
751
+ if not all(n for n in names):
752
+ raise ValueError('missing symbol between commas')
753
+ # split on spaces
754
+ for i in range(len(names) - 1, -1, -1):
755
+ names[i: i + 1] = names[i].split()
756
+
757
+ seq = args.pop('seq', as_seq)
758
+
759
+ for name in names:
760
+ if not name:
761
+ raise ValueError('missing symbol')
762
+
763
+ if ':' not in name:
764
+ symbol = cls(literal(name), **args)
765
+ result.append(symbol)
766
+ continue
767
+
768
+ split: list[str] = _range.split(name)
769
+ split_list: list[list[str]] = []
770
+ # remove 1 layer of bounding parentheses around ranges
771
+ for i in range(len(split) - 1):
772
+ if i and ':' in split[i] and split[i] != ':' and \
773
+ split[i - 1].endswith('(') and \
774
+ split[i + 1].startswith(')'):
775
+ split[i - 1] = split[i - 1][:-1]
776
+ split[i + 1] = split[i + 1][1:]
777
+ for s in split:
778
+ if ':' in s:
779
+ if s.endswith(':'):
780
+ raise ValueError('missing end range')
781
+ a, b = s.split(':')
782
+ if b[-1] in string.digits:
783
+ a_i = 0 if not a else int(a)
784
+ b_i = int(b)
785
+ split_list.append([str(c) for c in range(a_i, b_i)])
786
+ else:
787
+ a = a or 'a'
788
+ split_list.append([string.ascii_letters[c] for c in range(
789
+ string.ascii_letters.index(a),
790
+ string.ascii_letters.index(b) + 1)]) # inclusive
791
+ if not split_list[-1]:
792
+ break
793
+ else:
794
+ split_list.append([s])
795
+ else:
796
+ seq = True
797
+ if len(split_list) == 1:
798
+ names = split_list[0]
799
+ else:
800
+ names = [''.join(s) for s in product(*split_list)]
801
+ if literals:
802
+ result.extend([cls(literal(s), **args) for s in names])
803
+ else:
804
+ result.extend([cls(s, **args) for s in names])
805
+
806
+ if not seq and len(result) <= 1:
807
+ if not result:
808
+ return ()
809
+ return result[0]
810
+
811
+ return tuple(result)
812
+ else:
813
+ for name in names:
814
+ result.append(symbols(name, cls=cls, **args))
815
+
816
+ return type(names)(result)
817
+
818
+
819
+ def var(names, **args):
820
+ """
821
+ Create symbols and inject them into the global namespace.
822
+
823
+ Explanation
824
+ ===========
825
+
826
+ This calls :func:`symbols` with the same arguments and puts the results
827
+ into the *global* namespace. It's recommended not to use :func:`var` in
828
+ library code, where :func:`symbols` has to be used::
829
+
830
+ Examples
831
+ ========
832
+
833
+ >>> from sympy import var
834
+
835
+ >>> var('x')
836
+ x
837
+ >>> x # noqa: F821
838
+ x
839
+
840
+ >>> var('a,ab,abc')
841
+ (a, ab, abc)
842
+ >>> abc # noqa: F821
843
+ abc
844
+
845
+ >>> var('x,y', real=True)
846
+ (x, y)
847
+ >>> x.is_real and y.is_real # noqa: F821
848
+ True
849
+
850
+ See :func:`symbols` documentation for more details on what kinds of
851
+ arguments can be passed to :func:`var`.
852
+
853
+ """
854
+ def traverse(symbols, frame):
855
+ """Recursively inject symbols to the global namespace. """
856
+ for symbol in symbols:
857
+ if isinstance(symbol, Basic):
858
+ frame.f_globals[symbol.name] = symbol
859
+ elif isinstance(symbol, FunctionClass):
860
+ frame.f_globals[symbol.__name__] = symbol
861
+ else:
862
+ traverse(symbol, frame)
863
+
864
+ from inspect import currentframe
865
+ frame = currentframe().f_back
866
+
867
+ try:
868
+ syms = symbols(names, **args)
869
+
870
+ if syms is not None:
871
+ if isinstance(syms, Basic):
872
+ frame.f_globals[syms.name] = syms
873
+ elif isinstance(syms, FunctionClass):
874
+ frame.f_globals[syms.__name__] = syms
875
+ else:
876
+ traverse(syms, frame)
877
+ finally:
878
+ del frame # break cyclic dependencies as stated in inspect docs
879
+
880
+ return syms
881
+
882
+ def disambiguate(*iter):
883
+ """
884
+ Return a Tuple containing the passed expressions with symbols
885
+ that appear the same when printed replaced with numerically
886
+ subscripted symbols, and all Dummy symbols replaced with Symbols.
887
+
888
+ Parameters
889
+ ==========
890
+
891
+ iter: list of symbols or expressions.
892
+
893
+ Examples
894
+ ========
895
+
896
+ >>> from sympy.core.symbol import disambiguate
897
+ >>> from sympy import Dummy, Symbol, Tuple
898
+ >>> from sympy.abc import y
899
+
900
+ >>> tup = Symbol('_x'), Dummy('x'), Dummy('x')
901
+ >>> disambiguate(*tup)
902
+ (x_2, x, x_1)
903
+
904
+ >>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y)
905
+ >>> disambiguate(*eqs)
906
+ (x_1/y, x/y)
907
+
908
+ >>> ix = Symbol('x', integer=True)
909
+ >>> vx = Symbol('x')
910
+ >>> disambiguate(vx + ix)
911
+ (x + x_1,)
912
+
913
+ To make your own mapping of symbols to use, pass only the free symbols
914
+ of the expressions and create a dictionary:
915
+
916
+ >>> free = eqs.free_symbols
917
+ >>> mapping = dict(zip(free, disambiguate(*free)))
918
+ >>> eqs.xreplace(mapping)
919
+ (x_1/y, x/y)
920
+
921
+ """
922
+ new_iter = Tuple(*iter)
923
+ key = lambda x:tuple(sorted(x.assumptions0.items()))
924
+ syms = ordered(new_iter.free_symbols, keys=key)
925
+ mapping = {}
926
+ for s in syms:
927
+ mapping.setdefault(str(s).lstrip('_'), []).append(s)
928
+ reps = {}
929
+ for k in mapping:
930
+ # the first or only symbol doesn't get subscripted but make
931
+ # sure that it's a Symbol, not a Dummy
932
+ mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0)
933
+ if mapping[k][0] != mapk0:
934
+ reps[mapping[k][0]] = mapk0
935
+ # the others get subscripts (and are made into Symbols)
936
+ skip = 0
937
+ for i in range(1, len(mapping[k])):
938
+ while True:
939
+ name = "%s_%i" % (k, i + skip)
940
+ if name not in mapping:
941
+ break
942
+ skip += 1
943
+ ki = mapping[k][i]
944
+ reps[ki] = Symbol(name, **ki.assumptions0)
945
+ return new_iter.xreplace(reps)
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .diffgeom import (
2
+ BaseCovarDerivativeOp, BaseScalarField, BaseVectorField, Commutator,
3
+ contravariant_order, CoordSystem, CoordinateSymbol,
4
+ CovarDerivativeOp, covariant_order, Differential, intcurve_diffequ,
5
+ intcurve_series, LieDerivative, Manifold, metric_to_Christoffel_1st,
6
+ metric_to_Christoffel_2nd, metric_to_Ricci_components,
7
+ metric_to_Riemann_components, Patch, Point, TensorProduct, twoform_to_matrix,
8
+ vectors_in_basis, WedgeProduct,
9
+ )
10
+
11
+ __all__ = [
12
+ 'BaseCovarDerivativeOp', 'BaseScalarField', 'BaseVectorField', 'Commutator',
13
+ 'contravariant_order', 'CoordSystem', 'CoordinateSymbol',
14
+ 'CovarDerivativeOp', 'covariant_order', 'Differential', 'intcurve_diffequ',
15
+ 'intcurve_series', 'LieDerivative', 'Manifold', 'metric_to_Christoffel_1st',
16
+ 'metric_to_Christoffel_2nd', 'metric_to_Ricci_components',
17
+ 'metric_to_Riemann_components', 'Patch', 'Point', 'TensorProduct',
18
+ 'twoform_to_matrix', 'vectors_in_basis', 'WedgeProduct',
19
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/diffgeom.py ADDED
@@ -0,0 +1,2273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Any
3
+
4
+ from functools import reduce
5
+ from itertools import permutations
6
+
7
+ from sympy.combinatorics import Permutation
8
+ from sympy.core import (
9
+ Basic, Expr, Function, diff,
10
+ Pow, Mul, Add, Lambda, S, Tuple, Dict
11
+ )
12
+ from sympy.core.cache import cacheit
13
+
14
+ from sympy.core.symbol import Symbol, Dummy
15
+ from sympy.core.symbol import Str
16
+ from sympy.core.sympify import _sympify
17
+ from sympy.functions import factorial
18
+ from sympy.matrices import ImmutableDenseMatrix as Matrix
19
+ from sympy.solvers import solve
20
+
21
+ from sympy.utilities.exceptions import (sympy_deprecation_warning,
22
+ SymPyDeprecationWarning,
23
+ ignore_warnings)
24
+
25
+
26
+ # TODO you are a bit excessive in the use of Dummies
27
+ # TODO dummy point, literal field
28
+ # TODO too often one needs to call doit or simplify on the output, check the
29
+ # tests and find out why
30
+ from sympy.tensor.array import ImmutableDenseNDimArray
31
+
32
+
33
+ class Manifold(Basic):
34
+ """
35
+ A mathematical manifold.
36
+
37
+ Explanation
38
+ ===========
39
+
40
+ A manifold is a topological space that locally resembles
41
+ Euclidean space near each point [1].
42
+ This class does not provide any means to study the topological
43
+ characteristics of the manifold that it represents, though.
44
+
45
+ Parameters
46
+ ==========
47
+
48
+ name : str
49
+ The name of the manifold.
50
+
51
+ dim : int
52
+ The dimension of the manifold.
53
+
54
+ Examples
55
+ ========
56
+
57
+ >>> from sympy.diffgeom import Manifold
58
+ >>> m = Manifold('M', 2)
59
+ >>> m
60
+ M
61
+ >>> m.dim
62
+ 2
63
+
64
+ References
65
+ ==========
66
+
67
+ .. [1] https://en.wikipedia.org/wiki/Manifold
68
+ """
69
+
70
+ def __new__(cls, name, dim, **kwargs):
71
+ if not isinstance(name, Str):
72
+ name = Str(name)
73
+ dim = _sympify(dim)
74
+ obj = super().__new__(cls, name, dim)
75
+
76
+ obj.patches = _deprecated_list(
77
+ """
78
+ Manifold.patches is deprecated. The Manifold object is now
79
+ immutable. Instead use a separate list to keep track of the
80
+ patches.
81
+ """, [])
82
+ return obj
83
+
84
+ @property
85
+ def name(self):
86
+ return self.args[0]
87
+
88
+ @property
89
+ def dim(self):
90
+ return self.args[1]
91
+
92
+
93
+ class Patch(Basic):
94
+ """
95
+ A patch on a manifold.
96
+
97
+ Explanation
98
+ ===========
99
+
100
+ Coordinate patch, or patch in short, is a simply-connected open set around
101
+ a point in the manifold [1]. On a manifold one can have many patches that
102
+ do not always include the whole manifold. On these patches coordinate
103
+ charts can be defined that permit the parameterization of any point on the
104
+ patch in terms of a tuple of real numbers (the coordinates).
105
+
106
+ This class does not provide any means to study the topological
107
+ characteristics of the patch that it represents.
108
+
109
+ Parameters
110
+ ==========
111
+
112
+ name : str
113
+ The name of the patch.
114
+
115
+ manifold : Manifold
116
+ The manifold on which the patch is defined.
117
+
118
+ Examples
119
+ ========
120
+
121
+ >>> from sympy.diffgeom import Manifold, Patch
122
+ >>> m = Manifold('M', 2)
123
+ >>> p = Patch('P', m)
124
+ >>> p
125
+ P
126
+ >>> p.dim
127
+ 2
128
+
129
+ References
130
+ ==========
131
+
132
+ .. [1] G. Sussman, J. Wisdom, W. Farr, Functional Differential Geometry
133
+ (2013)
134
+
135
+ """
136
+ def __new__(cls, name, manifold, **kwargs):
137
+ if not isinstance(name, Str):
138
+ name = Str(name)
139
+ obj = super().__new__(cls, name, manifold)
140
+
141
+ obj.manifold.patches.append(obj) # deprecated
142
+ obj.coord_systems = _deprecated_list(
143
+ """
144
+ Patch.coord_systms is deprecated. The Patch class is now
145
+ immutable. Instead use a separate list to keep track of coordinate
146
+ systems.
147
+ """, [])
148
+ return obj
149
+
150
+ @property
151
+ def name(self):
152
+ return self.args[0]
153
+
154
+ @property
155
+ def manifold(self):
156
+ return self.args[1]
157
+
158
+ @property
159
+ def dim(self):
160
+ return self.manifold.dim
161
+
162
+
163
+ class CoordSystem(Basic):
164
+ """
165
+ A coordinate system defined on the patch.
166
+
167
+ Explanation
168
+ ===========
169
+
170
+ Coordinate system is a system that uses one or more coordinates to uniquely
171
+ determine the position of the points or other geometric elements on a
172
+ manifold [1].
173
+
174
+ By passing ``Symbols`` to *symbols* parameter, user can define the name and
175
+ assumptions of coordinate symbols of the coordinate system. If not passed,
176
+ these symbols are generated automatically and are assumed to be real valued.
177
+
178
+ By passing *relations* parameter, user can define the transform relations of
179
+ coordinate systems. Inverse transformation and indirect transformation can
180
+ be found automatically. If this parameter is not passed, coordinate
181
+ transformation cannot be done.
182
+
183
+ Parameters
184
+ ==========
185
+
186
+ name : str
187
+ The name of the coordinate system.
188
+
189
+ patch : Patch
190
+ The patch where the coordinate system is defined.
191
+
192
+ symbols : list of Symbols, optional
193
+ Defines the names and assumptions of coordinate symbols.
194
+
195
+ relations : dict, optional
196
+ Key is a tuple of two strings, who are the names of the systems where
197
+ the coordinates transform from and transform to.
198
+ Value is a tuple of the symbols before transformation and a tuple of
199
+ the expressions after transformation.
200
+
201
+ Examples
202
+ ========
203
+
204
+ We define two-dimensional Cartesian coordinate system and polar coordinate
205
+ system.
206
+
207
+ >>> from sympy import symbols, pi, sqrt, atan2, cos, sin
208
+ >>> from sympy.diffgeom import Manifold, Patch, CoordSystem
209
+ >>> m = Manifold('M', 2)
210
+ >>> p = Patch('P', m)
211
+ >>> x, y = symbols('x y', real=True)
212
+ >>> r, theta = symbols('r theta', nonnegative=True)
213
+ >>> relation_dict = {
214
+ ... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
215
+ ... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))]
216
+ ... }
217
+ >>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict)
218
+ >>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict)
219
+
220
+ ``symbols`` property returns ``CoordinateSymbol`` instances. These symbols
221
+ are not same with the symbols used to construct the coordinate system.
222
+
223
+ >>> Car2D
224
+ Car2D
225
+ >>> Car2D.dim
226
+ 2
227
+ >>> Car2D.symbols
228
+ (x, y)
229
+ >>> _[0].func
230
+ <class 'sympy.diffgeom.diffgeom.CoordinateSymbol'>
231
+
232
+ ``transformation()`` method returns the transformation function from
233
+ one coordinate system to another. ``transform()`` method returns the
234
+ transformed coordinates.
235
+
236
+ >>> Car2D.transformation(Pol)
237
+ Lambda((x, y), Matrix([
238
+ [sqrt(x**2 + y**2)],
239
+ [ atan2(y, x)]]))
240
+ >>> Car2D.transform(Pol)
241
+ Matrix([
242
+ [sqrt(x**2 + y**2)],
243
+ [ atan2(y, x)]])
244
+ >>> Car2D.transform(Pol, [1, 2])
245
+ Matrix([
246
+ [sqrt(5)],
247
+ [atan(2)]])
248
+
249
+ ``jacobian()`` method returns the Jacobian matrix of coordinate
250
+ transformation between two systems. ``jacobian_determinant()`` method
251
+ returns the Jacobian determinant of coordinate transformation between two
252
+ systems.
253
+
254
+ >>> Pol.jacobian(Car2D)
255
+ Matrix([
256
+ [cos(theta), -r*sin(theta)],
257
+ [sin(theta), r*cos(theta)]])
258
+ >>> Pol.jacobian(Car2D, [1, pi/2])
259
+ Matrix([
260
+ [0, -1],
261
+ [1, 0]])
262
+ >>> Car2D.jacobian_determinant(Pol)
263
+ 1/sqrt(x**2 + y**2)
264
+ >>> Car2D.jacobian_determinant(Pol, [1,0])
265
+ 1
266
+
267
+ References
268
+ ==========
269
+
270
+ .. [1] https://en.wikipedia.org/wiki/Coordinate_system
271
+
272
+ """
273
+ def __new__(cls, name, patch, symbols=None, relations={}, **kwargs):
274
+ if not isinstance(name, Str):
275
+ name = Str(name)
276
+
277
+ # canonicallize the symbols
278
+ if symbols is None:
279
+ names = kwargs.get('names', None)
280
+ if names is None:
281
+ symbols = Tuple(
282
+ *[Symbol('%s_%s' % (name.name, i), real=True)
283
+ for i in range(patch.dim)]
284
+ )
285
+ else:
286
+ sympy_deprecation_warning(
287
+ f"""
288
+ The 'names' argument to CoordSystem is deprecated. Use 'symbols' instead. That
289
+ is, replace
290
+
291
+ CoordSystem(..., names={names})
292
+
293
+ with
294
+
295
+ CoordSystem(..., symbols=[{', '.join(["Symbol(" + repr(n) + ", real=True)" for n in names])}])
296
+ """,
297
+ deprecated_since_version="1.7",
298
+ active_deprecations_target="deprecated-diffgeom-mutable",
299
+ )
300
+ symbols = Tuple(
301
+ *[Symbol(n, real=True) for n in names]
302
+ )
303
+ else:
304
+ syms = []
305
+ for s in symbols:
306
+ if isinstance(s, Symbol):
307
+ syms.append(Symbol(s.name, **s._assumptions.generator))
308
+ elif isinstance(s, str):
309
+ sympy_deprecation_warning(
310
+ f"""
311
+
312
+ Passing a string as the coordinate symbol name to CoordSystem is deprecated.
313
+ Pass a Symbol with the appropriate name and assumptions instead.
314
+
315
+ That is, replace {s} with Symbol({s!r}, real=True).
316
+ """,
317
+
318
+ deprecated_since_version="1.7",
319
+ active_deprecations_target="deprecated-diffgeom-mutable",
320
+ )
321
+ syms.append(Symbol(s, real=True))
322
+ symbols = Tuple(*syms)
323
+
324
+ # canonicallize the relations
325
+ rel_temp = {}
326
+ for k,v in relations.items():
327
+ s1, s2 = k
328
+ if not isinstance(s1, Str):
329
+ s1 = Str(s1)
330
+ if not isinstance(s2, Str):
331
+ s2 = Str(s2)
332
+ key = Tuple(s1, s2)
333
+
334
+ # Old version used Lambda as a value.
335
+ if isinstance(v, Lambda):
336
+ v = (tuple(v.signature), tuple(v.expr))
337
+ else:
338
+ v = (tuple(v[0]), tuple(v[1]))
339
+ rel_temp[key] = v
340
+ relations = Dict(rel_temp)
341
+
342
+ # construct the object
343
+ obj = super().__new__(cls, name, patch, symbols, relations)
344
+
345
+ # Add deprecated attributes
346
+ obj.transforms = _deprecated_dict(
347
+ """
348
+ CoordSystem.transforms is deprecated. The CoordSystem class is now
349
+ immutable. Use the 'relations' keyword argument to the
350
+ CoordSystems() constructor to specify relations.
351
+ """, {})
352
+ obj._names = [str(n) for n in symbols]
353
+ obj.patch.coord_systems.append(obj) # deprecated
354
+ obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated
355
+ obj._dummy = Dummy()
356
+
357
+ return obj
358
+
359
+ @property
360
+ def name(self):
361
+ return self.args[0]
362
+
363
+ @property
364
+ def patch(self):
365
+ return self.args[1]
366
+
367
+ @property
368
+ def manifold(self):
369
+ return self.patch.manifold
370
+
371
+ @property
372
+ def symbols(self):
373
+ return tuple(CoordinateSymbol(self, i, **s._assumptions.generator)
374
+ for i,s in enumerate(self.args[2]))
375
+
376
+ @property
377
+ def relations(self):
378
+ return self.args[3]
379
+
380
+ @property
381
+ def dim(self):
382
+ return self.patch.dim
383
+
384
+ ##########################################################################
385
+ # Finding transformation relation
386
+ ##########################################################################
387
+
388
+ def transformation(self, sys):
389
+ """
390
+ Return coordinate transformation function from *self* to *sys*.
391
+
392
+ Parameters
393
+ ==========
394
+
395
+ sys : CoordSystem
396
+
397
+ Returns
398
+ =======
399
+
400
+ sympy.Lambda
401
+
402
+ Examples
403
+ ========
404
+
405
+ >>> from sympy.diffgeom.rn import R2_r, R2_p
406
+ >>> R2_r.transformation(R2_p)
407
+ Lambda((x, y), Matrix([
408
+ [sqrt(x**2 + y**2)],
409
+ [ atan2(y, x)]]))
410
+
411
+ """
412
+ signature = self.args[2]
413
+
414
+ key = Tuple(self.name, sys.name)
415
+ if self == sys:
416
+ expr = Matrix(self.symbols)
417
+ elif key in self.relations:
418
+ expr = Matrix(self.relations[key][1])
419
+ elif key[::-1] in self.relations:
420
+ expr = Matrix(self._inverse_transformation(sys, self))
421
+ else:
422
+ expr = Matrix(self._indirect_transformation(self, sys))
423
+ return Lambda(signature, expr)
424
+
425
+ @staticmethod
426
+ def _solve_inverse(sym1, sym2, exprs, sys1_name, sys2_name):
427
+ ret = solve(
428
+ [t[0] - t[1] for t in zip(sym2, exprs)],
429
+ list(sym1), dict=True)
430
+
431
+ if len(ret) == 0:
432
+ temp = "Cannot solve inverse relation from {} to {}."
433
+ raise NotImplementedError(temp.format(sys1_name, sys2_name))
434
+ elif len(ret) > 1:
435
+ temp = "Obtained multiple inverse relation from {} to {}."
436
+ raise ValueError(temp.format(sys1_name, sys2_name))
437
+
438
+ return ret[0]
439
+
440
+ @classmethod
441
+ def _inverse_transformation(cls, sys1, sys2):
442
+ # Find the transformation relation from sys2 to sys1
443
+ forward = sys1.transform(sys2)
444
+ inv_results = cls._solve_inverse(sys1.symbols, sys2.symbols, forward,
445
+ sys1.name, sys2.name)
446
+ signature = tuple(sys1.symbols)
447
+ return [inv_results[s] for s in signature]
448
+
449
+ @classmethod
450
+ @cacheit
451
+ def _indirect_transformation(cls, sys1, sys2):
452
+ # Find the transformation relation between two indirectly connected
453
+ # coordinate systems
454
+ rel = sys1.relations
455
+ path = cls._dijkstra(sys1, sys2)
456
+
457
+ transforms = []
458
+ for s1, s2 in zip(path, path[1:]):
459
+ if (s1, s2) in rel:
460
+ transforms.append(rel[(s1, s2)])
461
+ else:
462
+ sym2, inv_exprs = rel[(s2, s1)]
463
+ sym1 = tuple(Dummy() for i in sym2)
464
+ ret = cls._solve_inverse(sym2, sym1, inv_exprs, s2, s1)
465
+ ret = tuple(ret[s] for s in sym2)
466
+ transforms.append((sym1, ret))
467
+ syms = sys1.args[2]
468
+ exprs = syms
469
+ for newsyms, newexprs in transforms:
470
+ exprs = tuple(e.subs(zip(newsyms, exprs)) for e in newexprs)
471
+ return exprs
472
+
473
+ @staticmethod
474
+ def _dijkstra(sys1, sys2):
475
+ # Use Dijkstra algorithm to find the shortest path between two indirectly-connected
476
+ # coordinate systems
477
+ # return value is the list of the names of the systems.
478
+ relations = sys1.relations
479
+ graph = {}
480
+ for s1, s2 in relations.keys():
481
+ if s1 not in graph:
482
+ graph[s1] = {s2}
483
+ else:
484
+ graph[s1].add(s2)
485
+ if s2 not in graph:
486
+ graph[s2] = {s1}
487
+ else:
488
+ graph[s2].add(s1)
489
+
490
+ path_dict = {sys:[0, [], 0] for sys in graph} # minimum distance, path, times of visited
491
+
492
+ def visit(sys):
493
+ path_dict[sys][2] = 1
494
+ for newsys in graph[sys]:
495
+ distance = path_dict[sys][0] + 1
496
+ if path_dict[newsys][0] >= distance or not path_dict[newsys][1]:
497
+ path_dict[newsys][0] = distance
498
+ path_dict[newsys][1] = list(path_dict[sys][1])
499
+ path_dict[newsys][1].append(sys)
500
+
501
+ visit(sys1.name)
502
+
503
+ while True:
504
+ min_distance = max(path_dict.values(), key=lambda x:x[0])[0]
505
+ newsys = None
506
+ for sys, lst in path_dict.items():
507
+ if 0 < lst[0] <= min_distance and not lst[2]:
508
+ min_distance = lst[0]
509
+ newsys = sys
510
+ if newsys is None:
511
+ break
512
+ visit(newsys)
513
+
514
+ result = path_dict[sys2.name][1]
515
+ result.append(sys2.name)
516
+
517
+ if result == [sys2.name]:
518
+ raise KeyError("Two coordinate systems are not connected.")
519
+ return result
520
+
521
+ def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False):
522
+ sympy_deprecation_warning(
523
+ """
524
+ The CoordSystem.connect_to() method is deprecated. Instead,
525
+ generate a new instance of CoordSystem with the 'relations'
526
+ keyword argument (CoordSystem classes are now immutable).
527
+ """,
528
+ deprecated_since_version="1.7",
529
+ active_deprecations_target="deprecated-diffgeom-mutable",
530
+ )
531
+
532
+ from_coords, to_exprs = dummyfy(from_coords, to_exprs)
533
+ self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs)
534
+
535
+ if inverse:
536
+ to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs)
537
+
538
+ if fill_in_gaps:
539
+ self._fill_gaps_in_transformations()
540
+
541
+ @staticmethod
542
+ def _inv_transf(from_coords, to_exprs):
543
+ # Will be removed when connect_to is removed
544
+ inv_from = [i.as_dummy() for i in from_coords]
545
+ inv_to = solve(
546
+ [t[0] - t[1] for t in zip(inv_from, to_exprs)],
547
+ list(from_coords), dict=True)[0]
548
+ inv_to = [inv_to[fc] for fc in from_coords]
549
+ return Matrix(inv_from), Matrix(inv_to)
550
+
551
+ @staticmethod
552
+ def _fill_gaps_in_transformations():
553
+ # Will be removed when connect_to is removed
554
+ raise NotImplementedError
555
+
556
+ ##########################################################################
557
+ # Coordinate transformations
558
+ ##########################################################################
559
+
560
+ def transform(self, sys, coordinates=None):
561
+ """
562
+ Return the result of coordinate transformation from *self* to *sys*.
563
+ If coordinates are not given, coordinate symbols of *self* are used.
564
+
565
+ Parameters
566
+ ==========
567
+
568
+ sys : CoordSystem
569
+
570
+ coordinates : Any iterable, optional.
571
+
572
+ Returns
573
+ =======
574
+
575
+ sympy.ImmutableDenseMatrix containing CoordinateSymbol
576
+
577
+ Examples
578
+ ========
579
+
580
+ >>> from sympy.diffgeom.rn import R2_r, R2_p
581
+ >>> R2_r.transform(R2_p)
582
+ Matrix([
583
+ [sqrt(x**2 + y**2)],
584
+ [ atan2(y, x)]])
585
+ >>> R2_r.transform(R2_p, [0, 1])
586
+ Matrix([
587
+ [ 1],
588
+ [pi/2]])
589
+
590
+ """
591
+ if coordinates is None:
592
+ coordinates = self.symbols
593
+ if self != sys:
594
+ transf = self.transformation(sys)
595
+ coordinates = transf(*coordinates)
596
+ else:
597
+ coordinates = Matrix(coordinates)
598
+ return coordinates
599
+
600
+ def coord_tuple_transform_to(self, to_sys, coords):
601
+ """Transform ``coords`` to coord system ``to_sys``."""
602
+ sympy_deprecation_warning(
603
+ """
604
+ The CoordSystem.coord_tuple_transform_to() method is deprecated.
605
+ Use the CoordSystem.transform() method instead.
606
+ """,
607
+ deprecated_since_version="1.7",
608
+ active_deprecations_target="deprecated-diffgeom-mutable",
609
+ )
610
+
611
+ coords = Matrix(coords)
612
+ if self != to_sys:
613
+ with ignore_warnings(SymPyDeprecationWarning):
614
+ transf = self.transforms[to_sys]
615
+ coords = transf[1].subs(list(zip(transf[0], coords)))
616
+ return coords
617
+
618
+ def jacobian(self, sys, coordinates=None):
619
+ """
620
+ Return the jacobian matrix of a transformation on given coordinates.
621
+ If coordinates are not given, coordinate symbols of *self* are used.
622
+
623
+ Parameters
624
+ ==========
625
+
626
+ sys : CoordSystem
627
+
628
+ coordinates : Any iterable, optional.
629
+
630
+ Returns
631
+ =======
632
+
633
+ sympy.ImmutableDenseMatrix
634
+
635
+ Examples
636
+ ========
637
+
638
+ >>> from sympy.diffgeom.rn import R2_r, R2_p
639
+ >>> R2_p.jacobian(R2_r)
640
+ Matrix([
641
+ [cos(theta), -rho*sin(theta)],
642
+ [sin(theta), rho*cos(theta)]])
643
+ >>> R2_p.jacobian(R2_r, [1, 0])
644
+ Matrix([
645
+ [1, 0],
646
+ [0, 1]])
647
+
648
+ """
649
+ result = self.transform(sys).jacobian(self.symbols)
650
+ if coordinates is not None:
651
+ result = result.subs(list(zip(self.symbols, coordinates)))
652
+ return result
653
+ jacobian_matrix = jacobian
654
+
655
+ def jacobian_determinant(self, sys, coordinates=None):
656
+ """
657
+ Return the jacobian determinant of a transformation on given
658
+ coordinates. If coordinates are not given, coordinate symbols of *self*
659
+ are used.
660
+
661
+ Parameters
662
+ ==========
663
+
664
+ sys : CoordSystem
665
+
666
+ coordinates : Any iterable, optional.
667
+
668
+ Returns
669
+ =======
670
+
671
+ sympy.Expr
672
+
673
+ Examples
674
+ ========
675
+
676
+ >>> from sympy.diffgeom.rn import R2_r, R2_p
677
+ >>> R2_r.jacobian_determinant(R2_p)
678
+ 1/sqrt(x**2 + y**2)
679
+ >>> R2_r.jacobian_determinant(R2_p, [1, 0])
680
+ 1
681
+
682
+ """
683
+ return self.jacobian(sys, coordinates).det()
684
+
685
+
686
+ ##########################################################################
687
+ # Points
688
+ ##########################################################################
689
+
690
+ def point(self, coords):
691
+ """Create a ``Point`` with coordinates given in this coord system."""
692
+ return Point(self, coords)
693
+
694
+ def point_to_coords(self, point):
695
+ """Calculate the coordinates of a point in this coord system."""
696
+ return point.coords(self)
697
+
698
+ ##########################################################################
699
+ # Base fields.
700
+ ##########################################################################
701
+
702
+ def base_scalar(self, coord_index):
703
+ """Return ``BaseScalarField`` that takes a point and returns one of the coordinates."""
704
+ return BaseScalarField(self, coord_index)
705
+ coord_function = base_scalar
706
+
707
+ def base_scalars(self):
708
+ """Returns a list of all coordinate functions.
709
+ For more details see the ``base_scalar`` method of this class."""
710
+ return [self.base_scalar(i) for i in range(self.dim)]
711
+ coord_functions = base_scalars
712
+
713
+ def base_vector(self, coord_index):
714
+ """Return a basis vector field.
715
+ The basis vector field for this coordinate system. It is also an
716
+ operator on scalar fields."""
717
+ return BaseVectorField(self, coord_index)
718
+
719
+ def base_vectors(self):
720
+ """Returns a list of all base vectors.
721
+ For more details see the ``base_vector`` method of this class."""
722
+ return [self.base_vector(i) for i in range(self.dim)]
723
+
724
+ def base_oneform(self, coord_index):
725
+ """Return a basis 1-form field.
726
+ The basis one-form field for this coordinate system. It is also an
727
+ operator on vector fields."""
728
+ return Differential(self.coord_function(coord_index))
729
+
730
+ def base_oneforms(self):
731
+ """Returns a list of all base oneforms.
732
+ For more details see the ``base_oneform`` method of this class."""
733
+ return [self.base_oneform(i) for i in range(self.dim)]
734
+
735
+
736
+ class CoordinateSymbol(Symbol):
737
+ """A symbol which denotes an abstract value of i-th coordinate of
738
+ the coordinate system with given context.
739
+
740
+ Explanation
741
+ ===========
742
+
743
+ Each coordinates in coordinate system are represented by unique symbol,
744
+ such as x, y, z in Cartesian coordinate system.
745
+
746
+ You may not construct this class directly. Instead, use `symbols` method
747
+ of CoordSystem.
748
+
749
+ Parameters
750
+ ==========
751
+
752
+ coord_sys : CoordSystem
753
+
754
+ index : integer
755
+
756
+ Examples
757
+ ========
758
+
759
+ >>> from sympy import symbols, Lambda, Matrix, sqrt, atan2, cos, sin
760
+ >>> from sympy.diffgeom import Manifold, Patch, CoordSystem
761
+ >>> m = Manifold('M', 2)
762
+ >>> p = Patch('P', m)
763
+ >>> x, y = symbols('x y', real=True)
764
+ >>> r, theta = symbols('r theta', nonnegative=True)
765
+ >>> relation_dict = {
766
+ ... ('Car2D', 'Pol'): Lambda((x, y), Matrix([sqrt(x**2 + y**2), atan2(y, x)])),
767
+ ... ('Pol', 'Car2D'): Lambda((r, theta), Matrix([r*cos(theta), r*sin(theta)]))
768
+ ... }
769
+ >>> Car2D = CoordSystem('Car2D', p, [x, y], relation_dict)
770
+ >>> Pol = CoordSystem('Pol', p, [r, theta], relation_dict)
771
+ >>> x, y = Car2D.symbols
772
+
773
+ ``CoordinateSymbol`` contains its coordinate symbol and index.
774
+
775
+ >>> x.name
776
+ 'x'
777
+ >>> x.coord_sys == Car2D
778
+ True
779
+ >>> x.index
780
+ 0
781
+ >>> x.is_real
782
+ True
783
+
784
+ You can transform ``CoordinateSymbol`` into other coordinate system using
785
+ ``rewrite()`` method.
786
+
787
+ >>> x.rewrite(Pol)
788
+ r*cos(theta)
789
+ >>> sqrt(x**2 + y**2).rewrite(Pol).simplify()
790
+ r
791
+
792
+ """
793
+ def __new__(cls, coord_sys, index, **assumptions):
794
+ name = coord_sys.args[2][index].name
795
+ obj = super().__new__(cls, name, **assumptions)
796
+ obj.coord_sys = coord_sys
797
+ obj.index = index
798
+ return obj
799
+
800
+ def __getnewargs__(self):
801
+ return (self.coord_sys, self.index)
802
+
803
+ def _hashable_content(self):
804
+ return (
805
+ self.coord_sys, self.index
806
+ ) + tuple(sorted(self.assumptions0.items()))
807
+
808
+ def _eval_rewrite(self, rule, args, **hints):
809
+ if isinstance(rule, CoordSystem):
810
+ return rule.transform(self.coord_sys)[self.index]
811
+ return super()._eval_rewrite(rule, args, **hints)
812
+
813
+
814
+ class Point(Basic):
815
+ """Point defined in a coordinate system.
816
+
817
+ Explanation
818
+ ===========
819
+
820
+ Mathematically, point is defined in the manifold and does not have any coordinates
821
+ by itself. Coordinate system is what imbues the coordinates to the point by coordinate
822
+ chart. However, due to the difficulty of realizing such logic, you must supply
823
+ a coordinate system and coordinates to define a Point here.
824
+
825
+ The usage of this object after its definition is independent of the
826
+ coordinate system that was used in order to define it, however due to
827
+ limitations in the simplification routines you can arrive at complicated
828
+ expressions if you use inappropriate coordinate systems.
829
+
830
+ Parameters
831
+ ==========
832
+
833
+ coord_sys : CoordSystem
834
+
835
+ coords : list
836
+ The coordinates of the point.
837
+
838
+ Examples
839
+ ========
840
+
841
+ >>> from sympy import pi
842
+ >>> from sympy.diffgeom import Point
843
+ >>> from sympy.diffgeom.rn import R2, R2_r, R2_p
844
+ >>> rho, theta = R2_p.symbols
845
+
846
+ >>> p = Point(R2_p, [rho, 3*pi/4])
847
+
848
+ >>> p.manifold == R2
849
+ True
850
+
851
+ >>> p.coords()
852
+ Matrix([
853
+ [ rho],
854
+ [3*pi/4]])
855
+ >>> p.coords(R2_r)
856
+ Matrix([
857
+ [-sqrt(2)*rho/2],
858
+ [ sqrt(2)*rho/2]])
859
+
860
+ """
861
+
862
+ def __new__(cls, coord_sys, coords, **kwargs):
863
+ coords = Matrix(coords)
864
+ obj = super().__new__(cls, coord_sys, coords)
865
+ obj._coord_sys = coord_sys
866
+ obj._coords = coords
867
+ return obj
868
+
869
+ @property
870
+ def patch(self):
871
+ return self._coord_sys.patch
872
+
873
+ @property
874
+ def manifold(self):
875
+ return self._coord_sys.manifold
876
+
877
+ @property
878
+ def dim(self):
879
+ return self.manifold.dim
880
+
881
+ def coords(self, sys=None):
882
+ """
883
+ Coordinates of the point in given coordinate system. If coordinate system
884
+ is not passed, it returns the coordinates in the coordinate system in which
885
+ the poin was defined.
886
+ """
887
+ if sys is None:
888
+ return self._coords
889
+ else:
890
+ return self._coord_sys.transform(sys, self._coords)
891
+
892
+ @property
893
+ def free_symbols(self):
894
+ return self._coords.free_symbols
895
+
896
+
897
+ class BaseScalarField(Expr):
898
+ """Base scalar field over a manifold for a given coordinate system.
899
+
900
+ Explanation
901
+ ===========
902
+
903
+ A scalar field takes a point as an argument and returns a scalar.
904
+ A base scalar field of a coordinate system takes a point and returns one of
905
+ the coordinates of that point in the coordinate system in question.
906
+
907
+ To define a scalar field you need to choose the coordinate system and the
908
+ index of the coordinate.
909
+
910
+ The use of the scalar field after its definition is independent of the
911
+ coordinate system in which it was defined, however due to limitations in
912
+ the simplification routines you may arrive at more complicated
913
+ expression if you use unappropriate coordinate systems.
914
+ You can build complicated scalar fields by just building up SymPy
915
+ expressions containing ``BaseScalarField`` instances.
916
+
917
+ Parameters
918
+ ==========
919
+
920
+ coord_sys : CoordSystem
921
+
922
+ index : integer
923
+
924
+ Examples
925
+ ========
926
+
927
+ >>> from sympy import Function, pi
928
+ >>> from sympy.diffgeom import BaseScalarField
929
+ >>> from sympy.diffgeom.rn import R2_r, R2_p
930
+ >>> rho, _ = R2_p.symbols
931
+ >>> point = R2_p.point([rho, 0])
932
+ >>> fx, fy = R2_r.base_scalars()
933
+ >>> ftheta = BaseScalarField(R2_r, 1)
934
+
935
+ >>> fx(point)
936
+ rho
937
+ >>> fy(point)
938
+ 0
939
+
940
+ >>> (fx**2+fy**2).rcall(point)
941
+ rho**2
942
+
943
+ >>> g = Function('g')
944
+ >>> fg = g(ftheta-pi)
945
+ >>> fg.rcall(point)
946
+ g(-pi)
947
+
948
+ """
949
+
950
+ is_commutative = True
951
+
952
+ def __new__(cls, coord_sys, index, **kwargs):
953
+ index = _sympify(index)
954
+ obj = super().__new__(cls, coord_sys, index)
955
+ obj._coord_sys = coord_sys
956
+ obj._index = index
957
+ return obj
958
+
959
+ @property
960
+ def coord_sys(self):
961
+ return self.args[0]
962
+
963
+ @property
964
+ def index(self):
965
+ return self.args[1]
966
+
967
+ @property
968
+ def patch(self):
969
+ return self.coord_sys.patch
970
+
971
+ @property
972
+ def manifold(self):
973
+ return self.coord_sys.manifold
974
+
975
+ @property
976
+ def dim(self):
977
+ return self.manifold.dim
978
+
979
+ def __call__(self, *args):
980
+ """Evaluating the field at a point or doing nothing.
981
+ If the argument is a ``Point`` instance, the field is evaluated at that
982
+ point. The field is returned itself if the argument is any other
983
+ object. It is so in order to have working recursive calling mechanics
984
+ for all fields (check the ``__call__`` method of ``Expr``).
985
+ """
986
+ point = args[0]
987
+ if len(args) != 1 or not isinstance(point, Point):
988
+ return self
989
+ coords = point.coords(self._coord_sys)
990
+ # XXX Calling doit is necessary with all the Subs expressions
991
+ # XXX Calling simplify is necessary with all the trig expressions
992
+ return simplify(coords[self._index]).doit()
993
+
994
+ # XXX Workaround for limitations on the content of args
995
+ free_symbols: set[Any] = set()
996
+
997
+
998
+ class BaseVectorField(Expr):
999
+ r"""Base vector field over a manifold for a given coordinate system.
1000
+
1001
+ Explanation
1002
+ ===========
1003
+
1004
+ A vector field is an operator taking a scalar field and returning a
1005
+ directional derivative (which is also a scalar field).
1006
+ A base vector field is the same type of operator, however the derivation is
1007
+ specifically done with respect to a chosen coordinate.
1008
+
1009
+ To define a base vector field you need to choose the coordinate system and
1010
+ the index of the coordinate.
1011
+
1012
+ The use of the vector field after its definition is independent of the
1013
+ coordinate system in which it was defined, however due to limitations in the
1014
+ simplification routines you may arrive at more complicated expression if you
1015
+ use unappropriate coordinate systems.
1016
+
1017
+ Parameters
1018
+ ==========
1019
+ coord_sys : CoordSystem
1020
+
1021
+ index : integer
1022
+
1023
+ Examples
1024
+ ========
1025
+
1026
+ >>> from sympy import Function
1027
+ >>> from sympy.diffgeom.rn import R2_p, R2_r
1028
+ >>> from sympy.diffgeom import BaseVectorField
1029
+ >>> from sympy import pprint
1030
+
1031
+ >>> x, y = R2_r.symbols
1032
+ >>> rho, theta = R2_p.symbols
1033
+ >>> fx, fy = R2_r.base_scalars()
1034
+ >>> point_p = R2_p.point([rho, theta])
1035
+ >>> point_r = R2_r.point([x, y])
1036
+
1037
+ >>> g = Function('g')
1038
+ >>> s_field = g(fx, fy)
1039
+
1040
+ >>> v = BaseVectorField(R2_r, 1)
1041
+ >>> pprint(v(s_field))
1042
+ / d \|
1043
+ |---(g(x, xi))||
1044
+ \dxi /|xi=y
1045
+ >>> pprint(v(s_field).rcall(point_r).doit())
1046
+ d
1047
+ --(g(x, y))
1048
+ dy
1049
+ >>> pprint(v(s_field).rcall(point_p))
1050
+ / d \|
1051
+ |---(g(rho*cos(theta), xi))||
1052
+ \dxi /|xi=rho*sin(theta)
1053
+
1054
+ """
1055
+
1056
+ is_commutative = False
1057
+
1058
+ def __new__(cls, coord_sys, index, **kwargs):
1059
+ index = _sympify(index)
1060
+ obj = super().__new__(cls, coord_sys, index)
1061
+ obj._coord_sys = coord_sys
1062
+ obj._index = index
1063
+ return obj
1064
+
1065
+ @property
1066
+ def coord_sys(self):
1067
+ return self.args[0]
1068
+
1069
+ @property
1070
+ def index(self):
1071
+ return self.args[1]
1072
+
1073
+ @property
1074
+ def patch(self):
1075
+ return self.coord_sys.patch
1076
+
1077
+ @property
1078
+ def manifold(self):
1079
+ return self.coord_sys.manifold
1080
+
1081
+ @property
1082
+ def dim(self):
1083
+ return self.manifold.dim
1084
+
1085
+ def __call__(self, scalar_field):
1086
+ """Apply on a scalar field.
1087
+ The action of a vector field on a scalar field is a directional
1088
+ differentiation.
1089
+ If the argument is not a scalar field an error is raised.
1090
+ """
1091
+ if covariant_order(scalar_field) or contravariant_order(scalar_field):
1092
+ raise ValueError('Only scalar fields can be supplied as arguments to vector fields.')
1093
+
1094
+ if scalar_field is None:
1095
+ return self
1096
+
1097
+ base_scalars = list(scalar_field.atoms(BaseScalarField))
1098
+
1099
+ # First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r)
1100
+ d_var = self._coord_sys._dummy
1101
+ # TODO: you need a real dummy function for the next line
1102
+ d_funcs = [Function('_#_%s' % i)(d_var) for i,
1103
+ b in enumerate(base_scalars)]
1104
+ d_result = scalar_field.subs(list(zip(base_scalars, d_funcs)))
1105
+ d_result = d_result.diff(d_var)
1106
+
1107
+ # Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y))
1108
+ coords = self._coord_sys.symbols
1109
+ d_funcs_deriv = [f.diff(d_var) for f in d_funcs]
1110
+ d_funcs_deriv_sub = []
1111
+ for b in base_scalars:
1112
+ jac = self._coord_sys.jacobian(b._coord_sys, coords)
1113
+ d_funcs_deriv_sub.append(jac[b._index, self._index])
1114
+ d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub)))
1115
+
1116
+ # Remove the dummies
1117
+ result = d_result.subs(list(zip(d_funcs, base_scalars)))
1118
+ result = result.subs(list(zip(coords, self._coord_sys.coord_functions())))
1119
+ return result.doit()
1120
+
1121
+
1122
+ def _find_coords(expr):
1123
+ # Finds CoordinateSystems existing in expr
1124
+ fields = expr.atoms(BaseScalarField, BaseVectorField)
1125
+ result = set()
1126
+ for f in fields:
1127
+ result.add(f._coord_sys)
1128
+ return result
1129
+
1130
+
1131
+ class Commutator(Expr):
1132
+ r"""Commutator of two vector fields.
1133
+
1134
+ Explanation
1135
+ ===========
1136
+
1137
+ The commutator of two vector fields `v_1` and `v_2` is defined as the
1138
+ vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal
1139
+ to `v_1(v_2(f)) - v_2(v_1(f))`.
1140
+
1141
+ Examples
1142
+ ========
1143
+
1144
+
1145
+ >>> from sympy.diffgeom.rn import R2_p, R2_r
1146
+ >>> from sympy.diffgeom import Commutator
1147
+ >>> from sympy import simplify
1148
+
1149
+ >>> fx, fy = R2_r.base_scalars()
1150
+ >>> e_x, e_y = R2_r.base_vectors()
1151
+ >>> e_r = R2_p.base_vector(0)
1152
+
1153
+ >>> c_xy = Commutator(e_x, e_y)
1154
+ >>> c_xr = Commutator(e_x, e_r)
1155
+ >>> c_xy
1156
+ 0
1157
+
1158
+ Unfortunately, the current code is not able to compute everything:
1159
+
1160
+ >>> c_xr
1161
+ Commutator(e_x, e_rho)
1162
+ >>> simplify(c_xr(fy**2))
1163
+ -2*cos(theta)*y**2/(x**2 + y**2)
1164
+
1165
+ """
1166
+ def __new__(cls, v1, v2):
1167
+ if (covariant_order(v1) or contravariant_order(v1) != 1
1168
+ or covariant_order(v2) or contravariant_order(v2) != 1):
1169
+ raise ValueError(
1170
+ 'Only commutators of vector fields are supported.')
1171
+ if v1 == v2:
1172
+ return S.Zero
1173
+ coord_sys = set().union(*[_find_coords(v) for v in (v1, v2)])
1174
+ if len(coord_sys) == 1:
1175
+ # Only one coordinate systems is used, hence it is easy enough to
1176
+ # actually evaluate the commutator.
1177
+ if all(isinstance(v, BaseVectorField) for v in (v1, v2)):
1178
+ return S.Zero
1179
+ bases_1, bases_2 = [list(v.atoms(BaseVectorField))
1180
+ for v in (v1, v2)]
1181
+ coeffs_1 = [v1.expand().coeff(b) for b in bases_1]
1182
+ coeffs_2 = [v2.expand().coeff(b) for b in bases_2]
1183
+ res = 0
1184
+ for c1, b1 in zip(coeffs_1, bases_1):
1185
+ for c2, b2 in zip(coeffs_2, bases_2):
1186
+ res += c1*b1(c2)*b2 - c2*b2(c1)*b1
1187
+ return res
1188
+ else:
1189
+ obj = super().__new__(cls, v1, v2)
1190
+ obj._v1 = v1 # deprecated assignment
1191
+ obj._v2 = v2 # deprecated assignment
1192
+ return obj
1193
+
1194
+ @property
1195
+ def v1(self):
1196
+ return self.args[0]
1197
+
1198
+ @property
1199
+ def v2(self):
1200
+ return self.args[1]
1201
+
1202
+ def __call__(self, scalar_field):
1203
+ """Apply on a scalar field.
1204
+ If the argument is not a scalar field an error is raised.
1205
+ """
1206
+ return self.v1(self.v2(scalar_field)) - self.v2(self.v1(scalar_field))
1207
+
1208
+
1209
+ class Differential(Expr):
1210
+ r"""Return the differential (exterior derivative) of a form field.
1211
+
1212
+ Explanation
1213
+ ===========
1214
+
1215
+ The differential of a form (i.e. the exterior derivative) has a complicated
1216
+ definition in the general case.
1217
+ The differential `df` of the 0-form `f` is defined for any vector field `v`
1218
+ as `df(v) = v(f)`.
1219
+
1220
+ Examples
1221
+ ========
1222
+
1223
+ >>> from sympy import Function
1224
+ >>> from sympy.diffgeom.rn import R2_r
1225
+ >>> from sympy.diffgeom import Differential
1226
+ >>> from sympy import pprint
1227
+
1228
+ >>> fx, fy = R2_r.base_scalars()
1229
+ >>> e_x, e_y = R2_r.base_vectors()
1230
+ >>> g = Function('g')
1231
+ >>> s_field = g(fx, fy)
1232
+ >>> dg = Differential(s_field)
1233
+
1234
+ >>> dg
1235
+ d(g(x, y))
1236
+ >>> pprint(dg(e_x))
1237
+ / d \|
1238
+ |---(g(xi, y))||
1239
+ \dxi /|xi=x
1240
+ >>> pprint(dg(e_y))
1241
+ / d \|
1242
+ |---(g(x, xi))||
1243
+ \dxi /|xi=y
1244
+
1245
+ Applying the exterior derivative operator twice always results in:
1246
+
1247
+ >>> Differential(dg)
1248
+ 0
1249
+ """
1250
+
1251
+ is_commutative = False
1252
+
1253
+ def __new__(cls, form_field):
1254
+ if contravariant_order(form_field):
1255
+ raise ValueError(
1256
+ 'A vector field was supplied as an argument to Differential.')
1257
+ if isinstance(form_field, Differential):
1258
+ return S.Zero
1259
+ else:
1260
+ obj = super().__new__(cls, form_field)
1261
+ obj._form_field = form_field # deprecated assignment
1262
+ return obj
1263
+
1264
+ @property
1265
+ def form_field(self):
1266
+ return self.args[0]
1267
+
1268
+ def __call__(self, *vector_fields):
1269
+ """Apply on a list of vector_fields.
1270
+
1271
+ Explanation
1272
+ ===========
1273
+
1274
+ If the number of vector fields supplied is not equal to 1 + the order of
1275
+ the form field inside the differential the result is undefined.
1276
+
1277
+ For 1-forms (i.e. differentials of scalar fields) the evaluation is
1278
+ done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector
1279
+ field, the differential is returned unchanged. This is done in order to
1280
+ permit partial contractions for higher forms.
1281
+
1282
+ In the general case the evaluation is done by applying the form field
1283
+ inside the differential on a list with one less elements than the number
1284
+ of elements in the original list. Lowering the number of vector fields
1285
+ is achieved through replacing each pair of fields by their
1286
+ commutator.
1287
+
1288
+ If the arguments are not vectors or ``None``s an error is raised.
1289
+ """
1290
+ if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None
1291
+ for a in vector_fields):
1292
+ raise ValueError('The arguments supplied to Differential should be vector fields or Nones.')
1293
+ k = len(vector_fields)
1294
+ if k == 1:
1295
+ if vector_fields[0]:
1296
+ return vector_fields[0].rcall(self._form_field)
1297
+ return self
1298
+ else:
1299
+ # For higher form it is more complicated:
1300
+ # Invariant formula:
1301
+ # https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula
1302
+ # df(v1, ... vn) = +/- vi(f(v1..no i..vn))
1303
+ # +/- f([vi,vj],v1..no i, no j..vn)
1304
+ f = self._form_field
1305
+ v = vector_fields
1306
+ ret = 0
1307
+ for i in range(k):
1308
+ t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:]))
1309
+ ret += (-1)**i*t
1310
+ for j in range(i + 1, k):
1311
+ c = Commutator(v[i], v[j])
1312
+ if c: # TODO this is ugly - the Commutator can be Zero and
1313
+ # this causes the next line to fail
1314
+ t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:])
1315
+ ret += (-1)**(i + j)*t
1316
+ return ret
1317
+
1318
+
1319
+ class TensorProduct(Expr):
1320
+ """Tensor product of forms.
1321
+
1322
+ Explanation
1323
+ ===========
1324
+
1325
+ The tensor product permits the creation of multilinear functionals (i.e.
1326
+ higher order tensors) out of lower order fields (e.g. 1-forms and vector
1327
+ fields). However, the higher tensors thus created lack the interesting
1328
+ features provided by the other type of product, the wedge product, namely
1329
+ they are not antisymmetric and hence are not form fields.
1330
+
1331
+ Examples
1332
+ ========
1333
+
1334
+ >>> from sympy.diffgeom.rn import R2_r
1335
+ >>> from sympy.diffgeom import TensorProduct
1336
+
1337
+ >>> fx, fy = R2_r.base_scalars()
1338
+ >>> e_x, e_y = R2_r.base_vectors()
1339
+ >>> dx, dy = R2_r.base_oneforms()
1340
+
1341
+ >>> TensorProduct(dx, dy)(e_x, e_y)
1342
+ 1
1343
+ >>> TensorProduct(dx, dy)(e_y, e_x)
1344
+ 0
1345
+ >>> TensorProduct(dx, fx*dy)(fx*e_x, e_y)
1346
+ x**2
1347
+ >>> TensorProduct(e_x, e_y)(fx**2, fy**2)
1348
+ 4*x*y
1349
+ >>> TensorProduct(e_y, dx)(fy)
1350
+ dx
1351
+
1352
+ You can nest tensor products.
1353
+
1354
+ >>> tp1 = TensorProduct(dx, dy)
1355
+ >>> TensorProduct(tp1, dx)(e_x, e_y, e_x)
1356
+ 1
1357
+
1358
+ You can make partial contraction for instance when 'raising an index'.
1359
+ Putting ``None`` in the second argument of ``rcall`` means that the
1360
+ respective position in the tensor product is left as it is.
1361
+
1362
+ >>> TP = TensorProduct
1363
+ >>> metric = TP(dx, dx) + 3*TP(dy, dy)
1364
+ >>> metric.rcall(e_y, None)
1365
+ 3*dy
1366
+
1367
+ Or automatically pad the args with ``None`` without specifying them.
1368
+
1369
+ >>> metric.rcall(e_y)
1370
+ 3*dy
1371
+
1372
+ """
1373
+ def __new__(cls, *args):
1374
+ scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0])
1375
+ multifields = [m for m in args if covariant_order(m) + contravariant_order(m)]
1376
+ if multifields:
1377
+ if len(multifields) == 1:
1378
+ return scalar*multifields[0]
1379
+ return scalar*super().__new__(cls, *multifields)
1380
+ else:
1381
+ return scalar
1382
+
1383
+ def __call__(self, *fields):
1384
+ """Apply on a list of fields.
1385
+
1386
+ If the number of input fields supplied is not equal to the order of
1387
+ the tensor product field, the list of arguments is padded with ``None``'s.
1388
+
1389
+ The list of arguments is divided in sublists depending on the order of
1390
+ the forms inside the tensor product. The sublists are provided as
1391
+ arguments to these forms and the resulting expressions are given to the
1392
+ constructor of ``TensorProduct``.
1393
+
1394
+ """
1395
+ tot_order = covariant_order(self) + contravariant_order(self)
1396
+ tot_args = len(fields)
1397
+ if tot_args != tot_order:
1398
+ fields = list(fields) + [None]*(tot_order - tot_args)
1399
+ orders = [covariant_order(f) + contravariant_order(f) for f in self._args]
1400
+ indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)]
1401
+ fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])]
1402
+ multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)]
1403
+ return TensorProduct(*multipliers)
1404
+
1405
+
1406
+ class WedgeProduct(TensorProduct):
1407
+ """Wedge product of forms.
1408
+
1409
+ Explanation
1410
+ ===========
1411
+
1412
+ In the context of integration only completely antisymmetric forms make
1413
+ sense. The wedge product permits the creation of such forms.
1414
+
1415
+ Examples
1416
+ ========
1417
+
1418
+ >>> from sympy.diffgeom.rn import R2_r
1419
+ >>> from sympy.diffgeom import WedgeProduct
1420
+
1421
+ >>> fx, fy = R2_r.base_scalars()
1422
+ >>> e_x, e_y = R2_r.base_vectors()
1423
+ >>> dx, dy = R2_r.base_oneforms()
1424
+
1425
+ >>> WedgeProduct(dx, dy)(e_x, e_y)
1426
+ 1
1427
+ >>> WedgeProduct(dx, dy)(e_y, e_x)
1428
+ -1
1429
+ >>> WedgeProduct(dx, fx*dy)(fx*e_x, e_y)
1430
+ x**2
1431
+ >>> WedgeProduct(e_x, e_y)(fy, None)
1432
+ -e_x
1433
+
1434
+ You can nest wedge products.
1435
+
1436
+ >>> wp1 = WedgeProduct(dx, dy)
1437
+ >>> WedgeProduct(wp1, dx)(e_x, e_y, e_x)
1438
+ 0
1439
+
1440
+ """
1441
+ # TODO the calculation of signatures is slow
1442
+ # TODO you do not need all these permutations (neither the prefactor)
1443
+ def __call__(self, *fields):
1444
+ """Apply on a list of vector_fields.
1445
+ The expression is rewritten internally in terms of tensor products and evaluated."""
1446
+ orders = (covariant_order(e) + contravariant_order(e) for e in self.args)
1447
+ mul = 1/Mul(*(factorial(o) for o in orders))
1448
+ perms = permutations(fields)
1449
+ perms_par = (Permutation(
1450
+ p).signature() for p in permutations(range(len(fields))))
1451
+ tensor_prod = TensorProduct(*self.args)
1452
+ return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)])
1453
+
1454
+
1455
+ class LieDerivative(Expr):
1456
+ """Lie derivative with respect to a vector field.
1457
+
1458
+ Explanation
1459
+ ===========
1460
+
1461
+ The transport operator that defines the Lie derivative is the pushforward of
1462
+ the field to be derived along the integral curve of the field with respect
1463
+ to which one derives.
1464
+
1465
+ Examples
1466
+ ========
1467
+
1468
+ >>> from sympy.diffgeom.rn import R2_r, R2_p
1469
+ >>> from sympy.diffgeom import (LieDerivative, TensorProduct)
1470
+
1471
+ >>> fx, fy = R2_r.base_scalars()
1472
+ >>> e_x, e_y = R2_r.base_vectors()
1473
+ >>> e_rho, e_theta = R2_p.base_vectors()
1474
+ >>> dx, dy = R2_r.base_oneforms()
1475
+
1476
+ >>> LieDerivative(e_x, fy)
1477
+ 0
1478
+ >>> LieDerivative(e_x, fx)
1479
+ 1
1480
+ >>> LieDerivative(e_x, e_x)
1481
+ 0
1482
+
1483
+ The Lie derivative of a tensor field by another tensor field is equal to
1484
+ their commutator:
1485
+
1486
+ >>> LieDerivative(e_x, e_rho)
1487
+ Commutator(e_x, e_rho)
1488
+ >>> LieDerivative(e_x + e_y, fx)
1489
+ 1
1490
+
1491
+ >>> tp = TensorProduct(dx, dy)
1492
+ >>> LieDerivative(e_x, tp)
1493
+ LieDerivative(e_x, TensorProduct(dx, dy))
1494
+ >>> LieDerivative(e_x, tp)
1495
+ LieDerivative(e_x, TensorProduct(dx, dy))
1496
+
1497
+ """
1498
+ def __new__(cls, v_field, expr):
1499
+ expr_form_ord = covariant_order(expr)
1500
+ if contravariant_order(v_field) != 1 or covariant_order(v_field):
1501
+ raise ValueError('Lie derivatives are defined only with respect to'
1502
+ ' vector fields. The supplied argument was not a '
1503
+ 'vector field.')
1504
+ if expr_form_ord > 0:
1505
+ obj = super().__new__(cls, v_field, expr)
1506
+ # deprecated assignments
1507
+ obj._v_field = v_field
1508
+ obj._expr = expr
1509
+ return obj
1510
+ if expr.atoms(BaseVectorField):
1511
+ return Commutator(v_field, expr)
1512
+ else:
1513
+ return v_field.rcall(expr)
1514
+
1515
+ @property
1516
+ def v_field(self):
1517
+ return self.args[0]
1518
+
1519
+ @property
1520
+ def expr(self):
1521
+ return self.args[1]
1522
+
1523
+ def __call__(self, *args):
1524
+ v = self.v_field
1525
+ expr = self.expr
1526
+ lead_term = v(expr(*args))
1527
+ rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:])
1528
+ for i in range(len(args))])
1529
+ return lead_term - rest
1530
+
1531
+
1532
+ class BaseCovarDerivativeOp(Expr):
1533
+ """Covariant derivative operator with respect to a base vector.
1534
+
1535
+ Examples
1536
+ ========
1537
+
1538
+ >>> from sympy.diffgeom.rn import R2_r
1539
+ >>> from sympy.diffgeom import BaseCovarDerivativeOp
1540
+ >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
1541
+
1542
+ >>> TP = TensorProduct
1543
+ >>> fx, fy = R2_r.base_scalars()
1544
+ >>> e_x, e_y = R2_r.base_vectors()
1545
+ >>> dx, dy = R2_r.base_oneforms()
1546
+
1547
+ >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
1548
+ >>> ch
1549
+ [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
1550
+ >>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
1551
+ >>> cvd(fx)
1552
+ 1
1553
+ >>> cvd(fx*e_x)
1554
+ e_x
1555
+ """
1556
+
1557
+ def __new__(cls, coord_sys, index, christoffel):
1558
+ index = _sympify(index)
1559
+ christoffel = ImmutableDenseNDimArray(christoffel)
1560
+ obj = super().__new__(cls, coord_sys, index, christoffel)
1561
+ # deprecated assignments
1562
+ obj._coord_sys = coord_sys
1563
+ obj._index = index
1564
+ obj._christoffel = christoffel
1565
+ return obj
1566
+
1567
+ @property
1568
+ def coord_sys(self):
1569
+ return self.args[0]
1570
+
1571
+ @property
1572
+ def index(self):
1573
+ return self.args[1]
1574
+
1575
+ @property
1576
+ def christoffel(self):
1577
+ return self.args[2]
1578
+
1579
+ def __call__(self, field):
1580
+ """Apply on a scalar field.
1581
+
1582
+ The action of a vector field on a scalar field is a directional
1583
+ differentiation.
1584
+ If the argument is not a scalar field the behaviour is undefined.
1585
+ """
1586
+ if covariant_order(field) != 0:
1587
+ raise NotImplementedError()
1588
+
1589
+ field = vectors_in_basis(field, self._coord_sys)
1590
+
1591
+ wrt_vector = self._coord_sys.base_vector(self._index)
1592
+ wrt_scalar = self._coord_sys.coord_function(self._index)
1593
+ vectors = list(field.atoms(BaseVectorField))
1594
+
1595
+ # First step: replace all vectors with something susceptible to
1596
+ # derivation and do the derivation
1597
+ # TODO: you need a real dummy function for the next line
1598
+ d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i,
1599
+ b in enumerate(vectors)]
1600
+ d_result = field.subs(list(zip(vectors, d_funcs)))
1601
+ d_result = wrt_vector(d_result)
1602
+
1603
+ # Second step: backsubstitute the vectors in
1604
+ d_result = d_result.subs(list(zip(d_funcs, vectors)))
1605
+
1606
+ # Third step: evaluate the derivatives of the vectors
1607
+ derivs = []
1608
+ for v in vectors:
1609
+ d = Add(*[(self._christoffel[k, wrt_vector._index, v._index]
1610
+ *v._coord_sys.base_vector(k))
1611
+ for k in range(v._coord_sys.dim)])
1612
+ derivs.append(d)
1613
+ to_subs = [wrt_vector(d) for d in d_funcs]
1614
+ # XXX: This substitution can fail when there are Dummy symbols and the
1615
+ # cache is disabled: https://github.com/sympy/sympy/issues/17794
1616
+ result = d_result.subs(list(zip(to_subs, derivs)))
1617
+
1618
+ # Remove the dummies
1619
+ result = result.subs(list(zip(d_funcs, vectors)))
1620
+ return result.doit()
1621
+
1622
+
1623
+ class CovarDerivativeOp(Expr):
1624
+ """Covariant derivative operator.
1625
+
1626
+ Examples
1627
+ ========
1628
+
1629
+ >>> from sympy.diffgeom.rn import R2_r
1630
+ >>> from sympy.diffgeom import CovarDerivativeOp
1631
+ >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
1632
+ >>> TP = TensorProduct
1633
+ >>> fx, fy = R2_r.base_scalars()
1634
+ >>> e_x, e_y = R2_r.base_vectors()
1635
+ >>> dx, dy = R2_r.base_oneforms()
1636
+ >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
1637
+
1638
+ >>> ch
1639
+ [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
1640
+ >>> cvd = CovarDerivativeOp(fx*e_x, ch)
1641
+ >>> cvd(fx)
1642
+ x
1643
+ >>> cvd(fx*e_x)
1644
+ x*e_x
1645
+
1646
+ """
1647
+
1648
+ def __new__(cls, wrt, christoffel):
1649
+ if len({v._coord_sys for v in wrt.atoms(BaseVectorField)}) > 1:
1650
+ raise NotImplementedError()
1651
+ if contravariant_order(wrt) != 1 or covariant_order(wrt):
1652
+ raise ValueError('Covariant derivatives are defined only with '
1653
+ 'respect to vector fields. The supplied argument '
1654
+ 'was not a vector field.')
1655
+ christoffel = ImmutableDenseNDimArray(christoffel)
1656
+ obj = super().__new__(cls, wrt, christoffel)
1657
+ # deprecated assignments
1658
+ obj._wrt = wrt
1659
+ obj._christoffel = christoffel
1660
+ return obj
1661
+
1662
+ @property
1663
+ def wrt(self):
1664
+ return self.args[0]
1665
+
1666
+ @property
1667
+ def christoffel(self):
1668
+ return self.args[1]
1669
+
1670
+ def __call__(self, field):
1671
+ vectors = list(self._wrt.atoms(BaseVectorField))
1672
+ base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel)
1673
+ for v in vectors]
1674
+ return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field)
1675
+
1676
+
1677
+ ###############################################################################
1678
+ # Integral curves on vector fields
1679
+ ###############################################################################
1680
+ def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False):
1681
+ r"""Return the series expansion for an integral curve of the field.
1682
+
1683
+ Explanation
1684
+ ===========
1685
+
1686
+ Integral curve is a function `\gamma` taking a parameter in `R` to a point
1687
+ in the manifold. It verifies the equation:
1688
+
1689
+ `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
1690
+
1691
+ where the given ``vector_field`` is denoted as `V`. This holds for any
1692
+ value `t` for the parameter and any scalar field `f`.
1693
+
1694
+ This equation can also be decomposed of a basis of coordinate functions
1695
+ `V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i`
1696
+
1697
+ This function returns a series expansion of `\gamma(t)` in terms of the
1698
+ coordinate system ``coord_sys``. The equations and expansions are necessarily
1699
+ done in coordinate-system-dependent way as there is no other way to
1700
+ represent movement between points on the manifold (i.e. there is no such
1701
+ thing as a difference of points for a general manifold).
1702
+
1703
+ Parameters
1704
+ ==========
1705
+ vector_field
1706
+ the vector field for which an integral curve will be given
1707
+
1708
+ param
1709
+ the argument of the function `\gamma` from R to the curve
1710
+
1711
+ start_point
1712
+ the point which corresponds to `\gamma(0)`
1713
+
1714
+ n
1715
+ the order to which to expand
1716
+
1717
+ coord_sys
1718
+ the coordinate system in which to expand
1719
+ coeffs (default False) - if True return a list of elements of the expansion
1720
+
1721
+ Examples
1722
+ ========
1723
+
1724
+ Use the predefined R2 manifold:
1725
+
1726
+ >>> from sympy.abc import t, x, y
1727
+ >>> from sympy.diffgeom.rn import R2_p, R2_r
1728
+ >>> from sympy.diffgeom import intcurve_series
1729
+
1730
+ Specify a starting point and a vector field:
1731
+
1732
+ >>> start_point = R2_r.point([x, y])
1733
+ >>> vector_field = R2_r.e_x
1734
+
1735
+ Calculate the series:
1736
+
1737
+ >>> intcurve_series(vector_field, t, start_point, n=3)
1738
+ Matrix([
1739
+ [t + x],
1740
+ [ y]])
1741
+
1742
+ Or get the elements of the expansion in a list:
1743
+
1744
+ >>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
1745
+ >>> series[0]
1746
+ Matrix([
1747
+ [x],
1748
+ [y]])
1749
+ >>> series[1]
1750
+ Matrix([
1751
+ [t],
1752
+ [0]])
1753
+ >>> series[2]
1754
+ Matrix([
1755
+ [0],
1756
+ [0]])
1757
+
1758
+ The series in the polar coordinate system:
1759
+
1760
+ >>> series = intcurve_series(vector_field, t, start_point,
1761
+ ... n=3, coord_sys=R2_p, coeffs=True)
1762
+ >>> series[0]
1763
+ Matrix([
1764
+ [sqrt(x**2 + y**2)],
1765
+ [ atan2(y, x)]])
1766
+ >>> series[1]
1767
+ Matrix([
1768
+ [t*x/sqrt(x**2 + y**2)],
1769
+ [ -t*y/(x**2 + y**2)]])
1770
+ >>> series[2]
1771
+ Matrix([
1772
+ [t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
1773
+ [ t**2*x*y/(x**2 + y**2)**2]])
1774
+
1775
+ See Also
1776
+ ========
1777
+
1778
+ intcurve_diffequ
1779
+
1780
+ """
1781
+ if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
1782
+ raise ValueError('The supplied field was not a vector field.')
1783
+
1784
+ def iter_vfield(scalar_field, i):
1785
+ """Return ``vector_field`` called `i` times on ``scalar_field``."""
1786
+ return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field)
1787
+
1788
+ def taylor_terms_per_coord(coord_function):
1789
+ """Return the series for one of the coordinates."""
1790
+ return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i)
1791
+ for i in range(n)]
1792
+ coord_sys = coord_sys if coord_sys else start_point._coord_sys
1793
+ coord_functions = coord_sys.coord_functions()
1794
+ taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions]
1795
+ if coeffs:
1796
+ return [Matrix(t) for t in zip(*taylor_terms)]
1797
+ else:
1798
+ return Matrix([sum(c) for c in taylor_terms])
1799
+
1800
+
1801
+ def intcurve_diffequ(vector_field, param, start_point, coord_sys=None):
1802
+ r"""Return the differential equation for an integral curve of the field.
1803
+
1804
+ Explanation
1805
+ ===========
1806
+
1807
+ Integral curve is a function `\gamma` taking a parameter in `R` to a point
1808
+ in the manifold. It verifies the equation:
1809
+
1810
+ `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
1811
+
1812
+ where the given ``vector_field`` is denoted as `V`. This holds for any
1813
+ value `t` for the parameter and any scalar field `f`.
1814
+
1815
+ This function returns the differential equation of `\gamma(t)` in terms of the
1816
+ coordinate system ``coord_sys``. The equations and expansions are necessarily
1817
+ done in coordinate-system-dependent way as there is no other way to
1818
+ represent movement between points on the manifold (i.e. there is no such
1819
+ thing as a difference of points for a general manifold).
1820
+
1821
+ Parameters
1822
+ ==========
1823
+
1824
+ vector_field
1825
+ the vector field for which an integral curve will be given
1826
+
1827
+ param
1828
+ the argument of the function `\gamma` from R to the curve
1829
+
1830
+ start_point
1831
+ the point which corresponds to `\gamma(0)`
1832
+
1833
+ coord_sys
1834
+ the coordinate system in which to give the equations
1835
+
1836
+ Returns
1837
+ =======
1838
+
1839
+ a tuple of (equations, initial conditions)
1840
+
1841
+ Examples
1842
+ ========
1843
+
1844
+ Use the predefined R2 manifold:
1845
+
1846
+ >>> from sympy.abc import t
1847
+ >>> from sympy.diffgeom.rn import R2, R2_p, R2_r
1848
+ >>> from sympy.diffgeom import intcurve_diffequ
1849
+
1850
+ Specify a starting point and a vector field:
1851
+
1852
+ >>> start_point = R2_r.point([0, 1])
1853
+ >>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
1854
+
1855
+ Get the equation:
1856
+
1857
+ >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
1858
+ >>> equations
1859
+ [f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
1860
+ >>> init_cond
1861
+ [f_0(0), f_1(0) - 1]
1862
+
1863
+ The series in the polar coordinate system:
1864
+
1865
+ >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
1866
+ >>> equations
1867
+ [Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
1868
+ >>> init_cond
1869
+ [f_0(0) - 1, f_1(0) - pi/2]
1870
+
1871
+ See Also
1872
+ ========
1873
+
1874
+ intcurve_series
1875
+
1876
+ """
1877
+ if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
1878
+ raise ValueError('The supplied field was not a vector field.')
1879
+ coord_sys = coord_sys if coord_sys else start_point._coord_sys
1880
+ gammas = [Function('f_%d' % i)(param) for i in range(
1881
+ start_point._coord_sys.dim)]
1882
+ arbitrary_p = Point(coord_sys, gammas)
1883
+ coord_functions = coord_sys.coord_functions()
1884
+ equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p))
1885
+ for cf in coord_functions]
1886
+ init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point))
1887
+ for cf in coord_functions]
1888
+ return equations, init_cond
1889
+
1890
+
1891
+ ###############################################################################
1892
+ # Helpers
1893
+ ###############################################################################
1894
+ def dummyfy(args, exprs):
1895
+ # TODO Is this a good idea?
1896
+ d_args = Matrix([s.as_dummy() for s in args])
1897
+ reps = dict(zip(args, d_args))
1898
+ d_exprs = Matrix([_sympify(expr).subs(reps) for expr in exprs])
1899
+ return d_args, d_exprs
1900
+
1901
+ ###############################################################################
1902
+ # Helpers
1903
+ ###############################################################################
1904
+ def contravariant_order(expr, _strict=False):
1905
+ """Return the contravariant order of an expression.
1906
+
1907
+ Examples
1908
+ ========
1909
+
1910
+ >>> from sympy.diffgeom import contravariant_order
1911
+ >>> from sympy.diffgeom.rn import R2
1912
+ >>> from sympy.abc import a
1913
+
1914
+ >>> contravariant_order(a)
1915
+ 0
1916
+ >>> contravariant_order(a*R2.x + 2)
1917
+ 0
1918
+ >>> contravariant_order(a*R2.x*R2.e_y + R2.e_x)
1919
+ 1
1920
+
1921
+ """
1922
+ # TODO move some of this to class methods.
1923
+ # TODO rewrite using the .as_blah_blah methods
1924
+ if isinstance(expr, Add):
1925
+ orders = [contravariant_order(e) for e in expr.args]
1926
+ if len(set(orders)) != 1:
1927
+ raise ValueError('Misformed expression containing contravariant fields of varying order.')
1928
+ return orders[0]
1929
+ elif isinstance(expr, Mul):
1930
+ orders = [contravariant_order(e) for e in expr.args]
1931
+ not_zero = [o for o in orders if o != 0]
1932
+ if len(not_zero) > 1:
1933
+ raise ValueError('Misformed expression containing multiplication between vectors.')
1934
+ return 0 if not not_zero else not_zero[0]
1935
+ elif isinstance(expr, Pow):
1936
+ if covariant_order(expr.base) or covariant_order(expr.exp):
1937
+ raise ValueError(
1938
+ 'Misformed expression containing a power of a vector.')
1939
+ return 0
1940
+ elif isinstance(expr, BaseVectorField):
1941
+ return 1
1942
+ elif isinstance(expr, TensorProduct):
1943
+ return sum(contravariant_order(a) for a in expr.args)
1944
+ elif not _strict or expr.atoms(BaseScalarField):
1945
+ return 0
1946
+ else: # If it does not contain anything related to the diffgeom module and it is _strict
1947
+ return -1
1948
+
1949
+
1950
+ def covariant_order(expr, _strict=False):
1951
+ """Return the covariant order of an expression.
1952
+
1953
+ Examples
1954
+ ========
1955
+
1956
+ >>> from sympy.diffgeom import covariant_order
1957
+ >>> from sympy.diffgeom.rn import R2
1958
+ >>> from sympy.abc import a
1959
+
1960
+ >>> covariant_order(a)
1961
+ 0
1962
+ >>> covariant_order(a*R2.x + 2)
1963
+ 0
1964
+ >>> covariant_order(a*R2.x*R2.dy + R2.dx)
1965
+ 1
1966
+
1967
+ """
1968
+ # TODO move some of this to class methods.
1969
+ # TODO rewrite using the .as_blah_blah methods
1970
+ if isinstance(expr, Add):
1971
+ orders = [covariant_order(e) for e in expr.args]
1972
+ if len(set(orders)) != 1:
1973
+ raise ValueError('Misformed expression containing form fields of varying order.')
1974
+ return orders[0]
1975
+ elif isinstance(expr, Mul):
1976
+ orders = [covariant_order(e) for e in expr.args]
1977
+ not_zero = [o for o in orders if o != 0]
1978
+ if len(not_zero) > 1:
1979
+ raise ValueError('Misformed expression containing multiplication between forms.')
1980
+ return 0 if not not_zero else not_zero[0]
1981
+ elif isinstance(expr, Pow):
1982
+ if covariant_order(expr.base) or covariant_order(expr.exp):
1983
+ raise ValueError(
1984
+ 'Misformed expression containing a power of a form.')
1985
+ return 0
1986
+ elif isinstance(expr, Differential):
1987
+ return covariant_order(*expr.args) + 1
1988
+ elif isinstance(expr, TensorProduct):
1989
+ return sum(covariant_order(a) for a in expr.args)
1990
+ elif not _strict or expr.atoms(BaseScalarField):
1991
+ return 0
1992
+ else: # If it does not contain anything related to the diffgeom module and it is _strict
1993
+ return -1
1994
+
1995
+
1996
+ ###############################################################################
1997
+ # Coordinate transformation functions
1998
+ ###############################################################################
1999
+ def vectors_in_basis(expr, to_sys):
2000
+ """Transform all base vectors in base vectors of a specified coord basis.
2001
+ While the new base vectors are in the new coordinate system basis, any
2002
+ coefficients are kept in the old system.
2003
+
2004
+ Examples
2005
+ ========
2006
+
2007
+ >>> from sympy.diffgeom import vectors_in_basis
2008
+ >>> from sympy.diffgeom.rn import R2_r, R2_p
2009
+
2010
+ >>> vectors_in_basis(R2_r.e_x, R2_p)
2011
+ -y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2)
2012
+ >>> vectors_in_basis(R2_p.e_r, R2_r)
2013
+ sin(theta)*e_y + cos(theta)*e_x
2014
+
2015
+ """
2016
+ vectors = list(expr.atoms(BaseVectorField))
2017
+ new_vectors = []
2018
+ for v in vectors:
2019
+ cs = v._coord_sys
2020
+ jac = cs.jacobian(to_sys, cs.coord_functions())
2021
+ new = (jac.T*Matrix(to_sys.base_vectors()))[v._index]
2022
+ new_vectors.append(new)
2023
+ return expr.subs(list(zip(vectors, new_vectors)))
2024
+
2025
+
2026
+ ###############################################################################
2027
+ # Coordinate-dependent functions
2028
+ ###############################################################################
2029
+ def twoform_to_matrix(expr):
2030
+ """Return the matrix representing the twoform.
2031
+
2032
+ For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`,
2033
+ where `e_i` is the i-th base vector field for the coordinate system in
2034
+ which the expression of `w` is given.
2035
+
2036
+ Examples
2037
+ ========
2038
+
2039
+ >>> from sympy.diffgeom.rn import R2
2040
+ >>> from sympy.diffgeom import twoform_to_matrix, TensorProduct
2041
+ >>> TP = TensorProduct
2042
+
2043
+ >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2044
+ Matrix([
2045
+ [1, 0],
2046
+ [0, 1]])
2047
+ >>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2048
+ Matrix([
2049
+ [x, 0],
2050
+ [0, 1]])
2051
+ >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
2052
+ Matrix([
2053
+ [ 1, 0],
2054
+ [-1/2, 1]])
2055
+
2056
+ """
2057
+ if covariant_order(expr) != 2 or contravariant_order(expr):
2058
+ raise ValueError('The input expression is not a two-form.')
2059
+ coord_sys = _find_coords(expr)
2060
+ if len(coord_sys) != 1:
2061
+ raise ValueError('The input expression concerns more than one '
2062
+ 'coordinate systems, hence there is no unambiguous '
2063
+ 'way to choose a coordinate system for the matrix.')
2064
+ coord_sys = coord_sys.pop()
2065
+ vectors = coord_sys.base_vectors()
2066
+ expr = expr.expand()
2067
+ matrix_content = [[expr.rcall(v1, v2) for v1 in vectors]
2068
+ for v2 in vectors]
2069
+ return Matrix(matrix_content)
2070
+
2071
+
2072
+ def metric_to_Christoffel_1st(expr):
2073
+ """Return the nested list of Christoffel symbols for the given metric.
2074
+ This returns the Christoffel symbol of first kind that represents the
2075
+ Levi-Civita connection for the given metric.
2076
+
2077
+ Examples
2078
+ ========
2079
+
2080
+ >>> from sympy.diffgeom.rn import R2
2081
+ >>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct
2082
+ >>> TP = TensorProduct
2083
+
2084
+ >>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2085
+ [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
2086
+ >>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2087
+ [[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]
2088
+
2089
+ """
2090
+ matrix = twoform_to_matrix(expr)
2091
+ if not matrix.is_symmetric():
2092
+ raise ValueError(
2093
+ 'The two-form representing the metric is not symmetric.')
2094
+ coord_sys = _find_coords(expr).pop()
2095
+ deriv_matrices = [matrix.applyfunc(d) for d in coord_sys.base_vectors()]
2096
+ indices = list(range(coord_sys.dim))
2097
+ christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2
2098
+ for k in indices]
2099
+ for j in indices]
2100
+ for i in indices]
2101
+ return ImmutableDenseNDimArray(christoffel)
2102
+
2103
+
2104
+ def metric_to_Christoffel_2nd(expr):
2105
+ """Return the nested list of Christoffel symbols for the given metric.
2106
+ This returns the Christoffel symbol of second kind that represents the
2107
+ Levi-Civita connection for the given metric.
2108
+
2109
+ Examples
2110
+ ========
2111
+
2112
+ >>> from sympy.diffgeom.rn import R2
2113
+ >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
2114
+ >>> TP = TensorProduct
2115
+
2116
+ >>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2117
+ [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
2118
+ >>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2119
+ [[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]
2120
+
2121
+ """
2122
+ ch_1st = metric_to_Christoffel_1st(expr)
2123
+ coord_sys = _find_coords(expr).pop()
2124
+ indices = list(range(coord_sys.dim))
2125
+ # XXX workaround, inverting a matrix does not work if it contains non
2126
+ # symbols
2127
+ #matrix = twoform_to_matrix(expr).inv()
2128
+ matrix = twoform_to_matrix(expr)
2129
+ s_fields = set()
2130
+ for e in matrix:
2131
+ s_fields.update(e.atoms(BaseScalarField))
2132
+ s_fields = list(s_fields)
2133
+ dums = coord_sys.symbols
2134
+ matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields)))
2135
+ # XXX end of workaround
2136
+ christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices])
2137
+ for k in indices]
2138
+ for j in indices]
2139
+ for i in indices]
2140
+ return ImmutableDenseNDimArray(christoffel)
2141
+
2142
+
2143
+ def metric_to_Riemann_components(expr):
2144
+ """Return the components of the Riemann tensor expressed in a given basis.
2145
+
2146
+ Given a metric it calculates the components of the Riemann tensor in the
2147
+ canonical basis of the coordinate system in which the metric expression is
2148
+ given.
2149
+
2150
+ Examples
2151
+ ========
2152
+
2153
+ >>> from sympy import exp
2154
+ >>> from sympy.diffgeom.rn import R2
2155
+ >>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct
2156
+ >>> TP = TensorProduct
2157
+
2158
+ >>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2159
+ [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]
2160
+ >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
2161
+ R2.r**2*TP(R2.dtheta, R2.dtheta)
2162
+ >>> non_trivial_metric
2163
+ exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
2164
+ >>> riemann = metric_to_Riemann_components(non_trivial_metric)
2165
+ >>> riemann[0, :, :, :]
2166
+ [[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]]
2167
+ >>> riemann[1, :, :, :]
2168
+ [[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]]
2169
+
2170
+ """
2171
+ ch_2nd = metric_to_Christoffel_2nd(expr)
2172
+ coord_sys = _find_coords(expr).pop()
2173
+ indices = list(range(coord_sys.dim))
2174
+ deriv_ch = [[[[d(ch_2nd[i, j, k])
2175
+ for d in coord_sys.base_vectors()]
2176
+ for k in indices]
2177
+ for j in indices]
2178
+ for i in indices]
2179
+ riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu]
2180
+ for nu in indices]
2181
+ for mu in indices]
2182
+ for sig in indices]
2183
+ for rho in indices]
2184
+ riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices])
2185
+ for nu in indices]
2186
+ for mu in indices]
2187
+ for sig in indices]
2188
+ for rho in indices]
2189
+ riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu]
2190
+ for nu in indices]
2191
+ for mu in indices]
2192
+ for sig in indices]
2193
+ for rho in indices]
2194
+ return ImmutableDenseNDimArray(riemann)
2195
+
2196
+
2197
+ def metric_to_Ricci_components(expr):
2198
+
2199
+ """Return the components of the Ricci tensor expressed in a given basis.
2200
+
2201
+ Given a metric it calculates the components of the Ricci tensor in the
2202
+ canonical basis of the coordinate system in which the metric expression is
2203
+ given.
2204
+
2205
+ Examples
2206
+ ========
2207
+
2208
+ >>> from sympy import exp
2209
+ >>> from sympy.diffgeom.rn import R2
2210
+ >>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct
2211
+ >>> TP = TensorProduct
2212
+
2213
+ >>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
2214
+ [[0, 0], [0, 0]]
2215
+ >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
2216
+ R2.r**2*TP(R2.dtheta, R2.dtheta)
2217
+ >>> non_trivial_metric
2218
+ exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
2219
+ >>> metric_to_Ricci_components(non_trivial_metric)
2220
+ [[1/rho, 0], [0, exp(-2*rho)*rho]]
2221
+
2222
+ """
2223
+ riemann = metric_to_Riemann_components(expr)
2224
+ coord_sys = _find_coords(expr).pop()
2225
+ indices = list(range(coord_sys.dim))
2226
+ ricci = [[Add(*[riemann[k, i, k, j] for k in indices])
2227
+ for j in indices]
2228
+ for i in indices]
2229
+ return ImmutableDenseNDimArray(ricci)
2230
+
2231
+ ###############################################################################
2232
+ # Classes for deprecation
2233
+ ###############################################################################
2234
+
2235
+ class _deprecated_container:
2236
+ # This class gives deprecation warning.
2237
+ # When deprecated features are completely deleted, this should be removed as well.
2238
+ # See https://github.com/sympy/sympy/pull/19368
2239
+ def __init__(self, message, data):
2240
+ super().__init__(data)
2241
+ self.message = message
2242
+
2243
+ def warn(self):
2244
+ sympy_deprecation_warning(
2245
+ self.message,
2246
+ deprecated_since_version="1.7",
2247
+ active_deprecations_target="deprecated-diffgeom-mutable",
2248
+ stacklevel=4
2249
+ )
2250
+
2251
+ def __iter__(self):
2252
+ self.warn()
2253
+ return super().__iter__()
2254
+
2255
+ def __getitem__(self, key):
2256
+ self.warn()
2257
+ return super().__getitem__(key)
2258
+
2259
+ def __contains__(self, key):
2260
+ self.warn()
2261
+ return super().__contains__(key)
2262
+
2263
+
2264
+ class _deprecated_list(_deprecated_container, list):
2265
+ pass
2266
+
2267
+
2268
+ class _deprecated_dict(_deprecated_container, dict):
2269
+ pass
2270
+
2271
+
2272
+ # Import at end to avoid cyclic imports
2273
+ from sympy.simplify.simplify import simplify
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_function_diffgeom_book.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r
2
+ from sympy.diffgeom import intcurve_series, Differential, WedgeProduct
3
+ from sympy.core import symbols, Function, Derivative
4
+ from sympy.simplify import trigsimp, simplify
5
+ from sympy.functions import sqrt, atan2, sin, cos
6
+ from sympy.matrices import Matrix
7
+
8
+ # Most of the functionality is covered in the
9
+ # test_functional_diffgeom_ch* tests which are based on the
10
+ # example from the paper of Sussman and Wisdom.
11
+ # If they do not cover something, additional tests are added in other test
12
+ # functions.
13
+
14
+ # From "Functional Differential Geometry" as of 2011
15
+ # by Sussman and Wisdom.
16
+
17
+
18
+ def test_functional_diffgeom_ch2():
19
+ x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
20
+ x, y = symbols('x, y', real=True)
21
+ f = Function('f')
22
+
23
+ assert (R2_p.point_to_coords(R2_r.point([x0, y0])) ==
24
+ Matrix([sqrt(x0**2 + y0**2), atan2(y0, x0)]))
25
+ assert (R2_r.point_to_coords(R2_p.point([r0, theta0])) ==
26
+ Matrix([r0*cos(theta0), r0*sin(theta0)]))
27
+
28
+ assert R2_p.jacobian(R2_r, [r0, theta0]) == Matrix(
29
+ [[cos(theta0), -r0*sin(theta0)], [sin(theta0), r0*cos(theta0)]])
30
+
31
+ field = f(R2.x, R2.y)
32
+ p1_in_rect = R2_r.point([x0, y0])
33
+ p1_in_polar = R2_p.point([sqrt(x0**2 + y0**2), atan2(y0, x0)])
34
+ assert field.rcall(p1_in_rect) == f(x0, y0)
35
+ assert field.rcall(p1_in_polar) == f(x0, y0)
36
+
37
+ p_r = R2_r.point([x0, y0])
38
+ p_p = R2_p.point([r0, theta0])
39
+ assert R2.x(p_r) == x0
40
+ assert R2.x(p_p) == r0*cos(theta0)
41
+ assert R2.r(p_p) == r0
42
+ assert R2.r(p_r) == sqrt(x0**2 + y0**2)
43
+ assert R2.theta(p_r) == atan2(y0, x0)
44
+
45
+ h = R2.x*R2.r**2 + R2.y**3
46
+ assert h.rcall(p_r) == x0*(x0**2 + y0**2) + y0**3
47
+ assert h.rcall(p_p) == r0**3*sin(theta0)**3 + r0**3*cos(theta0)
48
+
49
+
50
+ def test_functional_diffgeom_ch3():
51
+ x0, y0 = symbols('x0, y0', real=True)
52
+ x, y, t = symbols('x, y, t', real=True)
53
+ f = Function('f')
54
+ b1 = Function('b1')
55
+ b2 = Function('b2')
56
+ p_r = R2_r.point([x0, y0])
57
+
58
+ s_field = f(R2.x, R2.y)
59
+ v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
60
+ assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
61
+ x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)
62
+
63
+ assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
64
+ v = R2.e_x + 2*R2.e_y
65
+ s = R2.r**2 + 3*R2.x
66
+ assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3
67
+
68
+ circ = -R2.y*R2.e_x + R2.x*R2.e_y
69
+ series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
70
+ series_x, series_y = zip(*series)
71
+ assert all(
72
+ [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
73
+ assert all(
74
+ [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
75
+
76
+
77
+ def test_functional_diffgeom_ch4():
78
+ x0, y0, theta0 = symbols('x0, y0, theta0', real=True)
79
+ x, y, r, theta = symbols('x, y, r, theta', real=True)
80
+ r0 = symbols('r0', positive=True)
81
+ f = Function('f')
82
+ b1 = Function('b1')
83
+ b2 = Function('b2')
84
+ p_r = R2_r.point([x0, y0])
85
+ p_p = R2_p.point([r0, theta0])
86
+
87
+ f_field = b1(R2.x, R2.y)*R2.dx + b2(R2.x, R2.y)*R2.dy
88
+ assert f_field.rcall(R2.e_x).rcall(p_r) == b1(x0, y0)
89
+ assert f_field.rcall(R2.e_y).rcall(p_r) == b2(x0, y0)
90
+
91
+ s_field_r = f(R2.x, R2.y)
92
+ df = Differential(s_field_r)
93
+ assert df(R2.e_x).rcall(p_r).doit() == Derivative(f(x0, y0), x0)
94
+ assert df(R2.e_y).rcall(p_r).doit() == Derivative(f(x0, y0), y0)
95
+
96
+ s_field_p = f(R2.r, R2.theta)
97
+ df = Differential(s_field_p)
98
+ assert trigsimp(df(R2.e_x).rcall(p_p).doit()) == (
99
+ cos(theta0)*Derivative(f(r0, theta0), r0) -
100
+ sin(theta0)*Derivative(f(r0, theta0), theta0)/r0)
101
+ assert trigsimp(df(R2.e_y).rcall(p_p).doit()) == (
102
+ sin(theta0)*Derivative(f(r0, theta0), r0) +
103
+ cos(theta0)*Derivative(f(r0, theta0), theta0)/r0)
104
+
105
+ assert R2.dx(R2.e_x).rcall(p_r) == 1
106
+ assert R2.dx(R2.e_x) == 1
107
+ assert R2.dx(R2.e_y).rcall(p_r) == 0
108
+ assert R2.dx(R2.e_y) == 0
109
+
110
+ circ = -R2.y*R2.e_x + R2.x*R2.e_y
111
+ assert R2.dx(circ).rcall(p_r).doit() == -y0
112
+ assert R2.dy(circ).rcall(p_r) == x0
113
+ assert R2.dr(circ).rcall(p_r) == 0
114
+ assert simplify(R2.dtheta(circ).rcall(p_r)) == 1
115
+
116
+ assert (circ - R2.e_theta).rcall(s_field_r).rcall(p_r) == 0
117
+
118
+
119
+ def test_functional_diffgeom_ch6():
120
+ u0, u1, u2, v0, v1, v2, w0, w1, w2 = symbols('u0:3, v0:3, w0:3', real=True)
121
+
122
+ u = u0*R2.e_x + u1*R2.e_y
123
+ v = v0*R2.e_x + v1*R2.e_y
124
+ wp = WedgeProduct(R2.dx, R2.dy)
125
+ assert wp(u, v) == u0*v1 - u1*v0
126
+
127
+ u = u0*R3_r.e_x + u1*R3_r.e_y + u2*R3_r.e_z
128
+ v = v0*R3_r.e_x + v1*R3_r.e_y + v2*R3_r.e_z
129
+ w = w0*R3_r.e_x + w1*R3_r.e_y + w2*R3_r.e_z
130
+ wp = WedgeProduct(R3_r.dx, R3_r.dy, R3_r.dz)
131
+ assert wp(
132
+ u, v, w) == Matrix(3, 3, [u0, u1, u2, v0, v1, v2, w0, w1, w2]).det()
133
+
134
+ a, b, c = symbols('a, b, c', cls=Function)
135
+ a_f = a(R3_r.x, R3_r.y, R3_r.z)
136
+ b_f = b(R3_r.x, R3_r.y, R3_r.z)
137
+ c_f = c(R3_r.x, R3_r.y, R3_r.z)
138
+ theta = a_f*R3_r.dx + b_f*R3_r.dy + c_f*R3_r.dz
139
+ dtheta = Differential(theta)
140
+ da = Differential(a_f)
141
+ db = Differential(b_f)
142
+ dc = Differential(c_f)
143
+ expr = dtheta - WedgeProduct(
144
+ da, R3_r.dx) - WedgeProduct(db, R3_r.dy) - WedgeProduct(dc, R3_r.dz)
145
+ assert expr.rcall(R3_r.e_x, R3_r.e_y) == 0
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_hyperbolic_space.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r'''
2
+ unit test describing the hyperbolic half-plane with the Poincare metric. This
3
+ is a basic model of hyperbolic geometry on the (positive) half-space
4
+
5
+ {(x,y) \in R^2 | y > 0}
6
+
7
+ with the Riemannian metric
8
+
9
+ ds^2 = (dx^2 + dy^2)/y^2
10
+
11
+ It has constant negative scalar curvature = -2
12
+
13
+ https://en.wikipedia.org/wiki/Poincare_half-plane_model
14
+ '''
15
+ from sympy.matrices.dense import diag
16
+ from sympy.diffgeom import (twoform_to_matrix,
17
+ metric_to_Christoffel_1st, metric_to_Christoffel_2nd,
18
+ metric_to_Riemann_components, metric_to_Ricci_components)
19
+ import sympy.diffgeom.rn
20
+ from sympy.tensor.array import ImmutableDenseNDimArray
21
+
22
+
23
+ def test_H2():
24
+ TP = sympy.diffgeom.TensorProduct
25
+ R2 = sympy.diffgeom.rn.R2
26
+ y = R2.y
27
+ dy = R2.dy
28
+ dx = R2.dx
29
+ g = (TP(dx, dx) + TP(dy, dy))*y**(-2)
30
+ automat = twoform_to_matrix(g)
31
+ mat = diag(y**(-2), y**(-2))
32
+ assert mat == automat
33
+
34
+ gamma1 = metric_to_Christoffel_1st(g)
35
+ assert gamma1[0, 0, 0] == 0
36
+ assert gamma1[0, 0, 1] == -y**(-3)
37
+ assert gamma1[0, 1, 0] == -y**(-3)
38
+ assert gamma1[0, 1, 1] == 0
39
+
40
+ assert gamma1[1, 1, 1] == -y**(-3)
41
+ assert gamma1[1, 1, 0] == 0
42
+ assert gamma1[1, 0, 1] == 0
43
+ assert gamma1[1, 0, 0] == y**(-3)
44
+
45
+ gamma2 = metric_to_Christoffel_2nd(g)
46
+ assert gamma2[0, 0, 0] == 0
47
+ assert gamma2[0, 0, 1] == -y**(-1)
48
+ assert gamma2[0, 1, 0] == -y**(-1)
49
+ assert gamma2[0, 1, 1] == 0
50
+
51
+ assert gamma2[1, 1, 1] == -y**(-1)
52
+ assert gamma2[1, 1, 0] == 0
53
+ assert gamma2[1, 0, 1] == 0
54
+ assert gamma2[1, 0, 0] == y**(-1)
55
+
56
+ Rm = metric_to_Riemann_components(g)
57
+ assert Rm[0, 0, 0, 0] == 0
58
+ assert Rm[0, 0, 0, 1] == 0
59
+ assert Rm[0, 0, 1, 0] == 0
60
+ assert Rm[0, 0, 1, 1] == 0
61
+
62
+ assert Rm[0, 1, 0, 0] == 0
63
+ assert Rm[0, 1, 0, 1] == -y**(-2)
64
+ assert Rm[0, 1, 1, 0] == y**(-2)
65
+ assert Rm[0, 1, 1, 1] == 0
66
+
67
+ assert Rm[1, 0, 0, 0] == 0
68
+ assert Rm[1, 0, 0, 1] == y**(-2)
69
+ assert Rm[1, 0, 1, 0] == -y**(-2)
70
+ assert Rm[1, 0, 1, 1] == 0
71
+
72
+ assert Rm[1, 1, 0, 0] == 0
73
+ assert Rm[1, 1, 0, 1] == 0
74
+ assert Rm[1, 1, 1, 0] == 0
75
+ assert Rm[1, 1, 1, 1] == 0
76
+
77
+ Ric = metric_to_Ricci_components(g)
78
+ assert Ric[0, 0] == -y**(-2)
79
+ assert Ric[0, 1] == 0
80
+ assert Ric[1, 0] == 0
81
+ assert Ric[0, 0] == -y**(-2)
82
+
83
+ assert Ric == ImmutableDenseNDimArray([-y**(-2), 0, 0, -y**(-2)], (2, 2))
84
+
85
+ ## scalar curvature is -2
86
+ #TODO - it would be nice to have index contraction built-in
87
+ R = (Ric[0, 0] + Ric[1, 1])*y**2
88
+ assert R == -2
89
+
90
+ ## Gauss curvature is -1
91
+ assert R/2 == -1
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (8.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_comprehension.cpython-310.pyc ADDED
Binary file (14.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_derivatives.cpython-310.pyc ADDED
Binary file (4.75 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/arrayop.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/dense_ndim_array.cpython-310.pyc ADDED
Binary file (8.46 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/mutable_ndim_array.cpython-310.pyc ADDED
Binary file (854 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/ndim_array.cpython-310.pyc ADDED
Binary file (21.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/sparse_ndim_array.cpython-310.pyc ADDED
Binary file (7.51 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (7.13 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/array_expressions.cpython-310.pyc ADDED
Binary file (80.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/arrayexpr_derivatives.cpython-310.pyc ADDED
Binary file (7.16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_indexed.cpython-310.pyc ADDED
Binary file (605 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_matrix.cpython-310.pyc ADDED
Binary file (480 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_indexed_to_array.cpython-310.pyc ADDED
Binary file (422 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_matrix_to_array.cpython-310.pyc ADDED
Binary file (419 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_indexed.cpython-310.pyc ADDED
Binary file (3.96 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_matrix.cpython-310.pyc ADDED
Binary file (32.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_indexed_to_array.cpython-310.pyc ADDED
Binary file (9.82 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_matrix_to_array.cpython-310.pyc ADDED
Binary file (4.05 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/utils.cpython-310.pyc ADDED
Binary file (5.43 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/array_expressions.py ADDED
@@ -0,0 +1,1967 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections.abc
2
+ import operator
3
+ from collections import defaultdict, Counter
4
+ from functools import reduce
5
+ import itertools
6
+ from itertools import accumulate
7
+ from typing import Optional, List, Tuple as tTuple
8
+
9
+ import typing
10
+
11
+ from sympy.core.numbers import Integer
12
+ from sympy.core.relational import Equality
13
+ from sympy.functions.special.tensor_functions import KroneckerDelta
14
+ from sympy.core.basic import Basic
15
+ from sympy.core.containers import Tuple
16
+ from sympy.core.expr import Expr
17
+ from sympy.core.function import (Function, Lambda)
18
+ from sympy.core.mul import Mul
19
+ from sympy.core.singleton import S
20
+ from sympy.core.sorting import default_sort_key
21
+ from sympy.core.symbol import (Dummy, Symbol)
22
+ from sympy.matrices.common import MatrixCommon
23
+ from sympy.matrices.expressions.diagonal import diagonalize_vector
24
+ from sympy.matrices.expressions.matexpr import MatrixExpr
25
+ from sympy.matrices.expressions.special import ZeroMatrix
26
+ from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensordiagonal, tensorproduct)
27
+ from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
28
+ from sympy.tensor.array.ndim_array import NDimArray
29
+ from sympy.tensor.indexed import (Indexed, IndexedBase)
30
+ from sympy.matrices.expressions.matexpr import MatrixElement
31
+ from sympy.tensor.array.expressions.utils import _apply_recursively_over_nested_lists, _sort_contraction_indices, \
32
+ _get_mapping_from_subranks, _build_push_indices_up_func_transformation, _get_contraction_links, \
33
+ _build_push_indices_down_func_transformation
34
+ from sympy.combinatorics import Permutation
35
+ from sympy.combinatorics.permutations import _af_invert
36
+ from sympy.core.sympify import _sympify
37
+
38
+
39
+ class _ArrayExpr(Expr):
40
+ shape: tTuple[Expr, ...]
41
+
42
+ def __getitem__(self, item):
43
+ if not isinstance(item, collections.abc.Iterable):
44
+ item = (item,)
45
+ ArrayElement._check_shape(self, item)
46
+ return self._get(item)
47
+
48
+ def _get(self, item):
49
+ return _get_array_element_or_slice(self, item)
50
+
51
+
52
+ class ArraySymbol(_ArrayExpr):
53
+ """
54
+ Symbol representing an array expression
55
+ """
56
+
57
+ def __new__(cls, symbol, shape: typing.Iterable) -> "ArraySymbol":
58
+ if isinstance(symbol, str):
59
+ symbol = Symbol(symbol)
60
+ # symbol = _sympify(symbol)
61
+ shape = Tuple(*map(_sympify, shape))
62
+ obj = Expr.__new__(cls, symbol, shape)
63
+ return obj
64
+
65
+ @property
66
+ def name(self):
67
+ return self._args[0]
68
+
69
+ @property
70
+ def shape(self):
71
+ return self._args[1]
72
+
73
+ def as_explicit(self):
74
+ if not all(i.is_Integer for i in self.shape):
75
+ raise ValueError("cannot express explicit array with symbolic shape")
76
+ data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])]
77
+ return ImmutableDenseNDimArray(data).reshape(*self.shape)
78
+
79
+
80
+ class ArrayElement(Expr):
81
+ """
82
+ An element of an array.
83
+ """
84
+
85
+ _diff_wrt = True
86
+ is_symbol = True
87
+ is_commutative = True
88
+
89
+ def __new__(cls, name, indices):
90
+ if isinstance(name, str):
91
+ name = Symbol(name)
92
+ name = _sympify(name)
93
+ if not isinstance(indices, collections.abc.Iterable):
94
+ indices = (indices,)
95
+ indices = _sympify(tuple(indices))
96
+ cls._check_shape(name, indices)
97
+ obj = Expr.__new__(cls, name, indices)
98
+ return obj
99
+
100
+ @classmethod
101
+ def _check_shape(cls, name, indices):
102
+ indices = tuple(indices)
103
+ if hasattr(name, "shape"):
104
+ index_error = IndexError("number of indices does not match shape of the array")
105
+ if len(indices) != len(name.shape):
106
+ raise index_error
107
+ if any((i >= s) == True for i, s in zip(indices, name.shape)):
108
+ raise ValueError("shape is out of bounds")
109
+ if any((i < 0) == True for i in indices):
110
+ raise ValueError("shape contains negative values")
111
+
112
+ @property
113
+ def name(self):
114
+ return self._args[0]
115
+
116
+ @property
117
+ def indices(self):
118
+ return self._args[1]
119
+
120
+ def _eval_derivative(self, s):
121
+ if not isinstance(s, ArrayElement):
122
+ return S.Zero
123
+
124
+ if s == self:
125
+ return S.One
126
+
127
+ if s.name != self.name:
128
+ return S.Zero
129
+
130
+ return Mul.fromiter(KroneckerDelta(i, j) for i, j in zip(self.indices, s.indices))
131
+
132
+
133
+ class ZeroArray(_ArrayExpr):
134
+ """
135
+ Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices.
136
+ """
137
+
138
+ def __new__(cls, *shape):
139
+ if len(shape) == 0:
140
+ return S.Zero
141
+ shape = map(_sympify, shape)
142
+ obj = Expr.__new__(cls, *shape)
143
+ return obj
144
+
145
+ @property
146
+ def shape(self):
147
+ return self._args
148
+
149
+ def as_explicit(self):
150
+ if not all(i.is_Integer for i in self.shape):
151
+ raise ValueError("Cannot return explicit form for symbolic shape.")
152
+ return ImmutableDenseNDimArray.zeros(*self.shape)
153
+
154
+ def _get(self, item):
155
+ return S.Zero
156
+
157
+
158
+ class OneArray(_ArrayExpr):
159
+ """
160
+ Symbolic array of ones.
161
+ """
162
+
163
+ def __new__(cls, *shape):
164
+ if len(shape) == 0:
165
+ return S.One
166
+ shape = map(_sympify, shape)
167
+ obj = Expr.__new__(cls, *shape)
168
+ return obj
169
+
170
+ @property
171
+ def shape(self):
172
+ return self._args
173
+
174
+ def as_explicit(self):
175
+ if not all(i.is_Integer for i in self.shape):
176
+ raise ValueError("Cannot return explicit form for symbolic shape.")
177
+ return ImmutableDenseNDimArray([S.One for i in range(reduce(operator.mul, self.shape))]).reshape(*self.shape)
178
+
179
+ def _get(self, item):
180
+ return S.One
181
+
182
+
183
+ class _CodegenArrayAbstract(Basic):
184
+
185
+ @property
186
+ def subranks(self):
187
+ """
188
+ Returns the ranks of the objects in the uppermost tensor product inside
189
+ the current object. In case no tensor products are contained, return
190
+ the atomic ranks.
191
+
192
+ Examples
193
+ ========
194
+
195
+ >>> from sympy.tensor.array import tensorproduct, tensorcontraction
196
+ >>> from sympy import MatrixSymbol
197
+ >>> M = MatrixSymbol("M", 3, 3)
198
+ >>> N = MatrixSymbol("N", 3, 3)
199
+ >>> P = MatrixSymbol("P", 3, 3)
200
+
201
+ Important: do not confuse the rank of the matrix with the rank of an array.
202
+
203
+ >>> tp = tensorproduct(M, N, P)
204
+ >>> tp.subranks
205
+ [2, 2, 2]
206
+
207
+ >>> co = tensorcontraction(tp, (1, 2), (3, 4))
208
+ >>> co.subranks
209
+ [2, 2, 2]
210
+ """
211
+ return self._subranks[:]
212
+
213
+ def subrank(self):
214
+ """
215
+ The sum of ``subranks``.
216
+ """
217
+ return sum(self.subranks)
218
+
219
+ @property
220
+ def shape(self):
221
+ return self._shape
222
+
223
+ def doit(self, **hints):
224
+ deep = hints.get("deep", True)
225
+ if deep:
226
+ return self.func(*[arg.doit(**hints) for arg in self.args])._canonicalize()
227
+ else:
228
+ return self._canonicalize()
229
+
230
+ class ArrayTensorProduct(_CodegenArrayAbstract):
231
+ r"""
232
+ Class to represent the tensor product of array-like objects.
233
+ """
234
+
235
+ def __new__(cls, *args, **kwargs):
236
+ args = [_sympify(arg) for arg in args]
237
+
238
+ canonicalize = kwargs.pop("canonicalize", False)
239
+
240
+ ranks = [get_rank(arg) for arg in args]
241
+
242
+ obj = Basic.__new__(cls, *args)
243
+ obj._subranks = ranks
244
+ shapes = [get_shape(i) for i in args]
245
+
246
+ if any(i is None for i in shapes):
247
+ obj._shape = None
248
+ else:
249
+ obj._shape = tuple(j for i in shapes for j in i)
250
+ if canonicalize:
251
+ return obj._canonicalize()
252
+ return obj
253
+
254
+ def _canonicalize(self):
255
+ args = self.args
256
+ args = self._flatten(args)
257
+
258
+ ranks = [get_rank(arg) for arg in args]
259
+
260
+ # Check if there are nested permutation and lift them up:
261
+ permutation_cycles = []
262
+ for i, arg in enumerate(args):
263
+ if not isinstance(arg, PermuteDims):
264
+ continue
265
+ permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form])
266
+ args[i] = arg.expr
267
+ if permutation_cycles:
268
+ return _permute_dims(_array_tensor_product(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles))
269
+
270
+ if len(args) == 1:
271
+ return args[0]
272
+
273
+ # If any object is a ZeroArray, return a ZeroArray:
274
+ if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args):
275
+ shapes = reduce(operator.add, [get_shape(i) for i in args], ())
276
+ return ZeroArray(*shapes)
277
+
278
+ # If there are contraction objects inside, transform the whole
279
+ # expression into `ArrayContraction`:
280
+ contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayContraction)}
281
+ if contractions:
282
+ ranks = [_get_subrank(arg) if isinstance(arg, ArrayContraction) else get_rank(arg) for arg in args]
283
+ cumulative_ranks = list(accumulate([0] + ranks))[:-1]
284
+ tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayContraction) else arg for arg in args])
285
+ contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices]
286
+ return _array_contraction(tp, *contraction_indices)
287
+
288
+ diagonals = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayDiagonal)}
289
+ if diagonals:
290
+ inverse_permutation = []
291
+ last_perm = []
292
+ ranks = [get_rank(arg) for arg in args]
293
+ cumulative_ranks = list(accumulate([0] + ranks))[:-1]
294
+ for i, arg in enumerate(args):
295
+ if isinstance(arg, ArrayDiagonal):
296
+ i1 = get_rank(arg) - len(arg.diagonal_indices)
297
+ i2 = len(arg.diagonal_indices)
298
+ inverse_permutation.extend([cumulative_ranks[i] + j for j in range(i1)])
299
+ last_perm.extend([cumulative_ranks[i] + j for j in range(i1, i1 + i2)])
300
+ else:
301
+ inverse_permutation.extend([cumulative_ranks[i] + j for j in range(get_rank(arg))])
302
+ inverse_permutation.extend(last_perm)
303
+ tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayDiagonal) else arg for arg in args])
304
+ ranks2 = [_get_subrank(arg) if isinstance(arg, ArrayDiagonal) else get_rank(arg) for arg in args]
305
+ cumulative_ranks2 = list(accumulate([0] + ranks2))[:-1]
306
+ diagonal_indices = [tuple(cumulative_ranks2[i] + k for k in j) for i, arg in diagonals.items() for j in arg.diagonal_indices]
307
+ return _permute_dims(_array_diagonal(tp, *diagonal_indices), _af_invert(inverse_permutation))
308
+
309
+ return self.func(*args, canonicalize=False)
310
+
311
+ @classmethod
312
+ def _flatten(cls, args):
313
+ args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])]
314
+ return args
315
+
316
+ def as_explicit(self):
317
+ return tensorproduct(*[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
318
+
319
+
320
+ class ArrayAdd(_CodegenArrayAbstract):
321
+ r"""
322
+ Class for elementwise array additions.
323
+ """
324
+
325
+ def __new__(cls, *args, **kwargs):
326
+ args = [_sympify(arg) for arg in args]
327
+ ranks = [get_rank(arg) for arg in args]
328
+ ranks = list(set(ranks))
329
+ if len(ranks) != 1:
330
+ raise ValueError("summing arrays of different ranks")
331
+ shapes = [arg.shape for arg in args]
332
+ if len({i for i in shapes if i is not None}) > 1:
333
+ raise ValueError("mismatching shapes in addition")
334
+
335
+ canonicalize = kwargs.pop("canonicalize", False)
336
+
337
+ obj = Basic.__new__(cls, *args)
338
+ obj._subranks = ranks
339
+ if any(i is None for i in shapes):
340
+ obj._shape = None
341
+ else:
342
+ obj._shape = shapes[0]
343
+ if canonicalize:
344
+ return obj._canonicalize()
345
+ return obj
346
+
347
+ def _canonicalize(self):
348
+ args = self.args
349
+
350
+ # Flatten:
351
+ args = self._flatten_args(args)
352
+
353
+ shapes = [get_shape(arg) for arg in args]
354
+ args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))]
355
+ if len(args) == 0:
356
+ if any(i for i in shapes if i is None):
357
+ raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object")
358
+ return ZeroArray(*shapes[0])
359
+ elif len(args) == 1:
360
+ return args[0]
361
+ return self.func(*args, canonicalize=False)
362
+
363
+ @classmethod
364
+ def _flatten_args(cls, args):
365
+ new_args = []
366
+ for arg in args:
367
+ if isinstance(arg, ArrayAdd):
368
+ new_args.extend(arg.args)
369
+ else:
370
+ new_args.append(arg)
371
+ return new_args
372
+
373
+ def as_explicit(self):
374
+ return reduce(
375
+ operator.add,
376
+ [arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
377
+
378
+
379
+ class PermuteDims(_CodegenArrayAbstract):
380
+ r"""
381
+ Class to represent permutation of axes of arrays.
382
+
383
+ Examples
384
+ ========
385
+
386
+ >>> from sympy.tensor.array import permutedims
387
+ >>> from sympy import MatrixSymbol
388
+ >>> M = MatrixSymbol("M", 3, 3)
389
+ >>> cg = permutedims(M, [1, 0])
390
+
391
+ The object ``cg`` represents the transposition of ``M``, as the permutation
392
+ ``[1, 0]`` will act on its indices by switching them:
393
+
394
+ `M_{ij} \Rightarrow M_{ji}`
395
+
396
+ This is evident when transforming back to matrix form:
397
+
398
+ >>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
399
+ >>> convert_array_to_matrix(cg)
400
+ M.T
401
+
402
+ >>> N = MatrixSymbol("N", 3, 2)
403
+ >>> cg = permutedims(N, [1, 0])
404
+ >>> cg.shape
405
+ (2, 3)
406
+
407
+ There are optional parameters that can be used as alternative to the permutation:
408
+
409
+ >>> from sympy.tensor.array.expressions import ArraySymbol, PermuteDims
410
+ >>> M = ArraySymbol("M", (1, 2, 3, 4, 5))
411
+ >>> expr = PermuteDims(M, index_order_old="ijklm", index_order_new="kijml")
412
+ >>> expr
413
+ PermuteDims(M, (0 2 1)(3 4))
414
+ >>> expr.shape
415
+ (3, 1, 2, 5, 4)
416
+
417
+ Permutations of tensor products are simplified in order to achieve a
418
+ standard form:
419
+
420
+ >>> from sympy.tensor.array import tensorproduct
421
+ >>> M = MatrixSymbol("M", 4, 5)
422
+ >>> tp = tensorproduct(M, N)
423
+ >>> tp.shape
424
+ (4, 5, 3, 2)
425
+ >>> perm1 = permutedims(tp, [2, 3, 1, 0])
426
+
427
+ The args ``(M, N)`` have been sorted and the permutation has been
428
+ simplified, the expression is equivalent:
429
+
430
+ >>> perm1.expr.args
431
+ (N, M)
432
+ >>> perm1.shape
433
+ (3, 2, 5, 4)
434
+ >>> perm1.permutation
435
+ (2 3)
436
+
437
+ The permutation in its array form has been simplified from
438
+ ``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor
439
+ product `M` and `N` have been switched:
440
+
441
+ >>> perm1.permutation.array_form
442
+ [0, 1, 3, 2]
443
+
444
+ We can nest a second permutation:
445
+
446
+ >>> perm2 = permutedims(perm1, [1, 0, 2, 3])
447
+ >>> perm2.shape
448
+ (2, 3, 5, 4)
449
+ >>> perm2.permutation.array_form
450
+ [1, 0, 3, 2]
451
+ """
452
+
453
+ def __new__(cls, expr, permutation=None, index_order_old=None, index_order_new=None, **kwargs):
454
+ from sympy.combinatorics import Permutation
455
+ expr = _sympify(expr)
456
+ expr_rank = get_rank(expr)
457
+ permutation = cls._get_permutation_from_arguments(permutation, index_order_old, index_order_new, expr_rank)
458
+ permutation = Permutation(permutation)
459
+ permutation_size = permutation.size
460
+ if permutation_size != expr_rank:
461
+ raise ValueError("Permutation size must be the length of the shape of expr")
462
+
463
+ canonicalize = kwargs.pop("canonicalize", False)
464
+
465
+ obj = Basic.__new__(cls, expr, permutation)
466
+ obj._subranks = [get_rank(expr)]
467
+ shape = get_shape(expr)
468
+ if shape is None:
469
+ obj._shape = None
470
+ else:
471
+ obj._shape = tuple(shape[permutation(i)] for i in range(len(shape)))
472
+ if canonicalize:
473
+ return obj._canonicalize()
474
+ return obj
475
+
476
+ def _canonicalize(self):
477
+ expr = self.expr
478
+ permutation = self.permutation
479
+ if isinstance(expr, PermuteDims):
480
+ subexpr = expr.expr
481
+ subperm = expr.permutation
482
+ permutation = permutation * subperm
483
+ expr = subexpr
484
+ if isinstance(expr, ArrayContraction):
485
+ expr, permutation = self._PermuteDims_denestarg_ArrayContraction(expr, permutation)
486
+ if isinstance(expr, ArrayTensorProduct):
487
+ expr, permutation = self._PermuteDims_denestarg_ArrayTensorProduct(expr, permutation)
488
+ if isinstance(expr, (ZeroArray, ZeroMatrix)):
489
+ return ZeroArray(*[expr.shape[i] for i in permutation.array_form])
490
+ plist = permutation.array_form
491
+ if plist == sorted(plist):
492
+ return expr
493
+ return self.func(expr, permutation, canonicalize=False)
494
+
495
+ @property
496
+ def expr(self):
497
+ return self.args[0]
498
+
499
+ @property
500
+ def permutation(self):
501
+ return self.args[1]
502
+
503
+ @classmethod
504
+ def _PermuteDims_denestarg_ArrayTensorProduct(cls, expr, permutation):
505
+ # Get the permutation in its image-form:
506
+ perm_image_form = _af_invert(permutation.array_form)
507
+ args = list(expr.args)
508
+ # Starting index global position for every arg:
509
+ cumul = list(accumulate([0] + expr.subranks))
510
+ # Split `perm_image_form` into a list of list corresponding to the indices
511
+ # of every argument:
512
+ perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))]
513
+ # Create an index, target-position-key array:
514
+ ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)]
515
+ # Sort the array according to the target-position-key:
516
+ # In this way, we define a canonical way to sort the arguments according
517
+ # to the permutation.
518
+ ps.sort(key=lambda x: x[1])
519
+ # Read the inverse-permutation (i.e. image-form) of the args:
520
+ perm_args_image_form = [i[0] for i in ps]
521
+ # Apply the args-permutation to the `args`:
522
+ args_sorted = [args[i] for i in perm_args_image_form]
523
+ # Apply the args-permutation to the array-form of the permutation of the axes (of `expr`):
524
+ perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form]
525
+ new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i]))
526
+ return _array_tensor_product(*args_sorted), new_permutation
527
+
528
+ @classmethod
529
+ def _PermuteDims_denestarg_ArrayContraction(cls, expr, permutation):
530
+ if not isinstance(expr, ArrayContraction):
531
+ return expr, permutation
532
+ if not isinstance(expr.expr, ArrayTensorProduct):
533
+ return expr, permutation
534
+ args = expr.expr.args
535
+ subranks = [get_rank(arg) for arg in expr.expr.args]
536
+
537
+ contraction_indices = expr.contraction_indices
538
+ contraction_indices_flat = [j for i in contraction_indices for j in i]
539
+ cumul = list(accumulate([0] + subranks))
540
+
541
+ # Spread the permutation in its array form across the args in the corresponding
542
+ # tensor-product arguments with free indices:
543
+ permutation_array_blocks_up = []
544
+ image_form = _af_invert(permutation.array_form)
545
+ counter = 0
546
+ for i, e in enumerate(subranks):
547
+ current = []
548
+ for j in range(cumul[i], cumul[i+1]):
549
+ if j in contraction_indices_flat:
550
+ continue
551
+ current.append(image_form[counter])
552
+ counter += 1
553
+ permutation_array_blocks_up.append(current)
554
+
555
+ # Get the map of axis repositioning for every argument of tensor-product:
556
+ index_blocks = [list(range(cumul[i], cumul[i+1])) for i, e in enumerate(expr.subranks)]
557
+ index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks)
558
+ inverse_permutation = permutation**(-1)
559
+ index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up]
560
+
561
+ # Sorting key is a list of tuple, first element is the index of `args`, second element of
562
+ # the tuple is the sorting key to sort `args` of the tensor product:
563
+ sorting_keys = list(enumerate(index_blocks_up_permuted))
564
+ sorting_keys.sort(key=lambda x: x[1])
565
+
566
+ # Now we can get the permutation acting on the args in its image-form:
567
+ new_perm_image_form = [i[0] for i in sorting_keys]
568
+ # Apply the args-level permutation to various elements:
569
+ new_index_blocks = [index_blocks[i] for i in new_perm_image_form]
570
+ new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i])
571
+ new_args = [args[i] for i in new_perm_image_form]
572
+ new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices]
573
+ new_expr = _array_contraction(_array_tensor_product(*new_args), *new_contraction_indices)
574
+ new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i]))
575
+ return new_expr, new_permutation
576
+
577
+ @classmethod
578
+ def _check_permutation_mapping(cls, expr, permutation):
579
+ subranks = expr.subranks
580
+ index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])]
581
+ permuted_indices = [permutation(i) for i in range(expr.subrank())]
582
+ new_args = list(expr.args)
583
+ arg_candidate_index = index2arg[permuted_indices[0]]
584
+ current_indices = []
585
+ new_permutation = []
586
+ inserted_arg_cand_indices = set()
587
+ for i, idx in enumerate(permuted_indices):
588
+ if index2arg[idx] != arg_candidate_index:
589
+ new_permutation.extend(current_indices)
590
+ current_indices = []
591
+ arg_candidate_index = index2arg[idx]
592
+ current_indices.append(idx)
593
+ arg_candidate_rank = subranks[arg_candidate_index]
594
+ if len(current_indices) == arg_candidate_rank:
595
+ new_permutation.extend(sorted(current_indices))
596
+ local_current_indices = [j - min(current_indices) for j in current_indices]
597
+ i1 = index2arg[i]
598
+ new_args[i1] = _permute_dims(new_args[i1], Permutation(local_current_indices))
599
+ inserted_arg_cand_indices.add(arg_candidate_index)
600
+ current_indices = []
601
+ new_permutation.extend(current_indices)
602
+
603
+ # TODO: swap args positions in order to simplify the expression:
604
+ # TODO: this should be in a function
605
+ args_positions = list(range(len(new_args)))
606
+ # Get possible shifts:
607
+ maps = {}
608
+ cumulative_subranks = [0] + list(accumulate(subranks))
609
+ for i in range(len(subranks)):
610
+ s = {index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])}
611
+ if len(s) != 1:
612
+ continue
613
+ elem = next(iter(s))
614
+ if i != elem:
615
+ maps[i] = elem
616
+
617
+ # Find cycles in the map:
618
+ lines = []
619
+ current_line = []
620
+ while maps:
621
+ if len(current_line) == 0:
622
+ k, v = maps.popitem()
623
+ current_line.append(k)
624
+ else:
625
+ k = current_line[-1]
626
+ if k not in maps:
627
+ current_line = []
628
+ continue
629
+ v = maps.pop(k)
630
+ if v in current_line:
631
+ lines.append(current_line)
632
+ current_line = []
633
+ continue
634
+ current_line.append(v)
635
+ for line in lines:
636
+ for i, e in enumerate(line):
637
+ args_positions[line[(i + 1) % len(line)]] = e
638
+
639
+ # TODO: function in order to permute the args:
640
+ permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)]
641
+ new_args = [new_args[i] for i in args_positions]
642
+ new_permutation_blocks = [permutation_blocks[i] for i in args_positions]
643
+ new_permutation2 = [j for i in new_permutation_blocks for j in i]
644
+ return _array_tensor_product(*new_args), Permutation(new_permutation2) # **(-1)
645
+
646
+ @classmethod
647
+ def _check_if_there_are_closed_cycles(cls, expr, permutation):
648
+ args = list(expr.args)
649
+ subranks = expr.subranks
650
+ cyclic_form = permutation.cyclic_form
651
+ cumulative_subranks = [0] + list(accumulate(subranks))
652
+ cyclic_min = [min(i) for i in cyclic_form]
653
+ cyclic_max = [max(i) for i in cyclic_form]
654
+ cyclic_keep = []
655
+ for i, cycle in enumerate(cyclic_form):
656
+ flag = True
657
+ for j in range(len(cumulative_subranks) - 1):
658
+ if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]:
659
+ # Found a sinkable cycle.
660
+ args[j] = _permute_dims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]]))
661
+ flag = False
662
+ break
663
+ if flag:
664
+ cyclic_keep.append(cyclic_form[i])
665
+ return _array_tensor_product(*args), Permutation(cyclic_keep, size=permutation.size)
666
+
667
+ def nest_permutation(self):
668
+ r"""
669
+ DEPRECATED.
670
+ """
671
+ ret = self._nest_permutation(self.expr, self.permutation)
672
+ if ret is None:
673
+ return self
674
+ return ret
675
+
676
+ @classmethod
677
+ def _nest_permutation(cls, expr, permutation):
678
+ if isinstance(expr, ArrayTensorProduct):
679
+ return _permute_dims(*cls._check_if_there_are_closed_cycles(expr, permutation))
680
+ elif isinstance(expr, ArrayContraction):
681
+ # Invert tree hierarchy: put the contraction above.
682
+ cycles = permutation.cyclic_form
683
+ newcycles = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles)
684
+ newpermutation = Permutation(newcycles)
685
+ new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices]
686
+ return _array_contraction(PermuteDims(expr.expr, newpermutation), *new_contr_indices)
687
+ elif isinstance(expr, ArrayAdd):
688
+ return _array_add(*[PermuteDims(arg, permutation) for arg in expr.args])
689
+ return None
690
+
691
+ def as_explicit(self):
692
+ expr = self.expr
693
+ if hasattr(expr, "as_explicit"):
694
+ expr = expr.as_explicit()
695
+ return permutedims(expr, self.permutation)
696
+
697
+ @classmethod
698
+ def _get_permutation_from_arguments(cls, permutation, index_order_old, index_order_new, dim):
699
+ if permutation is None:
700
+ if index_order_new is None or index_order_old is None:
701
+ raise ValueError("Permutation not defined")
702
+ return PermuteDims._get_permutation_from_index_orders(index_order_old, index_order_new, dim)
703
+ else:
704
+ if index_order_new is not None:
705
+ raise ValueError("index_order_new cannot be defined with permutation")
706
+ if index_order_old is not None:
707
+ raise ValueError("index_order_old cannot be defined with permutation")
708
+ return permutation
709
+
710
+ @classmethod
711
+ def _get_permutation_from_index_orders(cls, index_order_old, index_order_new, dim):
712
+ if len(set(index_order_new)) != dim:
713
+ raise ValueError("wrong number of indices in index_order_new")
714
+ if len(set(index_order_old)) != dim:
715
+ raise ValueError("wrong number of indices in index_order_old")
716
+ if len(set.symmetric_difference(set(index_order_new), set(index_order_old))) > 0:
717
+ raise ValueError("index_order_new and index_order_old must have the same indices")
718
+ permutation = [index_order_old.index(i) for i in index_order_new]
719
+ return permutation
720
+
721
+
722
+ class ArrayDiagonal(_CodegenArrayAbstract):
723
+ r"""
724
+ Class to represent the diagonal operator.
725
+
726
+ Explanation
727
+ ===========
728
+
729
+ In a 2-dimensional array it returns the diagonal, this looks like the
730
+ operation:
731
+
732
+ `A_{ij} \rightarrow A_{ii}`
733
+
734
+ The diagonal over axes 1 and 2 (the second and third) of the tensor product
735
+ of two 2-dimensional arrays `A \otimes B` is
736
+
737
+ `\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}`
738
+
739
+ In this last example the array expression has been reduced from
740
+ 4-dimensional to 3-dimensional. Notice that no contraction has occurred,
741
+ rather there is a new index `i` for the diagonal, contraction would have
742
+ reduced the array to 2 dimensions.
743
+
744
+ Notice that the diagonalized out dimensions are added as new dimensions at
745
+ the end of the indices.
746
+ """
747
+
748
+ def __new__(cls, expr, *diagonal_indices, **kwargs):
749
+ expr = _sympify(expr)
750
+ diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices]
751
+ canonicalize = kwargs.get("canonicalize", False)
752
+
753
+ shape = get_shape(expr)
754
+ if shape is not None:
755
+ cls._validate(expr, *diagonal_indices, **kwargs)
756
+ # Get new shape:
757
+ positions, shape = cls._get_positions_shape(shape, diagonal_indices)
758
+ else:
759
+ positions = None
760
+ if len(diagonal_indices) == 0:
761
+ return expr
762
+ obj = Basic.__new__(cls, expr, *diagonal_indices)
763
+ obj._positions = positions
764
+ obj._subranks = _get_subranks(expr)
765
+ obj._shape = shape
766
+ if canonicalize:
767
+ return obj._canonicalize()
768
+ return obj
769
+
770
+ def _canonicalize(self):
771
+ expr = self.expr
772
+ diagonal_indices = self.diagonal_indices
773
+ trivial_diags = [i for i in diagonal_indices if len(i) == 1]
774
+ if len(trivial_diags) > 0:
775
+ trivial_pos = {e[0]: i for i, e in enumerate(diagonal_indices) if len(e) == 1}
776
+ diag_pos = {e: i for i, e in enumerate(diagonal_indices) if len(e) > 1}
777
+ diagonal_indices_short = [i for i in diagonal_indices if len(i) > 1]
778
+ rank1 = get_rank(self)
779
+ rank2 = len(diagonal_indices)
780
+ rank3 = rank1 - rank2
781
+ inv_permutation = []
782
+ counter1 = 0
783
+ indices_down = ArrayDiagonal._push_indices_down(diagonal_indices_short, list(range(rank1)), get_rank(expr))
784
+ for i in indices_down:
785
+ if i in trivial_pos:
786
+ inv_permutation.append(rank3 + trivial_pos[i])
787
+ elif isinstance(i, (Integer, int)):
788
+ inv_permutation.append(counter1)
789
+ counter1 += 1
790
+ else:
791
+ inv_permutation.append(rank3 + diag_pos[i])
792
+ permutation = _af_invert(inv_permutation)
793
+ if len(diagonal_indices_short) > 0:
794
+ return _permute_dims(_array_diagonal(expr, *diagonal_indices_short), permutation)
795
+ else:
796
+ return _permute_dims(expr, permutation)
797
+ if isinstance(expr, ArrayAdd):
798
+ return self._ArrayDiagonal_denest_ArrayAdd(expr, *diagonal_indices)
799
+ if isinstance(expr, ArrayDiagonal):
800
+ return self._ArrayDiagonal_denest_ArrayDiagonal(expr, *diagonal_indices)
801
+ if isinstance(expr, PermuteDims):
802
+ return self._ArrayDiagonal_denest_PermuteDims(expr, *diagonal_indices)
803
+ if isinstance(expr, (ZeroArray, ZeroMatrix)):
804
+ positions, shape = self._get_positions_shape(expr.shape, diagonal_indices)
805
+ return ZeroArray(*shape)
806
+ return self.func(expr, *diagonal_indices, canonicalize=False)
807
+
808
+ @staticmethod
809
+ def _validate(expr, *diagonal_indices, **kwargs):
810
+ # Check that no diagonalization happens on indices with mismatched
811
+ # dimensions:
812
+ shape = get_shape(expr)
813
+ for i in diagonal_indices:
814
+ if any(j >= len(shape) for j in i):
815
+ raise ValueError("index is larger than expression shape")
816
+ if len({shape[j] for j in i}) != 1:
817
+ raise ValueError("diagonalizing indices of different dimensions")
818
+ if not kwargs.get("allow_trivial_diags", False) and len(i) <= 1:
819
+ raise ValueError("need at least two axes to diagonalize")
820
+ if len(set(i)) != len(i):
821
+ raise ValueError("axis index cannot be repeated")
822
+
823
+ @staticmethod
824
+ def _remove_trivial_dimensions(shape, *diagonal_indices):
825
+ return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1]
826
+
827
+ @property
828
+ def expr(self):
829
+ return self.args[0]
830
+
831
+ @property
832
+ def diagonal_indices(self):
833
+ return self.args[1:]
834
+
835
+ @staticmethod
836
+ def _flatten(expr, *outer_diagonal_indices):
837
+ inner_diagonal_indices = expr.diagonal_indices
838
+ all_inner = [j for i in inner_diagonal_indices for j in i]
839
+ all_inner.sort()
840
+ # TODO: add API for total rank and cumulative rank:
841
+ total_rank = _get_subrank(expr)
842
+ inner_rank = len(all_inner)
843
+ outer_rank = total_rank - inner_rank
844
+ shifts = [0 for i in range(outer_rank)]
845
+ counter = 0
846
+ pointer = 0
847
+ for i in range(outer_rank):
848
+ while pointer < inner_rank and counter >= all_inner[pointer]:
849
+ counter += 1
850
+ pointer += 1
851
+ shifts[i] += pointer
852
+ counter += 1
853
+ outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices)
854
+ diagonal_indices = inner_diagonal_indices + outer_diagonal_indices
855
+ return _array_diagonal(expr.expr, *diagonal_indices)
856
+
857
+ @classmethod
858
+ def _ArrayDiagonal_denest_ArrayAdd(cls, expr, *diagonal_indices):
859
+ return _array_add(*[_array_diagonal(arg, *diagonal_indices) for arg in expr.args])
860
+
861
+ @classmethod
862
+ def _ArrayDiagonal_denest_ArrayDiagonal(cls, expr, *diagonal_indices):
863
+ return cls._flatten(expr, *diagonal_indices)
864
+
865
+ @classmethod
866
+ def _ArrayDiagonal_denest_PermuteDims(cls, expr: PermuteDims, *diagonal_indices):
867
+ back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices]
868
+ nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)]
869
+ back_nondiag = [expr.permutation(i) for i in nondiag]
870
+ remap = {e: i for i, e in enumerate(sorted(back_nondiag))}
871
+ new_permutation1 = [remap[i] for i in back_nondiag]
872
+ shift = len(new_permutation1)
873
+ diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))]
874
+ new_permutation = new_permutation1 + diag_block_perm
875
+ return _permute_dims(
876
+ _array_diagonal(
877
+ expr.expr,
878
+ *back_diagonal_indices
879
+ ),
880
+ new_permutation
881
+ )
882
+
883
+ def _push_indices_down_nonstatic(self, indices):
884
+ transform = lambda x: self._positions[x] if x < len(self._positions) else None
885
+ return _apply_recursively_over_nested_lists(transform, indices)
886
+
887
+ def _push_indices_up_nonstatic(self, indices):
888
+
889
+ def transform(x):
890
+ for i, e in enumerate(self._positions):
891
+ if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e):
892
+ return i
893
+
894
+ return _apply_recursively_over_nested_lists(transform, indices)
895
+
896
+ @classmethod
897
+ def _push_indices_down(cls, diagonal_indices, indices, rank):
898
+ positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
899
+ transform = lambda x: positions[x] if x < len(positions) else None
900
+ return _apply_recursively_over_nested_lists(transform, indices)
901
+
902
+ @classmethod
903
+ def _push_indices_up(cls, diagonal_indices, indices, rank):
904
+ positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
905
+
906
+ def transform(x):
907
+ for i, e in enumerate(positions):
908
+ if (isinstance(e, int) and x == e) or (isinstance(e, (tuple, Tuple)) and (x in e)):
909
+ return i
910
+
911
+ return _apply_recursively_over_nested_lists(transform, indices)
912
+
913
+ @classmethod
914
+ def _get_positions_shape(cls, shape, diagonal_indices):
915
+ data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices))
916
+ pos1, shp1 = zip(*data1) if data1 else ((), ())
917
+ data2 = tuple((i, shape[i[0]]) for i in diagonal_indices)
918
+ pos2, shp2 = zip(*data2) if data2 else ((), ())
919
+ positions = pos1 + pos2
920
+ shape = shp1 + shp2
921
+ return positions, shape
922
+
923
+ def as_explicit(self):
924
+ expr = self.expr
925
+ if hasattr(expr, "as_explicit"):
926
+ expr = expr.as_explicit()
927
+ return tensordiagonal(expr, *self.diagonal_indices)
928
+
929
+
930
+ class ArrayElementwiseApplyFunc(_CodegenArrayAbstract):
931
+
932
+ def __new__(cls, function, element):
933
+
934
+ if not isinstance(function, Lambda):
935
+ d = Dummy('d')
936
+ function = Lambda(d, function(d))
937
+
938
+ obj = _CodegenArrayAbstract.__new__(cls, function, element)
939
+ obj._subranks = _get_subranks(element)
940
+ return obj
941
+
942
+ @property
943
+ def function(self):
944
+ return self.args[0]
945
+
946
+ @property
947
+ def expr(self):
948
+ return self.args[1]
949
+
950
+ @property
951
+ def shape(self):
952
+ return self.expr.shape
953
+
954
+ def _get_function_fdiff(self):
955
+ d = Dummy("d")
956
+ function = self.function(d)
957
+ fdiff = function.diff(d)
958
+ if isinstance(fdiff, Function):
959
+ fdiff = type(fdiff)
960
+ else:
961
+ fdiff = Lambda(d, fdiff)
962
+ return fdiff
963
+
964
+ def as_explicit(self):
965
+ expr = self.expr
966
+ if hasattr(expr, "as_explicit"):
967
+ expr = expr.as_explicit()
968
+ return expr.applyfunc(self.function)
969
+
970
+
971
+ class ArrayContraction(_CodegenArrayAbstract):
972
+ r"""
973
+ This class is meant to represent contractions of arrays in a form easily
974
+ processable by the code printers.
975
+ """
976
+
977
+ def __new__(cls, expr, *contraction_indices, **kwargs):
978
+ contraction_indices = _sort_contraction_indices(contraction_indices)
979
+ expr = _sympify(expr)
980
+
981
+ canonicalize = kwargs.get("canonicalize", False)
982
+
983
+ obj = Basic.__new__(cls, expr, *contraction_indices)
984
+ obj._subranks = _get_subranks(expr)
985
+ obj._mapping = _get_mapping_from_subranks(obj._subranks)
986
+
987
+ free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all(i not in cind for cind in contraction_indices)}
988
+ obj._free_indices_to_position = free_indices_to_position
989
+
990
+ shape = get_shape(expr)
991
+ cls._validate(expr, *contraction_indices)
992
+ if shape:
993
+ shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices))
994
+ obj._shape = shape
995
+ if canonicalize:
996
+ return obj._canonicalize()
997
+ return obj
998
+
999
+ def _canonicalize(self):
1000
+ expr = self.expr
1001
+ contraction_indices = self.contraction_indices
1002
+
1003
+ if len(contraction_indices) == 0:
1004
+ return expr
1005
+
1006
+ if isinstance(expr, ArrayContraction):
1007
+ return self._ArrayContraction_denest_ArrayContraction(expr, *contraction_indices)
1008
+
1009
+ if isinstance(expr, (ZeroArray, ZeroMatrix)):
1010
+ return self._ArrayContraction_denest_ZeroArray(expr, *contraction_indices)
1011
+
1012
+ if isinstance(expr, PermuteDims):
1013
+ return self._ArrayContraction_denest_PermuteDims(expr, *contraction_indices)
1014
+
1015
+ if isinstance(expr, ArrayTensorProduct):
1016
+ expr, contraction_indices = self._sort_fully_contracted_args(expr, contraction_indices)
1017
+ expr, contraction_indices = self._lower_contraction_to_addends(expr, contraction_indices)
1018
+ if len(contraction_indices) == 0:
1019
+ return expr
1020
+
1021
+ if isinstance(expr, ArrayDiagonal):
1022
+ return self._ArrayContraction_denest_ArrayDiagonal(expr, *contraction_indices)
1023
+
1024
+ if isinstance(expr, ArrayAdd):
1025
+ return self._ArrayContraction_denest_ArrayAdd(expr, *contraction_indices)
1026
+
1027
+ # Check single index contractions on 1-dimensional axes:
1028
+ contraction_indices = [i for i in contraction_indices if len(i) > 1 or get_shape(expr)[i[0]] != 1]
1029
+ if len(contraction_indices) == 0:
1030
+ return expr
1031
+
1032
+ return self.func(expr, *contraction_indices, canonicalize=False)
1033
+
1034
+ def __mul__(self, other):
1035
+ if other == 1:
1036
+ return self
1037
+ else:
1038
+ raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
1039
+
1040
+ def __rmul__(self, other):
1041
+ if other == 1:
1042
+ return self
1043
+ else:
1044
+ raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
1045
+
1046
+ @staticmethod
1047
+ def _validate(expr, *contraction_indices):
1048
+ shape = get_shape(expr)
1049
+ if shape is None:
1050
+ return
1051
+
1052
+ # Check that no contraction happens when the shape is mismatched:
1053
+ for i in contraction_indices:
1054
+ if len({shape[j] for j in i if shape[j] != -1}) != 1:
1055
+ raise ValueError("contracting indices of different dimensions")
1056
+
1057
+ @classmethod
1058
+ def _push_indices_down(cls, contraction_indices, indices):
1059
+ flattened_contraction_indices = [j for i in contraction_indices for j in i]
1060
+ flattened_contraction_indices.sort()
1061
+ transform = _build_push_indices_down_func_transformation(flattened_contraction_indices)
1062
+ return _apply_recursively_over_nested_lists(transform, indices)
1063
+
1064
+ @classmethod
1065
+ def _push_indices_up(cls, contraction_indices, indices):
1066
+ flattened_contraction_indices = [j for i in contraction_indices for j in i]
1067
+ flattened_contraction_indices.sort()
1068
+ transform = _build_push_indices_up_func_transformation(flattened_contraction_indices)
1069
+ return _apply_recursively_over_nested_lists(transform, indices)
1070
+
1071
+ @classmethod
1072
+ def _lower_contraction_to_addends(cls, expr, contraction_indices):
1073
+ if isinstance(expr, ArrayAdd):
1074
+ raise NotImplementedError()
1075
+ if not isinstance(expr, ArrayTensorProduct):
1076
+ return expr, contraction_indices
1077
+ subranks = expr.subranks
1078
+ cumranks = list(accumulate([0] + subranks))
1079
+ contraction_indices_remaining = []
1080
+ contraction_indices_args = [[] for i in expr.args]
1081
+ backshift = set()
1082
+ for i, contraction_group in enumerate(contraction_indices):
1083
+ for j in range(len(expr.args)):
1084
+ if not isinstance(expr.args[j], ArrayAdd):
1085
+ continue
1086
+ if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group):
1087
+ contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group])
1088
+ backshift.update(contraction_group)
1089
+ break
1090
+ else:
1091
+ contraction_indices_remaining.append(contraction_group)
1092
+ if len(contraction_indices_remaining) == len(contraction_indices):
1093
+ return expr, contraction_indices
1094
+ total_rank = get_rank(expr)
1095
+ shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)]))
1096
+ contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining]
1097
+ ret = _array_tensor_product(*[
1098
+ _array_contraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args)
1099
+ ])
1100
+ return ret, contraction_indices_remaining
1101
+
1102
+ def split_multiple_contractions(self):
1103
+ """
1104
+ Recognize multiple contractions and attempt at rewriting them as paired-contractions.
1105
+
1106
+ This allows some contractions involving more than two indices to be
1107
+ rewritten as multiple contractions involving two indices, thus allowing
1108
+ the expression to be rewritten as a matrix multiplication line.
1109
+
1110
+ Examples:
1111
+
1112
+ * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C`
1113
+
1114
+ Care for:
1115
+ - matrix being diagonalized (i.e. `A_ii`)
1116
+ - vectors being diagonalized (i.e. `a_i0`)
1117
+
1118
+ Multiple contractions can be split into matrix multiplications if
1119
+ not more than two arguments are non-diagonals or non-vectors.
1120
+ Vectors get diagonalized while diagonal matrices remain diagonal.
1121
+ The non-diagonal matrices can be at the beginning or at the end
1122
+ of the final matrix multiplication line.
1123
+ """
1124
+
1125
+ editor = _EditArrayContraction(self)
1126
+
1127
+ contraction_indices = self.contraction_indices
1128
+
1129
+ onearray_insert = []
1130
+
1131
+ for indl, links in enumerate(contraction_indices):
1132
+ if len(links) <= 2:
1133
+ continue
1134
+
1135
+ # Check multiple contractions:
1136
+ #
1137
+ # Examples:
1138
+ #
1139
+ # * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C \otimes OneArray(1)` with permutation (1 2)
1140
+ #
1141
+ # Care for:
1142
+ # - matrix being diagonalized (i.e. `A_ii`)
1143
+ # - vectors being diagonalized (i.e. `a_i0`)
1144
+
1145
+ # Multiple contractions can be split into matrix multiplications if
1146
+ # not more than three arguments are non-diagonals or non-vectors.
1147
+ #
1148
+ # Vectors get diagonalized while diagonal matrices remain diagonal.
1149
+ # The non-diagonal matrices can be at the beginning or at the end
1150
+ # of the final matrix multiplication line.
1151
+
1152
+ positions = editor.get_mapping_for_index(indl)
1153
+
1154
+ # Also consider the case of diagonal matrices being contracted:
1155
+ current_dimension = self.expr.shape[links[0]]
1156
+
1157
+ not_vectors = []
1158
+ vectors = []
1159
+ for arg_ind, rel_ind in positions:
1160
+ arg = editor.args_with_ind[arg_ind]
1161
+ mat = arg.element
1162
+ abs_arg_start, abs_arg_end = editor.get_absolute_range(arg)
1163
+ other_arg_pos = 1-rel_ind
1164
+ other_arg_abs = abs_arg_start + other_arg_pos
1165
+ if ((1 not in mat.shape) or
1166
+ ((current_dimension == 1) is True and mat.shape != (1, 1)) or
1167
+ any(other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl)
1168
+ ):
1169
+ not_vectors.append((arg, rel_ind))
1170
+ else:
1171
+ vectors.append((arg, rel_ind))
1172
+ if len(not_vectors) > 2:
1173
+ # If more than two arguments in the multiple contraction are
1174
+ # non-vectors and non-diagonal matrices, we cannot find a way
1175
+ # to split this contraction into a matrix multiplication line:
1176
+ continue
1177
+ # Three cases to handle:
1178
+ # - zero non-vectors
1179
+ # - one non-vector
1180
+ # - two non-vectors
1181
+ for v, rel_ind in vectors:
1182
+ v.element = diagonalize_vector(v.element)
1183
+ vectors_to_loop = not_vectors[:1] + vectors + not_vectors[1:]
1184
+ first_not_vector, rel_ind = vectors_to_loop[0]
1185
+ new_index = first_not_vector.indices[rel_ind]
1186
+
1187
+ for v, rel_ind in vectors_to_loop[1:-1]:
1188
+ v.indices[rel_ind] = new_index
1189
+ new_index = editor.get_new_contraction_index()
1190
+ assert v.indices.index(None) == 1 - rel_ind
1191
+ v.indices[v.indices.index(None)] = new_index
1192
+ onearray_insert.append(v)
1193
+
1194
+ last_vec, rel_ind = vectors_to_loop[-1]
1195
+ last_vec.indices[rel_ind] = new_index
1196
+
1197
+ for v in onearray_insert:
1198
+ editor.insert_after(v, _ArgE(OneArray(1), [None]))
1199
+
1200
+ return editor.to_array_contraction()
1201
+
1202
+ def flatten_contraction_of_diagonal(self):
1203
+ if not isinstance(self.expr, ArrayDiagonal):
1204
+ return self
1205
+ contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices)
1206
+ new_contraction_indices = []
1207
+ diagonal_indices = self.expr.diagonal_indices[:]
1208
+ for i in contraction_down:
1209
+ contraction_group = list(i)
1210
+ for j in i:
1211
+ diagonal_with = [k for k in diagonal_indices if j in k]
1212
+ contraction_group.extend([l for k in diagonal_with for l in k])
1213
+ diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with]
1214
+ new_contraction_indices.append(sorted(set(contraction_group)))
1215
+
1216
+ new_contraction_indices = ArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices)
1217
+ return _array_contraction(
1218
+ _array_diagonal(
1219
+ self.expr.expr,
1220
+ *diagonal_indices
1221
+ ),
1222
+ *new_contraction_indices
1223
+ )
1224
+
1225
+ @staticmethod
1226
+ def _get_free_indices_to_position_map(free_indices, contraction_indices):
1227
+ free_indices_to_position = {}
1228
+ flattened_contraction_indices = [j for i in contraction_indices for j in i]
1229
+ counter = 0
1230
+ for ind in free_indices:
1231
+ while counter in flattened_contraction_indices:
1232
+ counter += 1
1233
+ free_indices_to_position[ind] = counter
1234
+ counter += 1
1235
+ return free_indices_to_position
1236
+
1237
+ @staticmethod
1238
+ def _get_index_shifts(expr):
1239
+ """
1240
+ Get the mapping of indices at the positions before the contraction
1241
+ occurs.
1242
+
1243
+ Examples
1244
+ ========
1245
+
1246
+ >>> from sympy.tensor.array import tensorproduct, tensorcontraction
1247
+ >>> from sympy import MatrixSymbol
1248
+ >>> M = MatrixSymbol("M", 3, 3)
1249
+ >>> N = MatrixSymbol("N", 3, 3)
1250
+ >>> cg = tensorcontraction(tensorproduct(M, N), [1, 2])
1251
+ >>> cg._get_index_shifts(cg)
1252
+ [0, 2]
1253
+
1254
+ Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They
1255
+ need to be shifted by 0 and 2 to get the corresponding positions before
1256
+ the contraction (that is, 0 and 3).
1257
+ """
1258
+ inner_contraction_indices = expr.contraction_indices
1259
+ all_inner = [j for i in inner_contraction_indices for j in i]
1260
+ all_inner.sort()
1261
+ # TODO: add API for total rank and cumulative rank:
1262
+ total_rank = _get_subrank(expr)
1263
+ inner_rank = len(all_inner)
1264
+ outer_rank = total_rank - inner_rank
1265
+ shifts = [0 for i in range(outer_rank)]
1266
+ counter = 0
1267
+ pointer = 0
1268
+ for i in range(outer_rank):
1269
+ while pointer < inner_rank and counter >= all_inner[pointer]:
1270
+ counter += 1
1271
+ pointer += 1
1272
+ shifts[i] += pointer
1273
+ counter += 1
1274
+ return shifts
1275
+
1276
+ @staticmethod
1277
+ def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices):
1278
+ shifts = ArrayContraction._get_index_shifts(expr)
1279
+ outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices)
1280
+ return outer_contraction_indices
1281
+
1282
+ @staticmethod
1283
+ def _flatten(expr, *outer_contraction_indices):
1284
+ inner_contraction_indices = expr.contraction_indices
1285
+ outer_contraction_indices = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices)
1286
+ contraction_indices = inner_contraction_indices + outer_contraction_indices
1287
+ return _array_contraction(expr.expr, *contraction_indices)
1288
+
1289
+ @classmethod
1290
+ def _ArrayContraction_denest_ArrayContraction(cls, expr, *contraction_indices):
1291
+ return cls._flatten(expr, *contraction_indices)
1292
+
1293
+ @classmethod
1294
+ def _ArrayContraction_denest_ZeroArray(cls, expr, *contraction_indices):
1295
+ contraction_indices_flat = [j for i in contraction_indices for j in i]
1296
+ shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat]
1297
+ return ZeroArray(*shape)
1298
+
1299
+ @classmethod
1300
+ def _ArrayContraction_denest_ArrayAdd(cls, expr, *contraction_indices):
1301
+ return _array_add(*[_array_contraction(i, *contraction_indices) for i in expr.args])
1302
+
1303
+ @classmethod
1304
+ def _ArrayContraction_denest_PermuteDims(cls, expr, *contraction_indices):
1305
+ permutation = expr.permutation
1306
+ plist = permutation.array_form
1307
+ new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices]
1308
+ new_plist = [i for i in plist if not any(i in j for j in new_contraction_indices)]
1309
+ new_plist = cls._push_indices_up(new_contraction_indices, new_plist)
1310
+ return _permute_dims(
1311
+ _array_contraction(expr.expr, *new_contraction_indices),
1312
+ Permutation(new_plist)
1313
+ )
1314
+
1315
+ @classmethod
1316
+ def _ArrayContraction_denest_ArrayDiagonal(cls, expr: 'ArrayDiagonal', *contraction_indices):
1317
+ diagonal_indices = list(expr.diagonal_indices)
1318
+ down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr))
1319
+ # Flatten diagonally contracted indices:
1320
+ down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices]
1321
+ new_contraction_indices = []
1322
+ for contr_indgrp in down_contraction_indices:
1323
+ ind = contr_indgrp[:]
1324
+ for j, diag_indgrp in enumerate(diagonal_indices):
1325
+ if diag_indgrp is None:
1326
+ continue
1327
+ if any(i in diag_indgrp for i in contr_indgrp):
1328
+ ind.extend(diag_indgrp)
1329
+ diagonal_indices[j] = None
1330
+ new_contraction_indices.append(sorted(set(ind)))
1331
+
1332
+ new_diagonal_indices_down = [i for i in diagonal_indices if i is not None]
1333
+ new_diagonal_indices = ArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down)
1334
+ return _array_diagonal(
1335
+ _array_contraction(expr.expr, *new_contraction_indices),
1336
+ *new_diagonal_indices
1337
+ )
1338
+
1339
+ @classmethod
1340
+ def _sort_fully_contracted_args(cls, expr, contraction_indices):
1341
+ if expr.shape is None:
1342
+ return expr, contraction_indices
1343
+ cumul = list(accumulate([0] + expr.subranks))
1344
+ index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))]
1345
+ contraction_indices_flat = {j for i in contraction_indices for j in i}
1346
+ fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)]
1347
+ new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,))
1348
+ new_args = [expr.args[i] for i in new_pos]
1349
+ new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]]
1350
+ index_permutation_array_form = _af_invert(new_index_blocks_flat)
1351
+ new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices]
1352
+ new_contraction_indices = _sort_contraction_indices(new_contraction_indices)
1353
+ return _array_tensor_product(*new_args), new_contraction_indices
1354
+
1355
+ def _get_contraction_tuples(self):
1356
+ r"""
1357
+ Return tuples containing the argument index and position within the
1358
+ argument of the index position.
1359
+
1360
+ Examples
1361
+ ========
1362
+
1363
+ >>> from sympy import MatrixSymbol
1364
+ >>> from sympy.abc import N
1365
+ >>> from sympy.tensor.array import tensorproduct, tensorcontraction
1366
+ >>> A = MatrixSymbol("A", N, N)
1367
+ >>> B = MatrixSymbol("B", N, N)
1368
+
1369
+ >>> cg = tensorcontraction(tensorproduct(A, B), (1, 2))
1370
+ >>> cg._get_contraction_tuples()
1371
+ [[(0, 1), (1, 0)]]
1372
+
1373
+ Notes
1374
+ =====
1375
+
1376
+ Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices
1377
+ of the tensor product `A\otimes B` are contracted, has been transformed
1378
+ into `(0, 1)` and `(1, 0)`, identifying the same indices in a different
1379
+ notation. `(0, 1)` is the second index (1) of the first argument (i.e.
1380
+ 0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second
1381
+ argument (i.e. 1 or `B`).
1382
+ """
1383
+ mapping = self._mapping
1384
+ return [[mapping[j] for j in i] for i in self.contraction_indices]
1385
+
1386
+ @staticmethod
1387
+ def _contraction_tuples_to_contraction_indices(expr, contraction_tuples):
1388
+ # TODO: check that `expr` has `.subranks`:
1389
+ ranks = expr.subranks
1390
+ cumulative_ranks = [0] + list(accumulate(ranks))
1391
+ return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples]
1392
+
1393
+ @property
1394
+ def free_indices(self):
1395
+ return self._free_indices[:]
1396
+
1397
+ @property
1398
+ def free_indices_to_position(self):
1399
+ return dict(self._free_indices_to_position)
1400
+
1401
+ @property
1402
+ def expr(self):
1403
+ return self.args[0]
1404
+
1405
+ @property
1406
+ def contraction_indices(self):
1407
+ return self.args[1:]
1408
+
1409
+ def _contraction_indices_to_components(self):
1410
+ expr = self.expr
1411
+ if not isinstance(expr, ArrayTensorProduct):
1412
+ raise NotImplementedError("only for contractions of tensor products")
1413
+ ranks = expr.subranks
1414
+ mapping = {}
1415
+ counter = 0
1416
+ for i, rank in enumerate(ranks):
1417
+ for j in range(rank):
1418
+ mapping[counter] = (i, j)
1419
+ counter += 1
1420
+ return mapping
1421
+
1422
+ def sort_args_by_name(self):
1423
+ """
1424
+ Sort arguments in the tensor product so that their order is lexicographical.
1425
+
1426
+ Examples
1427
+ ========
1428
+
1429
+ >>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
1430
+ >>> from sympy import MatrixSymbol
1431
+ >>> from sympy.abc import N
1432
+ >>> A = MatrixSymbol("A", N, N)
1433
+ >>> B = MatrixSymbol("B", N, N)
1434
+ >>> C = MatrixSymbol("C", N, N)
1435
+ >>> D = MatrixSymbol("D", N, N)
1436
+
1437
+ >>> cg = convert_matrix_to_array(C*D*A*B)
1438
+ >>> cg
1439
+ ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5))
1440
+ >>> cg.sort_args_by_name()
1441
+ ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7))
1442
+ """
1443
+ expr = self.expr
1444
+ if not isinstance(expr, ArrayTensorProduct):
1445
+ return self
1446
+ args = expr.args
1447
+ sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1]))
1448
+ pos_sorted, args_sorted = zip(*sorted_data)
1449
+ reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)}
1450
+ contraction_tuples = self._get_contraction_tuples()
1451
+ contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples]
1452
+ c_tp = _array_tensor_product(*args_sorted)
1453
+ new_contr_indices = self._contraction_tuples_to_contraction_indices(
1454
+ c_tp,
1455
+ contraction_tuples
1456
+ )
1457
+ return _array_contraction(c_tp, *new_contr_indices)
1458
+
1459
+ def _get_contraction_links(self):
1460
+ r"""
1461
+ Returns a dictionary of links between arguments in the tensor product
1462
+ being contracted.
1463
+
1464
+ See the example for an explanation of the values.
1465
+
1466
+ Examples
1467
+ ========
1468
+
1469
+ >>> from sympy import MatrixSymbol
1470
+ >>> from sympy.abc import N
1471
+ >>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
1472
+ >>> A = MatrixSymbol("A", N, N)
1473
+ >>> B = MatrixSymbol("B", N, N)
1474
+ >>> C = MatrixSymbol("C", N, N)
1475
+ >>> D = MatrixSymbol("D", N, N)
1476
+
1477
+ Matrix multiplications are pairwise contractions between neighboring
1478
+ matrices:
1479
+
1480
+ `A_{ij} B_{jk} C_{kl} D_{lm}`
1481
+
1482
+ >>> cg = convert_matrix_to_array(A*B*C*D)
1483
+ >>> cg
1484
+ ArrayContraction(ArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6))
1485
+
1486
+ >>> cg._get_contraction_links()
1487
+ {0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}}
1488
+
1489
+ This dictionary is interpreted as follows: argument in position 0 (i.e.
1490
+ matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that
1491
+ is argument in position 1 (matrix `B`) on the first index slot of `B`,
1492
+ this is the contraction provided by the index `j` from `A`.
1493
+
1494
+ The argument in position 1 (that is, matrix `B`) has two contractions,
1495
+ the ones provided by the indices `j` and `k`, respectively the first
1496
+ and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and
1497
+ `(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of
1498
+ argument in position 0 (that is, `A_{\ldot j}`), and so on.
1499
+ """
1500
+ args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices)
1501
+ return dlinks
1502
+
1503
+ def as_explicit(self):
1504
+ expr = self.expr
1505
+ if hasattr(expr, "as_explicit"):
1506
+ expr = expr.as_explicit()
1507
+ return tensorcontraction(expr, *self.contraction_indices)
1508
+
1509
+
1510
+ class Reshape(_CodegenArrayAbstract):
1511
+ """
1512
+ Reshape the dimensions of an array expression.
1513
+
1514
+ Examples
1515
+ ========
1516
+
1517
+ >>> from sympy.tensor.array.expressions import ArraySymbol, Reshape
1518
+ >>> A = ArraySymbol("A", (6,))
1519
+ >>> A.shape
1520
+ (6,)
1521
+ >>> Reshape(A, (3, 2)).shape
1522
+ (3, 2)
1523
+
1524
+ Check the component-explicit forms:
1525
+
1526
+ >>> A.as_explicit()
1527
+ [A[0], A[1], A[2], A[3], A[4], A[5]]
1528
+ >>> Reshape(A, (3, 2)).as_explicit()
1529
+ [[A[0], A[1]], [A[2], A[3]], [A[4], A[5]]]
1530
+
1531
+ """
1532
+
1533
+ def __new__(cls, expr, shape):
1534
+ expr = _sympify(expr)
1535
+ if not isinstance(shape, Tuple):
1536
+ shape = Tuple(*shape)
1537
+ if Equality(Mul.fromiter(expr.shape), Mul.fromiter(shape)) == False:
1538
+ raise ValueError("shape mismatch")
1539
+ obj = Expr.__new__(cls, expr, shape)
1540
+ obj._shape = tuple(shape)
1541
+ obj._expr = expr
1542
+ return obj
1543
+
1544
+ @property
1545
+ def shape(self):
1546
+ return self._shape
1547
+
1548
+ @property
1549
+ def expr(self):
1550
+ return self._expr
1551
+
1552
+ def doit(self, *args, **kwargs):
1553
+ if kwargs.get("deep", True):
1554
+ expr = self.expr.doit(*args, **kwargs)
1555
+ else:
1556
+ expr = self.expr
1557
+ if isinstance(expr, (MatrixCommon, NDimArray)):
1558
+ return expr.reshape(*self.shape)
1559
+ return Reshape(expr, self.shape)
1560
+
1561
+ def as_explicit(self):
1562
+ ee = self.expr
1563
+ if hasattr(ee, "as_explicit"):
1564
+ ee = ee.as_explicit()
1565
+ if isinstance(ee, MatrixCommon):
1566
+ from sympy import Array
1567
+ ee = Array(ee)
1568
+ elif isinstance(ee, MatrixExpr):
1569
+ return self
1570
+ return ee.reshape(*self.shape)
1571
+
1572
+
1573
+ class _ArgE:
1574
+ """
1575
+ The ``_ArgE`` object contains references to the array expression
1576
+ (``.element``) and a list containing the information about index
1577
+ contractions (``.indices``).
1578
+
1579
+ Index contractions are numbered and contracted indices show the number of
1580
+ the contraction. Uncontracted indices have ``None`` value.
1581
+
1582
+ For example:
1583
+ ``_ArgE(M, [None, 3])``
1584
+ This object means that expression ``M`` is part of an array contraction
1585
+ and has two indices, the first is not contracted (value ``None``),
1586
+ the second index is contracted to the 4th (i.e. number ``3``) group of the
1587
+ array contraction object.
1588
+ """
1589
+ indices: List[Optional[int]]
1590
+
1591
+ def __init__(self, element, indices: Optional[List[Optional[int]]] = None):
1592
+ self.element = element
1593
+ if indices is None:
1594
+ self.indices = [None for i in range(get_rank(element))]
1595
+ else:
1596
+ self.indices = indices
1597
+
1598
+ def __str__(self):
1599
+ return "_ArgE(%s, %s)" % (self.element, self.indices)
1600
+
1601
+ __repr__ = __str__
1602
+
1603
+
1604
+ class _IndPos:
1605
+ """
1606
+ Index position, requiring two integers in the constructor:
1607
+
1608
+ - arg: the position of the argument in the tensor product,
1609
+ - rel: the relative position of the index inside the argument.
1610
+ """
1611
+ def __init__(self, arg: int, rel: int):
1612
+ self.arg = arg
1613
+ self.rel = rel
1614
+
1615
+ def __str__(self):
1616
+ return "_IndPos(%i, %i)" % (self.arg, self.rel)
1617
+
1618
+ __repr__ = __str__
1619
+
1620
+ def __iter__(self):
1621
+ yield from [self.arg, self.rel]
1622
+
1623
+
1624
+ class _EditArrayContraction:
1625
+ """
1626
+ Utility class to help manipulate array contraction objects.
1627
+
1628
+ This class takes as input an ``ArrayContraction`` object and turns it into
1629
+ an editable object.
1630
+
1631
+ The field ``args_with_ind`` of this class is a list of ``_ArgE`` objects
1632
+ which can be used to easily edit the contraction structure of the
1633
+ expression.
1634
+
1635
+ Once editing is finished, the ``ArrayContraction`` object may be recreated
1636
+ by calling the ``.to_array_contraction()`` method.
1637
+ """
1638
+
1639
+ def __init__(self, base_array: typing.Union[ArrayContraction, ArrayDiagonal, ArrayTensorProduct]):
1640
+
1641
+ expr: Basic
1642
+ diagonalized: tTuple[tTuple[int, ...], ...]
1643
+ contraction_indices: List[tTuple[int]]
1644
+ if isinstance(base_array, ArrayContraction):
1645
+ mapping = _get_mapping_from_subranks(base_array.subranks)
1646
+ expr = base_array.expr
1647
+ contraction_indices = base_array.contraction_indices
1648
+ diagonalized = ()
1649
+ elif isinstance(base_array, ArrayDiagonal):
1650
+
1651
+ if isinstance(base_array.expr, ArrayContraction):
1652
+ mapping = _get_mapping_from_subranks(base_array.expr.subranks)
1653
+ expr = base_array.expr.expr
1654
+ diagonalized = ArrayContraction._push_indices_down(base_array.expr.contraction_indices, base_array.diagonal_indices)
1655
+ contraction_indices = base_array.expr.contraction_indices
1656
+ elif isinstance(base_array.expr, ArrayTensorProduct):
1657
+ mapping = {}
1658
+ expr = base_array.expr
1659
+ diagonalized = base_array.diagonal_indices
1660
+ contraction_indices = []
1661
+ else:
1662
+ mapping = {}
1663
+ expr = base_array.expr
1664
+ diagonalized = base_array.diagonal_indices
1665
+ contraction_indices = []
1666
+
1667
+ elif isinstance(base_array, ArrayTensorProduct):
1668
+ expr = base_array
1669
+ contraction_indices = []
1670
+ diagonalized = ()
1671
+ else:
1672
+ raise NotImplementedError()
1673
+
1674
+ if isinstance(expr, ArrayTensorProduct):
1675
+ args = list(expr.args)
1676
+ else:
1677
+ args = [expr]
1678
+
1679
+ args_with_ind: List[_ArgE] = [_ArgE(arg) for arg in args]
1680
+ for i, contraction_tuple in enumerate(contraction_indices):
1681
+ for j in contraction_tuple:
1682
+ arg_pos, rel_pos = mapping[j]
1683
+ args_with_ind[arg_pos].indices[rel_pos] = i
1684
+ self.args_with_ind: List[_ArgE] = args_with_ind
1685
+ self.number_of_contraction_indices: int = len(contraction_indices)
1686
+ self._track_permutation: Optional[List[List[int]]] = None
1687
+
1688
+ mapping = _get_mapping_from_subranks(base_array.subranks)
1689
+
1690
+ # Trick: add diagonalized indices as negative indices into the editor object:
1691
+ for i, e in enumerate(diagonalized):
1692
+ for j in e:
1693
+ arg_pos, rel_pos = mapping[j]
1694
+ self.args_with_ind[arg_pos].indices[rel_pos] = -1 - i
1695
+
1696
+ def insert_after(self, arg: _ArgE, new_arg: _ArgE):
1697
+ pos = self.args_with_ind.index(arg)
1698
+ self.args_with_ind.insert(pos + 1, new_arg)
1699
+
1700
+ def get_new_contraction_index(self):
1701
+ self.number_of_contraction_indices += 1
1702
+ return self.number_of_contraction_indices - 1
1703
+
1704
+ def refresh_indices(self):
1705
+ updates = {}
1706
+ for arg_with_ind in self.args_with_ind:
1707
+ updates.update({i: -1 for i in arg_with_ind.indices if i is not None})
1708
+ for i, e in enumerate(sorted(updates)):
1709
+ updates[e] = i
1710
+ self.number_of_contraction_indices = len(updates)
1711
+ for arg_with_ind in self.args_with_ind:
1712
+ arg_with_ind.indices = [updates.get(i, None) for i in arg_with_ind.indices]
1713
+
1714
+ def merge_scalars(self):
1715
+ scalars = []
1716
+ for arg_with_ind in self.args_with_ind:
1717
+ if len(arg_with_ind.indices) == 0:
1718
+ scalars.append(arg_with_ind)
1719
+ for i in scalars:
1720
+ self.args_with_ind.remove(i)
1721
+ scalar = Mul.fromiter([i.element for i in scalars])
1722
+ if len(self.args_with_ind) == 0:
1723
+ self.args_with_ind.append(_ArgE(scalar))
1724
+ else:
1725
+ from sympy.tensor.array.expressions.from_array_to_matrix import _a2m_tensor_product
1726
+ self.args_with_ind[0].element = _a2m_tensor_product(scalar, self.args_with_ind[0].element)
1727
+
1728
+ def to_array_contraction(self):
1729
+
1730
+ # Count the ranks of the arguments:
1731
+ counter = 0
1732
+ # Create a collector for the new diagonal indices:
1733
+ diag_indices = defaultdict(list)
1734
+
1735
+ count_index_freq = Counter()
1736
+ for arg_with_ind in self.args_with_ind:
1737
+ count_index_freq.update(Counter(arg_with_ind.indices))
1738
+
1739
+ free_index_count = count_index_freq[None]
1740
+
1741
+ # Construct the inverse permutation:
1742
+ inv_perm1 = []
1743
+ inv_perm2 = []
1744
+ # Keep track of which diagonal indices have already been processed:
1745
+ done = set()
1746
+
1747
+ # Counter for the diagonal indices:
1748
+ counter4 = 0
1749
+
1750
+ for arg_with_ind in self.args_with_ind:
1751
+ # If some diagonalization axes have been removed, they should be
1752
+ # permuted in order to keep the permutation.
1753
+ # Add permutation here
1754
+ counter2 = 0 # counter for the indices
1755
+ for i in arg_with_ind.indices:
1756
+ if i is None:
1757
+ inv_perm1.append(counter4)
1758
+ counter2 += 1
1759
+ counter4 += 1
1760
+ continue
1761
+ if i >= 0:
1762
+ continue
1763
+ # Reconstruct the diagonal indices:
1764
+ diag_indices[-1 - i].append(counter + counter2)
1765
+ if count_index_freq[i] == 1 and i not in done:
1766
+ inv_perm1.append(free_index_count - 1 - i)
1767
+ done.add(i)
1768
+ elif i not in done:
1769
+ inv_perm2.append(free_index_count - 1 - i)
1770
+ done.add(i)
1771
+ counter2 += 1
1772
+ # Remove negative indices to restore a proper editor object:
1773
+ arg_with_ind.indices = [i if i is not None and i >= 0 else None for i in arg_with_ind.indices]
1774
+ counter += len([i for i in arg_with_ind.indices if i is None or i < 0])
1775
+
1776
+ inverse_permutation = inv_perm1 + inv_perm2
1777
+ permutation = _af_invert(inverse_permutation)
1778
+
1779
+ # Get the diagonal indices after the detection of HadamardProduct in the expression:
1780
+ diag_indices_filtered = [tuple(v) for v in diag_indices.values() if len(v) > 1]
1781
+
1782
+ self.merge_scalars()
1783
+ self.refresh_indices()
1784
+ args = [arg.element for arg in self.args_with_ind]
1785
+ contraction_indices = self.get_contraction_indices()
1786
+ expr = _array_contraction(_array_tensor_product(*args), *contraction_indices)
1787
+ expr2 = _array_diagonal(expr, *diag_indices_filtered)
1788
+ if self._track_permutation is not None:
1789
+ permutation2 = _af_invert([j for i in self._track_permutation for j in i])
1790
+ expr2 = _permute_dims(expr2, permutation2)
1791
+
1792
+ expr3 = _permute_dims(expr2, permutation)
1793
+ return expr3
1794
+
1795
+ def get_contraction_indices(self) -> List[List[int]]:
1796
+ contraction_indices: List[List[int]] = [[] for i in range(self.number_of_contraction_indices)]
1797
+ current_position: int = 0
1798
+ for i, arg_with_ind in enumerate(self.args_with_ind):
1799
+ for j in arg_with_ind.indices:
1800
+ if j is not None:
1801
+ contraction_indices[j].append(current_position)
1802
+ current_position += 1
1803
+ return contraction_indices
1804
+
1805
+ def get_mapping_for_index(self, ind) -> List[_IndPos]:
1806
+ if ind >= self.number_of_contraction_indices:
1807
+ raise ValueError("index value exceeding the index range")
1808
+ positions: List[_IndPos] = []
1809
+ for i, arg_with_ind in enumerate(self.args_with_ind):
1810
+ for j, arg_ind in enumerate(arg_with_ind.indices):
1811
+ if ind == arg_ind:
1812
+ positions.append(_IndPos(i, j))
1813
+ return positions
1814
+
1815
+ def get_contraction_indices_to_ind_rel_pos(self) -> List[List[_IndPos]]:
1816
+ contraction_indices: List[List[_IndPos]] = [[] for i in range(self.number_of_contraction_indices)]
1817
+ for i, arg_with_ind in enumerate(self.args_with_ind):
1818
+ for j, ind in enumerate(arg_with_ind.indices):
1819
+ if ind is not None:
1820
+ contraction_indices[ind].append(_IndPos(i, j))
1821
+ return contraction_indices
1822
+
1823
+ def count_args_with_index(self, index: int) -> int:
1824
+ """
1825
+ Count the number of arguments that have the given index.
1826
+ """
1827
+ counter: int = 0
1828
+ for arg_with_ind in self.args_with_ind:
1829
+ if index in arg_with_ind.indices:
1830
+ counter += 1
1831
+ return counter
1832
+
1833
+ def get_args_with_index(self, index: int) -> List[_ArgE]:
1834
+ """
1835
+ Get a list of arguments having the given index.
1836
+ """
1837
+ ret: List[_ArgE] = [i for i in self.args_with_ind if index in i.indices]
1838
+ return ret
1839
+
1840
+ @property
1841
+ def number_of_diagonal_indices(self):
1842
+ data = set()
1843
+ for arg in self.args_with_ind:
1844
+ data.update({i for i in arg.indices if i is not None and i < 0})
1845
+ return len(data)
1846
+
1847
+ def track_permutation_start(self):
1848
+ permutation = []
1849
+ perm_diag = []
1850
+ counter = 0
1851
+ counter2 = -1
1852
+ for arg_with_ind in self.args_with_ind:
1853
+ perm = []
1854
+ for i in arg_with_ind.indices:
1855
+ if i is not None:
1856
+ if i < 0:
1857
+ perm_diag.append(counter2)
1858
+ counter2 -= 1
1859
+ continue
1860
+ perm.append(counter)
1861
+ counter += 1
1862
+ permutation.append(perm)
1863
+ max_ind = max([max(i) if i else -1 for i in permutation]) if permutation else -1
1864
+ perm_diag = [max_ind - i for i in perm_diag]
1865
+ self._track_permutation = permutation + [perm_diag]
1866
+
1867
+ def track_permutation_merge(self, destination: _ArgE, from_element: _ArgE):
1868
+ index_destination = self.args_with_ind.index(destination)
1869
+ index_element = self.args_with_ind.index(from_element)
1870
+ self._track_permutation[index_destination].extend(self._track_permutation[index_element]) # type: ignore
1871
+ self._track_permutation.pop(index_element) # type: ignore
1872
+
1873
+ def get_absolute_free_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
1874
+ """
1875
+ Return the range of the free indices of the arg as absolute positions
1876
+ among all free indices.
1877
+ """
1878
+ counter = 0
1879
+ for arg_with_ind in self.args_with_ind:
1880
+ number_free_indices = len([i for i in arg_with_ind.indices if i is None])
1881
+ if arg_with_ind == arg:
1882
+ return counter, counter + number_free_indices
1883
+ counter += number_free_indices
1884
+ raise IndexError("argument not found")
1885
+
1886
+ def get_absolute_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
1887
+ """
1888
+ Return the absolute range of indices for arg, disregarding dummy
1889
+ indices.
1890
+ """
1891
+ counter = 0
1892
+ for arg_with_ind in self.args_with_ind:
1893
+ number_indices = len(arg_with_ind.indices)
1894
+ if arg_with_ind == arg:
1895
+ return counter, counter + number_indices
1896
+ counter += number_indices
1897
+ raise IndexError("argument not found")
1898
+
1899
+
1900
+ def get_rank(expr):
1901
+ if isinstance(expr, (MatrixExpr, MatrixElement)):
1902
+ return 2
1903
+ if isinstance(expr, _CodegenArrayAbstract):
1904
+ return len(expr.shape)
1905
+ if isinstance(expr, NDimArray):
1906
+ return expr.rank()
1907
+ if isinstance(expr, Indexed):
1908
+ return expr.rank
1909
+ if isinstance(expr, IndexedBase):
1910
+ shape = expr.shape
1911
+ if shape is None:
1912
+ return -1
1913
+ else:
1914
+ return len(shape)
1915
+ if hasattr(expr, "shape"):
1916
+ return len(expr.shape)
1917
+ return 0
1918
+
1919
+
1920
+ def _get_subrank(expr):
1921
+ if isinstance(expr, _CodegenArrayAbstract):
1922
+ return expr.subrank()
1923
+ return get_rank(expr)
1924
+
1925
+
1926
+ def _get_subranks(expr):
1927
+ if isinstance(expr, _CodegenArrayAbstract):
1928
+ return expr.subranks
1929
+ else:
1930
+ return [get_rank(expr)]
1931
+
1932
+
1933
+ def get_shape(expr):
1934
+ if hasattr(expr, "shape"):
1935
+ return expr.shape
1936
+ return ()
1937
+
1938
+
1939
+ def nest_permutation(expr):
1940
+ if isinstance(expr, PermuteDims):
1941
+ return expr.nest_permutation()
1942
+ else:
1943
+ return expr
1944
+
1945
+
1946
+ def _array_tensor_product(*args, **kwargs):
1947
+ return ArrayTensorProduct(*args, canonicalize=True, **kwargs)
1948
+
1949
+
1950
+ def _array_contraction(expr, *contraction_indices, **kwargs):
1951
+ return ArrayContraction(expr, *contraction_indices, canonicalize=True, **kwargs)
1952
+
1953
+
1954
+ def _array_diagonal(expr, *diagonal_indices, **kwargs):
1955
+ return ArrayDiagonal(expr, *diagonal_indices, canonicalize=True, **kwargs)
1956
+
1957
+
1958
+ def _permute_dims(expr, permutation, **kwargs):
1959
+ return PermuteDims(expr, permutation, canonicalize=True, **kwargs)
1960
+
1961
+
1962
+ def _array_add(*args, **kwargs):
1963
+ return ArrayAdd(*args, canonicalize=True, **kwargs)
1964
+
1965
+
1966
+ def _get_array_element_or_slice(expr, indices):
1967
+ return ArrayElement(expr, indices)
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_indexed.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.tensor.array.expressions import from_array_to_indexed
2
+ from sympy.utilities.decorator import deprecated
3
+
4
+
5
+ _conv_to_from_decorator = deprecated(
6
+ "module has been renamed by replacing 'conv_' with 'from_' in its name",
7
+ deprecated_since_version="1.11",
8
+ active_deprecations_target="deprecated-conv-array-expr-module-names",
9
+ )
10
+
11
+
12
+ convert_array_to_indexed = _conv_to_from_decorator(from_array_to_indexed.convert_array_to_indexed)
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_matrix.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from sympy.tensor.array.expressions import from_array_to_matrix
2
+ from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
3
+
4
+ convert_array_to_matrix = _conv_to_from_decorator(from_array_to_matrix.convert_array_to_matrix)
5
+ _array2matrix = _conv_to_from_decorator(from_array_to_matrix._array2matrix)
6
+ _remove_trivial_dims = _conv_to_from_decorator(from_array_to_matrix._remove_trivial_dims)
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_indexed_to_array.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from sympy.tensor.array.expressions import from_indexed_to_array
2
+ from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
3
+
4
+ convert_indexed_to_array = _conv_to_from_decorator(from_indexed_to_array.convert_indexed_to_array)
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_matrix_to_array.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from sympy.tensor.array.expressions import from_matrix_to_array
2
+ from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
3
+
4
+ convert_matrix_to_array = _conv_to_from_decorator(from_matrix_to_array.convert_matrix_to_array)
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_indexed.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections.abc
2
+ import operator
3
+ from itertools import accumulate
4
+
5
+ from sympy import Mul, Sum, Dummy, Add
6
+ from sympy.tensor.array.expressions import PermuteDims, ArrayAdd, ArrayElementwiseApplyFunc, Reshape
7
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, get_rank, ArrayContraction, \
8
+ ArrayDiagonal, get_shape, _get_array_element_or_slice, _ArrayExpr
9
+ from sympy.tensor.array.expressions.utils import _apply_permutation_to_list
10
+
11
+
12
+ def convert_array_to_indexed(expr, indices):
13
+ return _ConvertArrayToIndexed().do_convert(expr, indices)
14
+
15
+
16
+ class _ConvertArrayToIndexed:
17
+
18
+ def __init__(self):
19
+ self.count_dummies = 0
20
+
21
+ def do_convert(self, expr, indices):
22
+ if isinstance(expr, ArrayTensorProduct):
23
+ cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
24
+ indices_grp = [indices[cumul[i]:cumul[i+1]] for i in range(len(expr.args))]
25
+ return Mul.fromiter(self.do_convert(arg, ind) for arg, ind in zip(expr.args, indices_grp))
26
+ if isinstance(expr, ArrayContraction):
27
+ new_indices = [None for i in range(get_rank(expr.expr))]
28
+ limits = []
29
+ bottom_shape = get_shape(expr.expr)
30
+ for contraction_index_grp in expr.contraction_indices:
31
+ d = Dummy(f"d{self.count_dummies}")
32
+ self.count_dummies += 1
33
+ dim = bottom_shape[contraction_index_grp[0]]
34
+ limits.append((d, 0, dim-1))
35
+ for i in contraction_index_grp:
36
+ new_indices[i] = d
37
+ j = 0
38
+ for i in range(len(new_indices)):
39
+ if new_indices[i] is None:
40
+ new_indices[i] = indices[j]
41
+ j += 1
42
+ newexpr = self.do_convert(expr.expr, new_indices)
43
+ return Sum(newexpr, *limits)
44
+ if isinstance(expr, ArrayDiagonal):
45
+ new_indices = [None for i in range(get_rank(expr.expr))]
46
+ ind_pos = expr._push_indices_down(expr.diagonal_indices, list(range(len(indices))), get_rank(expr))
47
+ for i, index in zip(ind_pos, indices):
48
+ if isinstance(i, collections.abc.Iterable):
49
+ for j in i:
50
+ new_indices[j] = index
51
+ else:
52
+ new_indices[i] = index
53
+ newexpr = self.do_convert(expr.expr, new_indices)
54
+ return newexpr
55
+ if isinstance(expr, PermuteDims):
56
+ permuted_indices = _apply_permutation_to_list(expr.permutation, indices)
57
+ return self.do_convert(expr.expr, permuted_indices)
58
+ if isinstance(expr, ArrayAdd):
59
+ return Add.fromiter(self.do_convert(arg, indices) for arg in expr.args)
60
+ if isinstance(expr, _ArrayExpr):
61
+ return expr.__getitem__(tuple(indices))
62
+ if isinstance(expr, ArrayElementwiseApplyFunc):
63
+ return expr.function(self.do_convert(expr.expr, indices))
64
+ if isinstance(expr, Reshape):
65
+ shape_up = expr.shape
66
+ shape_down = get_shape(expr.expr)
67
+ cumul = list(accumulate([1] + list(reversed(shape_up)), operator.mul))
68
+ one_index = Add.fromiter(i*s for i, s in zip(reversed(indices), cumul))
69
+ dest_indices = [None for _ in shape_down]
70
+ c = 1
71
+ for i, e in enumerate(reversed(shape_down)):
72
+ if c == 1:
73
+ if i == len(shape_down) - 1:
74
+ dest_indices[i] = one_index
75
+ else:
76
+ dest_indices[i] = one_index % e
77
+ elif i == len(shape_down) - 1:
78
+ dest_indices[i] = one_index // c
79
+ else:
80
+ dest_indices[i] = one_index // c % e
81
+ c *= e
82
+ dest_indices.reverse()
83
+ return self.do_convert(expr.expr, dest_indices)
84
+ return _get_array_element_or_slice(expr, indices)
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_matrix.py ADDED
@@ -0,0 +1,1003 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ from collections import defaultdict
3
+ from typing import Tuple as tTuple, Union as tUnion, FrozenSet, Dict as tDict, List, Optional
4
+ from functools import singledispatch
5
+ from itertools import accumulate
6
+
7
+ from sympy import MatMul, Basic, Wild, KroneckerProduct
8
+ from sympy.assumptions.ask import (Q, ask)
9
+ from sympy.core.mul import Mul
10
+ from sympy.core.singleton import S
11
+ from sympy.matrices.expressions.diagonal import DiagMatrix
12
+ from sympy.matrices.expressions.hadamard import hadamard_product, HadamardPower
13
+ from sympy.matrices.expressions.matexpr import MatrixExpr
14
+ from sympy.matrices.expressions.special import (Identity, ZeroMatrix, OneMatrix)
15
+ from sympy.matrices.expressions.trace import Trace
16
+ from sympy.matrices.expressions.transpose import Transpose
17
+ from sympy.combinatorics.permutations import _af_invert, Permutation
18
+ from sympy.matrices.common import MatrixCommon
19
+ from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
20
+ from sympy.matrices.expressions.matexpr import MatrixElement
21
+ from sympy.tensor.array.expressions.array_expressions import PermuteDims, ArrayDiagonal, \
22
+ ArrayTensorProduct, OneArray, get_rank, _get_subrank, ZeroArray, ArrayContraction, \
23
+ ArrayAdd, _CodegenArrayAbstract, get_shape, ArrayElementwiseApplyFunc, _ArrayExpr, _EditArrayContraction, _ArgE, \
24
+ ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, _array_add, _permute_dims
25
+ from sympy.tensor.array.expressions.utils import _get_mapping_from_subranks
26
+
27
+
28
+ def _get_candidate_for_matmul_from_contraction(scan_indices: List[Optional[int]], remaining_args: List[_ArgE]) -> tTuple[Optional[_ArgE], bool, int]:
29
+
30
+ scan_indices_int: List[int] = [i for i in scan_indices if i is not None]
31
+ if len(scan_indices_int) == 0:
32
+ return None, False, -1
33
+
34
+ transpose: bool = False
35
+ candidate: Optional[_ArgE] = None
36
+ candidate_index: int = -1
37
+ for arg_with_ind2 in remaining_args:
38
+ if not isinstance(arg_with_ind2.element, MatrixExpr):
39
+ continue
40
+ for index in scan_indices_int:
41
+ if candidate_index != -1 and candidate_index != index:
42
+ # A candidate index has already been selected, check
43
+ # repetitions only for that index:
44
+ continue
45
+ if index in arg_with_ind2.indices:
46
+ if set(arg_with_ind2.indices) == {index}:
47
+ # Index repeated twice in arg_with_ind2
48
+ candidate = None
49
+ break
50
+ if candidate is None:
51
+ candidate = arg_with_ind2
52
+ candidate_index = index
53
+ transpose = (index == arg_with_ind2.indices[1])
54
+ else:
55
+ # Index repeated more than twice, break
56
+ candidate = None
57
+ break
58
+ return candidate, transpose, candidate_index
59
+
60
+
61
+ def _insert_candidate_into_editor(editor: _EditArrayContraction, arg_with_ind: _ArgE, candidate: _ArgE, transpose1: bool, transpose2: bool):
62
+ other = candidate.element
63
+ other_index: Optional[int]
64
+ if transpose2:
65
+ other = Transpose(other)
66
+ other_index = candidate.indices[0]
67
+ else:
68
+ other_index = candidate.indices[1]
69
+ new_element = (Transpose(arg_with_ind.element) if transpose1 else arg_with_ind.element) * other
70
+ editor.args_with_ind.remove(candidate)
71
+ new_arge = _ArgE(new_element)
72
+ return new_arge, other_index
73
+
74
+
75
+ def _support_function_tp1_recognize(contraction_indices, args):
76
+ if len(contraction_indices) == 0:
77
+ return _a2m_tensor_product(*args)
78
+
79
+ ac = _array_contraction(_array_tensor_product(*args), *contraction_indices)
80
+ editor = _EditArrayContraction(ac)
81
+ editor.track_permutation_start()
82
+
83
+ while True:
84
+ flag_stop = True
85
+ for i, arg_with_ind in enumerate(editor.args_with_ind):
86
+ if not isinstance(arg_with_ind.element, MatrixExpr):
87
+ continue
88
+
89
+ first_index = arg_with_ind.indices[0]
90
+ second_index = arg_with_ind.indices[1]
91
+
92
+ first_frequency = editor.count_args_with_index(first_index)
93
+ second_frequency = editor.count_args_with_index(second_index)
94
+
95
+ if first_index is not None and first_frequency == 1 and first_index == second_index:
96
+ flag_stop = False
97
+ arg_with_ind.element = Trace(arg_with_ind.element)._normalize()
98
+ arg_with_ind.indices = []
99
+ break
100
+
101
+ scan_indices = []
102
+ if first_frequency == 2:
103
+ scan_indices.append(first_index)
104
+ if second_frequency == 2:
105
+ scan_indices.append(second_index)
106
+
107
+ candidate, transpose, found_index = _get_candidate_for_matmul_from_contraction(scan_indices, editor.args_with_ind[i+1:])
108
+ if candidate is not None:
109
+ flag_stop = False
110
+ editor.track_permutation_merge(arg_with_ind, candidate)
111
+ transpose1 = found_index == first_index
112
+ new_arge, other_index = _insert_candidate_into_editor(editor, arg_with_ind, candidate, transpose1, transpose)
113
+ if found_index == first_index:
114
+ new_arge.indices = [second_index, other_index]
115
+ else:
116
+ new_arge.indices = [first_index, other_index]
117
+ set_indices = set(new_arge.indices)
118
+ if len(set_indices) == 1 and set_indices != {None}:
119
+ # This is a trace:
120
+ new_arge.element = Trace(new_arge.element)._normalize()
121
+ new_arge.indices = []
122
+ editor.args_with_ind[i] = new_arge
123
+ # TODO: is this break necessary?
124
+ break
125
+
126
+ if flag_stop:
127
+ break
128
+
129
+ editor.refresh_indices()
130
+ return editor.to_array_contraction()
131
+
132
+
133
+ def _find_trivial_matrices_rewrite(expr: ArrayTensorProduct):
134
+ # If there are matrices of trivial shape in the tensor product (i.e. shape
135
+ # (1, 1)), try to check if there is a suitable non-trivial MatMul where the
136
+ # expression can be inserted.
137
+
138
+ # For example, if "a" has shape (1, 1) and "b" has shape (k, 1), the
139
+ # expressions "_array_tensor_product(a, b*b.T)" can be rewritten as
140
+ # "b*a*b.T"
141
+
142
+ trivial_matrices = []
143
+ pos: Optional[int] = None
144
+ first: Optional[MatrixExpr] = None
145
+ second: Optional[MatrixExpr] = None
146
+ removed: List[int] = []
147
+ counter: int = 0
148
+ args: List[Optional[Basic]] = list(expr.args)
149
+ for i, arg in enumerate(expr.args):
150
+ if isinstance(arg, MatrixExpr):
151
+ if arg.shape == (1, 1):
152
+ trivial_matrices.append(arg)
153
+ args[i] = None
154
+ removed.extend([counter, counter+1])
155
+ elif pos is None and isinstance(arg, MatMul):
156
+ margs = arg.args
157
+ for j, e in enumerate(margs):
158
+ if isinstance(e, MatrixExpr) and e.shape[1] == 1:
159
+ pos = i
160
+ first = MatMul.fromiter(margs[:j+1])
161
+ second = MatMul.fromiter(margs[j+1:])
162
+ break
163
+ counter += get_rank(arg)
164
+ if pos is None:
165
+ return expr, []
166
+ args[pos] = (first*MatMul.fromiter(i for i in trivial_matrices)*second).doit()
167
+ return _array_tensor_product(*[i for i in args if i is not None]), removed
168
+
169
+
170
+ def _find_trivial_kronecker_products_broadcast(expr: ArrayTensorProduct):
171
+ newargs: List[Basic] = []
172
+ removed = []
173
+ count_dims = 0
174
+ for i, arg in enumerate(expr.args):
175
+ count_dims += get_rank(arg)
176
+ shape = get_shape(arg)
177
+ current_range = [count_dims-i for i in range(len(shape), 0, -1)]
178
+ if (shape == (1, 1) and len(newargs) > 0 and 1 not in get_shape(newargs[-1]) and
179
+ isinstance(newargs[-1], MatrixExpr) and isinstance(arg, MatrixExpr)):
180
+ # KroneckerProduct object allows the trick of broadcasting:
181
+ newargs[-1] = KroneckerProduct(newargs[-1], arg)
182
+ removed.extend(current_range)
183
+ elif 1 not in shape and len(newargs) > 0 and get_shape(newargs[-1]) == (1, 1):
184
+ # Broadcast:
185
+ newargs[-1] = KroneckerProduct(newargs[-1], arg)
186
+ prev_range = [i for i in range(min(current_range)) if i not in removed]
187
+ removed.extend(prev_range[-2:])
188
+ else:
189
+ newargs.append(arg)
190
+ return _array_tensor_product(*newargs), removed
191
+
192
+
193
+ @singledispatch
194
+ def _array2matrix(expr):
195
+ return expr
196
+
197
+
198
+ @_array2matrix.register(ZeroArray)
199
+ def _(expr: ZeroArray):
200
+ if get_rank(expr) == 2:
201
+ return ZeroMatrix(*expr.shape)
202
+ else:
203
+ return expr
204
+
205
+
206
+ @_array2matrix.register(ArrayTensorProduct)
207
+ def _(expr: ArrayTensorProduct):
208
+ return _a2m_tensor_product(*[_array2matrix(arg) for arg in expr.args])
209
+
210
+
211
+ @_array2matrix.register(ArrayContraction)
212
+ def _(expr: ArrayContraction):
213
+ expr = expr.flatten_contraction_of_diagonal()
214
+ expr = identify_removable_identity_matrices(expr)
215
+ expr = expr.split_multiple_contractions()
216
+ expr = identify_hadamard_products(expr)
217
+ if not isinstance(expr, ArrayContraction):
218
+ return _array2matrix(expr)
219
+ subexpr = expr.expr
220
+ contraction_indices: tTuple[tTuple[int]] = expr.contraction_indices
221
+ if contraction_indices == ((0,), (1,)) or (
222
+ contraction_indices == ((0,),) and subexpr.shape[1] == 1
223
+ ) or (
224
+ contraction_indices == ((1,),) and subexpr.shape[0] == 1
225
+ ):
226
+ shape = subexpr.shape
227
+ subexpr = _array2matrix(subexpr)
228
+ if isinstance(subexpr, MatrixExpr):
229
+ return OneMatrix(1, shape[0])*subexpr*OneMatrix(shape[1], 1)
230
+ if isinstance(subexpr, ArrayTensorProduct):
231
+ newexpr = _array_contraction(_array2matrix(subexpr), *contraction_indices)
232
+ contraction_indices = newexpr.contraction_indices
233
+ if any(i > 2 for i in newexpr.subranks):
234
+ addends = _array_add(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i,
235
+ ArrayAdd) else [i] for i in expr.expr.args])])
236
+ newexpr = _array_contraction(addends, *contraction_indices)
237
+ if isinstance(newexpr, ArrayAdd):
238
+ ret = _array2matrix(newexpr)
239
+ return ret
240
+ assert isinstance(newexpr, ArrayContraction)
241
+ ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args))
242
+ return ret
243
+ elif not isinstance(subexpr, _CodegenArrayAbstract):
244
+ ret = _array2matrix(subexpr)
245
+ if isinstance(ret, MatrixExpr):
246
+ assert expr.contraction_indices == ((0, 1),)
247
+ return _a2m_trace(ret)
248
+ else:
249
+ return _array_contraction(ret, *expr.contraction_indices)
250
+
251
+
252
+ @_array2matrix.register(ArrayDiagonal)
253
+ def _(expr: ArrayDiagonal):
254
+ pexpr = _array_diagonal(_array2matrix(expr.expr), *expr.diagonal_indices)
255
+ pexpr = identify_hadamard_products(pexpr)
256
+ if isinstance(pexpr, ArrayDiagonal):
257
+ pexpr = _array_diag2contr_diagmatrix(pexpr)
258
+ if expr == pexpr:
259
+ return expr
260
+ return _array2matrix(pexpr)
261
+
262
+
263
+ @_array2matrix.register(PermuteDims)
264
+ def _(expr: PermuteDims):
265
+ if expr.permutation.array_form == [1, 0]:
266
+ return _a2m_transpose(_array2matrix(expr.expr))
267
+ elif isinstance(expr.expr, ArrayTensorProduct):
268
+ ranks = expr.expr.subranks
269
+ inv_permutation = expr.permutation**(-1)
270
+ newrange = [inv_permutation(i) for i in range(sum(ranks))]
271
+ newpos = []
272
+ counter = 0
273
+ for rank in ranks:
274
+ newpos.append(newrange[counter:counter+rank])
275
+ counter += rank
276
+ newargs = []
277
+ newperm = []
278
+ scalars = []
279
+ for pos, arg in zip(newpos, expr.expr.args):
280
+ if len(pos) == 0:
281
+ scalars.append(_array2matrix(arg))
282
+ elif pos == sorted(pos):
283
+ newargs.append((_array2matrix(arg), pos[0]))
284
+ newperm.extend(pos)
285
+ elif len(pos) == 2:
286
+ newargs.append((_a2m_transpose(_array2matrix(arg)), pos[0]))
287
+ newperm.extend(reversed(pos))
288
+ else:
289
+ raise NotImplementedError()
290
+ newargs = [i[0] for i in newargs]
291
+ return _permute_dims(_a2m_tensor_product(*scalars, *newargs), _af_invert(newperm))
292
+ elif isinstance(expr.expr, ArrayContraction):
293
+ mat_mul_lines = _array2matrix(expr.expr)
294
+ if not isinstance(mat_mul_lines, ArrayTensorProduct):
295
+ return _permute_dims(mat_mul_lines, expr.permutation)
296
+ # TODO: this assumes that all arguments are matrices, it may not be the case:
297
+ permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation
298
+ permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))]
299
+ args_array = [None for i in mat_mul_lines.args]
300
+ for i in range(len(mat_mul_lines.args)):
301
+ p1 = permuted[2*i]
302
+ p2 = permuted[2*i+1]
303
+ if p1 // 2 != p2 // 2:
304
+ return _permute_dims(mat_mul_lines, permutation)
305
+ if p1 > p2:
306
+ args_array[i] = _a2m_transpose(mat_mul_lines.args[p1 // 2])
307
+ else:
308
+ args_array[i] = mat_mul_lines.args[p1 // 2]
309
+ return _a2m_tensor_product(*args_array)
310
+ else:
311
+ return expr
312
+
313
+
314
+ @_array2matrix.register(ArrayAdd)
315
+ def _(expr: ArrayAdd):
316
+ addends = [_array2matrix(arg) for arg in expr.args]
317
+ return _a2m_add(*addends)
318
+
319
+
320
+ @_array2matrix.register(ArrayElementwiseApplyFunc)
321
+ def _(expr: ArrayElementwiseApplyFunc):
322
+ subexpr = _array2matrix(expr.expr)
323
+ if isinstance(subexpr, MatrixExpr):
324
+ if subexpr.shape != (1, 1):
325
+ d = expr.function.bound_symbols[0]
326
+ w = Wild("w", exclude=[d])
327
+ p = Wild("p", exclude=[d])
328
+ m = expr.function.expr.match(w*d**p)
329
+ if m is not None:
330
+ return m[w]*HadamardPower(subexpr, m[p])
331
+ return ElementwiseApplyFunction(expr.function, subexpr)
332
+ else:
333
+ return ArrayElementwiseApplyFunc(expr.function, subexpr)
334
+
335
+
336
+ @_array2matrix.register(ArrayElement)
337
+ def _(expr: ArrayElement):
338
+ ret = _array2matrix(expr.name)
339
+ if isinstance(ret, MatrixExpr):
340
+ return MatrixElement(ret, *expr.indices)
341
+ return ArrayElement(ret, expr.indices)
342
+
343
+
344
+ @singledispatch
345
+ def _remove_trivial_dims(expr):
346
+ return expr, []
347
+
348
+
349
+ @_remove_trivial_dims.register(ArrayTensorProduct)
350
+ def _(expr: ArrayTensorProduct):
351
+ # Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`.
352
+ # The matrix expression has to be equivalent to the tensor product of the
353
+ # matrices, with trivial dimensions (i.e. dim=1) dropped.
354
+ # That is, add contractions over trivial dimensions:
355
+
356
+ removed = []
357
+ newargs = []
358
+ cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
359
+ pending = None
360
+ prev_i = None
361
+ for i, arg in enumerate(expr.args):
362
+ current_range = list(range(cumul[i], cumul[i+1]))
363
+ if isinstance(arg, OneArray):
364
+ removed.extend(current_range)
365
+ continue
366
+ if not isinstance(arg, (MatrixExpr, MatrixCommon)):
367
+ rarg, rem = _remove_trivial_dims(arg)
368
+ removed.extend(rem)
369
+ newargs.append(rarg)
370
+ continue
371
+ elif getattr(arg, "is_Identity", False) and arg.shape == (1, 1):
372
+ if arg.shape == (1, 1):
373
+ # Ignore identity matrices of shape (1, 1) - they are equivalent to scalar 1.
374
+ removed.extend(current_range)
375
+ continue
376
+ elif arg.shape == (1, 1):
377
+ arg, _ = _remove_trivial_dims(arg)
378
+ # Matrix is equivalent to scalar:
379
+ if len(newargs) == 0:
380
+ newargs.append(arg)
381
+ elif 1 in get_shape(newargs[-1]):
382
+ if newargs[-1].shape[1] == 1:
383
+ newargs[-1] = newargs[-1]*arg
384
+ else:
385
+ newargs[-1] = arg*newargs[-1]
386
+ removed.extend(current_range)
387
+ else:
388
+ newargs.append(arg)
389
+ elif 1 in arg.shape:
390
+ k = [i for i in arg.shape if i != 1][0]
391
+ if pending is None:
392
+ pending = k
393
+ prev_i = i
394
+ newargs.append(arg)
395
+ elif pending == k:
396
+ prev = newargs[-1]
397
+ if prev.shape[0] == 1:
398
+ d1 = cumul[prev_i]
399
+ prev = _a2m_transpose(prev)
400
+ else:
401
+ d1 = cumul[prev_i] + 1
402
+ if arg.shape[1] == 1:
403
+ d2 = cumul[i] + 1
404
+ arg = _a2m_transpose(arg)
405
+ else:
406
+ d2 = cumul[i]
407
+ newargs[-1] = prev*arg
408
+ pending = None
409
+ removed.extend([d1, d2])
410
+ else:
411
+ newargs.append(arg)
412
+ pending = k
413
+ prev_i = i
414
+ else:
415
+ newargs.append(arg)
416
+ pending = None
417
+ newexpr, newremoved = _a2m_tensor_product(*newargs), sorted(removed)
418
+ if isinstance(newexpr, ArrayTensorProduct):
419
+ newexpr, newremoved2 = _find_trivial_matrices_rewrite(newexpr)
420
+ newremoved = _combine_removed(-1, newremoved, newremoved2)
421
+ if isinstance(newexpr, ArrayTensorProduct):
422
+ newexpr, newremoved2 = _find_trivial_kronecker_products_broadcast(newexpr)
423
+ newremoved = _combine_removed(-1, newremoved, newremoved2)
424
+ return newexpr, newremoved
425
+
426
+
427
+ @_remove_trivial_dims.register(ArrayAdd)
428
+ def _(expr: ArrayAdd):
429
+ rec = [_remove_trivial_dims(arg) for arg in expr.args]
430
+ newargs, removed = zip(*rec)
431
+ if len({get_shape(i) for i in newargs}) > 1:
432
+ return expr, []
433
+ if len(removed) == 0:
434
+ return expr, removed
435
+ removed1 = removed[0]
436
+ return _a2m_add(*newargs), removed1
437
+
438
+
439
+ @_remove_trivial_dims.register(PermuteDims)
440
+ def _(expr: PermuteDims):
441
+ subexpr, subremoved = _remove_trivial_dims(expr.expr)
442
+ p = expr.permutation.array_form
443
+ pinv = _af_invert(expr.permutation.array_form)
444
+ shift = list(accumulate([1 if i in subremoved else 0 for i in range(len(p))]))
445
+ premoved = [pinv[i] for i in subremoved]
446
+ p2 = [e - shift[e] for i, e in enumerate(p) if e not in subremoved]
447
+ # TODO: check if subremoved should be permuted as well...
448
+ newexpr = _permute_dims(subexpr, p2)
449
+ premoved = sorted(premoved)
450
+ if newexpr != expr:
451
+ newexpr, removed2 = _remove_trivial_dims(_array2matrix(newexpr))
452
+ premoved = _combine_removed(-1, premoved, removed2)
453
+ return newexpr, premoved
454
+
455
+
456
+ @_remove_trivial_dims.register(ArrayContraction)
457
+ def _(expr: ArrayContraction):
458
+ new_expr, removed0 = _array_contraction_to_diagonal_multiple_identity(expr)
459
+ if new_expr != expr:
460
+ new_expr2, removed1 = _remove_trivial_dims(_array2matrix(new_expr))
461
+ removed = _combine_removed(-1, removed0, removed1)
462
+ return new_expr2, removed
463
+ rank1 = get_rank(expr)
464
+ expr, removed1 = remove_identity_matrices(expr)
465
+ if not isinstance(expr, ArrayContraction):
466
+ expr2, removed2 = _remove_trivial_dims(expr)
467
+ return expr2, _combine_removed(rank1, removed1, removed2)
468
+ newexpr, removed2 = _remove_trivial_dims(expr.expr)
469
+ shifts = list(accumulate([1 if i in removed2 else 0 for i in range(get_rank(expr.expr))]))
470
+ new_contraction_indices = [tuple(j for j in i if j not in removed2) for i in expr.contraction_indices]
471
+ # Remove possible empty tuples "()":
472
+ new_contraction_indices = [i for i in new_contraction_indices if len(i) > 0]
473
+ contraction_indices_flat = [j for i in expr.contraction_indices for j in i]
474
+ removed2 = [i for i in removed2 if i not in contraction_indices_flat]
475
+ new_contraction_indices = [tuple(j - shifts[j] for j in i) for i in new_contraction_indices]
476
+ # Shift removed2:
477
+ removed2 = ArrayContraction._push_indices_up(expr.contraction_indices, removed2)
478
+ removed = _combine_removed(rank1, removed1, removed2)
479
+ return _array_contraction(newexpr, *new_contraction_indices), list(removed)
480
+
481
+
482
+ def _remove_diagonalized_identity_matrices(expr: ArrayDiagonal):
483
+ assert isinstance(expr, ArrayDiagonal)
484
+ editor = _EditArrayContraction(expr)
485
+ mapping = {i: {j for j in editor.args_with_ind if i in j.indices} for i in range(-1, -1-editor.number_of_diagonal_indices, -1)}
486
+ removed = []
487
+ counter: int = 0
488
+ for i, arg_with_ind in enumerate(editor.args_with_ind):
489
+ counter += len(arg_with_ind.indices)
490
+ if isinstance(arg_with_ind.element, Identity):
491
+ if None in arg_with_ind.indices and any(i is not None and (i < 0) == True for i in arg_with_ind.indices):
492
+ diag_ind = [j for j in arg_with_ind.indices if j is not None][0]
493
+ other = [j for j in mapping[diag_ind] if j != arg_with_ind][0]
494
+ if not isinstance(other.element, MatrixExpr):
495
+ continue
496
+ if 1 not in other.element.shape:
497
+ continue
498
+ if None not in other.indices:
499
+ continue
500
+ editor.args_with_ind[i].element = None
501
+ none_index = other.indices.index(None)
502
+ other.element = DiagMatrix(other.element)
503
+ other_range = editor.get_absolute_range(other)
504
+ removed.extend([other_range[0] + none_index])
505
+ editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
506
+ removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, get_rank(expr.expr))
507
+ return editor.to_array_contraction(), removed
508
+
509
+
510
+ @_remove_trivial_dims.register(ArrayDiagonal)
511
+ def _(expr: ArrayDiagonal):
512
+ newexpr, removed = _remove_trivial_dims(expr.expr)
513
+ shifts = list(accumulate([0] + [1 if i in removed else 0 for i in range(get_rank(expr.expr))]))
514
+ new_diag_indices_map = {i: tuple(j for j in i if j not in removed) for i in expr.diagonal_indices}
515
+ for old_diag_tuple, new_diag_tuple in new_diag_indices_map.items():
516
+ if len(new_diag_tuple) == 1:
517
+ removed = [i for i in removed if i not in old_diag_tuple]
518
+ new_diag_indices = [tuple(j - shifts[j] for j in i) for i in new_diag_indices_map.values()]
519
+ rank = get_rank(expr.expr)
520
+ removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, rank)
521
+ removed = sorted(set(removed))
522
+ # If there are single axes to diagonalize remaining, it means that their
523
+ # corresponding dimension has been removed, they no longer need diagonalization:
524
+ new_diag_indices = [i for i in new_diag_indices if len(i) > 0]
525
+ if len(new_diag_indices) > 0:
526
+ newexpr2 = _array_diagonal(newexpr, *new_diag_indices, allow_trivial_diags=True)
527
+ else:
528
+ newexpr2 = newexpr
529
+ if isinstance(newexpr2, ArrayDiagonal):
530
+ newexpr3, removed2 = _remove_diagonalized_identity_matrices(newexpr2)
531
+ removed = _combine_removed(-1, removed, removed2)
532
+ return newexpr3, removed
533
+ else:
534
+ return newexpr2, removed
535
+
536
+
537
+ @_remove_trivial_dims.register(ElementwiseApplyFunction)
538
+ def _(expr: ElementwiseApplyFunction):
539
+ subexpr, removed = _remove_trivial_dims(expr.expr)
540
+ if subexpr.shape == (1, 1):
541
+ # TODO: move this to ElementwiseApplyFunction
542
+ return expr.function(subexpr), removed + [0, 1]
543
+ return ElementwiseApplyFunction(expr.function, subexpr), []
544
+
545
+
546
+ @_remove_trivial_dims.register(ArrayElementwiseApplyFunc)
547
+ def _(expr: ArrayElementwiseApplyFunc):
548
+ subexpr, removed = _remove_trivial_dims(expr.expr)
549
+ return ArrayElementwiseApplyFunc(expr.function, subexpr), removed
550
+
551
+
552
+ def convert_array_to_matrix(expr):
553
+ r"""
554
+ Recognize matrix expressions in codegen objects.
555
+
556
+ If more than one matrix multiplication line have been detected, return a
557
+ list with the matrix expressions.
558
+
559
+ Examples
560
+ ========
561
+
562
+ >>> from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
563
+ >>> from sympy.tensor.array import tensorcontraction, tensorproduct
564
+ >>> from sympy import MatrixSymbol, Sum
565
+ >>> from sympy.abc import i, j, k, l, N
566
+ >>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
567
+ >>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
568
+ >>> A = MatrixSymbol("A", N, N)
569
+ >>> B = MatrixSymbol("B", N, N)
570
+ >>> C = MatrixSymbol("C", N, N)
571
+ >>> D = MatrixSymbol("D", N, N)
572
+
573
+ >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
574
+ >>> cg = convert_indexed_to_array(expr)
575
+ >>> convert_array_to_matrix(cg)
576
+ A*B
577
+ >>> cg = convert_indexed_to_array(expr, first_indices=[k])
578
+ >>> convert_array_to_matrix(cg)
579
+ B.T*A.T
580
+
581
+ Transposition is detected:
582
+
583
+ >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
584
+ >>> cg = convert_indexed_to_array(expr)
585
+ >>> convert_array_to_matrix(cg)
586
+ A.T*B
587
+ >>> cg = convert_indexed_to_array(expr, first_indices=[k])
588
+ >>> convert_array_to_matrix(cg)
589
+ B.T*A
590
+
591
+ Detect the trace:
592
+
593
+ >>> expr = Sum(A[i, i], (i, 0, N-1))
594
+ >>> cg = convert_indexed_to_array(expr)
595
+ >>> convert_array_to_matrix(cg)
596
+ Trace(A)
597
+
598
+ Recognize some more complex traces:
599
+
600
+ >>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1))
601
+ >>> cg = convert_indexed_to_array(expr)
602
+ >>> convert_array_to_matrix(cg)
603
+ Trace(A*B)
604
+
605
+ More complicated expressions:
606
+
607
+ >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
608
+ >>> cg = convert_indexed_to_array(expr)
609
+ >>> convert_array_to_matrix(cg)
610
+ A*B.T*A.T
611
+
612
+ Expressions constructed from matrix expressions do not contain literal
613
+ indices, the positions of free indices are returned instead:
614
+
615
+ >>> expr = A*B
616
+ >>> cg = convert_matrix_to_array(expr)
617
+ >>> convert_array_to_matrix(cg)
618
+ A*B
619
+
620
+ If more than one line of matrix multiplications is detected, return
621
+ separate matrix multiplication factors embedded in a tensor product object:
622
+
623
+ >>> cg = tensorcontraction(tensorproduct(A, B, C, D), (1, 2), (5, 6))
624
+ >>> convert_array_to_matrix(cg)
625
+ ArrayTensorProduct(A*B, C*D)
626
+
627
+ The two lines have free indices at axes 0, 3 and 4, 7, respectively.
628
+ """
629
+ rec = _array2matrix(expr)
630
+ rec, removed = _remove_trivial_dims(rec)
631
+ return rec
632
+
633
+
634
+ def _array_diag2contr_diagmatrix(expr: ArrayDiagonal):
635
+ if isinstance(expr.expr, ArrayTensorProduct):
636
+ args = list(expr.expr.args)
637
+ diag_indices = list(expr.diagonal_indices)
638
+ mapping = _get_mapping_from_subranks([_get_subrank(arg) for arg in args])
639
+ tuple_links = [[mapping[j] for j in i] for i in diag_indices]
640
+ contr_indices = []
641
+ total_rank = get_rank(expr)
642
+ replaced = [False for arg in args]
643
+ for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)):
644
+ if len(abs_pos) != 2:
645
+ continue
646
+ (pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos
647
+ arg1 = args[pos1_outer]
648
+ arg2 = args[pos2_outer]
649
+ if get_rank(arg1) != 2 or get_rank(arg2) != 2:
650
+ if replaced[pos1_outer]:
651
+ diag_indices[i] = None
652
+ if replaced[pos2_outer]:
653
+ diag_indices[i] = None
654
+ continue
655
+ pos1_in2 = 1 - pos1_inner
656
+ pos2_in2 = 1 - pos2_inner
657
+ if arg1.shape[pos1_in2] == 1:
658
+ if arg1.shape[pos1_inner] != 1:
659
+ darg1 = DiagMatrix(arg1)
660
+ else:
661
+ darg1 = arg1
662
+ args.append(darg1)
663
+ contr_indices.append(((pos2_outer, pos2_inner), (len(args)-1, pos1_inner)))
664
+ total_rank += 1
665
+ diag_indices[i] = None
666
+ args[pos1_outer] = OneArray(arg1.shape[pos1_in2])
667
+ replaced[pos1_outer] = True
668
+ elif arg2.shape[pos2_in2] == 1:
669
+ if arg2.shape[pos2_inner] != 1:
670
+ darg2 = DiagMatrix(arg2)
671
+ else:
672
+ darg2 = arg2
673
+ args.append(darg2)
674
+ contr_indices.append(((pos1_outer, pos1_inner), (len(args)-1, pos2_inner)))
675
+ total_rank += 1
676
+ diag_indices[i] = None
677
+ args[pos2_outer] = OneArray(arg2.shape[pos2_in2])
678
+ replaced[pos2_outer] = True
679
+ diag_indices_new = [i for i in diag_indices if i is not None]
680
+ cumul = list(accumulate([0] + [get_rank(arg) for arg in args]))
681
+ contr_indices2 = [tuple(cumul[a] + b for a, b in i) for i in contr_indices]
682
+ tc = _array_contraction(
683
+ _array_tensor_product(*args), *contr_indices2
684
+ )
685
+ td = _array_diagonal(tc, *diag_indices_new)
686
+ return td
687
+ return expr
688
+
689
+
690
+ def _a2m_mul(*args):
691
+ if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
692
+ from sympy.matrices.expressions.matmul import MatMul
693
+ return MatMul(*args).doit()
694
+ else:
695
+ return _array_contraction(
696
+ _array_tensor_product(*args),
697
+ *[(2*i-1, 2*i) for i in range(1, len(args))]
698
+ )
699
+
700
+
701
+ def _a2m_tensor_product(*args):
702
+ scalars = []
703
+ arrays = []
704
+ for arg in args:
705
+ if isinstance(arg, (MatrixExpr, _ArrayExpr, _CodegenArrayAbstract)):
706
+ arrays.append(arg)
707
+ else:
708
+ scalars.append(arg)
709
+ scalar = Mul.fromiter(scalars)
710
+ if len(arrays) == 0:
711
+ return scalar
712
+ if scalar != 1:
713
+ if isinstance(arrays[0], _CodegenArrayAbstract):
714
+ arrays = [scalar] + arrays
715
+ else:
716
+ arrays[0] *= scalar
717
+ return _array_tensor_product(*arrays)
718
+
719
+
720
+ def _a2m_add(*args):
721
+ if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
722
+ from sympy.matrices.expressions.matadd import MatAdd
723
+ return MatAdd(*args).doit()
724
+ else:
725
+ return _array_add(*args)
726
+
727
+
728
+ def _a2m_trace(arg):
729
+ if isinstance(arg, _CodegenArrayAbstract):
730
+ return _array_contraction(arg, (0, 1))
731
+ else:
732
+ from sympy.matrices.expressions.trace import Trace
733
+ return Trace(arg)
734
+
735
+
736
+ def _a2m_transpose(arg):
737
+ if isinstance(arg, _CodegenArrayAbstract):
738
+ return _permute_dims(arg, [1, 0])
739
+ else:
740
+ from sympy.matrices.expressions.transpose import Transpose
741
+ return Transpose(arg).doit()
742
+
743
+
744
+ def identify_hadamard_products(expr: tUnion[ArrayContraction, ArrayDiagonal]):
745
+
746
+ editor: _EditArrayContraction = _EditArrayContraction(expr)
747
+
748
+ map_contr_to_args: tDict[FrozenSet, List[_ArgE]] = defaultdict(list)
749
+ map_ind_to_inds: tDict[Optional[int], int] = defaultdict(int)
750
+ for arg_with_ind in editor.args_with_ind:
751
+ for ind in arg_with_ind.indices:
752
+ map_ind_to_inds[ind] += 1
753
+ if None in arg_with_ind.indices:
754
+ continue
755
+ map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind)
756
+
757
+ k: FrozenSet[int]
758
+ v: List[_ArgE]
759
+ for k, v in map_contr_to_args.items():
760
+ make_trace: bool = False
761
+ if len(k) == 1 and next(iter(k)) >= 0 and sum([next(iter(k)) in i for i in map_contr_to_args]) == 1:
762
+ # This is a trace: the arguments are fully contracted with only one
763
+ # index, and the index isn't used anywhere else:
764
+ make_trace = True
765
+ first_element = S.One
766
+ elif len(k) != 2:
767
+ # Hadamard product only defined for matrices:
768
+ continue
769
+ if len(v) == 1:
770
+ # Hadamard product with a single argument makes no sense:
771
+ continue
772
+ for ind in k:
773
+ if map_ind_to_inds[ind] <= 2:
774
+ # There is no other contraction, skip:
775
+ continue
776
+
777
+ def check_transpose(x):
778
+ x = [i if i >= 0 else -1-i for i in x]
779
+ return x == sorted(x)
780
+
781
+ # Check if expression is a trace:
782
+ if all([map_ind_to_inds[j] == len(v) and j >= 0 for j in k]) and all([j >= 0 for j in k]):
783
+ # This is a trace
784
+ make_trace = True
785
+ first_element = v[0].element
786
+ if not check_transpose(v[0].indices):
787
+ first_element = first_element.T
788
+ hadamard_factors = v[1:]
789
+ else:
790
+ hadamard_factors = v
791
+
792
+ # This is a Hadamard product:
793
+
794
+ hp = hadamard_product(*[i.element if check_transpose(i.indices) else Transpose(i.element) for i in hadamard_factors])
795
+ hp_indices = v[0].indices
796
+ if not check_transpose(hadamard_factors[0].indices):
797
+ hp_indices = list(reversed(hp_indices))
798
+ if make_trace:
799
+ hp = Trace(first_element*hp.T)._normalize()
800
+ hp_indices = []
801
+ editor.insert_after(v[0], _ArgE(hp, hp_indices))
802
+ for i in v:
803
+ editor.args_with_ind.remove(i)
804
+
805
+ return editor.to_array_contraction()
806
+
807
+
808
+ def identify_removable_identity_matrices(expr):
809
+ editor = _EditArrayContraction(expr)
810
+
811
+ flag = True
812
+ while flag:
813
+ flag = False
814
+ for arg_with_ind in editor.args_with_ind:
815
+ if isinstance(arg_with_ind.element, Identity):
816
+ k = arg_with_ind.element.shape[0]
817
+ # Candidate for removal:
818
+ if arg_with_ind.indices == [None, None]:
819
+ # Free identity matrix, will be cleared by _remove_trivial_dims:
820
+ continue
821
+ elif None in arg_with_ind.indices:
822
+ ind = [j for j in arg_with_ind.indices if j is not None][0]
823
+ counted = editor.count_args_with_index(ind)
824
+ if counted == 1:
825
+ # Identity matrix contracted only on one index with itself,
826
+ # transform to a OneArray(k) element:
827
+ editor.insert_after(arg_with_ind, OneArray(k))
828
+ editor.args_with_ind.remove(arg_with_ind)
829
+ flag = True
830
+ break
831
+ elif counted > 2:
832
+ # Case counted = 2 is a matrix multiplication by identity matrix, skip it.
833
+ # Case counted > 2 is a multiple contraction,
834
+ # this is a case where the contraction becomes a diagonalization if the
835
+ # identity matrix is dropped.
836
+ continue
837
+ elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
838
+ ind = arg_with_ind.indices[0]
839
+ counted = editor.count_args_with_index(ind)
840
+ if counted > 1:
841
+ editor.args_with_ind.remove(arg_with_ind)
842
+ flag = True
843
+ break
844
+ else:
845
+ # This is a trace, skip it as it will be recognized somewhere else:
846
+ pass
847
+ elif ask(Q.diagonal(arg_with_ind.element)):
848
+ if arg_with_ind.indices == [None, None]:
849
+ continue
850
+ elif None in arg_with_ind.indices:
851
+ pass
852
+ elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
853
+ ind = arg_with_ind.indices[0]
854
+ counted = editor.count_args_with_index(ind)
855
+ if counted == 3:
856
+ # A_ai B_bi D_ii ==> A_ai D_ij B_bj
857
+ ind_new = editor.get_new_contraction_index()
858
+ other_args = [j for j in editor.args_with_ind if j != arg_with_ind]
859
+ other_args[1].indices = [ind_new if j == ind else j for j in other_args[1].indices]
860
+ arg_with_ind.indices = [ind, ind_new]
861
+ flag = True
862
+ break
863
+
864
+ return editor.to_array_contraction()
865
+
866
+
867
+ def remove_identity_matrices(expr: ArrayContraction):
868
+ editor = _EditArrayContraction(expr)
869
+ removed: List[int] = []
870
+
871
+ permutation_map = {}
872
+
873
+ free_indices = list(accumulate([0] + [sum([i is None for i in arg.indices]) for arg in editor.args_with_ind]))
874
+ free_map = {k: v for k, v in zip(editor.args_with_ind, free_indices[:-1])}
875
+
876
+ update_pairs = {}
877
+
878
+ for ind in range(editor.number_of_contraction_indices):
879
+ args = editor.get_args_with_index(ind)
880
+ identity_matrices = [i for i in args if isinstance(i.element, Identity)]
881
+ number_identity_matrices = len(identity_matrices)
882
+ # If the contraction involves a non-identity matrix and multiple identity matrices:
883
+ if number_identity_matrices != len(args) - 1 or number_identity_matrices == 0:
884
+ continue
885
+ # Get the non-identity element:
886
+ non_identity = [i for i in args if not isinstance(i.element, Identity)][0]
887
+ # Check that all identity matrices have at least one free index
888
+ # (otherwise they would be contractions to some other elements)
889
+ if any([None not in i.indices for i in identity_matrices]):
890
+ continue
891
+ # Mark the identity matrices for removal:
892
+ for i in identity_matrices:
893
+ i.element = None
894
+ removed.extend(range(free_map[i], free_map[i] + len([j for j in i.indices if j is None])))
895
+ last_removed = removed.pop(-1)
896
+ update_pairs[last_removed, ind] = non_identity.indices[:]
897
+ # Remove the indices from the non-identity matrix, as the contraction
898
+ # no longer exists:
899
+ non_identity.indices = [None if i == ind else i for i in non_identity.indices]
900
+
901
+ removed.sort()
902
+
903
+ shifts = list(accumulate([1 if i in removed else 0 for i in range(get_rank(expr))]))
904
+ for (last_removed, ind), non_identity_indices in update_pairs.items():
905
+ pos = [free_map[non_identity] + i for i, e in enumerate(non_identity_indices) if e == ind]
906
+ assert len(pos) == 1
907
+ for j in pos:
908
+ permutation_map[j] = last_removed
909
+
910
+ editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
911
+ ret_expr = editor.to_array_contraction()
912
+ permutation = []
913
+ counter = 0
914
+ counter2 = 0
915
+ for j in range(get_rank(expr)):
916
+ if j in removed:
917
+ continue
918
+ if counter2 in permutation_map:
919
+ target = permutation_map[counter2]
920
+ permutation.append(target - shifts[target])
921
+ counter2 += 1
922
+ else:
923
+ while counter in permutation_map.values():
924
+ counter += 1
925
+ permutation.append(counter)
926
+ counter += 1
927
+ counter2 += 1
928
+ ret_expr2 = _permute_dims(ret_expr, _af_invert(permutation))
929
+ return ret_expr2, removed
930
+
931
+
932
+ def _combine_removed(dim: int, removed1: List[int], removed2: List[int]) -> List[int]:
933
+ # Concatenate two axis removal operations as performed by
934
+ # _remove_trivial_dims,
935
+ removed1 = sorted(removed1)
936
+ removed2 = sorted(removed2)
937
+ i = 0
938
+ j = 0
939
+ removed = []
940
+ while True:
941
+ if j >= len(removed2):
942
+ while i < len(removed1):
943
+ removed.append(removed1[i])
944
+ i += 1
945
+ break
946
+ elif i < len(removed1) and removed1[i] <= i + removed2[j]:
947
+ removed.append(removed1[i])
948
+ i += 1
949
+ else:
950
+ removed.append(i + removed2[j])
951
+ j += 1
952
+ return removed
953
+
954
+
955
+ def _array_contraction_to_diagonal_multiple_identity(expr: ArrayContraction):
956
+ editor = _EditArrayContraction(expr)
957
+ editor.track_permutation_start()
958
+ removed: List[int] = []
959
+ diag_index_counter: int = 0
960
+ for i in range(editor.number_of_contraction_indices):
961
+ identities = []
962
+ args = []
963
+ for j, arg in enumerate(editor.args_with_ind):
964
+ if i not in arg.indices:
965
+ continue
966
+ if isinstance(arg.element, Identity):
967
+ identities.append(arg)
968
+ else:
969
+ args.append(arg)
970
+ if len(identities) == 0:
971
+ continue
972
+ if len(args) + len(identities) < 3:
973
+ continue
974
+ new_diag_ind = -1 - diag_index_counter
975
+ diag_index_counter += 1
976
+ # Variable "flag" to control whether to skip this contraction set:
977
+ flag: bool = True
978
+ for i1, id1 in enumerate(identities):
979
+ if None not in id1.indices:
980
+ flag = True
981
+ break
982
+ free_pos = list(range(*editor.get_absolute_free_range(id1)))[0]
983
+ editor._track_permutation[-1].append(free_pos) # type: ignore
984
+ id1.element = None
985
+ flag = False
986
+ break
987
+ if flag:
988
+ continue
989
+ for arg in identities[:i1] + identities[i1+1:]:
990
+ arg.element = None
991
+ removed.extend(range(*editor.get_absolute_free_range(arg)))
992
+ for arg in args:
993
+ arg.indices = [new_diag_ind if j == i else j for j in arg.indices]
994
+ for j, e in enumerate(editor.args_with_ind):
995
+ if e.element is None:
996
+ editor._track_permutation[j] = None # type: ignore
997
+ editor._track_permutation = [i for i in editor._track_permutation if i is not None] # type: ignore
998
+ # Renumber permutation array form in order to deal with deleted positions:
999
+ remap = {e: i for i, e in enumerate(sorted({k for j in editor._track_permutation for k in j}))}
1000
+ editor._track_permutation = [[remap[j] for j in i] for i in editor._track_permutation]
1001
+ editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
1002
+ new_expr = editor.to_array_contraction()
1003
+ return new_expr, removed
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_matrix_to_array.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy import KroneckerProduct
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.function import Lambda
4
+ from sympy.core.mul import Mul
5
+ from sympy.core.numbers import Integer
6
+ from sympy.core.power import Pow
7
+ from sympy.core.singleton import S
8
+ from sympy.core.symbol import (Dummy, symbols)
9
+ from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct)
10
+ from sympy.matrices.expressions.matadd import MatAdd
11
+ from sympy.matrices.expressions.matmul import MatMul
12
+ from sympy.matrices.expressions.matpow import MatPow
13
+ from sympy.matrices.expressions.trace import Trace
14
+ from sympy.matrices.expressions.transpose import Transpose
15
+ from sympy.matrices.expressions.matexpr import MatrixExpr
16
+ from sympy.tensor.array.expressions.array_expressions import \
17
+ ArrayElementwiseApplyFunc, _array_tensor_product, _array_contraction, \
18
+ _array_diagonal, _array_add, _permute_dims, Reshape
19
+
20
+
21
+ def convert_matrix_to_array(expr: Basic) -> Basic:
22
+ if isinstance(expr, MatMul):
23
+ args_nonmat = []
24
+ args = []
25
+ for arg in expr.args:
26
+ if isinstance(arg, MatrixExpr):
27
+ args.append(arg)
28
+ else:
29
+ args_nonmat.append(convert_matrix_to_array(arg))
30
+ contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)]
31
+ scalar = _array_tensor_product(*args_nonmat) if args_nonmat else S.One
32
+ if scalar == 1:
33
+ tprod = _array_tensor_product(
34
+ *[convert_matrix_to_array(arg) for arg in args])
35
+ else:
36
+ tprod = _array_tensor_product(
37
+ scalar,
38
+ *[convert_matrix_to_array(arg) for arg in args])
39
+ return _array_contraction(
40
+ tprod,
41
+ *contractions
42
+ )
43
+ elif isinstance(expr, MatAdd):
44
+ return _array_add(
45
+ *[convert_matrix_to_array(arg) for arg in expr.args]
46
+ )
47
+ elif isinstance(expr, Transpose):
48
+ return _permute_dims(
49
+ convert_matrix_to_array(expr.args[0]), [1, 0]
50
+ )
51
+ elif isinstance(expr, Trace):
52
+ inner_expr: MatrixExpr = convert_matrix_to_array(expr.arg) # type: ignore
53
+ return _array_contraction(inner_expr, (0, len(inner_expr.shape) - 1))
54
+ elif isinstance(expr, Mul):
55
+ return _array_tensor_product(*[convert_matrix_to_array(i) for i in expr.args])
56
+ elif isinstance(expr, Pow):
57
+ base = convert_matrix_to_array(expr.base)
58
+ if (expr.exp > 0) == True:
59
+ return _array_tensor_product(*[base for i in range(expr.exp)])
60
+ else:
61
+ return expr
62
+ elif isinstance(expr, MatPow):
63
+ base = convert_matrix_to_array(expr.base)
64
+ if expr.exp.is_Integer != True:
65
+ b = symbols("b", cls=Dummy)
66
+ return ArrayElementwiseApplyFunc(Lambda(b, b**expr.exp), convert_matrix_to_array(base))
67
+ elif (expr.exp > 0) == True:
68
+ return convert_matrix_to_array(MatMul.fromiter(base for i in range(expr.exp)))
69
+ else:
70
+ return expr
71
+ elif isinstance(expr, HadamardProduct):
72
+ tp = _array_tensor_product(*[convert_matrix_to_array(arg) for arg in expr.args])
73
+ diag = [[2*i for i in range(len(expr.args))], [2*i+1 for i in range(len(expr.args))]]
74
+ return _array_diagonal(tp, *diag)
75
+ elif isinstance(expr, HadamardPower):
76
+ base, exp = expr.args
77
+ if isinstance(exp, Integer) and exp > 0:
78
+ return convert_matrix_to_array(HadamardProduct.fromiter(base for i in range(exp)))
79
+ else:
80
+ d = Dummy("d")
81
+ return ArrayElementwiseApplyFunc(Lambda(d, d**exp), base)
82
+ elif isinstance(expr, KroneckerProduct):
83
+ kp_args = [convert_matrix_to_array(arg) for arg in expr.args]
84
+ permutation = [2*i for i in range(len(kp_args))] + [2*i + 1 for i in range(len(kp_args))]
85
+ return Reshape(_permute_dims(_array_tensor_product(*kp_args), permutation), expr.shape)
86
+ else:
87
+ return expr