Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/diffgeom.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/rn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_class_structure.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_diffgeom.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_function_diffgeom_book.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_hyperbolic_space.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/__init__.py +20 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/gmpy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/importtools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/pythonmpq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/pythonmpq.py +341 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_autowrap.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_codegen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_importtools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_numpy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_pythonmpq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_scipy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_autowrap.py +313 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_codegen.py +379 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_importtools.py +40 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_numpy.py +333 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_pythonmpq.py +176 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_scipy.py +35 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/__init__.py +8 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/__pycache__/indexed_integrals.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/indexed_integrals.py +72 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/__pycache__/test_indexed_integrals.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/test_indexed_integrals.py +25 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/__init__.py +23 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/index_methods.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/indexed.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/tensor.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/toperators.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__init__.py +271 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/array_comprehension.py +399 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/array_derivatives.py +129 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/arrayop.py +528 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/dense_ndim_array.py +206 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__init__.py +178 -0
- env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/arrayexpr_derivatives.py +194 -0
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (859 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/diffgeom.cpython-310.pyc
ADDED
Binary file (76.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/__pycache__/rn.cpython-310.pyc
ADDED
Binary file (3.65 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_class_structure.cpython-310.pyc
ADDED
Binary file (1.47 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_diffgeom.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_function_diffgeom_book.cpython-310.pyc
ADDED
Binary file (4.97 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__pycache__/test_hyperbolic_space.cpython-310.pyc
ADDED
Binary file (2.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/__init__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unified place for determining if external dependencies are installed or not.
|
3 |
+
|
4 |
+
You should import all external modules using the import_module() function.
|
5 |
+
|
6 |
+
For example
|
7 |
+
|
8 |
+
>>> from sympy.external import import_module
|
9 |
+
>>> numpy = import_module('numpy')
|
10 |
+
|
11 |
+
If the resulting library is not installed, or if the installed version
|
12 |
+
is less than a given minimum version, the function will return None.
|
13 |
+
Otherwise, it will return the library. See the docstring of
|
14 |
+
import_module() for more information.
|
15 |
+
|
16 |
+
"""
|
17 |
+
|
18 |
+
from sympy.external.importtools import import_module
|
19 |
+
|
20 |
+
__all__ = ['import_module']
|
env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (773 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/gmpy.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/importtools.cpython-310.pyc
ADDED
Binary file (5.52 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/__pycache__/pythonmpq.cpython-310.pyc
ADDED
Binary file (8.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/pythonmpq.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
PythonMPQ: Rational number type based on Python integers.
|
3 |
+
|
4 |
+
This class is intended as a pure Python fallback for when gmpy2 is not
|
5 |
+
installed. If gmpy2 is installed then its mpq type will be used instead. The
|
6 |
+
mpq type is around 20x faster. We could just use the stdlib Fraction class
|
7 |
+
here but that is slower:
|
8 |
+
|
9 |
+
from fractions import Fraction
|
10 |
+
from sympy.external.pythonmpq import PythonMPQ
|
11 |
+
nums = range(1000)
|
12 |
+
dens = range(5, 1005)
|
13 |
+
rats = [Fraction(n, d) for n, d in zip(nums, dens)]
|
14 |
+
sum(rats) # <--- 24 milliseconds
|
15 |
+
rats = [PythonMPQ(n, d) for n, d in zip(nums, dens)]
|
16 |
+
sum(rats) # <--- 7 milliseconds
|
17 |
+
|
18 |
+
Both mpq and Fraction have some awkward features like the behaviour of
|
19 |
+
division with // and %:
|
20 |
+
|
21 |
+
>>> from fractions import Fraction
|
22 |
+
>>> Fraction(2, 3) % Fraction(1, 4)
|
23 |
+
1/6
|
24 |
+
|
25 |
+
For the QQ domain we do not want this behaviour because there should be no
|
26 |
+
remainder when dividing rational numbers. SymPy does not make use of this
|
27 |
+
aspect of mpq when gmpy2 is installed. Since this class is a fallback for that
|
28 |
+
case we do not bother implementing e.g. __mod__ so that we can be sure we
|
29 |
+
are not using it when gmpy2 is installed either.
|
30 |
+
"""
|
31 |
+
|
32 |
+
|
33 |
+
import operator
|
34 |
+
from math import gcd
|
35 |
+
from decimal import Decimal
|
36 |
+
from fractions import Fraction
|
37 |
+
import sys
|
38 |
+
from typing import Tuple as tTuple, Type
|
39 |
+
|
40 |
+
|
41 |
+
# Used for __hash__
|
42 |
+
_PyHASH_MODULUS = sys.hash_info.modulus
|
43 |
+
_PyHASH_INF = sys.hash_info.inf
|
44 |
+
|
45 |
+
|
46 |
+
class PythonMPQ:
|
47 |
+
"""Rational number implementation that is intended to be compatible with
|
48 |
+
gmpy2's mpq.
|
49 |
+
|
50 |
+
Also slightly faster than fractions.Fraction.
|
51 |
+
|
52 |
+
PythonMPQ should be treated as immutable although no effort is made to
|
53 |
+
prevent mutation (since that might slow down calculations).
|
54 |
+
"""
|
55 |
+
__slots__ = ('numerator', 'denominator')
|
56 |
+
|
57 |
+
def __new__(cls, numerator, denominator=None):
|
58 |
+
"""Construct PythonMPQ with gcd computation and checks"""
|
59 |
+
if denominator is not None:
|
60 |
+
#
|
61 |
+
# PythonMPQ(n, d): require n and d to be int and d != 0
|
62 |
+
#
|
63 |
+
if isinstance(numerator, int) and isinstance(denominator, int):
|
64 |
+
# This is the slow part:
|
65 |
+
divisor = gcd(numerator, denominator)
|
66 |
+
numerator //= divisor
|
67 |
+
denominator //= divisor
|
68 |
+
return cls._new_check(numerator, denominator)
|
69 |
+
else:
|
70 |
+
#
|
71 |
+
# PythonMPQ(q)
|
72 |
+
#
|
73 |
+
# Here q can be PythonMPQ, int, Decimal, float, Fraction or str
|
74 |
+
#
|
75 |
+
if isinstance(numerator, int):
|
76 |
+
return cls._new(numerator, 1)
|
77 |
+
elif isinstance(numerator, PythonMPQ):
|
78 |
+
return cls._new(numerator.numerator, numerator.denominator)
|
79 |
+
|
80 |
+
# Let Fraction handle Decimal/float conversion and str parsing
|
81 |
+
if isinstance(numerator, (Decimal, float, str)):
|
82 |
+
numerator = Fraction(numerator)
|
83 |
+
if isinstance(numerator, Fraction):
|
84 |
+
return cls._new(numerator.numerator, numerator.denominator)
|
85 |
+
#
|
86 |
+
# Reject everything else. This is more strict than mpq which allows
|
87 |
+
# things like mpq(Fraction, Fraction) or mpq(Decimal, any). The mpq
|
88 |
+
# behaviour is somewhat inconsistent so we choose to accept only a
|
89 |
+
# more strict subset of what mpq allows.
|
90 |
+
#
|
91 |
+
raise TypeError("PythonMPQ() requires numeric or string argument")
|
92 |
+
|
93 |
+
@classmethod
|
94 |
+
def _new_check(cls, numerator, denominator):
|
95 |
+
"""Construct PythonMPQ, check divide by zero and canonicalize signs"""
|
96 |
+
if not denominator:
|
97 |
+
raise ZeroDivisionError(f'Zero divisor {numerator}/{denominator}')
|
98 |
+
elif denominator < 0:
|
99 |
+
numerator = -numerator
|
100 |
+
denominator = -denominator
|
101 |
+
return cls._new(numerator, denominator)
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def _new(cls, numerator, denominator):
|
105 |
+
"""Construct PythonMPQ efficiently (no checks)"""
|
106 |
+
obj = super().__new__(cls)
|
107 |
+
obj.numerator = numerator
|
108 |
+
obj.denominator = denominator
|
109 |
+
return obj
|
110 |
+
|
111 |
+
def __int__(self):
|
112 |
+
"""Convert to int (truncates towards zero)"""
|
113 |
+
p, q = self.numerator, self.denominator
|
114 |
+
if p < 0:
|
115 |
+
return -(-p//q)
|
116 |
+
return p//q
|
117 |
+
|
118 |
+
def __float__(self):
|
119 |
+
"""Convert to float (approximately)"""
|
120 |
+
return self.numerator / self.denominator
|
121 |
+
|
122 |
+
def __bool__(self):
|
123 |
+
"""True/False if nonzero/zero"""
|
124 |
+
return bool(self.numerator)
|
125 |
+
|
126 |
+
def __eq__(self, other):
|
127 |
+
"""Compare equal with PythonMPQ, int, float, Decimal or Fraction"""
|
128 |
+
if isinstance(other, PythonMPQ):
|
129 |
+
return (self.numerator == other.numerator
|
130 |
+
and self.denominator == other.denominator)
|
131 |
+
elif isinstance(other, self._compatible_types):
|
132 |
+
return self.__eq__(PythonMPQ(other))
|
133 |
+
else:
|
134 |
+
return NotImplemented
|
135 |
+
|
136 |
+
def __hash__(self):
|
137 |
+
"""hash - same as mpq/Fraction"""
|
138 |
+
try:
|
139 |
+
dinv = pow(self.denominator, -1, _PyHASH_MODULUS)
|
140 |
+
except ValueError:
|
141 |
+
hash_ = _PyHASH_INF
|
142 |
+
else:
|
143 |
+
hash_ = hash(hash(abs(self.numerator)) * dinv)
|
144 |
+
result = hash_ if self.numerator >= 0 else -hash_
|
145 |
+
return -2 if result == -1 else result
|
146 |
+
|
147 |
+
def __reduce__(self):
|
148 |
+
"""Deconstruct for pickling"""
|
149 |
+
return type(self), (self.numerator, self.denominator)
|
150 |
+
|
151 |
+
def __str__(self):
|
152 |
+
"""Convert to string"""
|
153 |
+
if self.denominator != 1:
|
154 |
+
return f"{self.numerator}/{self.denominator}"
|
155 |
+
else:
|
156 |
+
return f"{self.numerator}"
|
157 |
+
|
158 |
+
def __repr__(self):
|
159 |
+
"""Convert to string"""
|
160 |
+
return f"MPQ({self.numerator},{self.denominator})"
|
161 |
+
|
162 |
+
def _cmp(self, other, op):
|
163 |
+
"""Helper for lt/le/gt/ge"""
|
164 |
+
if not isinstance(other, self._compatible_types):
|
165 |
+
return NotImplemented
|
166 |
+
lhs = self.numerator * other.denominator
|
167 |
+
rhs = other.numerator * self.denominator
|
168 |
+
return op(lhs, rhs)
|
169 |
+
|
170 |
+
def __lt__(self, other):
|
171 |
+
"""self < other"""
|
172 |
+
return self._cmp(other, operator.lt)
|
173 |
+
|
174 |
+
def __le__(self, other):
|
175 |
+
"""self <= other"""
|
176 |
+
return self._cmp(other, operator.le)
|
177 |
+
|
178 |
+
def __gt__(self, other):
|
179 |
+
"""self > other"""
|
180 |
+
return self._cmp(other, operator.gt)
|
181 |
+
|
182 |
+
def __ge__(self, other):
|
183 |
+
"""self >= other"""
|
184 |
+
return self._cmp(other, operator.ge)
|
185 |
+
|
186 |
+
def __abs__(self):
|
187 |
+
"""abs(q)"""
|
188 |
+
return self._new(abs(self.numerator), self.denominator)
|
189 |
+
|
190 |
+
def __pos__(self):
|
191 |
+
"""+q"""
|
192 |
+
return self
|
193 |
+
|
194 |
+
def __neg__(self):
|
195 |
+
"""-q"""
|
196 |
+
return self._new(-self.numerator, self.denominator)
|
197 |
+
|
198 |
+
def __add__(self, other):
|
199 |
+
"""q1 + q2"""
|
200 |
+
if isinstance(other, PythonMPQ):
|
201 |
+
#
|
202 |
+
# This is much faster than the naive method used in the stdlib
|
203 |
+
# fractions module. Not sure where this method comes from
|
204 |
+
# though...
|
205 |
+
#
|
206 |
+
# Compare timings for something like:
|
207 |
+
# nums = range(1000)
|
208 |
+
# rats = [PythonMPQ(n, d) for n, d in zip(nums[:-5], nums[5:])]
|
209 |
+
# sum(rats) # <-- time this
|
210 |
+
#
|
211 |
+
ap, aq = self.numerator, self.denominator
|
212 |
+
bp, bq = other.numerator, other.denominator
|
213 |
+
g = gcd(aq, bq)
|
214 |
+
if g == 1:
|
215 |
+
p = ap*bq + aq*bp
|
216 |
+
q = bq*aq
|
217 |
+
else:
|
218 |
+
q1, q2 = aq//g, bq//g
|
219 |
+
p, q = ap*q2 + bp*q1, q1*q2
|
220 |
+
g2 = gcd(p, g)
|
221 |
+
p, q = (p // g2), q * (g // g2)
|
222 |
+
|
223 |
+
elif isinstance(other, int):
|
224 |
+
p = self.numerator + self.denominator * other
|
225 |
+
q = self.denominator
|
226 |
+
else:
|
227 |
+
return NotImplemented
|
228 |
+
|
229 |
+
return self._new(p, q)
|
230 |
+
|
231 |
+
def __radd__(self, other):
|
232 |
+
"""z1 + q2"""
|
233 |
+
if isinstance(other, int):
|
234 |
+
p = self.numerator + self.denominator * other
|
235 |
+
q = self.denominator
|
236 |
+
return self._new(p, q)
|
237 |
+
else:
|
238 |
+
return NotImplemented
|
239 |
+
|
240 |
+
def __sub__(self ,other):
|
241 |
+
"""q1 - q2"""
|
242 |
+
if isinstance(other, PythonMPQ):
|
243 |
+
ap, aq = self.numerator, self.denominator
|
244 |
+
bp, bq = other.numerator, other.denominator
|
245 |
+
g = gcd(aq, bq)
|
246 |
+
if g == 1:
|
247 |
+
p = ap*bq - aq*bp
|
248 |
+
q = bq*aq
|
249 |
+
else:
|
250 |
+
q1, q2 = aq//g, bq//g
|
251 |
+
p, q = ap*q2 - bp*q1, q1*q2
|
252 |
+
g2 = gcd(p, g)
|
253 |
+
p, q = (p // g2), q * (g // g2)
|
254 |
+
elif isinstance(other, int):
|
255 |
+
p = self.numerator - self.denominator*other
|
256 |
+
q = self.denominator
|
257 |
+
else:
|
258 |
+
return NotImplemented
|
259 |
+
|
260 |
+
return self._new(p, q)
|
261 |
+
|
262 |
+
def __rsub__(self, other):
|
263 |
+
"""z1 - q2"""
|
264 |
+
if isinstance(other, int):
|
265 |
+
p = self.denominator * other - self.numerator
|
266 |
+
q = self.denominator
|
267 |
+
return self._new(p, q)
|
268 |
+
else:
|
269 |
+
return NotImplemented
|
270 |
+
|
271 |
+
def __mul__(self, other):
|
272 |
+
"""q1 * q2"""
|
273 |
+
if isinstance(other, PythonMPQ):
|
274 |
+
ap, aq = self.numerator, self.denominator
|
275 |
+
bp, bq = other.numerator, other.denominator
|
276 |
+
x1 = gcd(ap, bq)
|
277 |
+
x2 = gcd(bp, aq)
|
278 |
+
p, q = ((ap//x1)*(bp//x2), (aq//x2)*(bq//x1))
|
279 |
+
elif isinstance(other, int):
|
280 |
+
x = gcd(other, self.denominator)
|
281 |
+
p = self.numerator*(other//x)
|
282 |
+
q = self.denominator//x
|
283 |
+
else:
|
284 |
+
return NotImplemented
|
285 |
+
|
286 |
+
return self._new(p, q)
|
287 |
+
|
288 |
+
def __rmul__(self, other):
|
289 |
+
"""z1 * q2"""
|
290 |
+
if isinstance(other, int):
|
291 |
+
x = gcd(self.denominator, other)
|
292 |
+
p = self.numerator*(other//x)
|
293 |
+
q = self.denominator//x
|
294 |
+
return self._new(p, q)
|
295 |
+
else:
|
296 |
+
return NotImplemented
|
297 |
+
|
298 |
+
def __pow__(self, exp):
|
299 |
+
"""q ** z"""
|
300 |
+
p, q = self.numerator, self.denominator
|
301 |
+
|
302 |
+
if exp < 0:
|
303 |
+
p, q, exp = q, p, -exp
|
304 |
+
|
305 |
+
return self._new_check(p**exp, q**exp)
|
306 |
+
|
307 |
+
def __truediv__(self, other):
|
308 |
+
"""q1 / q2"""
|
309 |
+
if isinstance(other, PythonMPQ):
|
310 |
+
ap, aq = self.numerator, self.denominator
|
311 |
+
bp, bq = other.numerator, other.denominator
|
312 |
+
x1 = gcd(ap, bp)
|
313 |
+
x2 = gcd(bq, aq)
|
314 |
+
p, q = ((ap//x1)*(bq//x2), (aq//x2)*(bp//x1))
|
315 |
+
elif isinstance(other, int):
|
316 |
+
x = gcd(other, self.numerator)
|
317 |
+
p = self.numerator//x
|
318 |
+
q = self.denominator*(other//x)
|
319 |
+
else:
|
320 |
+
return NotImplemented
|
321 |
+
|
322 |
+
return self._new_check(p, q)
|
323 |
+
|
324 |
+
def __rtruediv__(self, other):
|
325 |
+
"""z / q"""
|
326 |
+
if isinstance(other, int):
|
327 |
+
x = gcd(self.numerator, other)
|
328 |
+
p = self.denominator*(other//x)
|
329 |
+
q = self.numerator//x
|
330 |
+
return self._new_check(p, q)
|
331 |
+
else:
|
332 |
+
return NotImplemented
|
333 |
+
|
334 |
+
_compatible_types: tTuple[Type, ...] = ()
|
335 |
+
|
336 |
+
#
|
337 |
+
# These are the types that PythonMPQ will interoperate with for operations
|
338 |
+
# and comparisons such as ==, + etc. We define this down here so that we can
|
339 |
+
# include PythonMPQ in the list as well.
|
340 |
+
#
|
341 |
+
PythonMPQ._compatible_types = (PythonMPQ, int, Decimal, Fraction)
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_autowrap.cpython-310.pyc
ADDED
Binary file (9.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_codegen.cpython-310.pyc
ADDED
Binary file (9.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_importtools.cpython-310.pyc
ADDED
Binary file (1.47 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_numpy.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_pythonmpq.cpython-310.pyc
ADDED
Binary file (6.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/__pycache__/test_scipy.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_autowrap.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sympy
|
2 |
+
import tempfile
|
3 |
+
import os
|
4 |
+
from sympy.core.mod import Mod
|
5 |
+
from sympy.core.relational import Eq
|
6 |
+
from sympy.core.symbol import symbols
|
7 |
+
from sympy.external import import_module
|
8 |
+
from sympy.tensor import IndexedBase, Idx
|
9 |
+
from sympy.utilities.autowrap import autowrap, ufuncify, CodeWrapError
|
10 |
+
from sympy.testing.pytest import skip
|
11 |
+
|
12 |
+
numpy = import_module('numpy', min_module_version='1.6.1')
|
13 |
+
Cython = import_module('Cython', min_module_version='0.15.1')
|
14 |
+
f2py = import_module('numpy.f2py', import_kwargs={'fromlist': ['f2py']})
|
15 |
+
|
16 |
+
f2pyworks = False
|
17 |
+
if f2py:
|
18 |
+
try:
|
19 |
+
autowrap(symbols('x'), 'f95', 'f2py')
|
20 |
+
except (CodeWrapError, ImportError, OSError):
|
21 |
+
f2pyworks = False
|
22 |
+
else:
|
23 |
+
f2pyworks = True
|
24 |
+
|
25 |
+
a, b, c = symbols('a b c')
|
26 |
+
n, m, d = symbols('n m d', integer=True)
|
27 |
+
A, B, C = symbols('A B C', cls=IndexedBase)
|
28 |
+
i = Idx('i', m)
|
29 |
+
j = Idx('j', n)
|
30 |
+
k = Idx('k', d)
|
31 |
+
|
32 |
+
|
33 |
+
def has_module(module):
|
34 |
+
"""
|
35 |
+
Return True if module exists, otherwise run skip().
|
36 |
+
|
37 |
+
module should be a string.
|
38 |
+
"""
|
39 |
+
# To give a string of the module name to skip(), this function takes a
|
40 |
+
# string. So we don't waste time running import_module() more than once,
|
41 |
+
# just map the three modules tested here in this dict.
|
42 |
+
modnames = {'numpy': numpy, 'Cython': Cython, 'f2py': f2py}
|
43 |
+
|
44 |
+
if modnames[module]:
|
45 |
+
if module == 'f2py' and not f2pyworks:
|
46 |
+
skip("Couldn't run f2py.")
|
47 |
+
return True
|
48 |
+
skip("Couldn't import %s." % module)
|
49 |
+
|
50 |
+
#
|
51 |
+
# test runners used by several language-backend combinations
|
52 |
+
#
|
53 |
+
|
54 |
+
def runtest_autowrap_twice(language, backend):
|
55 |
+
f = autowrap((((a + b)/c)**5).expand(), language, backend)
|
56 |
+
g = autowrap((((a + b)/c)**4).expand(), language, backend)
|
57 |
+
|
58 |
+
# check that autowrap updates the module name. Else, g gives the same as f
|
59 |
+
assert f(1, -2, 1) == -1.0
|
60 |
+
assert g(1, -2, 1) == 1.0
|
61 |
+
|
62 |
+
|
63 |
+
def runtest_autowrap_trace(language, backend):
|
64 |
+
has_module('numpy')
|
65 |
+
trace = autowrap(A[i, i], language, backend)
|
66 |
+
assert trace(numpy.eye(100)) == 100
|
67 |
+
|
68 |
+
|
69 |
+
def runtest_autowrap_matrix_vector(language, backend):
|
70 |
+
has_module('numpy')
|
71 |
+
x, y = symbols('x y', cls=IndexedBase)
|
72 |
+
expr = Eq(y[i], A[i, j]*x[j])
|
73 |
+
mv = autowrap(expr, language, backend)
|
74 |
+
|
75 |
+
# compare with numpy's dot product
|
76 |
+
M = numpy.random.rand(10, 20)
|
77 |
+
x = numpy.random.rand(20)
|
78 |
+
y = numpy.dot(M, x)
|
79 |
+
assert numpy.sum(numpy.abs(y - mv(M, x))) < 1e-13
|
80 |
+
|
81 |
+
|
82 |
+
def runtest_autowrap_matrix_matrix(language, backend):
|
83 |
+
has_module('numpy')
|
84 |
+
expr = Eq(C[i, j], A[i, k]*B[k, j])
|
85 |
+
matmat = autowrap(expr, language, backend)
|
86 |
+
|
87 |
+
# compare with numpy's dot product
|
88 |
+
M1 = numpy.random.rand(10, 20)
|
89 |
+
M2 = numpy.random.rand(20, 15)
|
90 |
+
M3 = numpy.dot(M1, M2)
|
91 |
+
assert numpy.sum(numpy.abs(M3 - matmat(M1, M2))) < 1e-13
|
92 |
+
|
93 |
+
|
94 |
+
def runtest_ufuncify(language, backend):
|
95 |
+
has_module('numpy')
|
96 |
+
a, b, c = symbols('a b c')
|
97 |
+
fabc = ufuncify([a, b, c], a*b + c, backend=backend)
|
98 |
+
facb = ufuncify([a, c, b], a*b + c, backend=backend)
|
99 |
+
grid = numpy.linspace(-2, 2, 50)
|
100 |
+
b = numpy.linspace(-5, 4, 50)
|
101 |
+
c = numpy.linspace(-1, 1, 50)
|
102 |
+
expected = grid*b + c
|
103 |
+
numpy.testing.assert_allclose(fabc(grid, b, c), expected)
|
104 |
+
numpy.testing.assert_allclose(facb(grid, c, b), expected)
|
105 |
+
|
106 |
+
|
107 |
+
def runtest_issue_10274(language, backend):
|
108 |
+
expr = (a - b + c)**(13)
|
109 |
+
tmp = tempfile.mkdtemp()
|
110 |
+
f = autowrap(expr, language, backend, tempdir=tmp,
|
111 |
+
helpers=('helper', a - b + c, (a, b, c)))
|
112 |
+
assert f(1, 1, 1) == 1
|
113 |
+
|
114 |
+
for file in os.listdir(tmp):
|
115 |
+
if not (file.startswith("wrapped_code_") and file.endswith(".c")):
|
116 |
+
continue
|
117 |
+
|
118 |
+
with open(tmp + '/' + file) as fil:
|
119 |
+
lines = fil.readlines()
|
120 |
+
assert lines[0] == "/******************************************************************************\n"
|
121 |
+
assert "Code generated with SymPy " + sympy.__version__ in lines[1]
|
122 |
+
assert lines[2:] == [
|
123 |
+
" * *\n",
|
124 |
+
" * See http://www.sympy.org/ for more information. *\n",
|
125 |
+
" * *\n",
|
126 |
+
" * This file is part of 'autowrap' *\n",
|
127 |
+
" ******************************************************************************/\n",
|
128 |
+
"#include " + '"' + file[:-1]+ 'h"' + "\n",
|
129 |
+
"#include <math.h>\n",
|
130 |
+
"\n",
|
131 |
+
"double helper(double a, double b, double c) {\n",
|
132 |
+
"\n",
|
133 |
+
" double helper_result;\n",
|
134 |
+
" helper_result = a - b + c;\n",
|
135 |
+
" return helper_result;\n",
|
136 |
+
"\n",
|
137 |
+
"}\n",
|
138 |
+
"\n",
|
139 |
+
"double autofunc(double a, double b, double c) {\n",
|
140 |
+
"\n",
|
141 |
+
" double autofunc_result;\n",
|
142 |
+
" autofunc_result = pow(helper(a, b, c), 13);\n",
|
143 |
+
" return autofunc_result;\n",
|
144 |
+
"\n",
|
145 |
+
"}\n",
|
146 |
+
]
|
147 |
+
|
148 |
+
|
149 |
+
def runtest_issue_15337(language, backend):
|
150 |
+
has_module('numpy')
|
151 |
+
# NOTE : autowrap was originally designed to only accept an iterable for
|
152 |
+
# the kwarg "helpers", but in issue 10274 the user mistakenly thought that
|
153 |
+
# if there was only a single helper it did not need to be passed via an
|
154 |
+
# iterable that wrapped the helper tuple. There were no tests for this
|
155 |
+
# behavior so when the code was changed to accept a single tuple it broke
|
156 |
+
# the original behavior. These tests below ensure that both now work.
|
157 |
+
a, b, c, d, e = symbols('a, b, c, d, e')
|
158 |
+
expr = (a - b + c - d + e)**13
|
159 |
+
exp_res = (1. - 2. + 3. - 4. + 5.)**13
|
160 |
+
|
161 |
+
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
|
162 |
+
helpers=('f1', a - b + c, (a, b, c)))
|
163 |
+
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
|
164 |
+
|
165 |
+
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
|
166 |
+
helpers=(('f1', a - b, (a, b)), ('f2', c - d, (c, d))))
|
167 |
+
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
|
168 |
+
|
169 |
+
|
170 |
+
def test_issue_15230():
|
171 |
+
has_module('f2py')
|
172 |
+
|
173 |
+
x, y = symbols('x, y')
|
174 |
+
expr = Mod(x, 3.0) - Mod(y, -2.0)
|
175 |
+
f = autowrap(expr, args=[x, y], language='F95')
|
176 |
+
exp_res = float(expr.xreplace({x: 3.5, y: 2.7}).evalf())
|
177 |
+
assert abs(f(3.5, 2.7) - exp_res) < 1e-14
|
178 |
+
|
179 |
+
x, y = symbols('x, y', integer=True)
|
180 |
+
expr = Mod(x, 3) - Mod(y, -2)
|
181 |
+
f = autowrap(expr, args=[x, y], language='F95')
|
182 |
+
assert f(3, 2) == expr.xreplace({x: 3, y: 2})
|
183 |
+
|
184 |
+
#
|
185 |
+
# tests of language-backend combinations
|
186 |
+
#
|
187 |
+
|
188 |
+
# f2py
|
189 |
+
|
190 |
+
|
191 |
+
def test_wrap_twice_f95_f2py():
|
192 |
+
has_module('f2py')
|
193 |
+
runtest_autowrap_twice('f95', 'f2py')
|
194 |
+
|
195 |
+
|
196 |
+
def test_autowrap_trace_f95_f2py():
|
197 |
+
has_module('f2py')
|
198 |
+
runtest_autowrap_trace('f95', 'f2py')
|
199 |
+
|
200 |
+
|
201 |
+
def test_autowrap_matrix_vector_f95_f2py():
|
202 |
+
has_module('f2py')
|
203 |
+
runtest_autowrap_matrix_vector('f95', 'f2py')
|
204 |
+
|
205 |
+
|
206 |
+
def test_autowrap_matrix_matrix_f95_f2py():
|
207 |
+
has_module('f2py')
|
208 |
+
runtest_autowrap_matrix_matrix('f95', 'f2py')
|
209 |
+
|
210 |
+
|
211 |
+
def test_ufuncify_f95_f2py():
|
212 |
+
has_module('f2py')
|
213 |
+
runtest_ufuncify('f95', 'f2py')
|
214 |
+
|
215 |
+
|
216 |
+
def test_issue_15337_f95_f2py():
|
217 |
+
has_module('f2py')
|
218 |
+
runtest_issue_15337('f95', 'f2py')
|
219 |
+
|
220 |
+
# Cython
|
221 |
+
|
222 |
+
|
223 |
+
def test_wrap_twice_c_cython():
|
224 |
+
has_module('Cython')
|
225 |
+
runtest_autowrap_twice('C', 'cython')
|
226 |
+
|
227 |
+
|
228 |
+
def test_autowrap_trace_C_Cython():
|
229 |
+
has_module('Cython')
|
230 |
+
runtest_autowrap_trace('C99', 'cython')
|
231 |
+
|
232 |
+
|
233 |
+
def test_autowrap_matrix_vector_C_cython():
|
234 |
+
has_module('Cython')
|
235 |
+
runtest_autowrap_matrix_vector('C99', 'cython')
|
236 |
+
|
237 |
+
|
238 |
+
def test_autowrap_matrix_matrix_C_cython():
|
239 |
+
has_module('Cython')
|
240 |
+
runtest_autowrap_matrix_matrix('C99', 'cython')
|
241 |
+
|
242 |
+
|
243 |
+
def test_ufuncify_C_Cython():
|
244 |
+
has_module('Cython')
|
245 |
+
runtest_ufuncify('C99', 'cython')
|
246 |
+
|
247 |
+
|
248 |
+
def test_issue_10274_C_cython():
|
249 |
+
has_module('Cython')
|
250 |
+
runtest_issue_10274('C89', 'cython')
|
251 |
+
|
252 |
+
|
253 |
+
def test_issue_15337_C_cython():
|
254 |
+
has_module('Cython')
|
255 |
+
runtest_issue_15337('C89', 'cython')
|
256 |
+
|
257 |
+
|
258 |
+
def test_autowrap_custom_printer():
|
259 |
+
has_module('Cython')
|
260 |
+
|
261 |
+
from sympy.core.numbers import pi
|
262 |
+
from sympy.utilities.codegen import C99CodeGen
|
263 |
+
from sympy.printing.c import C99CodePrinter
|
264 |
+
|
265 |
+
class PiPrinter(C99CodePrinter):
|
266 |
+
def _print_Pi(self, expr):
|
267 |
+
return "S_PI"
|
268 |
+
|
269 |
+
printer = PiPrinter()
|
270 |
+
gen = C99CodeGen(printer=printer)
|
271 |
+
gen.preprocessor_statements.append('#include "shortpi.h"')
|
272 |
+
|
273 |
+
expr = pi * a
|
274 |
+
|
275 |
+
expected = (
|
276 |
+
'#include "%s"\n'
|
277 |
+
'#include <math.h>\n'
|
278 |
+
'#include "shortpi.h"\n'
|
279 |
+
'\n'
|
280 |
+
'double autofunc(double a) {\n'
|
281 |
+
'\n'
|
282 |
+
' double autofunc_result;\n'
|
283 |
+
' autofunc_result = S_PI*a;\n'
|
284 |
+
' return autofunc_result;\n'
|
285 |
+
'\n'
|
286 |
+
'}\n'
|
287 |
+
)
|
288 |
+
|
289 |
+
tmpdir = tempfile.mkdtemp()
|
290 |
+
# write a trivial header file to use in the generated code
|
291 |
+
with open(os.path.join(tmpdir, 'shortpi.h'), 'w') as f:
|
292 |
+
f.write('#define S_PI 3.14')
|
293 |
+
|
294 |
+
func = autowrap(expr, backend='cython', tempdir=tmpdir, code_gen=gen)
|
295 |
+
|
296 |
+
assert func(4.2) == 3.14 * 4.2
|
297 |
+
|
298 |
+
# check that the generated code is correct
|
299 |
+
for filename in os.listdir(tmpdir):
|
300 |
+
if filename.startswith('wrapped_code') and filename.endswith('.c'):
|
301 |
+
with open(os.path.join(tmpdir, filename)) as f:
|
302 |
+
lines = f.readlines()
|
303 |
+
expected = expected % filename.replace('.c', '.h')
|
304 |
+
assert ''.join(lines[7:]) == expected
|
305 |
+
|
306 |
+
|
307 |
+
# Numpy
|
308 |
+
|
309 |
+
def test_ufuncify_numpy():
|
310 |
+
# This test doesn't use Cython, but if Cython works, then there is a valid
|
311 |
+
# C compiler, which is needed.
|
312 |
+
has_module('Cython')
|
313 |
+
runtest_ufuncify('C99', 'numpy')
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_codegen.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This tests the compilation and execution of the source code generated with
|
2 |
+
# utilities.codegen. The compilation takes place in a temporary directory that
|
3 |
+
# is removed after the test. By default the test directory is always removed,
|
4 |
+
# but this behavior can be changed by setting the environment variable
|
5 |
+
# SYMPY_TEST_CLEAN_TEMP to:
|
6 |
+
# export SYMPY_TEST_CLEAN_TEMP=always : the default behavior.
|
7 |
+
# export SYMPY_TEST_CLEAN_TEMP=success : only remove the directories of working tests.
|
8 |
+
# export SYMPY_TEST_CLEAN_TEMP=never : never remove the directories with the test code.
|
9 |
+
# When a directory is not removed, the necessary information is printed on
|
10 |
+
# screen to find the files that belong to the (failed) tests. If a test does
|
11 |
+
# not fail, py.test captures all the output and you will not see the directories
|
12 |
+
# corresponding to the successful tests. Use the --nocapture option to see all
|
13 |
+
# the output.
|
14 |
+
|
15 |
+
# All tests below have a counterpart in utilities/test/test_codegen.py. In the
|
16 |
+
# latter file, the resulting code is compared with predefined strings, without
|
17 |
+
# compilation or execution.
|
18 |
+
|
19 |
+
# All the generated Fortran code should conform with the Fortran 95 standard,
|
20 |
+
# and all the generated C code should be ANSI C, which facilitates the
|
21 |
+
# incorporation in various projects. The tests below assume that the binary cc
|
22 |
+
# is somewhere in the path and that it can compile ANSI C code.
|
23 |
+
|
24 |
+
from sympy.abc import x, y, z
|
25 |
+
from sympy.external import import_module
|
26 |
+
from sympy.testing.pytest import skip
|
27 |
+
from sympy.utilities.codegen import codegen, make_routine, get_code_generator
|
28 |
+
import sys
|
29 |
+
import os
|
30 |
+
import tempfile
|
31 |
+
import subprocess
|
32 |
+
|
33 |
+
|
34 |
+
pyodide_js = import_module('pyodide_js')
|
35 |
+
|
36 |
+
# templates for the main program that will test the generated code.
|
37 |
+
|
38 |
+
main_template = {}
|
39 |
+
main_template['F95'] = """
|
40 |
+
program main
|
41 |
+
include "codegen.h"
|
42 |
+
integer :: result;
|
43 |
+
result = 0
|
44 |
+
|
45 |
+
%(statements)s
|
46 |
+
|
47 |
+
call exit(result)
|
48 |
+
end program
|
49 |
+
"""
|
50 |
+
|
51 |
+
main_template['C89'] = """
|
52 |
+
#include "codegen.h"
|
53 |
+
#include <stdio.h>
|
54 |
+
#include <math.h>
|
55 |
+
|
56 |
+
int main() {
|
57 |
+
int result = 0;
|
58 |
+
|
59 |
+
%(statements)s
|
60 |
+
|
61 |
+
return result;
|
62 |
+
}
|
63 |
+
"""
|
64 |
+
main_template['C99'] = main_template['C89']
|
65 |
+
# templates for the numerical tests
|
66 |
+
|
67 |
+
numerical_test_template = {}
|
68 |
+
numerical_test_template['C89'] = """
|
69 |
+
if (fabs(%(call)s)>%(threshold)s) {
|
70 |
+
printf("Numerical validation failed: %(call)s=%%e threshold=%(threshold)s\\n", %(call)s);
|
71 |
+
result = -1;
|
72 |
+
}
|
73 |
+
"""
|
74 |
+
numerical_test_template['C99'] = numerical_test_template['C89']
|
75 |
+
|
76 |
+
numerical_test_template['F95'] = """
|
77 |
+
if (abs(%(call)s)>%(threshold)s) then
|
78 |
+
write(6,"('Numerical validation failed:')")
|
79 |
+
write(6,"('%(call)s=',e15.5,'threshold=',e15.5)") %(call)s, %(threshold)s
|
80 |
+
result = -1;
|
81 |
+
end if
|
82 |
+
"""
|
83 |
+
# command sequences for supported compilers
|
84 |
+
|
85 |
+
compile_commands = {}
|
86 |
+
compile_commands['cc'] = [
|
87 |
+
"cc -c codegen.c -o codegen.o",
|
88 |
+
"cc -c main.c -o main.o",
|
89 |
+
"cc main.o codegen.o -lm -o test.exe"
|
90 |
+
]
|
91 |
+
|
92 |
+
compile_commands['gfortran'] = [
|
93 |
+
"gfortran -c codegen.f90 -o codegen.o",
|
94 |
+
"gfortran -ffree-line-length-none -c main.f90 -o main.o",
|
95 |
+
"gfortran main.o codegen.o -o test.exe"
|
96 |
+
]
|
97 |
+
|
98 |
+
compile_commands['g95'] = [
|
99 |
+
"g95 -c codegen.f90 -o codegen.o",
|
100 |
+
"g95 -ffree-line-length-huge -c main.f90 -o main.o",
|
101 |
+
"g95 main.o codegen.o -o test.exe"
|
102 |
+
]
|
103 |
+
|
104 |
+
compile_commands['ifort'] = [
|
105 |
+
"ifort -c codegen.f90 -o codegen.o",
|
106 |
+
"ifort -c main.f90 -o main.o",
|
107 |
+
"ifort main.o codegen.o -o test.exe"
|
108 |
+
]
|
109 |
+
|
110 |
+
combinations_lang_compiler = [
|
111 |
+
('C89', 'cc'),
|
112 |
+
('C99', 'cc'),
|
113 |
+
('F95', 'ifort'),
|
114 |
+
('F95', 'gfortran'),
|
115 |
+
('F95', 'g95')
|
116 |
+
]
|
117 |
+
|
118 |
+
|
119 |
+
def try_run(commands):
|
120 |
+
"""Run a series of commands and only return True if all ran fine."""
|
121 |
+
if pyodide_js:
|
122 |
+
return False
|
123 |
+
with open(os.devnull, 'w') as null:
|
124 |
+
for command in commands:
|
125 |
+
retcode = subprocess.call(command, stdout=null, shell=True,
|
126 |
+
stderr=subprocess.STDOUT)
|
127 |
+
if retcode != 0:
|
128 |
+
return False
|
129 |
+
return True
|
130 |
+
|
131 |
+
|
132 |
+
def run_test(label, routines, numerical_tests, language, commands, friendly=True):
|
133 |
+
"""A driver for the codegen tests.
|
134 |
+
|
135 |
+
This driver assumes that a compiler ifort is present in the PATH and that
|
136 |
+
ifort is (at least) a Fortran 90 compiler. The generated code is written in
|
137 |
+
a temporary directory, together with a main program that validates the
|
138 |
+
generated code. The test passes when the compilation and the validation
|
139 |
+
run correctly.
|
140 |
+
"""
|
141 |
+
|
142 |
+
# Check input arguments before touching the file system
|
143 |
+
language = language.upper()
|
144 |
+
assert language in main_template
|
145 |
+
assert language in numerical_test_template
|
146 |
+
|
147 |
+
# Check that environment variable makes sense
|
148 |
+
clean = os.getenv('SYMPY_TEST_CLEAN_TEMP', 'always').lower()
|
149 |
+
if clean not in ('always', 'success', 'never'):
|
150 |
+
raise ValueError("SYMPY_TEST_CLEAN_TEMP must be one of the following: 'always', 'success' or 'never'.")
|
151 |
+
|
152 |
+
# Do all the magic to compile, run and validate the test code
|
153 |
+
# 1) prepare the temporary working directory, switch to that dir
|
154 |
+
work = tempfile.mkdtemp("_sympy_%s_test" % language, "%s_" % label)
|
155 |
+
oldwork = os.getcwd()
|
156 |
+
os.chdir(work)
|
157 |
+
|
158 |
+
# 2) write the generated code
|
159 |
+
if friendly:
|
160 |
+
# interpret the routines as a name_expr list and call the friendly
|
161 |
+
# function codegen
|
162 |
+
codegen(routines, language, "codegen", to_files=True)
|
163 |
+
else:
|
164 |
+
code_gen = get_code_generator(language, "codegen")
|
165 |
+
code_gen.write(routines, "codegen", to_files=True)
|
166 |
+
|
167 |
+
# 3) write a simple main program that links to the generated code, and that
|
168 |
+
# includes the numerical tests
|
169 |
+
test_strings = []
|
170 |
+
for fn_name, args, expected, threshold in numerical_tests:
|
171 |
+
call_string = "%s(%s)-(%s)" % (
|
172 |
+
fn_name, ",".join(str(arg) for arg in args), expected)
|
173 |
+
if language == "F95":
|
174 |
+
call_string = fortranize_double_constants(call_string)
|
175 |
+
threshold = fortranize_double_constants(str(threshold))
|
176 |
+
test_strings.append(numerical_test_template[language] % {
|
177 |
+
"call": call_string,
|
178 |
+
"threshold": threshold,
|
179 |
+
})
|
180 |
+
|
181 |
+
if language == "F95":
|
182 |
+
f_name = "main.f90"
|
183 |
+
elif language.startswith("C"):
|
184 |
+
f_name = "main.c"
|
185 |
+
else:
|
186 |
+
raise NotImplementedError(
|
187 |
+
"FIXME: filename extension unknown for language: %s" % language)
|
188 |
+
|
189 |
+
with open(f_name, "w") as f:
|
190 |
+
f.write(
|
191 |
+
main_template[language] % {'statements': "".join(test_strings)})
|
192 |
+
|
193 |
+
# 4) Compile and link
|
194 |
+
compiled = try_run(commands)
|
195 |
+
|
196 |
+
# 5) Run if compiled
|
197 |
+
if compiled:
|
198 |
+
executed = try_run(["./test.exe"])
|
199 |
+
else:
|
200 |
+
executed = False
|
201 |
+
|
202 |
+
# 6) Clean up stuff
|
203 |
+
if clean == 'always' or (clean == 'success' and compiled and executed):
|
204 |
+
def safe_remove(filename):
|
205 |
+
if os.path.isfile(filename):
|
206 |
+
os.remove(filename)
|
207 |
+
safe_remove("codegen.f90")
|
208 |
+
safe_remove("codegen.c")
|
209 |
+
safe_remove("codegen.h")
|
210 |
+
safe_remove("codegen.o")
|
211 |
+
safe_remove("main.f90")
|
212 |
+
safe_remove("main.c")
|
213 |
+
safe_remove("main.o")
|
214 |
+
safe_remove("test.exe")
|
215 |
+
os.chdir(oldwork)
|
216 |
+
os.rmdir(work)
|
217 |
+
else:
|
218 |
+
print("TEST NOT REMOVED: %s" % work, file=sys.stderr)
|
219 |
+
os.chdir(oldwork)
|
220 |
+
|
221 |
+
# 7) Do the assertions in the end
|
222 |
+
assert compiled, "failed to compile %s code with:\n%s" % (
|
223 |
+
language, "\n".join(commands))
|
224 |
+
assert executed, "failed to execute %s code from:\n%s" % (
|
225 |
+
language, "\n".join(commands))
|
226 |
+
|
227 |
+
|
228 |
+
def fortranize_double_constants(code_string):
|
229 |
+
"""
|
230 |
+
Replaces every literal float with literal doubles
|
231 |
+
"""
|
232 |
+
import re
|
233 |
+
pattern_exp = re.compile(r'\d+(\.)?\d*[eE]-?\d+')
|
234 |
+
pattern_float = re.compile(r'\d+\.\d*(?!\d*d)')
|
235 |
+
|
236 |
+
def subs_exp(matchobj):
|
237 |
+
return re.sub('[eE]', 'd', matchobj.group(0))
|
238 |
+
|
239 |
+
def subs_float(matchobj):
|
240 |
+
return "%sd0" % matchobj.group(0)
|
241 |
+
|
242 |
+
code_string = pattern_exp.sub(subs_exp, code_string)
|
243 |
+
code_string = pattern_float.sub(subs_float, code_string)
|
244 |
+
|
245 |
+
return code_string
|
246 |
+
|
247 |
+
|
248 |
+
def is_feasible(language, commands):
|
249 |
+
# This test should always work, otherwise the compiler is not present.
|
250 |
+
routine = make_routine("test", x)
|
251 |
+
numerical_tests = [
|
252 |
+
("test", ( 1.0,), 1.0, 1e-15),
|
253 |
+
("test", (-1.0,), -1.0, 1e-15),
|
254 |
+
]
|
255 |
+
try:
|
256 |
+
run_test("is_feasible", [routine], numerical_tests, language, commands,
|
257 |
+
friendly=False)
|
258 |
+
return True
|
259 |
+
except AssertionError:
|
260 |
+
return False
|
261 |
+
|
262 |
+
valid_lang_commands = []
|
263 |
+
invalid_lang_compilers = []
|
264 |
+
for lang, compiler in combinations_lang_compiler:
|
265 |
+
commands = compile_commands[compiler]
|
266 |
+
if is_feasible(lang, commands):
|
267 |
+
valid_lang_commands.append((lang, commands))
|
268 |
+
else:
|
269 |
+
invalid_lang_compilers.append((lang, compiler))
|
270 |
+
|
271 |
+
# We test all language-compiler combinations, just to report what is skipped
|
272 |
+
|
273 |
+
def test_C89_cc():
|
274 |
+
if ("C89", 'cc') in invalid_lang_compilers:
|
275 |
+
skip("`cc' command didn't work as expected (C89)")
|
276 |
+
|
277 |
+
|
278 |
+
def test_C99_cc():
|
279 |
+
if ("C99", 'cc') in invalid_lang_compilers:
|
280 |
+
skip("`cc' command didn't work as expected (C99)")
|
281 |
+
|
282 |
+
|
283 |
+
def test_F95_ifort():
|
284 |
+
if ("F95", 'ifort') in invalid_lang_compilers:
|
285 |
+
skip("`ifort' command didn't work as expected")
|
286 |
+
|
287 |
+
|
288 |
+
def test_F95_gfortran():
|
289 |
+
if ("F95", 'gfortran') in invalid_lang_compilers:
|
290 |
+
skip("`gfortran' command didn't work as expected")
|
291 |
+
|
292 |
+
|
293 |
+
def test_F95_g95():
|
294 |
+
if ("F95", 'g95') in invalid_lang_compilers:
|
295 |
+
skip("`g95' command didn't work as expected")
|
296 |
+
|
297 |
+
# Here comes the actual tests
|
298 |
+
|
299 |
+
|
300 |
+
def test_basic_codegen():
|
301 |
+
numerical_tests = [
|
302 |
+
("test", (1.0, 6.0, 3.0), 21.0, 1e-15),
|
303 |
+
("test", (-1.0, 2.0, -2.5), -2.5, 1e-15),
|
304 |
+
]
|
305 |
+
name_expr = [("test", (x + y)*z)]
|
306 |
+
for lang, commands in valid_lang_commands:
|
307 |
+
run_test("basic_codegen", name_expr, numerical_tests, lang, commands)
|
308 |
+
|
309 |
+
|
310 |
+
def test_intrinsic_math1_codegen():
|
311 |
+
# not included: log10
|
312 |
+
from sympy.core.evalf import N
|
313 |
+
from sympy.functions import ln
|
314 |
+
from sympy.functions.elementary.exponential import log
|
315 |
+
from sympy.functions.elementary.hyperbolic import (cosh, sinh, tanh)
|
316 |
+
from sympy.functions.elementary.integers import (ceiling, floor)
|
317 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
318 |
+
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin, tan)
|
319 |
+
name_expr = [
|
320 |
+
("test_fabs", abs(x)),
|
321 |
+
("test_acos", acos(x)),
|
322 |
+
("test_asin", asin(x)),
|
323 |
+
("test_atan", atan(x)),
|
324 |
+
("test_cos", cos(x)),
|
325 |
+
("test_cosh", cosh(x)),
|
326 |
+
("test_log", log(x)),
|
327 |
+
("test_ln", ln(x)),
|
328 |
+
("test_sin", sin(x)),
|
329 |
+
("test_sinh", sinh(x)),
|
330 |
+
("test_sqrt", sqrt(x)),
|
331 |
+
("test_tan", tan(x)),
|
332 |
+
("test_tanh", tanh(x)),
|
333 |
+
]
|
334 |
+
numerical_tests = []
|
335 |
+
for name, expr in name_expr:
|
336 |
+
for xval in 0.2, 0.5, 0.8:
|
337 |
+
expected = N(expr.subs(x, xval))
|
338 |
+
numerical_tests.append((name, (xval,), expected, 1e-14))
|
339 |
+
for lang, commands in valid_lang_commands:
|
340 |
+
if lang.startswith("C"):
|
341 |
+
name_expr_C = [("test_floor", floor(x)), ("test_ceil", ceiling(x))]
|
342 |
+
else:
|
343 |
+
name_expr_C = []
|
344 |
+
run_test("intrinsic_math1", name_expr + name_expr_C,
|
345 |
+
numerical_tests, lang, commands)
|
346 |
+
|
347 |
+
|
348 |
+
def test_instrinsic_math2_codegen():
|
349 |
+
# not included: frexp, ldexp, modf, fmod
|
350 |
+
from sympy.core.evalf import N
|
351 |
+
from sympy.functions.elementary.trigonometric import atan2
|
352 |
+
name_expr = [
|
353 |
+
("test_atan2", atan2(x, y)),
|
354 |
+
("test_pow", x**y),
|
355 |
+
]
|
356 |
+
numerical_tests = []
|
357 |
+
for name, expr in name_expr:
|
358 |
+
for xval, yval in (0.2, 1.3), (0.5, -0.2), (0.8, 0.8):
|
359 |
+
expected = N(expr.subs(x, xval).subs(y, yval))
|
360 |
+
numerical_tests.append((name, (xval, yval), expected, 1e-14))
|
361 |
+
for lang, commands in valid_lang_commands:
|
362 |
+
run_test("intrinsic_math2", name_expr, numerical_tests, lang, commands)
|
363 |
+
|
364 |
+
|
365 |
+
def test_complicated_codegen():
|
366 |
+
from sympy.core.evalf import N
|
367 |
+
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
|
368 |
+
name_expr = [
|
369 |
+
("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
|
370 |
+
("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
|
371 |
+
]
|
372 |
+
numerical_tests = []
|
373 |
+
for name, expr in name_expr:
|
374 |
+
for xval, yval, zval in (0.2, 1.3, -0.3), (0.5, -0.2, 0.0), (0.8, 2.1, 0.8):
|
375 |
+
expected = N(expr.subs(x, xval).subs(y, yval).subs(z, zval))
|
376 |
+
numerical_tests.append((name, (xval, yval, zval), expected, 1e-12))
|
377 |
+
for lang, commands in valid_lang_commands:
|
378 |
+
run_test(
|
379 |
+
"complicated_codegen", name_expr, numerical_tests, lang, commands)
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_importtools.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.external import import_module
|
2 |
+
from sympy.testing.pytest import warns
|
3 |
+
|
4 |
+
# fixes issue that arose in addressing issue 6533
|
5 |
+
def test_no_stdlib_collections():
|
6 |
+
'''
|
7 |
+
make sure we get the right collections when it is not part of a
|
8 |
+
larger list
|
9 |
+
'''
|
10 |
+
import collections
|
11 |
+
matplotlib = import_module('matplotlib',
|
12 |
+
import_kwargs={'fromlist': ['cm', 'collections']},
|
13 |
+
min_module_version='1.1.0', catch=(RuntimeError,))
|
14 |
+
if matplotlib:
|
15 |
+
assert collections != matplotlib.collections
|
16 |
+
|
17 |
+
def test_no_stdlib_collections2():
|
18 |
+
'''
|
19 |
+
make sure we get the right collections when it is not part of a
|
20 |
+
larger list
|
21 |
+
'''
|
22 |
+
import collections
|
23 |
+
matplotlib = import_module('matplotlib',
|
24 |
+
import_kwargs={'fromlist': ['collections']},
|
25 |
+
min_module_version='1.1.0', catch=(RuntimeError,))
|
26 |
+
if matplotlib:
|
27 |
+
assert collections != matplotlib.collections
|
28 |
+
|
29 |
+
def test_no_stdlib_collections3():
|
30 |
+
'''make sure we get the right collections with no catch'''
|
31 |
+
import collections
|
32 |
+
matplotlib = import_module('matplotlib',
|
33 |
+
import_kwargs={'fromlist': ['cm', 'collections']},
|
34 |
+
min_module_version='1.1.0')
|
35 |
+
if matplotlib:
|
36 |
+
assert collections != matplotlib.collections
|
37 |
+
|
38 |
+
def test_min_module_version_python3_basestring_error():
|
39 |
+
with warns(UserWarning):
|
40 |
+
import_module('mpmath', min_module_version='1000.0.1')
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_numpy.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This testfile tests SymPy <-> NumPy compatibility
|
2 |
+
|
3 |
+
# Don't test any SymPy features here. Just pure interaction with NumPy.
|
4 |
+
# Always write regular SymPy tests for anything, that can be tested in pure
|
5 |
+
# Python (without numpy). Here we test everything, that a user may need when
|
6 |
+
# using SymPy with NumPy
|
7 |
+
from sympy.external.importtools import version_tuple
|
8 |
+
from sympy.external import import_module
|
9 |
+
|
10 |
+
numpy = import_module('numpy')
|
11 |
+
if numpy:
|
12 |
+
array, matrix, ndarray = numpy.array, numpy.matrix, numpy.ndarray
|
13 |
+
else:
|
14 |
+
#bin/test will not execute any tests now
|
15 |
+
disabled = True
|
16 |
+
|
17 |
+
|
18 |
+
from sympy.core.numbers import (Float, Integer, Rational)
|
19 |
+
from sympy.core.symbol import (Symbol, symbols)
|
20 |
+
from sympy.functions.elementary.trigonometric import sin
|
21 |
+
from sympy.matrices.dense import (Matrix, list2numpy, matrix2numpy, symarray)
|
22 |
+
from sympy.utilities.lambdify import lambdify
|
23 |
+
import sympy
|
24 |
+
|
25 |
+
import mpmath
|
26 |
+
from sympy.abc import x, y, z
|
27 |
+
from sympy.utilities.decorator import conserve_mpmath_dps
|
28 |
+
from sympy.utilities.exceptions import ignore_warnings
|
29 |
+
from sympy.testing.pytest import raises
|
30 |
+
|
31 |
+
|
32 |
+
# first, systematically check, that all operations are implemented and don't
|
33 |
+
# raise an exception
|
34 |
+
|
35 |
+
|
36 |
+
def test_systematic_basic():
|
37 |
+
def s(sympy_object, numpy_array):
|
38 |
+
_ = [sympy_object + numpy_array,
|
39 |
+
numpy_array + sympy_object,
|
40 |
+
sympy_object - numpy_array,
|
41 |
+
numpy_array - sympy_object,
|
42 |
+
sympy_object * numpy_array,
|
43 |
+
numpy_array * sympy_object,
|
44 |
+
sympy_object / numpy_array,
|
45 |
+
numpy_array / sympy_object,
|
46 |
+
sympy_object ** numpy_array,
|
47 |
+
numpy_array ** sympy_object]
|
48 |
+
x = Symbol("x")
|
49 |
+
y = Symbol("y")
|
50 |
+
sympy_objs = [
|
51 |
+
Rational(2, 3),
|
52 |
+
Float("1.3"),
|
53 |
+
x,
|
54 |
+
y,
|
55 |
+
pow(x, y)*y,
|
56 |
+
Integer(5),
|
57 |
+
Float(5.5),
|
58 |
+
]
|
59 |
+
numpy_objs = [
|
60 |
+
array([1]),
|
61 |
+
array([3, 8, -1]),
|
62 |
+
array([x, x**2, Rational(5)]),
|
63 |
+
array([x/y*sin(y), 5, Rational(5)]),
|
64 |
+
]
|
65 |
+
for x in sympy_objs:
|
66 |
+
for y in numpy_objs:
|
67 |
+
s(x, y)
|
68 |
+
|
69 |
+
|
70 |
+
# now some random tests, that test particular problems and that also
|
71 |
+
# check that the results of the operations are correct
|
72 |
+
|
73 |
+
def test_basics():
|
74 |
+
one = Rational(1)
|
75 |
+
zero = Rational(0)
|
76 |
+
assert array(1) == array(one)
|
77 |
+
assert array([one]) == array([one])
|
78 |
+
assert array([x]) == array([x])
|
79 |
+
assert array(x) == array(Symbol("x"))
|
80 |
+
assert array(one + x) == array(1 + x)
|
81 |
+
|
82 |
+
X = array([one, zero, zero])
|
83 |
+
assert (X == array([one, zero, zero])).all()
|
84 |
+
assert (X == array([one, 0, 0])).all()
|
85 |
+
|
86 |
+
|
87 |
+
def test_arrays():
|
88 |
+
one = Rational(1)
|
89 |
+
zero = Rational(0)
|
90 |
+
X = array([one, zero, zero])
|
91 |
+
Y = one*X
|
92 |
+
X = array([Symbol("a") + Rational(1, 2)])
|
93 |
+
Y = X + X
|
94 |
+
assert Y == array([1 + 2*Symbol("a")])
|
95 |
+
Y = Y + 1
|
96 |
+
assert Y == array([2 + 2*Symbol("a")])
|
97 |
+
Y = X - X
|
98 |
+
assert Y == array([0])
|
99 |
+
|
100 |
+
|
101 |
+
def test_conversion1():
|
102 |
+
a = list2numpy([x**2, x])
|
103 |
+
#looks like an array?
|
104 |
+
assert isinstance(a, ndarray)
|
105 |
+
assert a[0] == x**2
|
106 |
+
assert a[1] == x
|
107 |
+
assert len(a) == 2
|
108 |
+
#yes, it's the array
|
109 |
+
|
110 |
+
|
111 |
+
def test_conversion2():
|
112 |
+
a = 2*list2numpy([x**2, x])
|
113 |
+
b = list2numpy([2*x**2, 2*x])
|
114 |
+
assert (a == b).all()
|
115 |
+
|
116 |
+
one = Rational(1)
|
117 |
+
zero = Rational(0)
|
118 |
+
X = list2numpy([one, zero, zero])
|
119 |
+
Y = one*X
|
120 |
+
X = list2numpy([Symbol("a") + Rational(1, 2)])
|
121 |
+
Y = X + X
|
122 |
+
assert Y == array([1 + 2*Symbol("a")])
|
123 |
+
Y = Y + 1
|
124 |
+
assert Y == array([2 + 2*Symbol("a")])
|
125 |
+
Y = X - X
|
126 |
+
assert Y == array([0])
|
127 |
+
|
128 |
+
|
129 |
+
def test_list2numpy():
|
130 |
+
assert (array([x**2, x]) == list2numpy([x**2, x])).all()
|
131 |
+
|
132 |
+
|
133 |
+
def test_Matrix1():
|
134 |
+
m = Matrix([[x, x**2], [5, 2/x]])
|
135 |
+
assert (array(m.subs(x, 2)) == array([[2, 4], [5, 1]])).all()
|
136 |
+
m = Matrix([[sin(x), x**2], [5, 2/x]])
|
137 |
+
assert (array(m.subs(x, 2)) == array([[sin(2), 4], [5, 1]])).all()
|
138 |
+
|
139 |
+
|
140 |
+
def test_Matrix2():
|
141 |
+
m = Matrix([[x, x**2], [5, 2/x]])
|
142 |
+
with ignore_warnings(PendingDeprecationWarning):
|
143 |
+
assert (matrix(m.subs(x, 2)) == matrix([[2, 4], [5, 1]])).all()
|
144 |
+
m = Matrix([[sin(x), x**2], [5, 2/x]])
|
145 |
+
with ignore_warnings(PendingDeprecationWarning):
|
146 |
+
assert (matrix(m.subs(x, 2)) == matrix([[sin(2), 4], [5, 1]])).all()
|
147 |
+
|
148 |
+
|
149 |
+
def test_Matrix3():
|
150 |
+
a = array([[2, 4], [5, 1]])
|
151 |
+
assert Matrix(a) == Matrix([[2, 4], [5, 1]])
|
152 |
+
assert Matrix(a) != Matrix([[2, 4], [5, 2]])
|
153 |
+
a = array([[sin(2), 4], [5, 1]])
|
154 |
+
assert Matrix(a) == Matrix([[sin(2), 4], [5, 1]])
|
155 |
+
assert Matrix(a) != Matrix([[sin(0), 4], [5, 1]])
|
156 |
+
|
157 |
+
|
158 |
+
def test_Matrix4():
|
159 |
+
with ignore_warnings(PendingDeprecationWarning):
|
160 |
+
a = matrix([[2, 4], [5, 1]])
|
161 |
+
assert Matrix(a) == Matrix([[2, 4], [5, 1]])
|
162 |
+
assert Matrix(a) != Matrix([[2, 4], [5, 2]])
|
163 |
+
with ignore_warnings(PendingDeprecationWarning):
|
164 |
+
a = matrix([[sin(2), 4], [5, 1]])
|
165 |
+
assert Matrix(a) == Matrix([[sin(2), 4], [5, 1]])
|
166 |
+
assert Matrix(a) != Matrix([[sin(0), 4], [5, 1]])
|
167 |
+
|
168 |
+
|
169 |
+
def test_Matrix_sum():
|
170 |
+
M = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
|
171 |
+
with ignore_warnings(PendingDeprecationWarning):
|
172 |
+
m = matrix([[2, 3, 4], [x, 5, 6], [x, y, z**2]])
|
173 |
+
assert M + m == Matrix([[3, 5, 7], [2*x, y + 5, x + 6], [2*y + x, y - 50, z*x + z**2]])
|
174 |
+
assert m + M == Matrix([[3, 5, 7], [2*x, y + 5, x + 6], [2*y + x, y - 50, z*x + z**2]])
|
175 |
+
assert M + m == M.add(m)
|
176 |
+
|
177 |
+
|
178 |
+
def test_Matrix_mul():
|
179 |
+
M = Matrix([[1, 2, 3], [x, y, x]])
|
180 |
+
with ignore_warnings(PendingDeprecationWarning):
|
181 |
+
m = matrix([[2, 4], [x, 6], [x, z**2]])
|
182 |
+
assert M*m == Matrix([
|
183 |
+
[ 2 + 5*x, 16 + 3*z**2],
|
184 |
+
[2*x + x*y + x**2, 4*x + 6*y + x*z**2],
|
185 |
+
])
|
186 |
+
|
187 |
+
assert m*M == Matrix([
|
188 |
+
[ 2 + 4*x, 4 + 4*y, 6 + 4*x],
|
189 |
+
[ 7*x, 2*x + 6*y, 9*x],
|
190 |
+
[x + x*z**2, 2*x + y*z**2, 3*x + x*z**2],
|
191 |
+
])
|
192 |
+
a = array([2])
|
193 |
+
assert a[0] * M == 2 * M
|
194 |
+
assert M * a[0] == 2 * M
|
195 |
+
|
196 |
+
|
197 |
+
def test_Matrix_array():
|
198 |
+
class matarray:
|
199 |
+
def __array__(self):
|
200 |
+
from numpy import array
|
201 |
+
return array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
202 |
+
matarr = matarray()
|
203 |
+
assert Matrix(matarr) == Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
204 |
+
|
205 |
+
|
206 |
+
def test_matrix2numpy():
|
207 |
+
a = matrix2numpy(Matrix([[1, x**2], [3*sin(x), 0]]))
|
208 |
+
assert isinstance(a, ndarray)
|
209 |
+
assert a.shape == (2, 2)
|
210 |
+
assert a[0, 0] == 1
|
211 |
+
assert a[0, 1] == x**2
|
212 |
+
assert a[1, 0] == 3*sin(x)
|
213 |
+
assert a[1, 1] == 0
|
214 |
+
|
215 |
+
|
216 |
+
def test_matrix2numpy_conversion():
|
217 |
+
a = Matrix([[1, 2, sin(x)], [x**2, x, Rational(1, 2)]])
|
218 |
+
b = array([[1, 2, sin(x)], [x**2, x, Rational(1, 2)]])
|
219 |
+
assert (matrix2numpy(a) == b).all()
|
220 |
+
assert matrix2numpy(a).dtype == numpy.dtype('object')
|
221 |
+
|
222 |
+
c = matrix2numpy(Matrix([[1, 2], [10, 20]]), dtype='int8')
|
223 |
+
d = matrix2numpy(Matrix([[1, 2], [10, 20]]), dtype='float64')
|
224 |
+
assert c.dtype == numpy.dtype('int8')
|
225 |
+
assert d.dtype == numpy.dtype('float64')
|
226 |
+
|
227 |
+
|
228 |
+
def test_issue_3728():
|
229 |
+
assert (Rational(1, 2)*array([2*x, 0]) == array([x, 0])).all()
|
230 |
+
assert (Rational(1, 2) + array(
|
231 |
+
[2*x, 0]) == array([2*x + Rational(1, 2), Rational(1, 2)])).all()
|
232 |
+
assert (Float("0.5")*array([2*x, 0]) == array([Float("1.0")*x, 0])).all()
|
233 |
+
assert (Float("0.5") + array(
|
234 |
+
[2*x, 0]) == array([2*x + Float("0.5"), Float("0.5")])).all()
|
235 |
+
|
236 |
+
|
237 |
+
@conserve_mpmath_dps
|
238 |
+
def test_lambdify():
|
239 |
+
mpmath.mp.dps = 16
|
240 |
+
sin02 = mpmath.mpf("0.198669330795061215459412627")
|
241 |
+
f = lambdify(x, sin(x), "numpy")
|
242 |
+
prec = 1e-15
|
243 |
+
assert -prec < f(0.2) - sin02 < prec
|
244 |
+
|
245 |
+
# if this succeeds, it can't be a numpy function
|
246 |
+
|
247 |
+
if version_tuple(numpy.__version__) >= version_tuple('1.17'):
|
248 |
+
with raises(TypeError):
|
249 |
+
f(x)
|
250 |
+
else:
|
251 |
+
with raises(AttributeError):
|
252 |
+
f(x)
|
253 |
+
|
254 |
+
|
255 |
+
def test_lambdify_matrix():
|
256 |
+
f = lambdify(x, Matrix([[x, 2*x], [1, 2]]), [{'ImmutableMatrix': numpy.array}, "numpy"])
|
257 |
+
assert (f(1) == array([[1, 2], [1, 2]])).all()
|
258 |
+
|
259 |
+
|
260 |
+
def test_lambdify_matrix_multi_input():
|
261 |
+
M = sympy.Matrix([[x**2, x*y, x*z],
|
262 |
+
[y*x, y**2, y*z],
|
263 |
+
[z*x, z*y, z**2]])
|
264 |
+
f = lambdify((x, y, z), M, [{'ImmutableMatrix': numpy.array}, "numpy"])
|
265 |
+
|
266 |
+
xh, yh, zh = 1.0, 2.0, 3.0
|
267 |
+
expected = array([[xh**2, xh*yh, xh*zh],
|
268 |
+
[yh*xh, yh**2, yh*zh],
|
269 |
+
[zh*xh, zh*yh, zh**2]])
|
270 |
+
actual = f(xh, yh, zh)
|
271 |
+
assert numpy.allclose(actual, expected)
|
272 |
+
|
273 |
+
|
274 |
+
def test_lambdify_matrix_vec_input():
|
275 |
+
X = sympy.DeferredVector('X')
|
276 |
+
M = Matrix([
|
277 |
+
[X[0]**2, X[0]*X[1], X[0]*X[2]],
|
278 |
+
[X[1]*X[0], X[1]**2, X[1]*X[2]],
|
279 |
+
[X[2]*X[0], X[2]*X[1], X[2]**2]])
|
280 |
+
f = lambdify(X, M, [{'ImmutableMatrix': numpy.array}, "numpy"])
|
281 |
+
|
282 |
+
Xh = array([1.0, 2.0, 3.0])
|
283 |
+
expected = array([[Xh[0]**2, Xh[0]*Xh[1], Xh[0]*Xh[2]],
|
284 |
+
[Xh[1]*Xh[0], Xh[1]**2, Xh[1]*Xh[2]],
|
285 |
+
[Xh[2]*Xh[0], Xh[2]*Xh[1], Xh[2]**2]])
|
286 |
+
actual = f(Xh)
|
287 |
+
assert numpy.allclose(actual, expected)
|
288 |
+
|
289 |
+
|
290 |
+
def test_lambdify_transl():
|
291 |
+
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
|
292 |
+
for sym, mat in NUMPY_TRANSLATIONS.items():
|
293 |
+
assert sym in sympy.__dict__
|
294 |
+
assert mat in numpy.__dict__
|
295 |
+
|
296 |
+
|
297 |
+
def test_symarray():
|
298 |
+
"""Test creation of numpy arrays of SymPy symbols."""
|
299 |
+
|
300 |
+
import numpy as np
|
301 |
+
import numpy.testing as npt
|
302 |
+
|
303 |
+
syms = symbols('_0,_1,_2')
|
304 |
+
s1 = symarray("", 3)
|
305 |
+
s2 = symarray("", 3)
|
306 |
+
npt.assert_array_equal(s1, np.array(syms, dtype=object))
|
307 |
+
assert s1[0] == s2[0]
|
308 |
+
|
309 |
+
a = symarray('a', 3)
|
310 |
+
b = symarray('b', 3)
|
311 |
+
assert not(a[0] == b[0])
|
312 |
+
|
313 |
+
asyms = symbols('a_0,a_1,a_2')
|
314 |
+
npt.assert_array_equal(a, np.array(asyms, dtype=object))
|
315 |
+
|
316 |
+
# Multidimensional checks
|
317 |
+
a2d = symarray('a', (2, 3))
|
318 |
+
assert a2d.shape == (2, 3)
|
319 |
+
a00, a12 = symbols('a_0_0,a_1_2')
|
320 |
+
assert a2d[0, 0] == a00
|
321 |
+
assert a2d[1, 2] == a12
|
322 |
+
|
323 |
+
a3d = symarray('a', (2, 3, 2))
|
324 |
+
assert a3d.shape == (2, 3, 2)
|
325 |
+
a000, a120, a121 = symbols('a_0_0_0,a_1_2_0,a_1_2_1')
|
326 |
+
assert a3d[0, 0, 0] == a000
|
327 |
+
assert a3d[1, 2, 0] == a120
|
328 |
+
assert a3d[1, 2, 1] == a121
|
329 |
+
|
330 |
+
|
331 |
+
def test_vectorize():
|
332 |
+
assert (numpy.vectorize(
|
333 |
+
sin)([1, 2, 3]) == numpy.array([sin(1), sin(2), sin(3)])).all()
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_pythonmpq.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
test_pythonmpq.py
|
3 |
+
|
4 |
+
Test the PythonMPQ class for consistency with gmpy2's mpq type. If gmpy2 is
|
5 |
+
installed run the same tests for both.
|
6 |
+
"""
|
7 |
+
from fractions import Fraction
|
8 |
+
from decimal import Decimal
|
9 |
+
import pickle
|
10 |
+
from typing import Callable, List, Tuple, Type
|
11 |
+
|
12 |
+
from sympy.testing.pytest import raises
|
13 |
+
|
14 |
+
from sympy.external.pythonmpq import PythonMPQ
|
15 |
+
|
16 |
+
#
|
17 |
+
# If gmpy2 is installed then run the tests for both mpq and PythonMPQ.
|
18 |
+
# That should ensure consistency between the implementation here and mpq.
|
19 |
+
#
|
20 |
+
rational_types: List[Tuple[Callable, Type, Callable, Type]]
|
21 |
+
rational_types = [(PythonMPQ, PythonMPQ, int, int)]
|
22 |
+
try:
|
23 |
+
from gmpy2 import mpq, mpz
|
24 |
+
rational_types.append((mpq, type(mpq(1)), mpz, type(mpz(1))))
|
25 |
+
except ImportError:
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def test_PythonMPQ():
|
30 |
+
#
|
31 |
+
# Test PythonMPQ and also mpq if gmpy/gmpy2 is installed.
|
32 |
+
#
|
33 |
+
for Q, TQ, Z, TZ in rational_types:
|
34 |
+
|
35 |
+
def check_Q(q):
|
36 |
+
assert isinstance(q, TQ)
|
37 |
+
assert isinstance(q.numerator, TZ)
|
38 |
+
assert isinstance(q.denominator, TZ)
|
39 |
+
return q.numerator, q.denominator
|
40 |
+
|
41 |
+
# Check construction from different types
|
42 |
+
assert check_Q(Q(3)) == (3, 1)
|
43 |
+
assert check_Q(Q(3, 5)) == (3, 5)
|
44 |
+
assert check_Q(Q(Q(3, 5))) == (3, 5)
|
45 |
+
assert check_Q(Q(0.5)) == (1, 2)
|
46 |
+
assert check_Q(Q('0.5')) == (1, 2)
|
47 |
+
assert check_Q(Q(Fraction(3, 5))) == (3, 5)
|
48 |
+
|
49 |
+
# https://github.com/aleaxit/gmpy/issues/327
|
50 |
+
if Q is PythonMPQ:
|
51 |
+
assert check_Q(Q(Decimal('0.6'))) == (3, 5)
|
52 |
+
|
53 |
+
# Invalid types
|
54 |
+
raises(TypeError, lambda: Q([]))
|
55 |
+
raises(TypeError, lambda: Q([], []))
|
56 |
+
|
57 |
+
# Check normalisation of signs
|
58 |
+
assert check_Q(Q(2, 3)) == (2, 3)
|
59 |
+
assert check_Q(Q(-2, 3)) == (-2, 3)
|
60 |
+
assert check_Q(Q(2, -3)) == (-2, 3)
|
61 |
+
assert check_Q(Q(-2, -3)) == (2, 3)
|
62 |
+
|
63 |
+
# Check gcd calculation
|
64 |
+
assert check_Q(Q(12, 8)) == (3, 2)
|
65 |
+
|
66 |
+
# __int__/__float__
|
67 |
+
assert int(Q(5, 3)) == 1
|
68 |
+
assert int(Q(-5, 3)) == -1
|
69 |
+
assert float(Q(5, 2)) == 2.5
|
70 |
+
assert float(Q(-5, 2)) == -2.5
|
71 |
+
|
72 |
+
# __str__/__repr__
|
73 |
+
assert str(Q(2, 1)) == "2"
|
74 |
+
assert str(Q(1, 2)) == "1/2"
|
75 |
+
if Q is PythonMPQ:
|
76 |
+
assert repr(Q(2, 1)) == "MPQ(2,1)"
|
77 |
+
assert repr(Q(1, 2)) == "MPQ(1,2)"
|
78 |
+
else:
|
79 |
+
assert repr(Q(2, 1)) == "mpq(2,1)"
|
80 |
+
assert repr(Q(1, 2)) == "mpq(1,2)"
|
81 |
+
|
82 |
+
# __bool__
|
83 |
+
assert bool(Q(1, 2)) is True
|
84 |
+
assert bool(Q(0)) is False
|
85 |
+
|
86 |
+
# __eq__/__ne__
|
87 |
+
assert (Q(2, 3) == Q(2, 3)) is True
|
88 |
+
assert (Q(2, 3) == Q(2, 5)) is False
|
89 |
+
assert (Q(2, 3) != Q(2, 3)) is False
|
90 |
+
assert (Q(2, 3) != Q(2, 5)) is True
|
91 |
+
|
92 |
+
# __hash__
|
93 |
+
assert hash(Q(3, 5)) == hash(Fraction(3, 5))
|
94 |
+
|
95 |
+
# __reduce__
|
96 |
+
q = Q(2, 3)
|
97 |
+
assert pickle.loads(pickle.dumps(q)) == q
|
98 |
+
|
99 |
+
# __ge__/__gt__/__le__/__lt__
|
100 |
+
assert (Q(1, 3) < Q(2, 3)) is True
|
101 |
+
assert (Q(2, 3) < Q(2, 3)) is False
|
102 |
+
assert (Q(2, 3) < Q(1, 3)) is False
|
103 |
+
assert (Q(-2, 3) < Q(1, 3)) is True
|
104 |
+
assert (Q(1, 3) < Q(-2, 3)) is False
|
105 |
+
|
106 |
+
assert (Q(1, 3) <= Q(2, 3)) is True
|
107 |
+
assert (Q(2, 3) <= Q(2, 3)) is True
|
108 |
+
assert (Q(2, 3) <= Q(1, 3)) is False
|
109 |
+
assert (Q(-2, 3) <= Q(1, 3)) is True
|
110 |
+
assert (Q(1, 3) <= Q(-2, 3)) is False
|
111 |
+
|
112 |
+
assert (Q(1, 3) > Q(2, 3)) is False
|
113 |
+
assert (Q(2, 3) > Q(2, 3)) is False
|
114 |
+
assert (Q(2, 3) > Q(1, 3)) is True
|
115 |
+
assert (Q(-2, 3) > Q(1, 3)) is False
|
116 |
+
assert (Q(1, 3) > Q(-2, 3)) is True
|
117 |
+
|
118 |
+
assert (Q(1, 3) >= Q(2, 3)) is False
|
119 |
+
assert (Q(2, 3) >= Q(2, 3)) is True
|
120 |
+
assert (Q(2, 3) >= Q(1, 3)) is True
|
121 |
+
assert (Q(-2, 3) >= Q(1, 3)) is False
|
122 |
+
assert (Q(1, 3) >= Q(-2, 3)) is True
|
123 |
+
|
124 |
+
# __abs__/__pos__/__neg__
|
125 |
+
assert abs(Q(2, 3)) == abs(Q(-2, 3)) == Q(2, 3)
|
126 |
+
assert +Q(2, 3) == Q(2, 3)
|
127 |
+
assert -Q(2, 3) == Q(-2, 3)
|
128 |
+
|
129 |
+
# __add__/__radd__
|
130 |
+
assert Q(2, 3) + Q(5, 7) == Q(29, 21)
|
131 |
+
assert Q(2, 3) + 1 == Q(5, 3)
|
132 |
+
assert 1 + Q(2, 3) == Q(5, 3)
|
133 |
+
raises(TypeError, lambda: [] + Q(1))
|
134 |
+
raises(TypeError, lambda: Q(1) + [])
|
135 |
+
|
136 |
+
# __sub__/__rsub__
|
137 |
+
assert Q(2, 3) - Q(5, 7) == Q(-1, 21)
|
138 |
+
assert Q(2, 3) - 1 == Q(-1, 3)
|
139 |
+
assert 1 - Q(2, 3) == Q(1, 3)
|
140 |
+
raises(TypeError, lambda: [] - Q(1))
|
141 |
+
raises(TypeError, lambda: Q(1) - [])
|
142 |
+
|
143 |
+
# __mul__/__rmul__
|
144 |
+
assert Q(2, 3) * Q(5, 7) == Q(10, 21)
|
145 |
+
assert Q(2, 3) * 1 == Q(2, 3)
|
146 |
+
assert 1 * Q(2, 3) == Q(2, 3)
|
147 |
+
raises(TypeError, lambda: [] * Q(1))
|
148 |
+
raises(TypeError, lambda: Q(1) * [])
|
149 |
+
|
150 |
+
# __pow__/__rpow__
|
151 |
+
assert Q(2, 3) ** 2 == Q(4, 9)
|
152 |
+
assert Q(2, 3) ** 1 == Q(2, 3)
|
153 |
+
assert Q(-2, 3) ** 2 == Q(4, 9)
|
154 |
+
assert Q(-2, 3) ** -1 == Q(-3, 2)
|
155 |
+
if Q is PythonMPQ:
|
156 |
+
raises(TypeError, lambda: 1 ** Q(2, 3))
|
157 |
+
raises(TypeError, lambda: Q(1, 4) ** Q(1, 2))
|
158 |
+
raises(TypeError, lambda: [] ** Q(1))
|
159 |
+
raises(TypeError, lambda: Q(1) ** [])
|
160 |
+
|
161 |
+
# __div__/__rdiv__
|
162 |
+
assert Q(2, 3) / Q(5, 7) == Q(14, 15)
|
163 |
+
assert Q(2, 3) / 1 == Q(2, 3)
|
164 |
+
assert 1 / Q(2, 3) == Q(3, 2)
|
165 |
+
raises(TypeError, lambda: [] / Q(1))
|
166 |
+
raises(TypeError, lambda: Q(1) / [])
|
167 |
+
raises(ZeroDivisionError, lambda: Q(1, 2) / Q(0))
|
168 |
+
|
169 |
+
# __divmod__
|
170 |
+
if Q is PythonMPQ:
|
171 |
+
raises(TypeError, lambda: Q(2, 3) // Q(1, 3))
|
172 |
+
raises(TypeError, lambda: Q(2, 3) % Q(1, 3))
|
173 |
+
raises(TypeError, lambda: 1 // Q(1, 3))
|
174 |
+
raises(TypeError, lambda: 1 % Q(1, 3))
|
175 |
+
raises(TypeError, lambda: Q(2, 3) // 1)
|
176 |
+
raises(TypeError, lambda: Q(2, 3) % 1)
|
env-llmeval/lib/python3.10/site-packages/sympy/external/tests/test_scipy.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This testfile tests SymPy <-> SciPy compatibility
|
2 |
+
|
3 |
+
# Don't test any SymPy features here. Just pure interaction with SciPy.
|
4 |
+
# Always write regular SymPy tests for anything, that can be tested in pure
|
5 |
+
# Python (without scipy). Here we test everything, that a user may need when
|
6 |
+
# using SymPy with SciPy
|
7 |
+
|
8 |
+
from sympy.external import import_module
|
9 |
+
|
10 |
+
scipy = import_module('scipy')
|
11 |
+
if not scipy:
|
12 |
+
#bin/test will not execute any tests now
|
13 |
+
disabled = True
|
14 |
+
|
15 |
+
from sympy.functions.special.bessel import jn_zeros
|
16 |
+
|
17 |
+
|
18 |
+
def eq(a, b, tol=1e-6):
|
19 |
+
for x, y in zip(a, b):
|
20 |
+
if not (abs(x - y) < tol):
|
21 |
+
return False
|
22 |
+
return True
|
23 |
+
|
24 |
+
|
25 |
+
def test_jn_zeros():
|
26 |
+
assert eq(jn_zeros(0, 4, method="scipy"),
|
27 |
+
[3.141592, 6.283185, 9.424777, 12.566370])
|
28 |
+
assert eq(jn_zeros(1, 4, method="scipy"),
|
29 |
+
[4.493409, 7.725251, 10.904121, 14.066193])
|
30 |
+
assert eq(jn_zeros(2, 4, method="scipy"),
|
31 |
+
[5.763459, 9.095011, 12.322940, 15.514603])
|
32 |
+
assert eq(jn_zeros(3, 4, method="scipy"),
|
33 |
+
[6.987932, 10.417118, 13.698023, 16.923621])
|
34 |
+
assert eq(jn_zeros(4, 4, method="scipy"),
|
35 |
+
[8.182561, 11.704907, 15.039664, 18.301255])
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sandbox module of SymPy.
|
3 |
+
|
4 |
+
This module contains experimental code, use at your own risk!
|
5 |
+
|
6 |
+
There is no warranty that this code will still be located here in future
|
7 |
+
versions of SymPy.
|
8 |
+
"""
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (372 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/__pycache__/indexed_integrals.cpython-310.pyc
ADDED
Binary file (2.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/indexed_integrals.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.tensor import Indexed
|
2 |
+
from sympy.core.containers import Tuple
|
3 |
+
from sympy.core.symbol import Dummy
|
4 |
+
from sympy.core.sympify import sympify
|
5 |
+
from sympy.integrals.integrals import Integral
|
6 |
+
|
7 |
+
|
8 |
+
class IndexedIntegral(Integral):
|
9 |
+
"""
|
10 |
+
Experimental class to test integration by indexed variables.
|
11 |
+
|
12 |
+
Usage is analogue to ``Integral``, it simply adds awareness of
|
13 |
+
integration over indices.
|
14 |
+
|
15 |
+
Contraction of non-identical index symbols referring to the same
|
16 |
+
``IndexedBase`` is not yet supported.
|
17 |
+
|
18 |
+
Examples
|
19 |
+
========
|
20 |
+
|
21 |
+
>>> from sympy.sandbox.indexed_integrals import IndexedIntegral
|
22 |
+
>>> from sympy import IndexedBase, symbols
|
23 |
+
>>> A = IndexedBase('A')
|
24 |
+
>>> i, j = symbols('i j', integer=True)
|
25 |
+
>>> ii = IndexedIntegral(A[i], A[i])
|
26 |
+
>>> ii
|
27 |
+
Integral(_A[i], _A[i])
|
28 |
+
>>> ii.doit()
|
29 |
+
A[i]**2/2
|
30 |
+
|
31 |
+
If the indices are different, indexed objects are considered to be
|
32 |
+
different variables:
|
33 |
+
|
34 |
+
>>> i2 = IndexedIntegral(A[j], A[i])
|
35 |
+
>>> i2
|
36 |
+
Integral(A[j], _A[i])
|
37 |
+
>>> i2.doit()
|
38 |
+
A[i]*A[j]
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __new__(cls, function, *limits, **assumptions):
|
42 |
+
repl, limits = IndexedIntegral._indexed_process_limits(limits)
|
43 |
+
function = sympify(function)
|
44 |
+
function = function.xreplace(repl)
|
45 |
+
obj = Integral.__new__(cls, function, *limits, **assumptions)
|
46 |
+
obj._indexed_repl = repl
|
47 |
+
obj._indexed_reverse_repl = {val: key for key, val in repl.items()}
|
48 |
+
return obj
|
49 |
+
|
50 |
+
def doit(self):
|
51 |
+
res = super().doit()
|
52 |
+
return res.xreplace(self._indexed_reverse_repl)
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def _indexed_process_limits(limits):
|
56 |
+
repl = {}
|
57 |
+
newlimits = []
|
58 |
+
for i in limits:
|
59 |
+
if isinstance(i, (tuple, list, Tuple)):
|
60 |
+
v = i[0]
|
61 |
+
vrest = i[1:]
|
62 |
+
else:
|
63 |
+
v = i
|
64 |
+
vrest = ()
|
65 |
+
if isinstance(v, Indexed):
|
66 |
+
if v not in repl:
|
67 |
+
r = Dummy(str(v))
|
68 |
+
repl[v] = r
|
69 |
+
newlimits.append((r,)+vrest)
|
70 |
+
else:
|
71 |
+
newlimits.append(i)
|
72 |
+
return repl, newlimits
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/__pycache__/test_indexed_integrals.cpython-310.pyc
ADDED
Binary file (1.31 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/sandbox/tests/test_indexed_integrals.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.sandbox.indexed_integrals import IndexedIntegral
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
4 |
+
from sympy.tensor.indexed import (Idx, IndexedBase)
|
5 |
+
|
6 |
+
|
7 |
+
def test_indexed_integrals():
|
8 |
+
A = IndexedBase('A')
|
9 |
+
i, j = symbols('i j', integer=True)
|
10 |
+
a1, a2 = symbols('a1:3', cls=Idx)
|
11 |
+
assert isinstance(a1, Idx)
|
12 |
+
|
13 |
+
assert IndexedIntegral(1, A[i]).doit() == A[i]
|
14 |
+
assert IndexedIntegral(A[i], A[i]).doit() == A[i] ** 2 / 2
|
15 |
+
assert IndexedIntegral(A[j], A[i]).doit() == A[i] * A[j]
|
16 |
+
assert IndexedIntegral(A[i] * A[j], A[i]).doit() == A[i] ** 2 * A[j] / 2
|
17 |
+
assert IndexedIntegral(sin(A[i]), A[i]).doit() == -cos(A[i])
|
18 |
+
assert IndexedIntegral(sin(A[j]), A[i]).doit() == sin(A[j]) * A[i]
|
19 |
+
|
20 |
+
assert IndexedIntegral(1, A[a1]).doit() == A[a1]
|
21 |
+
assert IndexedIntegral(A[a1], A[a1]).doit() == A[a1] ** 2 / 2
|
22 |
+
assert IndexedIntegral(A[a2], A[a1]).doit() == A[a1] * A[a2]
|
23 |
+
assert IndexedIntegral(A[a1] * A[a2], A[a1]).doit() == A[a1] ** 2 * A[a2] / 2
|
24 |
+
assert IndexedIntegral(sin(A[a1]), A[a1]).doit() == -cos(A[a1])
|
25 |
+
assert IndexedIntegral(sin(A[a2]), A[a1]).doit() == sin(A[a2]) * A[a1]
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module to manipulate symbolic objects with indices including tensors
|
2 |
+
|
3 |
+
"""
|
4 |
+
from .indexed import IndexedBase, Idx, Indexed
|
5 |
+
from .index_methods import get_contraction_structure, get_indices
|
6 |
+
from .functions import shape
|
7 |
+
from .array import (MutableDenseNDimArray, ImmutableDenseNDimArray,
|
8 |
+
MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray, tensorproduct,
|
9 |
+
tensorcontraction, tensordiagonal, derive_by_array, permutedims, Array,
|
10 |
+
DenseNDimArray, SparseNDimArray,)
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'IndexedBase', 'Idx', 'Indexed',
|
14 |
+
|
15 |
+
'get_contraction_structure', 'get_indices',
|
16 |
+
|
17 |
+
'shape',
|
18 |
+
|
19 |
+
'MutableDenseNDimArray', 'ImmutableDenseNDimArray',
|
20 |
+
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray',
|
21 |
+
'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims',
|
22 |
+
'Array', 'DenseNDimArray', 'SparseNDimArray',
|
23 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (946 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (5.27 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/index_methods.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/indexed.cpython-310.pyc
ADDED
Binary file (23.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/tensor.cpython-310.pyc
ADDED
Binary file (151 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/__pycache__/toperators.cpython-310.pyc
ADDED
Binary file (9.19 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/__init__.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
N-dim array module for SymPy.
|
3 |
+
|
4 |
+
Four classes are provided to handle N-dim arrays, given by the combinations
|
5 |
+
dense/sparse (i.e. whether to store all elements or only the non-zero ones in
|
6 |
+
memory) and mutable/immutable (immutable classes are SymPy objects, but cannot
|
7 |
+
change after they have been created).
|
8 |
+
|
9 |
+
Examples
|
10 |
+
========
|
11 |
+
|
12 |
+
The following examples show the usage of ``Array``. This is an abbreviation for
|
13 |
+
``ImmutableDenseNDimArray``, that is an immutable and dense N-dim array, the
|
14 |
+
other classes are analogous. For mutable classes it is also possible to change
|
15 |
+
element values after the object has been constructed.
|
16 |
+
|
17 |
+
Array construction can detect the shape of nested lists and tuples:
|
18 |
+
|
19 |
+
>>> from sympy import Array
|
20 |
+
>>> a1 = Array([[1, 2], [3, 4], [5, 6]])
|
21 |
+
>>> a1
|
22 |
+
[[1, 2], [3, 4], [5, 6]]
|
23 |
+
>>> a1.shape
|
24 |
+
(3, 2)
|
25 |
+
>>> a1.rank()
|
26 |
+
2
|
27 |
+
>>> from sympy.abc import x, y, z
|
28 |
+
>>> a2 = Array([[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]])
|
29 |
+
>>> a2
|
30 |
+
[[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]]
|
31 |
+
>>> a2.shape
|
32 |
+
(2, 2, 2)
|
33 |
+
>>> a2.rank()
|
34 |
+
3
|
35 |
+
|
36 |
+
Otherwise one could pass a 1-dim array followed by a shape tuple:
|
37 |
+
|
38 |
+
>>> m1 = Array(range(12), (3, 4))
|
39 |
+
>>> m1
|
40 |
+
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
|
41 |
+
>>> m2 = Array(range(12), (3, 2, 2))
|
42 |
+
>>> m2
|
43 |
+
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]
|
44 |
+
>>> m2[1,1,1]
|
45 |
+
7
|
46 |
+
>>> m2.reshape(4, 3)
|
47 |
+
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]
|
48 |
+
|
49 |
+
Slice support:
|
50 |
+
|
51 |
+
>>> m2[:, 1, 1]
|
52 |
+
[3, 7, 11]
|
53 |
+
|
54 |
+
Elementwise derivative:
|
55 |
+
|
56 |
+
>>> from sympy.abc import x, y, z
|
57 |
+
>>> m3 = Array([x**3, x*y, z])
|
58 |
+
>>> m3.diff(x)
|
59 |
+
[3*x**2, y, 0]
|
60 |
+
>>> m3.diff(z)
|
61 |
+
[0, 0, 1]
|
62 |
+
|
63 |
+
Multiplication with other SymPy expressions is applied elementwisely:
|
64 |
+
|
65 |
+
>>> (1+x)*m3
|
66 |
+
[x**3*(x + 1), x*y*(x + 1), z*(x + 1)]
|
67 |
+
|
68 |
+
To apply a function to each element of the N-dim array, use ``applyfunc``:
|
69 |
+
|
70 |
+
>>> m3.applyfunc(lambda x: x/2)
|
71 |
+
[x**3/2, x*y/2, z/2]
|
72 |
+
|
73 |
+
N-dim arrays can be converted to nested lists by the ``tolist()`` method:
|
74 |
+
|
75 |
+
>>> m2.tolist()
|
76 |
+
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]
|
77 |
+
>>> isinstance(m2.tolist(), list)
|
78 |
+
True
|
79 |
+
|
80 |
+
If the rank is 2, it is possible to convert them to matrices with ``tomatrix()``:
|
81 |
+
|
82 |
+
>>> m1.tomatrix()
|
83 |
+
Matrix([
|
84 |
+
[0, 1, 2, 3],
|
85 |
+
[4, 5, 6, 7],
|
86 |
+
[8, 9, 10, 11]])
|
87 |
+
|
88 |
+
Products and contractions
|
89 |
+
-------------------------
|
90 |
+
|
91 |
+
Tensor product between arrays `A_{i_1,\ldots,i_n}` and `B_{j_1,\ldots,j_m}`
|
92 |
+
creates the combined array `P = A \otimes B` defined as
|
93 |
+
|
94 |
+
`P_{i_1,\ldots,i_n,j_1,\ldots,j_m} := A_{i_1,\ldots,i_n}\cdot B_{j_1,\ldots,j_m}.`
|
95 |
+
|
96 |
+
It is available through ``tensorproduct(...)``:
|
97 |
+
|
98 |
+
>>> from sympy import Array, tensorproduct
|
99 |
+
>>> from sympy.abc import x,y,z,t
|
100 |
+
>>> A = Array([x, y, z, t])
|
101 |
+
>>> B = Array([1, 2, 3, 4])
|
102 |
+
>>> tensorproduct(A, B)
|
103 |
+
[[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]]
|
104 |
+
|
105 |
+
In case you don't want to evaluate the tensor product immediately, you can use
|
106 |
+
``ArrayTensorProduct``, which creates an unevaluated tensor product expression:
|
107 |
+
|
108 |
+
>>> from sympy.tensor.array.expressions import ArrayTensorProduct
|
109 |
+
>>> ArrayTensorProduct(A, B)
|
110 |
+
ArrayTensorProduct([x, y, z, t], [1, 2, 3, 4])
|
111 |
+
|
112 |
+
Calling ``.as_explicit()`` on ``ArrayTensorProduct`` is equivalent to just calling
|
113 |
+
``tensorproduct(...)``:
|
114 |
+
|
115 |
+
>>> ArrayTensorProduct(A, B).as_explicit()
|
116 |
+
[[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]]
|
117 |
+
|
118 |
+
Tensor product between a rank-1 array and a matrix creates a rank-3 array:
|
119 |
+
|
120 |
+
>>> from sympy import eye
|
121 |
+
>>> p1 = tensorproduct(A, eye(4))
|
122 |
+
>>> p1
|
123 |
+
[[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]], [[y, 0, 0, 0], [0, y, 0, 0], [0, 0, y, 0], [0, 0, 0, y]], [[z, 0, 0, 0], [0, z, 0, 0], [0, 0, z, 0], [0, 0, 0, z]], [[t, 0, 0, 0], [0, t, 0, 0], [0, 0, t, 0], [0, 0, 0, t]]]
|
124 |
+
|
125 |
+
Now, to get back `A_0 \otimes \mathbf{1}` one can access `p_{0,m,n}` by slicing:
|
126 |
+
|
127 |
+
>>> p1[0,:,:]
|
128 |
+
[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]]
|
129 |
+
|
130 |
+
Tensor contraction sums over the specified axes, for example contracting
|
131 |
+
positions `a` and `b` means
|
132 |
+
|
133 |
+
`A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies \sum_k A_{i_1,\ldots,k,\ldots,k,\ldots,i_n}`
|
134 |
+
|
135 |
+
Remember that Python indexing is zero starting, to contract the a-th and b-th
|
136 |
+
axes it is therefore necessary to specify `a-1` and `b-1`
|
137 |
+
|
138 |
+
>>> from sympy import tensorcontraction
|
139 |
+
>>> C = Array([[x, y], [z, t]])
|
140 |
+
|
141 |
+
The matrix trace is equivalent to the contraction of a rank-2 array:
|
142 |
+
|
143 |
+
`A_{m,n} \implies \sum_k A_{k,k}`
|
144 |
+
|
145 |
+
>>> tensorcontraction(C, (0, 1))
|
146 |
+
t + x
|
147 |
+
|
148 |
+
To create an expression representing a tensor contraction that does not get
|
149 |
+
evaluated immediately, use ``ArrayContraction``, which is equivalent to
|
150 |
+
``tensorcontraction(...)`` if it is followed by ``.as_explicit()``:
|
151 |
+
|
152 |
+
>>> from sympy.tensor.array.expressions import ArrayContraction
|
153 |
+
>>> ArrayContraction(C, (0, 1))
|
154 |
+
ArrayContraction([[x, y], [z, t]], (0, 1))
|
155 |
+
>>> ArrayContraction(C, (0, 1)).as_explicit()
|
156 |
+
t + x
|
157 |
+
|
158 |
+
Matrix product is equivalent to a tensor product of two rank-2 arrays, followed
|
159 |
+
by a contraction of the 2nd and 3rd axes (in Python indexing axes number 1, 2).
|
160 |
+
|
161 |
+
`A_{m,n}\cdot B_{i,j} \implies \sum_k A_{m, k}\cdot B_{k, j}`
|
162 |
+
|
163 |
+
>>> D = Array([[2, 1], [0, -1]])
|
164 |
+
>>> tensorcontraction(tensorproduct(C, D), (1, 2))
|
165 |
+
[[2*x, x - y], [2*z, -t + z]]
|
166 |
+
|
167 |
+
One may verify that the matrix product is equivalent:
|
168 |
+
|
169 |
+
>>> from sympy import Matrix
|
170 |
+
>>> Matrix([[x, y], [z, t]])*Matrix([[2, 1], [0, -1]])
|
171 |
+
Matrix([
|
172 |
+
[2*x, x - y],
|
173 |
+
[2*z, -t + z]])
|
174 |
+
|
175 |
+
or equivalently
|
176 |
+
|
177 |
+
>>> C.tomatrix()*D.tomatrix()
|
178 |
+
Matrix([
|
179 |
+
[2*x, x - y],
|
180 |
+
[2*z, -t + z]])
|
181 |
+
|
182 |
+
Diagonal operator
|
183 |
+
-----------------
|
184 |
+
|
185 |
+
The ``tensordiagonal`` function acts in a similar manner as ``tensorcontraction``,
|
186 |
+
but the joined indices are not summed over, for example diagonalizing
|
187 |
+
positions `a` and `b` means
|
188 |
+
|
189 |
+
`A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies A_{i_1,\ldots,k,\ldots,k,\ldots,i_n}
|
190 |
+
\implies \tilde{A}_{i_1,\ldots,i_{a-1},i_{a+1},\ldots,i_{b-1},i_{b+1},\ldots,i_n,k}`
|
191 |
+
|
192 |
+
where `\tilde{A}` is the array equivalent to the diagonal of `A` at positions
|
193 |
+
`a` and `b` moved to the last index slot.
|
194 |
+
|
195 |
+
Compare the difference between contraction and diagonal operators:
|
196 |
+
|
197 |
+
>>> from sympy import tensordiagonal
|
198 |
+
>>> from sympy.abc import a, b, c, d
|
199 |
+
>>> m = Matrix([[a, b], [c, d]])
|
200 |
+
>>> tensorcontraction(m, [0, 1])
|
201 |
+
a + d
|
202 |
+
>>> tensordiagonal(m, [0, 1])
|
203 |
+
[a, d]
|
204 |
+
|
205 |
+
In short, no summation occurs with ``tensordiagonal``.
|
206 |
+
|
207 |
+
|
208 |
+
Derivatives by array
|
209 |
+
--------------------
|
210 |
+
|
211 |
+
The usual derivative operation may be extended to support derivation with
|
212 |
+
respect to arrays, provided that all elements in the that array are symbols or
|
213 |
+
expressions suitable for derivations.
|
214 |
+
|
215 |
+
The definition of a derivative by an array is as follows: given the array
|
216 |
+
`A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}`
|
217 |
+
the derivative of arrays will return a new array `B` defined by
|
218 |
+
|
219 |
+
`B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}`
|
220 |
+
|
221 |
+
The function ``derive_by_array`` performs such an operation:
|
222 |
+
|
223 |
+
>>> from sympy import derive_by_array
|
224 |
+
>>> from sympy.abc import x, y, z, t
|
225 |
+
>>> from sympy import sin, exp
|
226 |
+
|
227 |
+
With scalars, it behaves exactly as the ordinary derivative:
|
228 |
+
|
229 |
+
>>> derive_by_array(sin(x*y), x)
|
230 |
+
y*cos(x*y)
|
231 |
+
|
232 |
+
Scalar derived by an array basis:
|
233 |
+
|
234 |
+
>>> derive_by_array(sin(x*y), [x, y, z])
|
235 |
+
[y*cos(x*y), x*cos(x*y), 0]
|
236 |
+
|
237 |
+
Deriving array by an array basis: `B^{nm} := \frac{\partial A^m}{\partial x^n}`
|
238 |
+
|
239 |
+
>>> basis = [x, y, z]
|
240 |
+
>>> ax = derive_by_array([exp(x), sin(y*z), t], basis)
|
241 |
+
>>> ax
|
242 |
+
[[exp(x), 0, 0], [0, z*cos(y*z), 0], [0, y*cos(y*z), 0]]
|
243 |
+
|
244 |
+
Contraction of the resulting array: `\sum_m \frac{\partial A^m}{\partial x^m}`
|
245 |
+
|
246 |
+
>>> tensorcontraction(ax, (0, 1))
|
247 |
+
z*cos(y*z) + exp(x)
|
248 |
+
|
249 |
+
"""
|
250 |
+
|
251 |
+
from .dense_ndim_array import MutableDenseNDimArray, ImmutableDenseNDimArray, DenseNDimArray
|
252 |
+
from .sparse_ndim_array import MutableSparseNDimArray, ImmutableSparseNDimArray, SparseNDimArray
|
253 |
+
from .ndim_array import NDimArray, ArrayKind
|
254 |
+
from .arrayop import tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims
|
255 |
+
from .array_comprehension import ArrayComprehension, ArrayComprehensionMap
|
256 |
+
|
257 |
+
Array = ImmutableDenseNDimArray
|
258 |
+
|
259 |
+
__all__ = [
|
260 |
+
'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'DenseNDimArray',
|
261 |
+
|
262 |
+
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'SparseNDimArray',
|
263 |
+
|
264 |
+
'NDimArray', 'ArrayKind',
|
265 |
+
|
266 |
+
'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array',
|
267 |
+
|
268 |
+
'permutedims', 'ArrayComprehension', 'ArrayComprehensionMap',
|
269 |
+
|
270 |
+
'Array',
|
271 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/array_comprehension.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools, itertools
|
2 |
+
from sympy.core.sympify import _sympify, sympify
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core import Basic, Tuple
|
5 |
+
from sympy.tensor.array import ImmutableDenseNDimArray
|
6 |
+
from sympy.core.symbol import Symbol
|
7 |
+
from sympy.core.numbers import Integer
|
8 |
+
|
9 |
+
|
10 |
+
class ArrayComprehension(Basic):
|
11 |
+
"""
|
12 |
+
Generate a list comprehension.
|
13 |
+
|
14 |
+
Explanation
|
15 |
+
===========
|
16 |
+
|
17 |
+
If there is a symbolic dimension, for example, say [i for i in range(1, N)] where
|
18 |
+
N is a Symbol, then the expression will not be expanded to an array. Otherwise,
|
19 |
+
calling the doit() function will launch the expansion.
|
20 |
+
|
21 |
+
Examples
|
22 |
+
========
|
23 |
+
|
24 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
25 |
+
>>> from sympy import symbols
|
26 |
+
>>> i, j, k = symbols('i j k')
|
27 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
28 |
+
>>> a
|
29 |
+
ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
30 |
+
>>> a.doit()
|
31 |
+
[[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]
|
32 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k))
|
33 |
+
>>> b.doit()
|
34 |
+
ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k))
|
35 |
+
"""
|
36 |
+
def __new__(cls, function, *symbols, **assumptions):
|
37 |
+
if any(len(l) != 3 or None for l in symbols):
|
38 |
+
raise ValueError('ArrayComprehension requires values lower and upper bound'
|
39 |
+
' for the expression')
|
40 |
+
arglist = [sympify(function)]
|
41 |
+
arglist.extend(cls._check_limits_validity(function, symbols))
|
42 |
+
obj = Basic.__new__(cls, *arglist, **assumptions)
|
43 |
+
obj._limits = obj._args[1:]
|
44 |
+
obj._shape = cls._calculate_shape_from_limits(obj._limits)
|
45 |
+
obj._rank = len(obj._shape)
|
46 |
+
obj._loop_size = cls._calculate_loop_size(obj._shape)
|
47 |
+
return obj
|
48 |
+
|
49 |
+
@property
|
50 |
+
def function(self):
|
51 |
+
"""The function applied across limits.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
57 |
+
>>> from sympy import symbols
|
58 |
+
>>> i, j = symbols('i j')
|
59 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
60 |
+
>>> a.function
|
61 |
+
10*i + j
|
62 |
+
"""
|
63 |
+
return self._args[0]
|
64 |
+
|
65 |
+
@property
|
66 |
+
def limits(self):
|
67 |
+
"""
|
68 |
+
The list of limits that will be applied while expanding the array.
|
69 |
+
|
70 |
+
Examples
|
71 |
+
========
|
72 |
+
|
73 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
74 |
+
>>> from sympy import symbols
|
75 |
+
>>> i, j = symbols('i j')
|
76 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
77 |
+
>>> a.limits
|
78 |
+
((i, 1, 4), (j, 1, 3))
|
79 |
+
"""
|
80 |
+
return self._limits
|
81 |
+
|
82 |
+
@property
|
83 |
+
def free_symbols(self):
|
84 |
+
"""
|
85 |
+
The set of the free_symbols in the array.
|
86 |
+
Variables appeared in the bounds are supposed to be excluded
|
87 |
+
from the free symbol set.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
========
|
91 |
+
|
92 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
93 |
+
>>> from sympy import symbols
|
94 |
+
>>> i, j, k = symbols('i j k')
|
95 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
96 |
+
>>> a.free_symbols
|
97 |
+
set()
|
98 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
|
99 |
+
>>> b.free_symbols
|
100 |
+
{k}
|
101 |
+
"""
|
102 |
+
expr_free_sym = self.function.free_symbols
|
103 |
+
for var, inf, sup in self._limits:
|
104 |
+
expr_free_sym.discard(var)
|
105 |
+
curr_free_syms = inf.free_symbols.union(sup.free_symbols)
|
106 |
+
expr_free_sym = expr_free_sym.union(curr_free_syms)
|
107 |
+
return expr_free_sym
|
108 |
+
|
109 |
+
@property
|
110 |
+
def variables(self):
|
111 |
+
"""The tuples of the variables in the limits.
|
112 |
+
|
113 |
+
Examples
|
114 |
+
========
|
115 |
+
|
116 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
117 |
+
>>> from sympy import symbols
|
118 |
+
>>> i, j, k = symbols('i j k')
|
119 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
120 |
+
>>> a.variables
|
121 |
+
[i, j]
|
122 |
+
"""
|
123 |
+
return [l[0] for l in self._limits]
|
124 |
+
|
125 |
+
@property
|
126 |
+
def bound_symbols(self):
|
127 |
+
"""The list of dummy variables.
|
128 |
+
|
129 |
+
Note
|
130 |
+
====
|
131 |
+
|
132 |
+
Note that all variables are dummy variables since a limit without
|
133 |
+
lower bound or upper bound is not accepted.
|
134 |
+
"""
|
135 |
+
return [l[0] for l in self._limits if len(l) != 1]
|
136 |
+
|
137 |
+
@property
|
138 |
+
def shape(self):
|
139 |
+
"""
|
140 |
+
The shape of the expanded array, which may have symbols.
|
141 |
+
|
142 |
+
Note
|
143 |
+
====
|
144 |
+
|
145 |
+
Both the lower and the upper bounds are included while
|
146 |
+
calculating the shape.
|
147 |
+
|
148 |
+
Examples
|
149 |
+
========
|
150 |
+
|
151 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
152 |
+
>>> from sympy import symbols
|
153 |
+
>>> i, j, k = symbols('i j k')
|
154 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
155 |
+
>>> a.shape
|
156 |
+
(4, 3)
|
157 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
|
158 |
+
>>> b.shape
|
159 |
+
(4, k + 3)
|
160 |
+
"""
|
161 |
+
return self._shape
|
162 |
+
|
163 |
+
@property
|
164 |
+
def is_shape_numeric(self):
|
165 |
+
"""
|
166 |
+
Test if the array is shape-numeric which means there is no symbolic
|
167 |
+
dimension.
|
168 |
+
|
169 |
+
Examples
|
170 |
+
========
|
171 |
+
|
172 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
173 |
+
>>> from sympy import symbols
|
174 |
+
>>> i, j, k = symbols('i j k')
|
175 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
176 |
+
>>> a.is_shape_numeric
|
177 |
+
True
|
178 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
|
179 |
+
>>> b.is_shape_numeric
|
180 |
+
False
|
181 |
+
"""
|
182 |
+
for _, inf, sup in self._limits:
|
183 |
+
if Basic(inf, sup).atoms(Symbol):
|
184 |
+
return False
|
185 |
+
return True
|
186 |
+
|
187 |
+
def rank(self):
|
188 |
+
"""The rank of the expanded array.
|
189 |
+
|
190 |
+
Examples
|
191 |
+
========
|
192 |
+
|
193 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
194 |
+
>>> from sympy import symbols
|
195 |
+
>>> i, j, k = symbols('i j k')
|
196 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
197 |
+
>>> a.rank()
|
198 |
+
2
|
199 |
+
"""
|
200 |
+
return self._rank
|
201 |
+
|
202 |
+
def __len__(self):
|
203 |
+
"""
|
204 |
+
The length of the expanded array which means the number
|
205 |
+
of elements in the array.
|
206 |
+
|
207 |
+
Raises
|
208 |
+
======
|
209 |
+
|
210 |
+
ValueError : When the length of the array is symbolic
|
211 |
+
|
212 |
+
Examples
|
213 |
+
========
|
214 |
+
|
215 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
216 |
+
>>> from sympy import symbols
|
217 |
+
>>> i, j = symbols('i j')
|
218 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
219 |
+
>>> len(a)
|
220 |
+
12
|
221 |
+
"""
|
222 |
+
if self._loop_size.free_symbols:
|
223 |
+
raise ValueError('Symbolic length is not supported')
|
224 |
+
return self._loop_size
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def _check_limits_validity(cls, function, limits):
|
228 |
+
#limits = sympify(limits)
|
229 |
+
new_limits = []
|
230 |
+
for var, inf, sup in limits:
|
231 |
+
var = _sympify(var)
|
232 |
+
inf = _sympify(inf)
|
233 |
+
#since this is stored as an argument, it should be
|
234 |
+
#a Tuple
|
235 |
+
if isinstance(sup, list):
|
236 |
+
sup = Tuple(*sup)
|
237 |
+
else:
|
238 |
+
sup = _sympify(sup)
|
239 |
+
new_limits.append(Tuple(var, inf, sup))
|
240 |
+
if any((not isinstance(i, Expr)) or i.atoms(Symbol, Integer) != i.atoms()
|
241 |
+
for i in [inf, sup]):
|
242 |
+
raise TypeError('Bounds should be an Expression(combination of Integer and Symbol)')
|
243 |
+
if (inf > sup) == True:
|
244 |
+
raise ValueError('Lower bound should be inferior to upper bound')
|
245 |
+
if var in inf.free_symbols or var in sup.free_symbols:
|
246 |
+
raise ValueError('Variable should not be part of its bounds')
|
247 |
+
return new_limits
|
248 |
+
|
249 |
+
@classmethod
|
250 |
+
def _calculate_shape_from_limits(cls, limits):
|
251 |
+
return tuple([sup - inf + 1 for _, inf, sup in limits])
|
252 |
+
|
253 |
+
@classmethod
|
254 |
+
def _calculate_loop_size(cls, shape):
|
255 |
+
if not shape:
|
256 |
+
return 0
|
257 |
+
loop_size = 1
|
258 |
+
for l in shape:
|
259 |
+
loop_size = loop_size * l
|
260 |
+
|
261 |
+
return loop_size
|
262 |
+
|
263 |
+
def doit(self, **hints):
|
264 |
+
if not self.is_shape_numeric:
|
265 |
+
return self
|
266 |
+
|
267 |
+
return self._expand_array()
|
268 |
+
|
269 |
+
def _expand_array(self):
|
270 |
+
res = []
|
271 |
+
for values in itertools.product(*[range(inf, sup+1)
|
272 |
+
for var, inf, sup
|
273 |
+
in self._limits]):
|
274 |
+
res.append(self._get_element(values))
|
275 |
+
|
276 |
+
return ImmutableDenseNDimArray(res, self.shape)
|
277 |
+
|
278 |
+
def _get_element(self, values):
|
279 |
+
temp = self.function
|
280 |
+
for var, val in zip(self.variables, values):
|
281 |
+
temp = temp.subs(var, val)
|
282 |
+
return temp
|
283 |
+
|
284 |
+
def tolist(self):
|
285 |
+
"""Transform the expanded array to a list.
|
286 |
+
|
287 |
+
Raises
|
288 |
+
======
|
289 |
+
|
290 |
+
ValueError : When there is a symbolic dimension
|
291 |
+
|
292 |
+
Examples
|
293 |
+
========
|
294 |
+
|
295 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
296 |
+
>>> from sympy import symbols
|
297 |
+
>>> i, j = symbols('i j')
|
298 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
299 |
+
>>> a.tolist()
|
300 |
+
[[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]
|
301 |
+
"""
|
302 |
+
if self.is_shape_numeric:
|
303 |
+
return self._expand_array().tolist()
|
304 |
+
|
305 |
+
raise ValueError("A symbolic array cannot be expanded to a list")
|
306 |
+
|
307 |
+
def tomatrix(self):
|
308 |
+
"""Transform the expanded array to a matrix.
|
309 |
+
|
310 |
+
Raises
|
311 |
+
======
|
312 |
+
|
313 |
+
ValueError : When there is a symbolic dimension
|
314 |
+
ValueError : When the rank of the expanded array is not equal to 2
|
315 |
+
|
316 |
+
Examples
|
317 |
+
========
|
318 |
+
|
319 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
320 |
+
>>> from sympy import symbols
|
321 |
+
>>> i, j = symbols('i j')
|
322 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
323 |
+
>>> a.tomatrix()
|
324 |
+
Matrix([
|
325 |
+
[11, 12, 13],
|
326 |
+
[21, 22, 23],
|
327 |
+
[31, 32, 33],
|
328 |
+
[41, 42, 43]])
|
329 |
+
"""
|
330 |
+
from sympy.matrices import Matrix
|
331 |
+
|
332 |
+
if not self.is_shape_numeric:
|
333 |
+
raise ValueError("A symbolic array cannot be expanded to a matrix")
|
334 |
+
if self._rank != 2:
|
335 |
+
raise ValueError('Dimensions must be of size of 2')
|
336 |
+
|
337 |
+
return Matrix(self._expand_array().tomatrix())
|
338 |
+
|
339 |
+
|
340 |
+
def isLambda(v):
|
341 |
+
LAMBDA = lambda: 0
|
342 |
+
return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__
|
343 |
+
|
344 |
+
class ArrayComprehensionMap(ArrayComprehension):
|
345 |
+
'''
|
346 |
+
A subclass of ArrayComprehension dedicated to map external function lambda.
|
347 |
+
|
348 |
+
Notes
|
349 |
+
=====
|
350 |
+
|
351 |
+
Only the lambda function is considered.
|
352 |
+
At most one argument in lambda function is accepted in order to avoid ambiguity
|
353 |
+
in value assignment.
|
354 |
+
|
355 |
+
Examples
|
356 |
+
========
|
357 |
+
|
358 |
+
>>> from sympy.tensor.array import ArrayComprehensionMap
|
359 |
+
>>> from sympy import symbols
|
360 |
+
>>> i, j, k = symbols('i j k')
|
361 |
+
>>> a = ArrayComprehensionMap(lambda: 1, (i, 1, 4))
|
362 |
+
>>> a.doit()
|
363 |
+
[1, 1, 1, 1]
|
364 |
+
>>> b = ArrayComprehensionMap(lambda a: a+1, (j, 1, 4))
|
365 |
+
>>> b.doit()
|
366 |
+
[2, 3, 4, 5]
|
367 |
+
|
368 |
+
'''
|
369 |
+
def __new__(cls, function, *symbols, **assumptions):
|
370 |
+
if any(len(l) != 3 or None for l in symbols):
|
371 |
+
raise ValueError('ArrayComprehension requires values lower and upper bound'
|
372 |
+
' for the expression')
|
373 |
+
|
374 |
+
if not isLambda(function):
|
375 |
+
raise ValueError('Data type not supported')
|
376 |
+
|
377 |
+
arglist = cls._check_limits_validity(function, symbols)
|
378 |
+
obj = Basic.__new__(cls, *arglist, **assumptions)
|
379 |
+
obj._limits = obj._args
|
380 |
+
obj._shape = cls._calculate_shape_from_limits(obj._limits)
|
381 |
+
obj._rank = len(obj._shape)
|
382 |
+
obj._loop_size = cls._calculate_loop_size(obj._shape)
|
383 |
+
obj._lambda = function
|
384 |
+
return obj
|
385 |
+
|
386 |
+
@property
|
387 |
+
def func(self):
|
388 |
+
class _(ArrayComprehensionMap):
|
389 |
+
def __new__(cls, *args, **kwargs):
|
390 |
+
return ArrayComprehensionMap(self._lambda, *args, **kwargs)
|
391 |
+
return _
|
392 |
+
|
393 |
+
def _get_element(self, values):
|
394 |
+
temp = self._lambda
|
395 |
+
if self._lambda.__code__.co_argcount == 0:
|
396 |
+
temp = temp()
|
397 |
+
elif self._lambda.__code__.co_argcount == 1:
|
398 |
+
temp = temp(functools.reduce(lambda a, b: a*b, values))
|
399 |
+
return temp
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/array_derivatives.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core.function import Derivative
|
5 |
+
from sympy.core.numbers import Integer
|
6 |
+
from sympy.matrices.common import MatrixCommon
|
7 |
+
from .ndim_array import NDimArray
|
8 |
+
from .arrayop import derive_by_array
|
9 |
+
from sympy.matrices.expressions.matexpr import MatrixExpr
|
10 |
+
from sympy.matrices.expressions.special import ZeroMatrix
|
11 |
+
from sympy.matrices.expressions.matexpr import _matrix_derivative
|
12 |
+
|
13 |
+
|
14 |
+
class ArrayDerivative(Derivative):
|
15 |
+
|
16 |
+
is_scalar = False
|
17 |
+
|
18 |
+
def __new__(cls, expr, *variables, **kwargs):
|
19 |
+
obj = super().__new__(cls, expr, *variables, **kwargs)
|
20 |
+
if isinstance(obj, ArrayDerivative):
|
21 |
+
obj._shape = obj._get_shape()
|
22 |
+
return obj
|
23 |
+
|
24 |
+
def _get_shape(self):
|
25 |
+
shape = ()
|
26 |
+
for v, count in self.variable_count:
|
27 |
+
if hasattr(v, "shape"):
|
28 |
+
for i in range(count):
|
29 |
+
shape += v.shape
|
30 |
+
if hasattr(self.expr, "shape"):
|
31 |
+
shape += self.expr.shape
|
32 |
+
return shape
|
33 |
+
|
34 |
+
@property
|
35 |
+
def shape(self):
|
36 |
+
return self._shape
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def _get_zero_with_shape_like(cls, expr):
|
40 |
+
if isinstance(expr, (MatrixCommon, NDimArray)):
|
41 |
+
return expr.zeros(*expr.shape)
|
42 |
+
elif isinstance(expr, MatrixExpr):
|
43 |
+
return ZeroMatrix(*expr.shape)
|
44 |
+
else:
|
45 |
+
raise RuntimeError("Unable to determine shape of array-derivative.")
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def _call_derive_scalar_by_matrix(expr: Expr, v: MatrixCommon) -> Expr:
|
49 |
+
return v.applyfunc(lambda x: expr.diff(x))
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def _call_derive_scalar_by_matexpr(expr: Expr, v: MatrixExpr) -> Expr:
|
53 |
+
if expr.has(v):
|
54 |
+
return _matrix_derivative(expr, v)
|
55 |
+
else:
|
56 |
+
return ZeroMatrix(*v.shape)
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def _call_derive_scalar_by_array(expr: Expr, v: NDimArray) -> Expr:
|
60 |
+
return v.applyfunc(lambda x: expr.diff(x))
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def _call_derive_matrix_by_scalar(expr: MatrixCommon, v: Expr) -> Expr:
|
64 |
+
return _matrix_derivative(expr, v)
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def _call_derive_matexpr_by_scalar(expr: MatrixExpr, v: Expr) -> Expr:
|
68 |
+
return expr._eval_derivative(v)
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
def _call_derive_array_by_scalar(expr: NDimArray, v: Expr) -> Expr:
|
72 |
+
return expr.applyfunc(lambda x: x.diff(v))
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def _call_derive_default(expr: Expr, v: Expr) -> Expr | None:
|
76 |
+
if expr.has(v):
|
77 |
+
return _matrix_derivative(expr, v)
|
78 |
+
else:
|
79 |
+
return None
|
80 |
+
|
81 |
+
@classmethod
|
82 |
+
def _dispatch_eval_derivative_n_times(cls, expr, v, count):
|
83 |
+
# Evaluate the derivative `n` times. If
|
84 |
+
# `_eval_derivative_n_times` is not overridden by the current
|
85 |
+
# object, the default in `Basic` will call a loop over
|
86 |
+
# `_eval_derivative`:
|
87 |
+
|
88 |
+
if not isinstance(count, (int, Integer)) or ((count <= 0) == True):
|
89 |
+
return None
|
90 |
+
|
91 |
+
# TODO: this could be done with multiple-dispatching:
|
92 |
+
if expr.is_scalar:
|
93 |
+
if isinstance(v, MatrixCommon):
|
94 |
+
result = cls._call_derive_scalar_by_matrix(expr, v)
|
95 |
+
elif isinstance(v, MatrixExpr):
|
96 |
+
result = cls._call_derive_scalar_by_matexpr(expr, v)
|
97 |
+
elif isinstance(v, NDimArray):
|
98 |
+
result = cls._call_derive_scalar_by_array(expr, v)
|
99 |
+
elif v.is_scalar:
|
100 |
+
# scalar by scalar has a special
|
101 |
+
return super()._dispatch_eval_derivative_n_times(expr, v, count)
|
102 |
+
else:
|
103 |
+
return None
|
104 |
+
elif v.is_scalar:
|
105 |
+
if isinstance(expr, MatrixCommon):
|
106 |
+
result = cls._call_derive_matrix_by_scalar(expr, v)
|
107 |
+
elif isinstance(expr, MatrixExpr):
|
108 |
+
result = cls._call_derive_matexpr_by_scalar(expr, v)
|
109 |
+
elif isinstance(expr, NDimArray):
|
110 |
+
result = cls._call_derive_array_by_scalar(expr, v)
|
111 |
+
else:
|
112 |
+
return None
|
113 |
+
else:
|
114 |
+
# Both `expr` and `v` are some array/matrix type:
|
115 |
+
if isinstance(expr, MatrixCommon) or isinstance(expr, MatrixCommon):
|
116 |
+
result = derive_by_array(expr, v)
|
117 |
+
elif isinstance(expr, MatrixExpr) and isinstance(v, MatrixExpr):
|
118 |
+
result = cls._call_derive_default(expr, v)
|
119 |
+
elif isinstance(expr, MatrixExpr) or isinstance(v, MatrixExpr):
|
120 |
+
# if one expression is a symbolic matrix expression while the other isn't, don't evaluate:
|
121 |
+
return None
|
122 |
+
else:
|
123 |
+
result = derive_by_array(expr, v)
|
124 |
+
if result is None:
|
125 |
+
return None
|
126 |
+
if count == 1:
|
127 |
+
return result
|
128 |
+
else:
|
129 |
+
return cls._dispatch_eval_derivative_n_times(result, v, count - 1)
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/arrayop.py
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from collections.abc import Iterable
|
3 |
+
|
4 |
+
from sympy.core._print_helpers import Printable
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.function import diff
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.sympify import _sympify
|
9 |
+
|
10 |
+
from sympy.tensor.array.ndim_array import NDimArray
|
11 |
+
from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray
|
12 |
+
from sympy.tensor.array.sparse_ndim_array import SparseNDimArray
|
13 |
+
|
14 |
+
|
15 |
+
def _arrayfy(a):
|
16 |
+
from sympy.matrices import MatrixBase
|
17 |
+
|
18 |
+
if isinstance(a, NDimArray):
|
19 |
+
return a
|
20 |
+
if isinstance(a, (MatrixBase, list, tuple, Tuple)):
|
21 |
+
return ImmutableDenseNDimArray(a)
|
22 |
+
return a
|
23 |
+
|
24 |
+
|
25 |
+
def tensorproduct(*args):
|
26 |
+
"""
|
27 |
+
Tensor product among scalars or array-like objects.
|
28 |
+
|
29 |
+
The equivalent operator for array expressions is ``ArrayTensorProduct``,
|
30 |
+
which can be used to keep the expression unevaluated.
|
31 |
+
|
32 |
+
Examples
|
33 |
+
========
|
34 |
+
|
35 |
+
>>> from sympy.tensor.array import tensorproduct, Array
|
36 |
+
>>> from sympy.abc import x, y, z, t
|
37 |
+
>>> A = Array([[1, 2], [3, 4]])
|
38 |
+
>>> B = Array([x, y])
|
39 |
+
>>> tensorproduct(A, B)
|
40 |
+
[[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]]
|
41 |
+
>>> tensorproduct(A, x)
|
42 |
+
[[x, 2*x], [3*x, 4*x]]
|
43 |
+
>>> tensorproduct(A, B, B)
|
44 |
+
[[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]]
|
45 |
+
|
46 |
+
Applying this function on two matrices will result in a rank 4 array.
|
47 |
+
|
48 |
+
>>> from sympy import Matrix, eye
|
49 |
+
>>> m = Matrix([[x, y], [z, t]])
|
50 |
+
>>> p = tensorproduct(eye(3), m)
|
51 |
+
>>> p
|
52 |
+
[[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]]
|
53 |
+
|
54 |
+
See Also
|
55 |
+
========
|
56 |
+
|
57 |
+
sympy.tensor.array.expressions.array_expressions.ArrayTensorProduct
|
58 |
+
|
59 |
+
"""
|
60 |
+
from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray
|
61 |
+
|
62 |
+
if len(args) == 0:
|
63 |
+
return S.One
|
64 |
+
if len(args) == 1:
|
65 |
+
return _arrayfy(args[0])
|
66 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
67 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
|
68 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
69 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
70 |
+
if any(isinstance(arg, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)) for arg in args):
|
71 |
+
return ArrayTensorProduct(*args)
|
72 |
+
if len(args) > 2:
|
73 |
+
return tensorproduct(tensorproduct(args[0], args[1]), *args[2:])
|
74 |
+
|
75 |
+
# length of args is 2:
|
76 |
+
a, b = map(_arrayfy, args)
|
77 |
+
|
78 |
+
if not isinstance(a, NDimArray) or not isinstance(b, NDimArray):
|
79 |
+
return a*b
|
80 |
+
|
81 |
+
if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray):
|
82 |
+
lp = len(b)
|
83 |
+
new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()}
|
84 |
+
return ImmutableSparseNDimArray(new_array, a.shape + b.shape)
|
85 |
+
|
86 |
+
product_list = [i*j for i in Flatten(a) for j in Flatten(b)]
|
87 |
+
return ImmutableDenseNDimArray(product_list, a.shape + b.shape)
|
88 |
+
|
89 |
+
|
90 |
+
def _util_contraction_diagonal(array, *contraction_or_diagonal_axes):
|
91 |
+
array = _arrayfy(array)
|
92 |
+
|
93 |
+
# Verify contraction_axes:
|
94 |
+
taken_dims = set()
|
95 |
+
for axes_group in contraction_or_diagonal_axes:
|
96 |
+
if not isinstance(axes_group, Iterable):
|
97 |
+
raise ValueError("collections of contraction/diagonal axes expected")
|
98 |
+
|
99 |
+
dim = array.shape[axes_group[0]]
|
100 |
+
|
101 |
+
for d in axes_group:
|
102 |
+
if d in taken_dims:
|
103 |
+
raise ValueError("dimension specified more than once")
|
104 |
+
if dim != array.shape[d]:
|
105 |
+
raise ValueError("cannot contract or diagonalize between axes of different dimension")
|
106 |
+
taken_dims.add(d)
|
107 |
+
|
108 |
+
rank = array.rank()
|
109 |
+
|
110 |
+
remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims]
|
111 |
+
cum_shape = [0]*rank
|
112 |
+
_cumul = 1
|
113 |
+
for i in range(rank):
|
114 |
+
cum_shape[rank - i - 1] = _cumul
|
115 |
+
_cumul *= int(array.shape[rank - i - 1])
|
116 |
+
|
117 |
+
# DEFINITION: by absolute position it is meant the position along the one
|
118 |
+
# dimensional array containing all the tensor components.
|
119 |
+
|
120 |
+
# Possible future work on this module: move computation of absolute
|
121 |
+
# positions to a class method.
|
122 |
+
|
123 |
+
# Determine absolute positions of the uncontracted indices:
|
124 |
+
remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])]
|
125 |
+
for i in range(rank) if i not in taken_dims]
|
126 |
+
|
127 |
+
# Determine absolute positions of the contracted indices:
|
128 |
+
summed_deltas = []
|
129 |
+
for axes_group in contraction_or_diagonal_axes:
|
130 |
+
lidx = []
|
131 |
+
for js in range(array.shape[axes_group[0]]):
|
132 |
+
lidx.append(sum([cum_shape[ig] * js for ig in axes_group]))
|
133 |
+
summed_deltas.append(lidx)
|
134 |
+
|
135 |
+
return array, remaining_indices, remaining_shape, summed_deltas
|
136 |
+
|
137 |
+
|
138 |
+
def tensorcontraction(array, *contraction_axes):
|
139 |
+
"""
|
140 |
+
Contraction of an array-like object on the specified axes.
|
141 |
+
|
142 |
+
The equivalent operator for array expressions is ``ArrayContraction``,
|
143 |
+
which can be used to keep the expression unevaluated.
|
144 |
+
|
145 |
+
Examples
|
146 |
+
========
|
147 |
+
|
148 |
+
>>> from sympy import Array, tensorcontraction
|
149 |
+
>>> from sympy import Matrix, eye
|
150 |
+
>>> tensorcontraction(eye(3), (0, 1))
|
151 |
+
3
|
152 |
+
>>> A = Array(range(18), (3, 2, 3))
|
153 |
+
>>> A
|
154 |
+
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
|
155 |
+
>>> tensorcontraction(A, (0, 2))
|
156 |
+
[21, 30]
|
157 |
+
|
158 |
+
Matrix multiplication may be emulated with a proper combination of
|
159 |
+
``tensorcontraction`` and ``tensorproduct``
|
160 |
+
|
161 |
+
>>> from sympy import tensorproduct
|
162 |
+
>>> from sympy.abc import a,b,c,d,e,f,g,h
|
163 |
+
>>> m1 = Matrix([[a, b], [c, d]])
|
164 |
+
>>> m2 = Matrix([[e, f], [g, h]])
|
165 |
+
>>> p = tensorproduct(m1, m2)
|
166 |
+
>>> p
|
167 |
+
[[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]]
|
168 |
+
>>> tensorcontraction(p, (1, 2))
|
169 |
+
[[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]
|
170 |
+
>>> m1*m2
|
171 |
+
Matrix([
|
172 |
+
[a*e + b*g, a*f + b*h],
|
173 |
+
[c*e + d*g, c*f + d*h]])
|
174 |
+
|
175 |
+
See Also
|
176 |
+
========
|
177 |
+
|
178 |
+
sympy.tensor.array.expressions.array_expressions.ArrayContraction
|
179 |
+
|
180 |
+
"""
|
181 |
+
from sympy.tensor.array.expressions.array_expressions import _array_contraction
|
182 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
183 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
184 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
185 |
+
if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
|
186 |
+
return _array_contraction(array, *contraction_axes)
|
187 |
+
|
188 |
+
array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes)
|
189 |
+
|
190 |
+
# Compute the contracted array:
|
191 |
+
#
|
192 |
+
# 1. external for loops on all uncontracted indices.
|
193 |
+
# Uncontracted indices are determined by the combinatorial product of
|
194 |
+
# the absolute positions of the remaining indices.
|
195 |
+
# 2. internal loop on all contracted indices.
|
196 |
+
# It sums the values of the absolute contracted index and the absolute
|
197 |
+
# uncontracted index for the external loop.
|
198 |
+
contracted_array = []
|
199 |
+
for icontrib in itertools.product(*remaining_indices):
|
200 |
+
index_base_position = sum(icontrib)
|
201 |
+
isum = S.Zero
|
202 |
+
for sum_to_index in itertools.product(*summed_deltas):
|
203 |
+
idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
|
204 |
+
isum += array[idx]
|
205 |
+
|
206 |
+
contracted_array.append(isum)
|
207 |
+
|
208 |
+
if len(remaining_indices) == 0:
|
209 |
+
assert len(contracted_array) == 1
|
210 |
+
return contracted_array[0]
|
211 |
+
|
212 |
+
return type(array)(contracted_array, remaining_shape)
|
213 |
+
|
214 |
+
|
215 |
+
def tensordiagonal(array, *diagonal_axes):
|
216 |
+
"""
|
217 |
+
Diagonalization of an array-like object on the specified axes.
|
218 |
+
|
219 |
+
This is equivalent to multiplying the expression by Kronecker deltas
|
220 |
+
uniting the axes.
|
221 |
+
|
222 |
+
The diagonal indices are put at the end of the axes.
|
223 |
+
|
224 |
+
The equivalent operator for array expressions is ``ArrayDiagonal``, which
|
225 |
+
can be used to keep the expression unevaluated.
|
226 |
+
|
227 |
+
Examples
|
228 |
+
========
|
229 |
+
|
230 |
+
``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is
|
231 |
+
equivalent to the diagonal of the matrix:
|
232 |
+
|
233 |
+
>>> from sympy import Array, tensordiagonal
|
234 |
+
>>> from sympy import Matrix, eye
|
235 |
+
>>> tensordiagonal(eye(3), (0, 1))
|
236 |
+
[1, 1, 1]
|
237 |
+
|
238 |
+
>>> from sympy.abc import a,b,c,d
|
239 |
+
>>> m1 = Matrix([[a, b], [c, d]])
|
240 |
+
>>> tensordiagonal(m1, [0, 1])
|
241 |
+
[a, d]
|
242 |
+
|
243 |
+
In case of higher dimensional arrays, the diagonalized out dimensions
|
244 |
+
are appended removed and appended as a single dimension at the end:
|
245 |
+
|
246 |
+
>>> A = Array(range(18), (3, 2, 3))
|
247 |
+
>>> A
|
248 |
+
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
|
249 |
+
>>> tensordiagonal(A, (0, 2))
|
250 |
+
[[0, 7, 14], [3, 10, 17]]
|
251 |
+
>>> from sympy import permutedims
|
252 |
+
>>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0])
|
253 |
+
True
|
254 |
+
|
255 |
+
See Also
|
256 |
+
========
|
257 |
+
|
258 |
+
sympy.tensor.array.expressions.array_expressions.ArrayDiagonal
|
259 |
+
|
260 |
+
"""
|
261 |
+
if any(len(i) <= 1 for i in diagonal_axes):
|
262 |
+
raise ValueError("need at least two axes to diagonalize")
|
263 |
+
|
264 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
265 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
266 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, _array_diagonal
|
267 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
268 |
+
if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
|
269 |
+
return _array_diagonal(array, *diagonal_axes)
|
270 |
+
|
271 |
+
ArrayDiagonal._validate(array, *diagonal_axes)
|
272 |
+
|
273 |
+
array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes)
|
274 |
+
|
275 |
+
# Compute the diagonalized array:
|
276 |
+
#
|
277 |
+
# 1. external for loops on all undiagonalized indices.
|
278 |
+
# Undiagonalized indices are determined by the combinatorial product of
|
279 |
+
# the absolute positions of the remaining indices.
|
280 |
+
# 2. internal loop on all diagonal indices.
|
281 |
+
# It appends the values of the absolute diagonalized index and the absolute
|
282 |
+
# undiagonalized index for the external loop.
|
283 |
+
diagonalized_array = []
|
284 |
+
diagonal_shape = [len(i) for i in diagonal_deltas]
|
285 |
+
for icontrib in itertools.product(*remaining_indices):
|
286 |
+
index_base_position = sum(icontrib)
|
287 |
+
isum = []
|
288 |
+
for sum_to_index in itertools.product(*diagonal_deltas):
|
289 |
+
idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
|
290 |
+
isum.append(array[idx])
|
291 |
+
|
292 |
+
isum = type(array)(isum).reshape(*diagonal_shape)
|
293 |
+
diagonalized_array.append(isum)
|
294 |
+
|
295 |
+
return type(array)(diagonalized_array, remaining_shape + diagonal_shape)
|
296 |
+
|
297 |
+
|
298 |
+
def derive_by_array(expr, dx):
|
299 |
+
r"""
|
300 |
+
Derivative by arrays. Supports both arrays and scalars.
|
301 |
+
|
302 |
+
The equivalent operator for array expressions is ``array_derive``.
|
303 |
+
|
304 |
+
Explanation
|
305 |
+
===========
|
306 |
+
|
307 |
+
Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}`
|
308 |
+
this function will return a new array `B` defined by
|
309 |
+
|
310 |
+
`B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}`
|
311 |
+
|
312 |
+
Examples
|
313 |
+
========
|
314 |
+
|
315 |
+
>>> from sympy import derive_by_array
|
316 |
+
>>> from sympy.abc import x, y, z, t
|
317 |
+
>>> from sympy import cos
|
318 |
+
>>> derive_by_array(cos(x*t), x)
|
319 |
+
-t*sin(t*x)
|
320 |
+
>>> derive_by_array(cos(x*t), [x, y, z, t])
|
321 |
+
[-t*sin(t*x), 0, 0, -x*sin(t*x)]
|
322 |
+
>>> derive_by_array([x, y**2*z], [[x, y], [z, t]])
|
323 |
+
[[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]]
|
324 |
+
|
325 |
+
"""
|
326 |
+
from sympy.matrices import MatrixBase
|
327 |
+
from sympy.tensor.array import SparseNDimArray
|
328 |
+
array_types = (Iterable, MatrixBase, NDimArray)
|
329 |
+
|
330 |
+
if isinstance(dx, array_types):
|
331 |
+
dx = ImmutableDenseNDimArray(dx)
|
332 |
+
for i in dx:
|
333 |
+
if not i._diff_wrt:
|
334 |
+
raise ValueError("cannot derive by this array")
|
335 |
+
|
336 |
+
if isinstance(expr, array_types):
|
337 |
+
if isinstance(expr, NDimArray):
|
338 |
+
expr = expr.as_immutable()
|
339 |
+
else:
|
340 |
+
expr = ImmutableDenseNDimArray(expr)
|
341 |
+
|
342 |
+
if isinstance(dx, array_types):
|
343 |
+
if isinstance(expr, SparseNDimArray):
|
344 |
+
lp = len(expr)
|
345 |
+
new_array = {k + i*lp: v
|
346 |
+
for i, x in enumerate(Flatten(dx))
|
347 |
+
for k, v in expr.diff(x)._sparse_array.items()}
|
348 |
+
else:
|
349 |
+
new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)]
|
350 |
+
return type(expr)(new_array, dx.shape + expr.shape)
|
351 |
+
else:
|
352 |
+
return expr.diff(dx)
|
353 |
+
else:
|
354 |
+
expr = _sympify(expr)
|
355 |
+
if isinstance(dx, array_types):
|
356 |
+
return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape)
|
357 |
+
else:
|
358 |
+
dx = _sympify(dx)
|
359 |
+
return diff(expr, dx)
|
360 |
+
|
361 |
+
|
362 |
+
def permutedims(expr, perm=None, index_order_old=None, index_order_new=None):
|
363 |
+
"""
|
364 |
+
Permutes the indices of an array.
|
365 |
+
|
366 |
+
Parameter specifies the permutation of the indices.
|
367 |
+
|
368 |
+
The equivalent operator for array expressions is ``PermuteDims``, which can
|
369 |
+
be used to keep the expression unevaluated.
|
370 |
+
|
371 |
+
Examples
|
372 |
+
========
|
373 |
+
|
374 |
+
>>> from sympy.abc import x, y, z, t
|
375 |
+
>>> from sympy import sin
|
376 |
+
>>> from sympy import Array, permutedims
|
377 |
+
>>> a = Array([[x, y, z], [t, sin(x), 0]])
|
378 |
+
>>> a
|
379 |
+
[[x, y, z], [t, sin(x), 0]]
|
380 |
+
>>> permutedims(a, (1, 0))
|
381 |
+
[[x, t], [y, sin(x)], [z, 0]]
|
382 |
+
|
383 |
+
If the array is of second order, ``transpose`` can be used:
|
384 |
+
|
385 |
+
>>> from sympy import transpose
|
386 |
+
>>> transpose(a)
|
387 |
+
[[x, t], [y, sin(x)], [z, 0]]
|
388 |
+
|
389 |
+
Examples on higher dimensions:
|
390 |
+
|
391 |
+
>>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
|
392 |
+
>>> permutedims(b, (2, 1, 0))
|
393 |
+
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
|
394 |
+
>>> permutedims(b, (1, 2, 0))
|
395 |
+
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
|
396 |
+
|
397 |
+
An alternative way to specify the same permutations as in the previous
|
398 |
+
lines involves passing the *old* and *new* indices, either as a list or as
|
399 |
+
a string:
|
400 |
+
|
401 |
+
>>> permutedims(b, index_order_old="cba", index_order_new="abc")
|
402 |
+
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
|
403 |
+
>>> permutedims(b, index_order_old="cab", index_order_new="abc")
|
404 |
+
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
|
405 |
+
|
406 |
+
``Permutation`` objects are also allowed:
|
407 |
+
|
408 |
+
>>> from sympy.combinatorics import Permutation
|
409 |
+
>>> permutedims(b, Permutation([1, 2, 0]))
|
410 |
+
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
|
411 |
+
|
412 |
+
See Also
|
413 |
+
========
|
414 |
+
|
415 |
+
sympy.tensor.array.expressions.array_expressions.PermuteDims
|
416 |
+
|
417 |
+
"""
|
418 |
+
from sympy.tensor.array import SparseNDimArray
|
419 |
+
|
420 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
421 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
422 |
+
from sympy.tensor.array.expressions.array_expressions import _permute_dims
|
423 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
424 |
+
from sympy.tensor.array.expressions import PermuteDims
|
425 |
+
from sympy.tensor.array.expressions.array_expressions import get_rank
|
426 |
+
perm = PermuteDims._get_permutation_from_arguments(perm, index_order_old, index_order_new, get_rank(expr))
|
427 |
+
if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
|
428 |
+
return _permute_dims(expr, perm)
|
429 |
+
|
430 |
+
if not isinstance(expr, NDimArray):
|
431 |
+
expr = ImmutableDenseNDimArray(expr)
|
432 |
+
|
433 |
+
from sympy.combinatorics import Permutation
|
434 |
+
if not isinstance(perm, Permutation):
|
435 |
+
perm = Permutation(list(perm))
|
436 |
+
|
437 |
+
if perm.size != expr.rank():
|
438 |
+
raise ValueError("wrong permutation size")
|
439 |
+
|
440 |
+
# Get the inverse permutation:
|
441 |
+
iperm = ~perm
|
442 |
+
new_shape = perm(expr.shape)
|
443 |
+
|
444 |
+
if isinstance(expr, SparseNDimArray):
|
445 |
+
return type(expr)({tuple(perm(expr._get_tuple_index(k))): v
|
446 |
+
for k, v in expr._sparse_array.items()}, new_shape)
|
447 |
+
|
448 |
+
indices_span = perm([range(i) for i in expr.shape])
|
449 |
+
|
450 |
+
new_array = [None]*len(expr)
|
451 |
+
for i, idx in enumerate(itertools.product(*indices_span)):
|
452 |
+
t = iperm(idx)
|
453 |
+
new_array[i] = expr[t]
|
454 |
+
|
455 |
+
return type(expr)(new_array, new_shape)
|
456 |
+
|
457 |
+
|
458 |
+
class Flatten(Printable):
|
459 |
+
"""
|
460 |
+
Flatten an iterable object to a list in a lazy-evaluation way.
|
461 |
+
|
462 |
+
Notes
|
463 |
+
=====
|
464 |
+
|
465 |
+
This class is an iterator with which the memory cost can be economised.
|
466 |
+
Optimisation has been considered to ameliorate the performance for some
|
467 |
+
specific data types like DenseNDimArray and SparseNDimArray.
|
468 |
+
|
469 |
+
Examples
|
470 |
+
========
|
471 |
+
|
472 |
+
>>> from sympy.tensor.array.arrayop import Flatten
|
473 |
+
>>> from sympy.tensor.array import Array
|
474 |
+
>>> A = Array(range(6)).reshape(2, 3)
|
475 |
+
>>> Flatten(A)
|
476 |
+
Flatten([[0, 1, 2], [3, 4, 5]])
|
477 |
+
>>> [i for i in Flatten(A)]
|
478 |
+
[0, 1, 2, 3, 4, 5]
|
479 |
+
"""
|
480 |
+
def __init__(self, iterable):
|
481 |
+
from sympy.matrices.matrices import MatrixBase
|
482 |
+
from sympy.tensor.array import NDimArray
|
483 |
+
|
484 |
+
if not isinstance(iterable, (Iterable, MatrixBase)):
|
485 |
+
raise NotImplementedError("Data type not yet supported")
|
486 |
+
|
487 |
+
if isinstance(iterable, list):
|
488 |
+
iterable = NDimArray(iterable)
|
489 |
+
|
490 |
+
self._iter = iterable
|
491 |
+
self._idx = 0
|
492 |
+
|
493 |
+
def __iter__(self):
|
494 |
+
return self
|
495 |
+
|
496 |
+
def __next__(self):
|
497 |
+
from sympy.matrices.matrices import MatrixBase
|
498 |
+
|
499 |
+
if len(self._iter) > self._idx:
|
500 |
+
if isinstance(self._iter, DenseNDimArray):
|
501 |
+
result = self._iter._array[self._idx]
|
502 |
+
|
503 |
+
elif isinstance(self._iter, SparseNDimArray):
|
504 |
+
if self._idx in self._iter._sparse_array:
|
505 |
+
result = self._iter._sparse_array[self._idx]
|
506 |
+
else:
|
507 |
+
result = 0
|
508 |
+
|
509 |
+
elif isinstance(self._iter, MatrixBase):
|
510 |
+
result = self._iter[self._idx]
|
511 |
+
|
512 |
+
elif hasattr(self._iter, '__next__'):
|
513 |
+
result = next(self._iter)
|
514 |
+
|
515 |
+
else:
|
516 |
+
result = self._iter[self._idx]
|
517 |
+
|
518 |
+
else:
|
519 |
+
raise StopIteration
|
520 |
+
|
521 |
+
self._idx += 1
|
522 |
+
return result
|
523 |
+
|
524 |
+
def next(self):
|
525 |
+
return self.__next__()
|
526 |
+
|
527 |
+
def _sympystr(self, printer):
|
528 |
+
return type(self).__name__ + '(' + printer._print(self._iter) + ')'
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/dense_ndim_array.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from sympy.core.basic import Basic
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.sympify import _sympify
|
8 |
+
from sympy.tensor.array.mutable_ndim_array import MutableNDimArray
|
9 |
+
from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray, ArrayKind
|
10 |
+
from sympy.utilities.iterables import flatten
|
11 |
+
|
12 |
+
|
13 |
+
class DenseNDimArray(NDimArray):
|
14 |
+
|
15 |
+
_array: List[Basic]
|
16 |
+
|
17 |
+
def __new__(self, *args, **kwargs):
|
18 |
+
return ImmutableDenseNDimArray(*args, **kwargs)
|
19 |
+
|
20 |
+
@property
|
21 |
+
def kind(self) -> ArrayKind:
|
22 |
+
return ArrayKind._union(self._array)
|
23 |
+
|
24 |
+
def __getitem__(self, index):
|
25 |
+
"""
|
26 |
+
Allows to get items from N-dim array.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import MutableDenseNDimArray
|
32 |
+
>>> a = MutableDenseNDimArray([0, 1, 2, 3], (2, 2))
|
33 |
+
>>> a
|
34 |
+
[[0, 1], [2, 3]]
|
35 |
+
>>> a[0, 0]
|
36 |
+
0
|
37 |
+
>>> a[1, 1]
|
38 |
+
3
|
39 |
+
>>> a[0]
|
40 |
+
[0, 1]
|
41 |
+
>>> a[1]
|
42 |
+
[2, 3]
|
43 |
+
|
44 |
+
|
45 |
+
Symbolic index:
|
46 |
+
|
47 |
+
>>> from sympy.abc import i, j
|
48 |
+
>>> a[i, j]
|
49 |
+
[[0, 1], [2, 3]][i, j]
|
50 |
+
|
51 |
+
Replace `i` and `j` to get element `(1, 1)`:
|
52 |
+
|
53 |
+
>>> a[i, j].subs({i: 1, j: 1})
|
54 |
+
3
|
55 |
+
|
56 |
+
"""
|
57 |
+
syindex = self._check_symbolic_index(index)
|
58 |
+
if syindex is not None:
|
59 |
+
return syindex
|
60 |
+
|
61 |
+
index = self._check_index_for_getitem(index)
|
62 |
+
|
63 |
+
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
64 |
+
sl_factors, eindices = self._get_slice_data_for_array_access(index)
|
65 |
+
array = [self._array[self._parse_index(i)] for i in eindices]
|
66 |
+
nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
|
67 |
+
return type(self)(array, nshape)
|
68 |
+
else:
|
69 |
+
index = self._parse_index(index)
|
70 |
+
return self._array[index]
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def zeros(cls, *shape):
|
74 |
+
list_length = functools.reduce(lambda x, y: x*y, shape, S.One)
|
75 |
+
return cls._new(([0]*list_length,), shape)
|
76 |
+
|
77 |
+
def tomatrix(self):
|
78 |
+
"""
|
79 |
+
Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error.
|
80 |
+
|
81 |
+
Examples
|
82 |
+
========
|
83 |
+
|
84 |
+
>>> from sympy import MutableDenseNDimArray
|
85 |
+
>>> a = MutableDenseNDimArray([1 for i in range(9)], (3, 3))
|
86 |
+
>>> b = a.tomatrix()
|
87 |
+
>>> b
|
88 |
+
Matrix([
|
89 |
+
[1, 1, 1],
|
90 |
+
[1, 1, 1],
|
91 |
+
[1, 1, 1]])
|
92 |
+
|
93 |
+
"""
|
94 |
+
from sympy.matrices import Matrix
|
95 |
+
|
96 |
+
if self.rank() != 2:
|
97 |
+
raise ValueError('Dimensions must be of size of 2')
|
98 |
+
|
99 |
+
return Matrix(self.shape[0], self.shape[1], self._array)
|
100 |
+
|
101 |
+
def reshape(self, *newshape):
|
102 |
+
"""
|
103 |
+
Returns MutableDenseNDimArray instance with new shape. Elements number
|
104 |
+
must be suitable to new shape. The only argument of method sets
|
105 |
+
new shape.
|
106 |
+
|
107 |
+
Examples
|
108 |
+
========
|
109 |
+
|
110 |
+
>>> from sympy import MutableDenseNDimArray
|
111 |
+
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
|
112 |
+
>>> a.shape
|
113 |
+
(2, 3)
|
114 |
+
>>> a
|
115 |
+
[[1, 2, 3], [4, 5, 6]]
|
116 |
+
>>> b = a.reshape(3, 2)
|
117 |
+
>>> b.shape
|
118 |
+
(3, 2)
|
119 |
+
>>> b
|
120 |
+
[[1, 2], [3, 4], [5, 6]]
|
121 |
+
|
122 |
+
"""
|
123 |
+
new_total_size = functools.reduce(lambda x,y: x*y, newshape)
|
124 |
+
if new_total_size != self._loop_size:
|
125 |
+
raise ValueError('Expecting reshape size to %d but got prod(%s) = %d' % (
|
126 |
+
self._loop_size, str(newshape), new_total_size))
|
127 |
+
|
128 |
+
# there is no `.func` as this class does not subtype `Basic`:
|
129 |
+
return type(self)(self._array, newshape)
|
130 |
+
|
131 |
+
|
132 |
+
class ImmutableDenseNDimArray(DenseNDimArray, ImmutableNDimArray): # type: ignore
|
133 |
+
def __new__(cls, iterable, shape=None, **kwargs):
|
134 |
+
return cls._new(iterable, shape, **kwargs)
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def _new(cls, iterable, shape, **kwargs):
|
138 |
+
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
139 |
+
shape = Tuple(*map(_sympify, shape))
|
140 |
+
cls._check_special_bounds(flat_list, shape)
|
141 |
+
flat_list = flatten(flat_list)
|
142 |
+
flat_list = Tuple(*flat_list)
|
143 |
+
self = Basic.__new__(cls, flat_list, shape, **kwargs)
|
144 |
+
self._shape = shape
|
145 |
+
self._array = list(flat_list)
|
146 |
+
self._rank = len(shape)
|
147 |
+
self._loop_size = functools.reduce(lambda x,y: x*y, shape, 1)
|
148 |
+
return self
|
149 |
+
|
150 |
+
def __setitem__(self, index, value):
|
151 |
+
raise TypeError('immutable N-dim array')
|
152 |
+
|
153 |
+
def as_mutable(self):
|
154 |
+
return MutableDenseNDimArray(self)
|
155 |
+
|
156 |
+
def _eval_simplify(self, **kwargs):
|
157 |
+
from sympy.simplify.simplify import simplify
|
158 |
+
return self.applyfunc(simplify)
|
159 |
+
|
160 |
+
class MutableDenseNDimArray(DenseNDimArray, MutableNDimArray):
|
161 |
+
|
162 |
+
def __new__(cls, iterable=None, shape=None, **kwargs):
|
163 |
+
return cls._new(iterable, shape, **kwargs)
|
164 |
+
|
165 |
+
@classmethod
|
166 |
+
def _new(cls, iterable, shape, **kwargs):
|
167 |
+
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
168 |
+
flat_list = flatten(flat_list)
|
169 |
+
self = object.__new__(cls)
|
170 |
+
self._shape = shape
|
171 |
+
self._array = list(flat_list)
|
172 |
+
self._rank = len(shape)
|
173 |
+
self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
|
174 |
+
return self
|
175 |
+
|
176 |
+
def __setitem__(self, index, value):
|
177 |
+
"""Allows to set items to MutableDenseNDimArray.
|
178 |
+
|
179 |
+
Examples
|
180 |
+
========
|
181 |
+
|
182 |
+
>>> from sympy import MutableDenseNDimArray
|
183 |
+
>>> a = MutableDenseNDimArray.zeros(2, 2)
|
184 |
+
>>> a[0,0] = 1
|
185 |
+
>>> a[1,1] = 1
|
186 |
+
>>> a
|
187 |
+
[[1, 0], [0, 1]]
|
188 |
+
|
189 |
+
"""
|
190 |
+
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
191 |
+
value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value)
|
192 |
+
for i in eindices:
|
193 |
+
other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None]
|
194 |
+
self._array[self._parse_index(i)] = value[other_i]
|
195 |
+
else:
|
196 |
+
index = self._parse_index(index)
|
197 |
+
self._setter_iterable_check(value)
|
198 |
+
value = _sympify(value)
|
199 |
+
self._array[index] = value
|
200 |
+
|
201 |
+
def as_immutable(self):
|
202 |
+
return ImmutableDenseNDimArray(self)
|
203 |
+
|
204 |
+
@property
|
205 |
+
def free_symbols(self):
|
206 |
+
return {i for j in self._array for i in j.free_symbols}
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/__init__.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
Array expressions are expressions representing N-dimensional arrays, without
|
3 |
+
evaluating them. These expressions represent in a certain way abstract syntax
|
4 |
+
trees of operations on N-dimensional arrays.
|
5 |
+
|
6 |
+
Every N-dimensional array operator has a corresponding array expression object.
|
7 |
+
|
8 |
+
Table of correspondences:
|
9 |
+
|
10 |
+
=============================== =============================
|
11 |
+
Array operator Array expression operator
|
12 |
+
=============================== =============================
|
13 |
+
tensorproduct ArrayTensorProduct
|
14 |
+
tensorcontraction ArrayContraction
|
15 |
+
tensordiagonal ArrayDiagonal
|
16 |
+
permutedims PermuteDims
|
17 |
+
=============================== =============================
|
18 |
+
|
19 |
+
Examples
|
20 |
+
========
|
21 |
+
|
22 |
+
``ArraySymbol`` objects are the N-dimensional equivalent of ``MatrixSymbol``
|
23 |
+
objects in the matrix module:
|
24 |
+
|
25 |
+
>>> from sympy.tensor.array.expressions import ArraySymbol
|
26 |
+
>>> from sympy.abc import i, j, k
|
27 |
+
>>> A = ArraySymbol("A", (3, 2, 4))
|
28 |
+
>>> A.shape
|
29 |
+
(3, 2, 4)
|
30 |
+
>>> A[i, j, k]
|
31 |
+
A[i, j, k]
|
32 |
+
>>> A.as_explicit()
|
33 |
+
[[[A[0, 0, 0], A[0, 0, 1], A[0, 0, 2], A[0, 0, 3]],
|
34 |
+
[A[0, 1, 0], A[0, 1, 1], A[0, 1, 2], A[0, 1, 3]]],
|
35 |
+
[[A[1, 0, 0], A[1, 0, 1], A[1, 0, 2], A[1, 0, 3]],
|
36 |
+
[A[1, 1, 0], A[1, 1, 1], A[1, 1, 2], A[1, 1, 3]]],
|
37 |
+
[[A[2, 0, 0], A[2, 0, 1], A[2, 0, 2], A[2, 0, 3]],
|
38 |
+
[A[2, 1, 0], A[2, 1, 1], A[2, 1, 2], A[2, 1, 3]]]]
|
39 |
+
|
40 |
+
Component-explicit arrays can be added inside array expressions:
|
41 |
+
|
42 |
+
>>> from sympy import Array
|
43 |
+
>>> from sympy import tensorproduct
|
44 |
+
>>> from sympy.tensor.array.expressions import ArrayTensorProduct
|
45 |
+
>>> a = Array([1, 2, 3])
|
46 |
+
>>> b = Array([i, j, k])
|
47 |
+
>>> expr = ArrayTensorProduct(a, b, b)
|
48 |
+
>>> expr
|
49 |
+
ArrayTensorProduct([1, 2, 3], [i, j, k], [i, j, k])
|
50 |
+
>>> expr.as_explicit() == tensorproduct(a, b, b)
|
51 |
+
True
|
52 |
+
|
53 |
+
Constructing array expressions from index-explicit forms
|
54 |
+
--------------------------------------------------------
|
55 |
+
|
56 |
+
Array expressions are index-implicit. This means they do not use any indices to
|
57 |
+
represent array operations. The function ``convert_indexed_to_array( ... )``
|
58 |
+
may be used to convert index-explicit expressions to array expressions.
|
59 |
+
It takes as input two parameters: the index-explicit expression and the order
|
60 |
+
of the indices:
|
61 |
+
|
62 |
+
>>> from sympy.tensor.array.expressions import convert_indexed_to_array
|
63 |
+
>>> from sympy import Sum
|
64 |
+
>>> A = ArraySymbol("A", (3, 3))
|
65 |
+
>>> B = ArraySymbol("B", (3, 3))
|
66 |
+
>>> convert_indexed_to_array(A[i, j], [i, j])
|
67 |
+
A
|
68 |
+
>>> convert_indexed_to_array(A[i, j], [j, i])
|
69 |
+
PermuteDims(A, (0 1))
|
70 |
+
>>> convert_indexed_to_array(A[i, j] + B[j, i], [i, j])
|
71 |
+
ArrayAdd(A, PermuteDims(B, (0 1)))
|
72 |
+
>>> convert_indexed_to_array(Sum(A[i, j]*B[j, k], (j, 0, 2)), [i, k])
|
73 |
+
ArrayContraction(ArrayTensorProduct(A, B), (1, 2))
|
74 |
+
|
75 |
+
The diagonal of a matrix in the array expression form:
|
76 |
+
|
77 |
+
>>> convert_indexed_to_array(A[i, i], [i])
|
78 |
+
ArrayDiagonal(A, (0, 1))
|
79 |
+
|
80 |
+
The trace of a matrix in the array expression form:
|
81 |
+
|
82 |
+
>>> convert_indexed_to_array(Sum(A[i, i], (i, 0, 2)), [i])
|
83 |
+
ArrayContraction(A, (0, 1))
|
84 |
+
|
85 |
+
Compatibility with matrices
|
86 |
+
---------------------------
|
87 |
+
|
88 |
+
Array expressions can be mixed with objects from the matrix module:
|
89 |
+
|
90 |
+
>>> from sympy import MatrixSymbol
|
91 |
+
>>> from sympy.tensor.array.expressions import ArrayContraction
|
92 |
+
>>> M = MatrixSymbol("M", 3, 3)
|
93 |
+
>>> N = MatrixSymbol("N", 3, 3)
|
94 |
+
|
95 |
+
Express the matrix product in the array expression form:
|
96 |
+
|
97 |
+
>>> from sympy.tensor.array.expressions import convert_matrix_to_array
|
98 |
+
>>> expr = convert_matrix_to_array(M*N)
|
99 |
+
>>> expr
|
100 |
+
ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
|
101 |
+
|
102 |
+
The expression can be converted back to matrix form:
|
103 |
+
|
104 |
+
>>> from sympy.tensor.array.expressions import convert_array_to_matrix
|
105 |
+
>>> convert_array_to_matrix(expr)
|
106 |
+
M*N
|
107 |
+
|
108 |
+
Add a second contraction on the remaining axes in order to get the trace of `M \cdot N`:
|
109 |
+
|
110 |
+
>>> expr_tr = ArrayContraction(expr, (0, 1))
|
111 |
+
>>> expr_tr
|
112 |
+
ArrayContraction(ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), (0, 1))
|
113 |
+
|
114 |
+
Flatten the expression by calling ``.doit()`` and remove the nested array contraction operations:
|
115 |
+
|
116 |
+
>>> expr_tr.doit()
|
117 |
+
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
|
118 |
+
|
119 |
+
Get the explicit form of the array expression:
|
120 |
+
|
121 |
+
>>> expr.as_explicit()
|
122 |
+
[[M[0, 0]*N[0, 0] + M[0, 1]*N[1, 0] + M[0, 2]*N[2, 0], M[0, 0]*N[0, 1] + M[0, 1]*N[1, 1] + M[0, 2]*N[2, 1], M[0, 0]*N[0, 2] + M[0, 1]*N[1, 2] + M[0, 2]*N[2, 2]],
|
123 |
+
[M[1, 0]*N[0, 0] + M[1, 1]*N[1, 0] + M[1, 2]*N[2, 0], M[1, 0]*N[0, 1] + M[1, 1]*N[1, 1] + M[1, 2]*N[2, 1], M[1, 0]*N[0, 2] + M[1, 1]*N[1, 2] + M[1, 2]*N[2, 2]],
|
124 |
+
[M[2, 0]*N[0, 0] + M[2, 1]*N[1, 0] + M[2, 2]*N[2, 0], M[2, 0]*N[0, 1] + M[2, 1]*N[1, 1] + M[2, 2]*N[2, 1], M[2, 0]*N[0, 2] + M[2, 1]*N[1, 2] + M[2, 2]*N[2, 2]]]
|
125 |
+
|
126 |
+
Express the trace of a matrix:
|
127 |
+
|
128 |
+
>>> from sympy import Trace
|
129 |
+
>>> convert_matrix_to_array(Trace(M))
|
130 |
+
ArrayContraction(M, (0, 1))
|
131 |
+
>>> convert_matrix_to_array(Trace(M*N))
|
132 |
+
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
|
133 |
+
|
134 |
+
Express the transposition of a matrix (will be expressed as a permutation of the axes:
|
135 |
+
|
136 |
+
>>> convert_matrix_to_array(M.T)
|
137 |
+
PermuteDims(M, (0 1))
|
138 |
+
|
139 |
+
Compute the derivative array expressions:
|
140 |
+
|
141 |
+
>>> from sympy.tensor.array.expressions import array_derive
|
142 |
+
>>> d = array_derive(M, M)
|
143 |
+
>>> d
|
144 |
+
PermuteDims(ArrayTensorProduct(I, I), (3)(1 2))
|
145 |
+
|
146 |
+
Verify that the derivative corresponds to the form computed with explicit matrices:
|
147 |
+
|
148 |
+
>>> d.as_explicit()
|
149 |
+
[[[[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [1, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 1]]]]
|
150 |
+
>>> Me = M.as_explicit()
|
151 |
+
>>> Me.diff(Me)
|
152 |
+
[[[[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [1, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 1]]]]
|
153 |
+
|
154 |
+
"""
|
155 |
+
|
156 |
+
__all__ = [
|
157 |
+
"ArraySymbol", "ArrayElement", "ZeroArray", "OneArray",
|
158 |
+
"ArrayTensorProduct",
|
159 |
+
"ArrayContraction",
|
160 |
+
"ArrayDiagonal",
|
161 |
+
"PermuteDims",
|
162 |
+
"ArrayAdd",
|
163 |
+
"ArrayElementwiseApplyFunc",
|
164 |
+
"Reshape",
|
165 |
+
"convert_array_to_matrix",
|
166 |
+
"convert_matrix_to_array",
|
167 |
+
"convert_array_to_indexed",
|
168 |
+
"convert_indexed_to_array",
|
169 |
+
"array_derive",
|
170 |
+
]
|
171 |
+
|
172 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, PermuteDims, ArrayDiagonal, \
|
173 |
+
ArrayContraction, Reshape, ArraySymbol, ArrayElement, ZeroArray, OneArray, ArrayElementwiseApplyFunc
|
174 |
+
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
|
175 |
+
from sympy.tensor.array.expressions.from_array_to_indexed import convert_array_to_indexed
|
176 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
177 |
+
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
|
178 |
+
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
env-llmeval/lib/python3.10/site-packages/sympy/tensor/array/expressions/arrayexpr_derivatives.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from functools import reduce, singledispatch
|
3 |
+
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.matrices.expressions.hadamard import HadamardProduct
|
7 |
+
from sympy.matrices.expressions.inverse import Inverse
|
8 |
+
from sympy.matrices.expressions.matexpr import (MatrixExpr, MatrixSymbol)
|
9 |
+
from sympy.matrices.expressions.special import Identity, OneMatrix
|
10 |
+
from sympy.matrices.expressions.transpose import Transpose
|
11 |
+
from sympy.combinatorics.permutations import _af_invert
|
12 |
+
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
|
13 |
+
from sympy.tensor.array.expressions.array_expressions import (
|
14 |
+
_ArrayExpr, ZeroArray, ArraySymbol, ArrayTensorProduct, ArrayAdd,
|
15 |
+
PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, get_rank,
|
16 |
+
get_shape, ArrayContraction, _array_tensor_product, _array_contraction,
|
17 |
+
_array_diagonal, _array_add, _permute_dims, Reshape)
|
18 |
+
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
19 |
+
|
20 |
+
|
21 |
+
@singledispatch
|
22 |
+
def array_derive(expr, x):
|
23 |
+
"""
|
24 |
+
Derivatives (gradients) for array expressions.
|
25 |
+
"""
|
26 |
+
raise NotImplementedError(f"not implemented for type {type(expr)}")
|
27 |
+
|
28 |
+
|
29 |
+
@array_derive.register(Expr)
|
30 |
+
def _(expr: Expr, x: _ArrayExpr):
|
31 |
+
return ZeroArray(*x.shape)
|
32 |
+
|
33 |
+
|
34 |
+
@array_derive.register(ArrayTensorProduct)
|
35 |
+
def _(expr: ArrayTensorProduct, x: Expr):
|
36 |
+
args = expr.args
|
37 |
+
addend_list = []
|
38 |
+
for i, arg in enumerate(expr.args):
|
39 |
+
darg = array_derive(arg, x)
|
40 |
+
if darg == 0:
|
41 |
+
continue
|
42 |
+
args_prev = args[:i]
|
43 |
+
args_succ = args[i+1:]
|
44 |
+
shape_prev = reduce(operator.add, map(get_shape, args_prev), ())
|
45 |
+
shape_succ = reduce(operator.add, map(get_shape, args_succ), ())
|
46 |
+
addend = _array_tensor_product(*args_prev, darg, *args_succ)
|
47 |
+
tot1 = len(get_shape(x))
|
48 |
+
tot2 = tot1 + len(shape_prev)
|
49 |
+
tot3 = tot2 + len(get_shape(arg))
|
50 |
+
tot4 = tot3 + len(shape_succ)
|
51 |
+
perm = list(range(tot1, tot2)) + \
|
52 |
+
list(range(tot1)) + list(range(tot2, tot3)) + \
|
53 |
+
list(range(tot3, tot4))
|
54 |
+
addend = _permute_dims(addend, _af_invert(perm))
|
55 |
+
addend_list.append(addend)
|
56 |
+
if len(addend_list) == 1:
|
57 |
+
return addend_list[0]
|
58 |
+
elif len(addend_list) == 0:
|
59 |
+
return S.Zero
|
60 |
+
else:
|
61 |
+
return _array_add(*addend_list)
|
62 |
+
|
63 |
+
|
64 |
+
@array_derive.register(ArraySymbol)
|
65 |
+
def _(expr: ArraySymbol, x: _ArrayExpr):
|
66 |
+
if expr == x:
|
67 |
+
return _permute_dims(
|
68 |
+
ArrayTensorProduct.fromiter(Identity(i) for i in expr.shape),
|
69 |
+
[2*i for i in range(len(expr.shape))] + [2*i+1 for i in range(len(expr.shape))]
|
70 |
+
)
|
71 |
+
return ZeroArray(*(x.shape + expr.shape))
|
72 |
+
|
73 |
+
|
74 |
+
@array_derive.register(MatrixSymbol)
|
75 |
+
def _(expr: MatrixSymbol, x: _ArrayExpr):
|
76 |
+
m, n = expr.shape
|
77 |
+
if expr == x:
|
78 |
+
return _permute_dims(
|
79 |
+
_array_tensor_product(Identity(m), Identity(n)),
|
80 |
+
[0, 2, 1, 3]
|
81 |
+
)
|
82 |
+
return ZeroArray(*(x.shape + expr.shape))
|
83 |
+
|
84 |
+
|
85 |
+
@array_derive.register(Identity)
|
86 |
+
def _(expr: Identity, x: _ArrayExpr):
|
87 |
+
return ZeroArray(*(x.shape + expr.shape))
|
88 |
+
|
89 |
+
|
90 |
+
@array_derive.register(OneMatrix)
|
91 |
+
def _(expr: OneMatrix, x: _ArrayExpr):
|
92 |
+
return ZeroArray(*(x.shape + expr.shape))
|
93 |
+
|
94 |
+
|
95 |
+
@array_derive.register(Transpose)
|
96 |
+
def _(expr: Transpose, x: Expr):
|
97 |
+
# D(A.T, A) ==> (m,n,i,j) ==> D(A_ji, A_mn) = d_mj d_ni
|
98 |
+
# D(B.T, A) ==> (m,n,i,j) ==> D(B_ji, A_mn)
|
99 |
+
fd = array_derive(expr.arg, x)
|
100 |
+
return _permute_dims(fd, [0, 1, 3, 2])
|
101 |
+
|
102 |
+
|
103 |
+
@array_derive.register(Inverse)
|
104 |
+
def _(expr: Inverse, x: Expr):
|
105 |
+
mat = expr.I
|
106 |
+
dexpr = array_derive(mat, x)
|
107 |
+
tp = _array_tensor_product(-expr, dexpr, expr)
|
108 |
+
mp = _array_contraction(tp, (1, 4), (5, 6))
|
109 |
+
pp = _permute_dims(mp, [1, 2, 0, 3])
|
110 |
+
return pp
|
111 |
+
|
112 |
+
|
113 |
+
@array_derive.register(ElementwiseApplyFunction)
|
114 |
+
def _(expr: ElementwiseApplyFunction, x: Expr):
|
115 |
+
assert get_rank(expr) == 2
|
116 |
+
assert get_rank(x) == 2
|
117 |
+
fdiff = expr._get_function_fdiff()
|
118 |
+
dexpr = array_derive(expr.expr, x)
|
119 |
+
tp = _array_tensor_product(
|
120 |
+
ElementwiseApplyFunction(fdiff, expr.expr),
|
121 |
+
dexpr
|
122 |
+
)
|
123 |
+
td = _array_diagonal(
|
124 |
+
tp, (0, 4), (1, 5)
|
125 |
+
)
|
126 |
+
return td
|
127 |
+
|
128 |
+
|
129 |
+
@array_derive.register(ArrayElementwiseApplyFunc)
|
130 |
+
def _(expr: ArrayElementwiseApplyFunc, x: Expr):
|
131 |
+
fdiff = expr._get_function_fdiff()
|
132 |
+
subexpr = expr.expr
|
133 |
+
dsubexpr = array_derive(subexpr, x)
|
134 |
+
tp = _array_tensor_product(
|
135 |
+
dsubexpr,
|
136 |
+
ArrayElementwiseApplyFunc(fdiff, subexpr)
|
137 |
+
)
|
138 |
+
b = get_rank(x)
|
139 |
+
c = get_rank(expr)
|
140 |
+
diag_indices = [(b + i, b + c + i) for i in range(c)]
|
141 |
+
return _array_diagonal(tp, *diag_indices)
|
142 |
+
|
143 |
+
|
144 |
+
@array_derive.register(MatrixExpr)
|
145 |
+
def _(expr: MatrixExpr, x: Expr):
|
146 |
+
cg = convert_matrix_to_array(expr)
|
147 |
+
return array_derive(cg, x)
|
148 |
+
|
149 |
+
|
150 |
+
@array_derive.register(HadamardProduct)
|
151 |
+
def _(expr: HadamardProduct, x: Expr):
|
152 |
+
raise NotImplementedError()
|
153 |
+
|
154 |
+
|
155 |
+
@array_derive.register(ArrayContraction)
|
156 |
+
def _(expr: ArrayContraction, x: Expr):
|
157 |
+
fd = array_derive(expr.expr, x)
|
158 |
+
rank_x = len(get_shape(x))
|
159 |
+
contraction_indices = expr.contraction_indices
|
160 |
+
new_contraction_indices = [tuple(j + rank_x for j in i) for i in contraction_indices]
|
161 |
+
return _array_contraction(fd, *new_contraction_indices)
|
162 |
+
|
163 |
+
|
164 |
+
@array_derive.register(ArrayDiagonal)
|
165 |
+
def _(expr: ArrayDiagonal, x: Expr):
|
166 |
+
dsubexpr = array_derive(expr.expr, x)
|
167 |
+
rank_x = len(get_shape(x))
|
168 |
+
diag_indices = [[j + rank_x for j in i] for i in expr.diagonal_indices]
|
169 |
+
return _array_diagonal(dsubexpr, *diag_indices)
|
170 |
+
|
171 |
+
|
172 |
+
@array_derive.register(ArrayAdd)
|
173 |
+
def _(expr: ArrayAdd, x: Expr):
|
174 |
+
return _array_add(*[array_derive(arg, x) for arg in expr.args])
|
175 |
+
|
176 |
+
|
177 |
+
@array_derive.register(PermuteDims)
|
178 |
+
def _(expr: PermuteDims, x: Expr):
|
179 |
+
de = array_derive(expr.expr, x)
|
180 |
+
perm = [0, 1] + [i + 2 for i in expr.permutation.array_form]
|
181 |
+
return _permute_dims(de, perm)
|
182 |
+
|
183 |
+
|
184 |
+
@array_derive.register(Reshape)
|
185 |
+
def _(expr: Reshape, x: Expr):
|
186 |
+
de = array_derive(expr.expr, x)
|
187 |
+
return Reshape(de, get_shape(x) + expr.shape)
|
188 |
+
|
189 |
+
|
190 |
+
def matrix_derive(expr, x):
|
191 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
192 |
+
ce = convert_matrix_to_array(expr)
|
193 |
+
dce = array_derive(ce, x)
|
194 |
+
return convert_array_to_matrix(dce).doit()
|