Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/rn.py +143 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_class_structure.py +33 -0
- env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_diffgeom.py +342 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/gmpy.py +104 -0
- env-llmeval/lib/python3.10/site-packages/sympy/external/importtools.py +187 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_commonmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_decompositions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_determinant.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_eigen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_graph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_immutable.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_interactions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_matrices.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_normalforms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_solvers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_sparse.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_sparsetools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_subspaces.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/test_determinant.py +414 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/combsimp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_main.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_opts.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/epathtools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/fu.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/gammasimp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand_doc.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/powsimp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/radsimp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/ratsimp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/simplify.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/sqrtdenest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/traversaltools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/trigsimp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/combsimp.py +114 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/cse_opts.py +52 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/epathtools.py +356 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/powsimp.py +714 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/ratsimp.py +222 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/sqrtdenest.py +679 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_combsimp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_cse.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_epathtools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_fu.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_function.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/rn.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Predefined R^n manifolds together with common coord. systems.
|
2 |
+
|
3 |
+
Coordinate systems are predefined as well as the transformation laws between
|
4 |
+
them.
|
5 |
+
|
6 |
+
Coordinate functions can be accessed as attributes of the manifold (eg `R2.x`),
|
7 |
+
as attributes of the coordinate systems (eg `R2_r.x` and `R2_p.theta`), or by
|
8 |
+
using the usual `coord_sys.coord_function(index, name)` interface.
|
9 |
+
"""
|
10 |
+
|
11 |
+
from typing import Any
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
from sympy.core.symbol import (Dummy, symbols)
|
15 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
16 |
+
from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin)
|
17 |
+
from .diffgeom import Manifold, Patch, CoordSystem
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
'R2', 'R2_origin', 'relations_2d', 'R2_r', 'R2_p',
|
21 |
+
'R3', 'R3_origin', 'relations_3d', 'R3_r', 'R3_c', 'R3_s'
|
22 |
+
]
|
23 |
+
|
24 |
+
###############################################################################
|
25 |
+
# R2
|
26 |
+
###############################################################################
|
27 |
+
R2: Any = Manifold('R^2', 2)
|
28 |
+
|
29 |
+
R2_origin: Any = Patch('origin', R2)
|
30 |
+
|
31 |
+
x, y = symbols('x y', real=True)
|
32 |
+
r, theta = symbols('rho theta', nonnegative=True)
|
33 |
+
|
34 |
+
relations_2d = {
|
35 |
+
('rectangular', 'polar'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
|
36 |
+
('polar', 'rectangular'): [(r, theta), (r*cos(theta), r*sin(theta))],
|
37 |
+
}
|
38 |
+
|
39 |
+
R2_r: Any = CoordSystem('rectangular', R2_origin, (x, y), relations_2d)
|
40 |
+
R2_p: Any = CoordSystem('polar', R2_origin, (r, theta), relations_2d)
|
41 |
+
|
42 |
+
# support deprecated feature
|
43 |
+
with warnings.catch_warnings():
|
44 |
+
warnings.simplefilter("ignore")
|
45 |
+
x, y, r, theta = symbols('x y r theta', cls=Dummy)
|
46 |
+
R2_r.connect_to(R2_p, [x, y],
|
47 |
+
[sqrt(x**2 + y**2), atan2(y, x)],
|
48 |
+
inverse=False, fill_in_gaps=False)
|
49 |
+
R2_p.connect_to(R2_r, [r, theta],
|
50 |
+
[r*cos(theta), r*sin(theta)],
|
51 |
+
inverse=False, fill_in_gaps=False)
|
52 |
+
|
53 |
+
# Defining the basis coordinate functions and adding shortcuts for them to the
|
54 |
+
# manifold and the patch.
|
55 |
+
R2.x, R2.y = R2_origin.x, R2_origin.y = R2_r.x, R2_r.y = R2_r.coord_functions()
|
56 |
+
R2.r, R2.theta = R2_origin.r, R2_origin.theta = R2_p.r, R2_p.theta = R2_p.coord_functions()
|
57 |
+
|
58 |
+
# Defining the basis vector fields and adding shortcuts for them to the
|
59 |
+
# manifold and the patch.
|
60 |
+
R2.e_x, R2.e_y = R2_origin.e_x, R2_origin.e_y = R2_r.e_x, R2_r.e_y = R2_r.base_vectors()
|
61 |
+
R2.e_r, R2.e_theta = R2_origin.e_r, R2_origin.e_theta = R2_p.e_r, R2_p.e_theta = R2_p.base_vectors()
|
62 |
+
|
63 |
+
# Defining the basis oneform fields and adding shortcuts for them to the
|
64 |
+
# manifold and the patch.
|
65 |
+
R2.dx, R2.dy = R2_origin.dx, R2_origin.dy = R2_r.dx, R2_r.dy = R2_r.base_oneforms()
|
66 |
+
R2.dr, R2.dtheta = R2_origin.dr, R2_origin.dtheta = R2_p.dr, R2_p.dtheta = R2_p.base_oneforms()
|
67 |
+
|
68 |
+
###############################################################################
|
69 |
+
# R3
|
70 |
+
###############################################################################
|
71 |
+
R3: Any = Manifold('R^3', 3)
|
72 |
+
|
73 |
+
R3_origin: Any = Patch('origin', R3)
|
74 |
+
|
75 |
+
x, y, z = symbols('x y z', real=True)
|
76 |
+
rho, psi, r, theta, phi = symbols('rho psi r theta phi', nonnegative=True)
|
77 |
+
|
78 |
+
relations_3d = {
|
79 |
+
('rectangular', 'cylindrical'): [(x, y, z),
|
80 |
+
(sqrt(x**2 + y**2), atan2(y, x), z)],
|
81 |
+
('cylindrical', 'rectangular'): [(rho, psi, z),
|
82 |
+
(rho*cos(psi), rho*sin(psi), z)],
|
83 |
+
('rectangular', 'spherical'): [(x, y, z),
|
84 |
+
(sqrt(x**2 + y**2 + z**2),
|
85 |
+
acos(z/sqrt(x**2 + y**2 + z**2)),
|
86 |
+
atan2(y, x))],
|
87 |
+
('spherical', 'rectangular'): [(r, theta, phi),
|
88 |
+
(r*sin(theta)*cos(phi),
|
89 |
+
r*sin(theta)*sin(phi),
|
90 |
+
r*cos(theta))],
|
91 |
+
('cylindrical', 'spherical'): [(rho, psi, z),
|
92 |
+
(sqrt(rho**2 + z**2),
|
93 |
+
acos(z/sqrt(rho**2 + z**2)),
|
94 |
+
psi)],
|
95 |
+
('spherical', 'cylindrical'): [(r, theta, phi),
|
96 |
+
(r*sin(theta), phi, r*cos(theta))],
|
97 |
+
}
|
98 |
+
|
99 |
+
R3_r: Any = CoordSystem('rectangular', R3_origin, (x, y, z), relations_3d)
|
100 |
+
R3_c: Any = CoordSystem('cylindrical', R3_origin, (rho, psi, z), relations_3d)
|
101 |
+
R3_s: Any = CoordSystem('spherical', R3_origin, (r, theta, phi), relations_3d)
|
102 |
+
|
103 |
+
# support deprecated feature
|
104 |
+
with warnings.catch_warnings():
|
105 |
+
warnings.simplefilter("ignore")
|
106 |
+
x, y, z, rho, psi, r, theta, phi = symbols('x y z rho psi r theta phi', cls=Dummy)
|
107 |
+
R3_r.connect_to(R3_c, [x, y, z],
|
108 |
+
[sqrt(x**2 + y**2), atan2(y, x), z],
|
109 |
+
inverse=False, fill_in_gaps=False)
|
110 |
+
R3_c.connect_to(R3_r, [rho, psi, z],
|
111 |
+
[rho*cos(psi), rho*sin(psi), z],
|
112 |
+
inverse=False, fill_in_gaps=False)
|
113 |
+
## rectangular <-> spherical
|
114 |
+
R3_r.connect_to(R3_s, [x, y, z],
|
115 |
+
[sqrt(x**2 + y**2 + z**2), acos(z/
|
116 |
+
sqrt(x**2 + y**2 + z**2)), atan2(y, x)],
|
117 |
+
inverse=False, fill_in_gaps=False)
|
118 |
+
R3_s.connect_to(R3_r, [r, theta, phi],
|
119 |
+
[r*sin(theta)*cos(phi), r*sin(
|
120 |
+
theta)*sin(phi), r*cos(theta)],
|
121 |
+
inverse=False, fill_in_gaps=False)
|
122 |
+
## cylindrical <-> spherical
|
123 |
+
R3_c.connect_to(R3_s, [rho, psi, z],
|
124 |
+
[sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi],
|
125 |
+
inverse=False, fill_in_gaps=False)
|
126 |
+
R3_s.connect_to(R3_c, [r, theta, phi],
|
127 |
+
[r*sin(theta), phi, r*cos(theta)],
|
128 |
+
inverse=False, fill_in_gaps=False)
|
129 |
+
|
130 |
+
# Defining the basis coordinate functions.
|
131 |
+
R3_r.x, R3_r.y, R3_r.z = R3_r.coord_functions()
|
132 |
+
R3_c.rho, R3_c.psi, R3_c.z = R3_c.coord_functions()
|
133 |
+
R3_s.r, R3_s.theta, R3_s.phi = R3_s.coord_functions()
|
134 |
+
|
135 |
+
# Defining the basis vector fields.
|
136 |
+
R3_r.e_x, R3_r.e_y, R3_r.e_z = R3_r.base_vectors()
|
137 |
+
R3_c.e_rho, R3_c.e_psi, R3_c.e_z = R3_c.base_vectors()
|
138 |
+
R3_s.e_r, R3_s.e_theta, R3_s.e_phi = R3_s.base_vectors()
|
139 |
+
|
140 |
+
# Defining the basis oneform fields.
|
141 |
+
R3_r.dx, R3_r.dy, R3_r.dz = R3_r.base_oneforms()
|
142 |
+
R3_c.drho, R3_c.dpsi, R3_c.dz = R3_c.base_oneforms()
|
143 |
+
R3_s.dr, R3_s.dtheta, R3_s.dphi = R3_s.base_oneforms()
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_class_structure.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.diffgeom import Manifold, Patch, CoordSystem, Point
|
2 |
+
from sympy.core.function import Function
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
5 |
+
|
6 |
+
m = Manifold('m', 2)
|
7 |
+
p = Patch('p', m)
|
8 |
+
a, b = symbols('a b')
|
9 |
+
cs = CoordSystem('cs', p, [a, b])
|
10 |
+
x, y = symbols('x y')
|
11 |
+
f = Function('f')
|
12 |
+
s1, s2 = cs.coord_functions()
|
13 |
+
v1, v2 = cs.base_vectors()
|
14 |
+
f1, f2 = cs.base_oneforms()
|
15 |
+
|
16 |
+
def test_point():
|
17 |
+
point = Point(cs, [x, y])
|
18 |
+
assert point != Point(cs, [2, y])
|
19 |
+
#TODO assert point.subs(x, 2) == Point(cs, [2, y])
|
20 |
+
#TODO assert point.free_symbols == set([x, y])
|
21 |
+
|
22 |
+
def test_subs():
|
23 |
+
assert s1.subs(s1, s2) == s2
|
24 |
+
assert v1.subs(v1, v2) == v2
|
25 |
+
assert f1.subs(f1, f2) == f2
|
26 |
+
assert (x*f(s1) + y).subs(s1, s2) == x*f(s2) + y
|
27 |
+
assert (f(s1)*v1).subs(v1, v2) == f(s1)*v2
|
28 |
+
assert (y*f(s1)*f1).subs(f1, f2) == y*f(s1)*f2
|
29 |
+
|
30 |
+
def test_deprecated():
|
31 |
+
with warns_deprecated_sympy():
|
32 |
+
cs_wname = CoordSystem('cs', p, ['a', 'b'])
|
33 |
+
assert cs_wname == cs_wname.func(*cs_wname.args)
|
env-llmeval/lib/python3.10/site-packages/sympy/diffgeom/tests/test_diffgeom.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Lambda, Symbol, symbols
|
2 |
+
from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r, R3_c, R3_s, R2_origin
|
3 |
+
from sympy.diffgeom import (Manifold, Patch, CoordSystem, Commutator, Differential, TensorProduct,
|
4 |
+
WedgeProduct, BaseCovarDerivativeOp, CovarDerivativeOp, LieDerivative,
|
5 |
+
covariant_order, contravariant_order, twoform_to_matrix, metric_to_Christoffel_1st,
|
6 |
+
metric_to_Christoffel_2nd, metric_to_Riemann_components,
|
7 |
+
metric_to_Ricci_components, intcurve_diffequ, intcurve_series)
|
8 |
+
from sympy.simplify import trigsimp, simplify
|
9 |
+
from sympy.functions import sqrt, atan2, sin
|
10 |
+
from sympy.matrices import Matrix
|
11 |
+
from sympy.testing.pytest import raises, nocache_fail
|
12 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
13 |
+
|
14 |
+
TP = TensorProduct
|
15 |
+
|
16 |
+
|
17 |
+
def test_coordsys_transform():
|
18 |
+
# test inverse transforms
|
19 |
+
p, q, r, s = symbols('p q r s')
|
20 |
+
rel = {('first', 'second'): [(p, q), (q, -p)]}
|
21 |
+
R2_pq = CoordSystem('first', R2_origin, [p, q], rel)
|
22 |
+
R2_rs = CoordSystem('second', R2_origin, [r, s], rel)
|
23 |
+
r, s = R2_rs.symbols
|
24 |
+
assert R2_rs.transform(R2_pq) == Matrix([[-s], [r]])
|
25 |
+
|
26 |
+
# inverse transform impossible case
|
27 |
+
a, b = symbols('a b', positive=True)
|
28 |
+
rel = {('first', 'second'): [(a,), (-a,)]}
|
29 |
+
R2_a = CoordSystem('first', R2_origin, [a], rel)
|
30 |
+
R2_b = CoordSystem('second', R2_origin, [b], rel)
|
31 |
+
# This transformation is uninvertible because there is no positive a, b satisfying a = -b
|
32 |
+
with raises(NotImplementedError):
|
33 |
+
R2_b.transform(R2_a)
|
34 |
+
|
35 |
+
# inverse transform ambiguous case
|
36 |
+
c, d = symbols('c d')
|
37 |
+
rel = {('first', 'second'): [(c,), (c**2,)]}
|
38 |
+
R2_c = CoordSystem('first', R2_origin, [c], rel)
|
39 |
+
R2_d = CoordSystem('second', R2_origin, [d], rel)
|
40 |
+
# The transform method should throw if it finds multiple inverses for a coordinate transformation.
|
41 |
+
with raises(ValueError):
|
42 |
+
R2_d.transform(R2_c)
|
43 |
+
|
44 |
+
# test indirect transformation
|
45 |
+
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
|
46 |
+
rel = {('C1', 'C2'): [(a, b), (2*a, 3*b)],
|
47 |
+
('C2', 'C3'): [(c, d), (3*c, 2*d)]}
|
48 |
+
C1 = CoordSystem('C1', R2_origin, (a, b), rel)
|
49 |
+
C2 = CoordSystem('C2', R2_origin, (c, d), rel)
|
50 |
+
C3 = CoordSystem('C3', R2_origin, (e, f), rel)
|
51 |
+
a, b = C1.symbols
|
52 |
+
c, d = C2.symbols
|
53 |
+
e, f = C3.symbols
|
54 |
+
assert C2.transform(C1) == Matrix([c/2, d/3])
|
55 |
+
assert C1.transform(C3) == Matrix([6*a, 6*b])
|
56 |
+
assert C3.transform(C1) == Matrix([e/6, f/6])
|
57 |
+
assert C3.transform(C2) == Matrix([e/3, f/2])
|
58 |
+
|
59 |
+
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
|
60 |
+
rel = {('C1', 'C2'): [(a, b), (2*a, 3*b + 1)],
|
61 |
+
('C3', 'C2'): [(e, f), (-e - 2, 2*f)]}
|
62 |
+
C1 = CoordSystem('C1', R2_origin, (a, b), rel)
|
63 |
+
C2 = CoordSystem('C2', R2_origin, (c, d), rel)
|
64 |
+
C3 = CoordSystem('C3', R2_origin, (e, f), rel)
|
65 |
+
a, b = C1.symbols
|
66 |
+
c, d = C2.symbols
|
67 |
+
e, f = C3.symbols
|
68 |
+
assert C2.transform(C1) == Matrix([c/2, (d - 1)/3])
|
69 |
+
assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2])
|
70 |
+
assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3])
|
71 |
+
assert C3.transform(C2) == Matrix([-e - 2, 2*f])
|
72 |
+
|
73 |
+
# old signature uses Lambda
|
74 |
+
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
|
75 |
+
rel = {('C1', 'C2'): Lambda((a, b), (2*a, 3*b + 1)),
|
76 |
+
('C3', 'C2'): Lambda((e, f), (-e - 2, 2*f))}
|
77 |
+
C1 = CoordSystem('C1', R2_origin, (a, b), rel)
|
78 |
+
C2 = CoordSystem('C2', R2_origin, (c, d), rel)
|
79 |
+
C3 = CoordSystem('C3', R2_origin, (e, f), rel)
|
80 |
+
a, b = C1.symbols
|
81 |
+
c, d = C2.symbols
|
82 |
+
e, f = C3.symbols
|
83 |
+
assert C2.transform(C1) == Matrix([c/2, (d - 1)/3])
|
84 |
+
assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2])
|
85 |
+
assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3])
|
86 |
+
assert C3.transform(C2) == Matrix([-e - 2, 2*f])
|
87 |
+
|
88 |
+
|
89 |
+
def test_R2():
|
90 |
+
x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
|
91 |
+
point_r = R2_r.point([x0, y0])
|
92 |
+
point_p = R2_p.point([r0, theta0])
|
93 |
+
|
94 |
+
# r**2 = x**2 + y**2
|
95 |
+
assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0
|
96 |
+
assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p) ) == 0
|
97 |
+
assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2*r0
|
98 |
+
|
99 |
+
# polar->rect->polar == Id
|
100 |
+
a, b = symbols('a b', positive=True)
|
101 |
+
m = Matrix([[a], [b]])
|
102 |
+
|
103 |
+
#TODO assert m == R2_r.transform(R2_p, R2_p.transform(R2_r, [a, b])).applyfunc(simplify)
|
104 |
+
assert m == R2_p.transform(R2_r, R2_r.transform(R2_p, m)).applyfunc(simplify)
|
105 |
+
|
106 |
+
# deprecated method
|
107 |
+
with warns_deprecated_sympy():
|
108 |
+
assert m == R2_p.coord_tuple_transform_to(
|
109 |
+
R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify)
|
110 |
+
|
111 |
+
|
112 |
+
def test_R3():
|
113 |
+
a, b, c = symbols('a b c', positive=True)
|
114 |
+
m = Matrix([[a], [b], [c]])
|
115 |
+
|
116 |
+
assert m == R3_c.transform(R3_r, R3_r.transform(R3_c, m)).applyfunc(simplify)
|
117 |
+
#TODO assert m == R3_r.transform(R3_c, R3_c.transform(R3_r, m)).applyfunc(simplify)
|
118 |
+
assert m == R3_s.transform(
|
119 |
+
R3_r, R3_r.transform(R3_s, m)).applyfunc(simplify)
|
120 |
+
#TODO assert m == R3_r.transform(R3_s, R3_s.transform(R3_r, m)).applyfunc(simplify)
|
121 |
+
assert m == R3_s.transform(
|
122 |
+
R3_c, R3_c.transform(R3_s, m)).applyfunc(simplify)
|
123 |
+
#TODO assert m == R3_c.transform(R3_s, R3_s.transform(R3_c, m)).applyfunc(simplify)
|
124 |
+
|
125 |
+
with warns_deprecated_sympy():
|
126 |
+
assert m == R3_c.coord_tuple_transform_to(
|
127 |
+
R3_r, R3_r.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify)
|
128 |
+
#TODO assert m == R3_r.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify)
|
129 |
+
assert m == R3_s.coord_tuple_transform_to(
|
130 |
+
R3_r, R3_r.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify)
|
131 |
+
#TODO assert m == R3_r.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify)
|
132 |
+
assert m == R3_s.coord_tuple_transform_to(
|
133 |
+
R3_c, R3_c.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify)
|
134 |
+
#TODO assert m == R3_c.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify)
|
135 |
+
|
136 |
+
|
137 |
+
def test_CoordinateSymbol():
|
138 |
+
x, y = R2_r.symbols
|
139 |
+
r, theta = R2_p.symbols
|
140 |
+
assert y.rewrite(R2_p) == r*sin(theta)
|
141 |
+
|
142 |
+
|
143 |
+
def test_point():
|
144 |
+
x, y = symbols('x, y')
|
145 |
+
p = R2_r.point([x, y])
|
146 |
+
assert p.free_symbols == {x, y}
|
147 |
+
assert p.coords(R2_r) == p.coords() == Matrix([x, y])
|
148 |
+
assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)])
|
149 |
+
|
150 |
+
|
151 |
+
def test_commutator():
|
152 |
+
assert Commutator(R2.e_x, R2.e_y) == 0
|
153 |
+
assert Commutator(R2.x*R2.e_x, R2.x*R2.e_x) == 0
|
154 |
+
assert Commutator(R2.x*R2.e_x, R2.x*R2.e_y) == R2.x*R2.e_y
|
155 |
+
c = Commutator(R2.e_x, R2.e_r)
|
156 |
+
assert c(R2.x) == R2.y*(R2.x**2 + R2.y**2)**(-1)*sin(R2.theta)
|
157 |
+
|
158 |
+
|
159 |
+
def test_differential():
|
160 |
+
xdy = R2.x*R2.dy
|
161 |
+
dxdy = Differential(xdy)
|
162 |
+
assert xdy.rcall(None) == xdy
|
163 |
+
assert dxdy(R2.e_x, R2.e_y) == 1
|
164 |
+
assert dxdy(R2.e_x, R2.x*R2.e_y) == R2.x
|
165 |
+
assert Differential(dxdy) == 0
|
166 |
+
|
167 |
+
|
168 |
+
def test_products():
|
169 |
+
assert TensorProduct(
|
170 |
+
R2.dx, R2.dy)(R2.e_x, R2.e_y) == R2.dx(R2.e_x)*R2.dy(R2.e_y) == 1
|
171 |
+
assert TensorProduct(R2.dx, R2.dy)(None, R2.e_y) == R2.dx
|
172 |
+
assert TensorProduct(R2.dx, R2.dy)(R2.e_x, None) == R2.dy
|
173 |
+
assert TensorProduct(R2.dx, R2.dy)(R2.e_x) == R2.dy
|
174 |
+
assert TensorProduct(R2.x, R2.dx) == R2.x*R2.dx
|
175 |
+
assert TensorProduct(
|
176 |
+
R2.e_x, R2.e_y)(R2.x, R2.y) == R2.e_x(R2.x) * R2.e_y(R2.y) == 1
|
177 |
+
assert TensorProduct(R2.e_x, R2.e_y)(None, R2.y) == R2.e_x
|
178 |
+
assert TensorProduct(R2.e_x, R2.e_y)(R2.x, None) == R2.e_y
|
179 |
+
assert TensorProduct(R2.e_x, R2.e_y)(R2.x) == R2.e_y
|
180 |
+
assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x
|
181 |
+
assert TensorProduct(
|
182 |
+
R2.dx, R2.e_y)(R2.e_x, R2.y) == R2.dx(R2.e_x) * R2.e_y(R2.y) == 1
|
183 |
+
assert TensorProduct(R2.dx, R2.e_y)(None, R2.y) == R2.dx
|
184 |
+
assert TensorProduct(R2.dx, R2.e_y)(R2.e_x, None) == R2.e_y
|
185 |
+
assert TensorProduct(R2.dx, R2.e_y)(R2.e_x) == R2.e_y
|
186 |
+
assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x
|
187 |
+
assert TensorProduct(
|
188 |
+
R2.e_x, R2.dy)(R2.x, R2.e_y) == R2.e_x(R2.x) * R2.dy(R2.e_y) == 1
|
189 |
+
assert TensorProduct(R2.e_x, R2.dy)(None, R2.e_y) == R2.e_x
|
190 |
+
assert TensorProduct(R2.e_x, R2.dy)(R2.x, None) == R2.dy
|
191 |
+
assert TensorProduct(R2.e_x, R2.dy)(R2.x) == R2.dy
|
192 |
+
assert TensorProduct(R2.e_y,R2.e_x)(R2.x**2 + R2.y**2,R2.x**2 + R2.y**2) == 4*R2.x*R2.y
|
193 |
+
|
194 |
+
assert WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) == 1
|
195 |
+
assert WedgeProduct(R2.e_x, R2.e_y)(R2.x, R2.y) == 1
|
196 |
+
|
197 |
+
|
198 |
+
def test_lie_derivative():
|
199 |
+
assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0
|
200 |
+
assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1
|
201 |
+
assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0
|
202 |
+
assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r)
|
203 |
+
assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1
|
204 |
+
assert LieDerivative(
|
205 |
+
R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0
|
206 |
+
|
207 |
+
|
208 |
+
@nocache_fail
|
209 |
+
def test_covar_deriv():
|
210 |
+
ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
|
211 |
+
cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
|
212 |
+
assert cvd(R2.x) == 1
|
213 |
+
# This line fails if the cache is disabled:
|
214 |
+
assert cvd(R2.x*R2.e_x) == R2.e_x
|
215 |
+
cvd = CovarDerivativeOp(R2.x*R2.e_x, ch)
|
216 |
+
assert cvd(R2.x) == R2.x
|
217 |
+
assert cvd(R2.x*R2.e_x) == R2.x*R2.e_x
|
218 |
+
|
219 |
+
|
220 |
+
def test_intcurve_diffequ():
|
221 |
+
t = symbols('t')
|
222 |
+
start_point = R2_r.point([1, 0])
|
223 |
+
vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
|
224 |
+
equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
|
225 |
+
assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]'
|
226 |
+
assert str(init_cond) == '[f_0(0) - 1, f_1(0)]'
|
227 |
+
equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
|
228 |
+
assert str(
|
229 |
+
equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]'
|
230 |
+
assert str(init_cond) == '[f_0(0) - 1, f_1(0)]'
|
231 |
+
|
232 |
+
|
233 |
+
def test_helpers_and_coordinate_dependent():
|
234 |
+
one_form = R2.dr + R2.dx
|
235 |
+
two_form = Differential(R2.x*R2.dr + R2.r*R2.dx)
|
236 |
+
three_form = Differential(
|
237 |
+
R2.y*two_form) + Differential(R2.x*Differential(R2.r*R2.dr))
|
238 |
+
metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy)
|
239 |
+
metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr)
|
240 |
+
misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr
|
241 |
+
misform_b = R2.dr**4
|
242 |
+
misform_c = R2.dx*R2.dy
|
243 |
+
twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy)
|
244 |
+
twoform_not_TP = WedgeProduct(R2.dx, R2.dy)
|
245 |
+
|
246 |
+
one_vector = R2.e_x + R2.e_y
|
247 |
+
two_vector = TensorProduct(R2.e_x, R2.e_y)
|
248 |
+
three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x)
|
249 |
+
two_wp = WedgeProduct(R2.e_x,R2.e_y)
|
250 |
+
|
251 |
+
assert covariant_order(one_form) == 1
|
252 |
+
assert covariant_order(two_form) == 2
|
253 |
+
assert covariant_order(three_form) == 3
|
254 |
+
assert covariant_order(two_form + metric) == 2
|
255 |
+
assert covariant_order(two_form + metric_ambig) == 2
|
256 |
+
assert covariant_order(two_form + twoform_not_sym) == 2
|
257 |
+
assert covariant_order(two_form + twoform_not_TP) == 2
|
258 |
+
|
259 |
+
assert contravariant_order(one_vector) == 1
|
260 |
+
assert contravariant_order(two_vector) == 2
|
261 |
+
assert contravariant_order(three_vector) == 3
|
262 |
+
assert contravariant_order(two_vector + two_wp) == 2
|
263 |
+
|
264 |
+
raises(ValueError, lambda: covariant_order(misform_a))
|
265 |
+
raises(ValueError, lambda: covariant_order(misform_b))
|
266 |
+
raises(ValueError, lambda: covariant_order(misform_c))
|
267 |
+
|
268 |
+
assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]])
|
269 |
+
assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]])
|
270 |
+
assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]])
|
271 |
+
|
272 |
+
raises(ValueError, lambda: twoform_to_matrix(one_form))
|
273 |
+
raises(ValueError, lambda: twoform_to_matrix(three_form))
|
274 |
+
raises(ValueError, lambda: twoform_to_matrix(metric_ambig))
|
275 |
+
|
276 |
+
raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym))
|
277 |
+
raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym))
|
278 |
+
raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym))
|
279 |
+
raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym))
|
280 |
+
|
281 |
+
|
282 |
+
def test_correct_arguments():
|
283 |
+
raises(ValueError, lambda: R2.e_x(R2.e_x))
|
284 |
+
raises(ValueError, lambda: R2.e_x(R2.dx))
|
285 |
+
|
286 |
+
raises(ValueError, lambda: Commutator(R2.e_x, R2.x))
|
287 |
+
raises(ValueError, lambda: Commutator(R2.dx, R2.e_x))
|
288 |
+
|
289 |
+
raises(ValueError, lambda: Differential(Differential(R2.e_x)))
|
290 |
+
|
291 |
+
raises(ValueError, lambda: R2.dx(R2.x))
|
292 |
+
|
293 |
+
raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx))
|
294 |
+
raises(ValueError, lambda: LieDerivative(R2.x, R2.dx))
|
295 |
+
|
296 |
+
raises(ValueError, lambda: CovarDerivativeOp(R2.dx, []))
|
297 |
+
raises(ValueError, lambda: CovarDerivativeOp(R2.x, []))
|
298 |
+
|
299 |
+
a = Symbol('a')
|
300 |
+
raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2])))
|
301 |
+
raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2])))
|
302 |
+
|
303 |
+
raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2])))
|
304 |
+
raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2])))
|
305 |
+
|
306 |
+
raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx))
|
307 |
+
raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx))
|
308 |
+
|
309 |
+
raises(ValueError, lambda: contravariant_order(R2.e_x*R2.e_y))
|
310 |
+
raises(ValueError, lambda: covariant_order(R2.dx*R2.dy))
|
311 |
+
|
312 |
+
def test_simplify():
|
313 |
+
x, y = R2_r.coord_functions()
|
314 |
+
dx, dy = R2_r.base_oneforms()
|
315 |
+
ex, ey = R2_r.base_vectors()
|
316 |
+
assert simplify(x) == x
|
317 |
+
assert simplify(x*y) == x*y
|
318 |
+
assert simplify(dx*dy) == dx*dy
|
319 |
+
assert simplify(ex*ey) == ex*ey
|
320 |
+
assert ((1-x)*dx)/(1-x)**2 == dx/(1-x)
|
321 |
+
|
322 |
+
|
323 |
+
def test_issue_17917():
|
324 |
+
X = R2.x*R2.e_x - R2.y*R2.e_y
|
325 |
+
Y = (R2.x**2 + R2.y**2)*R2.e_x - R2.x*R2.y*R2.e_y
|
326 |
+
assert LieDerivative(X, Y).expand() == (
|
327 |
+
R2.x**2*R2.e_x - 3*R2.y**2*R2.e_x - R2.x*R2.y*R2.e_y)
|
328 |
+
|
329 |
+
def test_deprecations():
|
330 |
+
m = Manifold('M', 2)
|
331 |
+
p = Patch('P', m)
|
332 |
+
with warns_deprecated_sympy():
|
333 |
+
CoordSystem('Car2d', p, names=['x', 'y'])
|
334 |
+
|
335 |
+
with warns_deprecated_sympy():
|
336 |
+
c = CoordSystem('Car2d', p, ['x', 'y'])
|
337 |
+
|
338 |
+
with warns_deprecated_sympy():
|
339 |
+
list(m.patches)
|
340 |
+
|
341 |
+
with warns_deprecated_sympy():
|
342 |
+
list(c.transforms)
|
env-llmeval/lib/python3.10/site-packages/sympy/external/gmpy.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Tuple as tTuple, Type
|
3 |
+
|
4 |
+
import mpmath.libmp as mlib
|
5 |
+
|
6 |
+
from sympy.external import import_module
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
# GROUND_TYPES is either 'gmpy' or 'python' depending on which is used. If
|
10 |
+
# gmpy is installed then it will be used unless the environment variable
|
11 |
+
# SYMPY_GROUND_TYPES is set to something other than 'auto', 'gmpy', or
|
12 |
+
# 'gmpy2'.
|
13 |
+
'GROUND_TYPES',
|
14 |
+
|
15 |
+
# If HAS_GMPY is 0, no supported version of gmpy is available. Otherwise,
|
16 |
+
# HAS_GMPY will be 2 for gmpy2 if GROUND_TYPES is 'gmpy'. It used to be
|
17 |
+
# possible for HAS_GMPY to be 1 for gmpy but gmpy is no longer supported.
|
18 |
+
'HAS_GMPY',
|
19 |
+
|
20 |
+
# SYMPY_INTS is a tuple containing the base types for valid integer types.
|
21 |
+
# This is either (int,) or (int, type(mpz(0))) depending on GROUND_TYPES.
|
22 |
+
'SYMPY_INTS',
|
23 |
+
|
24 |
+
# MPQ is either gmpy.mpq or the Python equivalent from
|
25 |
+
# sympy.external.pythonmpq
|
26 |
+
'MPQ',
|
27 |
+
|
28 |
+
# MPZ is either gmpy.mpz or int.
|
29 |
+
'MPZ',
|
30 |
+
|
31 |
+
# Either the gmpy or the mpmath function
|
32 |
+
'factorial',
|
33 |
+
|
34 |
+
# isqrt from gmpy or mpmath
|
35 |
+
'sqrt',
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
#
|
40 |
+
# SYMPY_GROUND_TYPES can be gmpy, gmpy2, python or auto
|
41 |
+
#
|
42 |
+
GROUND_TYPES = os.environ.get('SYMPY_GROUND_TYPES', 'auto').lower()
|
43 |
+
|
44 |
+
|
45 |
+
#
|
46 |
+
# Try to import gmpy2 by default. If gmpy or gmpy2 is specified in
|
47 |
+
# SYMPY_GROUND_TYPES then warn if gmpy2 is not found. In all cases there is a
|
48 |
+
# fallback based on pure Python int and PythonMPQ that should still work fine.
|
49 |
+
#
|
50 |
+
if GROUND_TYPES in ('auto', 'gmpy', 'gmpy2'):
|
51 |
+
|
52 |
+
# Actually import gmpy2
|
53 |
+
gmpy = import_module('gmpy2', min_module_version='2.0.0',
|
54 |
+
module_version_attr='version', module_version_attr_call_args=())
|
55 |
+
|
56 |
+
# Warn if user explicitly asked for gmpy but it isn't available.
|
57 |
+
if gmpy is None and GROUND_TYPES in ('gmpy', 'gmpy2'):
|
58 |
+
from warnings import warn
|
59 |
+
warn("gmpy library is not installed, switching to 'python' ground types")
|
60 |
+
|
61 |
+
elif GROUND_TYPES == 'python':
|
62 |
+
|
63 |
+
# The user asked for Python so ignore gmpy2 module.
|
64 |
+
gmpy = None
|
65 |
+
|
66 |
+
else:
|
67 |
+
|
68 |
+
# Invalid value for SYMPY_GROUND_TYPES. Ignore the gmpy2 module.
|
69 |
+
from warnings import warn
|
70 |
+
warn("SYMPY_GROUND_TYPES environment variable unrecognised. "
|
71 |
+
"Should be 'python', 'auto', 'gmpy', or 'gmpy2'")
|
72 |
+
gmpy = None
|
73 |
+
|
74 |
+
|
75 |
+
#
|
76 |
+
# At this point gmpy will be None if gmpy2 was not successfully imported or if
|
77 |
+
# the environment variable SYMPY_GROUND_TYPES was set to 'python' (or some
|
78 |
+
# unrecognised value). The two blocks below define the values exported by this
|
79 |
+
# module in each case.
|
80 |
+
#
|
81 |
+
SYMPY_INTS: tTuple[Type, ...]
|
82 |
+
|
83 |
+
if gmpy is not None:
|
84 |
+
|
85 |
+
HAS_GMPY = 2
|
86 |
+
GROUND_TYPES = 'gmpy'
|
87 |
+
SYMPY_INTS = (int, type(gmpy.mpz(0)))
|
88 |
+
MPZ = gmpy.mpz
|
89 |
+
MPQ = gmpy.mpq
|
90 |
+
|
91 |
+
factorial = gmpy.fac
|
92 |
+
sqrt = gmpy.isqrt
|
93 |
+
|
94 |
+
else:
|
95 |
+
from .pythonmpq import PythonMPQ
|
96 |
+
|
97 |
+
HAS_GMPY = 0
|
98 |
+
GROUND_TYPES = 'python'
|
99 |
+
SYMPY_INTS = (int,)
|
100 |
+
MPZ = int
|
101 |
+
MPQ = PythonMPQ
|
102 |
+
|
103 |
+
factorial = lambda x: int(mlib.ifac(x))
|
104 |
+
sqrt = lambda x: int(mlib.isqrt(x))
|
env-llmeval/lib/python3.10/site-packages/sympy/external/importtools.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools to assist importing optional external modules."""
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import re
|
5 |
+
|
6 |
+
# Override these in the module to change the default warning behavior.
|
7 |
+
# For example, you might set both to False before running the tests so that
|
8 |
+
# warnings are not printed to the console, or set both to True for debugging.
|
9 |
+
|
10 |
+
WARN_NOT_INSTALLED = None # Default is False
|
11 |
+
WARN_OLD_VERSION = None # Default is True
|
12 |
+
|
13 |
+
|
14 |
+
def __sympy_debug():
|
15 |
+
# helper function from sympy/__init__.py
|
16 |
+
# We don't just import SYMPY_DEBUG from that file because we don't want to
|
17 |
+
# import all of SymPy just to use this module.
|
18 |
+
import os
|
19 |
+
debug_str = os.getenv('SYMPY_DEBUG', 'False')
|
20 |
+
if debug_str in ('True', 'False'):
|
21 |
+
return eval(debug_str)
|
22 |
+
else:
|
23 |
+
raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" %
|
24 |
+
debug_str)
|
25 |
+
|
26 |
+
if __sympy_debug():
|
27 |
+
WARN_OLD_VERSION = True
|
28 |
+
WARN_NOT_INSTALLED = True
|
29 |
+
|
30 |
+
|
31 |
+
_component_re = re.compile(r'(\d+ | [a-z]+ | \.)', re.VERBOSE)
|
32 |
+
|
33 |
+
def version_tuple(vstring):
|
34 |
+
# Parse a version string to a tuple e.g. '1.2' -> (1, 2)
|
35 |
+
# Simplified from distutils.version.LooseVersion which was deprecated in
|
36 |
+
# Python 3.10.
|
37 |
+
components = []
|
38 |
+
for x in _component_re.split(vstring):
|
39 |
+
if x and x != '.':
|
40 |
+
try:
|
41 |
+
x = int(x)
|
42 |
+
except ValueError:
|
43 |
+
pass
|
44 |
+
components.append(x)
|
45 |
+
return tuple(components)
|
46 |
+
|
47 |
+
|
48 |
+
def import_module(module, min_module_version=None, min_python_version=None,
|
49 |
+
warn_not_installed=None, warn_old_version=None,
|
50 |
+
module_version_attr='__version__', module_version_attr_call_args=None,
|
51 |
+
import_kwargs={}, catch=()):
|
52 |
+
"""
|
53 |
+
Import and return a module if it is installed.
|
54 |
+
|
55 |
+
If the module is not installed, it returns None.
|
56 |
+
|
57 |
+
A minimum version for the module can be given as the keyword argument
|
58 |
+
min_module_version. This should be comparable against the module version.
|
59 |
+
By default, module.__version__ is used to get the module version. To
|
60 |
+
override this, set the module_version_attr keyword argument. If the
|
61 |
+
attribute of the module to get the version should be called (e.g.,
|
62 |
+
module.version()), then set module_version_attr_call_args to the args such
|
63 |
+
that module.module_version_attr(*module_version_attr_call_args) returns the
|
64 |
+
module's version.
|
65 |
+
|
66 |
+
If the module version is less than min_module_version using the Python <
|
67 |
+
comparison, None will be returned, even if the module is installed. You can
|
68 |
+
use this to keep from importing an incompatible older version of a module.
|
69 |
+
|
70 |
+
You can also specify a minimum Python version by using the
|
71 |
+
min_python_version keyword argument. This should be comparable against
|
72 |
+
sys.version_info.
|
73 |
+
|
74 |
+
If the keyword argument warn_not_installed is set to True, the function will
|
75 |
+
emit a UserWarning when the module is not installed.
|
76 |
+
|
77 |
+
If the keyword argument warn_old_version is set to True, the function will
|
78 |
+
emit a UserWarning when the library is installed, but cannot be imported
|
79 |
+
because of the min_module_version or min_python_version options.
|
80 |
+
|
81 |
+
Note that because of the way warnings are handled, a warning will be
|
82 |
+
emitted for each module only once. You can change the default warning
|
83 |
+
behavior by overriding the values of WARN_NOT_INSTALLED and WARN_OLD_VERSION
|
84 |
+
in sympy.external.importtools. By default, WARN_NOT_INSTALLED is False and
|
85 |
+
WARN_OLD_VERSION is True.
|
86 |
+
|
87 |
+
This function uses __import__() to import the module. To pass additional
|
88 |
+
options to __import__(), use the import_kwargs keyword argument. For
|
89 |
+
example, to import a submodule A.B, you must pass a nonempty fromlist option
|
90 |
+
to __import__. See the docstring of __import__().
|
91 |
+
|
92 |
+
This catches ImportError to determine if the module is not installed. To
|
93 |
+
catch additional errors, pass them as a tuple to the catch keyword
|
94 |
+
argument.
|
95 |
+
|
96 |
+
Examples
|
97 |
+
========
|
98 |
+
|
99 |
+
>>> from sympy.external import import_module
|
100 |
+
|
101 |
+
>>> numpy = import_module('numpy')
|
102 |
+
|
103 |
+
>>> numpy = import_module('numpy', min_python_version=(2, 7),
|
104 |
+
... warn_old_version=False)
|
105 |
+
|
106 |
+
>>> numpy = import_module('numpy', min_module_version='1.5',
|
107 |
+
... warn_old_version=False) # numpy.__version__ is a string
|
108 |
+
|
109 |
+
>>> # gmpy does not have __version__, but it does have gmpy.version()
|
110 |
+
|
111 |
+
>>> gmpy = import_module('gmpy', min_module_version='1.14',
|
112 |
+
... module_version_attr='version', module_version_attr_call_args=(),
|
113 |
+
... warn_old_version=False)
|
114 |
+
|
115 |
+
>>> # To import a submodule, you must pass a nonempty fromlist to
|
116 |
+
>>> # __import__(). The values do not matter.
|
117 |
+
>>> p3 = import_module('mpl_toolkits.mplot3d',
|
118 |
+
... import_kwargs={'fromlist':['something']})
|
119 |
+
|
120 |
+
>>> # matplotlib.pyplot can raise RuntimeError when the display cannot be opened
|
121 |
+
>>> matplotlib = import_module('matplotlib',
|
122 |
+
... import_kwargs={'fromlist':['pyplot']}, catch=(RuntimeError,))
|
123 |
+
|
124 |
+
"""
|
125 |
+
# keyword argument overrides default, and global variable overrides
|
126 |
+
# keyword argument.
|
127 |
+
warn_old_version = (WARN_OLD_VERSION if WARN_OLD_VERSION is not None
|
128 |
+
else warn_old_version or True)
|
129 |
+
warn_not_installed = (WARN_NOT_INSTALLED if WARN_NOT_INSTALLED is not None
|
130 |
+
else warn_not_installed or False)
|
131 |
+
|
132 |
+
import warnings
|
133 |
+
|
134 |
+
# Check Python first so we don't waste time importing a module we can't use
|
135 |
+
if min_python_version:
|
136 |
+
if sys.version_info < min_python_version:
|
137 |
+
if warn_old_version:
|
138 |
+
warnings.warn("Python version is too old to use %s "
|
139 |
+
"(%s or newer required)" % (
|
140 |
+
module, '.'.join(map(str, min_python_version))),
|
141 |
+
UserWarning, stacklevel=2)
|
142 |
+
return
|
143 |
+
|
144 |
+
try:
|
145 |
+
mod = __import__(module, **import_kwargs)
|
146 |
+
|
147 |
+
## there's something funny about imports with matplotlib and py3k. doing
|
148 |
+
## from matplotlib import collections
|
149 |
+
## gives python's stdlib collections module. explicitly re-importing
|
150 |
+
## the module fixes this.
|
151 |
+
from_list = import_kwargs.get('fromlist', ())
|
152 |
+
for submod in from_list:
|
153 |
+
if submod == 'collections' and mod.__name__ == 'matplotlib':
|
154 |
+
__import__(module + '.' + submod)
|
155 |
+
except ImportError:
|
156 |
+
if warn_not_installed:
|
157 |
+
warnings.warn("%s module is not installed" % module, UserWarning,
|
158 |
+
stacklevel=2)
|
159 |
+
return
|
160 |
+
except catch as e:
|
161 |
+
if warn_not_installed:
|
162 |
+
warnings.warn(
|
163 |
+
"%s module could not be used (%s)" % (module, repr(e)),
|
164 |
+
stacklevel=2)
|
165 |
+
return
|
166 |
+
|
167 |
+
if min_module_version:
|
168 |
+
modversion = getattr(mod, module_version_attr)
|
169 |
+
if module_version_attr_call_args is not None:
|
170 |
+
modversion = modversion(*module_version_attr_call_args)
|
171 |
+
if version_tuple(modversion) < version_tuple(min_module_version):
|
172 |
+
if warn_old_version:
|
173 |
+
# Attempt to create a pretty string version of the version
|
174 |
+
if isinstance(min_module_version, str):
|
175 |
+
verstr = min_module_version
|
176 |
+
elif isinstance(min_module_version, (tuple, list)):
|
177 |
+
verstr = '.'.join(map(str, min_module_version))
|
178 |
+
else:
|
179 |
+
# Either don't know what this is. Hopefully
|
180 |
+
# it's something that has a nice str version, like an int.
|
181 |
+
verstr = str(min_module_version)
|
182 |
+
warnings.warn("%s version is too old to use "
|
183 |
+
"(%s or newer required)" % (module, verstr),
|
184 |
+
UserWarning, stacklevel=2)
|
185 |
+
return
|
186 |
+
|
187 |
+
return mod
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_commonmatrix.cpython-310.pyc
ADDED
Binary file (43.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_decompositions.cpython-310.pyc
ADDED
Binary file (13.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_determinant.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_eigen.cpython-310.pyc
ADDED
Binary file (19.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_graph.cpython-310.pyc
ADDED
Binary file (2.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_immutable.cpython-310.pyc
ADDED
Binary file (5.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_interactions.cpython-310.pyc
ADDED
Binary file (2.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_matrices.cpython-310.pyc
ADDED
Binary file (129 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_normalforms.cpython-310.pyc
ADDED
Binary file (3.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_solvers.cpython-310.pyc
ADDED
Binary file (16.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_sparse.cpython-310.pyc
ADDED
Binary file (21.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_sparsetools.cpython-310.pyc
ADDED
Binary file (6.85 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/__pycache__/test_subspaces.cpython-310.pyc
ADDED
Binary file (4.03 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/tests/test_determinant.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from sympy.core.numbers import I
|
3 |
+
from sympy.core.numbers import Rational
|
4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.polys.polytools import Poly
|
7 |
+
from sympy.matrices import Matrix, eye, ones
|
8 |
+
from sympy.abc import x, y, z
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
from sympy.matrices.common import NonSquareMatrixError
|
11 |
+
from sympy.functions.combinatorial.factorials import factorial, subfactorial
|
12 |
+
|
13 |
+
|
14 |
+
def test_determinant():
|
15 |
+
M = Matrix()
|
16 |
+
|
17 |
+
assert M.det() == 1
|
18 |
+
# Evaluating these directly because they are never reached via M.det()
|
19 |
+
assert M._eval_det_bareiss() == 1
|
20 |
+
assert M._eval_det_berkowitz() == 1
|
21 |
+
assert M._eval_det_lu() == 1
|
22 |
+
|
23 |
+
M = Matrix([ [0] ])
|
24 |
+
|
25 |
+
assert M.det() == 0
|
26 |
+
assert M._eval_det_bareiss() == 0
|
27 |
+
assert M._eval_det_berkowitz() == 0
|
28 |
+
assert M._eval_det_lu() == 0
|
29 |
+
|
30 |
+
M = Matrix([ [5] ])
|
31 |
+
|
32 |
+
assert M.det() == 5
|
33 |
+
assert M._eval_det_bareiss() == 5
|
34 |
+
assert M._eval_det_berkowitz() == 5
|
35 |
+
assert M._eval_det_lu() == 5
|
36 |
+
|
37 |
+
M = Matrix(( (-3, 2),
|
38 |
+
( 8, -5) ))
|
39 |
+
|
40 |
+
assert M.det(method="domain-ge") == -1
|
41 |
+
assert M.det(method="bareiss") == -1
|
42 |
+
assert M.det(method="berkowitz") == -1
|
43 |
+
assert M.det(method="lu") == -1
|
44 |
+
|
45 |
+
M = Matrix(( (x, 1),
|
46 |
+
(y, 2*y) ))
|
47 |
+
|
48 |
+
assert M.det(method="domain-ge") == 2*x*y - y
|
49 |
+
assert M.det(method="bareiss") == 2*x*y - y
|
50 |
+
assert M.det(method="berkowitz") == 2*x*y - y
|
51 |
+
assert M.det(method="lu") == 2*x*y - y
|
52 |
+
|
53 |
+
M = Matrix(( (1, 1, 1),
|
54 |
+
(1, 2, 3),
|
55 |
+
(1, 3, 6) ))
|
56 |
+
|
57 |
+
assert M.det(method="domain-ge") == 1
|
58 |
+
assert M.det(method="bareiss") == 1
|
59 |
+
assert M.det(method="berkowitz") == 1
|
60 |
+
assert M.det(method="lu") == 1
|
61 |
+
|
62 |
+
M = Matrix(( ( 3, -2, 0, 5),
|
63 |
+
(-2, 1, -2, 2),
|
64 |
+
( 0, -2, 5, 0),
|
65 |
+
( 5, 0, 3, 4) ))
|
66 |
+
|
67 |
+
assert M.det(method="domain-ge") == -289
|
68 |
+
assert M.det(method="bareiss") == -289
|
69 |
+
assert M.det(method="berkowitz") == -289
|
70 |
+
assert M.det(method="lu") == -289
|
71 |
+
|
72 |
+
M = Matrix(( ( 1, 2, 3, 4),
|
73 |
+
( 5, 6, 7, 8),
|
74 |
+
( 9, 10, 11, 12),
|
75 |
+
(13, 14, 15, 16) ))
|
76 |
+
|
77 |
+
assert M.det(method="domain-ge") == 0
|
78 |
+
assert M.det(method="bareiss") == 0
|
79 |
+
assert M.det(method="berkowitz") == 0
|
80 |
+
assert M.det(method="lu") == 0
|
81 |
+
|
82 |
+
M = Matrix(( (3, 2, 0, 0, 0),
|
83 |
+
(0, 3, 2, 0, 0),
|
84 |
+
(0, 0, 3, 2, 0),
|
85 |
+
(0, 0, 0, 3, 2),
|
86 |
+
(2, 0, 0, 0, 3) ))
|
87 |
+
|
88 |
+
assert M.det(method="domain-ge") == 275
|
89 |
+
assert M.det(method="bareiss") == 275
|
90 |
+
assert M.det(method="berkowitz") == 275
|
91 |
+
assert M.det(method="lu") == 275
|
92 |
+
|
93 |
+
M = Matrix(( ( 3, 0, 0, 0),
|
94 |
+
(-2, 1, 0, 0),
|
95 |
+
( 0, -2, 5, 0),
|
96 |
+
( 5, 0, 3, 4) ))
|
97 |
+
|
98 |
+
assert M.det(method="domain-ge") == 60
|
99 |
+
assert M.det(method="bareiss") == 60
|
100 |
+
assert M.det(method="berkowitz") == 60
|
101 |
+
assert M.det(method="lu") == 60
|
102 |
+
|
103 |
+
M = Matrix(( ( 1, 0, 0, 0),
|
104 |
+
( 5, 0, 0, 0),
|
105 |
+
( 9, 10, 11, 0),
|
106 |
+
(13, 14, 15, 16) ))
|
107 |
+
|
108 |
+
assert M.det(method="domain-ge") == 0
|
109 |
+
assert M.det(method="bareiss") == 0
|
110 |
+
assert M.det(method="berkowitz") == 0
|
111 |
+
assert M.det(method="lu") == 0
|
112 |
+
|
113 |
+
M = Matrix(( (3, 2, 0, 0, 0),
|
114 |
+
(0, 3, 2, 0, 0),
|
115 |
+
(0, 0, 3, 2, 0),
|
116 |
+
(0, 0, 0, 3, 2),
|
117 |
+
(0, 0, 0, 0, 3) ))
|
118 |
+
|
119 |
+
assert M.det(method="domain-ge") == 243
|
120 |
+
assert M.det(method="bareiss") == 243
|
121 |
+
assert M.det(method="berkowitz") == 243
|
122 |
+
assert M.det(method="lu") == 243
|
123 |
+
|
124 |
+
M = Matrix(( (1, 0, 1, 2, 12),
|
125 |
+
(2, 0, 1, 1, 4),
|
126 |
+
(2, 1, 1, -1, 3),
|
127 |
+
(3, 2, -1, 1, 8),
|
128 |
+
(1, 1, 1, 0, 6) ))
|
129 |
+
|
130 |
+
assert M.det(method="domain-ge") == -55
|
131 |
+
assert M.det(method="bareiss") == -55
|
132 |
+
assert M.det(method="berkowitz") == -55
|
133 |
+
assert M.det(method="lu") == -55
|
134 |
+
|
135 |
+
M = Matrix(( (-5, 2, 3, 4, 5),
|
136 |
+
( 1, -4, 3, 4, 5),
|
137 |
+
( 1, 2, -3, 4, 5),
|
138 |
+
( 1, 2, 3, -2, 5),
|
139 |
+
( 1, 2, 3, 4, -1) ))
|
140 |
+
|
141 |
+
assert M.det(method="domain-ge") == 11664
|
142 |
+
assert M.det(method="bareiss") == 11664
|
143 |
+
assert M.det(method="berkowitz") == 11664
|
144 |
+
assert M.det(method="lu") == 11664
|
145 |
+
|
146 |
+
M = Matrix(( ( 2, 7, -1, 3, 2),
|
147 |
+
( 0, 0, 1, 0, 1),
|
148 |
+
(-2, 0, 7, 0, 2),
|
149 |
+
(-3, -2, 4, 5, 3),
|
150 |
+
( 1, 0, 0, 0, 1) ))
|
151 |
+
|
152 |
+
assert M.det(method="domain-ge") == 123
|
153 |
+
assert M.det(method="bareiss") == 123
|
154 |
+
assert M.det(method="berkowitz") == 123
|
155 |
+
assert M.det(method="lu") == 123
|
156 |
+
|
157 |
+
M = Matrix(( (x, y, z),
|
158 |
+
(1, 0, 0),
|
159 |
+
(y, z, x) ))
|
160 |
+
|
161 |
+
assert M.det(method="domain-ge") == z**2 - x*y
|
162 |
+
assert M.det(method="bareiss") == z**2 - x*y
|
163 |
+
assert M.det(method="berkowitz") == z**2 - x*y
|
164 |
+
assert M.det(method="lu") == z**2 - x*y
|
165 |
+
|
166 |
+
# issue 13835
|
167 |
+
a = symbols('a')
|
168 |
+
M = lambda n: Matrix([[i + a*j for i in range(n)]
|
169 |
+
for j in range(n)])
|
170 |
+
assert M(5).det() == 0
|
171 |
+
assert M(6).det() == 0
|
172 |
+
assert M(7).det() == 0
|
173 |
+
|
174 |
+
def test_issue_14517():
|
175 |
+
M = Matrix([
|
176 |
+
[ 0, 10*I, 10*I, 0],
|
177 |
+
[10*I, 0, 0, 10*I],
|
178 |
+
[10*I, 0, 5 + 2*I, 10*I],
|
179 |
+
[ 0, 10*I, 10*I, 5 + 2*I]])
|
180 |
+
ev = M.eigenvals()
|
181 |
+
# test one random eigenvalue, the computation is a little slow
|
182 |
+
test_ev = random.choice(list(ev.keys()))
|
183 |
+
assert (M - test_ev*eye(4)).det() == 0
|
184 |
+
|
185 |
+
def test_legacy_det():
|
186 |
+
# Minimal support for legacy keys for 'method' in det()
|
187 |
+
# Partially copied from test_determinant()
|
188 |
+
|
189 |
+
M = Matrix(( ( 3, -2, 0, 5),
|
190 |
+
(-2, 1, -2, 2),
|
191 |
+
( 0, -2, 5, 0),
|
192 |
+
( 5, 0, 3, 4) ))
|
193 |
+
|
194 |
+
assert M.det(method="bareis") == -289
|
195 |
+
assert M.det(method="det_lu") == -289
|
196 |
+
assert M.det(method="det_LU") == -289
|
197 |
+
|
198 |
+
M = Matrix(( (3, 2, 0, 0, 0),
|
199 |
+
(0, 3, 2, 0, 0),
|
200 |
+
(0, 0, 3, 2, 0),
|
201 |
+
(0, 0, 0, 3, 2),
|
202 |
+
(2, 0, 0, 0, 3) ))
|
203 |
+
|
204 |
+
assert M.det(method="bareis") == 275
|
205 |
+
assert M.det(method="det_lu") == 275
|
206 |
+
assert M.det(method="Bareis") == 275
|
207 |
+
|
208 |
+
M = Matrix(( (1, 0, 1, 2, 12),
|
209 |
+
(2, 0, 1, 1, 4),
|
210 |
+
(2, 1, 1, -1, 3),
|
211 |
+
(3, 2, -1, 1, 8),
|
212 |
+
(1, 1, 1, 0, 6) ))
|
213 |
+
|
214 |
+
assert M.det(method="bareis") == -55
|
215 |
+
assert M.det(method="det_lu") == -55
|
216 |
+
assert M.det(method="BAREISS") == -55
|
217 |
+
|
218 |
+
M = Matrix(( ( 3, 0, 0, 0),
|
219 |
+
(-2, 1, 0, 0),
|
220 |
+
( 0, -2, 5, 0),
|
221 |
+
( 5, 0, 3, 4) ))
|
222 |
+
|
223 |
+
assert M.det(method="bareiss") == 60
|
224 |
+
assert M.det(method="berkowitz") == 60
|
225 |
+
assert M.det(method="lu") == 60
|
226 |
+
|
227 |
+
M = Matrix(( ( 1, 0, 0, 0),
|
228 |
+
( 5, 0, 0, 0),
|
229 |
+
( 9, 10, 11, 0),
|
230 |
+
(13, 14, 15, 16) ))
|
231 |
+
|
232 |
+
assert M.det(method="bareiss") == 0
|
233 |
+
assert M.det(method="berkowitz") == 0
|
234 |
+
assert M.det(method="lu") == 0
|
235 |
+
|
236 |
+
M = Matrix(( (3, 2, 0, 0, 0),
|
237 |
+
(0, 3, 2, 0, 0),
|
238 |
+
(0, 0, 3, 2, 0),
|
239 |
+
(0, 0, 0, 3, 2),
|
240 |
+
(0, 0, 0, 0, 3) ))
|
241 |
+
|
242 |
+
assert M.det(method="bareiss") == 243
|
243 |
+
assert M.det(method="berkowitz") == 243
|
244 |
+
assert M.det(method="lu") == 243
|
245 |
+
|
246 |
+
M = Matrix(( (-5, 2, 3, 4, 5),
|
247 |
+
( 1, -4, 3, 4, 5),
|
248 |
+
( 1, 2, -3, 4, 5),
|
249 |
+
( 1, 2, 3, -2, 5),
|
250 |
+
( 1, 2, 3, 4, -1) ))
|
251 |
+
|
252 |
+
assert M.det(method="bareis") == 11664
|
253 |
+
assert M.det(method="det_lu") == 11664
|
254 |
+
assert M.det(method="BERKOWITZ") == 11664
|
255 |
+
|
256 |
+
M = Matrix(( ( 2, 7, -1, 3, 2),
|
257 |
+
( 0, 0, 1, 0, 1),
|
258 |
+
(-2, 0, 7, 0, 2),
|
259 |
+
(-3, -2, 4, 5, 3),
|
260 |
+
( 1, 0, 0, 0, 1) ))
|
261 |
+
|
262 |
+
assert M.det(method="bareis") == 123
|
263 |
+
assert M.det(method="det_lu") == 123
|
264 |
+
assert M.det(method="LU") == 123
|
265 |
+
|
266 |
+
def eye_Determinant(n):
|
267 |
+
return Matrix(n, n, lambda i, j: int(i == j))
|
268 |
+
|
269 |
+
def zeros_Determinant(n):
|
270 |
+
return Matrix(n, n, lambda i, j: 0)
|
271 |
+
|
272 |
+
def test_det():
|
273 |
+
a = Matrix(2, 3, [1, 2, 3, 4, 5, 6])
|
274 |
+
raises(NonSquareMatrixError, lambda: a.det())
|
275 |
+
|
276 |
+
z = zeros_Determinant(2)
|
277 |
+
ey = eye_Determinant(2)
|
278 |
+
assert z.det() == 0
|
279 |
+
assert ey.det() == 1
|
280 |
+
|
281 |
+
x = Symbol('x')
|
282 |
+
a = Matrix(0, 0, [])
|
283 |
+
b = Matrix(1, 1, [5])
|
284 |
+
c = Matrix(2, 2, [1, 2, 3, 4])
|
285 |
+
d = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 8])
|
286 |
+
e = Matrix(4, 4,
|
287 |
+
[x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14])
|
288 |
+
from sympy.abc import i, j, k, l, m, n
|
289 |
+
f = Matrix(3, 3, [i, l, m, 0, j, n, 0, 0, k])
|
290 |
+
g = Matrix(3, 3, [i, 0, 0, l, j, 0, m, n, k])
|
291 |
+
h = Matrix(3, 3, [x**3, 0, 0, i, x**-1, 0, j, k, x**-2])
|
292 |
+
# the method keyword for `det` doesn't kick in until 4x4 matrices,
|
293 |
+
# so there is no need to test all methods on smaller ones
|
294 |
+
|
295 |
+
assert a.det() == 1
|
296 |
+
assert b.det() == 5
|
297 |
+
assert c.det() == -2
|
298 |
+
assert d.det() == 3
|
299 |
+
assert e.det() == 4*x - 24
|
300 |
+
assert e.det(method="domain-ge") == 4*x - 24
|
301 |
+
assert e.det(method='bareiss') == 4*x - 24
|
302 |
+
assert e.det(method='berkowitz') == 4*x - 24
|
303 |
+
assert f.det() == i*j*k
|
304 |
+
assert g.det() == i*j*k
|
305 |
+
assert h.det() == 1
|
306 |
+
raises(ValueError, lambda: e.det(iszerofunc="test"))
|
307 |
+
|
308 |
+
def test_permanent():
|
309 |
+
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
310 |
+
assert M.per() == 450
|
311 |
+
for i in range(1, 12):
|
312 |
+
assert ones(i, i).per() == ones(i, i).T.per() == factorial(i)
|
313 |
+
assert (ones(i, i)-eye(i)).per() == (ones(i, i)-eye(i)).T.per() == subfactorial(i)
|
314 |
+
|
315 |
+
a1, a2, a3, a4, a5 = symbols('a_1 a_2 a_3 a_4 a_5')
|
316 |
+
M = Matrix([a1, a2, a3, a4, a5])
|
317 |
+
assert M.per() == M.T.per() == a1 + a2 + a3 + a4 + a5
|
318 |
+
|
319 |
+
def test_adjugate():
|
320 |
+
x = Symbol('x')
|
321 |
+
e = Matrix(4, 4,
|
322 |
+
[x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14])
|
323 |
+
|
324 |
+
adj = Matrix([
|
325 |
+
[ 4, -8, 4, 0],
|
326 |
+
[ 76, -14*x - 68, 14*x - 8, -4*x + 24],
|
327 |
+
[-122, 17*x + 142, -21*x + 4, 8*x - 48],
|
328 |
+
[ 48, -4*x - 72, 8*x, -4*x + 24]])
|
329 |
+
assert e.adjugate() == adj
|
330 |
+
assert e.adjugate(method='bareiss') == adj
|
331 |
+
assert e.adjugate(method='berkowitz') == adj
|
332 |
+
|
333 |
+
a = Matrix(2, 3, [1, 2, 3, 4, 5, 6])
|
334 |
+
raises(NonSquareMatrixError, lambda: a.adjugate())
|
335 |
+
|
336 |
+
def test_util():
|
337 |
+
R = Rational
|
338 |
+
|
339 |
+
v1 = Matrix(1, 3, [1, 2, 3])
|
340 |
+
v2 = Matrix(1, 3, [3, 4, 5])
|
341 |
+
assert v1.norm() == sqrt(14)
|
342 |
+
assert v1.project(v2) == Matrix(1, 3, [R(39)/25, R(52)/25, R(13)/5])
|
343 |
+
assert Matrix.zeros(1, 2) == Matrix(1, 2, [0, 0])
|
344 |
+
assert ones(1, 2) == Matrix(1, 2, [1, 1])
|
345 |
+
assert v1.copy() == v1
|
346 |
+
# cofactor
|
347 |
+
assert eye(3) == eye(3).cofactor_matrix()
|
348 |
+
test = Matrix([[1, 3, 2], [2, 6, 3], [2, 3, 6]])
|
349 |
+
assert test.cofactor_matrix() == \
|
350 |
+
Matrix([[27, -6, -6], [-12, 2, 3], [-3, 1, 0]])
|
351 |
+
test = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
352 |
+
assert test.cofactor_matrix() == \
|
353 |
+
Matrix([[-3, 6, -3], [6, -12, 6], [-3, 6, -3]])
|
354 |
+
|
355 |
+
def test_cofactor_and_minors():
|
356 |
+
x = Symbol('x')
|
357 |
+
e = Matrix(4, 4,
|
358 |
+
[x, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 14])
|
359 |
+
|
360 |
+
m = Matrix([
|
361 |
+
[ x, 1, 3],
|
362 |
+
[ 2, 9, 11],
|
363 |
+
[12, 13, 14]])
|
364 |
+
cm = Matrix([
|
365 |
+
[ 4, 76, -122, 48],
|
366 |
+
[-8, -14*x - 68, 17*x + 142, -4*x - 72],
|
367 |
+
[ 4, 14*x - 8, -21*x + 4, 8*x],
|
368 |
+
[ 0, -4*x + 24, 8*x - 48, -4*x + 24]])
|
369 |
+
sub = Matrix([
|
370 |
+
[x, 1, 2],
|
371 |
+
[4, 5, 6],
|
372 |
+
[2, 9, 10]])
|
373 |
+
|
374 |
+
assert e.minor_submatrix(1, 2) == m
|
375 |
+
assert e.minor_submatrix(-1, -1) == sub
|
376 |
+
assert e.minor(1, 2) == -17*x - 142
|
377 |
+
assert e.cofactor(1, 2) == 17*x + 142
|
378 |
+
assert e.cofactor_matrix() == cm
|
379 |
+
assert e.cofactor_matrix(method="bareiss") == cm
|
380 |
+
assert e.cofactor_matrix(method="berkowitz") == cm
|
381 |
+
|
382 |
+
raises(ValueError, lambda: e.cofactor(4, 5))
|
383 |
+
raises(ValueError, lambda: e.minor(4, 5))
|
384 |
+
raises(ValueError, lambda: e.minor_submatrix(4, 5))
|
385 |
+
|
386 |
+
a = Matrix(2, 3, [1, 2, 3, 4, 5, 6])
|
387 |
+
assert a.minor_submatrix(0, 0) == Matrix([[5, 6]])
|
388 |
+
|
389 |
+
raises(ValueError, lambda:
|
390 |
+
Matrix(0, 0, []).minor_submatrix(0, 0))
|
391 |
+
raises(NonSquareMatrixError, lambda: a.cofactor(0, 0))
|
392 |
+
raises(NonSquareMatrixError, lambda: a.minor(0, 0))
|
393 |
+
raises(NonSquareMatrixError, lambda: a.cofactor_matrix())
|
394 |
+
|
395 |
+
def test_charpoly():
|
396 |
+
x, y = Symbol('x'), Symbol('y')
|
397 |
+
z, t = Symbol('z'), Symbol('t')
|
398 |
+
|
399 |
+
from sympy.abc import a,b,c
|
400 |
+
|
401 |
+
m = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
|
402 |
+
|
403 |
+
assert eye_Determinant(3).charpoly(x) == Poly((x - 1)**3, x)
|
404 |
+
assert eye_Determinant(3).charpoly(y) == Poly((y - 1)**3, y)
|
405 |
+
assert m.charpoly() == Poly(x**3 - 15*x**2 - 18*x, x)
|
406 |
+
raises(NonSquareMatrixError, lambda: Matrix([[1], [2]]).charpoly())
|
407 |
+
n = Matrix(4, 4, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
|
408 |
+
assert n.charpoly() == Poly(x**4, x)
|
409 |
+
|
410 |
+
n = Matrix(4, 4, [45, 0, 0, 0, 0, 23, 0, 0, 0, 0, 87, 0, 0, 0, 0, 12])
|
411 |
+
assert n.charpoly() == Poly(x**4 - 167*x**3 + 8811*x**2 - 173457*x + 1080540, x)
|
412 |
+
|
413 |
+
n = Matrix(3, 3, [x, 0, 0, a, y, 0, b, c, z])
|
414 |
+
assert n.charpoly() == Poly(t**3 - (x+y+z)*t**2 + t*(x*y+y*z+x*z) - x*y*z, t)
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.35 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/combsimp.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_main.cpython-310.pyc
ADDED
Binary file (26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_opts.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/epathtools.cpython-310.pyc
ADDED
Binary file (8.49 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/fu.cpython-310.pyc
ADDED
Binary file (51.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/gammasimp.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand.cpython-310.pyc
ADDED
Binary file (73.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand_doc.cpython-310.pyc
ADDED
Binary file (737 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/powsimp.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/radsimp.cpython-310.pyc
ADDED
Binary file (34.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/ratsimp.cpython-310.pyc
ADDED
Binary file (7.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/simplify.cpython-310.pyc
ADDED
Binary file (57.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/sqrtdenest.cpython-310.pyc
ADDED
Binary file (19.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/traversaltools.cpython-310.pyc
ADDED
Binary file (602 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/__pycache__/trigsimp.cpython-310.pyc
ADDED
Binary file (33.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/combsimp.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Mul
|
2 |
+
from sympy.core.function import count_ops
|
3 |
+
from sympy.core.traversal import preorder_traversal, bottom_up
|
4 |
+
from sympy.functions.combinatorial.factorials import binomial, factorial
|
5 |
+
from sympy.functions import gamma
|
6 |
+
from sympy.simplify.gammasimp import gammasimp, _gammasimp
|
7 |
+
|
8 |
+
from sympy.utilities.timeutils import timethis
|
9 |
+
|
10 |
+
|
11 |
+
@timethis('combsimp')
|
12 |
+
def combsimp(expr):
|
13 |
+
r"""
|
14 |
+
Simplify combinatorial expressions.
|
15 |
+
|
16 |
+
Explanation
|
17 |
+
===========
|
18 |
+
|
19 |
+
This function takes as input an expression containing factorials,
|
20 |
+
binomials, Pochhammer symbol and other "combinatorial" functions,
|
21 |
+
and tries to minimize the number of those functions and reduce
|
22 |
+
the size of their arguments.
|
23 |
+
|
24 |
+
The algorithm works by rewriting all combinatorial functions as
|
25 |
+
gamma functions and applying gammasimp() except simplification
|
26 |
+
steps that may make an integer argument non-integer. See docstring
|
27 |
+
of gammasimp for more information.
|
28 |
+
|
29 |
+
Then it rewrites expression in terms of factorials and binomials by
|
30 |
+
rewriting gammas as factorials and converting (a+b)!/a!b! into
|
31 |
+
binomials.
|
32 |
+
|
33 |
+
If expression has gamma functions or combinatorial functions
|
34 |
+
with non-integer argument, it is automatically passed to gammasimp.
|
35 |
+
|
36 |
+
Examples
|
37 |
+
========
|
38 |
+
|
39 |
+
>>> from sympy.simplify import combsimp
|
40 |
+
>>> from sympy import factorial, binomial, symbols
|
41 |
+
>>> n, k = symbols('n k', integer = True)
|
42 |
+
|
43 |
+
>>> combsimp(factorial(n)/factorial(n - 3))
|
44 |
+
n*(n - 2)*(n - 1)
|
45 |
+
>>> combsimp(binomial(n+1, k+1)/binomial(n, k))
|
46 |
+
(n + 1)/(k + 1)
|
47 |
+
|
48 |
+
"""
|
49 |
+
|
50 |
+
expr = expr.rewrite(gamma, piecewise=False)
|
51 |
+
if any(isinstance(node, gamma) and not node.args[0].is_integer
|
52 |
+
for node in preorder_traversal(expr)):
|
53 |
+
return gammasimp(expr);
|
54 |
+
|
55 |
+
expr = _gammasimp(expr, as_comb = True)
|
56 |
+
expr = _gamma_as_comb(expr)
|
57 |
+
return expr
|
58 |
+
|
59 |
+
|
60 |
+
def _gamma_as_comb(expr):
|
61 |
+
"""
|
62 |
+
Helper function for combsimp.
|
63 |
+
|
64 |
+
Rewrites expression in terms of factorials and binomials
|
65 |
+
"""
|
66 |
+
|
67 |
+
expr = expr.rewrite(factorial)
|
68 |
+
|
69 |
+
def f(rv):
|
70 |
+
if not rv.is_Mul:
|
71 |
+
return rv
|
72 |
+
rvd = rv.as_powers_dict()
|
73 |
+
nd_fact_args = [[], []] # numerator, denominator
|
74 |
+
|
75 |
+
for k in rvd:
|
76 |
+
if isinstance(k, factorial) and rvd[k].is_Integer:
|
77 |
+
if rvd[k].is_positive:
|
78 |
+
nd_fact_args[0].extend([k.args[0]]*rvd[k])
|
79 |
+
else:
|
80 |
+
nd_fact_args[1].extend([k.args[0]]*-rvd[k])
|
81 |
+
rvd[k] = 0
|
82 |
+
if not nd_fact_args[0] or not nd_fact_args[1]:
|
83 |
+
return rv
|
84 |
+
|
85 |
+
hit = False
|
86 |
+
for m in range(2):
|
87 |
+
i = 0
|
88 |
+
while i < len(nd_fact_args[m]):
|
89 |
+
ai = nd_fact_args[m][i]
|
90 |
+
for j in range(i + 1, len(nd_fact_args[m])):
|
91 |
+
aj = nd_fact_args[m][j]
|
92 |
+
|
93 |
+
sum = ai + aj
|
94 |
+
if sum in nd_fact_args[1 - m]:
|
95 |
+
hit = True
|
96 |
+
|
97 |
+
nd_fact_args[1 - m].remove(sum)
|
98 |
+
del nd_fact_args[m][j]
|
99 |
+
del nd_fact_args[m][i]
|
100 |
+
|
101 |
+
rvd[binomial(sum, ai if count_ops(ai) <
|
102 |
+
count_ops(aj) else aj)] += (
|
103 |
+
-1 if m == 0 else 1)
|
104 |
+
break
|
105 |
+
else:
|
106 |
+
i += 1
|
107 |
+
|
108 |
+
if hit:
|
109 |
+
return Mul(*([k**rvd[k] for k in rvd] + [factorial(k)
|
110 |
+
for k in nd_fact_args[0]]))/Mul(*[factorial(k)
|
111 |
+
for k in nd_fact_args[1]])
|
112 |
+
return rv
|
113 |
+
|
114 |
+
return bottom_up(expr, f)
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/cse_opts.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Optimizations of the expression tree representation for better CSE
|
2 |
+
opportunities.
|
3 |
+
"""
|
4 |
+
from sympy.core import Add, Basic, Mul
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.sorting import default_sort_key
|
7 |
+
from sympy.core.traversal import preorder_traversal
|
8 |
+
|
9 |
+
|
10 |
+
def sub_pre(e):
|
11 |
+
""" Replace y - x with -(x - y) if -1 can be extracted from y - x.
|
12 |
+
"""
|
13 |
+
# replacing Add, A, from which -1 can be extracted with -1*-A
|
14 |
+
adds = [a for a in e.atoms(Add) if a.could_extract_minus_sign()]
|
15 |
+
reps = {}
|
16 |
+
ignore = set()
|
17 |
+
for a in adds:
|
18 |
+
na = -a
|
19 |
+
if na.is_Mul: # e.g. MatExpr
|
20 |
+
ignore.add(a)
|
21 |
+
continue
|
22 |
+
reps[a] = Mul._from_args([S.NegativeOne, na])
|
23 |
+
|
24 |
+
e = e.xreplace(reps)
|
25 |
+
|
26 |
+
# repeat again for persisting Adds but mark these with a leading 1, -1
|
27 |
+
# e.g. y - x -> 1*-1*(x - y)
|
28 |
+
if isinstance(e, Basic):
|
29 |
+
negs = {}
|
30 |
+
for a in sorted(e.atoms(Add), key=default_sort_key):
|
31 |
+
if a in ignore:
|
32 |
+
continue
|
33 |
+
if a in reps:
|
34 |
+
negs[a] = reps[a]
|
35 |
+
elif a.could_extract_minus_sign():
|
36 |
+
negs[a] = Mul._from_args([S.One, S.NegativeOne, -a])
|
37 |
+
e = e.xreplace(negs)
|
38 |
+
return e
|
39 |
+
|
40 |
+
|
41 |
+
def sub_post(e):
|
42 |
+
""" Replace 1*-1*x with -x.
|
43 |
+
"""
|
44 |
+
replacements = []
|
45 |
+
for node in preorder_traversal(e):
|
46 |
+
if isinstance(node, Mul) and \
|
47 |
+
node.args[0] is S.One and node.args[1] is S.NegativeOne:
|
48 |
+
replacements.append((node, -Mul._from_args(node.args[2:])))
|
49 |
+
for node, replacement in replacements:
|
50 |
+
e = e.xreplace({node: replacement})
|
51 |
+
|
52 |
+
return e
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/epathtools.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools for manipulation of expressions using paths. """
|
2 |
+
|
3 |
+
from sympy.core import Basic
|
4 |
+
|
5 |
+
|
6 |
+
class EPath:
|
7 |
+
r"""
|
8 |
+
Manipulate expressions using paths.
|
9 |
+
|
10 |
+
EPath grammar in EBNF notation::
|
11 |
+
|
12 |
+
literal ::= /[A-Za-z_][A-Za-z_0-9]*/
|
13 |
+
number ::= /-?\d+/
|
14 |
+
type ::= literal
|
15 |
+
attribute ::= literal "?"
|
16 |
+
all ::= "*"
|
17 |
+
slice ::= "[" number? (":" number? (":" number?)?)? "]"
|
18 |
+
range ::= all | slice
|
19 |
+
query ::= (type | attribute) ("|" (type | attribute))*
|
20 |
+
selector ::= range | query range?
|
21 |
+
path ::= "/" selector ("/" selector)*
|
22 |
+
|
23 |
+
See the docstring of the epath() function.
|
24 |
+
|
25 |
+
"""
|
26 |
+
|
27 |
+
__slots__ = ("_path", "_epath")
|
28 |
+
|
29 |
+
def __new__(cls, path):
|
30 |
+
"""Construct new EPath. """
|
31 |
+
if isinstance(path, EPath):
|
32 |
+
return path
|
33 |
+
|
34 |
+
if not path:
|
35 |
+
raise ValueError("empty EPath")
|
36 |
+
|
37 |
+
_path = path
|
38 |
+
|
39 |
+
if path[0] == '/':
|
40 |
+
path = path[1:]
|
41 |
+
else:
|
42 |
+
raise NotImplementedError("non-root EPath")
|
43 |
+
|
44 |
+
epath = []
|
45 |
+
|
46 |
+
for selector in path.split('/'):
|
47 |
+
selector = selector.strip()
|
48 |
+
|
49 |
+
if not selector:
|
50 |
+
raise ValueError("empty selector")
|
51 |
+
|
52 |
+
index = 0
|
53 |
+
|
54 |
+
for c in selector:
|
55 |
+
if c.isalnum() or c in ('_', '|', '?'):
|
56 |
+
index += 1
|
57 |
+
else:
|
58 |
+
break
|
59 |
+
|
60 |
+
attrs = []
|
61 |
+
types = []
|
62 |
+
|
63 |
+
if index:
|
64 |
+
elements = selector[:index]
|
65 |
+
selector = selector[index:]
|
66 |
+
|
67 |
+
for element in elements.split('|'):
|
68 |
+
element = element.strip()
|
69 |
+
|
70 |
+
if not element:
|
71 |
+
raise ValueError("empty element")
|
72 |
+
|
73 |
+
if element.endswith('?'):
|
74 |
+
attrs.append(element[:-1])
|
75 |
+
else:
|
76 |
+
types.append(element)
|
77 |
+
|
78 |
+
span = None
|
79 |
+
|
80 |
+
if selector == '*':
|
81 |
+
pass
|
82 |
+
else:
|
83 |
+
if selector.startswith('['):
|
84 |
+
try:
|
85 |
+
i = selector.index(']')
|
86 |
+
except ValueError:
|
87 |
+
raise ValueError("expected ']', got EOL")
|
88 |
+
|
89 |
+
_span, span = selector[1:i], []
|
90 |
+
|
91 |
+
if ':' not in _span:
|
92 |
+
span = int(_span)
|
93 |
+
else:
|
94 |
+
for elt in _span.split(':', 3):
|
95 |
+
if not elt:
|
96 |
+
span.append(None)
|
97 |
+
else:
|
98 |
+
span.append(int(elt))
|
99 |
+
|
100 |
+
span = slice(*span)
|
101 |
+
|
102 |
+
selector = selector[i + 1:]
|
103 |
+
|
104 |
+
if selector:
|
105 |
+
raise ValueError("trailing characters in selector")
|
106 |
+
|
107 |
+
epath.append((attrs, types, span))
|
108 |
+
|
109 |
+
obj = object.__new__(cls)
|
110 |
+
|
111 |
+
obj._path = _path
|
112 |
+
obj._epath = epath
|
113 |
+
|
114 |
+
return obj
|
115 |
+
|
116 |
+
def __repr__(self):
|
117 |
+
return "%s(%r)" % (self.__class__.__name__, self._path)
|
118 |
+
|
119 |
+
def _get_ordered_args(self, expr):
|
120 |
+
"""Sort ``expr.args`` using printing order. """
|
121 |
+
if expr.is_Add:
|
122 |
+
return expr.as_ordered_terms()
|
123 |
+
elif expr.is_Mul:
|
124 |
+
return expr.as_ordered_factors()
|
125 |
+
else:
|
126 |
+
return expr.args
|
127 |
+
|
128 |
+
def _hasattrs(self, expr, attrs):
|
129 |
+
"""Check if ``expr`` has any of ``attrs``. """
|
130 |
+
for attr in attrs:
|
131 |
+
if not hasattr(expr, attr):
|
132 |
+
return False
|
133 |
+
|
134 |
+
return True
|
135 |
+
|
136 |
+
def _hastypes(self, expr, types):
|
137 |
+
"""Check if ``expr`` is any of ``types``. """
|
138 |
+
_types = [ cls.__name__ for cls in expr.__class__.mro() ]
|
139 |
+
return bool(set(_types).intersection(types))
|
140 |
+
|
141 |
+
def _has(self, expr, attrs, types):
|
142 |
+
"""Apply ``_hasattrs`` and ``_hastypes`` to ``expr``. """
|
143 |
+
if not (attrs or types):
|
144 |
+
return True
|
145 |
+
|
146 |
+
if attrs and self._hasattrs(expr, attrs):
|
147 |
+
return True
|
148 |
+
|
149 |
+
if types and self._hastypes(expr, types):
|
150 |
+
return True
|
151 |
+
|
152 |
+
return False
|
153 |
+
|
154 |
+
def apply(self, expr, func, args=None, kwargs=None):
|
155 |
+
"""
|
156 |
+
Modify parts of an expression selected by a path.
|
157 |
+
|
158 |
+
Examples
|
159 |
+
========
|
160 |
+
|
161 |
+
>>> from sympy.simplify.epathtools import EPath
|
162 |
+
>>> from sympy import sin, cos, E
|
163 |
+
>>> from sympy.abc import x, y, z, t
|
164 |
+
|
165 |
+
>>> path = EPath("/*/[0]/Symbol")
|
166 |
+
>>> expr = [((x, 1), 2), ((3, y), z)]
|
167 |
+
|
168 |
+
>>> path.apply(expr, lambda expr: expr**2)
|
169 |
+
[((x**2, 1), 2), ((3, y**2), z)]
|
170 |
+
|
171 |
+
>>> path = EPath("/*/*/Symbol")
|
172 |
+
>>> expr = t + sin(x + 1) + cos(x + y + E)
|
173 |
+
|
174 |
+
>>> path.apply(expr, lambda expr: 2*expr)
|
175 |
+
t + sin(2*x + 1) + cos(2*x + 2*y + E)
|
176 |
+
|
177 |
+
"""
|
178 |
+
def _apply(path, expr, func):
|
179 |
+
if not path:
|
180 |
+
return func(expr)
|
181 |
+
else:
|
182 |
+
selector, path = path[0], path[1:]
|
183 |
+
attrs, types, span = selector
|
184 |
+
|
185 |
+
if isinstance(expr, Basic):
|
186 |
+
if not expr.is_Atom:
|
187 |
+
args, basic = self._get_ordered_args(expr), True
|
188 |
+
else:
|
189 |
+
return expr
|
190 |
+
elif hasattr(expr, '__iter__'):
|
191 |
+
args, basic = expr, False
|
192 |
+
else:
|
193 |
+
return expr
|
194 |
+
|
195 |
+
args = list(args)
|
196 |
+
|
197 |
+
if span is not None:
|
198 |
+
if isinstance(span, slice):
|
199 |
+
indices = range(*span.indices(len(args)))
|
200 |
+
else:
|
201 |
+
indices = [span]
|
202 |
+
else:
|
203 |
+
indices = range(len(args))
|
204 |
+
|
205 |
+
for i in indices:
|
206 |
+
try:
|
207 |
+
arg = args[i]
|
208 |
+
except IndexError:
|
209 |
+
continue
|
210 |
+
|
211 |
+
if self._has(arg, attrs, types):
|
212 |
+
args[i] = _apply(path, arg, func)
|
213 |
+
|
214 |
+
if basic:
|
215 |
+
return expr.func(*args)
|
216 |
+
else:
|
217 |
+
return expr.__class__(args)
|
218 |
+
|
219 |
+
_args, _kwargs = args or (), kwargs or {}
|
220 |
+
_func = lambda expr: func(expr, *_args, **_kwargs)
|
221 |
+
|
222 |
+
return _apply(self._epath, expr, _func)
|
223 |
+
|
224 |
+
def select(self, expr):
|
225 |
+
"""
|
226 |
+
Retrieve parts of an expression selected by a path.
|
227 |
+
|
228 |
+
Examples
|
229 |
+
========
|
230 |
+
|
231 |
+
>>> from sympy.simplify.epathtools import EPath
|
232 |
+
>>> from sympy import sin, cos, E
|
233 |
+
>>> from sympy.abc import x, y, z, t
|
234 |
+
|
235 |
+
>>> path = EPath("/*/[0]/Symbol")
|
236 |
+
>>> expr = [((x, 1), 2), ((3, y), z)]
|
237 |
+
|
238 |
+
>>> path.select(expr)
|
239 |
+
[x, y]
|
240 |
+
|
241 |
+
>>> path = EPath("/*/*/Symbol")
|
242 |
+
>>> expr = t + sin(x + 1) + cos(x + y + E)
|
243 |
+
|
244 |
+
>>> path.select(expr)
|
245 |
+
[x, x, y]
|
246 |
+
|
247 |
+
"""
|
248 |
+
result = []
|
249 |
+
|
250 |
+
def _select(path, expr):
|
251 |
+
if not path:
|
252 |
+
result.append(expr)
|
253 |
+
else:
|
254 |
+
selector, path = path[0], path[1:]
|
255 |
+
attrs, types, span = selector
|
256 |
+
|
257 |
+
if isinstance(expr, Basic):
|
258 |
+
args = self._get_ordered_args(expr)
|
259 |
+
elif hasattr(expr, '__iter__'):
|
260 |
+
args = expr
|
261 |
+
else:
|
262 |
+
return
|
263 |
+
|
264 |
+
if span is not None:
|
265 |
+
if isinstance(span, slice):
|
266 |
+
args = args[span]
|
267 |
+
else:
|
268 |
+
try:
|
269 |
+
args = [args[span]]
|
270 |
+
except IndexError:
|
271 |
+
return
|
272 |
+
|
273 |
+
for arg in args:
|
274 |
+
if self._has(arg, attrs, types):
|
275 |
+
_select(path, arg)
|
276 |
+
|
277 |
+
_select(self._epath, expr)
|
278 |
+
return result
|
279 |
+
|
280 |
+
|
281 |
+
def epath(path, expr=None, func=None, args=None, kwargs=None):
|
282 |
+
r"""
|
283 |
+
Manipulate parts of an expression selected by a path.
|
284 |
+
|
285 |
+
Explanation
|
286 |
+
===========
|
287 |
+
|
288 |
+
This function allows to manipulate large nested expressions in single
|
289 |
+
line of code, utilizing techniques to those applied in XML processing
|
290 |
+
standards (e.g. XPath).
|
291 |
+
|
292 |
+
If ``func`` is ``None``, :func:`epath` retrieves elements selected by
|
293 |
+
the ``path``. Otherwise it applies ``func`` to each matching element.
|
294 |
+
|
295 |
+
Note that it is more efficient to create an EPath object and use the select
|
296 |
+
and apply methods of that object, since this will compile the path string
|
297 |
+
only once. This function should only be used as a convenient shortcut for
|
298 |
+
interactive use.
|
299 |
+
|
300 |
+
This is the supported syntax:
|
301 |
+
|
302 |
+
* select all: ``/*``
|
303 |
+
Equivalent of ``for arg in args:``.
|
304 |
+
* select slice: ``/[0]`` or ``/[1:5]`` or ``/[1:5:2]``
|
305 |
+
Supports standard Python's slice syntax.
|
306 |
+
* select by type: ``/list`` or ``/list|tuple``
|
307 |
+
Emulates ``isinstance()``.
|
308 |
+
* select by attribute: ``/__iter__?``
|
309 |
+
Emulates ``hasattr()``.
|
310 |
+
|
311 |
+
Parameters
|
312 |
+
==========
|
313 |
+
|
314 |
+
path : str | EPath
|
315 |
+
A path as a string or a compiled EPath.
|
316 |
+
expr : Basic | iterable
|
317 |
+
An expression or a container of expressions.
|
318 |
+
func : callable (optional)
|
319 |
+
A callable that will be applied to matching parts.
|
320 |
+
args : tuple (optional)
|
321 |
+
Additional positional arguments to ``func``.
|
322 |
+
kwargs : dict (optional)
|
323 |
+
Additional keyword arguments to ``func``.
|
324 |
+
|
325 |
+
Examples
|
326 |
+
========
|
327 |
+
|
328 |
+
>>> from sympy.simplify.epathtools import epath
|
329 |
+
>>> from sympy import sin, cos, E
|
330 |
+
>>> from sympy.abc import x, y, z, t
|
331 |
+
|
332 |
+
>>> path = "/*/[0]/Symbol"
|
333 |
+
>>> expr = [((x, 1), 2), ((3, y), z)]
|
334 |
+
|
335 |
+
>>> epath(path, expr)
|
336 |
+
[x, y]
|
337 |
+
>>> epath(path, expr, lambda expr: expr**2)
|
338 |
+
[((x**2, 1), 2), ((3, y**2), z)]
|
339 |
+
|
340 |
+
>>> path = "/*/*/Symbol"
|
341 |
+
>>> expr = t + sin(x + 1) + cos(x + y + E)
|
342 |
+
|
343 |
+
>>> epath(path, expr)
|
344 |
+
[x, x, y]
|
345 |
+
>>> epath(path, expr, lambda expr: 2*expr)
|
346 |
+
t + sin(2*x + 1) + cos(2*x + 2*y + E)
|
347 |
+
|
348 |
+
"""
|
349 |
+
_epath = EPath(path)
|
350 |
+
|
351 |
+
if expr is None:
|
352 |
+
return _epath
|
353 |
+
if func is None:
|
354 |
+
return _epath.select(expr)
|
355 |
+
else:
|
356 |
+
return _epath.apply(expr, func, args, kwargs)
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/powsimp.py
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from functools import reduce
|
3 |
+
from math import prod
|
4 |
+
|
5 |
+
from sympy.core.function import expand_log, count_ops, _coeff_isneg
|
6 |
+
from sympy.core import sympify, Basic, Dummy, S, Add, Mul, Pow, expand_mul, factor_terms
|
7 |
+
from sympy.core.sorting import ordered, default_sort_key
|
8 |
+
from sympy.core.numbers import Integer, Rational
|
9 |
+
from sympy.core.mul import _keep_coeff
|
10 |
+
from sympy.core.rules import Transform
|
11 |
+
from sympy.functions import exp_polar, exp, log, root, polarify, unpolarify
|
12 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
13 |
+
from sympy.polys import lcm, gcd
|
14 |
+
from sympy.ntheory.factor_ import multiplicity
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
|
19 |
+
"""
|
20 |
+
Reduce expression by combining powers with similar bases and exponents.
|
21 |
+
|
22 |
+
Explanation
|
23 |
+
===========
|
24 |
+
|
25 |
+
If ``deep`` is ``True`` then powsimp() will also simplify arguments of
|
26 |
+
functions. By default ``deep`` is set to ``False``.
|
27 |
+
|
28 |
+
If ``force`` is ``True`` then bases will be combined without checking for
|
29 |
+
assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
|
30 |
+
if x and y are both negative.
|
31 |
+
|
32 |
+
You can make powsimp() only combine bases or only combine exponents by
|
33 |
+
changing combine='base' or combine='exp'. By default, combine='all',
|
34 |
+
which does both. combine='base' will only combine::
|
35 |
+
|
36 |
+
a a a 2x x
|
37 |
+
x * y => (x*y) as well as things like 2 => 4
|
38 |
+
|
39 |
+
and combine='exp' will only combine
|
40 |
+
::
|
41 |
+
|
42 |
+
a b (a + b)
|
43 |
+
x * x => x
|
44 |
+
|
45 |
+
combine='exp' will strictly only combine exponents in the way that used
|
46 |
+
to be automatic. Also use deep=True if you need the old behavior.
|
47 |
+
|
48 |
+
When combine='all', 'exp' is evaluated first. Consider the first
|
49 |
+
example below for when there could be an ambiguity relating to this.
|
50 |
+
This is done so things like the second example can be completely
|
51 |
+
combined. If you want 'base' combined first, do something like
|
52 |
+
powsimp(powsimp(expr, combine='base'), combine='exp').
|
53 |
+
|
54 |
+
Examples
|
55 |
+
========
|
56 |
+
|
57 |
+
>>> from sympy import powsimp, exp, log, symbols
|
58 |
+
>>> from sympy.abc import x, y, z, n
|
59 |
+
>>> powsimp(x**y*x**z*y**z, combine='all')
|
60 |
+
x**(y + z)*y**z
|
61 |
+
>>> powsimp(x**y*x**z*y**z, combine='exp')
|
62 |
+
x**(y + z)*y**z
|
63 |
+
>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
|
64 |
+
x**y*(x*y)**z
|
65 |
+
|
66 |
+
>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
|
67 |
+
(n*x)**(y + z)
|
68 |
+
>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
|
69 |
+
n**(y + z)*x**(y + z)
|
70 |
+
>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
|
71 |
+
(n*x)**y*(n*x)**z
|
72 |
+
|
73 |
+
>>> x, y = symbols('x y', positive=True)
|
74 |
+
>>> powsimp(log(exp(x)*exp(y)))
|
75 |
+
log(exp(x)*exp(y))
|
76 |
+
>>> powsimp(log(exp(x)*exp(y)), deep=True)
|
77 |
+
x + y
|
78 |
+
|
79 |
+
Radicals with Mul bases will be combined if combine='exp'
|
80 |
+
|
81 |
+
>>> from sympy import sqrt
|
82 |
+
>>> x, y = symbols('x y')
|
83 |
+
|
84 |
+
Two radicals are automatically joined through Mul:
|
85 |
+
|
86 |
+
>>> a=sqrt(x*sqrt(y))
|
87 |
+
>>> a*a**3 == a**4
|
88 |
+
True
|
89 |
+
|
90 |
+
But if an integer power of that radical has been
|
91 |
+
autoexpanded then Mul does not join the resulting factors:
|
92 |
+
|
93 |
+
>>> a**4 # auto expands to a Mul, no longer a Pow
|
94 |
+
x**2*y
|
95 |
+
>>> _*a # so Mul doesn't combine them
|
96 |
+
x**2*y*sqrt(x*sqrt(y))
|
97 |
+
>>> powsimp(_) # but powsimp will
|
98 |
+
(x*sqrt(y))**(5/2)
|
99 |
+
>>> powsimp(x*y*a) # but won't when doing so would violate assumptions
|
100 |
+
x*y*sqrt(x*sqrt(y))
|
101 |
+
|
102 |
+
"""
|
103 |
+
def recurse(arg, **kwargs):
|
104 |
+
_deep = kwargs.get('deep', deep)
|
105 |
+
_combine = kwargs.get('combine', combine)
|
106 |
+
_force = kwargs.get('force', force)
|
107 |
+
_measure = kwargs.get('measure', measure)
|
108 |
+
return powsimp(arg, _deep, _combine, _force, _measure)
|
109 |
+
|
110 |
+
expr = sympify(expr)
|
111 |
+
|
112 |
+
if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or (
|
113 |
+
expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))):
|
114 |
+
return expr
|
115 |
+
|
116 |
+
if deep or expr.is_Add or expr.is_Mul and _y not in expr.args:
|
117 |
+
expr = expr.func(*[recurse(w) for w in expr.args])
|
118 |
+
|
119 |
+
if expr.is_Pow:
|
120 |
+
return recurse(expr*_y, deep=False)/_y
|
121 |
+
|
122 |
+
if not expr.is_Mul:
|
123 |
+
return expr
|
124 |
+
|
125 |
+
# handle the Mul
|
126 |
+
if combine in ('exp', 'all'):
|
127 |
+
# Collect base/exp data, while maintaining order in the
|
128 |
+
# non-commutative parts of the product
|
129 |
+
c_powers = defaultdict(list)
|
130 |
+
nc_part = []
|
131 |
+
newexpr = []
|
132 |
+
coeff = S.One
|
133 |
+
for term in expr.args:
|
134 |
+
if term.is_Rational:
|
135 |
+
coeff *= term
|
136 |
+
continue
|
137 |
+
if term.is_Pow:
|
138 |
+
term = _denest_pow(term)
|
139 |
+
if term.is_commutative:
|
140 |
+
b, e = term.as_base_exp()
|
141 |
+
if deep:
|
142 |
+
b, e = [recurse(i) for i in [b, e]]
|
143 |
+
if b.is_Pow or isinstance(b, exp):
|
144 |
+
# don't let smthg like sqrt(x**a) split into x**a, 1/2
|
145 |
+
# or else it will be joined as x**(a/2) later
|
146 |
+
b, e = b**e, S.One
|
147 |
+
c_powers[b].append(e)
|
148 |
+
else:
|
149 |
+
# This is the logic that combines exponents for equal,
|
150 |
+
# but non-commutative bases: A**x*A**y == A**(x+y).
|
151 |
+
if nc_part:
|
152 |
+
b1, e1 = nc_part[-1].as_base_exp()
|
153 |
+
b2, e2 = term.as_base_exp()
|
154 |
+
if (b1 == b2 and
|
155 |
+
e1.is_commutative and e2.is_commutative):
|
156 |
+
nc_part[-1] = Pow(b1, Add(e1, e2))
|
157 |
+
continue
|
158 |
+
nc_part.append(term)
|
159 |
+
|
160 |
+
# add up exponents of common bases
|
161 |
+
for b, e in ordered(iter(c_powers.items())):
|
162 |
+
# allow 2**x/4 -> 2**(x - 2); don't do this when b and e are
|
163 |
+
# Numbers since autoevaluation will undo it, e.g.
|
164 |
+
# 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4
|
165 |
+
if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \
|
166 |
+
coeff is not S.One and
|
167 |
+
b not in (S.One, S.NegativeOne)):
|
168 |
+
m = multiplicity(abs(b), abs(coeff))
|
169 |
+
if m:
|
170 |
+
e.append(m)
|
171 |
+
coeff /= b**m
|
172 |
+
c_powers[b] = Add(*e)
|
173 |
+
if coeff is not S.One:
|
174 |
+
if coeff in c_powers:
|
175 |
+
c_powers[coeff] += S.One
|
176 |
+
else:
|
177 |
+
c_powers[coeff] = S.One
|
178 |
+
|
179 |
+
# convert to plain dictionary
|
180 |
+
c_powers = dict(c_powers)
|
181 |
+
|
182 |
+
# check for base and inverted base pairs
|
183 |
+
be = list(c_powers.items())
|
184 |
+
skip = set() # skip if we already saw them
|
185 |
+
for b, e in be:
|
186 |
+
if b in skip:
|
187 |
+
continue
|
188 |
+
bpos = b.is_positive or b.is_polar
|
189 |
+
if bpos:
|
190 |
+
binv = 1/b
|
191 |
+
if b != binv and binv in c_powers:
|
192 |
+
if b.as_numer_denom()[0] is S.One:
|
193 |
+
c_powers.pop(b)
|
194 |
+
c_powers[binv] -= e
|
195 |
+
else:
|
196 |
+
skip.add(binv)
|
197 |
+
e = c_powers.pop(binv)
|
198 |
+
c_powers[b] -= e
|
199 |
+
|
200 |
+
# check for base and negated base pairs
|
201 |
+
be = list(c_powers.items())
|
202 |
+
_n = S.NegativeOne
|
203 |
+
for b, e in be:
|
204 |
+
if (b.is_Symbol or b.is_Add) and -b in c_powers and b in c_powers:
|
205 |
+
if (b.is_positive is not None or e.is_integer):
|
206 |
+
if e.is_integer or b.is_negative:
|
207 |
+
c_powers[-b] += c_powers.pop(b)
|
208 |
+
else: # (-b).is_positive so use its e
|
209 |
+
e = c_powers.pop(-b)
|
210 |
+
c_powers[b] += e
|
211 |
+
if _n in c_powers:
|
212 |
+
c_powers[_n] += e
|
213 |
+
else:
|
214 |
+
c_powers[_n] = e
|
215 |
+
|
216 |
+
# filter c_powers and convert to a list
|
217 |
+
c_powers = [(b, e) for b, e in c_powers.items() if e]
|
218 |
+
|
219 |
+
# ==============================================================
|
220 |
+
# check for Mul bases of Rational powers that can be combined with
|
221 |
+
# separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) ->
|
222 |
+
# (x*sqrt(x*y))**(3/2)
|
223 |
+
# ---------------- helper functions
|
224 |
+
|
225 |
+
def ratq(x):
|
226 |
+
'''Return Rational part of x's exponent as it appears in the bkey.
|
227 |
+
'''
|
228 |
+
return bkey(x)[0][1]
|
229 |
+
|
230 |
+
def bkey(b, e=None):
|
231 |
+
'''Return (b**s, c.q), c.p where e -> c*s. If e is not given then
|
232 |
+
it will be taken by using as_base_exp() on the input b.
|
233 |
+
e.g.
|
234 |
+
x**3/2 -> (x, 2), 3
|
235 |
+
x**y -> (x**y, 1), 1
|
236 |
+
x**(2*y/3) -> (x**y, 3), 2
|
237 |
+
exp(x/2) -> (exp(a), 2), 1
|
238 |
+
|
239 |
+
'''
|
240 |
+
if e is not None: # coming from c_powers or from below
|
241 |
+
if e.is_Integer:
|
242 |
+
return (b, S.One), e
|
243 |
+
elif e.is_Rational:
|
244 |
+
return (b, Integer(e.q)), Integer(e.p)
|
245 |
+
else:
|
246 |
+
c, m = e.as_coeff_Mul(rational=True)
|
247 |
+
if c is not S.One:
|
248 |
+
if m.is_integer:
|
249 |
+
return (b, Integer(c.q)), m*Integer(c.p)
|
250 |
+
return (b**m, Integer(c.q)), Integer(c.p)
|
251 |
+
else:
|
252 |
+
return (b**e, S.One), S.One
|
253 |
+
else:
|
254 |
+
return bkey(*b.as_base_exp())
|
255 |
+
|
256 |
+
def update(b):
|
257 |
+
'''Decide what to do with base, b. If its exponent is now an
|
258 |
+
integer multiple of the Rational denominator, then remove it
|
259 |
+
and put the factors of its base in the common_b dictionary or
|
260 |
+
update the existing bases if necessary. If it has been zeroed
|
261 |
+
out, simply remove the base.
|
262 |
+
'''
|
263 |
+
newe, r = divmod(common_b[b], b[1])
|
264 |
+
if not r:
|
265 |
+
common_b.pop(b)
|
266 |
+
if newe:
|
267 |
+
for m in Mul.make_args(b[0]**newe):
|
268 |
+
b, e = bkey(m)
|
269 |
+
if b not in common_b:
|
270 |
+
common_b[b] = 0
|
271 |
+
common_b[b] += e
|
272 |
+
if b[1] != 1:
|
273 |
+
bases.append(b)
|
274 |
+
# ---------------- end of helper functions
|
275 |
+
|
276 |
+
# assemble a dictionary of the factors having a Rational power
|
277 |
+
common_b = {}
|
278 |
+
done = []
|
279 |
+
bases = []
|
280 |
+
for b, e in c_powers:
|
281 |
+
b, e = bkey(b, e)
|
282 |
+
if b in common_b:
|
283 |
+
common_b[b] = common_b[b] + e
|
284 |
+
else:
|
285 |
+
common_b[b] = e
|
286 |
+
if b[1] != 1 and b[0].is_Mul:
|
287 |
+
bases.append(b)
|
288 |
+
bases.sort(key=default_sort_key) # this makes tie-breaking canonical
|
289 |
+
bases.sort(key=measure, reverse=True) # handle longest first
|
290 |
+
for base in bases:
|
291 |
+
if base not in common_b: # it may have been removed already
|
292 |
+
continue
|
293 |
+
b, exponent = base
|
294 |
+
last = False # True when no factor of base is a radical
|
295 |
+
qlcm = 1 # the lcm of the radical denominators
|
296 |
+
while True:
|
297 |
+
bstart = b
|
298 |
+
qstart = qlcm
|
299 |
+
|
300 |
+
bb = [] # list of factors
|
301 |
+
ee = [] # (factor's expo. and it's current value in common_b)
|
302 |
+
for bi in Mul.make_args(b):
|
303 |
+
bib, bie = bkey(bi)
|
304 |
+
if bib not in common_b or common_b[bib] < bie:
|
305 |
+
ee = bb = [] # failed
|
306 |
+
break
|
307 |
+
ee.append([bie, common_b[bib]])
|
308 |
+
bb.append(bib)
|
309 |
+
if ee:
|
310 |
+
# find the number of integral extractions possible
|
311 |
+
# e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1
|
312 |
+
min1 = ee[0][1]//ee[0][0]
|
313 |
+
for i in range(1, len(ee)):
|
314 |
+
rat = ee[i][1]//ee[i][0]
|
315 |
+
if rat < 1:
|
316 |
+
break
|
317 |
+
min1 = min(min1, rat)
|
318 |
+
else:
|
319 |
+
# update base factor counts
|
320 |
+
# e.g. if ee = [(2, 5), (3, 6)] then min1 = 2
|
321 |
+
# and the new base counts will be 5-2*2 and 6-2*3
|
322 |
+
for i in range(len(bb)):
|
323 |
+
common_b[bb[i]] -= min1*ee[i][0]
|
324 |
+
update(bb[i])
|
325 |
+
# update the count of the base
|
326 |
+
# e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y)
|
327 |
+
# will increase by 4 to give bkey (x*sqrt(y), 2, 5)
|
328 |
+
common_b[base] += min1*qstart*exponent
|
329 |
+
if (last # no more radicals in base
|
330 |
+
or len(common_b) == 1 # nothing left to join with
|
331 |
+
or all(k[1] == 1 for k in common_b) # no rad's in common_b
|
332 |
+
):
|
333 |
+
break
|
334 |
+
# see what we can exponentiate base by to remove any radicals
|
335 |
+
# so we know what to search for
|
336 |
+
# e.g. if base were x**(1/2)*y**(1/3) then we should
|
337 |
+
# exponentiate by 6 and look for powers of x and y in the ratio
|
338 |
+
# of 2 to 3
|
339 |
+
qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)])
|
340 |
+
if qlcm == 1:
|
341 |
+
break # we are done
|
342 |
+
b = bstart**qlcm
|
343 |
+
qlcm *= qstart
|
344 |
+
if all(ratq(bi) == 1 for bi in Mul.make_args(b)):
|
345 |
+
last = True # we are going to be done after this next pass
|
346 |
+
# this base no longer can find anything to join with and
|
347 |
+
# since it was longer than any other we are done with it
|
348 |
+
b, q = base
|
349 |
+
done.append((b, common_b.pop(base)*Rational(1, q)))
|
350 |
+
|
351 |
+
# update c_powers and get ready to continue with powsimp
|
352 |
+
c_powers = done
|
353 |
+
# there may be terms still in common_b that were bases that were
|
354 |
+
# identified as needing processing, so remove those, too
|
355 |
+
for (b, q), e in common_b.items():
|
356 |
+
if (b.is_Pow or isinstance(b, exp)) and \
|
357 |
+
q is not S.One and not b.exp.is_Rational:
|
358 |
+
b, be = b.as_base_exp()
|
359 |
+
b = b**(be/q)
|
360 |
+
else:
|
361 |
+
b = root(b, q)
|
362 |
+
c_powers.append((b, e))
|
363 |
+
check = len(c_powers)
|
364 |
+
c_powers = dict(c_powers)
|
365 |
+
assert len(c_powers) == check # there should have been no duplicates
|
366 |
+
# ==============================================================
|
367 |
+
|
368 |
+
# rebuild the expression
|
369 |
+
newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()]))
|
370 |
+
if combine == 'exp':
|
371 |
+
return expr.func(newexpr, expr.func(*nc_part))
|
372 |
+
else:
|
373 |
+
return recurse(expr.func(*nc_part), combine='base') * \
|
374 |
+
recurse(newexpr, combine='base')
|
375 |
+
|
376 |
+
elif combine == 'base':
|
377 |
+
|
378 |
+
# Build c_powers and nc_part. These must both be lists not
|
379 |
+
# dicts because exp's are not combined.
|
380 |
+
c_powers = []
|
381 |
+
nc_part = []
|
382 |
+
for term in expr.args:
|
383 |
+
if term.is_commutative:
|
384 |
+
c_powers.append(list(term.as_base_exp()))
|
385 |
+
else:
|
386 |
+
nc_part.append(term)
|
387 |
+
|
388 |
+
# Pull out numerical coefficients from exponent if assumptions allow
|
389 |
+
# e.g., 2**(2*x) => 4**x
|
390 |
+
for i in range(len(c_powers)):
|
391 |
+
b, e = c_powers[i]
|
392 |
+
if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar):
|
393 |
+
continue
|
394 |
+
exp_c, exp_t = e.as_coeff_Mul(rational=True)
|
395 |
+
if exp_c is not S.One and exp_t is not S.One:
|
396 |
+
c_powers[i] = [Pow(b, exp_c), exp_t]
|
397 |
+
|
398 |
+
# Combine bases whenever they have the same exponent and
|
399 |
+
# assumptions allow
|
400 |
+
# first gather the potential bases under the common exponent
|
401 |
+
c_exp = defaultdict(list)
|
402 |
+
for b, e in c_powers:
|
403 |
+
if deep:
|
404 |
+
e = recurse(e)
|
405 |
+
if e.is_Add and (b.is_positive or e.is_integer):
|
406 |
+
e = factor_terms(e)
|
407 |
+
if _coeff_isneg(e):
|
408 |
+
e = -e
|
409 |
+
b = 1/b
|
410 |
+
c_exp[e].append(b)
|
411 |
+
del c_powers
|
412 |
+
|
413 |
+
# Merge back in the results of the above to form a new product
|
414 |
+
c_powers = defaultdict(list)
|
415 |
+
for e in c_exp:
|
416 |
+
bases = c_exp[e]
|
417 |
+
|
418 |
+
# calculate the new base for e
|
419 |
+
|
420 |
+
if len(bases) == 1:
|
421 |
+
new_base = bases[0]
|
422 |
+
elif e.is_integer or force:
|
423 |
+
new_base = expr.func(*bases)
|
424 |
+
else:
|
425 |
+
# see which ones can be joined
|
426 |
+
unk = []
|
427 |
+
nonneg = []
|
428 |
+
neg = []
|
429 |
+
for bi in bases:
|
430 |
+
if bi.is_negative:
|
431 |
+
neg.append(bi)
|
432 |
+
elif bi.is_nonnegative:
|
433 |
+
nonneg.append(bi)
|
434 |
+
elif bi.is_polar:
|
435 |
+
nonneg.append(
|
436 |
+
bi) # polar can be treated like non-negative
|
437 |
+
else:
|
438 |
+
unk.append(bi)
|
439 |
+
if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
|
440 |
+
# a single neg or a single unk can join the rest
|
441 |
+
nonneg.extend(unk + neg)
|
442 |
+
unk = neg = []
|
443 |
+
elif neg:
|
444 |
+
# their negative signs cancel in groups of 2*q if we know
|
445 |
+
# that e = p/q else we have to treat them as unknown
|
446 |
+
israt = False
|
447 |
+
if e.is_Rational:
|
448 |
+
israt = True
|
449 |
+
else:
|
450 |
+
p, d = e.as_numer_denom()
|
451 |
+
if p.is_integer and d.is_integer:
|
452 |
+
israt = True
|
453 |
+
if israt:
|
454 |
+
neg = [-w for w in neg]
|
455 |
+
unk.extend([S.NegativeOne]*len(neg))
|
456 |
+
else:
|
457 |
+
unk.extend(neg)
|
458 |
+
neg = []
|
459 |
+
del israt
|
460 |
+
|
461 |
+
# these shouldn't be joined
|
462 |
+
for b in unk:
|
463 |
+
c_powers[b].append(e)
|
464 |
+
# here is a new joined base
|
465 |
+
new_base = expr.func(*(nonneg + neg))
|
466 |
+
# if there are positive parts they will just get separated
|
467 |
+
# again unless some change is made
|
468 |
+
|
469 |
+
def _terms(e):
|
470 |
+
# return the number of terms of this expression
|
471 |
+
# when multiplied out -- assuming no joining of terms
|
472 |
+
if e.is_Add:
|
473 |
+
return sum([_terms(ai) for ai in e.args])
|
474 |
+
if e.is_Mul:
|
475 |
+
return prod([_terms(mi) for mi in e.args])
|
476 |
+
return 1
|
477 |
+
xnew_base = expand_mul(new_base, deep=False)
|
478 |
+
if len(Add.make_args(xnew_base)) < _terms(new_base):
|
479 |
+
new_base = factor_terms(xnew_base)
|
480 |
+
|
481 |
+
c_powers[new_base].append(e)
|
482 |
+
|
483 |
+
# break out the powers from c_powers now
|
484 |
+
c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e]
|
485 |
+
|
486 |
+
# we're done
|
487 |
+
return expr.func(*(c_part + nc_part))
|
488 |
+
|
489 |
+
else:
|
490 |
+
raise ValueError("combine must be one of ('all', 'exp', 'base').")
|
491 |
+
|
492 |
+
|
493 |
+
def powdenest(eq, force=False, polar=False):
|
494 |
+
r"""
|
495 |
+
Collect exponents on powers as assumptions allow.
|
496 |
+
|
497 |
+
Explanation
|
498 |
+
===========
|
499 |
+
|
500 |
+
Given ``(bb**be)**e``, this can be simplified as follows:
|
501 |
+
* if ``bb`` is positive, or
|
502 |
+
* ``e`` is an integer, or
|
503 |
+
* ``|be| < 1`` then this simplifies to ``bb**(be*e)``
|
504 |
+
|
505 |
+
Given a product of powers raised to a power, ``(bb1**be1 *
|
506 |
+
bb2**be2...)**e``, simplification can be done as follows:
|
507 |
+
|
508 |
+
- if e is positive, the gcd of all bei can be joined with e;
|
509 |
+
- all non-negative bb can be separated from those that are negative
|
510 |
+
and their gcd can be joined with e; autosimplification already
|
511 |
+
handles this separation.
|
512 |
+
- integer factors from powers that have integers in the denominator
|
513 |
+
of the exponent can be removed from any term and the gcd of such
|
514 |
+
integers can be joined with e
|
515 |
+
|
516 |
+
Setting ``force`` to ``True`` will make symbols that are not explicitly
|
517 |
+
negative behave as though they are positive, resulting in more
|
518 |
+
denesting.
|
519 |
+
|
520 |
+
Setting ``polar`` to ``True`` will do simplifications on the Riemann surface of
|
521 |
+
the logarithm, also resulting in more denestings.
|
522 |
+
|
523 |
+
When there are sums of logs in exp() then a product of powers may be
|
524 |
+
obtained e.g. ``exp(3*(log(a) + 2*log(b)))`` - > ``a**3*b**6``.
|
525 |
+
|
526 |
+
Examples
|
527 |
+
========
|
528 |
+
|
529 |
+
>>> from sympy.abc import a, b, x, y, z
|
530 |
+
>>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest
|
531 |
+
|
532 |
+
>>> powdenest((x**(2*a/3))**(3*x))
|
533 |
+
(x**(2*a/3))**(3*x)
|
534 |
+
>>> powdenest(exp(3*x*log(2)))
|
535 |
+
2**(3*x)
|
536 |
+
|
537 |
+
Assumptions may prevent expansion:
|
538 |
+
|
539 |
+
>>> powdenest(sqrt(x**2))
|
540 |
+
sqrt(x**2)
|
541 |
+
|
542 |
+
>>> p = symbols('p', positive=True)
|
543 |
+
>>> powdenest(sqrt(p**2))
|
544 |
+
p
|
545 |
+
|
546 |
+
No other expansion is done.
|
547 |
+
|
548 |
+
>>> i, j = symbols('i,j', integer=True)
|
549 |
+
>>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j
|
550 |
+
x**(x*(i + j))
|
551 |
+
|
552 |
+
But exp() will be denested by moving all non-log terms outside of
|
553 |
+
the function; this may result in the collapsing of the exp to a power
|
554 |
+
with a different base:
|
555 |
+
|
556 |
+
>>> powdenest(exp(3*y*log(x)))
|
557 |
+
x**(3*y)
|
558 |
+
>>> powdenest(exp(y*(log(a) + log(b))))
|
559 |
+
(a*b)**y
|
560 |
+
>>> powdenest(exp(3*(log(a) + log(b))))
|
561 |
+
a**3*b**3
|
562 |
+
|
563 |
+
If assumptions allow, symbols can also be moved to the outermost exponent:
|
564 |
+
|
565 |
+
>>> i = Symbol('i', integer=True)
|
566 |
+
>>> powdenest(((x**(2*i))**(3*y))**x)
|
567 |
+
((x**(2*i))**(3*y))**x
|
568 |
+
>>> powdenest(((x**(2*i))**(3*y))**x, force=True)
|
569 |
+
x**(6*i*x*y)
|
570 |
+
|
571 |
+
>>> powdenest(((x**(2*a/3))**(3*y/i))**x)
|
572 |
+
((x**(2*a/3))**(3*y/i))**x
|
573 |
+
>>> powdenest((x**(2*i)*y**(4*i))**z, force=True)
|
574 |
+
(x*y**2)**(2*i*z)
|
575 |
+
|
576 |
+
>>> n = Symbol('n', negative=True)
|
577 |
+
|
578 |
+
>>> powdenest((x**i)**y, force=True)
|
579 |
+
x**(i*y)
|
580 |
+
>>> powdenest((n**i)**x, force=True)
|
581 |
+
(n**i)**x
|
582 |
+
|
583 |
+
"""
|
584 |
+
from sympy.simplify.simplify import posify
|
585 |
+
|
586 |
+
if force:
|
587 |
+
def _denest(b, e):
|
588 |
+
if not isinstance(b, (Pow, exp)):
|
589 |
+
return b.is_positive, Pow(b, e, evaluate=False)
|
590 |
+
return _denest(b.base, b.exp*e)
|
591 |
+
reps = []
|
592 |
+
for p in eq.atoms(Pow, exp):
|
593 |
+
if isinstance(p.base, (Pow, exp)):
|
594 |
+
ok, dp = _denest(*p.args)
|
595 |
+
if ok is not False:
|
596 |
+
reps.append((p, dp))
|
597 |
+
if reps:
|
598 |
+
eq = eq.subs(reps)
|
599 |
+
eq, reps = posify(eq)
|
600 |
+
return powdenest(eq, force=False, polar=polar).xreplace(reps)
|
601 |
+
|
602 |
+
if polar:
|
603 |
+
eq, rep = polarify(eq)
|
604 |
+
return unpolarify(powdenest(unpolarify(eq, exponents_only=True)), rep)
|
605 |
+
|
606 |
+
new = powsimp(eq)
|
607 |
+
return new.xreplace(Transform(
|
608 |
+
_denest_pow, filter=lambda m: m.is_Pow or isinstance(m, exp)))
|
609 |
+
|
610 |
+
_y = Dummy('y')
|
611 |
+
|
612 |
+
|
613 |
+
def _denest_pow(eq):
|
614 |
+
"""
|
615 |
+
Denest powers.
|
616 |
+
|
617 |
+
This is a helper function for powdenest that performs the actual
|
618 |
+
transformation.
|
619 |
+
"""
|
620 |
+
from sympy.simplify.simplify import logcombine
|
621 |
+
|
622 |
+
b, e = eq.as_base_exp()
|
623 |
+
if b.is_Pow or isinstance(b, exp) and e != 1:
|
624 |
+
new = b._eval_power(e)
|
625 |
+
if new is not None:
|
626 |
+
eq = new
|
627 |
+
b, e = new.as_base_exp()
|
628 |
+
|
629 |
+
# denest exp with log terms in exponent
|
630 |
+
if b is S.Exp1 and e.is_Mul:
|
631 |
+
logs = []
|
632 |
+
other = []
|
633 |
+
for ei in e.args:
|
634 |
+
if any(isinstance(ai, log) for ai in Add.make_args(ei)):
|
635 |
+
logs.append(ei)
|
636 |
+
else:
|
637 |
+
other.append(ei)
|
638 |
+
logs = logcombine(Mul(*logs))
|
639 |
+
return Pow(exp(logs), Mul(*other))
|
640 |
+
|
641 |
+
_, be = b.as_base_exp()
|
642 |
+
if be is S.One and not (b.is_Mul or
|
643 |
+
b.is_Rational and b.q != 1 or
|
644 |
+
b.is_positive):
|
645 |
+
return eq
|
646 |
+
|
647 |
+
# denest eq which is either pos**e or Pow**e or Mul**e or
|
648 |
+
# Mul(b1**e1, b2**e2)
|
649 |
+
|
650 |
+
# handle polar numbers specially
|
651 |
+
polars, nonpolars = [], []
|
652 |
+
for bb in Mul.make_args(b):
|
653 |
+
if bb.is_polar:
|
654 |
+
polars.append(bb.as_base_exp())
|
655 |
+
else:
|
656 |
+
nonpolars.append(bb)
|
657 |
+
if len(polars) == 1 and not polars[0][0].is_Mul:
|
658 |
+
return Pow(polars[0][0], polars[0][1]*e)*powdenest(Mul(*nonpolars)**e)
|
659 |
+
elif polars:
|
660 |
+
return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \
|
661 |
+
*powdenest(Mul(*nonpolars)**e)
|
662 |
+
|
663 |
+
if b.is_Integer:
|
664 |
+
# use log to see if there is a power here
|
665 |
+
logb = expand_log(log(b))
|
666 |
+
if logb.is_Mul:
|
667 |
+
c, logb = logb.args
|
668 |
+
e *= c
|
669 |
+
base = logb.args[0]
|
670 |
+
return Pow(base, e)
|
671 |
+
|
672 |
+
# if b is not a Mul or any factor is an atom then there is nothing to do
|
673 |
+
if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)):
|
674 |
+
return eq
|
675 |
+
|
676 |
+
# let log handle the case of the base of the argument being a Mul, e.g.
|
677 |
+
# sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we
|
678 |
+
# will take the log, expand it, and then factor out the common powers that
|
679 |
+
# now appear as coefficient. We do this manually since terms_gcd pulls out
|
680 |
+
# fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2;
|
681 |
+
# gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but
|
682 |
+
# we want 3*x. Neither work with noncommutatives.
|
683 |
+
|
684 |
+
def nc_gcd(aa, bb):
|
685 |
+
a, b = [i.as_coeff_Mul() for i in [aa, bb]]
|
686 |
+
c = gcd(a[0], b[0]).as_numer_denom()[0]
|
687 |
+
g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0]))
|
688 |
+
return _keep_coeff(c, g)
|
689 |
+
|
690 |
+
glogb = expand_log(log(b))
|
691 |
+
if glogb.is_Add:
|
692 |
+
args = glogb.args
|
693 |
+
g = reduce(nc_gcd, args)
|
694 |
+
if g != 1:
|
695 |
+
cg, rg = g.as_coeff_Mul()
|
696 |
+
glogb = _keep_coeff(cg, rg*Add(*[a/g for a in args]))
|
697 |
+
|
698 |
+
# now put the log back together again
|
699 |
+
if isinstance(glogb, log) or not glogb.is_Mul:
|
700 |
+
if glogb.args[0].is_Pow or isinstance(glogb.args[0], exp):
|
701 |
+
glogb = _denest_pow(glogb.args[0])
|
702 |
+
if (abs(glogb.exp) < 1) == True:
|
703 |
+
return Pow(glogb.base, glogb.exp*e)
|
704 |
+
return eq
|
705 |
+
|
706 |
+
# the log(b) was a Mul so join any adds with logcombine
|
707 |
+
add = []
|
708 |
+
other = []
|
709 |
+
for a in glogb.args:
|
710 |
+
if a.is_Add:
|
711 |
+
add.append(a)
|
712 |
+
else:
|
713 |
+
other.append(a)
|
714 |
+
return Pow(exp(logcombine(Mul(*add))), e*Mul(*other))
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/ratsimp.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import combinations_with_replacement
|
2 |
+
from sympy.core import symbols, Add, Dummy
|
3 |
+
from sympy.core.numbers import Rational
|
4 |
+
from sympy.polys import cancel, ComputationFailed, parallel_poly_from_expr, reduced, Poly
|
5 |
+
from sympy.polys.monomials import Monomial, monomial_div
|
6 |
+
from sympy.polys.polyerrors import DomainError, PolificationFailed
|
7 |
+
from sympy.utilities.misc import debug, debugf
|
8 |
+
|
9 |
+
def ratsimp(expr):
|
10 |
+
"""
|
11 |
+
Put an expression over a common denominator, cancel and reduce.
|
12 |
+
|
13 |
+
Examples
|
14 |
+
========
|
15 |
+
|
16 |
+
>>> from sympy import ratsimp
|
17 |
+
>>> from sympy.abc import x, y
|
18 |
+
>>> ratsimp(1/x + 1/y)
|
19 |
+
(x + y)/(x*y)
|
20 |
+
"""
|
21 |
+
|
22 |
+
f, g = cancel(expr).as_numer_denom()
|
23 |
+
try:
|
24 |
+
Q, r = reduced(f, [g], field=True, expand=False)
|
25 |
+
except ComputationFailed:
|
26 |
+
return f/g
|
27 |
+
|
28 |
+
return Add(*Q) + cancel(r/g)
|
29 |
+
|
30 |
+
|
31 |
+
def ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args):
|
32 |
+
"""
|
33 |
+
Simplifies a rational expression ``expr`` modulo the prime ideal
|
34 |
+
generated by ``G``. ``G`` should be a Groebner basis of the
|
35 |
+
ideal.
|
36 |
+
|
37 |
+
Examples
|
38 |
+
========
|
39 |
+
|
40 |
+
>>> from sympy.simplify.ratsimp import ratsimpmodprime
|
41 |
+
>>> from sympy.abc import x, y
|
42 |
+
>>> eq = (x + y**5 + y)/(x - y)
|
43 |
+
>>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
|
44 |
+
(-x**2 - x*y - x - y)/(-x**2 + x*y)
|
45 |
+
|
46 |
+
If ``polynomial`` is ``False``, the algorithm computes a rational
|
47 |
+
simplification which minimizes the sum of the total degrees of
|
48 |
+
the numerator and the denominator.
|
49 |
+
|
50 |
+
If ``polynomial`` is ``True``, this function just brings numerator and
|
51 |
+
denominator into a canonical form. This is much faster, but has
|
52 |
+
potentially worse results.
|
53 |
+
|
54 |
+
References
|
55 |
+
==========
|
56 |
+
|
57 |
+
.. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
|
58 |
+
Ideal, https://dl.acm.org/doi/pdf/10.1145/1145768.1145809
|
59 |
+
(specifically, the second algorithm)
|
60 |
+
"""
|
61 |
+
from sympy.solvers.solvers import solve
|
62 |
+
|
63 |
+
debug('ratsimpmodprime', expr)
|
64 |
+
|
65 |
+
# usual preparation of polynomials:
|
66 |
+
|
67 |
+
num, denom = cancel(expr).as_numer_denom()
|
68 |
+
|
69 |
+
try:
|
70 |
+
polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
|
71 |
+
except PolificationFailed:
|
72 |
+
return expr
|
73 |
+
|
74 |
+
domain = opt.domain
|
75 |
+
|
76 |
+
if domain.has_assoc_Field:
|
77 |
+
opt.domain = domain.get_field()
|
78 |
+
else:
|
79 |
+
raise DomainError(
|
80 |
+
"Cannot compute rational simplification over %s" % domain)
|
81 |
+
|
82 |
+
# compute only once
|
83 |
+
leading_monomials = [g.LM(opt.order) for g in polys[2:]]
|
84 |
+
tested = set()
|
85 |
+
|
86 |
+
def staircase(n):
|
87 |
+
"""
|
88 |
+
Compute all monomials with degree less than ``n`` that are
|
89 |
+
not divisible by any element of ``leading_monomials``.
|
90 |
+
"""
|
91 |
+
if n == 0:
|
92 |
+
return [1]
|
93 |
+
S = []
|
94 |
+
for mi in combinations_with_replacement(range(len(opt.gens)), n):
|
95 |
+
m = [0]*len(opt.gens)
|
96 |
+
for i in mi:
|
97 |
+
m[i] += 1
|
98 |
+
if all(monomial_div(m, lmg) is None for lmg in
|
99 |
+
leading_monomials):
|
100 |
+
S.append(m)
|
101 |
+
|
102 |
+
return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)
|
103 |
+
|
104 |
+
def _ratsimpmodprime(a, b, allsol, N=0, D=0):
|
105 |
+
r"""
|
106 |
+
Computes a rational simplification of ``a/b`` which minimizes
|
107 |
+
the sum of the total degrees of the numerator and the denominator.
|
108 |
+
|
109 |
+
Explanation
|
110 |
+
===========
|
111 |
+
|
112 |
+
The algorithm proceeds by looking at ``a * d - b * c`` modulo
|
113 |
+
the ideal generated by ``G`` for some ``c`` and ``d`` with degree
|
114 |
+
less than ``a`` and ``b`` respectively.
|
115 |
+
The coefficients of ``c`` and ``d`` are indeterminates and thus
|
116 |
+
the coefficients of the normalform of ``a * d - b * c`` are
|
117 |
+
linear polynomials in these indeterminates.
|
118 |
+
If these linear polynomials, considered as system of
|
119 |
+
equations, have a nontrivial solution, then `\frac{a}{b}
|
120 |
+
\equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
|
121 |
+
by construction, the degree of ``c`` and ``d`` is less than
|
122 |
+
the degree of ``a`` and ``b``, so a simpler representation
|
123 |
+
has been found.
|
124 |
+
After a simpler representation has been found, the algorithm
|
125 |
+
tries to reduce the degree of the numerator and denominator
|
126 |
+
and returns the result afterwards.
|
127 |
+
|
128 |
+
As an extension, if quick=False, we look at all possible degrees such
|
129 |
+
that the total degree is less than *or equal to* the best current
|
130 |
+
solution. We retain a list of all solutions of minimal degree, and try
|
131 |
+
to find the best one at the end.
|
132 |
+
"""
|
133 |
+
c, d = a, b
|
134 |
+
steps = 0
|
135 |
+
|
136 |
+
maxdeg = a.total_degree() + b.total_degree()
|
137 |
+
if quick:
|
138 |
+
bound = maxdeg - 1
|
139 |
+
else:
|
140 |
+
bound = maxdeg
|
141 |
+
while N + D <= bound:
|
142 |
+
if (N, D) in tested:
|
143 |
+
break
|
144 |
+
tested.add((N, D))
|
145 |
+
|
146 |
+
M1 = staircase(N)
|
147 |
+
M2 = staircase(D)
|
148 |
+
debugf('%s / %s: %s, %s', (N, D, M1, M2))
|
149 |
+
|
150 |
+
Cs = symbols("c:%d" % len(M1), cls=Dummy)
|
151 |
+
Ds = symbols("d:%d" % len(M2), cls=Dummy)
|
152 |
+
ng = Cs + Ds
|
153 |
+
|
154 |
+
c_hat = Poly(
|
155 |
+
sum([Cs[i] * M1[i] for i in range(len(M1))]), opt.gens + ng)
|
156 |
+
d_hat = Poly(
|
157 |
+
sum([Ds[i] * M2[i] for i in range(len(M2))]), opt.gens + ng)
|
158 |
+
|
159 |
+
r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng,
|
160 |
+
order=opt.order, polys=True)[1]
|
161 |
+
|
162 |
+
S = Poly(r, gens=opt.gens).coeffs()
|
163 |
+
sol = solve(S, Cs + Ds, particular=True, quick=True)
|
164 |
+
|
165 |
+
if sol and not all(s == 0 for s in sol.values()):
|
166 |
+
c = c_hat.subs(sol)
|
167 |
+
d = d_hat.subs(sol)
|
168 |
+
|
169 |
+
# The "free" variables occurring before as parameters
|
170 |
+
# might still be in the substituted c, d, so set them
|
171 |
+
# to the value chosen before:
|
172 |
+
c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
|
173 |
+
d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
|
174 |
+
|
175 |
+
c = Poly(c, opt.gens)
|
176 |
+
d = Poly(d, opt.gens)
|
177 |
+
if d == 0:
|
178 |
+
raise ValueError('Ideal not prime?')
|
179 |
+
|
180 |
+
allsol.append((c_hat, d_hat, S, Cs + Ds))
|
181 |
+
if N + D != maxdeg:
|
182 |
+
allsol = [allsol[-1]]
|
183 |
+
|
184 |
+
break
|
185 |
+
|
186 |
+
steps += 1
|
187 |
+
N += 1
|
188 |
+
D += 1
|
189 |
+
|
190 |
+
if steps > 0:
|
191 |
+
c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
|
192 |
+
c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)
|
193 |
+
|
194 |
+
return c, d, allsol
|
195 |
+
|
196 |
+
# preprocessing. this improves performance a bit when deg(num)
|
197 |
+
# and deg(denom) are large:
|
198 |
+
num = reduced(num, G, opt.gens, order=opt.order)[1]
|
199 |
+
denom = reduced(denom, G, opt.gens, order=opt.order)[1]
|
200 |
+
|
201 |
+
if polynomial:
|
202 |
+
return (num/denom).cancel()
|
203 |
+
|
204 |
+
c, d, allsol = _ratsimpmodprime(
|
205 |
+
Poly(num, opt.gens, domain=opt.domain), Poly(denom, opt.gens, domain=opt.domain), [])
|
206 |
+
if not quick and allsol:
|
207 |
+
debugf('Looking for best minimal solution. Got: %s', len(allsol))
|
208 |
+
newsol = []
|
209 |
+
for c_hat, d_hat, S, ng in allsol:
|
210 |
+
sol = solve(S, ng, particular=True, quick=False)
|
211 |
+
# all values of sol should be numbers; if not, solve is broken
|
212 |
+
newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
|
213 |
+
c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))
|
214 |
+
|
215 |
+
if not domain.is_Field:
|
216 |
+
cn, c = c.clear_denoms(convert=True)
|
217 |
+
dn, d = d.clear_denoms(convert=True)
|
218 |
+
r = Rational(cn, dn)
|
219 |
+
else:
|
220 |
+
r = Rational(1)
|
221 |
+
|
222 |
+
return (c*r.q)/(d*r.p)
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/sqrtdenest.py
ADDED
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Add, Expr, Mul, S, sympify
|
2 |
+
from sympy.core.function import _mexpand, count_ops, expand_mul
|
3 |
+
from sympy.core.sorting import default_sort_key
|
4 |
+
from sympy.core.symbol import Dummy
|
5 |
+
from sympy.functions import root, sign, sqrt
|
6 |
+
from sympy.polys import Poly, PolynomialError
|
7 |
+
|
8 |
+
|
9 |
+
def is_sqrt(expr):
|
10 |
+
"""Return True if expr is a sqrt, otherwise False."""
|
11 |
+
|
12 |
+
return expr.is_Pow and expr.exp.is_Rational and abs(expr.exp) is S.Half
|
13 |
+
|
14 |
+
|
15 |
+
def sqrt_depth(p):
|
16 |
+
"""Return the maximum depth of any square root argument of p.
|
17 |
+
|
18 |
+
>>> from sympy.functions.elementary.miscellaneous import sqrt
|
19 |
+
>>> from sympy.simplify.sqrtdenest import sqrt_depth
|
20 |
+
|
21 |
+
Neither of these square roots contains any other square roots
|
22 |
+
so the depth is 1:
|
23 |
+
|
24 |
+
>>> sqrt_depth(1 + sqrt(2)*(1 + sqrt(3)))
|
25 |
+
1
|
26 |
+
|
27 |
+
The sqrt(3) is contained within a square root so the depth is
|
28 |
+
2:
|
29 |
+
|
30 |
+
>>> sqrt_depth(1 + sqrt(2)*sqrt(1 + sqrt(3)))
|
31 |
+
2
|
32 |
+
"""
|
33 |
+
if p is S.ImaginaryUnit:
|
34 |
+
return 1
|
35 |
+
if p.is_Atom:
|
36 |
+
return 0
|
37 |
+
elif p.is_Add or p.is_Mul:
|
38 |
+
return max([sqrt_depth(x) for x in p.args], key=default_sort_key)
|
39 |
+
elif is_sqrt(p):
|
40 |
+
return sqrt_depth(p.base) + 1
|
41 |
+
else:
|
42 |
+
return 0
|
43 |
+
|
44 |
+
|
45 |
+
def is_algebraic(p):
|
46 |
+
"""Return True if p is comprised of only Rationals or square roots
|
47 |
+
of Rationals and algebraic operations.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
========
|
51 |
+
|
52 |
+
>>> from sympy.functions.elementary.miscellaneous import sqrt
|
53 |
+
>>> from sympy.simplify.sqrtdenest import is_algebraic
|
54 |
+
>>> from sympy import cos
|
55 |
+
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*sqrt(2))))
|
56 |
+
True
|
57 |
+
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*cos(2))))
|
58 |
+
False
|
59 |
+
"""
|
60 |
+
|
61 |
+
if p.is_Rational:
|
62 |
+
return True
|
63 |
+
elif p.is_Atom:
|
64 |
+
return False
|
65 |
+
elif is_sqrt(p) or p.is_Pow and p.exp.is_Integer:
|
66 |
+
return is_algebraic(p.base)
|
67 |
+
elif p.is_Add or p.is_Mul:
|
68 |
+
return all(is_algebraic(x) for x in p.args)
|
69 |
+
else:
|
70 |
+
return False
|
71 |
+
|
72 |
+
|
73 |
+
def _subsets(n):
|
74 |
+
"""
|
75 |
+
Returns all possible subsets of the set (0, 1, ..., n-1) except the
|
76 |
+
empty set, listed in reversed lexicographical order according to binary
|
77 |
+
representation, so that the case of the fourth root is treated last.
|
78 |
+
|
79 |
+
Examples
|
80 |
+
========
|
81 |
+
|
82 |
+
>>> from sympy.simplify.sqrtdenest import _subsets
|
83 |
+
>>> _subsets(2)
|
84 |
+
[[1, 0], [0, 1], [1, 1]]
|
85 |
+
|
86 |
+
"""
|
87 |
+
if n == 1:
|
88 |
+
a = [[1]]
|
89 |
+
elif n == 2:
|
90 |
+
a = [[1, 0], [0, 1], [1, 1]]
|
91 |
+
elif n == 3:
|
92 |
+
a = [[1, 0, 0], [0, 1, 0], [1, 1, 0],
|
93 |
+
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]
|
94 |
+
else:
|
95 |
+
b = _subsets(n - 1)
|
96 |
+
a0 = [x + [0] for x in b]
|
97 |
+
a1 = [x + [1] for x in b]
|
98 |
+
a = a0 + [[0]*(n - 1) + [1]] + a1
|
99 |
+
return a
|
100 |
+
|
101 |
+
|
102 |
+
def sqrtdenest(expr, max_iter=3):
|
103 |
+
"""Denests sqrts in an expression that contain other square roots
|
104 |
+
if possible, otherwise returns the expr unchanged. This is based on the
|
105 |
+
algorithms of [1].
|
106 |
+
|
107 |
+
Examples
|
108 |
+
========
|
109 |
+
|
110 |
+
>>> from sympy.simplify.sqrtdenest import sqrtdenest
|
111 |
+
>>> from sympy import sqrt
|
112 |
+
>>> sqrtdenest(sqrt(5 + 2 * sqrt(6)))
|
113 |
+
sqrt(2) + sqrt(3)
|
114 |
+
|
115 |
+
See Also
|
116 |
+
========
|
117 |
+
|
118 |
+
sympy.solvers.solvers.unrad
|
119 |
+
|
120 |
+
References
|
121 |
+
==========
|
122 |
+
|
123 |
+
.. [1] https://web.archive.org/web/20210806201615/https://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf
|
124 |
+
|
125 |
+
.. [2] D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots
|
126 |
+
by Denesting' (available at https://www.cybertester.com/data/denest.pdf)
|
127 |
+
|
128 |
+
"""
|
129 |
+
expr = expand_mul(expr)
|
130 |
+
for i in range(max_iter):
|
131 |
+
z = _sqrtdenest0(expr)
|
132 |
+
if expr == z:
|
133 |
+
return expr
|
134 |
+
expr = z
|
135 |
+
return expr
|
136 |
+
|
137 |
+
|
138 |
+
def _sqrt_match(p):
|
139 |
+
"""Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
|
140 |
+
matching, sqrt(r) also has then maximal sqrt_depth among addends of p.
|
141 |
+
|
142 |
+
Examples
|
143 |
+
========
|
144 |
+
|
145 |
+
>>> from sympy.functions.elementary.miscellaneous import sqrt
|
146 |
+
>>> from sympy.simplify.sqrtdenest import _sqrt_match
|
147 |
+
>>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) + 2*sqrt(1+sqrt(5)))
|
148 |
+
[1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
|
149 |
+
"""
|
150 |
+
from sympy.simplify.radsimp import split_surds
|
151 |
+
|
152 |
+
p = _mexpand(p)
|
153 |
+
if p.is_Number:
|
154 |
+
res = (p, S.Zero, S.Zero)
|
155 |
+
elif p.is_Add:
|
156 |
+
pargs = sorted(p.args, key=default_sort_key)
|
157 |
+
sqargs = [x**2 for x in pargs]
|
158 |
+
if all(sq.is_Rational and sq.is_positive for sq in sqargs):
|
159 |
+
r, b, a = split_surds(p)
|
160 |
+
res = a, b, r
|
161 |
+
return list(res)
|
162 |
+
# to make the process canonical, the argument is included in the tuple
|
163 |
+
# so when the max is selected, it will be the largest arg having a
|
164 |
+
# given depth
|
165 |
+
v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
|
166 |
+
nmax = max(v, key=default_sort_key)
|
167 |
+
if nmax[0] == 0:
|
168 |
+
res = []
|
169 |
+
else:
|
170 |
+
# select r
|
171 |
+
depth, _, i = nmax
|
172 |
+
r = pargs.pop(i)
|
173 |
+
v.pop(i)
|
174 |
+
b = S.One
|
175 |
+
if r.is_Mul:
|
176 |
+
bv = []
|
177 |
+
rv = []
|
178 |
+
for x in r.args:
|
179 |
+
if sqrt_depth(x) < depth:
|
180 |
+
bv.append(x)
|
181 |
+
else:
|
182 |
+
rv.append(x)
|
183 |
+
b = Mul._from_args(bv)
|
184 |
+
r = Mul._from_args(rv)
|
185 |
+
# collect terms comtaining r
|
186 |
+
a1 = []
|
187 |
+
b1 = [b]
|
188 |
+
for x in v:
|
189 |
+
if x[0] < depth:
|
190 |
+
a1.append(x[1])
|
191 |
+
else:
|
192 |
+
x1 = x[1]
|
193 |
+
if x1 == r:
|
194 |
+
b1.append(1)
|
195 |
+
else:
|
196 |
+
if x1.is_Mul:
|
197 |
+
x1args = list(x1.args)
|
198 |
+
if r in x1args:
|
199 |
+
x1args.remove(r)
|
200 |
+
b1.append(Mul(*x1args))
|
201 |
+
else:
|
202 |
+
a1.append(x[1])
|
203 |
+
else:
|
204 |
+
a1.append(x[1])
|
205 |
+
a = Add(*a1)
|
206 |
+
b = Add(*b1)
|
207 |
+
res = (a, b, r**2)
|
208 |
+
else:
|
209 |
+
b, r = p.as_coeff_Mul()
|
210 |
+
if is_sqrt(r):
|
211 |
+
res = (S.Zero, b, r**2)
|
212 |
+
else:
|
213 |
+
res = []
|
214 |
+
return list(res)
|
215 |
+
|
216 |
+
|
217 |
+
class SqrtdenestStopIteration(StopIteration):
|
218 |
+
pass
|
219 |
+
|
220 |
+
|
221 |
+
def _sqrtdenest0(expr):
|
222 |
+
"""Returns expr after denesting its arguments."""
|
223 |
+
|
224 |
+
if is_sqrt(expr):
|
225 |
+
n, d = expr.as_numer_denom()
|
226 |
+
if d is S.One: # n is a square root
|
227 |
+
if n.base.is_Add:
|
228 |
+
args = sorted(n.base.args, key=default_sort_key)
|
229 |
+
if len(args) > 2 and all((x**2).is_Integer for x in args):
|
230 |
+
try:
|
231 |
+
return _sqrtdenest_rec(n)
|
232 |
+
except SqrtdenestStopIteration:
|
233 |
+
pass
|
234 |
+
expr = sqrt(_mexpand(Add(*[_sqrtdenest0(x) for x in args])))
|
235 |
+
return _sqrtdenest1(expr)
|
236 |
+
else:
|
237 |
+
n, d = [_sqrtdenest0(i) for i in (n, d)]
|
238 |
+
return n/d
|
239 |
+
|
240 |
+
if isinstance(expr, Add):
|
241 |
+
cs = []
|
242 |
+
args = []
|
243 |
+
for arg in expr.args:
|
244 |
+
c, a = arg.as_coeff_Mul()
|
245 |
+
cs.append(c)
|
246 |
+
args.append(a)
|
247 |
+
|
248 |
+
if all(c.is_Rational for c in cs) and all(is_sqrt(arg) for arg in args):
|
249 |
+
return _sqrt_ratcomb(cs, args)
|
250 |
+
|
251 |
+
if isinstance(expr, Expr):
|
252 |
+
args = expr.args
|
253 |
+
if args:
|
254 |
+
return expr.func(*[_sqrtdenest0(a) for a in args])
|
255 |
+
return expr
|
256 |
+
|
257 |
+
|
258 |
+
def _sqrtdenest_rec(expr):
|
259 |
+
"""Helper that denests the square root of three or more surds.
|
260 |
+
|
261 |
+
Explanation
|
262 |
+
===========
|
263 |
+
|
264 |
+
It returns the denested expression; if it cannot be denested it
|
265 |
+
throws SqrtdenestStopIteration
|
266 |
+
|
267 |
+
Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k));
|
268 |
+
split expr.base = a + b*sqrt(r_k), where `a` and `b` are on
|
269 |
+
Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is
|
270 |
+
on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on.
|
271 |
+
See [1], section 6.
|
272 |
+
|
273 |
+
Examples
|
274 |
+
========
|
275 |
+
|
276 |
+
>>> from sympy import sqrt
|
277 |
+
>>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec
|
278 |
+
>>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498))
|
279 |
+
-sqrt(10) + sqrt(2) + 9 + 9*sqrt(5)
|
280 |
+
>>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65
|
281 |
+
>>> _sqrtdenest_rec(sqrt(w))
|
282 |
+
-sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5)
|
283 |
+
"""
|
284 |
+
from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds
|
285 |
+
if not expr.is_Pow:
|
286 |
+
return sqrtdenest(expr)
|
287 |
+
if expr.base < 0:
|
288 |
+
return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base))
|
289 |
+
g, a, b = split_surds(expr.base)
|
290 |
+
a = a*sqrt(g)
|
291 |
+
if a < b:
|
292 |
+
a, b = b, a
|
293 |
+
c2 = _mexpand(a**2 - b**2)
|
294 |
+
if len(c2.args) > 2:
|
295 |
+
g, a1, b1 = split_surds(c2)
|
296 |
+
a1 = a1*sqrt(g)
|
297 |
+
if a1 < b1:
|
298 |
+
a1, b1 = b1, a1
|
299 |
+
c2_1 = _mexpand(a1**2 - b1**2)
|
300 |
+
c_1 = _sqrtdenest_rec(sqrt(c2_1))
|
301 |
+
d_1 = _sqrtdenest_rec(sqrt(a1 + c_1))
|
302 |
+
num, den = rad_rationalize(b1, d_1)
|
303 |
+
c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2)))
|
304 |
+
else:
|
305 |
+
c = _sqrtdenest1(sqrt(c2))
|
306 |
+
|
307 |
+
if sqrt_depth(c) > 1:
|
308 |
+
raise SqrtdenestStopIteration
|
309 |
+
ac = a + c
|
310 |
+
if len(ac.args) >= len(expr.args):
|
311 |
+
if count_ops(ac) >= count_ops(expr.base):
|
312 |
+
raise SqrtdenestStopIteration
|
313 |
+
d = sqrtdenest(sqrt(ac))
|
314 |
+
if sqrt_depth(d) > 1:
|
315 |
+
raise SqrtdenestStopIteration
|
316 |
+
num, den = rad_rationalize(b, d)
|
317 |
+
r = d/sqrt(2) + num/(den*sqrt(2))
|
318 |
+
r = radsimp(r)
|
319 |
+
return _mexpand(r)
|
320 |
+
|
321 |
+
|
322 |
+
def _sqrtdenest1(expr, denester=True):
|
323 |
+
"""Return denested expr after denesting with simpler methods or, that
|
324 |
+
failing, using the denester."""
|
325 |
+
|
326 |
+
from sympy.simplify.simplify import radsimp
|
327 |
+
|
328 |
+
if not is_sqrt(expr):
|
329 |
+
return expr
|
330 |
+
|
331 |
+
a = expr.base
|
332 |
+
if a.is_Atom:
|
333 |
+
return expr
|
334 |
+
val = _sqrt_match(a)
|
335 |
+
if not val:
|
336 |
+
return expr
|
337 |
+
|
338 |
+
a, b, r = val
|
339 |
+
# try a quick numeric denesting
|
340 |
+
d2 = _mexpand(a**2 - b**2*r)
|
341 |
+
if d2.is_Rational:
|
342 |
+
if d2.is_positive:
|
343 |
+
z = _sqrt_numeric_denest(a, b, r, d2)
|
344 |
+
if z is not None:
|
345 |
+
return z
|
346 |
+
else:
|
347 |
+
# fourth root case
|
348 |
+
# sqrtdenest(sqrt(3 + 2*sqrt(3))) =
|
349 |
+
# sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2
|
350 |
+
dr2 = _mexpand(-d2*r)
|
351 |
+
dr = sqrt(dr2)
|
352 |
+
if dr.is_Rational:
|
353 |
+
z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2)
|
354 |
+
if z is not None:
|
355 |
+
return z/root(r, 4)
|
356 |
+
|
357 |
+
else:
|
358 |
+
z = _sqrt_symbolic_denest(a, b, r)
|
359 |
+
if z is not None:
|
360 |
+
return z
|
361 |
+
|
362 |
+
if not denester or not is_algebraic(expr):
|
363 |
+
return expr
|
364 |
+
|
365 |
+
res = sqrt_biquadratic_denest(expr, a, b, r, d2)
|
366 |
+
if res:
|
367 |
+
return res
|
368 |
+
|
369 |
+
# now call to the denester
|
370 |
+
av0 = [a, b, r, d2]
|
371 |
+
z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0]
|
372 |
+
if av0[1] is None:
|
373 |
+
return expr
|
374 |
+
if z is not None:
|
375 |
+
if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr):
|
376 |
+
return expr
|
377 |
+
return z
|
378 |
+
return expr
|
379 |
+
|
380 |
+
|
381 |
+
def _sqrt_symbolic_denest(a, b, r):
|
382 |
+
"""Given an expression, sqrt(a + b*sqrt(b)), return the denested
|
383 |
+
expression or None.
|
384 |
+
|
385 |
+
Explanation
|
386 |
+
===========
|
387 |
+
|
388 |
+
If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with
|
389 |
+
(y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
|
390 |
+
(cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
|
391 |
+
sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).
|
392 |
+
|
393 |
+
Examples
|
394 |
+
========
|
395 |
+
|
396 |
+
>>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
|
397 |
+
>>> from sympy import sqrt, Symbol
|
398 |
+
>>> from sympy.abc import x
|
399 |
+
|
400 |
+
>>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
|
401 |
+
>>> _sqrt_symbolic_denest(a, b, r)
|
402 |
+
sqrt(11 - 2*sqrt(29)) + sqrt(5)
|
403 |
+
|
404 |
+
If the expression is numeric, it will be simplified:
|
405 |
+
|
406 |
+
>>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
|
407 |
+
>>> sqrtdenest(sqrt((w**2).expand()))
|
408 |
+
1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))
|
409 |
+
|
410 |
+
Otherwise, it will only be simplified if assumptions allow:
|
411 |
+
|
412 |
+
>>> w = w.subs(sqrt(3), sqrt(x + 3))
|
413 |
+
>>> sqrtdenest(sqrt((w**2).expand()))
|
414 |
+
sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)
|
415 |
+
|
416 |
+
Notice that the argument of the sqrt is a square. If x is made positive
|
417 |
+
then the sqrt of the square is resolved:
|
418 |
+
|
419 |
+
>>> _.subs(x, Symbol('x', positive=True))
|
420 |
+
sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
|
421 |
+
"""
|
422 |
+
|
423 |
+
a, b, r = map(sympify, (a, b, r))
|
424 |
+
rval = _sqrt_match(r)
|
425 |
+
if not rval:
|
426 |
+
return None
|
427 |
+
ra, rb, rr = rval
|
428 |
+
if rb:
|
429 |
+
y = Dummy('y', positive=True)
|
430 |
+
try:
|
431 |
+
newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y)
|
432 |
+
except PolynomialError:
|
433 |
+
return None
|
434 |
+
if newa.degree() == 2:
|
435 |
+
ca, cb, cc = newa.all_coeffs()
|
436 |
+
cb += b
|
437 |
+
if _mexpand(cb**2 - 4*ca*cc).equals(0):
|
438 |
+
z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2)
|
439 |
+
if z.is_number:
|
440 |
+
z = _mexpand(Mul._from_args(z.as_content_primitive()))
|
441 |
+
return z
|
442 |
+
|
443 |
+
|
444 |
+
def _sqrt_numeric_denest(a, b, r, d2):
|
445 |
+
r"""Helper that denest
|
446 |
+
$\sqrt{a + b \sqrt{r}}, d^2 = a^2 - b^2 r > 0$
|
447 |
+
|
448 |
+
If it cannot be denested, it returns ``None``.
|
449 |
+
"""
|
450 |
+
d = sqrt(d2)
|
451 |
+
s = a + d
|
452 |
+
# sqrt_depth(res) <= sqrt_depth(s) + 1
|
453 |
+
# sqrt_depth(expr) = sqrt_depth(r) + 2
|
454 |
+
# there is denesting if sqrt_depth(s) + 1 < sqrt_depth(r) + 2
|
455 |
+
# if s**2 is Number there is a fourth root
|
456 |
+
if sqrt_depth(s) < sqrt_depth(r) + 1 or (s**2).is_Rational:
|
457 |
+
s1, s2 = sign(s), sign(b)
|
458 |
+
if s1 == s2 == -1:
|
459 |
+
s1 = s2 = 1
|
460 |
+
res = (s1 * sqrt(a + d) + s2 * sqrt(a - d)) * sqrt(2) / 2
|
461 |
+
return res.expand()
|
462 |
+
|
463 |
+
|
464 |
+
def sqrt_biquadratic_denest(expr, a, b, r, d2):
|
465 |
+
"""denest expr = sqrt(a + b*sqrt(r))
|
466 |
+
where a, b, r are linear combinations of square roots of
|
467 |
+
positive rationals on the rationals (SQRR) and r > 0, b != 0,
|
468 |
+
d2 = a**2 - b**2*r > 0
|
469 |
+
|
470 |
+
If it cannot denest it returns None.
|
471 |
+
|
472 |
+
Explanation
|
473 |
+
===========
|
474 |
+
|
475 |
+
Search for a solution A of type SQRR of the biquadratic equation
|
476 |
+
4*A**4 - 4*a*A**2 + b**2*r = 0 (1)
|
477 |
+
sqd = sqrt(a**2 - b**2*r)
|
478 |
+
Choosing the sqrt to be positive, the possible solutions are
|
479 |
+
A = sqrt(a/2 +/- sqd/2)
|
480 |
+
Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR,
|
481 |
+
so if sqd can be denested, it is done by
|
482 |
+
_sqrtdenest_rec, and the result is a SQRR.
|
483 |
+
Similarly for A.
|
484 |
+
Examples of solutions (in both cases a and sqd are positive):
|
485 |
+
|
486 |
+
Example of expr with solution sqrt(a/2 + sqd/2) but not
|
487 |
+
solution sqrt(a/2 - sqd/2):
|
488 |
+
expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8)
|
489 |
+
a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3)
|
490 |
+
|
491 |
+
Example of expr with solution sqrt(a/2 - sqd/2) but not
|
492 |
+
solution sqrt(a/2 + sqd/2):
|
493 |
+
w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
|
494 |
+
expr = sqrt((w**2).expand())
|
495 |
+
a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3)
|
496 |
+
sqd = 29 + 20*sqrt(3)
|
497 |
+
|
498 |
+
Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then
|
499 |
+
expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2
|
500 |
+
|
501 |
+
Examples
|
502 |
+
========
|
503 |
+
|
504 |
+
>>> from sympy import sqrt
|
505 |
+
>>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest
|
506 |
+
>>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8)
|
507 |
+
>>> a, b, r = _sqrt_match(z**2)
|
508 |
+
>>> d2 = a**2 - b**2*r
|
509 |
+
>>> sqrt_biquadratic_denest(z, a, b, r, d2)
|
510 |
+
sqrt(2) + sqrt(sqrt(2) + 2) + 2
|
511 |
+
"""
|
512 |
+
from sympy.simplify.radsimp import radsimp, rad_rationalize
|
513 |
+
if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2:
|
514 |
+
return None
|
515 |
+
for x in (a, b, r):
|
516 |
+
for y in x.args:
|
517 |
+
y2 = y**2
|
518 |
+
if not y2.is_Integer or not y2.is_positive:
|
519 |
+
return None
|
520 |
+
sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2))))
|
521 |
+
if sqrt_depth(sqd) > 1:
|
522 |
+
return None
|
523 |
+
x1, x2 = [a/2 + sqd/2, a/2 - sqd/2]
|
524 |
+
# look for a solution A with depth 1
|
525 |
+
for x in (x1, x2):
|
526 |
+
A = sqrtdenest(sqrt(x))
|
527 |
+
if sqrt_depth(A) > 1:
|
528 |
+
continue
|
529 |
+
Bn, Bd = rad_rationalize(b, _mexpand(2*A))
|
530 |
+
B = Bn/Bd
|
531 |
+
z = A + B*sqrt(r)
|
532 |
+
if z < 0:
|
533 |
+
z = -z
|
534 |
+
return _mexpand(z)
|
535 |
+
return None
|
536 |
+
|
537 |
+
|
538 |
+
def _denester(nested, av0, h, max_depth_level):
|
539 |
+
"""Denests a list of expressions that contain nested square roots.
|
540 |
+
|
541 |
+
Explanation
|
542 |
+
===========
|
543 |
+
|
544 |
+
Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.
|
545 |
+
|
546 |
+
It is assumed that all of the elements of 'nested' share the same
|
547 |
+
bottom-level radicand. (This is stated in the paper, on page 177, in
|
548 |
+
the paragraph immediately preceding the algorithm.)
|
549 |
+
|
550 |
+
When evaluating all of the arguments in parallel, the bottom-level
|
551 |
+
radicand only needs to be denested once. This means that calling
|
552 |
+
_denester with x arguments results in a recursive invocation with x+1
|
553 |
+
arguments; hence _denester has polynomial complexity.
|
554 |
+
|
555 |
+
However, if the arguments were evaluated separately, each call would
|
556 |
+
result in two recursive invocations, and the algorithm would have
|
557 |
+
exponential complexity.
|
558 |
+
|
559 |
+
This is discussed in the paper in the middle paragraph of page 179.
|
560 |
+
"""
|
561 |
+
from sympy.simplify.simplify import radsimp
|
562 |
+
if h > max_depth_level:
|
563 |
+
return None, None
|
564 |
+
if av0[1] is None:
|
565 |
+
return None, None
|
566 |
+
if (av0[0] is None and
|
567 |
+
all(n.is_Number for n in nested)): # no arguments are nested
|
568 |
+
for f in _subsets(len(nested)): # test subset 'f' of nested
|
569 |
+
p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
|
570 |
+
if f.count(1) > 1 and f[-1]:
|
571 |
+
p = -p
|
572 |
+
sqp = sqrt(p)
|
573 |
+
if sqp.is_Rational:
|
574 |
+
return sqp, f # got a perfect square so return its square root.
|
575 |
+
# Otherwise, return the radicand from the previous invocation.
|
576 |
+
return sqrt(nested[-1]), [0]*len(nested)
|
577 |
+
else:
|
578 |
+
R = None
|
579 |
+
if av0[0] is not None:
|
580 |
+
values = [av0[:2]]
|
581 |
+
R = av0[2]
|
582 |
+
nested2 = [av0[3], R]
|
583 |
+
av0[0] = None
|
584 |
+
else:
|
585 |
+
values = list(filter(None, [_sqrt_match(expr) for expr in nested]))
|
586 |
+
for v in values:
|
587 |
+
if v[2]: # Since if b=0, r is not defined
|
588 |
+
if R is not None:
|
589 |
+
if R != v[2]:
|
590 |
+
av0[1] = None
|
591 |
+
return None, None
|
592 |
+
else:
|
593 |
+
R = v[2]
|
594 |
+
if R is None:
|
595 |
+
# return the radicand from the previous invocation
|
596 |
+
return sqrt(nested[-1]), [0]*len(nested)
|
597 |
+
nested2 = [_mexpand(v[0]**2) -
|
598 |
+
_mexpand(R*v[1]**2) for v in values] + [R]
|
599 |
+
d, f = _denester(nested2, av0, h + 1, max_depth_level)
|
600 |
+
if not f:
|
601 |
+
return None, None
|
602 |
+
if not any(f[i] for i in range(len(nested))):
|
603 |
+
v = values[-1]
|
604 |
+
return sqrt(v[0] + _mexpand(v[1]*d)), f
|
605 |
+
else:
|
606 |
+
p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
|
607 |
+
v = _sqrt_match(p)
|
608 |
+
if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
|
609 |
+
v[0] = -v[0]
|
610 |
+
v[1] = -v[1]
|
611 |
+
if not f[len(nested)]: # Solution denests with square roots
|
612 |
+
vad = _mexpand(v[0] + d)
|
613 |
+
if vad <= 0:
|
614 |
+
# return the radicand from the previous invocation.
|
615 |
+
return sqrt(nested[-1]), [0]*len(nested)
|
616 |
+
if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or
|
617 |
+
(vad**2).is_Number):
|
618 |
+
av0[1] = None
|
619 |
+
return None, None
|
620 |
+
|
621 |
+
sqvad = _sqrtdenest1(sqrt(vad), denester=False)
|
622 |
+
if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1):
|
623 |
+
av0[1] = None
|
624 |
+
return None, None
|
625 |
+
sqvad1 = radsimp(1/sqvad)
|
626 |
+
res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2)))
|
627 |
+
return res, f
|
628 |
+
|
629 |
+
# sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
|
630 |
+
else: # Solution requires a fourth root
|
631 |
+
s2 = _mexpand(v[1]*R) + d
|
632 |
+
if s2 <= 0:
|
633 |
+
return sqrt(nested[-1]), [0]*len(nested)
|
634 |
+
FR, s = root(_mexpand(R), 4), sqrt(s2)
|
635 |
+
return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f
|
636 |
+
|
637 |
+
|
638 |
+
def _sqrt_ratcomb(cs, args):
|
639 |
+
"""Denest rational combinations of radicals.
|
640 |
+
|
641 |
+
Based on section 5 of [1].
|
642 |
+
|
643 |
+
Examples
|
644 |
+
========
|
645 |
+
|
646 |
+
>>> from sympy import sqrt
|
647 |
+
>>> from sympy.simplify.sqrtdenest import sqrtdenest
|
648 |
+
>>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3))
|
649 |
+
>>> sqrtdenest(z)
|
650 |
+
0
|
651 |
+
"""
|
652 |
+
from sympy.simplify.radsimp import radsimp
|
653 |
+
|
654 |
+
# check if there exists a pair of sqrt that can be denested
|
655 |
+
def find(a):
|
656 |
+
n = len(a)
|
657 |
+
for i in range(n - 1):
|
658 |
+
for j in range(i + 1, n):
|
659 |
+
s1 = a[i].base
|
660 |
+
s2 = a[j].base
|
661 |
+
p = _mexpand(s1 * s2)
|
662 |
+
s = sqrtdenest(sqrt(p))
|
663 |
+
if s != sqrt(p):
|
664 |
+
return s, i, j
|
665 |
+
|
666 |
+
indices = find(args)
|
667 |
+
if indices is None:
|
668 |
+
return Add(*[c * arg for c, arg in zip(cs, args)])
|
669 |
+
|
670 |
+
s, i1, i2 = indices
|
671 |
+
|
672 |
+
c2 = cs.pop(i2)
|
673 |
+
args.pop(i2)
|
674 |
+
a1 = args[i1]
|
675 |
+
|
676 |
+
# replace a2 by s/a1
|
677 |
+
cs[i1] += radsimp(c2 * s / a1.base)
|
678 |
+
|
679 |
+
return _sqrt_ratcomb(cs, args)
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_combsimp.cpython-310.pyc
ADDED
Binary file (2.75 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_cse.cpython-310.pyc
ADDED
Binary file (29 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_epathtools.cpython-310.pyc
ADDED
Binary file (3.95 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_fu.cpython-310.pyc
ADDED
Binary file (21.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_function.cpython-310.pyc
ADDED
Binary file (2.38 kB). View file
|
|