peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/geometry
/point.py
| """Geometrical Points. | |
| Contains | |
| ======== | |
| Point | |
| Point2D | |
| Point3D | |
| When methods of Point require 1 or more points as arguments, they | |
| can be passed as a sequence of coordinates or Points: | |
| from sympy import Point | |
| Point(1, 1).is_collinear((2, 2), (3, 4)) | |
| False | |
| Point(1, 1).is_collinear(Point(2, 2), Point(3, 4)) | |
| False | |
| """ | |
| import warnings | |
| from sympy.core import S, sympify, Expr | |
| from sympy.core.add import Add | |
| from sympy.core.containers import Tuple | |
| from sympy.core.numbers import Float | |
| from sympy.core.parameters import global_parameters | |
| from sympy.simplify import nsimplify, simplify | |
| from sympy.geometry.exceptions import GeometryError | |
| from sympy.functions.elementary.miscellaneous import sqrt | |
| from sympy.functions.elementary.complexes import im | |
| from sympy.functions.elementary.trigonometric import cos, sin | |
| from sympy.matrices import Matrix | |
| from sympy.matrices.expressions import Transpose | |
| from sympy.utilities.iterables import uniq, is_sequence | |
| from sympy.utilities.misc import filldedent, func_name, Undecidable | |
| from .entity import GeometryEntity | |
| from mpmath.libmp.libmpf import prec_to_dps | |
| class Point(GeometryEntity): | |
| """A point in a n-dimensional Euclidean space. | |
| Parameters | |
| ========== | |
| coords : sequence of n-coordinate values. In the special | |
| case where n=2 or 3, a Point2D or Point3D will be created | |
| as appropriate. | |
| evaluate : if `True` (default), all floats are turn into | |
| exact types. | |
| dim : number of coordinates the point should have. If coordinates | |
| are unspecified, they are padded with zeros. | |
| on_morph : indicates what should happen when the number of | |
| coordinates of a point need to be changed by adding or | |
| removing zeros. Possible values are `'warn'`, `'error'`, or | |
| `ignore` (default). No warning or error is given when `*args` | |
| is empty and `dim` is given. An error is always raised when | |
| trying to remove nonzero coordinates. | |
| Attributes | |
| ========== | |
| length | |
| origin: A `Point` representing the origin of the | |
| appropriately-dimensioned space. | |
| Raises | |
| ====== | |
| TypeError : When instantiating with anything but a Point or sequence | |
| ValueError : when instantiating with a sequence with length < 2 or | |
| when trying to reduce dimensions if keyword `on_morph='error'` is | |
| set. | |
| See Also | |
| ======== | |
| sympy.geometry.line.Segment : Connects two Points | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| >>> from sympy.abc import x | |
| >>> Point(1, 2, 3) | |
| Point3D(1, 2, 3) | |
| >>> Point([1, 2]) | |
| Point2D(1, 2) | |
| >>> Point(0, x) | |
| Point2D(0, x) | |
| >>> Point(dim=4) | |
| Point(0, 0, 0, 0) | |
| Floats are automatically converted to Rational unless the | |
| evaluate flag is False: | |
| >>> Point(0.5, 0.25) | |
| Point2D(1/2, 1/4) | |
| >>> Point(0.5, 0.25, evaluate=False) | |
| Point2D(0.5, 0.25) | |
| """ | |
| is_Point = True | |
| def __new__(cls, *args, **kwargs): | |
| evaluate = kwargs.get('evaluate', global_parameters.evaluate) | |
| on_morph = kwargs.get('on_morph', 'ignore') | |
| # unpack into coords | |
| coords = args[0] if len(args) == 1 else args | |
| # check args and handle quickly handle Point instances | |
| if isinstance(coords, Point): | |
| # even if we're mutating the dimension of a point, we | |
| # don't reevaluate its coordinates | |
| evaluate = False | |
| if len(coords) == kwargs.get('dim', len(coords)): | |
| return coords | |
| if not is_sequence(coords): | |
| raise TypeError(filldedent(''' | |
| Expecting sequence of coordinates, not `{}`''' | |
| .format(func_name(coords)))) | |
| # A point where only `dim` is specified is initialized | |
| # to zeros. | |
| if len(coords) == 0 and kwargs.get('dim', None): | |
| coords = (S.Zero,)*kwargs.get('dim') | |
| coords = Tuple(*coords) | |
| dim = kwargs.get('dim', len(coords)) | |
| if len(coords) < 2: | |
| raise ValueError(filldedent(''' | |
| Point requires 2 or more coordinates or | |
| keyword `dim` > 1.''')) | |
| if len(coords) != dim: | |
| message = ("Dimension of {} needs to be changed " | |
| "from {} to {}.").format(coords, len(coords), dim) | |
| if on_morph == 'ignore': | |
| pass | |
| elif on_morph == "error": | |
| raise ValueError(message) | |
| elif on_morph == 'warn': | |
| warnings.warn(message, stacklevel=2) | |
| else: | |
| raise ValueError(filldedent(''' | |
| on_morph value should be 'error', | |
| 'warn' or 'ignore'.''')) | |
| if any(coords[dim:]): | |
| raise ValueError('Nonzero coordinates cannot be removed.') | |
| if any(a.is_number and im(a).is_zero is False for a in coords): | |
| raise ValueError('Imaginary coordinates are not permitted.') | |
| if not all(isinstance(a, Expr) for a in coords): | |
| raise TypeError('Coordinates must be valid SymPy expressions.') | |
| # pad with zeros appropriately | |
| coords = coords[:dim] + (S.Zero,)*(dim - len(coords)) | |
| # Turn any Floats into rationals and simplify | |
| # any expressions before we instantiate | |
| if evaluate: | |
| coords = coords.xreplace({ | |
| f: simplify(nsimplify(f, rational=True)) | |
| for f in coords.atoms(Float)}) | |
| # return 2D or 3D instances | |
| if len(coords) == 2: | |
| kwargs['_nocheck'] = True | |
| return Point2D(*coords, **kwargs) | |
| elif len(coords) == 3: | |
| kwargs['_nocheck'] = True | |
| return Point3D(*coords, **kwargs) | |
| # the general Point | |
| return GeometryEntity.__new__(cls, *coords) | |
| def __abs__(self): | |
| """Returns the distance between this point and the origin.""" | |
| origin = Point([0]*len(self)) | |
| return Point.distance(origin, self) | |
| def __add__(self, other): | |
| """Add other to self by incrementing self's coordinates by | |
| those of other. | |
| Notes | |
| ===== | |
| >>> from sympy import Point | |
| When sequences of coordinates are passed to Point methods, they | |
| are converted to a Point internally. This __add__ method does | |
| not do that so if floating point values are used, a floating | |
| point result (in terms of SymPy Floats) will be returned. | |
| >>> Point(1, 2) + (.1, .2) | |
| Point2D(1.1, 2.2) | |
| If this is not desired, the `translate` method can be used or | |
| another Point can be added: | |
| >>> Point(1, 2).translate(.1, .2) | |
| Point2D(11/10, 11/5) | |
| >>> Point(1, 2) + Point(.1, .2) | |
| Point2D(11/10, 11/5) | |
| See Also | |
| ======== | |
| sympy.geometry.point.Point.translate | |
| """ | |
| try: | |
| s, o = Point._normalize_dimension(self, Point(other, evaluate=False)) | |
| except TypeError: | |
| raise GeometryError("Don't know how to add {} and a Point object".format(other)) | |
| coords = [simplify(a + b) for a, b in zip(s, o)] | |
| return Point(coords, evaluate=False) | |
| def __contains__(self, item): | |
| return item in self.args | |
| def __truediv__(self, divisor): | |
| """Divide point's coordinates by a factor.""" | |
| divisor = sympify(divisor) | |
| coords = [simplify(x/divisor) for x in self.args] | |
| return Point(coords, evaluate=False) | |
| def __eq__(self, other): | |
| if not isinstance(other, Point) or len(self.args) != len(other.args): | |
| return False | |
| return self.args == other.args | |
| def __getitem__(self, key): | |
| return self.args[key] | |
| def __hash__(self): | |
| return hash(self.args) | |
| def __iter__(self): | |
| return self.args.__iter__() | |
| def __len__(self): | |
| return len(self.args) | |
| def __mul__(self, factor): | |
| """Multiply point's coordinates by a factor. | |
| Notes | |
| ===== | |
| >>> from sympy import Point | |
| When multiplying a Point by a floating point number, | |
| the coordinates of the Point will be changed to Floats: | |
| >>> Point(1, 2)*0.1 | |
| Point2D(0.1, 0.2) | |
| If this is not desired, the `scale` method can be used or | |
| else only multiply or divide by integers: | |
| >>> Point(1, 2).scale(1.1, 1.1) | |
| Point2D(11/10, 11/5) | |
| >>> Point(1, 2)*11/10 | |
| Point2D(11/10, 11/5) | |
| See Also | |
| ======== | |
| sympy.geometry.point.Point.scale | |
| """ | |
| factor = sympify(factor) | |
| coords = [simplify(x*factor) for x in self.args] | |
| return Point(coords, evaluate=False) | |
| def __rmul__(self, factor): | |
| """Multiply a factor by point's coordinates.""" | |
| return self.__mul__(factor) | |
| def __neg__(self): | |
| """Negate the point.""" | |
| coords = [-x for x in self.args] | |
| return Point(coords, evaluate=False) | |
| def __sub__(self, other): | |
| """Subtract two points, or subtract a factor from this point's | |
| coordinates.""" | |
| return self + [-x for x in other] | |
| def _normalize_dimension(cls, *points, **kwargs): | |
| """Ensure that points have the same dimension. | |
| By default `on_morph='warn'` is passed to the | |
| `Point` constructor.""" | |
| # if we have a built-in ambient dimension, use it | |
| dim = getattr(cls, '_ambient_dimension', None) | |
| # override if we specified it | |
| dim = kwargs.get('dim', dim) | |
| # if no dim was given, use the highest dimensional point | |
| if dim is None: | |
| dim = max(i.ambient_dimension for i in points) | |
| if all(i.ambient_dimension == dim for i in points): | |
| return list(points) | |
| kwargs['dim'] = dim | |
| kwargs['on_morph'] = kwargs.get('on_morph', 'warn') | |
| return [Point(i, **kwargs) for i in points] | |
| def affine_rank(*args): | |
| """The affine rank of a set of points is the dimension | |
| of the smallest affine space containing all the points. | |
| For example, if the points lie on a line (and are not all | |
| the same) their affine rank is 1. If the points lie on a plane | |
| but not a line, their affine rank is 2. By convention, the empty | |
| set has affine rank -1.""" | |
| if len(args) == 0: | |
| return -1 | |
| # make sure we're genuinely points | |
| # and translate every point to the origin | |
| points = Point._normalize_dimension(*[Point(i) for i in args]) | |
| origin = points[0] | |
| points = [i - origin for i in points[1:]] | |
| m = Matrix([i.args for i in points]) | |
| # XXX fragile -- what is a better way? | |
| return m.rank(iszerofunc = lambda x: | |
| abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero) | |
| def ambient_dimension(self): | |
| """Number of components this point has.""" | |
| return getattr(self, '_ambient_dimension', len(self)) | |
| def are_coplanar(cls, *points): | |
| """Return True if there exists a plane in which all the points | |
| lie. A trivial True value is returned if `len(points) < 3` or | |
| all Points are 2-dimensional. | |
| Parameters | |
| ========== | |
| A set of points | |
| Raises | |
| ====== | |
| ValueError : if less than 3 unique points are given | |
| Returns | |
| ======= | |
| boolean | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p1 = Point3D(1, 2, 2) | |
| >>> p2 = Point3D(2, 7, 2) | |
| >>> p3 = Point3D(0, 0, 2) | |
| >>> p4 = Point3D(1, 1, 2) | |
| >>> Point3D.are_coplanar(p1, p2, p3, p4) | |
| True | |
| >>> p5 = Point3D(0, 1, 3) | |
| >>> Point3D.are_coplanar(p1, p2, p3, p5) | |
| False | |
| """ | |
| if len(points) <= 1: | |
| return True | |
| points = cls._normalize_dimension(*[Point(i) for i in points]) | |
| # quick exit if we are in 2D | |
| if points[0].ambient_dimension == 2: | |
| return True | |
| points = list(uniq(points)) | |
| return Point.affine_rank(*points) <= 2 | |
| def distance(self, other): | |
| """The Euclidean distance between self and another GeometricEntity. | |
| Returns | |
| ======= | |
| distance : number or symbolic expression. | |
| Raises | |
| ====== | |
| TypeError : if other is not recognized as a GeometricEntity or is a | |
| GeometricEntity for which distance is not defined. | |
| See Also | |
| ======== | |
| sympy.geometry.line.Segment.length | |
| sympy.geometry.point.Point.taxicab_distance | |
| Examples | |
| ======== | |
| >>> from sympy import Point, Line | |
| >>> p1, p2 = Point(1, 1), Point(4, 5) | |
| >>> l = Line((3, 1), (2, 2)) | |
| >>> p1.distance(p2) | |
| 5 | |
| >>> p1.distance(l) | |
| sqrt(2) | |
| The computed distance may be symbolic, too: | |
| >>> from sympy.abc import x, y | |
| >>> p3 = Point(x, y) | |
| >>> p3.distance((0, 0)) | |
| sqrt(x**2 + y**2) | |
| """ | |
| if not isinstance(other, GeometryEntity): | |
| try: | |
| other = Point(other, dim=self.ambient_dimension) | |
| except TypeError: | |
| raise TypeError("not recognized as a GeometricEntity: %s" % type(other)) | |
| if isinstance(other, Point): | |
| s, p = Point._normalize_dimension(self, Point(other)) | |
| return sqrt(Add(*((a - b)**2 for a, b in zip(s, p)))) | |
| distance = getattr(other, 'distance', None) | |
| if distance is None: | |
| raise TypeError("distance between Point and %s is not defined" % type(other)) | |
| return distance(self) | |
| def dot(self, p): | |
| """Return dot product of self with another Point.""" | |
| if not is_sequence(p): | |
| p = Point(p) # raise the error via Point | |
| return Add(*(a*b for a, b in zip(self, p))) | |
| def equals(self, other): | |
| """Returns whether the coordinates of self and other agree.""" | |
| # a point is equal to another point if all its components are equal | |
| if not isinstance(other, Point) or len(self) != len(other): | |
| return False | |
| return all(a.equals(b) for a, b in zip(self, other)) | |
| def _eval_evalf(self, prec=15, **options): | |
| """Evaluate the coordinates of the point. | |
| This method will, where possible, create and return a new Point | |
| where the coordinates are evaluated as floating point numbers to | |
| the precision indicated (default=15). | |
| Parameters | |
| ========== | |
| prec : int | |
| Returns | |
| ======= | |
| point : Point | |
| Examples | |
| ======== | |
| >>> from sympy import Point, Rational | |
| >>> p1 = Point(Rational(1, 2), Rational(3, 2)) | |
| >>> p1 | |
| Point2D(1/2, 3/2) | |
| >>> p1.evalf() | |
| Point2D(0.5, 1.5) | |
| """ | |
| dps = prec_to_dps(prec) | |
| coords = [x.evalf(n=dps, **options) for x in self.args] | |
| return Point(*coords, evaluate=False) | |
| def intersection(self, other): | |
| """The intersection between this point and another GeometryEntity. | |
| Parameters | |
| ========== | |
| other : GeometryEntity or sequence of coordinates | |
| Returns | |
| ======= | |
| intersection : list of Points | |
| Notes | |
| ===== | |
| The return value will either be an empty list if there is no | |
| intersection, otherwise it will contain this point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0) | |
| >>> p1.intersection(p2) | |
| [] | |
| >>> p1.intersection(p3) | |
| [Point2D(0, 0)] | |
| """ | |
| if not isinstance(other, GeometryEntity): | |
| other = Point(other) | |
| if isinstance(other, Point): | |
| if self == other: | |
| return [self] | |
| p1, p2 = Point._normalize_dimension(self, other) | |
| if p1 == self and p1 == p2: | |
| return [self] | |
| return [] | |
| return other.intersection(self) | |
| def is_collinear(self, *args): | |
| """Returns `True` if there exists a line | |
| that contains `self` and `points`. Returns `False` otherwise. | |
| A trivially True value is returned if no points are given. | |
| Parameters | |
| ========== | |
| args : sequence of Points | |
| Returns | |
| ======= | |
| is_collinear : boolean | |
| See Also | |
| ======== | |
| sympy.geometry.line.Line | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| >>> from sympy.abc import x | |
| >>> p1, p2 = Point(0, 0), Point(1, 1) | |
| >>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2) | |
| >>> Point.is_collinear(p1, p2, p3, p4) | |
| True | |
| >>> Point.is_collinear(p1, p2, p3, p5) | |
| False | |
| """ | |
| points = (self,) + args | |
| points = Point._normalize_dimension(*[Point(i) for i in points]) | |
| points = list(uniq(points)) | |
| return Point.affine_rank(*points) <= 1 | |
| def is_concyclic(self, *args): | |
| """Do `self` and the given sequence of points lie in a circle? | |
| Returns True if the set of points are concyclic and | |
| False otherwise. A trivial value of True is returned | |
| if there are fewer than 2 other points. | |
| Parameters | |
| ========== | |
| args : sequence of Points | |
| Returns | |
| ======= | |
| is_concyclic : boolean | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| Define 4 points that are on the unit circle: | |
| >>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1) | |
| >>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True | |
| True | |
| Define a point not on that circle: | |
| >>> p = Point(1, 1) | |
| >>> p.is_concyclic(p1, p2, p3) | |
| False | |
| """ | |
| points = (self,) + args | |
| points = Point._normalize_dimension(*[Point(i) for i in points]) | |
| points = list(uniq(points)) | |
| if not Point.affine_rank(*points) <= 2: | |
| return False | |
| origin = points[0] | |
| points = [p - origin for p in points] | |
| # points are concyclic if they are coplanar and | |
| # there is a point c so that ||p_i-c|| == ||p_j-c|| for all | |
| # i and j. Rearranging this equation gives us the following | |
| # condition: the matrix `mat` must not a pivot in the last | |
| # column. | |
| mat = Matrix([list(i) + [i.dot(i)] for i in points]) | |
| rref, pivots = mat.rref() | |
| if len(origin) not in pivots: | |
| return True | |
| return False | |
| def is_nonzero(self): | |
| """True if any coordinate is nonzero, False if every coordinate is zero, | |
| and None if it cannot be determined.""" | |
| is_zero = self.is_zero | |
| if is_zero is None: | |
| return None | |
| return not is_zero | |
| def is_scalar_multiple(self, p): | |
| """Returns whether each coordinate of `self` is a scalar | |
| multiple of the corresponding coordinate in point p. | |
| """ | |
| s, o = Point._normalize_dimension(self, Point(p)) | |
| # 2d points happen a lot, so optimize this function call | |
| if s.ambient_dimension == 2: | |
| (x1, y1), (x2, y2) = s.args, o.args | |
| rv = (x1*y2 - x2*y1).equals(0) | |
| if rv is None: | |
| raise Undecidable(filldedent( | |
| '''Cannot determine if %s is a scalar multiple of | |
| %s''' % (s, o))) | |
| # if the vectors p1 and p2 are linearly dependent, then they must | |
| # be scalar multiples of each other | |
| m = Matrix([s.args, o.args]) | |
| return m.rank() < 2 | |
| def is_zero(self): | |
| """True if every coordinate is zero, False if any coordinate is not zero, | |
| and None if it cannot be determined.""" | |
| nonzero = [x.is_nonzero for x in self.args] | |
| if any(nonzero): | |
| return False | |
| if any(x is None for x in nonzero): | |
| return None | |
| return True | |
| def length(self): | |
| """ | |
| Treating a Point as a Line, this returns 0 for the length of a Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| >>> p = Point(0, 1) | |
| >>> p.length | |
| 0 | |
| """ | |
| return S.Zero | |
| def midpoint(self, p): | |
| """The midpoint between self and point p. | |
| Parameters | |
| ========== | |
| p : Point | |
| Returns | |
| ======= | |
| midpoint : Point | |
| See Also | |
| ======== | |
| sympy.geometry.line.Segment.midpoint | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| >>> p1, p2 = Point(1, 1), Point(13, 5) | |
| >>> p1.midpoint(p2) | |
| Point2D(7, 3) | |
| """ | |
| s, p = Point._normalize_dimension(self, Point(p)) | |
| return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)]) | |
| def origin(self): | |
| """A point of all zeros of the same ambient dimension | |
| as the current point""" | |
| return Point([0]*len(self), evaluate=False) | |
| def orthogonal_direction(self): | |
| """Returns a non-zero point that is orthogonal to the | |
| line containing `self` and the origin. | |
| Examples | |
| ======== | |
| >>> from sympy import Line, Point | |
| >>> a = Point(1, 2, 3) | |
| >>> a.orthogonal_direction | |
| Point3D(-2, 1, 0) | |
| >>> b = _ | |
| >>> Line(b, b.origin).is_perpendicular(Line(a, a.origin)) | |
| True | |
| """ | |
| dim = self.ambient_dimension | |
| # if a coordinate is zero, we can put a 1 there and zeros elsewhere | |
| if self[0].is_zero: | |
| return Point([1] + (dim - 1)*[0]) | |
| if self[1].is_zero: | |
| return Point([0,1] + (dim - 2)*[0]) | |
| # if the first two coordinates aren't zero, we can create a non-zero | |
| # orthogonal vector by swapping them, negating one, and padding with zeros | |
| return Point([-self[1], self[0]] + (dim - 2)*[0]) | |
| def project(a, b): | |
| """Project the point `a` onto the line between the origin | |
| and point `b` along the normal direction. | |
| Parameters | |
| ========== | |
| a : Point | |
| b : Point | |
| Returns | |
| ======= | |
| p : Point | |
| See Also | |
| ======== | |
| sympy.geometry.line.LinearEntity.projection | |
| Examples | |
| ======== | |
| >>> from sympy import Line, Point | |
| >>> a = Point(1, 2) | |
| >>> b = Point(2, 5) | |
| >>> z = a.origin | |
| >>> p = Point.project(a, b) | |
| >>> Line(p, a).is_perpendicular(Line(p, b)) | |
| True | |
| >>> Point.is_collinear(z, p, b) | |
| True | |
| """ | |
| a, b = Point._normalize_dimension(Point(a), Point(b)) | |
| if b.is_zero: | |
| raise ValueError("Cannot project to the zero vector.") | |
| return b*(a.dot(b) / b.dot(b)) | |
| def taxicab_distance(self, p): | |
| """The Taxicab Distance from self to point p. | |
| Returns the sum of the horizontal and vertical distances to point p. | |
| Parameters | |
| ========== | |
| p : Point | |
| Returns | |
| ======= | |
| taxicab_distance : The sum of the horizontal | |
| and vertical distances to point p. | |
| See Also | |
| ======== | |
| sympy.geometry.point.Point.distance | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| >>> p1, p2 = Point(1, 1), Point(4, 5) | |
| >>> p1.taxicab_distance(p2) | |
| 7 | |
| """ | |
| s, p = Point._normalize_dimension(self, Point(p)) | |
| return Add(*(abs(a - b) for a, b in zip(s, p))) | |
| def canberra_distance(self, p): | |
| """The Canberra Distance from self to point p. | |
| Returns the weighted sum of horizontal and vertical distances to | |
| point p. | |
| Parameters | |
| ========== | |
| p : Point | |
| Returns | |
| ======= | |
| canberra_distance : The weighted sum of horizontal and vertical | |
| distances to point p. The weight used is the sum of absolute values | |
| of the coordinates. | |
| Examples | |
| ======== | |
| >>> from sympy import Point | |
| >>> p1, p2 = Point(1, 1), Point(3, 3) | |
| >>> p1.canberra_distance(p2) | |
| 1 | |
| >>> p1, p2 = Point(0, 0), Point(3, 3) | |
| >>> p1.canberra_distance(p2) | |
| 2 | |
| Raises | |
| ====== | |
| ValueError when both vectors are zero. | |
| See Also | |
| ======== | |
| sympy.geometry.point.Point.distance | |
| """ | |
| s, p = Point._normalize_dimension(self, Point(p)) | |
| if self.is_zero and p.is_zero: | |
| raise ValueError("Cannot project to the zero vector.") | |
| return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p))) | |
| def unit(self): | |
| """Return the Point that is in the same direction as `self` | |
| and a distance of 1 from the origin""" | |
| return self / abs(self) | |
| class Point2D(Point): | |
| """A point in a 2-dimensional Euclidean space. | |
| Parameters | |
| ========== | |
| coords | |
| A sequence of 2 coordinate values. | |
| Attributes | |
| ========== | |
| x | |
| y | |
| length | |
| Raises | |
| ====== | |
| TypeError | |
| When trying to add or subtract points with different dimensions. | |
| When trying to create a point with more than two dimensions. | |
| When `intersection` is called with object other than a Point. | |
| See Also | |
| ======== | |
| sympy.geometry.line.Segment : Connects two Points | |
| Examples | |
| ======== | |
| >>> from sympy import Point2D | |
| >>> from sympy.abc import x | |
| >>> Point2D(1, 2) | |
| Point2D(1, 2) | |
| >>> Point2D([1, 2]) | |
| Point2D(1, 2) | |
| >>> Point2D(0, x) | |
| Point2D(0, x) | |
| Floats are automatically converted to Rational unless the | |
| evaluate flag is False: | |
| >>> Point2D(0.5, 0.25) | |
| Point2D(1/2, 1/4) | |
| >>> Point2D(0.5, 0.25, evaluate=False) | |
| Point2D(0.5, 0.25) | |
| """ | |
| _ambient_dimension = 2 | |
| def __new__(cls, *args, _nocheck=False, **kwargs): | |
| if not _nocheck: | |
| kwargs['dim'] = 2 | |
| args = Point(*args, **kwargs) | |
| return GeometryEntity.__new__(cls, *args) | |
| def __contains__(self, item): | |
| return item == self | |
| def bounds(self): | |
| """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding | |
| rectangle for the geometric figure. | |
| """ | |
| return (self.x, self.y, self.x, self.y) | |
| def rotate(self, angle, pt=None): | |
| """Rotate ``angle`` radians counterclockwise about Point ``pt``. | |
| See Also | |
| ======== | |
| translate, scale | |
| Examples | |
| ======== | |
| >>> from sympy import Point2D, pi | |
| >>> t = Point2D(1, 0) | |
| >>> t.rotate(pi/2) | |
| Point2D(0, 1) | |
| >>> t.rotate(pi/2, (2, 0)) | |
| Point2D(2, -1) | |
| """ | |
| c = cos(angle) | |
| s = sin(angle) | |
| rv = self | |
| if pt is not None: | |
| pt = Point(pt, dim=2) | |
| rv -= pt | |
| x, y = rv.args | |
| rv = Point(c*x - s*y, s*x + c*y) | |
| if pt is not None: | |
| rv += pt | |
| return rv | |
| def scale(self, x=1, y=1, pt=None): | |
| """Scale the coordinates of the Point by multiplying by | |
| ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) -- | |
| and then adding ``pt`` back again (i.e. ``pt`` is the point of | |
| reference for the scaling). | |
| See Also | |
| ======== | |
| rotate, translate | |
| Examples | |
| ======== | |
| >>> from sympy import Point2D | |
| >>> t = Point2D(1, 1) | |
| >>> t.scale(2) | |
| Point2D(2, 1) | |
| >>> t.scale(2, 2) | |
| Point2D(2, 2) | |
| """ | |
| if pt: | |
| pt = Point(pt, dim=2) | |
| return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) | |
| return Point(self.x*x, self.y*y) | |
| def transform(self, matrix): | |
| """Return the point after applying the transformation described | |
| by the 3x3 Matrix, ``matrix``. | |
| See Also | |
| ======== | |
| sympy.geometry.point.Point2D.rotate | |
| sympy.geometry.point.Point2D.scale | |
| sympy.geometry.point.Point2D.translate | |
| """ | |
| if not (matrix.is_Matrix and matrix.shape == (3, 3)): | |
| raise ValueError("matrix must be a 3x3 matrix") | |
| x, y = self.args | |
| return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2]) | |
| def translate(self, x=0, y=0): | |
| """Shift the Point by adding x and y to the coordinates of the Point. | |
| See Also | |
| ======== | |
| sympy.geometry.point.Point2D.rotate, scale | |
| Examples | |
| ======== | |
| >>> from sympy import Point2D | |
| >>> t = Point2D(0, 1) | |
| >>> t.translate(2) | |
| Point2D(2, 1) | |
| >>> t.translate(2, 2) | |
| Point2D(2, 3) | |
| >>> t + Point2D(2, 2) | |
| Point2D(2, 3) | |
| """ | |
| return Point(self.x + x, self.y + y) | |
| def coordinates(self): | |
| """ | |
| Returns the two coordinates of the Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point2D | |
| >>> p = Point2D(0, 1) | |
| >>> p.coordinates | |
| (0, 1) | |
| """ | |
| return self.args | |
| def x(self): | |
| """ | |
| Returns the X coordinate of the Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point2D | |
| >>> p = Point2D(0, 1) | |
| >>> p.x | |
| 0 | |
| """ | |
| return self.args[0] | |
| def y(self): | |
| """ | |
| Returns the Y coordinate of the Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point2D | |
| >>> p = Point2D(0, 1) | |
| >>> p.y | |
| 1 | |
| """ | |
| return self.args[1] | |
| class Point3D(Point): | |
| """A point in a 3-dimensional Euclidean space. | |
| Parameters | |
| ========== | |
| coords | |
| A sequence of 3 coordinate values. | |
| Attributes | |
| ========== | |
| x | |
| y | |
| z | |
| length | |
| Raises | |
| ====== | |
| TypeError | |
| When trying to add or subtract points with different dimensions. | |
| When `intersection` is called with object other than a Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> from sympy.abc import x | |
| >>> Point3D(1, 2, 3) | |
| Point3D(1, 2, 3) | |
| >>> Point3D([1, 2, 3]) | |
| Point3D(1, 2, 3) | |
| >>> Point3D(0, x, 3) | |
| Point3D(0, x, 3) | |
| Floats are automatically converted to Rational unless the | |
| evaluate flag is False: | |
| >>> Point3D(0.5, 0.25, 2) | |
| Point3D(1/2, 1/4, 2) | |
| >>> Point3D(0.5, 0.25, 3, evaluate=False) | |
| Point3D(0.5, 0.25, 3) | |
| """ | |
| _ambient_dimension = 3 | |
| def __new__(cls, *args, _nocheck=False, **kwargs): | |
| if not _nocheck: | |
| kwargs['dim'] = 3 | |
| args = Point(*args, **kwargs) | |
| return GeometryEntity.__new__(cls, *args) | |
| def __contains__(self, item): | |
| return item == self | |
| def are_collinear(*points): | |
| """Is a sequence of points collinear? | |
| Test whether or not a set of points are collinear. Returns True if | |
| the set of points are collinear, or False otherwise. | |
| Parameters | |
| ========== | |
| points : sequence of Point | |
| Returns | |
| ======= | |
| are_collinear : boolean | |
| See Also | |
| ======== | |
| sympy.geometry.line.Line3D | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> from sympy.abc import x | |
| >>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1) | |
| >>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6) | |
| >>> Point3D.are_collinear(p1, p2, p3, p4) | |
| True | |
| >>> Point3D.are_collinear(p1, p2, p3, p5) | |
| False | |
| """ | |
| return Point.is_collinear(*points) | |
| def direction_cosine(self, point): | |
| """ | |
| Gives the direction cosine between 2 points | |
| Parameters | |
| ========== | |
| p : Point3D | |
| Returns | |
| ======= | |
| list | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p1 = Point3D(1, 2, 3) | |
| >>> p1.direction_cosine(Point3D(2, 3, 5)) | |
| [sqrt(6)/6, sqrt(6)/6, sqrt(6)/3] | |
| """ | |
| a = self.direction_ratio(point) | |
| b = sqrt(Add(*(i**2 for i in a))) | |
| return [(point.x - self.x) / b,(point.y - self.y) / b, | |
| (point.z - self.z) / b] | |
| def direction_ratio(self, point): | |
| """ | |
| Gives the direction ratio between 2 points | |
| Parameters | |
| ========== | |
| p : Point3D | |
| Returns | |
| ======= | |
| list | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p1 = Point3D(1, 2, 3) | |
| >>> p1.direction_ratio(Point3D(2, 3, 5)) | |
| [1, 1, 2] | |
| """ | |
| return [(point.x - self.x),(point.y - self.y),(point.z - self.z)] | |
| def intersection(self, other): | |
| """The intersection between this point and another GeometryEntity. | |
| Parameters | |
| ========== | |
| other : GeometryEntity or sequence of coordinates | |
| Returns | |
| ======= | |
| intersection : list of Points | |
| Notes | |
| ===== | |
| The return value will either be an empty list if there is no | |
| intersection, otherwise it will contain this point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0) | |
| >>> p1.intersection(p2) | |
| [] | |
| >>> p1.intersection(p3) | |
| [Point3D(0, 0, 0)] | |
| """ | |
| if not isinstance(other, GeometryEntity): | |
| other = Point(other, dim=3) | |
| if isinstance(other, Point3D): | |
| if self == other: | |
| return [self] | |
| return [] | |
| return other.intersection(self) | |
| def scale(self, x=1, y=1, z=1, pt=None): | |
| """Scale the coordinates of the Point by multiplying by | |
| ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) -- | |
| and then adding ``pt`` back again (i.e. ``pt`` is the point of | |
| reference for the scaling). | |
| See Also | |
| ======== | |
| translate | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> t = Point3D(1, 1, 1) | |
| >>> t.scale(2) | |
| Point3D(2, 1, 1) | |
| >>> t.scale(2, 2) | |
| Point3D(2, 2, 1) | |
| """ | |
| if pt: | |
| pt = Point3D(pt) | |
| return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args) | |
| return Point3D(self.x*x, self.y*y, self.z*z) | |
| def transform(self, matrix): | |
| """Return the point after applying the transformation described | |
| by the 4x4 Matrix, ``matrix``. | |
| See Also | |
| ======== | |
| sympy.geometry.point.Point3D.scale | |
| sympy.geometry.point.Point3D.translate | |
| """ | |
| if not (matrix.is_Matrix and matrix.shape == (4, 4)): | |
| raise ValueError("matrix must be a 4x4 matrix") | |
| x, y, z = self.args | |
| m = Transpose(matrix) | |
| return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3]) | |
| def translate(self, x=0, y=0, z=0): | |
| """Shift the Point by adding x and y to the coordinates of the Point. | |
| See Also | |
| ======== | |
| scale | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> t = Point3D(0, 1, 1) | |
| >>> t.translate(2) | |
| Point3D(2, 1, 1) | |
| >>> t.translate(2, 2) | |
| Point3D(2, 3, 1) | |
| >>> t + Point3D(2, 2, 2) | |
| Point3D(2, 3, 3) | |
| """ | |
| return Point3D(self.x + x, self.y + y, self.z + z) | |
| def coordinates(self): | |
| """ | |
| Returns the three coordinates of the Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p = Point3D(0, 1, 2) | |
| >>> p.coordinates | |
| (0, 1, 2) | |
| """ | |
| return self.args | |
| def x(self): | |
| """ | |
| Returns the X coordinate of the Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p = Point3D(0, 1, 3) | |
| >>> p.x | |
| 0 | |
| """ | |
| return self.args[0] | |
| def y(self): | |
| """ | |
| Returns the Y coordinate of the Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p = Point3D(0, 1, 2) | |
| >>> p.y | |
| 1 | |
| """ | |
| return self.args[1] | |
| def z(self): | |
| """ | |
| Returns the Z coordinate of the Point. | |
| Examples | |
| ======== | |
| >>> from sympy import Point3D | |
| >>> p = Point3D(0, 1, 1) | |
| >>> p.z | |
| 1 | |
| """ | |
| return self.args[2] | |