|
from sympy.core.backend import Symbol |
|
from sympy.physics.vector import Point, Vector, ReferenceFrame, Dyadic |
|
from sympy.physics.mechanics import RigidBody, Particle, inertia |
|
|
|
__all__ = ['Body'] |
|
|
|
|
|
|
|
|
|
class Body(RigidBody, Particle): |
|
""" |
|
Body is a common representation of either a RigidBody or a Particle SymPy |
|
object depending on what is passed in during initialization. If a mass is |
|
passed in and central_inertia is left as None, the Particle object is |
|
created. Otherwise a RigidBody object will be created. |
|
|
|
Explanation |
|
=========== |
|
|
|
The attributes that Body possesses will be the same as a Particle instance |
|
or a Rigid Body instance depending on which was created. Additional |
|
attributes are listed below. |
|
|
|
Attributes |
|
========== |
|
|
|
name : string |
|
The body's name |
|
masscenter : Point |
|
The point which represents the center of mass of the rigid body |
|
frame : ReferenceFrame |
|
The reference frame which the body is fixed in |
|
mass : Sympifyable |
|
The body's mass |
|
inertia : (Dyadic, Point) |
|
The body's inertia around its center of mass. This attribute is specific |
|
to the rigid body form of Body and is left undefined for the Particle |
|
form |
|
loads : iterable |
|
This list contains information on the different loads acting on the |
|
Body. Forces are listed as a (point, vector) tuple and torques are |
|
listed as (reference frame, vector) tuples. |
|
|
|
Parameters |
|
========== |
|
|
|
name : String |
|
Defines the name of the body. It is used as the base for defining |
|
body specific properties. |
|
masscenter : Point, optional |
|
A point that represents the center of mass of the body or particle. |
|
If no point is given, a point is generated. |
|
mass : Sympifyable, optional |
|
A Sympifyable object which represents the mass of the body. If no |
|
mass is passed, one is generated. |
|
frame : ReferenceFrame, optional |
|
The ReferenceFrame that represents the reference frame of the body. |
|
If no frame is given, a frame is generated. |
|
central_inertia : Dyadic, optional |
|
Central inertia dyadic of the body. If none is passed while creating |
|
RigidBody, a default inertia is generated. |
|
|
|
Examples |
|
======== |
|
|
|
Default behaviour. This results in the creation of a RigidBody object for |
|
which the mass, mass center, frame and inertia attributes are given default |
|
values. :: |
|
|
|
>>> from sympy.physics.mechanics import Body |
|
>>> body = Body('name_of_body') |
|
|
|
This next example demonstrates the code required to specify all of the |
|
values of the Body object. Note this will also create a RigidBody version of |
|
the Body object. :: |
|
|
|
>>> from sympy import Symbol |
|
>>> from sympy.physics.mechanics import ReferenceFrame, Point, inertia |
|
>>> from sympy.physics.mechanics import Body |
|
>>> mass = Symbol('mass') |
|
>>> masscenter = Point('masscenter') |
|
>>> frame = ReferenceFrame('frame') |
|
>>> ixx = Symbol('ixx') |
|
>>> body_inertia = inertia(frame, ixx, 0, 0) |
|
>>> body = Body('name_of_body', masscenter, mass, frame, body_inertia) |
|
|
|
The minimal code required to create a Particle version of the Body object |
|
involves simply passing in a name and a mass. :: |
|
|
|
>>> from sympy import Symbol |
|
>>> from sympy.physics.mechanics import Body |
|
>>> mass = Symbol('mass') |
|
>>> body = Body('name_of_body', mass=mass) |
|
|
|
The Particle version of the Body object can also receive a masscenter point |
|
and a reference frame, just not an inertia. |
|
""" |
|
|
|
def __init__(self, name, masscenter=None, mass=None, frame=None, |
|
central_inertia=None): |
|
|
|
self.name = name |
|
self._loads = [] |
|
|
|
if frame is None: |
|
frame = ReferenceFrame(name + '_frame') |
|
|
|
if masscenter is None: |
|
masscenter = Point(name + '_masscenter') |
|
|
|
if central_inertia is None and mass is None: |
|
ixx = Symbol(name + '_ixx') |
|
iyy = Symbol(name + '_iyy') |
|
izz = Symbol(name + '_izz') |
|
izx = Symbol(name + '_izx') |
|
ixy = Symbol(name + '_ixy') |
|
iyz = Symbol(name + '_iyz') |
|
_inertia = (inertia(frame, ixx, iyy, izz, ixy, iyz, izx), |
|
masscenter) |
|
else: |
|
_inertia = (central_inertia, masscenter) |
|
|
|
if mass is None: |
|
_mass = Symbol(name + '_mass') |
|
else: |
|
_mass = mass |
|
|
|
masscenter.set_vel(frame, 0) |
|
|
|
|
|
|
|
if central_inertia is None and mass is not None: |
|
self.frame = frame |
|
self.masscenter = masscenter |
|
Particle.__init__(self, name, masscenter, _mass) |
|
self._central_inertia = Dyadic(0) |
|
else: |
|
RigidBody.__init__(self, name, masscenter, frame, _mass, _inertia) |
|
|
|
@property |
|
def loads(self): |
|
return self._loads |
|
|
|
@property |
|
def x(self): |
|
"""The basis Vector for the Body, in the x direction.""" |
|
return self.frame.x |
|
|
|
@property |
|
def y(self): |
|
"""The basis Vector for the Body, in the y direction.""" |
|
return self.frame.y |
|
|
|
@property |
|
def z(self): |
|
"""The basis Vector for the Body, in the z direction.""" |
|
return self.frame.z |
|
|
|
@property |
|
def inertia(self): |
|
"""The body's inertia about a point; stored as (Dyadic, Point).""" |
|
if self.is_rigidbody: |
|
return RigidBody.inertia.fget(self) |
|
return (self.central_inertia, self.masscenter) |
|
|
|
@inertia.setter |
|
def inertia(self, I): |
|
RigidBody.inertia.fset(self, I) |
|
|
|
@property |
|
def is_rigidbody(self): |
|
if hasattr(self, '_inertia'): |
|
return True |
|
return False |
|
|
|
def kinetic_energy(self, frame): |
|
"""Kinetic energy of the body. |
|
|
|
Parameters |
|
========== |
|
|
|
frame : ReferenceFrame or Body |
|
The Body's angular velocity and the velocity of it's mass |
|
center are typically defined with respect to an inertial frame but |
|
any relevant frame in which the velocities are known can be supplied. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.mechanics import Body, ReferenceFrame, Point |
|
>>> from sympy import symbols |
|
>>> m, v, r, omega = symbols('m v r omega') |
|
>>> N = ReferenceFrame('N') |
|
>>> O = Point('O') |
|
>>> P = Body('P', masscenter=O, mass=m) |
|
>>> P.masscenter.set_vel(N, v * N.y) |
|
>>> P.kinetic_energy(N) |
|
m*v**2/2 |
|
|
|
>>> N = ReferenceFrame('N') |
|
>>> b = ReferenceFrame('b') |
|
>>> b.set_ang_vel(N, omega * b.x) |
|
>>> P = Point('P') |
|
>>> P.set_vel(N, v * N.x) |
|
>>> B = Body('B', masscenter=P, frame=b) |
|
>>> B.kinetic_energy(N) |
|
B_ixx*omega**2/2 + B_mass*v**2/2 |
|
|
|
See Also |
|
======== |
|
|
|
sympy.physics.mechanics : Particle, RigidBody |
|
|
|
""" |
|
if isinstance(frame, Body): |
|
frame = Body.frame |
|
if self.is_rigidbody: |
|
return RigidBody(self.name, self.masscenter, self.frame, self.mass, |
|
(self.central_inertia, self.masscenter)).kinetic_energy(frame) |
|
return Particle(self.name, self.masscenter, self.mass).kinetic_energy(frame) |
|
|
|
def apply_force(self, force, point=None, reaction_body=None, reaction_point=None): |
|
"""Add force to the body(s). |
|
|
|
Explanation |
|
=========== |
|
|
|
Applies the force on self or equal and oppposite forces on |
|
self and other body if both are given on the desried point on the bodies. |
|
The force applied on other body is taken opposite of self, i.e, -force. |
|
|
|
Parameters |
|
========== |
|
|
|
force: Vector |
|
The force to be applied. |
|
point: Point, optional |
|
The point on self on which force is applied. |
|
By default self's masscenter. |
|
reaction_body: Body, optional |
|
Second body on which equal and opposite force |
|
is to be applied. |
|
reaction_point : Point, optional |
|
The point on other body on which equal and opposite |
|
force is applied. By default masscenter of other body. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy import symbols |
|
>>> from sympy.physics.mechanics import Body, Point, dynamicsymbols |
|
>>> m, g = symbols('m g') |
|
>>> B = Body('B') |
|
>>> force1 = m*g*B.z |
|
>>> B.apply_force(force1) #Applying force on B's masscenter |
|
>>> B.loads |
|
[(B_masscenter, g*m*B_frame.z)] |
|
|
|
We can also remove some part of force from any point on the body by |
|
adding the opposite force to the body on that point. |
|
|
|
>>> f1, f2 = dynamicsymbols('f1 f2') |
|
>>> P = Point('P') #Considering point P on body B |
|
>>> B.apply_force(f1*B.x + f2*B.y, P) |
|
>>> B.loads |
|
[(B_masscenter, g*m*B_frame.z), (P, f1(t)*B_frame.x + f2(t)*B_frame.y)] |
|
|
|
Let's remove f1 from point P on body B. |
|
|
|
>>> B.apply_force(-f1*B.x, P) |
|
>>> B.loads |
|
[(B_masscenter, g*m*B_frame.z), (P, f2(t)*B_frame.y)] |
|
|
|
To further demonstrate the use of ``apply_force`` attribute, |
|
consider two bodies connected through a spring. |
|
|
|
>>> from sympy.physics.mechanics import Body, dynamicsymbols |
|
>>> N = Body('N') #Newtonion Frame |
|
>>> x = dynamicsymbols('x') |
|
>>> B1 = Body('B1') |
|
>>> B2 = Body('B2') |
|
>>> spring_force = x*N.x |
|
|
|
Now let's apply equal and opposite spring force to the bodies. |
|
|
|
>>> P1 = Point('P1') |
|
>>> P2 = Point('P2') |
|
>>> B1.apply_force(spring_force, point=P1, reaction_body=B2, reaction_point=P2) |
|
|
|
We can check the loads(forces) applied to bodies now. |
|
|
|
>>> B1.loads |
|
[(P1, x(t)*N_frame.x)] |
|
>>> B2.loads |
|
[(P2, - x(t)*N_frame.x)] |
|
|
|
Notes |
|
===== |
|
|
|
If a new force is applied to a body on a point which already has some |
|
force applied on it, then the new force is added to the already applied |
|
force on that point. |
|
|
|
""" |
|
|
|
if not isinstance(point, Point): |
|
if point is None: |
|
point = self.masscenter |
|
else: |
|
raise TypeError("Force must be applied to a point on the body.") |
|
if not isinstance(force, Vector): |
|
raise TypeError("Force must be a vector.") |
|
|
|
if reaction_body is not None: |
|
reaction_body.apply_force(-force, point=reaction_point) |
|
|
|
for load in self._loads: |
|
if point in load: |
|
force += load[1] |
|
self._loads.remove(load) |
|
break |
|
|
|
self._loads.append((point, force)) |
|
|
|
def apply_torque(self, torque, reaction_body=None): |
|
"""Add torque to the body(s). |
|
|
|
Explanation |
|
=========== |
|
|
|
Applies the torque on self or equal and oppposite torquess on |
|
self and other body if both are given. |
|
The torque applied on other body is taken opposite of self, |
|
i.e, -torque. |
|
|
|
Parameters |
|
========== |
|
|
|
torque: Vector |
|
The torque to be applied. |
|
reaction_body: Body, optional |
|
Second body on which equal and opposite torque |
|
is to be applied. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy import symbols |
|
>>> from sympy.physics.mechanics import Body, dynamicsymbols |
|
>>> t = symbols('t') |
|
>>> B = Body('B') |
|
>>> torque1 = t*B.z |
|
>>> B.apply_torque(torque1) |
|
>>> B.loads |
|
[(B_frame, t*B_frame.z)] |
|
|
|
We can also remove some part of torque from the body by |
|
adding the opposite torque to the body. |
|
|
|
>>> t1, t2 = dynamicsymbols('t1 t2') |
|
>>> B.apply_torque(t1*B.x + t2*B.y) |
|
>>> B.loads |
|
[(B_frame, t1(t)*B_frame.x + t2(t)*B_frame.y + t*B_frame.z)] |
|
|
|
Let's remove t1 from Body B. |
|
|
|
>>> B.apply_torque(-t1*B.x) |
|
>>> B.loads |
|
[(B_frame, t2(t)*B_frame.y + t*B_frame.z)] |
|
|
|
To further demonstrate the use, let us consider two bodies such that |
|
a torque `T` is acting on one body, and `-T` on the other. |
|
|
|
>>> from sympy.physics.mechanics import Body, dynamicsymbols |
|
>>> N = Body('N') #Newtonion frame |
|
>>> B1 = Body('B1') |
|
>>> B2 = Body('B2') |
|
>>> v = dynamicsymbols('v') |
|
>>> T = v*N.y #Torque |
|
|
|
Now let's apply equal and opposite torque to the bodies. |
|
|
|
>>> B1.apply_torque(T, B2) |
|
|
|
We can check the loads (torques) applied to bodies now. |
|
|
|
>>> B1.loads |
|
[(B1_frame, v(t)*N_frame.y)] |
|
>>> B2.loads |
|
[(B2_frame, - v(t)*N_frame.y)] |
|
|
|
Notes |
|
===== |
|
|
|
If a new torque is applied on body which already has some torque applied on it, |
|
then the new torque is added to the previous torque about the body's frame. |
|
|
|
""" |
|
|
|
if not isinstance(torque, Vector): |
|
raise TypeError("A Vector must be supplied to add torque.") |
|
|
|
if reaction_body is not None: |
|
reaction_body.apply_torque(-torque) |
|
|
|
for load in self._loads: |
|
if self.frame in load: |
|
torque += load[1] |
|
self._loads.remove(load) |
|
break |
|
self._loads.append((self.frame, torque)) |
|
|
|
def clear_loads(self): |
|
""" |
|
Clears the Body's loads list. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy.physics.mechanics import Body |
|
>>> B = Body('B') |
|
>>> force = B.x + B.y |
|
>>> B.apply_force(force) |
|
>>> B.loads |
|
[(B_masscenter, B_frame.x + B_frame.y)] |
|
>>> B.clear_loads() |
|
>>> B.loads |
|
[] |
|
|
|
""" |
|
|
|
self._loads = [] |
|
|
|
def remove_load(self, about=None): |
|
""" |
|
Remove load about a point or frame. |
|
|
|
Parameters |
|
========== |
|
|
|
about : Point or ReferenceFrame, optional |
|
The point about which force is applied, |
|
and is to be removed. |
|
If about is None, then the torque about |
|
self's frame is removed. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy.physics.mechanics import Body, Point |
|
>>> B = Body('B') |
|
>>> P = Point('P') |
|
>>> f1 = B.x |
|
>>> f2 = B.y |
|
>>> B.apply_force(f1) |
|
>>> B.apply_force(f2, P) |
|
>>> B.loads |
|
[(B_masscenter, B_frame.x), (P, B_frame.y)] |
|
|
|
>>> B.remove_load(P) |
|
>>> B.loads |
|
[(B_masscenter, B_frame.x)] |
|
|
|
""" |
|
|
|
if about is not None: |
|
if not isinstance(about, Point): |
|
raise TypeError('Load is applied about Point or ReferenceFrame.') |
|
else: |
|
about = self.frame |
|
|
|
for load in self._loads: |
|
if about in load: |
|
self._loads.remove(load) |
|
break |
|
|
|
def masscenter_vel(self, body): |
|
""" |
|
Returns the velocity of the mass center with respect to the provided |
|
rigid body or reference frame. |
|
|
|
Parameters |
|
========== |
|
|
|
body: Body or ReferenceFrame |
|
The rigid body or reference frame to calculate the velocity in. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy.physics.mechanics import Body |
|
>>> A = Body('A') |
|
>>> B = Body('B') |
|
>>> A.masscenter.set_vel(B.frame, 5*B.frame.x) |
|
>>> A.masscenter_vel(B) |
|
5*B_frame.x |
|
>>> A.masscenter_vel(B.frame) |
|
5*B_frame.x |
|
|
|
""" |
|
|
|
if isinstance(body, ReferenceFrame): |
|
frame=body |
|
elif isinstance(body, Body): |
|
frame = body.frame |
|
return self.masscenter.vel(frame) |
|
|
|
def ang_vel_in(self, body): |
|
""" |
|
Returns this body's angular velocity with respect to the provided |
|
rigid body or reference frame. |
|
|
|
Parameters |
|
========== |
|
|
|
body: Body or ReferenceFrame |
|
The rigid body or reference frame to calculate the angular velocity in. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy.physics.mechanics import Body, ReferenceFrame |
|
>>> A = Body('A') |
|
>>> N = ReferenceFrame('N') |
|
>>> B = Body('B', frame=N) |
|
>>> A.frame.set_ang_vel(N, 5*N.x) |
|
>>> A.ang_vel_in(B) |
|
5*N.x |
|
>>> A.ang_vel_in(N) |
|
5*N.x |
|
|
|
""" |
|
|
|
if isinstance(body, ReferenceFrame): |
|
frame=body |
|
elif isinstance(body, Body): |
|
frame = body.frame |
|
return self.frame.ang_vel_in(frame) |
|
|
|
def dcm(self, body): |
|
""" |
|
Returns the direction cosine matrix of this body relative to the |
|
provided rigid body or reference frame. |
|
|
|
Parameters |
|
========== |
|
|
|
body: Body or ReferenceFrame |
|
The rigid body or reference frame to calculate the dcm. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy.physics.mechanics import Body |
|
>>> A = Body('A') |
|
>>> B = Body('B') |
|
>>> A.frame.orient_axis(B.frame, B.frame.x, 5) |
|
>>> A.dcm(B) |
|
Matrix([ |
|
[1, 0, 0], |
|
[0, cos(5), sin(5)], |
|
[0, -sin(5), cos(5)]]) |
|
>>> A.dcm(B.frame) |
|
Matrix([ |
|
[1, 0, 0], |
|
[0, cos(5), sin(5)], |
|
[0, -sin(5), cos(5)]]) |
|
|
|
""" |
|
|
|
if isinstance(body, ReferenceFrame): |
|
frame=body |
|
elif isinstance(body, Body): |
|
frame = body.frame |
|
return self.frame.dcm(frame) |
|
|
|
def parallel_axis(self, point, frame=None): |
|
"""Returns the inertia dyadic of the body with respect to another |
|
point. |
|
|
|
Parameters |
|
========== |
|
|
|
point : sympy.physics.vector.Point |
|
The point to express the inertia dyadic about. |
|
frame : sympy.physics.vector.ReferenceFrame |
|
The reference frame used to construct the dyadic. |
|
|
|
Returns |
|
======= |
|
|
|
inertia : sympy.physics.vector.Dyadic |
|
The inertia dyadic of the rigid body expressed about the provided |
|
point. |
|
|
|
Example |
|
======= |
|
|
|
>>> from sympy.physics.mechanics import Body |
|
>>> A = Body('A') |
|
>>> P = A.masscenter.locatenew('point', 3 * A.x + 5 * A.y) |
|
>>> A.parallel_axis(P).to_matrix(A.frame) |
|
Matrix([ |
|
[A_ixx + 25*A_mass, A_ixy - 15*A_mass, A_izx], |
|
[A_ixy - 15*A_mass, A_iyy + 9*A_mass, A_iyz], |
|
[ A_izx, A_iyz, A_izz + 34*A_mass]]) |
|
|
|
""" |
|
if self.is_rigidbody: |
|
return RigidBody.parallel_axis(self, point, frame) |
|
return Particle.parallel_axis(self, point, frame) |
|
|