Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/pring.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/sho.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__init__.py +5 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/beam.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/truss.py +735 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_control_plots.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_lti.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/test_control_plots.py +300 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/test_lti.py +1245 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__init__.py +66 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/body.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/joint.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/jointsmethod.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/kane.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/lagrange.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/linearize.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/method.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/models.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/particle.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/rigidbody.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/system.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/body.py +611 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/functions.py +779 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/joint.py +2163 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/jointsmethod.py +279 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/kane.py +741 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/lagrange.py +477 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/linearize.py +443 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/method.py +39 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/models.py +230 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/particle.py +281 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/rigidbody.py +366 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/system.py +445 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_body.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_joint.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_jointsmethod.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane2.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane3.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane4.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange2.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/pring.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/__pycache__/sho.cpython-310.pyc
ADDED
Binary file (2.81 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['Beam',
|
2 |
+
'Truss']
|
3 |
+
|
4 |
+
from .beam import Beam
|
5 |
+
from .truss import Truss
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/beam.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/truss.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module can be used to solve problems related
|
3 |
+
to 2D Trusses.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from cmath import inf
|
7 |
+
from sympy.core.add import Add
|
8 |
+
from sympy.core.mul import Mul
|
9 |
+
from sympy.core.symbol import Symbol
|
10 |
+
from sympy.core.sympify import sympify
|
11 |
+
from sympy import Matrix, pi
|
12 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
13 |
+
from sympy.matrices.dense import zeros
|
14 |
+
from sympy import sin, cos
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
class Truss:
|
19 |
+
"""
|
20 |
+
A Truss is an assembly of members such as beams,
|
21 |
+
connected by nodes, that create a rigid structure.
|
22 |
+
In engineering, a truss is a structure that
|
23 |
+
consists of two-force members only.
|
24 |
+
|
25 |
+
Trusses are extremely important in engineering applications
|
26 |
+
and can be seen in numerous real-world applications like bridges.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
There is a Truss consisting of four nodes and five
|
32 |
+
members connecting the nodes. A force P acts
|
33 |
+
downward on the node D and there also exist pinned
|
34 |
+
and roller joints on the nodes A and B respectively.
|
35 |
+
|
36 |
+
.. image:: truss_example.png
|
37 |
+
|
38 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
39 |
+
>>> t = Truss()
|
40 |
+
>>> t.add_node("node_1", 0, 0)
|
41 |
+
>>> t.add_node("node_2", 6, 0)
|
42 |
+
>>> t.add_node("node_3", 2, 2)
|
43 |
+
>>> t.add_node("node_4", 2, 0)
|
44 |
+
>>> t.add_member("member_1", "node_1", "node_4")
|
45 |
+
>>> t.add_member("member_2", "node_2", "node_4")
|
46 |
+
>>> t.add_member("member_3", "node_1", "node_3")
|
47 |
+
>>> t.add_member("member_4", "node_2", "node_3")
|
48 |
+
>>> t.add_member("member_5", "node_3", "node_4")
|
49 |
+
>>> t.apply_load("node_4", magnitude=10, direction=270)
|
50 |
+
>>> t.apply_support("node_1", type="fixed")
|
51 |
+
>>> t.apply_support("node_2", type="roller")
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self):
|
55 |
+
"""
|
56 |
+
Initializes the class
|
57 |
+
"""
|
58 |
+
self._nodes = []
|
59 |
+
self._members = {}
|
60 |
+
self._loads = {}
|
61 |
+
self._supports = {}
|
62 |
+
self._node_labels = []
|
63 |
+
self._node_positions = []
|
64 |
+
self._node_position_x = []
|
65 |
+
self._node_position_y = []
|
66 |
+
self._nodes_occupied = {}
|
67 |
+
self._reaction_loads = {}
|
68 |
+
self._internal_forces = {}
|
69 |
+
self._node_coordinates = {}
|
70 |
+
|
71 |
+
@property
|
72 |
+
def nodes(self):
|
73 |
+
"""
|
74 |
+
Returns the nodes of the truss along with their positions.
|
75 |
+
"""
|
76 |
+
return self._nodes
|
77 |
+
|
78 |
+
@property
|
79 |
+
def node_labels(self):
|
80 |
+
"""
|
81 |
+
Returns the node labels of the truss.
|
82 |
+
"""
|
83 |
+
return self._node_labels
|
84 |
+
|
85 |
+
@property
|
86 |
+
def node_positions(self):
|
87 |
+
"""
|
88 |
+
Returns the positions of the nodes of the truss.
|
89 |
+
"""
|
90 |
+
return self._node_positions
|
91 |
+
|
92 |
+
@property
|
93 |
+
def members(self):
|
94 |
+
"""
|
95 |
+
Returns the members of the truss along with the start and end points.
|
96 |
+
"""
|
97 |
+
return self._members
|
98 |
+
|
99 |
+
@property
|
100 |
+
def member_labels(self):
|
101 |
+
"""
|
102 |
+
Returns the members of the truss along with the start and end points.
|
103 |
+
"""
|
104 |
+
return self._member_labels
|
105 |
+
|
106 |
+
@property
|
107 |
+
def supports(self):
|
108 |
+
"""
|
109 |
+
Returns the nodes with provided supports along with the kind of support provided i.e.
|
110 |
+
pinned or roller.
|
111 |
+
"""
|
112 |
+
return self._supports
|
113 |
+
|
114 |
+
@property
|
115 |
+
def loads(self):
|
116 |
+
"""
|
117 |
+
Returns the loads acting on the truss.
|
118 |
+
"""
|
119 |
+
return self._loads
|
120 |
+
|
121 |
+
@property
|
122 |
+
def reaction_loads(self):
|
123 |
+
"""
|
124 |
+
Returns the reaction forces for all supports which are all initialized to 0.
|
125 |
+
"""
|
126 |
+
return self._reaction_loads
|
127 |
+
|
128 |
+
@property
|
129 |
+
def internal_forces(self):
|
130 |
+
"""
|
131 |
+
Returns the internal forces for all members which are all initialized to 0.
|
132 |
+
"""
|
133 |
+
return self._internal_forces
|
134 |
+
|
135 |
+
def add_node(self, label, x, y):
|
136 |
+
"""
|
137 |
+
This method adds a node to the truss along with its name/label and its location.
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
==========
|
141 |
+
label: String or a Symbol
|
142 |
+
The label for a node. It is the only way to identify a particular node.
|
143 |
+
|
144 |
+
x: Sympifyable
|
145 |
+
The x-coordinate of the position of the node.
|
146 |
+
|
147 |
+
y: Sympifyable
|
148 |
+
The y-coordinate of the position of the node.
|
149 |
+
|
150 |
+
Examples
|
151 |
+
========
|
152 |
+
|
153 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
154 |
+
>>> t = Truss()
|
155 |
+
>>> t.add_node('A', 0, 0)
|
156 |
+
>>> t.nodes
|
157 |
+
[('A', 0, 0)]
|
158 |
+
>>> t.add_node('B', 3, 0)
|
159 |
+
>>> t.nodes
|
160 |
+
[('A', 0, 0), ('B', 3, 0)]
|
161 |
+
"""
|
162 |
+
x = sympify(x)
|
163 |
+
y = sympify(y)
|
164 |
+
|
165 |
+
if label in self._node_labels:
|
166 |
+
raise ValueError("Node needs to have a unique label")
|
167 |
+
|
168 |
+
elif x in self._node_position_x and y in self._node_position_y and self._node_position_x.index(x)==self._node_position_y.index(y):
|
169 |
+
raise ValueError("A node already exists at the given position")
|
170 |
+
|
171 |
+
else :
|
172 |
+
self._nodes.append((label, x, y))
|
173 |
+
self._node_labels.append(label)
|
174 |
+
self._node_positions.append((x, y))
|
175 |
+
self._node_position_x.append(x)
|
176 |
+
self._node_position_y.append(y)
|
177 |
+
self._node_coordinates[label] = [x, y]
|
178 |
+
|
179 |
+
def remove_node(self, label):
|
180 |
+
"""
|
181 |
+
This method removes a node from the truss.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
==========
|
185 |
+
label: String or Symbol
|
186 |
+
The label of the node to be removed.
|
187 |
+
|
188 |
+
Examples
|
189 |
+
========
|
190 |
+
|
191 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
192 |
+
>>> t = Truss()
|
193 |
+
>>> t.add_node('A', 0, 0)
|
194 |
+
>>> t.nodes
|
195 |
+
[('A', 0, 0)]
|
196 |
+
>>> t.add_node('B', 3, 0)
|
197 |
+
>>> t.nodes
|
198 |
+
[('A', 0, 0), ('B', 3, 0)]
|
199 |
+
>>> t.remove_node('A')
|
200 |
+
>>> t.nodes
|
201 |
+
[('B', 3, 0)]
|
202 |
+
"""
|
203 |
+
for i in range(len(self.nodes)):
|
204 |
+
if self._node_labels[i] == label:
|
205 |
+
x = self._node_position_x[i]
|
206 |
+
y = self._node_position_y[i]
|
207 |
+
|
208 |
+
if label not in self._node_labels:
|
209 |
+
raise ValueError("No such node exists in the truss")
|
210 |
+
|
211 |
+
else:
|
212 |
+
members_duplicate = self._members.copy()
|
213 |
+
for member in members_duplicate:
|
214 |
+
if label == self._members[member][0] or label == self._members[member][1]:
|
215 |
+
raise ValueError("The node given has members already attached to it")
|
216 |
+
self._nodes.remove((label, x, y))
|
217 |
+
self._node_labels.remove(label)
|
218 |
+
self._node_positions.remove((x, y))
|
219 |
+
self._node_position_x.remove(x)
|
220 |
+
self._node_position_y.remove(y)
|
221 |
+
if label in list(self._loads):
|
222 |
+
self._loads.pop(label)
|
223 |
+
if label in list(self._supports):
|
224 |
+
self._supports.pop(label)
|
225 |
+
self._node_coordinates.pop(label)
|
226 |
+
|
227 |
+
def add_member(self, label, start, end):
|
228 |
+
"""
|
229 |
+
This method adds a member between any two nodes in the given truss.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
==========
|
233 |
+
label: String or Symbol
|
234 |
+
The label for a member. It is the only way to identify a particular member.
|
235 |
+
|
236 |
+
start: String or Symbol
|
237 |
+
The label of the starting point/node of the member.
|
238 |
+
|
239 |
+
end: String or Symbol
|
240 |
+
The label of the ending point/node of the member.
|
241 |
+
|
242 |
+
Examples
|
243 |
+
========
|
244 |
+
|
245 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
246 |
+
>>> t = Truss()
|
247 |
+
>>> t.add_node('A', 0, 0)
|
248 |
+
>>> t.add_node('B', 3, 0)
|
249 |
+
>>> t.add_node('C', 2, 2)
|
250 |
+
>>> t.add_member('AB', 'A', 'B')
|
251 |
+
>>> t.members
|
252 |
+
{'AB': ['A', 'B']}
|
253 |
+
"""
|
254 |
+
|
255 |
+
if start not in self._node_labels or end not in self._node_labels or start==end:
|
256 |
+
raise ValueError("The start and end points of the member must be unique nodes")
|
257 |
+
|
258 |
+
elif label in list(self._members):
|
259 |
+
raise ValueError("A member with the same label already exists for the truss")
|
260 |
+
|
261 |
+
elif self._nodes_occupied.get((start, end)):
|
262 |
+
raise ValueError("A member already exists between the two nodes")
|
263 |
+
|
264 |
+
else:
|
265 |
+
self._members[label] = [start, end]
|
266 |
+
self._nodes_occupied[start, end] = True
|
267 |
+
self._nodes_occupied[end, start] = True
|
268 |
+
self._internal_forces[label] = 0
|
269 |
+
|
270 |
+
def remove_member(self, label):
|
271 |
+
"""
|
272 |
+
This method removes a member from the given truss.
|
273 |
+
|
274 |
+
Parameters
|
275 |
+
==========
|
276 |
+
label: String or Symbol
|
277 |
+
The label for the member to be removed.
|
278 |
+
|
279 |
+
Examples
|
280 |
+
========
|
281 |
+
|
282 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
283 |
+
>>> t = Truss()
|
284 |
+
>>> t.add_node('A', 0, 0)
|
285 |
+
>>> t.add_node('B', 3, 0)
|
286 |
+
>>> t.add_node('C', 2, 2)
|
287 |
+
>>> t.add_member('AB', 'A', 'B')
|
288 |
+
>>> t.add_member('AC', 'A', 'C')
|
289 |
+
>>> t.add_member('BC', 'B', 'C')
|
290 |
+
>>> t.members
|
291 |
+
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
|
292 |
+
>>> t.remove_member('AC')
|
293 |
+
>>> t.members
|
294 |
+
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
|
295 |
+
"""
|
296 |
+
if label not in list(self._members):
|
297 |
+
raise ValueError("No such member exists in the Truss")
|
298 |
+
|
299 |
+
else:
|
300 |
+
self._nodes_occupied.pop((self._members[label][0], self._members[label][1]))
|
301 |
+
self._nodes_occupied.pop((self._members[label][1], self._members[label][0]))
|
302 |
+
self._members.pop(label)
|
303 |
+
self._internal_forces.pop(label)
|
304 |
+
|
305 |
+
def change_node_label(self, label, new_label):
|
306 |
+
"""
|
307 |
+
This method changes the label of a node.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
==========
|
311 |
+
label: String or Symbol
|
312 |
+
The label of the node for which the label has
|
313 |
+
to be changed.
|
314 |
+
|
315 |
+
new_label: String or Symbol
|
316 |
+
The new label of the node.
|
317 |
+
|
318 |
+
Examples
|
319 |
+
========
|
320 |
+
|
321 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
322 |
+
>>> t = Truss()
|
323 |
+
>>> t.add_node('A', 0, 0)
|
324 |
+
>>> t.add_node('B', 3, 0)
|
325 |
+
>>> t.nodes
|
326 |
+
[('A', 0, 0), ('B', 3, 0)]
|
327 |
+
>>> t.change_node_label('A', 'C')
|
328 |
+
>>> t.nodes
|
329 |
+
[('C', 0, 0), ('B', 3, 0)]
|
330 |
+
"""
|
331 |
+
if label not in self._node_labels:
|
332 |
+
raise ValueError("No such node exists for the Truss")
|
333 |
+
elif new_label in self._node_labels:
|
334 |
+
raise ValueError("A node with the given label already exists")
|
335 |
+
else:
|
336 |
+
for node in self._nodes:
|
337 |
+
if node[0] == label:
|
338 |
+
self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
|
339 |
+
self._node_labels[self._node_labels.index(node[0])] = new_label
|
340 |
+
self._node_coordinates[new_label] = self._node_coordinates[label]
|
341 |
+
self._node_coordinates.pop(label)
|
342 |
+
if node[0] in list(self._supports):
|
343 |
+
self._supports[new_label] = self._supports[node[0]]
|
344 |
+
self._supports.pop(node[0])
|
345 |
+
if new_label in list(self._supports):
|
346 |
+
if self._supports[new_label] == 'pinned':
|
347 |
+
if 'R_'+str(label)+'_x' in list(self._reaction_loads) and 'R_'+str(label)+'_y' in list(self._reaction_loads):
|
348 |
+
self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
|
349 |
+
self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
|
350 |
+
self._reaction_loads.pop('R_'+str(label)+'_x')
|
351 |
+
self._reaction_loads.pop('R_'+str(label)+'_y')
|
352 |
+
self._loads[new_label] = self._loads[label]
|
353 |
+
for load in self._loads[new_label]:
|
354 |
+
if load[1] == 90:
|
355 |
+
load[0] -= Symbol('R_'+str(label)+'_y')
|
356 |
+
if load[0] == 0:
|
357 |
+
self._loads[label].remove(load)
|
358 |
+
break
|
359 |
+
for load in self._loads[new_label]:
|
360 |
+
if load[1] == 0:
|
361 |
+
load[0] -= Symbol('R_'+str(label)+'_x')
|
362 |
+
if load[0] == 0:
|
363 |
+
self._loads[label].remove(load)
|
364 |
+
break
|
365 |
+
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
|
366 |
+
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
|
367 |
+
self._loads.pop(label)
|
368 |
+
elif self._supports[new_label] == 'roller':
|
369 |
+
self._loads[new_label] = self._loads[label]
|
370 |
+
for load in self._loads[label]:
|
371 |
+
if load[1] == 90:
|
372 |
+
load[0] -= Symbol('R_'+str(label)+'_y')
|
373 |
+
if load[0] == 0:
|
374 |
+
self._loads[label].remove(load)
|
375 |
+
break
|
376 |
+
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
|
377 |
+
self._loads.pop(label)
|
378 |
+
else:
|
379 |
+
if label in list(self._loads):
|
380 |
+
self._loads[new_label] = self._loads[label]
|
381 |
+
self._loads.pop(label)
|
382 |
+
for member in list(self._members):
|
383 |
+
if self._members[member][0] == node[0]:
|
384 |
+
self._members[member][0] = new_label
|
385 |
+
self._nodes_occupied[(new_label, self._members[member][1])] = True
|
386 |
+
self._nodes_occupied[(self._members[member][1], new_label)] = True
|
387 |
+
self._nodes_occupied.pop((label, self._members[member][1]))
|
388 |
+
self._nodes_occupied.pop((self._members[member][1], label))
|
389 |
+
elif self._members[member][1] == node[0]:
|
390 |
+
self._members[member][1] = new_label
|
391 |
+
self._nodes_occupied[(self._members[member][0], new_label)] = True
|
392 |
+
self._nodes_occupied[(new_label, self._members[member][0])] = True
|
393 |
+
self._nodes_occupied.pop((self._members[member][0], label))
|
394 |
+
self._nodes_occupied.pop((label, self._members[member][0]))
|
395 |
+
|
396 |
+
def change_member_label(self, label, new_label):
|
397 |
+
"""
|
398 |
+
This method changes the label of a member.
|
399 |
+
|
400 |
+
Parameters
|
401 |
+
==========
|
402 |
+
label: String or Symbol
|
403 |
+
The label of the member for which the label has
|
404 |
+
to be changed.
|
405 |
+
|
406 |
+
new_label: String or Symbol
|
407 |
+
The new label of the member.
|
408 |
+
|
409 |
+
Examples
|
410 |
+
========
|
411 |
+
|
412 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
413 |
+
>>> t = Truss()
|
414 |
+
>>> t.add_node('A', 0, 0)
|
415 |
+
>>> t.add_node('B', 3, 0)
|
416 |
+
>>> t.nodes
|
417 |
+
[('A', 0, 0), ('B', 3, 0)]
|
418 |
+
>>> t.change_node_label('A', 'C')
|
419 |
+
>>> t.nodes
|
420 |
+
[('C', 0, 0), ('B', 3, 0)]
|
421 |
+
>>> t.add_member('BC', 'B', 'C')
|
422 |
+
>>> t.members
|
423 |
+
{'BC': ['B', 'C']}
|
424 |
+
>>> t.change_member_label('BC', 'BC_new')
|
425 |
+
>>> t.members
|
426 |
+
{'BC_new': ['B', 'C']}
|
427 |
+
"""
|
428 |
+
if label not in list(self._members):
|
429 |
+
raise ValueError("No such member exists for the Truss")
|
430 |
+
|
431 |
+
else:
|
432 |
+
members_duplicate = list(self._members).copy()
|
433 |
+
for member in members_duplicate:
|
434 |
+
if member == label:
|
435 |
+
self._members[new_label] = [self._members[member][0], self._members[member][1]]
|
436 |
+
self._members.pop(label)
|
437 |
+
self._internal_forces[new_label] = self._internal_forces[label]
|
438 |
+
self._internal_forces.pop(label)
|
439 |
+
|
440 |
+
def apply_load(self, location, magnitude, direction):
|
441 |
+
"""
|
442 |
+
This method applies an external load at a particular node
|
443 |
+
|
444 |
+
Parameters
|
445 |
+
==========
|
446 |
+
location: String or Symbol
|
447 |
+
Label of the Node at which load is applied.
|
448 |
+
|
449 |
+
magnitude: Sympifyable
|
450 |
+
Magnitude of the load applied. It must always be positive and any changes in
|
451 |
+
the direction of the load are not reflected here.
|
452 |
+
|
453 |
+
direction: Sympifyable
|
454 |
+
The angle, in degrees, that the load vector makes with the horizontal
|
455 |
+
in the counter-clockwise direction. It takes the values 0 to 360,
|
456 |
+
inclusive.
|
457 |
+
|
458 |
+
Examples
|
459 |
+
========
|
460 |
+
|
461 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
462 |
+
>>> from sympy import symbols
|
463 |
+
>>> t = Truss()
|
464 |
+
>>> t.add_node('A', 0, 0)
|
465 |
+
>>> t.add_node('B', 3, 0)
|
466 |
+
>>> P = symbols('P')
|
467 |
+
>>> t.apply_load('A', P, 90)
|
468 |
+
>>> t.apply_load('A', P/2, 45)
|
469 |
+
>>> t.apply_load('A', P/4, 90)
|
470 |
+
>>> t.loads
|
471 |
+
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
|
472 |
+
"""
|
473 |
+
magnitude = sympify(magnitude)
|
474 |
+
direction = sympify(direction)
|
475 |
+
|
476 |
+
if location not in self.node_labels:
|
477 |
+
raise ValueError("Load must be applied at a known node")
|
478 |
+
|
479 |
+
else:
|
480 |
+
if location in list(self._loads):
|
481 |
+
self._loads[location].append([magnitude, direction])
|
482 |
+
else:
|
483 |
+
self._loads[location] = [[magnitude, direction]]
|
484 |
+
|
485 |
+
def remove_load(self, location, magnitude, direction):
|
486 |
+
"""
|
487 |
+
This method removes an already
|
488 |
+
present external load at a particular node
|
489 |
+
|
490 |
+
Parameters
|
491 |
+
==========
|
492 |
+
location: String or Symbol
|
493 |
+
Label of the Node at which load is applied and is to be removed.
|
494 |
+
|
495 |
+
magnitude: Sympifyable
|
496 |
+
Magnitude of the load applied.
|
497 |
+
|
498 |
+
direction: Sympifyable
|
499 |
+
The angle, in degrees, that the load vector makes with the horizontal
|
500 |
+
in the counter-clockwise direction. It takes the values 0 to 360,
|
501 |
+
inclusive.
|
502 |
+
|
503 |
+
Examples
|
504 |
+
========
|
505 |
+
|
506 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
507 |
+
>>> from sympy import symbols
|
508 |
+
>>> t = Truss()
|
509 |
+
>>> t.add_node('A', 0, 0)
|
510 |
+
>>> t.add_node('B', 3, 0)
|
511 |
+
>>> P = symbols('P')
|
512 |
+
>>> t.apply_load('A', P, 90)
|
513 |
+
>>> t.apply_load('A', P/2, 45)
|
514 |
+
>>> t.apply_load('A', P/4, 90)
|
515 |
+
>>> t.loads
|
516 |
+
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
|
517 |
+
>>> t.remove_load('A', P/4, 90)
|
518 |
+
>>> t.loads
|
519 |
+
{'A': [[P, 90], [P/2, 45]]}
|
520 |
+
"""
|
521 |
+
magnitude = sympify(magnitude)
|
522 |
+
direction = sympify(direction)
|
523 |
+
|
524 |
+
if location not in self.node_labels:
|
525 |
+
raise ValueError("Load must be removed from a known node")
|
526 |
+
|
527 |
+
else:
|
528 |
+
if [magnitude, direction] not in self._loads[location]:
|
529 |
+
raise ValueError("No load of this magnitude and direction has been applied at this node")
|
530 |
+
else:
|
531 |
+
self._loads[location].remove([magnitude, direction])
|
532 |
+
if self._loads[location] == []:
|
533 |
+
self._loads.pop(location)
|
534 |
+
|
535 |
+
def apply_support(self, location, type):
|
536 |
+
"""
|
537 |
+
This method adds a pinned or roller support at a particular node
|
538 |
+
|
539 |
+
Parameters
|
540 |
+
==========
|
541 |
+
|
542 |
+
location: String or Symbol
|
543 |
+
Label of the Node at which support is added.
|
544 |
+
|
545 |
+
type: String
|
546 |
+
Type of the support being provided at the node.
|
547 |
+
|
548 |
+
Examples
|
549 |
+
========
|
550 |
+
|
551 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
552 |
+
>>> t = Truss()
|
553 |
+
>>> t.add_node('A', 0, 0)
|
554 |
+
>>> t.add_node('B', 3, 0)
|
555 |
+
>>> t.apply_support('A', 'pinned')
|
556 |
+
>>> t.supports
|
557 |
+
{'A': 'pinned'}
|
558 |
+
"""
|
559 |
+
if location not in self._node_labels:
|
560 |
+
raise ValueError("Support must be added on a known node")
|
561 |
+
|
562 |
+
else:
|
563 |
+
if location not in list(self._supports):
|
564 |
+
if type == 'pinned':
|
565 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
566 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
567 |
+
elif type == 'roller':
|
568 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
569 |
+
elif self._supports[location] == 'pinned':
|
570 |
+
if type == 'roller':
|
571 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
572 |
+
elif self._supports[location] == 'roller':
|
573 |
+
if type == 'pinned':
|
574 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
575 |
+
self._supports[location] = type
|
576 |
+
|
577 |
+
def remove_support(self, location):
|
578 |
+
"""
|
579 |
+
This method removes support from a particular node
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
==========
|
583 |
+
|
584 |
+
location: String or Symbol
|
585 |
+
Label of the Node at which support is to be removed.
|
586 |
+
|
587 |
+
Examples
|
588 |
+
========
|
589 |
+
|
590 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
591 |
+
>>> t = Truss()
|
592 |
+
>>> t.add_node('A', 0, 0)
|
593 |
+
>>> t.add_node('B', 3, 0)
|
594 |
+
>>> t.apply_support('A', 'pinned')
|
595 |
+
>>> t.supports
|
596 |
+
{'A': 'pinned'}
|
597 |
+
>>> t.remove_support('A')
|
598 |
+
>>> t.supports
|
599 |
+
{}
|
600 |
+
"""
|
601 |
+
if location not in self._node_labels:
|
602 |
+
raise ValueError("No such node exists in the Truss")
|
603 |
+
|
604 |
+
elif location not in list(self._supports):
|
605 |
+
raise ValueError("No support has been added to the given node")
|
606 |
+
|
607 |
+
else:
|
608 |
+
if self._supports[location] == 'pinned':
|
609 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
610 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
611 |
+
elif self._supports[location] == 'roller':
|
612 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
613 |
+
self._supports.pop(location)
|
614 |
+
|
615 |
+
def solve(self):
|
616 |
+
"""
|
617 |
+
This method solves for all reaction forces of all supports and all internal forces
|
618 |
+
of all the members in the truss, provided the Truss is solvable.
|
619 |
+
|
620 |
+
A Truss is solvable if the following condition is met,
|
621 |
+
|
622 |
+
2n >= r + m
|
623 |
+
|
624 |
+
Where n is the number of nodes, r is the number of reaction forces, where each pinned
|
625 |
+
support has 2 reaction forces and each roller has 1, and m is the number of members.
|
626 |
+
|
627 |
+
The given condition is derived from the fact that a system of equations is solvable
|
628 |
+
only when the number of variables is lesser than or equal to the number of equations.
|
629 |
+
Equilibrium Equations in x and y directions give two equations per node giving 2n number
|
630 |
+
equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
|
631 |
+
The number of variables is simply the sum of the number of reaction forces and member
|
632 |
+
forces.
|
633 |
+
|
634 |
+
.. note::
|
635 |
+
The sign convention for the internal forces present in a member revolves around whether each
|
636 |
+
force is compressive or tensile. While forming equations for each node, internal force due
|
637 |
+
to a member on the node is assumed to be away from the node i.e. each force is assumed to
|
638 |
+
be compressive by default. Hence, a positive value for an internal force implies the
|
639 |
+
presence of compressive force in the member and a negative value implies a tensile force.
|
640 |
+
|
641 |
+
Examples
|
642 |
+
========
|
643 |
+
|
644 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
645 |
+
>>> t = Truss()
|
646 |
+
>>> t.add_node("node_1", 0, 0)
|
647 |
+
>>> t.add_node("node_2", 6, 0)
|
648 |
+
>>> t.add_node("node_3", 2, 2)
|
649 |
+
>>> t.add_node("node_4", 2, 0)
|
650 |
+
>>> t.add_member("member_1", "node_1", "node_4")
|
651 |
+
>>> t.add_member("member_2", "node_2", "node_4")
|
652 |
+
>>> t.add_member("member_3", "node_1", "node_3")
|
653 |
+
>>> t.add_member("member_4", "node_2", "node_3")
|
654 |
+
>>> t.add_member("member_5", "node_3", "node_4")
|
655 |
+
>>> t.apply_load("node_4", magnitude=10, direction=270)
|
656 |
+
>>> t.apply_support("node_1", type="pinned")
|
657 |
+
>>> t.apply_support("node_2", type="roller")
|
658 |
+
>>> t.solve()
|
659 |
+
>>> t.reaction_loads
|
660 |
+
{'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
|
661 |
+
>>> t.internal_forces
|
662 |
+
{'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
|
663 |
+
"""
|
664 |
+
count_reaction_loads = 0
|
665 |
+
for node in self._nodes:
|
666 |
+
if node[0] in list(self._supports):
|
667 |
+
if self._supports[node[0]]=='pinned':
|
668 |
+
count_reaction_loads += 2
|
669 |
+
elif self._supports[node[0]]=='roller':
|
670 |
+
count_reaction_loads += 1
|
671 |
+
if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
|
672 |
+
raise ValueError("The given truss cannot be solved")
|
673 |
+
coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
|
674 |
+
load_matrix = zeros(2*len(self.nodes), 1)
|
675 |
+
load_matrix_row = 0
|
676 |
+
for node in self._nodes:
|
677 |
+
if node[0] in list(self._loads):
|
678 |
+
for load in self._loads[node[0]]:
|
679 |
+
if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
|
680 |
+
load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
|
681 |
+
load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
|
682 |
+
load_matrix_row += 2
|
683 |
+
cols = 0
|
684 |
+
row = 0
|
685 |
+
for node in self._nodes:
|
686 |
+
if node[0] in list(self._supports):
|
687 |
+
if self._supports[node[0]]=='pinned':
|
688 |
+
coefficients_matrix[row][cols] += 1
|
689 |
+
coefficients_matrix[row+1][cols+1] += 1
|
690 |
+
cols += 2
|
691 |
+
elif self._supports[node[0]]=='roller':
|
692 |
+
coefficients_matrix[row+1][cols] += 1
|
693 |
+
cols += 1
|
694 |
+
row += 2
|
695 |
+
for member in list(self._members):
|
696 |
+
start = self._members[member][0]
|
697 |
+
end = self._members[member][1]
|
698 |
+
length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
|
699 |
+
start_index = self._node_labels.index(start)
|
700 |
+
end_index = self._node_labels.index(end)
|
701 |
+
horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
|
702 |
+
vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
|
703 |
+
horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
|
704 |
+
vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
|
705 |
+
coefficients_matrix[start_index*2][cols] += horizontal_component_start
|
706 |
+
coefficients_matrix[start_index*2+1][cols] += vertical_component_start
|
707 |
+
coefficients_matrix[end_index*2][cols] += horizontal_component_end
|
708 |
+
coefficients_matrix[end_index*2+1][cols] += vertical_component_end
|
709 |
+
cols += 1
|
710 |
+
forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
|
711 |
+
self._reaction_loads = {}
|
712 |
+
i = 0
|
713 |
+
min_load = inf
|
714 |
+
for node in self._nodes:
|
715 |
+
if node[0] in list(self._loads):
|
716 |
+
for load in self._loads[node[0]]:
|
717 |
+
if type(load[0]) not in [Symbol, Mul, Add]:
|
718 |
+
min_load = min(min_load, load[0])
|
719 |
+
for j in range(len(forces_matrix)):
|
720 |
+
if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
|
721 |
+
if abs(forces_matrix[j]/min_load) <1E-10:
|
722 |
+
forces_matrix[j] = 0
|
723 |
+
for node in self._nodes:
|
724 |
+
if node[0] in list(self._supports):
|
725 |
+
if self._supports[node[0]]=='pinned':
|
726 |
+
self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
|
727 |
+
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
|
728 |
+
i += 2
|
729 |
+
elif self._supports[node[0]]=='roller':
|
730 |
+
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
|
731 |
+
i += 1
|
732 |
+
for member in list(self._members):
|
733 |
+
self._internal_forces[member] = forces_matrix[i]
|
734 |
+
i += 1
|
735 |
+
return
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_control_plots.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_lti.cpython-310.pyc
ADDED
Binary file (53.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/test_control_plots.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import isclose
|
2 |
+
from sympy.core.numbers import I
|
3 |
+
from sympy.core.symbol import Dummy
|
4 |
+
from sympy.functions.elementary.complexes import (Abs, arg)
|
5 |
+
from sympy.functions.elementary.exponential import log
|
6 |
+
from sympy.abc import s, p, a
|
7 |
+
from sympy.external import import_module
|
8 |
+
from sympy.physics.control.control_plots import \
|
9 |
+
(pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
|
10 |
+
step_response_plot, impulse_response_numerical_data,
|
11 |
+
impulse_response_plot, ramp_response_numerical_data,
|
12 |
+
ramp_response_plot, bode_magnitude_numerical_data,
|
13 |
+
bode_phase_numerical_data, bode_plot)
|
14 |
+
from sympy.physics.control.lti import (TransferFunction,
|
15 |
+
Series, Parallel, TransferFunctionMatrix)
|
16 |
+
from sympy.testing.pytest import raises, skip
|
17 |
+
|
18 |
+
matplotlib = import_module(
|
19 |
+
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
|
20 |
+
catch=(RuntimeError,))
|
21 |
+
|
22 |
+
numpy = import_module('numpy')
|
23 |
+
|
24 |
+
tf1 = TransferFunction(1, p**2 + 0.5*p + 2, p)
|
25 |
+
tf2 = TransferFunction(p, 6*p**2 + 3*p + 1, p)
|
26 |
+
tf3 = TransferFunction(p, p**3 - 1, p)
|
27 |
+
tf4 = TransferFunction(10, p**3, p)
|
28 |
+
tf5 = TransferFunction(5, s**2 + 2*s + 10, s)
|
29 |
+
tf6 = TransferFunction(1, 1, s)
|
30 |
+
tf7 = TransferFunction(4*s*3 + 9*s**2 + 0.1*s + 11, 8*s**6 + 9*s**4 + 11, s)
|
31 |
+
tf8 = TransferFunction(5, s**2 + (2+I)*s + 10, s)
|
32 |
+
|
33 |
+
ser1 = Series(tf4, TransferFunction(1, p - 5, p))
|
34 |
+
ser2 = Series(tf3, TransferFunction(p, p + 2, p))
|
35 |
+
|
36 |
+
par1 = Parallel(tf1, tf2)
|
37 |
+
par2 = Parallel(tf1, tf2, tf3)
|
38 |
+
|
39 |
+
|
40 |
+
def _to_tuple(a, b):
|
41 |
+
return tuple(a), tuple(b)
|
42 |
+
|
43 |
+
def _trim_tuple(a, b):
|
44 |
+
a, b = _to_tuple(a, b)
|
45 |
+
return tuple(a[0: 2] + a[len(a)//2 : len(a)//2 + 1] + a[-2:]), \
|
46 |
+
tuple(b[0: 2] + b[len(b)//2 : len(b)//2 + 1] + b[-2:])
|
47 |
+
|
48 |
+
def y_coordinate_equality(plot_data_func, evalf_func, system):
|
49 |
+
"""Checks whether the y-coordinate value of the plotted
|
50 |
+
data point is equal to the value of the function at a
|
51 |
+
particular x."""
|
52 |
+
x, y = plot_data_func(system)
|
53 |
+
x, y = _trim_tuple(x, y)
|
54 |
+
y_exp = tuple(evalf_func(system, x_i) for x_i in x)
|
55 |
+
return all(Abs(y_exp_i - y_i) < 1e-8 for y_exp_i, y_i in zip(y_exp, y))
|
56 |
+
|
57 |
+
|
58 |
+
def test_errors():
|
59 |
+
if not matplotlib:
|
60 |
+
skip("Matplotlib not the default backend")
|
61 |
+
|
62 |
+
# Invalid `system` check
|
63 |
+
tfm = TransferFunctionMatrix([[tf6, tf5], [tf5, tf6]])
|
64 |
+
expr = 1/(s**2 - 1)
|
65 |
+
raises(NotImplementedError, lambda: pole_zero_plot(tfm))
|
66 |
+
raises(NotImplementedError, lambda: pole_zero_numerical_data(expr))
|
67 |
+
raises(NotImplementedError, lambda: impulse_response_plot(expr))
|
68 |
+
raises(NotImplementedError, lambda: impulse_response_numerical_data(tfm))
|
69 |
+
raises(NotImplementedError, lambda: step_response_plot(tfm))
|
70 |
+
raises(NotImplementedError, lambda: step_response_numerical_data(expr))
|
71 |
+
raises(NotImplementedError, lambda: ramp_response_plot(expr))
|
72 |
+
raises(NotImplementedError, lambda: ramp_response_numerical_data(tfm))
|
73 |
+
raises(NotImplementedError, lambda: bode_plot(tfm))
|
74 |
+
|
75 |
+
# More than 1 variables
|
76 |
+
tf_a = TransferFunction(a, s + 1, s)
|
77 |
+
raises(ValueError, lambda: pole_zero_plot(tf_a))
|
78 |
+
raises(ValueError, lambda: pole_zero_numerical_data(tf_a))
|
79 |
+
raises(ValueError, lambda: impulse_response_plot(tf_a))
|
80 |
+
raises(ValueError, lambda: impulse_response_numerical_data(tf_a))
|
81 |
+
raises(ValueError, lambda: step_response_plot(tf_a))
|
82 |
+
raises(ValueError, lambda: step_response_numerical_data(tf_a))
|
83 |
+
raises(ValueError, lambda: ramp_response_plot(tf_a))
|
84 |
+
raises(ValueError, lambda: ramp_response_numerical_data(tf_a))
|
85 |
+
raises(ValueError, lambda: bode_plot(tf_a))
|
86 |
+
|
87 |
+
# lower_limit > 0 for response plots
|
88 |
+
raises(ValueError, lambda: impulse_response_plot(tf1, lower_limit=-1))
|
89 |
+
raises(ValueError, lambda: step_response_plot(tf1, lower_limit=-0.1))
|
90 |
+
raises(ValueError, lambda: ramp_response_plot(tf1, lower_limit=-4/3))
|
91 |
+
|
92 |
+
# slope in ramp_response_plot() is negative
|
93 |
+
raises(ValueError, lambda: ramp_response_plot(tf1, slope=-0.1))
|
94 |
+
|
95 |
+
# incorrect frequency or phase unit
|
96 |
+
raises(ValueError, lambda: bode_plot(tf1,freq_unit = 'hz'))
|
97 |
+
raises(ValueError, lambda: bode_plot(tf1,phase_unit = 'degree'))
|
98 |
+
|
99 |
+
|
100 |
+
def test_pole_zero():
|
101 |
+
if not numpy:
|
102 |
+
skip("NumPy is required for this test")
|
103 |
+
|
104 |
+
def pz_tester(sys, expected_value):
|
105 |
+
z, p = pole_zero_numerical_data(sys)
|
106 |
+
z_check = numpy.allclose(z, expected_value[0])
|
107 |
+
p_check = numpy.allclose(p, expected_value[1])
|
108 |
+
return p_check and z_check
|
109 |
+
|
110 |
+
exp1 = [[], [-0.24999999999999994+1.3919410907075054j, -0.24999999999999994-1.3919410907075054j]]
|
111 |
+
exp2 = [[0.0], [-0.25+0.3227486121839514j, -0.25-0.3227486121839514j]]
|
112 |
+
exp3 = [[0.0], [-0.5000000000000004+0.8660254037844395j,
|
113 |
+
-0.5000000000000004-0.8660254037844395j, 0.9999999999999998+0j]]
|
114 |
+
exp4 = [[], [5.0, 0.0, 0.0, 0.0]]
|
115 |
+
exp5 = [[-5.645751311064592, -0.5000000000000008, -0.3542486889354093],
|
116 |
+
[-0.24999999999999986+1.3919410907075052j,
|
117 |
+
-0.24999999999999986-1.3919410907075052j, -0.2499999999999998+0.32274861218395134j,
|
118 |
+
-0.2499999999999998-0.32274861218395134j]]
|
119 |
+
exp6 = [[], [-1.1641600331447917-3.545808351896439j,
|
120 |
+
-0.8358399668552097+2.5458083518964383j]]
|
121 |
+
|
122 |
+
assert pz_tester(tf1, exp1)
|
123 |
+
assert pz_tester(tf2, exp2)
|
124 |
+
assert pz_tester(tf3, exp3)
|
125 |
+
assert pz_tester(ser1, exp4)
|
126 |
+
assert pz_tester(par1, exp5)
|
127 |
+
assert pz_tester(tf8, exp6)
|
128 |
+
|
129 |
+
|
130 |
+
def test_bode():
|
131 |
+
if not numpy:
|
132 |
+
skip("NumPy is required for this test")
|
133 |
+
|
134 |
+
def bode_phase_evalf(system, point):
|
135 |
+
expr = system.to_expr()
|
136 |
+
_w = Dummy("w", real=True)
|
137 |
+
w_expr = expr.subs({system.var: I*_w})
|
138 |
+
return arg(w_expr).subs({_w: point}).evalf()
|
139 |
+
|
140 |
+
def bode_mag_evalf(system, point):
|
141 |
+
expr = system.to_expr()
|
142 |
+
_w = Dummy("w", real=True)
|
143 |
+
w_expr = expr.subs({system.var: I*_w})
|
144 |
+
return 20*log(Abs(w_expr), 10).subs({_w: point}).evalf()
|
145 |
+
|
146 |
+
def test_bode_data(sys):
|
147 |
+
return y_coordinate_equality(bode_magnitude_numerical_data, bode_mag_evalf, sys) \
|
148 |
+
and y_coordinate_equality(bode_phase_numerical_data, bode_phase_evalf, sys)
|
149 |
+
|
150 |
+
assert test_bode_data(tf1)
|
151 |
+
assert test_bode_data(tf2)
|
152 |
+
assert test_bode_data(tf3)
|
153 |
+
assert test_bode_data(tf4)
|
154 |
+
assert test_bode_data(tf5)
|
155 |
+
|
156 |
+
|
157 |
+
def check_point_accuracy(a, b):
|
158 |
+
return all(isclose(a_i, b_i, rel_tol=10e-12) for \
|
159 |
+
a_i, b_i in zip(a, b))
|
160 |
+
|
161 |
+
|
162 |
+
def test_impulse_response():
|
163 |
+
if not numpy:
|
164 |
+
skip("NumPy is required for this test")
|
165 |
+
|
166 |
+
def impulse_res_tester(sys, expected_value):
|
167 |
+
x, y = _to_tuple(*impulse_response_numerical_data(sys,
|
168 |
+
adaptive=False, nb_of_points=10))
|
169 |
+
x_check = check_point_accuracy(x, expected_value[0])
|
170 |
+
y_check = check_point_accuracy(y, expected_value[1])
|
171 |
+
return x_check and y_check
|
172 |
+
|
173 |
+
exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
174 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
175 |
+
(0.0, 0.544019738507865, 0.01993849743234938, -0.31140243360893216, -0.022852779906491996, 0.1778306498155759,
|
176 |
+
0.01962941084328499, -0.1013115194573652, -0.014975541213105696, 0.0575789724730714))
|
177 |
+
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
178 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.1666666675, 0.08389223412935855,
|
179 |
+
0.02338051973475047, -0.014966807776379383, -0.034645954223054234, -0.040560075735512804,
|
180 |
+
-0.037658628907103885, -0.030149507719590022, -0.021162090730736834, -0.012721292737437523))
|
181 |
+
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
182 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (4.369893391586999e-09, 1.1750333000630964,
|
183 |
+
3.2922404058312473, 9.432290008148343, 28.37098083007151, 86.18577464367974, 261.90356653762115,
|
184 |
+
795.6538758627842, 2416.9920942096983, 7342.159505206647))
|
185 |
+
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
186 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 6.17283950617284, 24.69135802469136,
|
187 |
+
55.555555555555564, 98.76543209876544, 154.320987654321, 222.22222222222226, 302.46913580246917,
|
188 |
+
395.0617283950618, 500.0))
|
189 |
+
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
190 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, -0.10455606138085417,
|
191 |
+
0.06757671513476461, -0.03234567568833768, 0.013582514927757873, -0.005273419510705473,
|
192 |
+
0.0019364083003354075, -0.000680070134067832, 0.00022969845960406913, -7.476094359583917e-05))
|
193 |
+
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
194 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
195 |
+
(-6.016699583000218e-09, 0.35039802056107394, 3.3728423827689884, 12.119846079276684,
|
196 |
+
25.86101014293389, 29.352480635282088, -30.49475907497664, -273.8717189554019, -863.2381702029659,
|
197 |
+
-1747.0262164682233))
|
198 |
+
exp7 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335,
|
199 |
+
4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779,
|
200 |
+
8.88888888888889, 10.0), (0.0, 18.934638095560974, 5346.93244680907, 1384609.8718249386,
|
201 |
+
358161126.65801865, 92645770015.70108, 23964739753087.42, 6198974342083139.0, 1.603492601616059e+18,
|
202 |
+
4.147764422869658e+20))
|
203 |
+
|
204 |
+
assert impulse_res_tester(tf1, exp1)
|
205 |
+
assert impulse_res_tester(tf2, exp2)
|
206 |
+
assert impulse_res_tester(tf3, exp3)
|
207 |
+
assert impulse_res_tester(tf4, exp4)
|
208 |
+
assert impulse_res_tester(tf5, exp5)
|
209 |
+
assert impulse_res_tester(tf7, exp6)
|
210 |
+
assert impulse_res_tester(ser1, exp7)
|
211 |
+
|
212 |
+
|
213 |
+
def test_step_response():
|
214 |
+
if not numpy:
|
215 |
+
skip("NumPy is required for this test")
|
216 |
+
|
217 |
+
def step_res_tester(sys, expected_value):
|
218 |
+
x, y = _to_tuple(*step_response_numerical_data(sys,
|
219 |
+
adaptive=False, nb_of_points=10))
|
220 |
+
x_check = check_point_accuracy(x, expected_value[0])
|
221 |
+
y_check = check_point_accuracy(y, expected_value[1])
|
222 |
+
return x_check and y_check
|
223 |
+
|
224 |
+
exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
225 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
226 |
+
(-1.9193285738516863e-08, 0.42283495488246126, 0.7840485977945262, 0.5546841805655717,
|
227 |
+
0.33903033806932087, 0.4627251747410237, 0.5909907598988051, 0.5247213989553071,
|
228 |
+
0.4486997874319281, 0.4839358435839171))
|
229 |
+
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
230 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
231 |
+
(0.0, 0.13728409095645816, 0.19474559355325086, 0.1974909129243011, 0.16841657696573073,
|
232 |
+
0.12559777736159378, 0.08153828016664713, 0.04360471317348958, 0.015072994568868221,
|
233 |
+
-0.003636420058445484))
|
234 |
+
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
235 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
236 |
+
(0.0, 0.6314542141914303, 2.9356520038101035, 9.37731009663807, 28.452300356688376,
|
237 |
+
86.25721933273988, 261.9236645044672, 795.6435410577224, 2416.9786984578764, 7342.154119725917))
|
238 |
+
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
239 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
240 |
+
(0.0, 2.286236899862826, 18.28989519890261, 61.72839629629631, 146.31916159122088, 285.7796124828532,
|
241 |
+
493.8271703703705, 784.1792566529494, 1170.553292729767, 1666.6667))
|
242 |
+
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
243 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
244 |
+
(-3.999999997894577e-09, 0.6720357068882895, 0.4429938256137113, 0.5182010838004518,
|
245 |
+
0.4944139147159695, 0.5016379853883338, 0.4995466896527733, 0.5001154784851325,
|
246 |
+
0.49997448824584123, 0.5000039745919259))
|
247 |
+
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
248 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
249 |
+
(-1.5433688493882158e-09, 0.3428705539937336, 1.1253619102202777, 3.1849962651016517,
|
250 |
+
9.47532757182671, 28.727231099148135, 87.29426924860557, 265.2138681048606, 805.6636260007757,
|
251 |
+
2447.387582370878))
|
252 |
+
|
253 |
+
assert step_res_tester(tf1, exp1)
|
254 |
+
assert step_res_tester(tf2, exp2)
|
255 |
+
assert step_res_tester(tf3, exp3)
|
256 |
+
assert step_res_tester(tf4, exp4)
|
257 |
+
assert step_res_tester(tf5, exp5)
|
258 |
+
assert step_res_tester(ser2, exp6)
|
259 |
+
|
260 |
+
|
261 |
+
def test_ramp_response():
|
262 |
+
if not numpy:
|
263 |
+
skip("NumPy is required for this test")
|
264 |
+
|
265 |
+
def ramp_res_tester(sys, num_points, expected_value, slope=1):
|
266 |
+
x, y = _to_tuple(*ramp_response_numerical_data(sys,
|
267 |
+
slope=slope, adaptive=False, nb_of_points=num_points))
|
268 |
+
x_check = check_point_accuracy(x, expected_value[0])
|
269 |
+
y_check = check_point_accuracy(y, expected_value[1])
|
270 |
+
return x_check and y_check
|
271 |
+
|
272 |
+
exp1 = ((0.0, 2.0, 4.0, 6.0, 8.0, 10.0), (0.0, 0.7324667795033895, 1.9909720978650398,
|
273 |
+
2.7956587704217783, 3.9224897567931514, 4.85022655284895))
|
274 |
+
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
275 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
276 |
+
(2.4360213402019326e-08, 0.10175320182493253, 0.33057612497658406, 0.5967937263298935,
|
277 |
+
0.8431511866718248, 1.0398805391471613, 1.1776043125035738, 1.2600994825747305, 1.2981042689274653,
|
278 |
+
1.304684417610106))
|
279 |
+
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
280 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-3.9329040468771836e-08,
|
281 |
+
0.34686634635794555, 2.9998828170537903, 12.33303690737476, 40.993913948137795, 127.84145222317912,
|
282 |
+
391.41713691996, 1192.0006858708389, 3623.9808672503405, 11011.728034546572))
|
283 |
+
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
284 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.9051973784484078, 30.483158055174524,
|
285 |
+
154.32098765432104, 487.7305288827924, 1190.7483615302544, 2469.1358024691367, 4574.3789056546275,
|
286 |
+
7803.688462124678, 12500.0))
|
287 |
+
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
288 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 3.8844361856975635, 9.141792069209865,
|
289 |
+
14.096349157657231, 19.09783068994694, 24.10179770390321, 29.09907319114121, 34.10040420185154,
|
290 |
+
39.09983919254265, 44.10006013058409))
|
291 |
+
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
292 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.1111111111111112, 2.2222222222222223,
|
293 |
+
3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0))
|
294 |
+
|
295 |
+
assert ramp_res_tester(tf1, 6, exp1)
|
296 |
+
assert ramp_res_tester(tf2, 10, exp2, 1.2)
|
297 |
+
assert ramp_res_tester(tf3, 10, exp3, 1.5)
|
298 |
+
assert ramp_res_tester(tf4, 10, exp4, 3)
|
299 |
+
assert ramp_res_tester(tf5, 10, exp5, 9)
|
300 |
+
assert ramp_res_tester(tf6, 10, exp6)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/control/tests/test_lti.py
ADDED
@@ -0,0 +1,1245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.function import Function
|
3 |
+
from sympy.core.mul import Mul
|
4 |
+
from sympy.core.numbers import (I, Rational, oo)
|
5 |
+
from sympy.core.power import Pow
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.symbol import symbols
|
8 |
+
from sympy.functions.elementary.exponential import exp
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.matrices.dense import eye
|
11 |
+
from sympy.polys.polytools import factor
|
12 |
+
from sympy.polys.rootoftools import CRootOf
|
13 |
+
from sympy.simplify.simplify import simplify
|
14 |
+
from sympy.core.containers import Tuple
|
15 |
+
from sympy.matrices import ImmutableMatrix, Matrix
|
16 |
+
from sympy.physics.control import (TransferFunction, Series, Parallel,
|
17 |
+
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback,
|
18 |
+
bilinear, backward_diff)
|
19 |
+
from sympy.testing.pytest import raises
|
20 |
+
|
21 |
+
a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn, T = symbols('a, x, b, s, g, d, p, k,\
|
22 |
+
a0:3, b0:3, tau, zeta, wn, T')
|
23 |
+
TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
24 |
+
TF2 = TransferFunction(k, 1, s)
|
25 |
+
TF3 = TransferFunction(a2*p - s, a2*s + p, s)
|
26 |
+
|
27 |
+
|
28 |
+
def test_TransferFunction_construction():
|
29 |
+
tf = TransferFunction(s + 1, s**2 + s + 1, s)
|
30 |
+
assert tf.num == (s + 1)
|
31 |
+
assert tf.den == (s**2 + s + 1)
|
32 |
+
assert tf.args == (s + 1, s**2 + s + 1, s)
|
33 |
+
|
34 |
+
tf1 = TransferFunction(s + 4, s - 5, s)
|
35 |
+
assert tf1.num == (s + 4)
|
36 |
+
assert tf1.den == (s - 5)
|
37 |
+
assert tf1.args == (s + 4, s - 5, s)
|
38 |
+
|
39 |
+
# using different polynomial variables.
|
40 |
+
tf2 = TransferFunction(p + 3, p**2 - 9, p)
|
41 |
+
assert tf2.num == (p + 3)
|
42 |
+
assert tf2.den == (p**2 - 9)
|
43 |
+
assert tf2.args == (p + 3, p**2 - 9, p)
|
44 |
+
|
45 |
+
tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
|
46 |
+
assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
|
47 |
+
|
48 |
+
# no pole-zero cancellation on its own.
|
49 |
+
tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)
|
50 |
+
assert tf4.den == (s - 1)*(s + 5)
|
51 |
+
assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s)
|
52 |
+
|
53 |
+
tf4_ = TransferFunction(p + 2, p + 2, p)
|
54 |
+
assert tf4_.args == (p + 2, p + 2, p)
|
55 |
+
|
56 |
+
tf5 = TransferFunction(s - 1, 4 - p, s)
|
57 |
+
assert tf5.args == (s - 1, 4 - p, s)
|
58 |
+
|
59 |
+
tf5_ = TransferFunction(s - 1, s - 1, s)
|
60 |
+
assert tf5_.args == (s - 1, s - 1, s)
|
61 |
+
|
62 |
+
tf6 = TransferFunction(5, 6, s)
|
63 |
+
assert tf6.num == 5
|
64 |
+
assert tf6.den == 6
|
65 |
+
assert tf6.args == (5, 6, s)
|
66 |
+
|
67 |
+
tf6_ = TransferFunction(1/2, 4, s)
|
68 |
+
assert tf6_.num == 0.5
|
69 |
+
assert tf6_.den == 4
|
70 |
+
assert tf6_.args == (0.500000000000000, 4, s)
|
71 |
+
|
72 |
+
tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s)
|
73 |
+
tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p)
|
74 |
+
assert not tf7 == tf8
|
75 |
+
|
76 |
+
tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
|
77 |
+
tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
|
78 |
+
assert tf7_ == tf8_
|
79 |
+
assert -(-tf7_) == tf7_ == -(-(-(-tf7_)))
|
80 |
+
|
81 |
+
tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s)
|
82 |
+
assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s)
|
83 |
+
|
84 |
+
tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
|
85 |
+
tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
|
86 |
+
assert tf10.args == (d + p**3, a + d*s + g*s**2, p)
|
87 |
+
assert tf10_ == tf10
|
88 |
+
|
89 |
+
tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s)
|
90 |
+
assert tf11.num == (a0 + a1*s)
|
91 |
+
assert tf11.den == (b0 + b1*s + b2*s**2)
|
92 |
+
assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s)
|
93 |
+
|
94 |
+
# when just the numerator is 0, leave the denominator alone.
|
95 |
+
tf12 = TransferFunction(0, p**2 - p + 1, p)
|
96 |
+
assert tf12.args == (0, p**2 - p + 1, p)
|
97 |
+
|
98 |
+
tf13 = TransferFunction(0, 1, s)
|
99 |
+
assert tf13.args == (0, 1, s)
|
100 |
+
|
101 |
+
# float exponents
|
102 |
+
tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s)
|
103 |
+
assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s)
|
104 |
+
|
105 |
+
tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p)
|
106 |
+
assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p)
|
107 |
+
|
108 |
+
omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i')
|
109 |
+
tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s)
|
110 |
+
assert tf18.num == k_i/s + k_o*s + k_p
|
111 |
+
assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s)
|
112 |
+
|
113 |
+
# ValueError when denominator is zero.
|
114 |
+
raises(ValueError, lambda: TransferFunction(4, 0, s))
|
115 |
+
raises(ValueError, lambda: TransferFunction(s, 0, s))
|
116 |
+
raises(ValueError, lambda: TransferFunction(0, 0, s))
|
117 |
+
|
118 |
+
raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s))
|
119 |
+
|
120 |
+
raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3))
|
121 |
+
raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4))
|
122 |
+
raises(TypeError, lambda: TransferFunction(3, 4, 8))
|
123 |
+
|
124 |
+
|
125 |
+
def test_TransferFunction_functions():
|
126 |
+
# classmethod from_rational_expression
|
127 |
+
expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False)
|
128 |
+
expr_2 = s/0
|
129 |
+
expr_3 = (p*s**2 + 5*s)/(s + 1)**3
|
130 |
+
expr_4 = 6
|
131 |
+
expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2))
|
132 |
+
expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9))
|
133 |
+
tf = TransferFunction(s + 1, s**2 + 2, s)
|
134 |
+
delay = exp(-s/tau)
|
135 |
+
expr_7 = delay*tf.to_expr()
|
136 |
+
H1 = TransferFunction.from_rational_expression(expr_7, s)
|
137 |
+
H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s)
|
138 |
+
expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False)
|
139 |
+
|
140 |
+
assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s)
|
141 |
+
raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2))
|
142 |
+
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3))
|
143 |
+
assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s)
|
144 |
+
assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p)
|
145 |
+
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4))
|
146 |
+
assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s)
|
147 |
+
assert TransferFunction.from_rational_expression(expr_5, s) == \
|
148 |
+
TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s)
|
149 |
+
assert TransferFunction.from_rational_expression(expr_6, s) == \
|
150 |
+
TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s)
|
151 |
+
assert H1 == H2
|
152 |
+
assert TransferFunction.from_rational_expression(expr_8, s) == \
|
153 |
+
TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s)
|
154 |
+
|
155 |
+
# explicitly cancel poles and zeros.
|
156 |
+
tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s)
|
157 |
+
a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s)
|
158 |
+
assert tf0.simplify() == simplify(tf0) == a
|
159 |
+
|
160 |
+
tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
|
161 |
+
b = TransferFunction(p + 3, p + 5, p)
|
162 |
+
assert tf1.simplify() == simplify(tf1) == b
|
163 |
+
|
164 |
+
# expand the numerator and the denominator.
|
165 |
+
G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
166 |
+
G2 = TransferFunction(1, -3, p)
|
167 |
+
c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p)
|
168 |
+
d = (b0*s**s + b1*p**s)*(b2*s*p + p**p)
|
169 |
+
e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p)
|
170 |
+
f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s
|
171 |
+
g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s
|
172 |
+
G3 = TransferFunction(c, d, s)
|
173 |
+
G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p)
|
174 |
+
|
175 |
+
assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s)
|
176 |
+
assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p)
|
177 |
+
assert G2.expand() == G2
|
178 |
+
assert G3.expand() == TransferFunction(e, f, s)
|
179 |
+
assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p)
|
180 |
+
|
181 |
+
# purely symbolic polynomials.
|
182 |
+
p1 = a1*s + a0
|
183 |
+
p2 = b2*s**2 + b1*s + b0
|
184 |
+
SP1 = TransferFunction(p1, p2, s)
|
185 |
+
expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s)
|
186 |
+
expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s)
|
187 |
+
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_
|
188 |
+
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1
|
189 |
+
assert expect1_.evalf() == expect1
|
190 |
+
|
191 |
+
c1, d0, d1, d2 = symbols('c1, d0:3')
|
192 |
+
p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0
|
193 |
+
SP2 = TransferFunction(p3, p4, p)
|
194 |
+
expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p)
|
195 |
+
expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p)
|
196 |
+
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_
|
197 |
+
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2
|
198 |
+
assert expect2_.evalf() == expect2
|
199 |
+
|
200 |
+
SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s)
|
201 |
+
expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s)
|
202 |
+
expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s)
|
203 |
+
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_
|
204 |
+
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3
|
205 |
+
assert expect3_.evalf() == expect3
|
206 |
+
|
207 |
+
SP4 = TransferFunction(s - a1*p**3, a0*s + p, p)
|
208 |
+
expect4 = TransferFunction(7.0*p**3 + s, p - s, p)
|
209 |
+
expect4_ = TransferFunction(7*p**3 + s, p - s, p)
|
210 |
+
assert SP4.subs({a0: -1, a1: -7}) == expect4_
|
211 |
+
assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4
|
212 |
+
assert expect4_.evalf() == expect4
|
213 |
+
|
214 |
+
# Low-frequency (or DC) gain.
|
215 |
+
assert tf0.dc_gain() == 1
|
216 |
+
assert tf1.dc_gain() == Rational(3, 5)
|
217 |
+
assert SP2.dc_gain() == 0
|
218 |
+
assert expect4.dc_gain() == -1
|
219 |
+
assert expect2_.dc_gain() == 0
|
220 |
+
assert TransferFunction(1, s, s).dc_gain() == oo
|
221 |
+
|
222 |
+
# Poles of a transfer function.
|
223 |
+
tf_ = TransferFunction(x**3 - k, k, x)
|
224 |
+
_tf = TransferFunction(k, x**4 - k, x)
|
225 |
+
TF_ = TransferFunction(x**2, x**10 + x + x**2, x)
|
226 |
+
_TF = TransferFunction(x**10 + x + x**2, x**2, x)
|
227 |
+
assert G1.poles() == [I, I, -I, -I]
|
228 |
+
assert G2.poles() == []
|
229 |
+
assert tf1.poles() == [-5, 1]
|
230 |
+
assert expect4_.poles() == [s]
|
231 |
+
assert SP4.poles() == [-a0*s]
|
232 |
+
assert expect3.poles() == [-0.25*p]
|
233 |
+
assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I])
|
234 |
+
assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I])
|
235 |
+
assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))]
|
236 |
+
assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
|
237 |
+
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
|
238 |
+
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
|
239 |
+
raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles())
|
240 |
+
|
241 |
+
# Stability of a transfer function.
|
242 |
+
q, r = symbols('q, r', negative=True)
|
243 |
+
t = symbols('t', positive=True)
|
244 |
+
TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s)
|
245 |
+
stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s)
|
246 |
+
stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s)
|
247 |
+
|
248 |
+
assert G1.is_stable() is False
|
249 |
+
assert G2.is_stable() is True
|
250 |
+
assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve.
|
251 |
+
assert expect2.is_stable() is False
|
252 |
+
assert expect1.is_stable() is True
|
253 |
+
assert stable_tf.is_stable() is True
|
254 |
+
assert stable_tf_.is_stable() is True
|
255 |
+
assert TF_.is_stable() is False
|
256 |
+
assert expect4_.is_stable() is None # no assumption provided for the only pole 's'.
|
257 |
+
assert SP4.is_stable() is None
|
258 |
+
|
259 |
+
# Zeros of a transfer function.
|
260 |
+
assert G1.zeros() == [1, 1]
|
261 |
+
assert G2.zeros() == []
|
262 |
+
assert tf1.zeros() == [-3, 1]
|
263 |
+
assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 -
|
264 |
+
sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14]
|
265 |
+
assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2,
|
266 |
+
-(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2]
|
267 |
+
assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0),
|
268 |
+
1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125])
|
269 |
+
assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2,
|
270 |
+
-k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2]
|
271 |
+
assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
|
272 |
+
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
|
273 |
+
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
|
274 |
+
raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros())
|
275 |
+
|
276 |
+
# negation of TF.
|
277 |
+
tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s)
|
278 |
+
tf3 = TransferFunction(-3*p + 3, 1 - p, p)
|
279 |
+
assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s)
|
280 |
+
assert -tf3 == TransferFunction(3*p - 3, 1 - p, p)
|
281 |
+
|
282 |
+
# taking power of a TF.
|
283 |
+
tf4 = TransferFunction(p + 4, p - 3, p)
|
284 |
+
tf5 = TransferFunction(s**2 + 1, 1 - s, s)
|
285 |
+
expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s)
|
286 |
+
expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p)
|
287 |
+
assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1
|
288 |
+
assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2
|
289 |
+
assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s)
|
290 |
+
assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p)
|
291 |
+
assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
292 |
+
|
293 |
+
raises(ValueError, lambda: tf4**(s**2 + s - 1))
|
294 |
+
raises(ValueError, lambda: tf5**s)
|
295 |
+
raises(ValueError, lambda: tf4**tf5)
|
296 |
+
|
297 |
+
# SymPy's own functions.
|
298 |
+
tf = TransferFunction(s - 1, s**2 - 2*s + 1, s)
|
299 |
+
tf6 = TransferFunction(s + p, p**2 - 5, s)
|
300 |
+
assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s)
|
301 |
+
assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1
|
302 |
+
# subs & xreplace
|
303 |
+
assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s)
|
304 |
+
assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s)
|
305 |
+
assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s)
|
306 |
+
raises(TypeError, lambda: tf3.xreplace({p: exp(2)}))
|
307 |
+
assert tf3.subs(p, exp(2)) == tf3
|
308 |
+
|
309 |
+
tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
|
310 |
+
assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k)
|
311 |
+
assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
|
312 |
+
|
313 |
+
# Conversion to Expr with to_expr()
|
314 |
+
tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s)
|
315 |
+
tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s)
|
316 |
+
tf10 = TransferFunction(0, 1, s)
|
317 |
+
tf11 = TransferFunction(1, 1, s)
|
318 |
+
assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False)
|
319 |
+
assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False)
|
320 |
+
assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False)
|
321 |
+
assert tf11.to_expr() == Pow(1, -1, evaluate=False)
|
322 |
+
|
323 |
+
def test_TransferFunction_addition_and_subtraction():
|
324 |
+
tf1 = TransferFunction(s + 6, s - 5, s)
|
325 |
+
tf2 = TransferFunction(s + 3, s + 1, s)
|
326 |
+
tf3 = TransferFunction(s + 1, s**2 + s + 1, s)
|
327 |
+
tf4 = TransferFunction(p, 2 - p, p)
|
328 |
+
|
329 |
+
# addition
|
330 |
+
assert tf1 + tf2 == Parallel(tf1, tf2)
|
331 |
+
assert tf3 + tf1 == Parallel(tf3, tf1)
|
332 |
+
assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3)
|
333 |
+
assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3)
|
334 |
+
|
335 |
+
c = symbols("c", commutative=False)
|
336 |
+
raises(ValueError, lambda: tf1 + Matrix([1, 2, 3]))
|
337 |
+
raises(ValueError, lambda: tf2 + c)
|
338 |
+
raises(ValueError, lambda: tf3 + tf4)
|
339 |
+
raises(ValueError, lambda: tf1 + (s - 1))
|
340 |
+
raises(ValueError, lambda: tf1 + 8)
|
341 |
+
raises(ValueError, lambda: (1 - p**3) + tf1)
|
342 |
+
|
343 |
+
# subtraction
|
344 |
+
assert tf1 - tf2 == Parallel(tf1, -tf2)
|
345 |
+
assert tf3 - tf2 == Parallel(tf3, -tf2)
|
346 |
+
assert -tf1 - tf3 == Parallel(-tf1, -tf3)
|
347 |
+
assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3)
|
348 |
+
|
349 |
+
raises(ValueError, lambda: tf1 - Matrix([1, 2, 3]))
|
350 |
+
raises(ValueError, lambda: tf3 - tf4)
|
351 |
+
raises(ValueError, lambda: tf1 - (s - 1))
|
352 |
+
raises(ValueError, lambda: tf1 - 8)
|
353 |
+
raises(ValueError, lambda: (s + 5) - tf2)
|
354 |
+
raises(ValueError, lambda: (1 + p**4) - tf1)
|
355 |
+
|
356 |
+
|
357 |
+
def test_TransferFunction_multiplication_and_division():
|
358 |
+
G1 = TransferFunction(s + 3, -s**3 + 9, s)
|
359 |
+
G2 = TransferFunction(s + 1, s - 5, s)
|
360 |
+
G3 = TransferFunction(p, p**4 - 6, p)
|
361 |
+
G4 = TransferFunction(p + 4, p - 5, p)
|
362 |
+
G5 = TransferFunction(s + 6, s - 5, s)
|
363 |
+
G6 = TransferFunction(s + 3, s + 1, s)
|
364 |
+
G7 = TransferFunction(1, 1, s)
|
365 |
+
|
366 |
+
# multiplication
|
367 |
+
assert G1*G2 == Series(G1, G2)
|
368 |
+
assert -G1*G5 == Series(-G1, G5)
|
369 |
+
assert -G2*G5*-G6 == Series(-G2, G5, -G6)
|
370 |
+
assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6)
|
371 |
+
assert G3*G4 == Series(G3, G4)
|
372 |
+
assert (G1*G2)*-(G5*G6) == \
|
373 |
+
Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6))
|
374 |
+
assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6))
|
375 |
+
|
376 |
+
c = symbols("c", commutative=False)
|
377 |
+
raises(ValueError, lambda: G3 * Matrix([1, 2, 3]))
|
378 |
+
raises(ValueError, lambda: G1 * c)
|
379 |
+
raises(ValueError, lambda: G3 * G5)
|
380 |
+
raises(ValueError, lambda: G5 * (s - 1))
|
381 |
+
raises(ValueError, lambda: 9 * G5)
|
382 |
+
|
383 |
+
raises(ValueError, lambda: G3 / Matrix([1, 2, 3]))
|
384 |
+
raises(ValueError, lambda: G6 / 0)
|
385 |
+
raises(ValueError, lambda: G3 / G5)
|
386 |
+
raises(ValueError, lambda: G5 / 2)
|
387 |
+
raises(ValueError, lambda: G5 / s**2)
|
388 |
+
raises(ValueError, lambda: (s - 4*s**2) / G2)
|
389 |
+
raises(ValueError, lambda: 0 / G4)
|
390 |
+
raises(ValueError, lambda: G5 / G6)
|
391 |
+
raises(ValueError, lambda: -G3 /G4)
|
392 |
+
raises(ValueError, lambda: G7 / (1 + G6))
|
393 |
+
raises(ValueError, lambda: G7 / (G5 * G6))
|
394 |
+
raises(ValueError, lambda: G7 / (G7 + (G5 + G6)))
|
395 |
+
|
396 |
+
|
397 |
+
def test_TransferFunction_is_proper():
|
398 |
+
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
|
399 |
+
G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
400 |
+
G2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
401 |
+
G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
402 |
+
G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
403 |
+
assert G1.is_proper
|
404 |
+
assert G2.is_proper
|
405 |
+
assert G3.is_proper
|
406 |
+
assert not G4.is_proper
|
407 |
+
|
408 |
+
|
409 |
+
def test_TransferFunction_is_strictly_proper():
|
410 |
+
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
|
411 |
+
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
412 |
+
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
413 |
+
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
414 |
+
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
415 |
+
assert not tf1.is_strictly_proper
|
416 |
+
assert not tf2.is_strictly_proper
|
417 |
+
assert tf3.is_strictly_proper
|
418 |
+
assert not tf4.is_strictly_proper
|
419 |
+
|
420 |
+
|
421 |
+
def test_TransferFunction_is_biproper():
|
422 |
+
tau, omega_o, zeta = symbols('tau, omega_o, zeta')
|
423 |
+
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
424 |
+
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
425 |
+
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
426 |
+
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
427 |
+
assert tf1.is_biproper
|
428 |
+
assert tf2.is_biproper
|
429 |
+
assert not tf3.is_biproper
|
430 |
+
assert not tf4.is_biproper
|
431 |
+
|
432 |
+
|
433 |
+
def test_Series_construction():
|
434 |
+
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
435 |
+
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
|
436 |
+
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
|
437 |
+
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
438 |
+
inp = Function('X_d')(s)
|
439 |
+
out = Function('X')(s)
|
440 |
+
|
441 |
+
s0 = Series(tf, tf2)
|
442 |
+
assert s0.args == (tf, tf2)
|
443 |
+
assert s0.var == s
|
444 |
+
|
445 |
+
s1 = Series(Parallel(tf, -tf2), tf2)
|
446 |
+
assert s1.args == (Parallel(tf, -tf2), tf2)
|
447 |
+
assert s1.var == s
|
448 |
+
|
449 |
+
tf3_ = TransferFunction(inp, 1, s)
|
450 |
+
tf4_ = TransferFunction(-out, 1, s)
|
451 |
+
s2 = Series(tf, Parallel(tf3_, tf4_), tf2)
|
452 |
+
assert s2.args == (tf, Parallel(tf3_, tf4_), tf2)
|
453 |
+
|
454 |
+
s3 = Series(tf, tf2, tf4)
|
455 |
+
assert s3.args == (tf, tf2, tf4)
|
456 |
+
|
457 |
+
s4 = Series(tf3_, tf4_)
|
458 |
+
assert s4.args == (tf3_, tf4_)
|
459 |
+
assert s4.var == s
|
460 |
+
|
461 |
+
s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4)
|
462 |
+
assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4)
|
463 |
+
|
464 |
+
s7 = Series(tf, tf2)
|
465 |
+
assert s0 == s7
|
466 |
+
assert not s0 == s2
|
467 |
+
|
468 |
+
raises(ValueError, lambda: Series(tf, tf3))
|
469 |
+
raises(ValueError, lambda: Series(tf, tf2, tf3, tf4))
|
470 |
+
raises(ValueError, lambda: Series(-tf3, tf2))
|
471 |
+
raises(TypeError, lambda: Series(2, tf, tf4))
|
472 |
+
raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2))
|
473 |
+
raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4])))
|
474 |
+
|
475 |
+
|
476 |
+
def test_MIMOSeries_construction():
|
477 |
+
tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
478 |
+
tf_2 = TransferFunction(a2*p - s, a2*s + p, s)
|
479 |
+
tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
480 |
+
|
481 |
+
tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]])
|
482 |
+
tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]])
|
483 |
+
tfm_3 = TransferFunctionMatrix([[-tf_3]])
|
484 |
+
tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]])
|
485 |
+
tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p)
|
486 |
+
|
487 |
+
s8 = MIMOSeries(tfm_2, tfm_1)
|
488 |
+
assert s8.args == (tfm_2, tfm_1)
|
489 |
+
assert s8.var == s
|
490 |
+
assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1)
|
491 |
+
|
492 |
+
s9 = MIMOSeries(tfm_3, tfm_2, tfm_1)
|
493 |
+
assert s9.args == (tfm_3, tfm_2, tfm_1)
|
494 |
+
assert s9.var == s
|
495 |
+
assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1)
|
496 |
+
|
497 |
+
s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
|
498 |
+
assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
|
499 |
+
assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1)
|
500 |
+
|
501 |
+
# arg cannot be empty tuple.
|
502 |
+
raises(ValueError, lambda: MIMOSeries())
|
503 |
+
|
504 |
+
# arg cannot contain SISO as well as MIMO systems.
|
505 |
+
raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1))
|
506 |
+
|
507 |
+
# for all the adjacent transfer function matrices:
|
508 |
+
# no. of inputs of first TFM must be equal to the no. of outputs of the second TFM.
|
509 |
+
raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1))
|
510 |
+
|
511 |
+
# all the TFMs must use the same complex variable.
|
512 |
+
raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5))
|
513 |
+
|
514 |
+
# Number or expression not allowed in the arguments.
|
515 |
+
raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3))
|
516 |
+
raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3))
|
517 |
+
raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3))
|
518 |
+
|
519 |
+
|
520 |
+
def test_Series_functions():
|
521 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
522 |
+
tf2 = TransferFunction(k, 1, s)
|
523 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
524 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
525 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
526 |
+
|
527 |
+
assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \
|
528 |
+
== Series(tf1, Series(tf2, tf3))
|
529 |
+
assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3))
|
530 |
+
assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5)
|
531 |
+
assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5)
|
532 |
+
assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5)
|
533 |
+
assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5)
|
534 |
+
assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5)
|
535 |
+
assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5))
|
536 |
+
assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5)))
|
537 |
+
assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3)
|
538 |
+
assert -tf1*tf2 == Series(-tf1, tf2)
|
539 |
+
assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2))
|
540 |
+
raises(ValueError, lambda: tf1*tf2*tf4)
|
541 |
+
raises(ValueError, lambda: tf1*(tf2 - tf4))
|
542 |
+
raises(ValueError, lambda: tf3*Matrix([1, 2, 3]))
|
543 |
+
|
544 |
+
# evaluate=True -> doit()
|
545 |
+
assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \
|
546 |
+
TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
|
547 |
+
assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \
|
548 |
+
TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s)
|
549 |
+
assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \
|
550 |
+
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
551 |
+
assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit()
|
552 |
+
|
553 |
+
assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \
|
554 |
+
TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
555 |
+
assert Series(-tf1, -tf2, -tf3).doit() == \
|
556 |
+
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
557 |
+
assert -Series(tf1, tf2, tf3).doit() == \
|
558 |
+
TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
559 |
+
assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \
|
560 |
+
TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s)
|
561 |
+
|
562 |
+
assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
|
563 |
+
assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \
|
564 |
+
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
565 |
+
|
566 |
+
S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3))
|
567 |
+
assert S1.is_proper
|
568 |
+
assert not S1.is_strictly_proper
|
569 |
+
assert S1.is_biproper
|
570 |
+
|
571 |
+
S2 = Series(tf1, tf2, tf3)
|
572 |
+
assert S2.is_proper
|
573 |
+
assert S2.is_strictly_proper
|
574 |
+
assert not S2.is_biproper
|
575 |
+
|
576 |
+
S3 = Series(tf1, -tf2, Parallel(tf1, -tf3))
|
577 |
+
assert S3.is_proper
|
578 |
+
assert S3.is_strictly_proper
|
579 |
+
assert not S3.is_biproper
|
580 |
+
|
581 |
+
|
582 |
+
def test_MIMOSeries_functions():
|
583 |
+
tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]])
|
584 |
+
tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]])
|
585 |
+
tfm3 = TransferFunctionMatrix([[-TF1]])
|
586 |
+
tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]])
|
587 |
+
tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]])
|
588 |
+
tfm6 = TransferFunctionMatrix([[-TF3], [TF1]])
|
589 |
+
tfm7 = TransferFunctionMatrix([[TF1], [-TF2]])
|
590 |
+
|
591 |
+
assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6)
|
592 |
+
assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6)
|
593 |
+
assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7)
|
594 |
+
assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5)
|
595 |
+
assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4))
|
596 |
+
|
597 |
+
raises(ValueError, lambda: tfm1*tfm2 + TF1)
|
598 |
+
raises(TypeError, lambda: tfm1*tfm2 + a0)
|
599 |
+
raises(TypeError, lambda: tfm4*tfm6 - (s - 1))
|
600 |
+
raises(TypeError, lambda: tfm4*-tfm6 - 8)
|
601 |
+
raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2)
|
602 |
+
|
603 |
+
# Shape criteria.
|
604 |
+
|
605 |
+
raises(TypeError, lambda: -tfm1*tfm2 + tfm4)
|
606 |
+
raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5)
|
607 |
+
raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5)
|
608 |
+
|
609 |
+
assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1)
|
610 |
+
assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1)
|
611 |
+
|
612 |
+
# Multiplication of a Series object with a SISO TF not allowed.
|
613 |
+
|
614 |
+
raises(ValueError, lambda: tfm4*tfm5*TF1)
|
615 |
+
raises(TypeError, lambda: tfm4*tfm5*a1)
|
616 |
+
raises(TypeError, lambda: tfm4*-tfm5*(s - 2))
|
617 |
+
raises(TypeError, lambda: tfm5*tfm4*9)
|
618 |
+
raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4)
|
619 |
+
|
620 |
+
# Transfer function matrix in the arguments.
|
621 |
+
assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit()
|
622 |
+
== TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2,
|
623 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),),
|
624 |
+
(TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
|
625 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),))))
|
626 |
+
|
627 |
+
# doit() should not cancel poles and zeros.
|
628 |
+
mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]])
|
629 |
+
mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]])
|
630 |
+
tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s)
|
631 |
+
assert (MIMOSeries(tm_2, tm_1).doit()
|
632 |
+
== TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),)))
|
633 |
+
assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),))
|
634 |
+
|
635 |
+
# calling doit() will expand the internal Series and Parallel objects.
|
636 |
+
assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True)
|
637 |
+
== MIMOSeries(-tfm3, -tfm2, tfm1).doit()
|
638 |
+
== TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2,
|
639 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),),
|
640 |
+
(TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
|
641 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),))))
|
642 |
+
assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True)
|
643 |
+
== MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit()
|
644 |
+
== TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \
|
645 |
+
k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \
|
646 |
+
TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix))
|
647 |
+
|
648 |
+
|
649 |
+
def test_Parallel_construction():
|
650 |
+
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
651 |
+
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
|
652 |
+
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
|
653 |
+
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
654 |
+
inp = Function('X_d')(s)
|
655 |
+
out = Function('X')(s)
|
656 |
+
|
657 |
+
p0 = Parallel(tf, tf2)
|
658 |
+
assert p0.args == (tf, tf2)
|
659 |
+
assert p0.var == s
|
660 |
+
|
661 |
+
p1 = Parallel(Series(tf, -tf2), tf2)
|
662 |
+
assert p1.args == (Series(tf, -tf2), tf2)
|
663 |
+
assert p1.var == s
|
664 |
+
|
665 |
+
tf3_ = TransferFunction(inp, 1, s)
|
666 |
+
tf4_ = TransferFunction(-out, 1, s)
|
667 |
+
p2 = Parallel(tf, Series(tf3_, -tf4_), tf2)
|
668 |
+
assert p2.args == (tf, Series(tf3_, -tf4_), tf2)
|
669 |
+
|
670 |
+
p3 = Parallel(tf, tf2, tf4)
|
671 |
+
assert p3.args == (tf, tf2, tf4)
|
672 |
+
|
673 |
+
p4 = Parallel(tf3_, tf4_)
|
674 |
+
assert p4.args == (tf3_, tf4_)
|
675 |
+
assert p4.var == s
|
676 |
+
|
677 |
+
p5 = Parallel(tf, tf2)
|
678 |
+
assert p0 == p5
|
679 |
+
assert not p0 == p1
|
680 |
+
|
681 |
+
p6 = Parallel(tf2, tf4, Series(tf2, -tf4))
|
682 |
+
assert p6.args == (tf2, tf4, Series(tf2, -tf4))
|
683 |
+
|
684 |
+
p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4)
|
685 |
+
assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4)
|
686 |
+
|
687 |
+
raises(ValueError, lambda: Parallel(tf, tf3))
|
688 |
+
raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4))
|
689 |
+
raises(ValueError, lambda: Parallel(-tf3, tf4))
|
690 |
+
raises(TypeError, lambda: Parallel(2, tf, tf4))
|
691 |
+
raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2))
|
692 |
+
raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4])))
|
693 |
+
|
694 |
+
|
695 |
+
def test_MIMOParallel_construction():
|
696 |
+
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
|
697 |
+
tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]])
|
698 |
+
tfm3 = TransferFunctionMatrix([[TF1]])
|
699 |
+
tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]])
|
700 |
+
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]])
|
701 |
+
tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]])
|
702 |
+
tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p)
|
703 |
+
|
704 |
+
p8 = MIMOParallel(tfm1, tfm2)
|
705 |
+
assert p8.args == (tfm1, tfm2)
|
706 |
+
assert p8.var == s
|
707 |
+
assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1)
|
708 |
+
|
709 |
+
p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2)
|
710 |
+
assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2)
|
711 |
+
assert p9.var == s
|
712 |
+
assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1)
|
713 |
+
|
714 |
+
p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2)
|
715 |
+
assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2)
|
716 |
+
assert p10.var == s
|
717 |
+
assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1)
|
718 |
+
|
719 |
+
p11 = MIMOParallel(tfm2, tfm1, tfm4)
|
720 |
+
assert p11.args == (tfm2, tfm1, tfm4)
|
721 |
+
assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1)
|
722 |
+
|
723 |
+
p12 = MIMOParallel(tfm6, tfm5)
|
724 |
+
assert p12.args == (tfm6, tfm5)
|
725 |
+
assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2)
|
726 |
+
|
727 |
+
p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
|
728 |
+
assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
|
729 |
+
assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1)
|
730 |
+
|
731 |
+
# arg cannot be empty tuple.
|
732 |
+
raises(TypeError, lambda: MIMOParallel(()))
|
733 |
+
|
734 |
+
# arg cannot contain SISO as well as MIMO systems.
|
735 |
+
raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1))
|
736 |
+
|
737 |
+
# all TFMs must have same shapes.
|
738 |
+
raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4))
|
739 |
+
|
740 |
+
# all TFMs must be using the same complex variable.
|
741 |
+
raises(ValueError, lambda: MIMOParallel(tfm3, tfm7))
|
742 |
+
|
743 |
+
# Number or expression not allowed in the arguments.
|
744 |
+
raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4))
|
745 |
+
raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2))
|
746 |
+
|
747 |
+
|
748 |
+
def test_Parallel_functions():
|
749 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
750 |
+
tf2 = TransferFunction(k, 1, s)
|
751 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
752 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
753 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
754 |
+
|
755 |
+
assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3)
|
756 |
+
assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5)
|
757 |
+
assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5)
|
758 |
+
assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3))
|
759 |
+
assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3))
|
760 |
+
assert -tf1 - tf2 == Parallel(-tf1, -tf2)
|
761 |
+
assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2))
|
762 |
+
assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1)
|
763 |
+
assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5)
|
764 |
+
assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5)
|
765 |
+
assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5)
|
766 |
+
assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3)
|
767 |
+
assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5))
|
768 |
+
raises(ValueError, lambda: tf1 + tf2 + tf4)
|
769 |
+
raises(ValueError, lambda: tf1 - tf2*tf4)
|
770 |
+
raises(ValueError, lambda: tf3 + Matrix([1, 2, 3]))
|
771 |
+
|
772 |
+
# evaluate=True -> doit()
|
773 |
+
assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \
|
774 |
+
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
|
775 |
+
assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \
|
776 |
+
Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \
|
777 |
+
(-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \
|
778 |
+
2*s*wn*zeta + wn**2)**2, s)
|
779 |
+
assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \
|
780 |
+
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \
|
781 |
+
, (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
782 |
+
assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit()
|
783 |
+
|
784 |
+
assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \
|
785 |
+
TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
786 |
+
assert Parallel(-tf1, -tf2, -tf3).doit() == \
|
787 |
+
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \
|
788 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
789 |
+
assert -Parallel(tf1, tf2, tf3).doit() == \
|
790 |
+
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \
|
791 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
792 |
+
assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \
|
793 |
+
TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \
|
794 |
+
+ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
795 |
+
|
796 |
+
assert Parallel(tf1, tf2).rewrite(TransferFunction) == \
|
797 |
+
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
|
798 |
+
assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \
|
799 |
+
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \
|
800 |
+
wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
801 |
+
|
802 |
+
assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3)
|
803 |
+
|
804 |
+
P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
|
805 |
+
assert P1.is_proper
|
806 |
+
assert not P1.is_strictly_proper
|
807 |
+
assert P1.is_biproper
|
808 |
+
|
809 |
+
P2 = Parallel(tf1, -tf2, -tf3)
|
810 |
+
assert P2.is_proper
|
811 |
+
assert not P2.is_strictly_proper
|
812 |
+
assert P2.is_biproper
|
813 |
+
|
814 |
+
P3 = Parallel(tf1, -tf2, Series(tf1, tf3))
|
815 |
+
assert P3.is_proper
|
816 |
+
assert not P3.is_strictly_proper
|
817 |
+
assert P3.is_biproper
|
818 |
+
|
819 |
+
|
820 |
+
def test_MIMOParallel_functions():
|
821 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
822 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
823 |
+
|
824 |
+
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
|
825 |
+
tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]])
|
826 |
+
tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]])
|
827 |
+
tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]])
|
828 |
+
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]])
|
829 |
+
tfm6 = TransferFunctionMatrix([[-TF2]])
|
830 |
+
tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]])
|
831 |
+
|
832 |
+
assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3)
|
833 |
+
assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3)
|
834 |
+
assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1))
|
835 |
+
assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1))
|
836 |
+
assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2)
|
837 |
+
assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1)
|
838 |
+
raises(ValueError, lambda: tfm1 + tfm2 + TF2)
|
839 |
+
raises(TypeError, lambda: tfm1 - tfm2 - a1)
|
840 |
+
raises(TypeError, lambda: tfm2 - tfm3 - (s - 1))
|
841 |
+
raises(TypeError, lambda: -tfm3 - tfm2 - 9)
|
842 |
+
raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2)
|
843 |
+
# All TFMs must use the same complex var. tfm7 uses 'p'.
|
844 |
+
raises(ValueError, lambda: tfm3 - tfm2 - tfm7)
|
845 |
+
raises(ValueError, lambda: tfm2 - tfm1 + tfm7)
|
846 |
+
# (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape.
|
847 |
+
raises(TypeError, lambda: tfm1 + tfm2 + tfm4)
|
848 |
+
raises(TypeError, lambda: (tfm1 - tfm2) - tfm4)
|
849 |
+
|
850 |
+
assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2))
|
851 |
+
assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3))
|
852 |
+
assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3))
|
853 |
+
raises(ValueError, lambda: (tfm4 + tfm5)*TF1)
|
854 |
+
raises(TypeError, lambda: (tfm2 - tfm3)*a2)
|
855 |
+
raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6))
|
856 |
+
raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0)
|
857 |
+
raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3))
|
858 |
+
|
859 |
+
# (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape.
|
860 |
+
raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5)
|
861 |
+
# (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape.
|
862 |
+
raises(ValueError, lambda: (tfm1 - tfm2)*tfm5)
|
863 |
+
|
864 |
+
# TFM in the arguments.
|
865 |
+
assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit()
|
866 |
+
== MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix)
|
867 |
+
== TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \
|
868 |
+
(TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \
|
869 |
+
(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),))))
|
870 |
+
|
871 |
+
|
872 |
+
def test_Feedback_construction():
|
873 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
874 |
+
tf2 = TransferFunction(k, 1, s)
|
875 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
876 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
877 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
878 |
+
tf6 = TransferFunction(s - p, p + s, p)
|
879 |
+
|
880 |
+
f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3)
|
881 |
+
assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1)
|
882 |
+
assert f1.sys1 == TransferFunction(1, 1, s)
|
883 |
+
assert f1.sys2 == Series(tf1, tf2, tf3)
|
884 |
+
assert f1.var == s
|
885 |
+
|
886 |
+
f2 = Feedback(tf1, tf2*tf3)
|
887 |
+
assert f2.args == (tf1, Series(tf2, tf3), -1)
|
888 |
+
assert f2.sys1 == tf1
|
889 |
+
assert f2.sys2 == Series(tf2, tf3)
|
890 |
+
assert f2.var == s
|
891 |
+
|
892 |
+
f3 = Feedback(tf1*tf2, tf5)
|
893 |
+
assert f3.args == (Series(tf1, tf2), tf5, -1)
|
894 |
+
assert f3.sys1 == Series(tf1, tf2)
|
895 |
+
|
896 |
+
f4 = Feedback(tf4, tf6)
|
897 |
+
assert f4.args == (tf4, tf6, -1)
|
898 |
+
assert f4.sys1 == tf4
|
899 |
+
assert f4.var == p
|
900 |
+
|
901 |
+
f5 = Feedback(tf5, TransferFunction(1, 1, s))
|
902 |
+
assert f5.args == (tf5, TransferFunction(1, 1, s), -1)
|
903 |
+
assert f5.var == s
|
904 |
+
assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf.
|
905 |
+
|
906 |
+
f6 = Feedback(TransferFunction(1, 1, p), tf4)
|
907 |
+
assert f6.args == (TransferFunction(1, 1, p), tf4, -1)
|
908 |
+
assert f6.var == p
|
909 |
+
|
910 |
+
f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p))
|
911 |
+
assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1)
|
912 |
+
assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6))
|
913 |
+
|
914 |
+
# denominator can't be a Parallel instance
|
915 |
+
raises(TypeError, lambda: Feedback(tf1, tf2 + tf3))
|
916 |
+
raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3])))
|
917 |
+
raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1))
|
918 |
+
raises(TypeError, lambda: Feedback(1, 1))
|
919 |
+
# raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s)))
|
920 |
+
raises(ValueError, lambda: Feedback(tf2, tf4*tf5))
|
921 |
+
raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1
|
922 |
+
raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero
|
923 |
+
raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var`
|
924 |
+
|
925 |
+
|
926 |
+
def test_Feedback_functions():
|
927 |
+
tf = TransferFunction(1, 1, s)
|
928 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
929 |
+
tf2 = TransferFunction(k, 1, s)
|
930 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
931 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
932 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
933 |
+
tf6 = TransferFunction(s - p, p + s, p)
|
934 |
+
|
935 |
+
assert tf / (tf + tf1) == Feedback(tf, tf1)
|
936 |
+
assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3)
|
937 |
+
assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3)
|
938 |
+
assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf)
|
939 |
+
assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5)
|
940 |
+
assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5))
|
941 |
+
assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6)
|
942 |
+
assert tf5 / (tf + tf5) == Feedback(tf5, tf)
|
943 |
+
|
944 |
+
raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3))
|
945 |
+
raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5)
|
946 |
+
raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4))
|
947 |
+
|
948 |
+
assert Feedback(tf, tf1*tf2*tf3).doit() == \
|
949 |
+
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \
|
950 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
951 |
+
assert Feedback(tf, tf1*tf2*tf3).sensitivity == \
|
952 |
+
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
953 |
+
assert Feedback(tf1, tf2*tf3).doit() == \
|
954 |
+
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \
|
955 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
956 |
+
assert Feedback(tf1, tf2*tf3).sensitivity == \
|
957 |
+
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
958 |
+
assert Feedback(tf1*tf2, tf5).doit() == \
|
959 |
+
TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
|
960 |
+
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
961 |
+
assert Feedback(tf1*tf2, tf5, 1).sensitivity == \
|
962 |
+
1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
963 |
+
assert Feedback(tf4, tf6).doit() == \
|
964 |
+
TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
|
965 |
+
assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \
|
966 |
+
TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
|
967 |
+
assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s)
|
968 |
+
|
969 |
+
assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \
|
970 |
+
TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
|
971 |
+
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
972 |
+
assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \
|
973 |
+
TransferFunction(p, a0*p + p + p**a1 - s, p)
|
974 |
+
|
975 |
+
|
976 |
+
def test_MIMOFeedback_construction():
|
977 |
+
tf1 = TransferFunction(1, s, s)
|
978 |
+
tf2 = TransferFunction(s, s**3 - 1, s)
|
979 |
+
tf3 = TransferFunction(s, s + 1, s)
|
980 |
+
tf4 = TransferFunction(s, s**2 + 1, s)
|
981 |
+
|
982 |
+
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
|
983 |
+
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
|
984 |
+
tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]])
|
985 |
+
|
986 |
+
f1 = MIMOFeedback(tfm_1, tfm_2)
|
987 |
+
assert f1.args == (tfm_1, tfm_2, -1)
|
988 |
+
assert f1.sys1 == tfm_1
|
989 |
+
assert f1.sys2 == tfm_2
|
990 |
+
assert f1.var == s
|
991 |
+
assert f1.sign == -1
|
992 |
+
assert -(-f1) == f1
|
993 |
+
|
994 |
+
f2 = MIMOFeedback(tfm_2, tfm_1, 1)
|
995 |
+
assert f2.args == (tfm_2, tfm_1, 1)
|
996 |
+
assert f2.sys1 == tfm_2
|
997 |
+
assert f2.sys2 == tfm_1
|
998 |
+
assert f2.var == s
|
999 |
+
assert f2.sign == 1
|
1000 |
+
|
1001 |
+
f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2))
|
1002 |
+
assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1)
|
1003 |
+
assert f3.sys1 == tfm_1
|
1004 |
+
assert f3.sys2 == MIMOSeries(tfm_3, tfm_2)
|
1005 |
+
assert f3.var == s
|
1006 |
+
assert f3.sign == -1
|
1007 |
+
|
1008 |
+
mat = Matrix([[1, 1/s], [0, 1]])
|
1009 |
+
sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s)
|
1010 |
+
f4 = MIMOFeedback(sys1, controller)
|
1011 |
+
assert f4.args == (sys1, controller, -1)
|
1012 |
+
assert f4.sys1 == f4.sys2 == sys1
|
1013 |
+
|
1014 |
+
|
1015 |
+
def test_MIMOFeedback_errors():
|
1016 |
+
tf1 = TransferFunction(1, s, s)
|
1017 |
+
tf2 = TransferFunction(s, s**3 - 1, s)
|
1018 |
+
tf3 = TransferFunction(s, s - 1, s)
|
1019 |
+
tf4 = TransferFunction(s, s**2 + 1, s)
|
1020 |
+
tf5 = TransferFunction(1, 1, s)
|
1021 |
+
tf6 = TransferFunction(-1, s - 1, s)
|
1022 |
+
|
1023 |
+
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
|
1024 |
+
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
|
1025 |
+
tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
|
1026 |
+
tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]])
|
1027 |
+
tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]])
|
1028 |
+
# tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I
|
1029 |
+
tfm_6 = TransferFunctionMatrix([[-tf3]])
|
1030 |
+
tfm_7 = TransferFunctionMatrix([[tf3, tf4]])
|
1031 |
+
|
1032 |
+
# Unsupported Types
|
1033 |
+
raises(TypeError, lambda: MIMOFeedback(tf1, tf2))
|
1034 |
+
raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3))
|
1035 |
+
# Shape Errors
|
1036 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1))
|
1037 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7))
|
1038 |
+
# sign not 1/-1
|
1039 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2))
|
1040 |
+
# Non-Invertible Systems
|
1041 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1))
|
1042 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5))
|
1043 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1))
|
1044 |
+
# Variable not same in both the systems
|
1045 |
+
tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p)
|
1046 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1))
|
1047 |
+
|
1048 |
+
|
1049 |
+
def test_MIMOFeedback_functions():
|
1050 |
+
tf1 = TransferFunction(1, s, s)
|
1051 |
+
tf2 = TransferFunction(s, s - 1, s)
|
1052 |
+
tf3 = TransferFunction(1, 1, s)
|
1053 |
+
tf4 = TransferFunction(-1, s - 1, s)
|
1054 |
+
|
1055 |
+
tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
|
1056 |
+
tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]])
|
1057 |
+
tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]])
|
1058 |
+
tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]])
|
1059 |
+
|
1060 |
+
# sensitivity, doit(), rewrite()
|
1061 |
+
F_1 = MIMOFeedback(tfm_2, tfm_3)
|
1062 |
+
F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1)
|
1063 |
+
|
1064 |
+
assert F_1.sensitivity == Matrix([[S.Half, 0], [0, S.Half]])
|
1065 |
+
assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1),
|
1066 |
+
(2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]])
|
1067 |
+
|
1068 |
+
assert F_1.doit() == \
|
1069 |
+
TransferFunctionMatrix(((TransferFunction(1, 2*s, s),
|
1070 |
+
TransferFunction(1, 2, s)), (TransferFunction(1, 2, s),
|
1071 |
+
TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix)
|
1072 |
+
assert F_2.doit(cancel=False, expand=True) == \
|
1073 |
+
TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s),
|
1074 |
+
TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
1075 |
+
assert F_2.doit(cancel=False) == \
|
1076 |
+
TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \
|
1077 |
+
(-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
|
1078 |
+
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
1079 |
+
assert F_2.doit() == \
|
1080 |
+
TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s),
|
1081 |
+
TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s))))
|
1082 |
+
assert F_2.doit(expand=True) == \
|
1083 |
+
TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
|
1084 |
+
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
1085 |
+
|
1086 |
+
assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating.
|
1087 |
+
|
1088 |
+
|
1089 |
+
def test_TransferFunctionMatrix_construction():
|
1090 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
1091 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
1092 |
+
|
1093 |
+
tfm3_ = TransferFunctionMatrix([[-TF3]])
|
1094 |
+
assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1)
|
1095 |
+
assert tfm3_.args == Tuple(Tuple(Tuple(-TF3)))
|
1096 |
+
assert tfm3_.var == s
|
1097 |
+
|
1098 |
+
tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]])
|
1099 |
+
assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2)
|
1100 |
+
assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5)))
|
1101 |
+
assert tfm5.var == s
|
1102 |
+
|
1103 |
+
tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]])
|
1104 |
+
assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2)
|
1105 |
+
assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2)))
|
1106 |
+
assert tfm7.var == s
|
1107 |
+
|
1108 |
+
# all transfer functions will use the same complex variable. tf4 uses 'p'.
|
1109 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]]))
|
1110 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]]))
|
1111 |
+
|
1112 |
+
# length of all the lists in the TFM should be equal.
|
1113 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]]))
|
1114 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]]))
|
1115 |
+
|
1116 |
+
# lists should only support transfer functions in them.
|
1117 |
+
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]]))
|
1118 |
+
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]]))
|
1119 |
+
|
1120 |
+
# `arg` should strictly be nested list of TransferFunction
|
1121 |
+
raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5]))
|
1122 |
+
raises(ValueError, lambda: TransferFunctionMatrix([TF1]))
|
1123 |
+
|
1124 |
+
def test_TransferFunctionMatrix_functions():
|
1125 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
1126 |
+
|
1127 |
+
# Classmethod (from_matrix)
|
1128 |
+
|
1129 |
+
mat_1 = ImmutableMatrix([
|
1130 |
+
[s*(s + 1)*(s - 3)/(s**4 + 1), 2],
|
1131 |
+
[p, p*(s + 1)/(s*(s**1 + 1))]
|
1132 |
+
])
|
1133 |
+
mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]])
|
1134 |
+
mat_3 = ImmutableMatrix([[1, 2], [3, 4]])
|
1135 |
+
assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \
|
1136 |
+
TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)],
|
1137 |
+
[TransferFunction(p, 1, s), TransferFunction(p, s, s)]])
|
1138 |
+
assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \
|
1139 |
+
TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]])
|
1140 |
+
assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \
|
1141 |
+
TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)],
|
1142 |
+
[TransferFunction(3, 1, p), TransferFunction(4, 1, p)]])
|
1143 |
+
|
1144 |
+
# Negating a TFM
|
1145 |
+
|
1146 |
+
tfm1 = TransferFunctionMatrix([[TF1], [TF2]])
|
1147 |
+
assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]])
|
1148 |
+
|
1149 |
+
tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]])
|
1150 |
+
assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]])
|
1151 |
+
|
1152 |
+
# subs()
|
1153 |
+
|
1154 |
+
H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s)
|
1155 |
+
H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]])
|
1156 |
+
assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
|
1157 |
+
assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
|
1158 |
+
assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var`
|
1159 |
+
assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]])
|
1160 |
+
assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]])
|
1161 |
+
assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]])
|
1162 |
+
assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]])
|
1163 |
+
|
1164 |
+
# transpose()
|
1165 |
+
|
1166 |
+
assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]])
|
1167 |
+
assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]])
|
1168 |
+
assert H_1.transpose().transpose() == H_1
|
1169 |
+
assert H_2.transpose().transpose() == H_2
|
1170 |
+
|
1171 |
+
# elem_poles()
|
1172 |
+
|
1173 |
+
assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []],
|
1174 |
+
[[], [0]]]
|
1175 |
+
assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]]
|
1176 |
+
assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]],
|
1177 |
+
[[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]]
|
1178 |
+
|
1179 |
+
# elem_zeros()
|
1180 |
+
|
1181 |
+
assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]]
|
1182 |
+
assert H_2.elem_zeros() == [[[0], [0]]]
|
1183 |
+
assert tfm2.elem_zeros() == [[[], [], [a2*p]],
|
1184 |
+
[[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]]
|
1185 |
+
|
1186 |
+
# doit()
|
1187 |
+
|
1188 |
+
H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]])
|
1189 |
+
H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]])
|
1190 |
+
|
1191 |
+
assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]])
|
1192 |
+
assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]])
|
1193 |
+
|
1194 |
+
# _flat()
|
1195 |
+
|
1196 |
+
assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)]
|
1197 |
+
assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)]
|
1198 |
+
assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]
|
1199 |
+
assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]
|
1200 |
+
|
1201 |
+
# evalf()
|
1202 |
+
|
1203 |
+
assert H_1.evalf() == \
|
1204 |
+
TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s))))
|
1205 |
+
assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \
|
1206 |
+
TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s),
|
1207 |
+
TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),))
|
1208 |
+
|
1209 |
+
# simplify()
|
1210 |
+
|
1211 |
+
H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s),
|
1212 |
+
TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]])
|
1213 |
+
|
1214 |
+
assert H_5.simplify() == simplify(H_5) == \
|
1215 |
+
TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),))
|
1216 |
+
|
1217 |
+
# expand()
|
1218 |
+
|
1219 |
+
assert (H_1.expand()
|
1220 |
+
== TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)),
|
1221 |
+
(TransferFunction(p, 1, s), TransferFunction(p, s, s)))))
|
1222 |
+
assert H_5.expand() == \
|
1223 |
+
TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
|
1224 |
+
|
1225 |
+
def test_TransferFunction_bilinear():
|
1226 |
+
# simple transfer function, e.g. ohms law
|
1227 |
+
tf = TransferFunction(1, a*s+b, s)
|
1228 |
+
numZ, denZ = bilinear(tf, T)
|
1229 |
+
# discretized transfer function with coefs from tf.bilinear()
|
1230 |
+
tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
|
1231 |
+
# corresponding tf with manually calculated coefs
|
1232 |
+
tf_test_manual = TransferFunction(s*T+T, s*(T*b+2*a)+T*b-2*a, s)
|
1233 |
+
|
1234 |
+
assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
|
1235 |
+
|
1236 |
+
def test_TransferFunction_backward_diff():
|
1237 |
+
# simple transfer function, e.g. ohms law
|
1238 |
+
tf = TransferFunction(1, a*s+b, s)
|
1239 |
+
numZ, denZ = backward_diff(tf, T)
|
1240 |
+
# discretized transfer function with coefs from tf.bilinear()
|
1241 |
+
tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
|
1242 |
+
# corresponding tf with manually calculated coefs
|
1243 |
+
tf_test_manual = TransferFunction(s*T, s*(T*b+a)-a, s)
|
1244 |
+
|
1245 |
+
assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__init__.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
'vector',
|
3 |
+
|
4 |
+
'CoordinateSym', 'ReferenceFrame', 'Dyadic', 'Vector', 'Point', 'cross',
|
5 |
+
'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations',
|
6 |
+
'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint',
|
7 |
+
'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting', 'curl',
|
8 |
+
'divergence', 'gradient', 'is_conservative', 'is_solenoidal',
|
9 |
+
'scalar_potential', 'scalar_potential_difference',
|
10 |
+
|
11 |
+
'KanesMethod',
|
12 |
+
|
13 |
+
'RigidBody',
|
14 |
+
|
15 |
+
'inertia', 'inertia_of_point_mass', 'linear_momentum', 'angular_momentum',
|
16 |
+
'kinetic_energy', 'potential_energy', 'Lagrangian', 'mechanics_printing',
|
17 |
+
'mprint', 'msprint', 'mpprint', 'mlatex', 'msubs', 'find_dynamicsymbols',
|
18 |
+
|
19 |
+
'Particle',
|
20 |
+
|
21 |
+
'LagrangesMethod',
|
22 |
+
|
23 |
+
'Linearizer',
|
24 |
+
|
25 |
+
'Body',
|
26 |
+
|
27 |
+
'SymbolicSystem',
|
28 |
+
|
29 |
+
'PinJoint', 'PrismaticJoint', 'CylindricalJoint', 'PlanarJoint',
|
30 |
+
'SphericalJoint', 'WeldJoint',
|
31 |
+
|
32 |
+
'JointsMethod'
|
33 |
+
]
|
34 |
+
|
35 |
+
from sympy.physics import vector
|
36 |
+
|
37 |
+
from sympy.physics.vector import (CoordinateSym, ReferenceFrame, Dyadic, Vector, Point,
|
38 |
+
cross, dot, express, time_derivative, outer, kinematic_equations,
|
39 |
+
get_motion_params, partial_velocity, dynamicsymbols, vprint,
|
40 |
+
vsstrrepr, vsprint, vpprint, vlatex, init_vprinting, curl, divergence,
|
41 |
+
gradient, is_conservative, is_solenoidal, scalar_potential,
|
42 |
+
scalar_potential_difference)
|
43 |
+
|
44 |
+
from .kane import KanesMethod
|
45 |
+
|
46 |
+
from .rigidbody import RigidBody
|
47 |
+
|
48 |
+
from .functions import (inertia, inertia_of_point_mass, linear_momentum,
|
49 |
+
angular_momentum, kinetic_energy, potential_energy, Lagrangian,
|
50 |
+
mechanics_printing, mprint, msprint, mpprint, mlatex, msubs,
|
51 |
+
find_dynamicsymbols)
|
52 |
+
|
53 |
+
from .particle import Particle
|
54 |
+
|
55 |
+
from .lagrange import LagrangesMethod
|
56 |
+
|
57 |
+
from .linearize import Linearizer
|
58 |
+
|
59 |
+
from .body import Body
|
60 |
+
|
61 |
+
from .system import SymbolicSystem
|
62 |
+
|
63 |
+
from .jointsmethod import JointsMethod
|
64 |
+
|
65 |
+
from .joint import (PinJoint, PrismaticJoint, CylindricalJoint, PlanarJoint,
|
66 |
+
SphericalJoint, WeldJoint)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/body.cpython-310.pyc
ADDED
Binary file (18.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (23.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/joint.cpython-310.pyc
ADDED
Binary file (79.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/jointsmethod.cpython-310.pyc
ADDED
Binary file (8.77 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/kane.cpython-310.pyc
ADDED
Binary file (25.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/lagrange.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/linearize.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/method.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/models.cpython-310.pyc
ADDED
Binary file (5.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/particle.cpython-310.pyc
ADDED
Binary file (8.46 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/rigidbody.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/system.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/body.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.backend import Symbol
|
2 |
+
from sympy.physics.vector import Point, Vector, ReferenceFrame, Dyadic
|
3 |
+
from sympy.physics.mechanics import RigidBody, Particle, inertia
|
4 |
+
|
5 |
+
__all__ = ['Body']
|
6 |
+
|
7 |
+
|
8 |
+
# XXX: We use type:ignore because the classes RigidBody and Particle have
|
9 |
+
# inconsistent parallel axis methods that take different numbers of arguments.
|
10 |
+
class Body(RigidBody, Particle): # type: ignore
|
11 |
+
"""
|
12 |
+
Body is a common representation of either a RigidBody or a Particle SymPy
|
13 |
+
object depending on what is passed in during initialization. If a mass is
|
14 |
+
passed in and central_inertia is left as None, the Particle object is
|
15 |
+
created. Otherwise a RigidBody object will be created.
|
16 |
+
|
17 |
+
Explanation
|
18 |
+
===========
|
19 |
+
|
20 |
+
The attributes that Body possesses will be the same as a Particle instance
|
21 |
+
or a Rigid Body instance depending on which was created. Additional
|
22 |
+
attributes are listed below.
|
23 |
+
|
24 |
+
Attributes
|
25 |
+
==========
|
26 |
+
|
27 |
+
name : string
|
28 |
+
The body's name
|
29 |
+
masscenter : Point
|
30 |
+
The point which represents the center of mass of the rigid body
|
31 |
+
frame : ReferenceFrame
|
32 |
+
The reference frame which the body is fixed in
|
33 |
+
mass : Sympifyable
|
34 |
+
The body's mass
|
35 |
+
inertia : (Dyadic, Point)
|
36 |
+
The body's inertia around its center of mass. This attribute is specific
|
37 |
+
to the rigid body form of Body and is left undefined for the Particle
|
38 |
+
form
|
39 |
+
loads : iterable
|
40 |
+
This list contains information on the different loads acting on the
|
41 |
+
Body. Forces are listed as a (point, vector) tuple and torques are
|
42 |
+
listed as (reference frame, vector) tuples.
|
43 |
+
|
44 |
+
Parameters
|
45 |
+
==========
|
46 |
+
|
47 |
+
name : String
|
48 |
+
Defines the name of the body. It is used as the base for defining
|
49 |
+
body specific properties.
|
50 |
+
masscenter : Point, optional
|
51 |
+
A point that represents the center of mass of the body or particle.
|
52 |
+
If no point is given, a point is generated.
|
53 |
+
mass : Sympifyable, optional
|
54 |
+
A Sympifyable object which represents the mass of the body. If no
|
55 |
+
mass is passed, one is generated.
|
56 |
+
frame : ReferenceFrame, optional
|
57 |
+
The ReferenceFrame that represents the reference frame of the body.
|
58 |
+
If no frame is given, a frame is generated.
|
59 |
+
central_inertia : Dyadic, optional
|
60 |
+
Central inertia dyadic of the body. If none is passed while creating
|
61 |
+
RigidBody, a default inertia is generated.
|
62 |
+
|
63 |
+
Examples
|
64 |
+
========
|
65 |
+
|
66 |
+
Default behaviour. This results in the creation of a RigidBody object for
|
67 |
+
which the mass, mass center, frame and inertia attributes are given default
|
68 |
+
values. ::
|
69 |
+
|
70 |
+
>>> from sympy.physics.mechanics import Body
|
71 |
+
>>> body = Body('name_of_body')
|
72 |
+
|
73 |
+
This next example demonstrates the code required to specify all of the
|
74 |
+
values of the Body object. Note this will also create a RigidBody version of
|
75 |
+
the Body object. ::
|
76 |
+
|
77 |
+
>>> from sympy import Symbol
|
78 |
+
>>> from sympy.physics.mechanics import ReferenceFrame, Point, inertia
|
79 |
+
>>> from sympy.physics.mechanics import Body
|
80 |
+
>>> mass = Symbol('mass')
|
81 |
+
>>> masscenter = Point('masscenter')
|
82 |
+
>>> frame = ReferenceFrame('frame')
|
83 |
+
>>> ixx = Symbol('ixx')
|
84 |
+
>>> body_inertia = inertia(frame, ixx, 0, 0)
|
85 |
+
>>> body = Body('name_of_body', masscenter, mass, frame, body_inertia)
|
86 |
+
|
87 |
+
The minimal code required to create a Particle version of the Body object
|
88 |
+
involves simply passing in a name and a mass. ::
|
89 |
+
|
90 |
+
>>> from sympy import Symbol
|
91 |
+
>>> from sympy.physics.mechanics import Body
|
92 |
+
>>> mass = Symbol('mass')
|
93 |
+
>>> body = Body('name_of_body', mass=mass)
|
94 |
+
|
95 |
+
The Particle version of the Body object can also receive a masscenter point
|
96 |
+
and a reference frame, just not an inertia.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, name, masscenter=None, mass=None, frame=None,
|
100 |
+
central_inertia=None):
|
101 |
+
|
102 |
+
self.name = name
|
103 |
+
self._loads = []
|
104 |
+
|
105 |
+
if frame is None:
|
106 |
+
frame = ReferenceFrame(name + '_frame')
|
107 |
+
|
108 |
+
if masscenter is None:
|
109 |
+
masscenter = Point(name + '_masscenter')
|
110 |
+
|
111 |
+
if central_inertia is None and mass is None:
|
112 |
+
ixx = Symbol(name + '_ixx')
|
113 |
+
iyy = Symbol(name + '_iyy')
|
114 |
+
izz = Symbol(name + '_izz')
|
115 |
+
izx = Symbol(name + '_izx')
|
116 |
+
ixy = Symbol(name + '_ixy')
|
117 |
+
iyz = Symbol(name + '_iyz')
|
118 |
+
_inertia = (inertia(frame, ixx, iyy, izz, ixy, iyz, izx),
|
119 |
+
masscenter)
|
120 |
+
else:
|
121 |
+
_inertia = (central_inertia, masscenter)
|
122 |
+
|
123 |
+
if mass is None:
|
124 |
+
_mass = Symbol(name + '_mass')
|
125 |
+
else:
|
126 |
+
_mass = mass
|
127 |
+
|
128 |
+
masscenter.set_vel(frame, 0)
|
129 |
+
|
130 |
+
# If user passes masscenter and mass then a particle is created
|
131 |
+
# otherwise a rigidbody. As a result a body may or may not have inertia.
|
132 |
+
if central_inertia is None and mass is not None:
|
133 |
+
self.frame = frame
|
134 |
+
self.masscenter = masscenter
|
135 |
+
Particle.__init__(self, name, masscenter, _mass)
|
136 |
+
self._central_inertia = Dyadic(0)
|
137 |
+
else:
|
138 |
+
RigidBody.__init__(self, name, masscenter, frame, _mass, _inertia)
|
139 |
+
|
140 |
+
@property
|
141 |
+
def loads(self):
|
142 |
+
return self._loads
|
143 |
+
|
144 |
+
@property
|
145 |
+
def x(self):
|
146 |
+
"""The basis Vector for the Body, in the x direction."""
|
147 |
+
return self.frame.x
|
148 |
+
|
149 |
+
@property
|
150 |
+
def y(self):
|
151 |
+
"""The basis Vector for the Body, in the y direction."""
|
152 |
+
return self.frame.y
|
153 |
+
|
154 |
+
@property
|
155 |
+
def z(self):
|
156 |
+
"""The basis Vector for the Body, in the z direction."""
|
157 |
+
return self.frame.z
|
158 |
+
|
159 |
+
@property
|
160 |
+
def inertia(self):
|
161 |
+
"""The body's inertia about a point; stored as (Dyadic, Point)."""
|
162 |
+
if self.is_rigidbody:
|
163 |
+
return RigidBody.inertia.fget(self)
|
164 |
+
return (self.central_inertia, self.masscenter)
|
165 |
+
|
166 |
+
@inertia.setter
|
167 |
+
def inertia(self, I):
|
168 |
+
RigidBody.inertia.fset(self, I)
|
169 |
+
|
170 |
+
@property
|
171 |
+
def is_rigidbody(self):
|
172 |
+
if hasattr(self, '_inertia'):
|
173 |
+
return True
|
174 |
+
return False
|
175 |
+
|
176 |
+
def kinetic_energy(self, frame):
|
177 |
+
"""Kinetic energy of the body.
|
178 |
+
|
179 |
+
Parameters
|
180 |
+
==========
|
181 |
+
|
182 |
+
frame : ReferenceFrame or Body
|
183 |
+
The Body's angular velocity and the velocity of it's mass
|
184 |
+
center are typically defined with respect to an inertial frame but
|
185 |
+
any relevant frame in which the velocities are known can be supplied.
|
186 |
+
|
187 |
+
Examples
|
188 |
+
========
|
189 |
+
|
190 |
+
>>> from sympy.physics.mechanics import Body, ReferenceFrame, Point
|
191 |
+
>>> from sympy import symbols
|
192 |
+
>>> m, v, r, omega = symbols('m v r omega')
|
193 |
+
>>> N = ReferenceFrame('N')
|
194 |
+
>>> O = Point('O')
|
195 |
+
>>> P = Body('P', masscenter=O, mass=m)
|
196 |
+
>>> P.masscenter.set_vel(N, v * N.y)
|
197 |
+
>>> P.kinetic_energy(N)
|
198 |
+
m*v**2/2
|
199 |
+
|
200 |
+
>>> N = ReferenceFrame('N')
|
201 |
+
>>> b = ReferenceFrame('b')
|
202 |
+
>>> b.set_ang_vel(N, omega * b.x)
|
203 |
+
>>> P = Point('P')
|
204 |
+
>>> P.set_vel(N, v * N.x)
|
205 |
+
>>> B = Body('B', masscenter=P, frame=b)
|
206 |
+
>>> B.kinetic_energy(N)
|
207 |
+
B_ixx*omega**2/2 + B_mass*v**2/2
|
208 |
+
|
209 |
+
See Also
|
210 |
+
========
|
211 |
+
|
212 |
+
sympy.physics.mechanics : Particle, RigidBody
|
213 |
+
|
214 |
+
"""
|
215 |
+
if isinstance(frame, Body):
|
216 |
+
frame = Body.frame
|
217 |
+
if self.is_rigidbody:
|
218 |
+
return RigidBody(self.name, self.masscenter, self.frame, self.mass,
|
219 |
+
(self.central_inertia, self.masscenter)).kinetic_energy(frame)
|
220 |
+
return Particle(self.name, self.masscenter, self.mass).kinetic_energy(frame)
|
221 |
+
|
222 |
+
def apply_force(self, force, point=None, reaction_body=None, reaction_point=None):
|
223 |
+
"""Add force to the body(s).
|
224 |
+
|
225 |
+
Explanation
|
226 |
+
===========
|
227 |
+
|
228 |
+
Applies the force on self or equal and oppposite forces on
|
229 |
+
self and other body if both are given on the desried point on the bodies.
|
230 |
+
The force applied on other body is taken opposite of self, i.e, -force.
|
231 |
+
|
232 |
+
Parameters
|
233 |
+
==========
|
234 |
+
|
235 |
+
force: Vector
|
236 |
+
The force to be applied.
|
237 |
+
point: Point, optional
|
238 |
+
The point on self on which force is applied.
|
239 |
+
By default self's masscenter.
|
240 |
+
reaction_body: Body, optional
|
241 |
+
Second body on which equal and opposite force
|
242 |
+
is to be applied.
|
243 |
+
reaction_point : Point, optional
|
244 |
+
The point on other body on which equal and opposite
|
245 |
+
force is applied. By default masscenter of other body.
|
246 |
+
|
247 |
+
Example
|
248 |
+
=======
|
249 |
+
|
250 |
+
>>> from sympy import symbols
|
251 |
+
>>> from sympy.physics.mechanics import Body, Point, dynamicsymbols
|
252 |
+
>>> m, g = symbols('m g')
|
253 |
+
>>> B = Body('B')
|
254 |
+
>>> force1 = m*g*B.z
|
255 |
+
>>> B.apply_force(force1) #Applying force on B's masscenter
|
256 |
+
>>> B.loads
|
257 |
+
[(B_masscenter, g*m*B_frame.z)]
|
258 |
+
|
259 |
+
We can also remove some part of force from any point on the body by
|
260 |
+
adding the opposite force to the body on that point.
|
261 |
+
|
262 |
+
>>> f1, f2 = dynamicsymbols('f1 f2')
|
263 |
+
>>> P = Point('P') #Considering point P on body B
|
264 |
+
>>> B.apply_force(f1*B.x + f2*B.y, P)
|
265 |
+
>>> B.loads
|
266 |
+
[(B_masscenter, g*m*B_frame.z), (P, f1(t)*B_frame.x + f2(t)*B_frame.y)]
|
267 |
+
|
268 |
+
Let's remove f1 from point P on body B.
|
269 |
+
|
270 |
+
>>> B.apply_force(-f1*B.x, P)
|
271 |
+
>>> B.loads
|
272 |
+
[(B_masscenter, g*m*B_frame.z), (P, f2(t)*B_frame.y)]
|
273 |
+
|
274 |
+
To further demonstrate the use of ``apply_force`` attribute,
|
275 |
+
consider two bodies connected through a spring.
|
276 |
+
|
277 |
+
>>> from sympy.physics.mechanics import Body, dynamicsymbols
|
278 |
+
>>> N = Body('N') #Newtonion Frame
|
279 |
+
>>> x = dynamicsymbols('x')
|
280 |
+
>>> B1 = Body('B1')
|
281 |
+
>>> B2 = Body('B2')
|
282 |
+
>>> spring_force = x*N.x
|
283 |
+
|
284 |
+
Now let's apply equal and opposite spring force to the bodies.
|
285 |
+
|
286 |
+
>>> P1 = Point('P1')
|
287 |
+
>>> P2 = Point('P2')
|
288 |
+
>>> B1.apply_force(spring_force, point=P1, reaction_body=B2, reaction_point=P2)
|
289 |
+
|
290 |
+
We can check the loads(forces) applied to bodies now.
|
291 |
+
|
292 |
+
>>> B1.loads
|
293 |
+
[(P1, x(t)*N_frame.x)]
|
294 |
+
>>> B2.loads
|
295 |
+
[(P2, - x(t)*N_frame.x)]
|
296 |
+
|
297 |
+
Notes
|
298 |
+
=====
|
299 |
+
|
300 |
+
If a new force is applied to a body on a point which already has some
|
301 |
+
force applied on it, then the new force is added to the already applied
|
302 |
+
force on that point.
|
303 |
+
|
304 |
+
"""
|
305 |
+
|
306 |
+
if not isinstance(point, Point):
|
307 |
+
if point is None:
|
308 |
+
point = self.masscenter # masscenter
|
309 |
+
else:
|
310 |
+
raise TypeError("Force must be applied to a point on the body.")
|
311 |
+
if not isinstance(force, Vector):
|
312 |
+
raise TypeError("Force must be a vector.")
|
313 |
+
|
314 |
+
if reaction_body is not None:
|
315 |
+
reaction_body.apply_force(-force, point=reaction_point)
|
316 |
+
|
317 |
+
for load in self._loads:
|
318 |
+
if point in load:
|
319 |
+
force += load[1]
|
320 |
+
self._loads.remove(load)
|
321 |
+
break
|
322 |
+
|
323 |
+
self._loads.append((point, force))
|
324 |
+
|
325 |
+
def apply_torque(self, torque, reaction_body=None):
|
326 |
+
"""Add torque to the body(s).
|
327 |
+
|
328 |
+
Explanation
|
329 |
+
===========
|
330 |
+
|
331 |
+
Applies the torque on self or equal and oppposite torquess on
|
332 |
+
self and other body if both are given.
|
333 |
+
The torque applied on other body is taken opposite of self,
|
334 |
+
i.e, -torque.
|
335 |
+
|
336 |
+
Parameters
|
337 |
+
==========
|
338 |
+
|
339 |
+
torque: Vector
|
340 |
+
The torque to be applied.
|
341 |
+
reaction_body: Body, optional
|
342 |
+
Second body on which equal and opposite torque
|
343 |
+
is to be applied.
|
344 |
+
|
345 |
+
Example
|
346 |
+
=======
|
347 |
+
|
348 |
+
>>> from sympy import symbols
|
349 |
+
>>> from sympy.physics.mechanics import Body, dynamicsymbols
|
350 |
+
>>> t = symbols('t')
|
351 |
+
>>> B = Body('B')
|
352 |
+
>>> torque1 = t*B.z
|
353 |
+
>>> B.apply_torque(torque1)
|
354 |
+
>>> B.loads
|
355 |
+
[(B_frame, t*B_frame.z)]
|
356 |
+
|
357 |
+
We can also remove some part of torque from the body by
|
358 |
+
adding the opposite torque to the body.
|
359 |
+
|
360 |
+
>>> t1, t2 = dynamicsymbols('t1 t2')
|
361 |
+
>>> B.apply_torque(t1*B.x + t2*B.y)
|
362 |
+
>>> B.loads
|
363 |
+
[(B_frame, t1(t)*B_frame.x + t2(t)*B_frame.y + t*B_frame.z)]
|
364 |
+
|
365 |
+
Let's remove t1 from Body B.
|
366 |
+
|
367 |
+
>>> B.apply_torque(-t1*B.x)
|
368 |
+
>>> B.loads
|
369 |
+
[(B_frame, t2(t)*B_frame.y + t*B_frame.z)]
|
370 |
+
|
371 |
+
To further demonstrate the use, let us consider two bodies such that
|
372 |
+
a torque `T` is acting on one body, and `-T` on the other.
|
373 |
+
|
374 |
+
>>> from sympy.physics.mechanics import Body, dynamicsymbols
|
375 |
+
>>> N = Body('N') #Newtonion frame
|
376 |
+
>>> B1 = Body('B1')
|
377 |
+
>>> B2 = Body('B2')
|
378 |
+
>>> v = dynamicsymbols('v')
|
379 |
+
>>> T = v*N.y #Torque
|
380 |
+
|
381 |
+
Now let's apply equal and opposite torque to the bodies.
|
382 |
+
|
383 |
+
>>> B1.apply_torque(T, B2)
|
384 |
+
|
385 |
+
We can check the loads (torques) applied to bodies now.
|
386 |
+
|
387 |
+
>>> B1.loads
|
388 |
+
[(B1_frame, v(t)*N_frame.y)]
|
389 |
+
>>> B2.loads
|
390 |
+
[(B2_frame, - v(t)*N_frame.y)]
|
391 |
+
|
392 |
+
Notes
|
393 |
+
=====
|
394 |
+
|
395 |
+
If a new torque is applied on body which already has some torque applied on it,
|
396 |
+
then the new torque is added to the previous torque about the body's frame.
|
397 |
+
|
398 |
+
"""
|
399 |
+
|
400 |
+
if not isinstance(torque, Vector):
|
401 |
+
raise TypeError("A Vector must be supplied to add torque.")
|
402 |
+
|
403 |
+
if reaction_body is not None:
|
404 |
+
reaction_body.apply_torque(-torque)
|
405 |
+
|
406 |
+
for load in self._loads:
|
407 |
+
if self.frame in load:
|
408 |
+
torque += load[1]
|
409 |
+
self._loads.remove(load)
|
410 |
+
break
|
411 |
+
self._loads.append((self.frame, torque))
|
412 |
+
|
413 |
+
def clear_loads(self):
|
414 |
+
"""
|
415 |
+
Clears the Body's loads list.
|
416 |
+
|
417 |
+
Example
|
418 |
+
=======
|
419 |
+
|
420 |
+
>>> from sympy.physics.mechanics import Body
|
421 |
+
>>> B = Body('B')
|
422 |
+
>>> force = B.x + B.y
|
423 |
+
>>> B.apply_force(force)
|
424 |
+
>>> B.loads
|
425 |
+
[(B_masscenter, B_frame.x + B_frame.y)]
|
426 |
+
>>> B.clear_loads()
|
427 |
+
>>> B.loads
|
428 |
+
[]
|
429 |
+
|
430 |
+
"""
|
431 |
+
|
432 |
+
self._loads = []
|
433 |
+
|
434 |
+
def remove_load(self, about=None):
|
435 |
+
"""
|
436 |
+
Remove load about a point or frame.
|
437 |
+
|
438 |
+
Parameters
|
439 |
+
==========
|
440 |
+
|
441 |
+
about : Point or ReferenceFrame, optional
|
442 |
+
The point about which force is applied,
|
443 |
+
and is to be removed.
|
444 |
+
If about is None, then the torque about
|
445 |
+
self's frame is removed.
|
446 |
+
|
447 |
+
Example
|
448 |
+
=======
|
449 |
+
|
450 |
+
>>> from sympy.physics.mechanics import Body, Point
|
451 |
+
>>> B = Body('B')
|
452 |
+
>>> P = Point('P')
|
453 |
+
>>> f1 = B.x
|
454 |
+
>>> f2 = B.y
|
455 |
+
>>> B.apply_force(f1)
|
456 |
+
>>> B.apply_force(f2, P)
|
457 |
+
>>> B.loads
|
458 |
+
[(B_masscenter, B_frame.x), (P, B_frame.y)]
|
459 |
+
|
460 |
+
>>> B.remove_load(P)
|
461 |
+
>>> B.loads
|
462 |
+
[(B_masscenter, B_frame.x)]
|
463 |
+
|
464 |
+
"""
|
465 |
+
|
466 |
+
if about is not None:
|
467 |
+
if not isinstance(about, Point):
|
468 |
+
raise TypeError('Load is applied about Point or ReferenceFrame.')
|
469 |
+
else:
|
470 |
+
about = self.frame
|
471 |
+
|
472 |
+
for load in self._loads:
|
473 |
+
if about in load:
|
474 |
+
self._loads.remove(load)
|
475 |
+
break
|
476 |
+
|
477 |
+
def masscenter_vel(self, body):
|
478 |
+
"""
|
479 |
+
Returns the velocity of the mass center with respect to the provided
|
480 |
+
rigid body or reference frame.
|
481 |
+
|
482 |
+
Parameters
|
483 |
+
==========
|
484 |
+
|
485 |
+
body: Body or ReferenceFrame
|
486 |
+
The rigid body or reference frame to calculate the velocity in.
|
487 |
+
|
488 |
+
Example
|
489 |
+
=======
|
490 |
+
|
491 |
+
>>> from sympy.physics.mechanics import Body
|
492 |
+
>>> A = Body('A')
|
493 |
+
>>> B = Body('B')
|
494 |
+
>>> A.masscenter.set_vel(B.frame, 5*B.frame.x)
|
495 |
+
>>> A.masscenter_vel(B)
|
496 |
+
5*B_frame.x
|
497 |
+
>>> A.masscenter_vel(B.frame)
|
498 |
+
5*B_frame.x
|
499 |
+
|
500 |
+
"""
|
501 |
+
|
502 |
+
if isinstance(body, ReferenceFrame):
|
503 |
+
frame=body
|
504 |
+
elif isinstance(body, Body):
|
505 |
+
frame = body.frame
|
506 |
+
return self.masscenter.vel(frame)
|
507 |
+
|
508 |
+
def ang_vel_in(self, body):
|
509 |
+
"""
|
510 |
+
Returns this body's angular velocity with respect to the provided
|
511 |
+
rigid body or reference frame.
|
512 |
+
|
513 |
+
Parameters
|
514 |
+
==========
|
515 |
+
|
516 |
+
body: Body or ReferenceFrame
|
517 |
+
The rigid body or reference frame to calculate the angular velocity in.
|
518 |
+
|
519 |
+
Example
|
520 |
+
=======
|
521 |
+
|
522 |
+
>>> from sympy.physics.mechanics import Body, ReferenceFrame
|
523 |
+
>>> A = Body('A')
|
524 |
+
>>> N = ReferenceFrame('N')
|
525 |
+
>>> B = Body('B', frame=N)
|
526 |
+
>>> A.frame.set_ang_vel(N, 5*N.x)
|
527 |
+
>>> A.ang_vel_in(B)
|
528 |
+
5*N.x
|
529 |
+
>>> A.ang_vel_in(N)
|
530 |
+
5*N.x
|
531 |
+
|
532 |
+
"""
|
533 |
+
|
534 |
+
if isinstance(body, ReferenceFrame):
|
535 |
+
frame=body
|
536 |
+
elif isinstance(body, Body):
|
537 |
+
frame = body.frame
|
538 |
+
return self.frame.ang_vel_in(frame)
|
539 |
+
|
540 |
+
def dcm(self, body):
|
541 |
+
"""
|
542 |
+
Returns the direction cosine matrix of this body relative to the
|
543 |
+
provided rigid body or reference frame.
|
544 |
+
|
545 |
+
Parameters
|
546 |
+
==========
|
547 |
+
|
548 |
+
body: Body or ReferenceFrame
|
549 |
+
The rigid body or reference frame to calculate the dcm.
|
550 |
+
|
551 |
+
Example
|
552 |
+
=======
|
553 |
+
|
554 |
+
>>> from sympy.physics.mechanics import Body
|
555 |
+
>>> A = Body('A')
|
556 |
+
>>> B = Body('B')
|
557 |
+
>>> A.frame.orient_axis(B.frame, B.frame.x, 5)
|
558 |
+
>>> A.dcm(B)
|
559 |
+
Matrix([
|
560 |
+
[1, 0, 0],
|
561 |
+
[0, cos(5), sin(5)],
|
562 |
+
[0, -sin(5), cos(5)]])
|
563 |
+
>>> A.dcm(B.frame)
|
564 |
+
Matrix([
|
565 |
+
[1, 0, 0],
|
566 |
+
[0, cos(5), sin(5)],
|
567 |
+
[0, -sin(5), cos(5)]])
|
568 |
+
|
569 |
+
"""
|
570 |
+
|
571 |
+
if isinstance(body, ReferenceFrame):
|
572 |
+
frame=body
|
573 |
+
elif isinstance(body, Body):
|
574 |
+
frame = body.frame
|
575 |
+
return self.frame.dcm(frame)
|
576 |
+
|
577 |
+
def parallel_axis(self, point, frame=None):
|
578 |
+
"""Returns the inertia dyadic of the body with respect to another
|
579 |
+
point.
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
==========
|
583 |
+
|
584 |
+
point : sympy.physics.vector.Point
|
585 |
+
The point to express the inertia dyadic about.
|
586 |
+
frame : sympy.physics.vector.ReferenceFrame
|
587 |
+
The reference frame used to construct the dyadic.
|
588 |
+
|
589 |
+
Returns
|
590 |
+
=======
|
591 |
+
|
592 |
+
inertia : sympy.physics.vector.Dyadic
|
593 |
+
The inertia dyadic of the rigid body expressed about the provided
|
594 |
+
point.
|
595 |
+
|
596 |
+
Example
|
597 |
+
=======
|
598 |
+
|
599 |
+
>>> from sympy.physics.mechanics import Body
|
600 |
+
>>> A = Body('A')
|
601 |
+
>>> P = A.masscenter.locatenew('point', 3 * A.x + 5 * A.y)
|
602 |
+
>>> A.parallel_axis(P).to_matrix(A.frame)
|
603 |
+
Matrix([
|
604 |
+
[A_ixx + 25*A_mass, A_ixy - 15*A_mass, A_izx],
|
605 |
+
[A_ixy - 15*A_mass, A_iyy + 9*A_mass, A_iyz],
|
606 |
+
[ A_izx, A_iyz, A_izz + 34*A_mass]])
|
607 |
+
|
608 |
+
"""
|
609 |
+
if self.is_rigidbody:
|
610 |
+
return RigidBody.parallel_axis(self, point, frame)
|
611 |
+
return Particle.parallel_axis(self, point, frame)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/functions.py
ADDED
@@ -0,0 +1,779 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.utilities import dict_merge
|
2 |
+
from sympy.utilities.iterables import iterable
|
3 |
+
from sympy.physics.vector import (Dyadic, Vector, ReferenceFrame,
|
4 |
+
Point, dynamicsymbols)
|
5 |
+
from sympy.physics.vector.printing import (vprint, vsprint, vpprint, vlatex,
|
6 |
+
init_vprinting)
|
7 |
+
from sympy.physics.mechanics.particle import Particle
|
8 |
+
from sympy.physics.mechanics.rigidbody import RigidBody
|
9 |
+
from sympy.simplify.simplify import simplify
|
10 |
+
from sympy.core.backend import (Matrix, sympify, Mul, Derivative, sin, cos,
|
11 |
+
tan, AppliedUndef, S)
|
12 |
+
|
13 |
+
__all__ = ['inertia',
|
14 |
+
'inertia_of_point_mass',
|
15 |
+
'linear_momentum',
|
16 |
+
'angular_momentum',
|
17 |
+
'kinetic_energy',
|
18 |
+
'potential_energy',
|
19 |
+
'Lagrangian',
|
20 |
+
'mechanics_printing',
|
21 |
+
'mprint',
|
22 |
+
'msprint',
|
23 |
+
'mpprint',
|
24 |
+
'mlatex',
|
25 |
+
'msubs',
|
26 |
+
'find_dynamicsymbols']
|
27 |
+
|
28 |
+
# These are functions that we've moved and renamed during extracting the
|
29 |
+
# basic vector calculus code from the mechanics packages.
|
30 |
+
|
31 |
+
mprint = vprint
|
32 |
+
msprint = vsprint
|
33 |
+
mpprint = vpprint
|
34 |
+
mlatex = vlatex
|
35 |
+
|
36 |
+
|
37 |
+
def mechanics_printing(**kwargs):
|
38 |
+
"""
|
39 |
+
Initializes time derivative printing for all SymPy objects in
|
40 |
+
mechanics module.
|
41 |
+
"""
|
42 |
+
|
43 |
+
init_vprinting(**kwargs)
|
44 |
+
|
45 |
+
mechanics_printing.__doc__ = init_vprinting.__doc__
|
46 |
+
|
47 |
+
|
48 |
+
def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0):
|
49 |
+
"""Simple way to create inertia Dyadic object.
|
50 |
+
|
51 |
+
Explanation
|
52 |
+
===========
|
53 |
+
|
54 |
+
If you do not know what a Dyadic is, just treat this like the inertia
|
55 |
+
tensor. Then, do the easy thing and define it in a body-fixed frame.
|
56 |
+
|
57 |
+
Parameters
|
58 |
+
==========
|
59 |
+
|
60 |
+
frame : ReferenceFrame
|
61 |
+
The frame the inertia is defined in
|
62 |
+
ixx : Sympifyable
|
63 |
+
the xx element in the inertia dyadic
|
64 |
+
iyy : Sympifyable
|
65 |
+
the yy element in the inertia dyadic
|
66 |
+
izz : Sympifyable
|
67 |
+
the zz element in the inertia dyadic
|
68 |
+
ixy : Sympifyable
|
69 |
+
the xy element in the inertia dyadic
|
70 |
+
iyz : Sympifyable
|
71 |
+
the yz element in the inertia dyadic
|
72 |
+
izx : Sympifyable
|
73 |
+
the zx element in the inertia dyadic
|
74 |
+
|
75 |
+
Examples
|
76 |
+
========
|
77 |
+
|
78 |
+
>>> from sympy.physics.mechanics import ReferenceFrame, inertia
|
79 |
+
>>> N = ReferenceFrame('N')
|
80 |
+
>>> inertia(N, 1, 2, 3)
|
81 |
+
(N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z)
|
82 |
+
|
83 |
+
"""
|
84 |
+
|
85 |
+
if not isinstance(frame, ReferenceFrame):
|
86 |
+
raise TypeError('Need to define the inertia in a frame')
|
87 |
+
ixx = sympify(ixx)
|
88 |
+
ixy = sympify(ixy)
|
89 |
+
iyy = sympify(iyy)
|
90 |
+
iyz = sympify(iyz)
|
91 |
+
izx = sympify(izx)
|
92 |
+
izz = sympify(izz)
|
93 |
+
ol = ixx * (frame.x | frame.x)
|
94 |
+
ol += ixy * (frame.x | frame.y)
|
95 |
+
ol += izx * (frame.x | frame.z)
|
96 |
+
ol += ixy * (frame.y | frame.x)
|
97 |
+
ol += iyy * (frame.y | frame.y)
|
98 |
+
ol += iyz * (frame.y | frame.z)
|
99 |
+
ol += izx * (frame.z | frame.x)
|
100 |
+
ol += iyz * (frame.z | frame.y)
|
101 |
+
ol += izz * (frame.z | frame.z)
|
102 |
+
return ol
|
103 |
+
|
104 |
+
|
105 |
+
def inertia_of_point_mass(mass, pos_vec, frame):
|
106 |
+
"""Inertia dyadic of a point mass relative to point O.
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
==========
|
110 |
+
|
111 |
+
mass : Sympifyable
|
112 |
+
Mass of the point mass
|
113 |
+
pos_vec : Vector
|
114 |
+
Position from point O to point mass
|
115 |
+
frame : ReferenceFrame
|
116 |
+
Reference frame to express the dyadic in
|
117 |
+
|
118 |
+
Examples
|
119 |
+
========
|
120 |
+
|
121 |
+
>>> from sympy import symbols
|
122 |
+
>>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass
|
123 |
+
>>> N = ReferenceFrame('N')
|
124 |
+
>>> r, m = symbols('r m')
|
125 |
+
>>> px = r * N.x
|
126 |
+
>>> inertia_of_point_mass(m, px, N)
|
127 |
+
m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z)
|
128 |
+
|
129 |
+
"""
|
130 |
+
|
131 |
+
return mass * (((frame.x | frame.x) + (frame.y | frame.y) +
|
132 |
+
(frame.z | frame.z)) * (pos_vec & pos_vec) -
|
133 |
+
(pos_vec | pos_vec))
|
134 |
+
|
135 |
+
|
136 |
+
def linear_momentum(frame, *body):
|
137 |
+
"""Linear momentum of the system.
|
138 |
+
|
139 |
+
Explanation
|
140 |
+
===========
|
141 |
+
|
142 |
+
This function returns the linear momentum of a system of Particle's and/or
|
143 |
+
RigidBody's. The linear momentum of a system is equal to the vector sum of
|
144 |
+
the linear momentum of its constituents. Consider a system, S, comprised of
|
145 |
+
a rigid body, A, and a particle, P. The linear momentum of the system, L,
|
146 |
+
is equal to the vector sum of the linear momentum of the particle, L1, and
|
147 |
+
the linear momentum of the rigid body, L2, i.e.
|
148 |
+
|
149 |
+
L = L1 + L2
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
==========
|
153 |
+
|
154 |
+
frame : ReferenceFrame
|
155 |
+
The frame in which linear momentum is desired.
|
156 |
+
body1, body2, body3... : Particle and/or RigidBody
|
157 |
+
The body (or bodies) whose linear momentum is required.
|
158 |
+
|
159 |
+
Examples
|
160 |
+
========
|
161 |
+
|
162 |
+
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
163 |
+
>>> from sympy.physics.mechanics import RigidBody, outer, linear_momentum
|
164 |
+
>>> N = ReferenceFrame('N')
|
165 |
+
>>> P = Point('P')
|
166 |
+
>>> P.set_vel(N, 10 * N.x)
|
167 |
+
>>> Pa = Particle('Pa', P, 1)
|
168 |
+
>>> Ac = Point('Ac')
|
169 |
+
>>> Ac.set_vel(N, 25 * N.y)
|
170 |
+
>>> I = outer(N.x, N.x)
|
171 |
+
>>> A = RigidBody('A', Ac, N, 20, (I, Ac))
|
172 |
+
>>> linear_momentum(N, A, Pa)
|
173 |
+
10*N.x + 500*N.y
|
174 |
+
|
175 |
+
"""
|
176 |
+
|
177 |
+
if not isinstance(frame, ReferenceFrame):
|
178 |
+
raise TypeError('Please specify a valid ReferenceFrame')
|
179 |
+
else:
|
180 |
+
linear_momentum_sys = Vector(0)
|
181 |
+
for e in body:
|
182 |
+
if isinstance(e, (RigidBody, Particle)):
|
183 |
+
linear_momentum_sys += e.linear_momentum(frame)
|
184 |
+
else:
|
185 |
+
raise TypeError('*body must have only Particle or RigidBody')
|
186 |
+
return linear_momentum_sys
|
187 |
+
|
188 |
+
|
189 |
+
def angular_momentum(point, frame, *body):
|
190 |
+
"""Angular momentum of a system.
|
191 |
+
|
192 |
+
Explanation
|
193 |
+
===========
|
194 |
+
|
195 |
+
This function returns the angular momentum of a system of Particle's and/or
|
196 |
+
RigidBody's. The angular momentum of such a system is equal to the vector
|
197 |
+
sum of the angular momentum of its constituents. Consider a system, S,
|
198 |
+
comprised of a rigid body, A, and a particle, P. The angular momentum of
|
199 |
+
the system, H, is equal to the vector sum of the angular momentum of the
|
200 |
+
particle, H1, and the angular momentum of the rigid body, H2, i.e.
|
201 |
+
|
202 |
+
H = H1 + H2
|
203 |
+
|
204 |
+
Parameters
|
205 |
+
==========
|
206 |
+
|
207 |
+
point : Point
|
208 |
+
The point about which angular momentum of the system is desired.
|
209 |
+
frame : ReferenceFrame
|
210 |
+
The frame in which angular momentum is desired.
|
211 |
+
body1, body2, body3... : Particle and/or RigidBody
|
212 |
+
The body (or bodies) whose angular momentum is required.
|
213 |
+
|
214 |
+
Examples
|
215 |
+
========
|
216 |
+
|
217 |
+
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
218 |
+
>>> from sympy.physics.mechanics import RigidBody, outer, angular_momentum
|
219 |
+
>>> N = ReferenceFrame('N')
|
220 |
+
>>> O = Point('O')
|
221 |
+
>>> O.set_vel(N, 0 * N.x)
|
222 |
+
>>> P = O.locatenew('P', 1 * N.x)
|
223 |
+
>>> P.set_vel(N, 10 * N.x)
|
224 |
+
>>> Pa = Particle('Pa', P, 1)
|
225 |
+
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
226 |
+
>>> Ac.set_vel(N, 5 * N.y)
|
227 |
+
>>> a = ReferenceFrame('a')
|
228 |
+
>>> a.set_ang_vel(N, 10 * N.z)
|
229 |
+
>>> I = outer(N.z, N.z)
|
230 |
+
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
|
231 |
+
>>> angular_momentum(O, N, Pa, A)
|
232 |
+
10*N.z
|
233 |
+
|
234 |
+
"""
|
235 |
+
|
236 |
+
if not isinstance(frame, ReferenceFrame):
|
237 |
+
raise TypeError('Please enter a valid ReferenceFrame')
|
238 |
+
if not isinstance(point, Point):
|
239 |
+
raise TypeError('Please specify a valid Point')
|
240 |
+
else:
|
241 |
+
angular_momentum_sys = Vector(0)
|
242 |
+
for e in body:
|
243 |
+
if isinstance(e, (RigidBody, Particle)):
|
244 |
+
angular_momentum_sys += e.angular_momentum(point, frame)
|
245 |
+
else:
|
246 |
+
raise TypeError('*body must have only Particle or RigidBody')
|
247 |
+
return angular_momentum_sys
|
248 |
+
|
249 |
+
|
250 |
+
def kinetic_energy(frame, *body):
|
251 |
+
"""Kinetic energy of a multibody system.
|
252 |
+
|
253 |
+
Explanation
|
254 |
+
===========
|
255 |
+
|
256 |
+
This function returns the kinetic energy of a system of Particle's and/or
|
257 |
+
RigidBody's. The kinetic energy of such a system is equal to the sum of
|
258 |
+
the kinetic energies of its constituents. Consider a system, S, comprising
|
259 |
+
a rigid body, A, and a particle, P. The kinetic energy of the system, T,
|
260 |
+
is equal to the vector sum of the kinetic energy of the particle, T1, and
|
261 |
+
the kinetic energy of the rigid body, T2, i.e.
|
262 |
+
|
263 |
+
T = T1 + T2
|
264 |
+
|
265 |
+
Kinetic energy is a scalar.
|
266 |
+
|
267 |
+
Parameters
|
268 |
+
==========
|
269 |
+
|
270 |
+
frame : ReferenceFrame
|
271 |
+
The frame in which the velocity or angular velocity of the body is
|
272 |
+
defined.
|
273 |
+
body1, body2, body3... : Particle and/or RigidBody
|
274 |
+
The body (or bodies) whose kinetic energy is required.
|
275 |
+
|
276 |
+
Examples
|
277 |
+
========
|
278 |
+
|
279 |
+
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
280 |
+
>>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy
|
281 |
+
>>> N = ReferenceFrame('N')
|
282 |
+
>>> O = Point('O')
|
283 |
+
>>> O.set_vel(N, 0 * N.x)
|
284 |
+
>>> P = O.locatenew('P', 1 * N.x)
|
285 |
+
>>> P.set_vel(N, 10 * N.x)
|
286 |
+
>>> Pa = Particle('Pa', P, 1)
|
287 |
+
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
288 |
+
>>> Ac.set_vel(N, 5 * N.y)
|
289 |
+
>>> a = ReferenceFrame('a')
|
290 |
+
>>> a.set_ang_vel(N, 10 * N.z)
|
291 |
+
>>> I = outer(N.z, N.z)
|
292 |
+
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
|
293 |
+
>>> kinetic_energy(N, Pa, A)
|
294 |
+
350
|
295 |
+
|
296 |
+
"""
|
297 |
+
|
298 |
+
if not isinstance(frame, ReferenceFrame):
|
299 |
+
raise TypeError('Please enter a valid ReferenceFrame')
|
300 |
+
ke_sys = S.Zero
|
301 |
+
for e in body:
|
302 |
+
if isinstance(e, (RigidBody, Particle)):
|
303 |
+
ke_sys += e.kinetic_energy(frame)
|
304 |
+
else:
|
305 |
+
raise TypeError('*body must have only Particle or RigidBody')
|
306 |
+
return ke_sys
|
307 |
+
|
308 |
+
|
309 |
+
def potential_energy(*body):
|
310 |
+
"""Potential energy of a multibody system.
|
311 |
+
|
312 |
+
Explanation
|
313 |
+
===========
|
314 |
+
|
315 |
+
This function returns the potential energy of a system of Particle's and/or
|
316 |
+
RigidBody's. The potential energy of such a system is equal to the sum of
|
317 |
+
the potential energy of its constituents. Consider a system, S, comprising
|
318 |
+
a rigid body, A, and a particle, P. The potential energy of the system, V,
|
319 |
+
is equal to the vector sum of the potential energy of the particle, V1, and
|
320 |
+
the potential energy of the rigid body, V2, i.e.
|
321 |
+
|
322 |
+
V = V1 + V2
|
323 |
+
|
324 |
+
Potential energy is a scalar.
|
325 |
+
|
326 |
+
Parameters
|
327 |
+
==========
|
328 |
+
|
329 |
+
body1, body2, body3... : Particle and/or RigidBody
|
330 |
+
The body (or bodies) whose potential energy is required.
|
331 |
+
|
332 |
+
Examples
|
333 |
+
========
|
334 |
+
|
335 |
+
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
336 |
+
>>> from sympy.physics.mechanics import RigidBody, outer, potential_energy
|
337 |
+
>>> from sympy import symbols
|
338 |
+
>>> M, m, g, h = symbols('M m g h')
|
339 |
+
>>> N = ReferenceFrame('N')
|
340 |
+
>>> O = Point('O')
|
341 |
+
>>> O.set_vel(N, 0 * N.x)
|
342 |
+
>>> P = O.locatenew('P', 1 * N.x)
|
343 |
+
>>> Pa = Particle('Pa', P, m)
|
344 |
+
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
345 |
+
>>> a = ReferenceFrame('a')
|
346 |
+
>>> I = outer(N.z, N.z)
|
347 |
+
>>> A = RigidBody('A', Ac, a, M, (I, Ac))
|
348 |
+
>>> Pa.potential_energy = m * g * h
|
349 |
+
>>> A.potential_energy = M * g * h
|
350 |
+
>>> potential_energy(Pa, A)
|
351 |
+
M*g*h + g*h*m
|
352 |
+
|
353 |
+
"""
|
354 |
+
|
355 |
+
pe_sys = S.Zero
|
356 |
+
for e in body:
|
357 |
+
if isinstance(e, (RigidBody, Particle)):
|
358 |
+
pe_sys += e.potential_energy
|
359 |
+
else:
|
360 |
+
raise TypeError('*body must have only Particle or RigidBody')
|
361 |
+
return pe_sys
|
362 |
+
|
363 |
+
|
364 |
+
def gravity(acceleration, *bodies):
|
365 |
+
"""
|
366 |
+
Returns a list of gravity forces given the acceleration
|
367 |
+
due to gravity and any number of particles or rigidbodies.
|
368 |
+
|
369 |
+
Example
|
370 |
+
=======
|
371 |
+
|
372 |
+
>>> from sympy.physics.mechanics import ReferenceFrame, Point, Particle, outer, RigidBody
|
373 |
+
>>> from sympy.physics.mechanics.functions import gravity
|
374 |
+
>>> from sympy import symbols
|
375 |
+
>>> N = ReferenceFrame('N')
|
376 |
+
>>> m, M, g = symbols('m M g')
|
377 |
+
>>> F1, F2 = symbols('F1 F2')
|
378 |
+
>>> po = Point('po')
|
379 |
+
>>> pa = Particle('pa', po, m)
|
380 |
+
>>> A = ReferenceFrame('A')
|
381 |
+
>>> P = Point('P')
|
382 |
+
>>> I = outer(A.x, A.x)
|
383 |
+
>>> B = RigidBody('B', P, A, M, (I, P))
|
384 |
+
>>> forceList = [(po, F1), (P, F2)]
|
385 |
+
>>> forceList.extend(gravity(g*N.y, pa, B))
|
386 |
+
>>> forceList
|
387 |
+
[(po, F1), (P, F2), (po, g*m*N.y), (P, M*g*N.y)]
|
388 |
+
|
389 |
+
"""
|
390 |
+
|
391 |
+
gravity_force = []
|
392 |
+
if not bodies:
|
393 |
+
raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.")
|
394 |
+
|
395 |
+
for e in bodies:
|
396 |
+
point = getattr(e, 'masscenter', None)
|
397 |
+
if point is None:
|
398 |
+
point = e.point
|
399 |
+
|
400 |
+
gravity_force.append((point, e.mass*acceleration))
|
401 |
+
|
402 |
+
return gravity_force
|
403 |
+
|
404 |
+
|
405 |
+
def center_of_mass(point, *bodies):
|
406 |
+
"""
|
407 |
+
Returns the position vector from the given point to the center of mass
|
408 |
+
of the given bodies(particles or rigidbodies).
|
409 |
+
|
410 |
+
Example
|
411 |
+
=======
|
412 |
+
|
413 |
+
>>> from sympy import symbols, S
|
414 |
+
>>> from sympy.physics.vector import Point
|
415 |
+
>>> from sympy.physics.mechanics import Particle, ReferenceFrame, RigidBody, outer
|
416 |
+
>>> from sympy.physics.mechanics.functions import center_of_mass
|
417 |
+
>>> a = ReferenceFrame('a')
|
418 |
+
>>> m = symbols('m', real=True)
|
419 |
+
>>> p1 = Particle('p1', Point('p1_pt'), S(1))
|
420 |
+
>>> p2 = Particle('p2', Point('p2_pt'), S(2))
|
421 |
+
>>> p3 = Particle('p3', Point('p3_pt'), S(3))
|
422 |
+
>>> p4 = Particle('p4', Point('p4_pt'), m)
|
423 |
+
>>> b_f = ReferenceFrame('b_f')
|
424 |
+
>>> b_cm = Point('b_cm')
|
425 |
+
>>> mb = symbols('mb')
|
426 |
+
>>> b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
|
427 |
+
>>> p2.point.set_pos(p1.point, a.x)
|
428 |
+
>>> p3.point.set_pos(p1.point, a.x + a.y)
|
429 |
+
>>> p4.point.set_pos(p1.point, a.y)
|
430 |
+
>>> b.masscenter.set_pos(p1.point, a.y + a.z)
|
431 |
+
>>> point_o=Point('o')
|
432 |
+
>>> point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
|
433 |
+
>>> expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
|
434 |
+
>>> point_o.pos_from(p1.point)
|
435 |
+
5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
|
436 |
+
|
437 |
+
"""
|
438 |
+
if not bodies:
|
439 |
+
raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.")
|
440 |
+
|
441 |
+
total_mass = 0
|
442 |
+
vec = Vector(0)
|
443 |
+
for i in bodies:
|
444 |
+
total_mass += i.mass
|
445 |
+
|
446 |
+
masscenter = getattr(i, 'masscenter', None)
|
447 |
+
if masscenter is None:
|
448 |
+
masscenter = i.point
|
449 |
+
vec += i.mass*masscenter.pos_from(point)
|
450 |
+
|
451 |
+
return vec/total_mass
|
452 |
+
|
453 |
+
|
454 |
+
def Lagrangian(frame, *body):
|
455 |
+
"""Lagrangian of a multibody system.
|
456 |
+
|
457 |
+
Explanation
|
458 |
+
===========
|
459 |
+
|
460 |
+
This function returns the Lagrangian of a system of Particle's and/or
|
461 |
+
RigidBody's. The Lagrangian of such a system is equal to the difference
|
462 |
+
between the kinetic energies and potential energies of its constituents. If
|
463 |
+
T and V are the kinetic and potential energies of a system then it's
|
464 |
+
Lagrangian, L, is defined as
|
465 |
+
|
466 |
+
L = T - V
|
467 |
+
|
468 |
+
The Lagrangian is a scalar.
|
469 |
+
|
470 |
+
Parameters
|
471 |
+
==========
|
472 |
+
|
473 |
+
frame : ReferenceFrame
|
474 |
+
The frame in which the velocity or angular velocity of the body is
|
475 |
+
defined to determine the kinetic energy.
|
476 |
+
|
477 |
+
body1, body2, body3... : Particle and/or RigidBody
|
478 |
+
The body (or bodies) whose Lagrangian is required.
|
479 |
+
|
480 |
+
Examples
|
481 |
+
========
|
482 |
+
|
483 |
+
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
484 |
+
>>> from sympy.physics.mechanics import RigidBody, outer, Lagrangian
|
485 |
+
>>> from sympy import symbols
|
486 |
+
>>> M, m, g, h = symbols('M m g h')
|
487 |
+
>>> N = ReferenceFrame('N')
|
488 |
+
>>> O = Point('O')
|
489 |
+
>>> O.set_vel(N, 0 * N.x)
|
490 |
+
>>> P = O.locatenew('P', 1 * N.x)
|
491 |
+
>>> P.set_vel(N, 10 * N.x)
|
492 |
+
>>> Pa = Particle('Pa', P, 1)
|
493 |
+
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
494 |
+
>>> Ac.set_vel(N, 5 * N.y)
|
495 |
+
>>> a = ReferenceFrame('a')
|
496 |
+
>>> a.set_ang_vel(N, 10 * N.z)
|
497 |
+
>>> I = outer(N.z, N.z)
|
498 |
+
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
|
499 |
+
>>> Pa.potential_energy = m * g * h
|
500 |
+
>>> A.potential_energy = M * g * h
|
501 |
+
>>> Lagrangian(N, Pa, A)
|
502 |
+
-M*g*h - g*h*m + 350
|
503 |
+
|
504 |
+
"""
|
505 |
+
|
506 |
+
if not isinstance(frame, ReferenceFrame):
|
507 |
+
raise TypeError('Please supply a valid ReferenceFrame')
|
508 |
+
for e in body:
|
509 |
+
if not isinstance(e, (RigidBody, Particle)):
|
510 |
+
raise TypeError('*body must have only Particle or RigidBody')
|
511 |
+
return kinetic_energy(frame, *body) - potential_energy(*body)
|
512 |
+
|
513 |
+
|
514 |
+
def find_dynamicsymbols(expression, exclude=None, reference_frame=None):
|
515 |
+
"""Find all dynamicsymbols in expression.
|
516 |
+
|
517 |
+
Explanation
|
518 |
+
===========
|
519 |
+
|
520 |
+
If the optional ``exclude`` kwarg is used, only dynamicsymbols
|
521 |
+
not in the iterable ``exclude`` are returned.
|
522 |
+
If we intend to apply this function on a vector, the optional
|
523 |
+
``reference_frame`` is also used to inform about the corresponding frame
|
524 |
+
with respect to which the dynamic symbols of the given vector is to be
|
525 |
+
determined.
|
526 |
+
|
527 |
+
Parameters
|
528 |
+
==========
|
529 |
+
|
530 |
+
expression : SymPy expression
|
531 |
+
|
532 |
+
exclude : iterable of dynamicsymbols, optional
|
533 |
+
|
534 |
+
reference_frame : ReferenceFrame, optional
|
535 |
+
The frame with respect to which the dynamic symbols of the
|
536 |
+
given vector is to be determined.
|
537 |
+
|
538 |
+
Examples
|
539 |
+
========
|
540 |
+
|
541 |
+
>>> from sympy.physics.mechanics import dynamicsymbols, find_dynamicsymbols
|
542 |
+
>>> from sympy.physics.mechanics import ReferenceFrame
|
543 |
+
>>> x, y = dynamicsymbols('x, y')
|
544 |
+
>>> expr = x + x.diff()*y
|
545 |
+
>>> find_dynamicsymbols(expr)
|
546 |
+
{x(t), y(t), Derivative(x(t), t)}
|
547 |
+
>>> find_dynamicsymbols(expr, exclude=[x, y])
|
548 |
+
{Derivative(x(t), t)}
|
549 |
+
>>> a, b, c = dynamicsymbols('a, b, c')
|
550 |
+
>>> A = ReferenceFrame('A')
|
551 |
+
>>> v = a * A.x + b * A.y + c * A.z
|
552 |
+
>>> find_dynamicsymbols(v, reference_frame=A)
|
553 |
+
{a(t), b(t), c(t)}
|
554 |
+
|
555 |
+
"""
|
556 |
+
t_set = {dynamicsymbols._t}
|
557 |
+
if exclude:
|
558 |
+
if iterable(exclude):
|
559 |
+
exclude_set = set(exclude)
|
560 |
+
else:
|
561 |
+
raise TypeError("exclude kwarg must be iterable")
|
562 |
+
else:
|
563 |
+
exclude_set = set()
|
564 |
+
if isinstance(expression, Vector):
|
565 |
+
if reference_frame is None:
|
566 |
+
raise ValueError("You must provide reference_frame when passing a "
|
567 |
+
"vector expression, got %s." % reference_frame)
|
568 |
+
else:
|
569 |
+
expression = expression.to_matrix(reference_frame)
|
570 |
+
return {i for i in expression.atoms(AppliedUndef, Derivative) if
|
571 |
+
i.free_symbols == t_set} - exclude_set
|
572 |
+
|
573 |
+
|
574 |
+
def msubs(expr, *sub_dicts, smart=False, **kwargs):
|
575 |
+
"""A custom subs for use on expressions derived in physics.mechanics.
|
576 |
+
|
577 |
+
Traverses the expression tree once, performing the subs found in sub_dicts.
|
578 |
+
Terms inside ``Derivative`` expressions are ignored:
|
579 |
+
|
580 |
+
Examples
|
581 |
+
========
|
582 |
+
|
583 |
+
>>> from sympy.physics.mechanics import dynamicsymbols, msubs
|
584 |
+
>>> x = dynamicsymbols('x')
|
585 |
+
>>> msubs(x.diff() + x, {x: 1})
|
586 |
+
Derivative(x(t), t) + 1
|
587 |
+
|
588 |
+
Note that sub_dicts can be a single dictionary, or several dictionaries:
|
589 |
+
|
590 |
+
>>> x, y, z = dynamicsymbols('x, y, z')
|
591 |
+
>>> sub1 = {x: 1, y: 2}
|
592 |
+
>>> sub2 = {z: 3, x.diff(): 4}
|
593 |
+
>>> msubs(x.diff() + x + y + z, sub1, sub2)
|
594 |
+
10
|
595 |
+
|
596 |
+
If smart=True (default False), also checks for conditions that may result
|
597 |
+
in ``nan``, but if simplified would yield a valid expression. For example:
|
598 |
+
|
599 |
+
>>> from sympy import sin, tan
|
600 |
+
>>> (sin(x)/tan(x)).subs(x, 0)
|
601 |
+
nan
|
602 |
+
>>> msubs(sin(x)/tan(x), {x: 0}, smart=True)
|
603 |
+
1
|
604 |
+
|
605 |
+
It does this by first replacing all ``tan`` with ``sin/cos``. Then each
|
606 |
+
node is traversed. If the node is a fraction, subs is first evaluated on
|
607 |
+
the denominator. If this results in 0, simplification of the entire
|
608 |
+
fraction is attempted. Using this selective simplification, only
|
609 |
+
subexpressions that result in 1/0 are targeted, resulting in faster
|
610 |
+
performance.
|
611 |
+
|
612 |
+
"""
|
613 |
+
|
614 |
+
sub_dict = dict_merge(*sub_dicts)
|
615 |
+
if smart:
|
616 |
+
func = _smart_subs
|
617 |
+
elif hasattr(expr, 'msubs'):
|
618 |
+
return expr.msubs(sub_dict)
|
619 |
+
else:
|
620 |
+
func = lambda expr, sub_dict: _crawl(expr, _sub_func, sub_dict)
|
621 |
+
if isinstance(expr, (Matrix, Vector, Dyadic)):
|
622 |
+
return expr.applyfunc(lambda x: func(x, sub_dict))
|
623 |
+
else:
|
624 |
+
return func(expr, sub_dict)
|
625 |
+
|
626 |
+
|
627 |
+
def _crawl(expr, func, *args, **kwargs):
|
628 |
+
"""Crawl the expression tree, and apply func to every node."""
|
629 |
+
val = func(expr, *args, **kwargs)
|
630 |
+
if val is not None:
|
631 |
+
return val
|
632 |
+
new_args = (_crawl(arg, func, *args, **kwargs) for arg in expr.args)
|
633 |
+
return expr.func(*new_args)
|
634 |
+
|
635 |
+
|
636 |
+
def _sub_func(expr, sub_dict):
|
637 |
+
"""Perform direct matching substitution, ignoring derivatives."""
|
638 |
+
if expr in sub_dict:
|
639 |
+
return sub_dict[expr]
|
640 |
+
elif not expr.args or expr.is_Derivative:
|
641 |
+
return expr
|
642 |
+
|
643 |
+
|
644 |
+
def _tan_repl_func(expr):
|
645 |
+
"""Replace tan with sin/cos."""
|
646 |
+
if isinstance(expr, tan):
|
647 |
+
return sin(*expr.args) / cos(*expr.args)
|
648 |
+
elif not expr.args or expr.is_Derivative:
|
649 |
+
return expr
|
650 |
+
|
651 |
+
|
652 |
+
def _smart_subs(expr, sub_dict):
|
653 |
+
"""Performs subs, checking for conditions that may result in `nan` or
|
654 |
+
`oo`, and attempts to simplify them out.
|
655 |
+
|
656 |
+
The expression tree is traversed twice, and the following steps are
|
657 |
+
performed on each expression node:
|
658 |
+
- First traverse:
|
659 |
+
Replace all `tan` with `sin/cos`.
|
660 |
+
- Second traverse:
|
661 |
+
If node is a fraction, check if the denominator evaluates to 0.
|
662 |
+
If so, attempt to simplify it out. Then if node is in sub_dict,
|
663 |
+
sub in the corresponding value.
|
664 |
+
|
665 |
+
"""
|
666 |
+
expr = _crawl(expr, _tan_repl_func)
|
667 |
+
|
668 |
+
def _recurser(expr, sub_dict):
|
669 |
+
# Decompose the expression into num, den
|
670 |
+
num, den = _fraction_decomp(expr)
|
671 |
+
if den != 1:
|
672 |
+
# If there is a non trivial denominator, we need to handle it
|
673 |
+
denom_subbed = _recurser(den, sub_dict)
|
674 |
+
if denom_subbed.evalf() == 0:
|
675 |
+
# If denom is 0 after this, attempt to simplify the bad expr
|
676 |
+
expr = simplify(expr)
|
677 |
+
else:
|
678 |
+
# Expression won't result in nan, find numerator
|
679 |
+
num_subbed = _recurser(num, sub_dict)
|
680 |
+
return num_subbed / denom_subbed
|
681 |
+
# We have to crawl the tree manually, because `expr` may have been
|
682 |
+
# modified in the simplify step. First, perform subs as normal:
|
683 |
+
val = _sub_func(expr, sub_dict)
|
684 |
+
if val is not None:
|
685 |
+
return val
|
686 |
+
new_args = (_recurser(arg, sub_dict) for arg in expr.args)
|
687 |
+
return expr.func(*new_args)
|
688 |
+
return _recurser(expr, sub_dict)
|
689 |
+
|
690 |
+
|
691 |
+
def _fraction_decomp(expr):
|
692 |
+
"""Return num, den such that expr = num/den."""
|
693 |
+
if not isinstance(expr, Mul):
|
694 |
+
return expr, 1
|
695 |
+
num = []
|
696 |
+
den = []
|
697 |
+
for a in expr.args:
|
698 |
+
if a.is_Pow and a.args[1] < 0:
|
699 |
+
den.append(1 / a)
|
700 |
+
else:
|
701 |
+
num.append(a)
|
702 |
+
if not den:
|
703 |
+
return expr, 1
|
704 |
+
num = Mul(*num)
|
705 |
+
den = Mul(*den)
|
706 |
+
return num, den
|
707 |
+
|
708 |
+
|
709 |
+
def _f_list_parser(fl, ref_frame):
|
710 |
+
"""Parses the provided forcelist composed of items
|
711 |
+
of the form (obj, force).
|
712 |
+
Returns a tuple containing:
|
713 |
+
vel_list: The velocity (ang_vel for Frames, vel for Points) in
|
714 |
+
the provided reference frame.
|
715 |
+
f_list: The forces.
|
716 |
+
|
717 |
+
Used internally in the KanesMethod and LagrangesMethod classes.
|
718 |
+
|
719 |
+
"""
|
720 |
+
def flist_iter():
|
721 |
+
for pair in fl:
|
722 |
+
obj, force = pair
|
723 |
+
if isinstance(obj, ReferenceFrame):
|
724 |
+
yield obj.ang_vel_in(ref_frame), force
|
725 |
+
elif isinstance(obj, Point):
|
726 |
+
yield obj.vel(ref_frame), force
|
727 |
+
else:
|
728 |
+
raise TypeError('First entry in each forcelist pair must '
|
729 |
+
'be a point or frame.')
|
730 |
+
|
731 |
+
if not fl:
|
732 |
+
vel_list, f_list = (), ()
|
733 |
+
else:
|
734 |
+
unzip = lambda l: list(zip(*l)) if l[0] else [(), ()]
|
735 |
+
vel_list, f_list = unzip(list(flist_iter()))
|
736 |
+
return vel_list, f_list
|
737 |
+
|
738 |
+
|
739 |
+
def _validate_coordinates(coordinates=None, speeds=None, check_duplicates=True,
|
740 |
+
is_dynamicsymbols=True):
|
741 |
+
t_set = {dynamicsymbols._t}
|
742 |
+
# Convert input to iterables
|
743 |
+
if coordinates is None:
|
744 |
+
coordinates = []
|
745 |
+
elif not iterable(coordinates):
|
746 |
+
coordinates = [coordinates]
|
747 |
+
if speeds is None:
|
748 |
+
speeds = []
|
749 |
+
elif not iterable(speeds):
|
750 |
+
speeds = [speeds]
|
751 |
+
|
752 |
+
if check_duplicates: # Check for duplicates
|
753 |
+
seen = set()
|
754 |
+
coord_duplicates = {x for x in coordinates if x in seen or seen.add(x)}
|
755 |
+
seen = set()
|
756 |
+
speed_duplicates = {x for x in speeds if x in seen or seen.add(x)}
|
757 |
+
overlap = set(coordinates).intersection(speeds)
|
758 |
+
if coord_duplicates:
|
759 |
+
raise ValueError(f'The generalized coordinates {coord_duplicates} '
|
760 |
+
f'are duplicated, all generalized coordinates '
|
761 |
+
f'should be unique.')
|
762 |
+
if speed_duplicates:
|
763 |
+
raise ValueError(f'The generalized speeds {speed_duplicates} are '
|
764 |
+
f'duplicated, all generalized speeds should be '
|
765 |
+
f'unique.')
|
766 |
+
if overlap:
|
767 |
+
raise ValueError(f'{overlap} are defined as both generalized '
|
768 |
+
f'coordinates and generalized speeds.')
|
769 |
+
if is_dynamicsymbols: # Check whether all coordinates are dynamicsymbols
|
770 |
+
for coordinate in coordinates:
|
771 |
+
if not (isinstance(coordinate, (AppliedUndef, Derivative)) and
|
772 |
+
coordinate.free_symbols == t_set):
|
773 |
+
raise ValueError(f'Generalized coordinate "{coordinate}" is not'
|
774 |
+
f' a dynamicsymbol.')
|
775 |
+
for speed in speeds:
|
776 |
+
if not (isinstance(speed, (AppliedUndef, Derivative)) and
|
777 |
+
speed.free_symbols == t_set):
|
778 |
+
raise ValueError(f'Generalized speed "{speed}" is not a '
|
779 |
+
f'dynamicsymbol.')
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/joint.py
ADDED
@@ -0,0 +1,2163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
|
5 |
+
from sympy.core.backend import pi, AppliedUndef, Derivative, Matrix
|
6 |
+
from sympy.physics.mechanics.body import Body
|
7 |
+
from sympy.physics.mechanics.functions import _validate_coordinates
|
8 |
+
from sympy.physics.vector import (Vector, dynamicsymbols, cross, Point,
|
9 |
+
ReferenceFrame)
|
10 |
+
from sympy.utilities.iterables import iterable
|
11 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
12 |
+
|
13 |
+
__all__ = ['Joint', 'PinJoint', 'PrismaticJoint', 'CylindricalJoint',
|
14 |
+
'PlanarJoint', 'SphericalJoint', 'WeldJoint']
|
15 |
+
|
16 |
+
|
17 |
+
class Joint(ABC):
|
18 |
+
"""Abstract base class for all specific joints.
|
19 |
+
|
20 |
+
Explanation
|
21 |
+
===========
|
22 |
+
|
23 |
+
A joint subtracts degrees of freedom from a body. This is the base class
|
24 |
+
for all specific joints and holds all common methods acting as an interface
|
25 |
+
for all joints. Custom joint can be created by inheriting Joint class and
|
26 |
+
defining all abstract functions.
|
27 |
+
|
28 |
+
The abstract methods are:
|
29 |
+
|
30 |
+
- ``_generate_coordinates``
|
31 |
+
- ``_generate_speeds``
|
32 |
+
- ``_orient_frames``
|
33 |
+
- ``_set_angular_velocity``
|
34 |
+
- ``_set_linear_velocity``
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
==========
|
38 |
+
|
39 |
+
name : string
|
40 |
+
A unique name for the joint.
|
41 |
+
parent : Body
|
42 |
+
The parent body of joint.
|
43 |
+
child : Body
|
44 |
+
The child body of joint.
|
45 |
+
coordinates : iterable of dynamicsymbols, optional
|
46 |
+
Generalized coordinates of the joint.
|
47 |
+
speeds : iterable of dynamicsymbols, optional
|
48 |
+
Generalized speeds of joint.
|
49 |
+
parent_point : Point or Vector, optional
|
50 |
+
Attachment point where the joint is fixed to the parent body. If a
|
51 |
+
vector is provided, then the attachment point is computed by adding the
|
52 |
+
vector to the body's mass center. The default value is the parent's mass
|
53 |
+
center.
|
54 |
+
child_point : Point or Vector, optional
|
55 |
+
Attachment point where the joint is fixed to the child body. If a
|
56 |
+
vector is provided, then the attachment point is computed by adding the
|
57 |
+
vector to the body's mass center. The default value is the child's mass
|
58 |
+
center.
|
59 |
+
parent_axis : Vector, optional
|
60 |
+
.. deprecated:: 1.12
|
61 |
+
Axis fixed in the parent body which aligns with an axis fixed in the
|
62 |
+
child body. The default is the x axis of parent's reference frame.
|
63 |
+
For more information on this deprecation, see
|
64 |
+
:ref:`deprecated-mechanics-joint-axis`.
|
65 |
+
child_axis : Vector, optional
|
66 |
+
.. deprecated:: 1.12
|
67 |
+
Axis fixed in the child body which aligns with an axis fixed in the
|
68 |
+
parent body. The default is the x axis of child's reference frame.
|
69 |
+
For more information on this deprecation, see
|
70 |
+
:ref:`deprecated-mechanics-joint-axis`.
|
71 |
+
parent_interframe : ReferenceFrame, optional
|
72 |
+
Intermediate frame of the parent body with respect to which the joint
|
73 |
+
transformation is formulated. If a Vector is provided then an interframe
|
74 |
+
is created which aligns its X axis with the given vector. The default
|
75 |
+
value is the parent's own frame.
|
76 |
+
child_interframe : ReferenceFrame, optional
|
77 |
+
Intermediate frame of the child body with respect to which the joint
|
78 |
+
transformation is formulated. If a Vector is provided then an interframe
|
79 |
+
is created which aligns its X axis with the given vector. The default
|
80 |
+
value is the child's own frame.
|
81 |
+
parent_joint_pos : Point or Vector, optional
|
82 |
+
.. deprecated:: 1.12
|
83 |
+
This argument is replaced by parent_point and will be removed in a
|
84 |
+
future version.
|
85 |
+
See :ref:`deprecated-mechanics-joint-pos` for more information.
|
86 |
+
child_joint_pos : Point or Vector, optional
|
87 |
+
.. deprecated:: 1.12
|
88 |
+
This argument is replaced by child_point and will be removed in a
|
89 |
+
future version.
|
90 |
+
See :ref:`deprecated-mechanics-joint-pos` for more information.
|
91 |
+
|
92 |
+
Attributes
|
93 |
+
==========
|
94 |
+
|
95 |
+
name : string
|
96 |
+
The joint's name.
|
97 |
+
parent : Body
|
98 |
+
The joint's parent body.
|
99 |
+
child : Body
|
100 |
+
The joint's child body.
|
101 |
+
coordinates : Matrix
|
102 |
+
Matrix of the joint's generalized coordinates.
|
103 |
+
speeds : Matrix
|
104 |
+
Matrix of the joint's generalized speeds.
|
105 |
+
parent_point : Point
|
106 |
+
Attachment point where the joint is fixed to the parent body.
|
107 |
+
child_point : Point
|
108 |
+
Attachment point where the joint is fixed to the child body.
|
109 |
+
parent_axis : Vector
|
110 |
+
The axis fixed in the parent frame that represents the joint.
|
111 |
+
child_axis : Vector
|
112 |
+
The axis fixed in the child frame that represents the joint.
|
113 |
+
parent_interframe : ReferenceFrame
|
114 |
+
Intermediate frame of the parent body with respect to which the joint
|
115 |
+
transformation is formulated.
|
116 |
+
child_interframe : ReferenceFrame
|
117 |
+
Intermediate frame of the child body with respect to which the joint
|
118 |
+
transformation is formulated.
|
119 |
+
kdes : Matrix
|
120 |
+
Kinematical differential equations of the joint.
|
121 |
+
|
122 |
+
Notes
|
123 |
+
=====
|
124 |
+
|
125 |
+
When providing a vector as the intermediate frame, a new intermediate frame
|
126 |
+
is created which aligns its X axis with the provided vector. This is done
|
127 |
+
with a single fixed rotation about a rotation axis. This rotation axis is
|
128 |
+
determined by taking the cross product of the ``body.x`` axis with the
|
129 |
+
provided vector. In the case where the provided vector is in the ``-body.x``
|
130 |
+
direction, the rotation is done about the ``body.y`` axis.
|
131 |
+
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, name, parent, child, coordinates=None, speeds=None,
|
135 |
+
parent_point=None, child_point=None, parent_axis=None,
|
136 |
+
child_axis=None, parent_interframe=None, child_interframe=None,
|
137 |
+
parent_joint_pos=None, child_joint_pos=None):
|
138 |
+
|
139 |
+
if not isinstance(name, str):
|
140 |
+
raise TypeError('Supply a valid name.')
|
141 |
+
self._name = name
|
142 |
+
|
143 |
+
if not isinstance(parent, Body):
|
144 |
+
raise TypeError('Parent must be an instance of Body.')
|
145 |
+
self._parent = parent
|
146 |
+
|
147 |
+
if not isinstance(child, Body):
|
148 |
+
raise TypeError('Parent must be an instance of Body.')
|
149 |
+
self._child = child
|
150 |
+
|
151 |
+
self._coordinates = self._generate_coordinates(coordinates)
|
152 |
+
self._speeds = self._generate_speeds(speeds)
|
153 |
+
_validate_coordinates(self.coordinates, self.speeds)
|
154 |
+
self._kdes = self._generate_kdes()
|
155 |
+
|
156 |
+
self._parent_axis = self._axis(parent_axis, parent.frame)
|
157 |
+
self._child_axis = self._axis(child_axis, child.frame)
|
158 |
+
|
159 |
+
if parent_joint_pos is not None or child_joint_pos is not None:
|
160 |
+
sympy_deprecation_warning(
|
161 |
+
"""
|
162 |
+
The parent_joint_pos and child_joint_pos arguments for the Joint
|
163 |
+
classes are deprecated. Instead use parent_point and child_point.
|
164 |
+
""",
|
165 |
+
deprecated_since_version="1.12",
|
166 |
+
active_deprecations_target="deprecated-mechanics-joint-pos",
|
167 |
+
stacklevel=4
|
168 |
+
)
|
169 |
+
if parent_point is None:
|
170 |
+
parent_point = parent_joint_pos
|
171 |
+
if child_point is None:
|
172 |
+
child_point = child_joint_pos
|
173 |
+
self._parent_point = self._locate_joint_pos(parent, parent_point)
|
174 |
+
self._child_point = self._locate_joint_pos(child, child_point)
|
175 |
+
if parent_axis is not None or child_axis is not None:
|
176 |
+
sympy_deprecation_warning(
|
177 |
+
"""
|
178 |
+
The parent_axis and child_axis arguments for the Joint classes
|
179 |
+
are deprecated. Instead use parent_interframe, child_interframe.
|
180 |
+
""",
|
181 |
+
deprecated_since_version="1.12",
|
182 |
+
active_deprecations_target="deprecated-mechanics-joint-axis",
|
183 |
+
stacklevel=4
|
184 |
+
)
|
185 |
+
if parent_interframe is None:
|
186 |
+
parent_interframe = parent_axis
|
187 |
+
if child_interframe is None:
|
188 |
+
child_interframe = child_axis
|
189 |
+
self._parent_interframe = self._locate_joint_frame(parent,
|
190 |
+
parent_interframe)
|
191 |
+
self._child_interframe = self._locate_joint_frame(child,
|
192 |
+
child_interframe)
|
193 |
+
|
194 |
+
self._orient_frames()
|
195 |
+
self._set_angular_velocity()
|
196 |
+
self._set_linear_velocity()
|
197 |
+
|
198 |
+
def __str__(self):
|
199 |
+
return self.name
|
200 |
+
|
201 |
+
def __repr__(self):
|
202 |
+
return self.__str__()
|
203 |
+
|
204 |
+
@property
|
205 |
+
def name(self):
|
206 |
+
"""Name of the joint."""
|
207 |
+
return self._name
|
208 |
+
|
209 |
+
@property
|
210 |
+
def parent(self):
|
211 |
+
"""Parent body of Joint."""
|
212 |
+
return self._parent
|
213 |
+
|
214 |
+
@property
|
215 |
+
def child(self):
|
216 |
+
"""Child body of Joint."""
|
217 |
+
return self._child
|
218 |
+
|
219 |
+
@property
|
220 |
+
def coordinates(self):
|
221 |
+
"""Matrix of the joint's generalized coordinates."""
|
222 |
+
return self._coordinates
|
223 |
+
|
224 |
+
@property
|
225 |
+
def speeds(self):
|
226 |
+
"""Matrix of the joint's generalized speeds."""
|
227 |
+
return self._speeds
|
228 |
+
|
229 |
+
@property
|
230 |
+
def kdes(self):
|
231 |
+
"""Kinematical differential equations of the joint."""
|
232 |
+
return self._kdes
|
233 |
+
|
234 |
+
@property
|
235 |
+
def parent_axis(self):
|
236 |
+
"""The axis of parent frame."""
|
237 |
+
# Will be removed with `deprecated-mechanics-joint-axis`
|
238 |
+
return self._parent_axis
|
239 |
+
|
240 |
+
@property
|
241 |
+
def child_axis(self):
|
242 |
+
"""The axis of child frame."""
|
243 |
+
# Will be removed with `deprecated-mechanics-joint-axis`
|
244 |
+
return self._child_axis
|
245 |
+
|
246 |
+
@property
|
247 |
+
def parent_point(self):
|
248 |
+
"""Attachment point where the joint is fixed to the parent body."""
|
249 |
+
return self._parent_point
|
250 |
+
|
251 |
+
@property
|
252 |
+
def child_point(self):
|
253 |
+
"""Attachment point where the joint is fixed to the child body."""
|
254 |
+
return self._child_point
|
255 |
+
|
256 |
+
@property
|
257 |
+
def parent_interframe(self):
|
258 |
+
return self._parent_interframe
|
259 |
+
|
260 |
+
@property
|
261 |
+
def child_interframe(self):
|
262 |
+
return self._child_interframe
|
263 |
+
|
264 |
+
@abstractmethod
|
265 |
+
def _generate_coordinates(self, coordinates):
|
266 |
+
"""Generate Matrix of the joint's generalized coordinates."""
|
267 |
+
pass
|
268 |
+
|
269 |
+
@abstractmethod
|
270 |
+
def _generate_speeds(self, speeds):
|
271 |
+
"""Generate Matrix of the joint's generalized speeds."""
|
272 |
+
pass
|
273 |
+
|
274 |
+
@abstractmethod
|
275 |
+
def _orient_frames(self):
|
276 |
+
"""Orient frames as per the joint."""
|
277 |
+
pass
|
278 |
+
|
279 |
+
@abstractmethod
|
280 |
+
def _set_angular_velocity(self):
|
281 |
+
"""Set angular velocity of the joint related frames."""
|
282 |
+
pass
|
283 |
+
|
284 |
+
@abstractmethod
|
285 |
+
def _set_linear_velocity(self):
|
286 |
+
"""Set velocity of related points to the joint."""
|
287 |
+
pass
|
288 |
+
|
289 |
+
@staticmethod
|
290 |
+
def _to_vector(matrix, frame):
|
291 |
+
"""Converts a matrix to a vector in the given frame."""
|
292 |
+
return Vector([(matrix, frame)])
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def _axis(ax, *frames):
|
296 |
+
"""Check whether an axis is fixed in one of the frames."""
|
297 |
+
if ax is None:
|
298 |
+
ax = frames[0].x
|
299 |
+
return ax
|
300 |
+
if not isinstance(ax, Vector):
|
301 |
+
raise TypeError("Axis must be a Vector.")
|
302 |
+
ref_frame = None # Find a body in which the axis can be expressed
|
303 |
+
for frame in frames:
|
304 |
+
try:
|
305 |
+
ax.to_matrix(frame)
|
306 |
+
except ValueError:
|
307 |
+
pass
|
308 |
+
else:
|
309 |
+
ref_frame = frame
|
310 |
+
break
|
311 |
+
if ref_frame is None:
|
312 |
+
raise ValueError("Axis cannot be expressed in one of the body's "
|
313 |
+
"frames.")
|
314 |
+
if not ax.dt(ref_frame) == 0:
|
315 |
+
raise ValueError('Axis cannot be time-varying when viewed from the '
|
316 |
+
'associated body.')
|
317 |
+
return ax
|
318 |
+
|
319 |
+
@staticmethod
|
320 |
+
def _choose_rotation_axis(frame, axis):
|
321 |
+
components = axis.to_matrix(frame)
|
322 |
+
x, y, z = components[0], components[1], components[2]
|
323 |
+
|
324 |
+
if x != 0:
|
325 |
+
if y != 0:
|
326 |
+
if z != 0:
|
327 |
+
return cross(axis, frame.x)
|
328 |
+
if z != 0:
|
329 |
+
return frame.y
|
330 |
+
return frame.z
|
331 |
+
else:
|
332 |
+
if y != 0:
|
333 |
+
return frame.x
|
334 |
+
return frame.y
|
335 |
+
|
336 |
+
@staticmethod
|
337 |
+
def _create_aligned_interframe(frame, align_axis, frame_axis=None,
|
338 |
+
frame_name=None):
|
339 |
+
"""
|
340 |
+
Returns an intermediate frame, where the ``frame_axis`` defined in
|
341 |
+
``frame`` is aligned with ``axis``. By default this means that the X
|
342 |
+
axis will be aligned with ``axis``.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
==========
|
346 |
+
|
347 |
+
frame : Body or ReferenceFrame
|
348 |
+
The body or reference frame with respect to which the intermediate
|
349 |
+
frame is oriented.
|
350 |
+
align_axis : Vector
|
351 |
+
The vector with respect to which the intermediate frame will be
|
352 |
+
aligned.
|
353 |
+
frame_axis : Vector
|
354 |
+
The vector of the frame which should get aligned with ``axis``. The
|
355 |
+
default is the X axis of the frame.
|
356 |
+
frame_name : string
|
357 |
+
Name of the to be created intermediate frame. The default adds
|
358 |
+
"_int_frame" to the name of ``frame``.
|
359 |
+
|
360 |
+
Example
|
361 |
+
=======
|
362 |
+
|
363 |
+
An intermediate frame, where the X axis of the parent becomes aligned
|
364 |
+
with ``parent.y + parent.z`` can be created as follows:
|
365 |
+
|
366 |
+
>>> from sympy.physics.mechanics.joint import Joint
|
367 |
+
>>> from sympy.physics.mechanics import Body
|
368 |
+
>>> parent = Body('parent')
|
369 |
+
>>> parent_interframe = Joint._create_aligned_interframe(
|
370 |
+
... parent, parent.y + parent.z)
|
371 |
+
>>> parent_interframe
|
372 |
+
parent_int_frame
|
373 |
+
>>> parent.dcm(parent_interframe)
|
374 |
+
Matrix([
|
375 |
+
[ 0, -sqrt(2)/2, -sqrt(2)/2],
|
376 |
+
[sqrt(2)/2, 1/2, -1/2],
|
377 |
+
[sqrt(2)/2, -1/2, 1/2]])
|
378 |
+
>>> (parent.y + parent.z).express(parent_interframe)
|
379 |
+
sqrt(2)*parent_int_frame.x
|
380 |
+
|
381 |
+
Notes
|
382 |
+
=====
|
383 |
+
|
384 |
+
The direction cosine matrix between the given frame and intermediate
|
385 |
+
frame is formed using a simple rotation about an axis that is normal to
|
386 |
+
both ``align_axis`` and ``frame_axis``. In general, the normal axis is
|
387 |
+
formed by crossing the ``frame_axis`` with the ``align_axis``. The
|
388 |
+
exception is if the axes are parallel with opposite directions, in which
|
389 |
+
case the rotation vector is chosen using the rules in the following
|
390 |
+
table with the vectors expressed in the given frame:
|
391 |
+
|
392 |
+
.. list-table::
|
393 |
+
:header-rows: 1
|
394 |
+
|
395 |
+
* - ``align_axis``
|
396 |
+
- ``frame_axis``
|
397 |
+
- ``rotation_axis``
|
398 |
+
* - ``-x``
|
399 |
+
- ``x``
|
400 |
+
- ``z``
|
401 |
+
* - ``-y``
|
402 |
+
- ``y``
|
403 |
+
- ``x``
|
404 |
+
* - ``-z``
|
405 |
+
- ``z``
|
406 |
+
- ``y``
|
407 |
+
* - ``-x-y``
|
408 |
+
- ``x+y``
|
409 |
+
- ``z``
|
410 |
+
* - ``-y-z``
|
411 |
+
- ``y+z``
|
412 |
+
- ``x``
|
413 |
+
* - ``-x-z``
|
414 |
+
- ``x+z``
|
415 |
+
- ``y``
|
416 |
+
* - ``-x-y-z``
|
417 |
+
- ``x+y+z``
|
418 |
+
- ``(x+y+z) × x``
|
419 |
+
|
420 |
+
"""
|
421 |
+
if isinstance(frame, Body):
|
422 |
+
frame = frame.frame
|
423 |
+
if frame_axis is None:
|
424 |
+
frame_axis = frame.x
|
425 |
+
if frame_name is None:
|
426 |
+
if frame.name[-6:] == '_frame':
|
427 |
+
frame_name = f'{frame.name[:-6]}_int_frame'
|
428 |
+
else:
|
429 |
+
frame_name = f'{frame.name}_int_frame'
|
430 |
+
angle = frame_axis.angle_between(align_axis)
|
431 |
+
rotation_axis = cross(frame_axis, align_axis)
|
432 |
+
if rotation_axis == Vector(0) and angle == 0:
|
433 |
+
return frame
|
434 |
+
if angle == pi:
|
435 |
+
rotation_axis = Joint._choose_rotation_axis(frame, align_axis)
|
436 |
+
|
437 |
+
int_frame = ReferenceFrame(frame_name)
|
438 |
+
int_frame.orient_axis(frame, rotation_axis, angle)
|
439 |
+
int_frame.set_ang_vel(frame, 0 * rotation_axis)
|
440 |
+
return int_frame
|
441 |
+
|
442 |
+
def _generate_kdes(self):
|
443 |
+
"""Generate kinematical differential equations."""
|
444 |
+
kdes = []
|
445 |
+
t = dynamicsymbols._t
|
446 |
+
for i in range(len(self.coordinates)):
|
447 |
+
kdes.append(-self.coordinates[i].diff(t) + self.speeds[i])
|
448 |
+
return Matrix(kdes)
|
449 |
+
|
450 |
+
def _locate_joint_pos(self, body, joint_pos):
|
451 |
+
"""Returns the attachment point of a body."""
|
452 |
+
if joint_pos is None:
|
453 |
+
return body.masscenter
|
454 |
+
if not isinstance(joint_pos, (Point, Vector)):
|
455 |
+
raise TypeError('Attachment point must be a Point or Vector.')
|
456 |
+
if isinstance(joint_pos, Vector):
|
457 |
+
point_name = f'{self.name}_{body.name}_joint'
|
458 |
+
joint_pos = body.masscenter.locatenew(point_name, joint_pos)
|
459 |
+
if not joint_pos.pos_from(body.masscenter).dt(body.frame) == 0:
|
460 |
+
raise ValueError('Attachment point must be fixed to the associated '
|
461 |
+
'body.')
|
462 |
+
return joint_pos
|
463 |
+
|
464 |
+
def _locate_joint_frame(self, body, interframe):
|
465 |
+
"""Returns the attachment frame of a body."""
|
466 |
+
if interframe is None:
|
467 |
+
return body.frame
|
468 |
+
if isinstance(interframe, Vector):
|
469 |
+
interframe = Joint._create_aligned_interframe(
|
470 |
+
body, interframe,
|
471 |
+
frame_name=f'{self.name}_{body.name}_int_frame')
|
472 |
+
elif not isinstance(interframe, ReferenceFrame):
|
473 |
+
raise TypeError('Interframe must be a ReferenceFrame.')
|
474 |
+
if not interframe.ang_vel_in(body.frame) == 0:
|
475 |
+
raise ValueError(f'Interframe {interframe} is not fixed to body '
|
476 |
+
f'{body}.')
|
477 |
+
body.masscenter.set_vel(interframe, 0) # Fixate interframe to body
|
478 |
+
return interframe
|
479 |
+
|
480 |
+
def _fill_coordinate_list(self, coordinates, n_coords, label='q', offset=0,
|
481 |
+
number_single=False):
|
482 |
+
"""Helper method for _generate_coordinates and _generate_speeds.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
==========
|
486 |
+
|
487 |
+
coordinates : iterable
|
488 |
+
Iterable of coordinates or speeds that have been provided.
|
489 |
+
n_coords : Integer
|
490 |
+
Number of coordinates that should be returned.
|
491 |
+
label : String, optional
|
492 |
+
Coordinate type either 'q' (coordinates) or 'u' (speeds). The
|
493 |
+
Default is 'q'.
|
494 |
+
offset : Integer
|
495 |
+
Count offset when creating new dynamicsymbols. The default is 0.
|
496 |
+
number_single : Boolean
|
497 |
+
Boolean whether if n_coords == 1, number should still be used. The
|
498 |
+
default is False.
|
499 |
+
|
500 |
+
"""
|
501 |
+
|
502 |
+
def create_symbol(number):
|
503 |
+
if n_coords == 1 and not number_single:
|
504 |
+
return dynamicsymbols(f'{label}_{self.name}')
|
505 |
+
return dynamicsymbols(f'{label}{number}_{self.name}')
|
506 |
+
|
507 |
+
name = 'generalized coordinate' if label == 'q' else 'generalized speed'
|
508 |
+
generated_coordinates = []
|
509 |
+
if coordinates is None:
|
510 |
+
coordinates = []
|
511 |
+
elif not iterable(coordinates):
|
512 |
+
coordinates = [coordinates]
|
513 |
+
if not (len(coordinates) == 0 or len(coordinates) == n_coords):
|
514 |
+
raise ValueError(f'Expected {n_coords} {name}s, instead got '
|
515 |
+
f'{len(coordinates)} {name}s.')
|
516 |
+
# Supports more iterables, also Matrix
|
517 |
+
for i, coord in enumerate(coordinates):
|
518 |
+
if coord is None:
|
519 |
+
generated_coordinates.append(create_symbol(i + offset))
|
520 |
+
elif isinstance(coord, (AppliedUndef, Derivative)):
|
521 |
+
generated_coordinates.append(coord)
|
522 |
+
else:
|
523 |
+
raise TypeError(f'The {name} {coord} should have been a '
|
524 |
+
f'dynamicsymbol.')
|
525 |
+
for i in range(len(coordinates) + offset, n_coords + offset):
|
526 |
+
generated_coordinates.append(create_symbol(i))
|
527 |
+
return Matrix(generated_coordinates)
|
528 |
+
|
529 |
+
|
530 |
+
class PinJoint(Joint):
|
531 |
+
"""Pin (Revolute) Joint.
|
532 |
+
|
533 |
+
.. image:: PinJoint.svg
|
534 |
+
|
535 |
+
Explanation
|
536 |
+
===========
|
537 |
+
|
538 |
+
A pin joint is defined such that the joint rotation axis is fixed in both
|
539 |
+
the child and parent and the location of the joint is relative to the mass
|
540 |
+
center of each body. The child rotates an angle, θ, from the parent about
|
541 |
+
the rotation axis and has a simple angular speed, ω, relative to the
|
542 |
+
parent. The direction cosine matrix between the child interframe and
|
543 |
+
parent interframe is formed using a simple rotation about the joint axis.
|
544 |
+
The page on the joints framework gives a more detailed explanation of the
|
545 |
+
intermediate frames.
|
546 |
+
|
547 |
+
Parameters
|
548 |
+
==========
|
549 |
+
|
550 |
+
name : string
|
551 |
+
A unique name for the joint.
|
552 |
+
parent : Body
|
553 |
+
The parent body of joint.
|
554 |
+
child : Body
|
555 |
+
The child body of joint.
|
556 |
+
coordinates : dynamicsymbol, optional
|
557 |
+
Generalized coordinates of the joint.
|
558 |
+
speeds : dynamicsymbol, optional
|
559 |
+
Generalized speeds of joint.
|
560 |
+
parent_point : Point or Vector, optional
|
561 |
+
Attachment point where the joint is fixed to the parent body. If a
|
562 |
+
vector is provided, then the attachment point is computed by adding the
|
563 |
+
vector to the body's mass center. The default value is the parent's mass
|
564 |
+
center.
|
565 |
+
child_point : Point or Vector, optional
|
566 |
+
Attachment point where the joint is fixed to the child body. If a
|
567 |
+
vector is provided, then the attachment point is computed by adding the
|
568 |
+
vector to the body's mass center. The default value is the child's mass
|
569 |
+
center.
|
570 |
+
parent_axis : Vector, optional
|
571 |
+
.. deprecated:: 1.12
|
572 |
+
Axis fixed in the parent body which aligns with an axis fixed in the
|
573 |
+
child body. The default is the x axis of parent's reference frame.
|
574 |
+
For more information on this deprecation, see
|
575 |
+
:ref:`deprecated-mechanics-joint-axis`.
|
576 |
+
child_axis : Vector, optional
|
577 |
+
.. deprecated:: 1.12
|
578 |
+
Axis fixed in the child body which aligns with an axis fixed in the
|
579 |
+
parent body. The default is the x axis of child's reference frame.
|
580 |
+
For more information on this deprecation, see
|
581 |
+
:ref:`deprecated-mechanics-joint-axis`.
|
582 |
+
parent_interframe : ReferenceFrame, optional
|
583 |
+
Intermediate frame of the parent body with respect to which the joint
|
584 |
+
transformation is formulated. If a Vector is provided then an interframe
|
585 |
+
is created which aligns its X axis with the given vector. The default
|
586 |
+
value is the parent's own frame.
|
587 |
+
child_interframe : ReferenceFrame, optional
|
588 |
+
Intermediate frame of the child body with respect to which the joint
|
589 |
+
transformation is formulated. If a Vector is provided then an interframe
|
590 |
+
is created which aligns its X axis with the given vector. The default
|
591 |
+
value is the child's own frame.
|
592 |
+
joint_axis : Vector
|
593 |
+
The axis about which the rotation occurs. Note that the components
|
594 |
+
of this axis are the same in the parent_interframe and child_interframe.
|
595 |
+
parent_joint_pos : Point or Vector, optional
|
596 |
+
.. deprecated:: 1.12
|
597 |
+
This argument is replaced by parent_point and will be removed in a
|
598 |
+
future version.
|
599 |
+
See :ref:`deprecated-mechanics-joint-pos` for more information.
|
600 |
+
child_joint_pos : Point or Vector, optional
|
601 |
+
.. deprecated:: 1.12
|
602 |
+
This argument is replaced by child_point and will be removed in a
|
603 |
+
future version.
|
604 |
+
See :ref:`deprecated-mechanics-joint-pos` for more information.
|
605 |
+
|
606 |
+
Attributes
|
607 |
+
==========
|
608 |
+
|
609 |
+
name : string
|
610 |
+
The joint's name.
|
611 |
+
parent : Body
|
612 |
+
The joint's parent body.
|
613 |
+
child : Body
|
614 |
+
The joint's child body.
|
615 |
+
coordinates : Matrix
|
616 |
+
Matrix of the joint's generalized coordinates. The default value is
|
617 |
+
``dynamicsymbols(f'q_{joint.name}')``.
|
618 |
+
speeds : Matrix
|
619 |
+
Matrix of the joint's generalized speeds. The default value is
|
620 |
+
``dynamicsymbols(f'u_{joint.name}')``.
|
621 |
+
parent_point : Point
|
622 |
+
Attachment point where the joint is fixed to the parent body.
|
623 |
+
child_point : Point
|
624 |
+
Attachment point where the joint is fixed to the child body.
|
625 |
+
parent_axis : Vector
|
626 |
+
The axis fixed in the parent frame that represents the joint.
|
627 |
+
child_axis : Vector
|
628 |
+
The axis fixed in the child frame that represents the joint.
|
629 |
+
parent_interframe : ReferenceFrame
|
630 |
+
Intermediate frame of the parent body with respect to which the joint
|
631 |
+
transformation is formulated.
|
632 |
+
child_interframe : ReferenceFrame
|
633 |
+
Intermediate frame of the child body with respect to which the joint
|
634 |
+
transformation is formulated.
|
635 |
+
joint_axis : Vector
|
636 |
+
The axis about which the rotation occurs. Note that the components of
|
637 |
+
this axis are the same in the parent_interframe and child_interframe.
|
638 |
+
kdes : Matrix
|
639 |
+
Kinematical differential equations of the joint.
|
640 |
+
|
641 |
+
Examples
|
642 |
+
=========
|
643 |
+
|
644 |
+
A single pin joint is created from two bodies and has the following basic
|
645 |
+
attributes:
|
646 |
+
|
647 |
+
>>> from sympy.physics.mechanics import Body, PinJoint
|
648 |
+
>>> parent = Body('P')
|
649 |
+
>>> parent
|
650 |
+
P
|
651 |
+
>>> child = Body('C')
|
652 |
+
>>> child
|
653 |
+
C
|
654 |
+
>>> joint = PinJoint('PC', parent, child)
|
655 |
+
>>> joint
|
656 |
+
PinJoint: PC parent: P child: C
|
657 |
+
>>> joint.name
|
658 |
+
'PC'
|
659 |
+
>>> joint.parent
|
660 |
+
P
|
661 |
+
>>> joint.child
|
662 |
+
C
|
663 |
+
>>> joint.parent_point
|
664 |
+
P_masscenter
|
665 |
+
>>> joint.child_point
|
666 |
+
C_masscenter
|
667 |
+
>>> joint.parent_axis
|
668 |
+
P_frame.x
|
669 |
+
>>> joint.child_axis
|
670 |
+
C_frame.x
|
671 |
+
>>> joint.coordinates
|
672 |
+
Matrix([[q_PC(t)]])
|
673 |
+
>>> joint.speeds
|
674 |
+
Matrix([[u_PC(t)]])
|
675 |
+
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
|
676 |
+
u_PC(t)*P_frame.x
|
677 |
+
>>> joint.child.frame.dcm(joint.parent.frame)
|
678 |
+
Matrix([
|
679 |
+
[1, 0, 0],
|
680 |
+
[0, cos(q_PC(t)), sin(q_PC(t))],
|
681 |
+
[0, -sin(q_PC(t)), cos(q_PC(t))]])
|
682 |
+
>>> joint.child_point.pos_from(joint.parent_point)
|
683 |
+
0
|
684 |
+
|
685 |
+
To further demonstrate the use of the pin joint, the kinematics of simple
|
686 |
+
double pendulum that rotates about the Z axis of each connected body can be
|
687 |
+
created as follows.
|
688 |
+
|
689 |
+
>>> from sympy import symbols, trigsimp
|
690 |
+
>>> from sympy.physics.mechanics import Body, PinJoint
|
691 |
+
>>> l1, l2 = symbols('l1 l2')
|
692 |
+
|
693 |
+
First create bodies to represent the fixed ceiling and one to represent
|
694 |
+
each pendulum bob.
|
695 |
+
|
696 |
+
>>> ceiling = Body('C')
|
697 |
+
>>> upper_bob = Body('U')
|
698 |
+
>>> lower_bob = Body('L')
|
699 |
+
|
700 |
+
The first joint will connect the upper bob to the ceiling by a distance of
|
701 |
+
``l1`` and the joint axis will be about the Z axis for each body.
|
702 |
+
|
703 |
+
>>> ceiling_joint = PinJoint('P1', ceiling, upper_bob,
|
704 |
+
... child_point=-l1*upper_bob.frame.x,
|
705 |
+
... joint_axis=ceiling.frame.z)
|
706 |
+
|
707 |
+
The second joint will connect the lower bob to the upper bob by a distance
|
708 |
+
of ``l2`` and the joint axis will also be about the Z axis for each body.
|
709 |
+
|
710 |
+
>>> pendulum_joint = PinJoint('P2', upper_bob, lower_bob,
|
711 |
+
... child_point=-l2*lower_bob.frame.x,
|
712 |
+
... joint_axis=upper_bob.frame.z)
|
713 |
+
|
714 |
+
Once the joints are established the kinematics of the connected bodies can
|
715 |
+
be accessed. First the direction cosine matrices of pendulum link relative
|
716 |
+
to the ceiling are found:
|
717 |
+
|
718 |
+
>>> upper_bob.frame.dcm(ceiling.frame)
|
719 |
+
Matrix([
|
720 |
+
[ cos(q_P1(t)), sin(q_P1(t)), 0],
|
721 |
+
[-sin(q_P1(t)), cos(q_P1(t)), 0],
|
722 |
+
[ 0, 0, 1]])
|
723 |
+
>>> trigsimp(lower_bob.frame.dcm(ceiling.frame))
|
724 |
+
Matrix([
|
725 |
+
[ cos(q_P1(t) + q_P2(t)), sin(q_P1(t) + q_P2(t)), 0],
|
726 |
+
[-sin(q_P1(t) + q_P2(t)), cos(q_P1(t) + q_P2(t)), 0],
|
727 |
+
[ 0, 0, 1]])
|
728 |
+
|
729 |
+
The position of the lower bob's masscenter is found with:
|
730 |
+
|
731 |
+
>>> lower_bob.masscenter.pos_from(ceiling.masscenter)
|
732 |
+
l1*U_frame.x + l2*L_frame.x
|
733 |
+
|
734 |
+
The angular velocities of the two pendulum links can be computed with
|
735 |
+
respect to the ceiling.
|
736 |
+
|
737 |
+
>>> upper_bob.frame.ang_vel_in(ceiling.frame)
|
738 |
+
u_P1(t)*C_frame.z
|
739 |
+
>>> lower_bob.frame.ang_vel_in(ceiling.frame)
|
740 |
+
u_P1(t)*C_frame.z + u_P2(t)*U_frame.z
|
741 |
+
|
742 |
+
And finally, the linear velocities of the two pendulum bobs can be computed
|
743 |
+
with respect to the ceiling.
|
744 |
+
|
745 |
+
>>> upper_bob.masscenter.vel(ceiling.frame)
|
746 |
+
l1*u_P1(t)*U_frame.y
|
747 |
+
>>> lower_bob.masscenter.vel(ceiling.frame)
|
748 |
+
l1*u_P1(t)*U_frame.y + l2*(u_P1(t) + u_P2(t))*L_frame.y
|
749 |
+
|
750 |
+
"""
|
751 |
+
|
752 |
+
def __init__(self, name, parent, child, coordinates=None, speeds=None,
|
753 |
+
parent_point=None, child_point=None, parent_axis=None,
|
754 |
+
child_axis=None, parent_interframe=None, child_interframe=None,
|
755 |
+
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
|
756 |
+
|
757 |
+
self._joint_axis = joint_axis
|
758 |
+
super().__init__(name, parent, child, coordinates, speeds, parent_point,
|
759 |
+
child_point, parent_axis, child_axis,
|
760 |
+
parent_interframe, child_interframe, parent_joint_pos,
|
761 |
+
child_joint_pos)
|
762 |
+
|
763 |
+
def __str__(self):
|
764 |
+
return (f'PinJoint: {self.name} parent: {self.parent} '
|
765 |
+
f'child: {self.child}')
|
766 |
+
|
767 |
+
@property
|
768 |
+
def joint_axis(self):
|
769 |
+
"""Axis about which the child rotates with respect to the parent."""
|
770 |
+
return self._joint_axis
|
771 |
+
|
772 |
+
def _generate_coordinates(self, coordinate):
|
773 |
+
return self._fill_coordinate_list(coordinate, 1, 'q')
|
774 |
+
|
775 |
+
def _generate_speeds(self, speed):
|
776 |
+
return self._fill_coordinate_list(speed, 1, 'u')
|
777 |
+
|
778 |
+
def _orient_frames(self):
|
779 |
+
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
|
780 |
+
self.child_interframe.orient_axis(
|
781 |
+
self.parent_interframe, self.joint_axis, self.coordinates[0])
|
782 |
+
|
783 |
+
def _set_angular_velocity(self):
|
784 |
+
self.child_interframe.set_ang_vel(self.parent_interframe, self.speeds[
|
785 |
+
0] * self.joint_axis.normalize())
|
786 |
+
|
787 |
+
def _set_linear_velocity(self):
|
788 |
+
self.child_point.set_pos(self.parent_point, 0)
|
789 |
+
self.parent_point.set_vel(self.parent.frame, 0)
|
790 |
+
self.child_point.set_vel(self.child.frame, 0)
|
791 |
+
self.child.masscenter.v2pt_theory(self.parent_point,
|
792 |
+
self.parent.frame, self.child.frame)
|
793 |
+
|
794 |
+
|
795 |
+
class PrismaticJoint(Joint):
|
796 |
+
"""Prismatic (Sliding) Joint.
|
797 |
+
|
798 |
+
.. image:: PrismaticJoint.svg
|
799 |
+
|
800 |
+
Explanation
|
801 |
+
===========
|
802 |
+
|
803 |
+
It is defined such that the child body translates with respect to the parent
|
804 |
+
body along the body-fixed joint axis. The location of the joint is defined
|
805 |
+
by two points, one in each body, which coincide when the generalized
|
806 |
+
coordinate is zero. The direction cosine matrix between the
|
807 |
+
parent_interframe and child_interframe is the identity matrix. Therefore,
|
808 |
+
the direction cosine matrix between the parent and child frames is fully
|
809 |
+
defined by the definition of the intermediate frames. The page on the joints
|
810 |
+
framework gives a more detailed explanation of the intermediate frames.
|
811 |
+
|
812 |
+
Parameters
|
813 |
+
==========
|
814 |
+
|
815 |
+
name : string
|
816 |
+
A unique name for the joint.
|
817 |
+
parent : Body
|
818 |
+
The parent body of joint.
|
819 |
+
child : Body
|
820 |
+
The child body of joint.
|
821 |
+
coordinates : dynamicsymbol, optional
|
822 |
+
Generalized coordinates of the joint. The default value is
|
823 |
+
``dynamicsymbols(f'q_{joint.name}')``.
|
824 |
+
speeds : dynamicsymbol, optional
|
825 |
+
Generalized speeds of joint. The default value is
|
826 |
+
``dynamicsymbols(f'u_{joint.name}')``.
|
827 |
+
parent_point : Point or Vector, optional
|
828 |
+
Attachment point where the joint is fixed to the parent body. If a
|
829 |
+
vector is provided, then the attachment point is computed by adding the
|
830 |
+
vector to the body's mass center. The default value is the parent's mass
|
831 |
+
center.
|
832 |
+
child_point : Point or Vector, optional
|
833 |
+
Attachment point where the joint is fixed to the child body. If a
|
834 |
+
vector is provided, then the attachment point is computed by adding the
|
835 |
+
vector to the body's mass center. The default value is the child's mass
|
836 |
+
center.
|
837 |
+
parent_axis : Vector, optional
|
838 |
+
.. deprecated:: 1.12
|
839 |
+
Axis fixed in the parent body which aligns with an axis fixed in the
|
840 |
+
child body. The default is the x axis of parent's reference frame.
|
841 |
+
For more information on this deprecation, see
|
842 |
+
:ref:`deprecated-mechanics-joint-axis`.
|
843 |
+
child_axis : Vector, optional
|
844 |
+
.. deprecated:: 1.12
|
845 |
+
Axis fixed in the child body which aligns with an axis fixed in the
|
846 |
+
parent body. The default is the x axis of child's reference frame.
|
847 |
+
For more information on this deprecation, see
|
848 |
+
:ref:`deprecated-mechanics-joint-axis`.
|
849 |
+
parent_interframe : ReferenceFrame, optional
|
850 |
+
Intermediate frame of the parent body with respect to which the joint
|
851 |
+
transformation is formulated. If a Vector is provided then an interframe
|
852 |
+
is created which aligns its X axis with the given vector. The default
|
853 |
+
value is the parent's own frame.
|
854 |
+
child_interframe : ReferenceFrame, optional
|
855 |
+
Intermediate frame of the child body with respect to which the joint
|
856 |
+
transformation is formulated. If a Vector is provided then an interframe
|
857 |
+
is created which aligns its X axis with the given vector. The default
|
858 |
+
value is the child's own frame.
|
859 |
+
joint_axis : Vector
|
860 |
+
The axis along which the translation occurs. Note that the components
|
861 |
+
of this axis are the same in the parent_interframe and child_interframe.
|
862 |
+
parent_joint_pos : Point or Vector, optional
|
863 |
+
.. deprecated:: 1.12
|
864 |
+
This argument is replaced by parent_point and will be removed in a
|
865 |
+
future version.
|
866 |
+
See :ref:`deprecated-mechanics-joint-pos` for more information.
|
867 |
+
child_joint_pos : Point or Vector, optional
|
868 |
+
.. deprecated:: 1.12
|
869 |
+
This argument is replaced by child_point and will be removed in a
|
870 |
+
future version.
|
871 |
+
See :ref:`deprecated-mechanics-joint-pos` for more information.
|
872 |
+
|
873 |
+
Attributes
|
874 |
+
==========
|
875 |
+
|
876 |
+
name : string
|
877 |
+
The joint's name.
|
878 |
+
parent : Body
|
879 |
+
The joint's parent body.
|
880 |
+
child : Body
|
881 |
+
The joint's child body.
|
882 |
+
coordinates : Matrix
|
883 |
+
Matrix of the joint's generalized coordinates.
|
884 |
+
speeds : Matrix
|
885 |
+
Matrix of the joint's generalized speeds.
|
886 |
+
parent_point : Point
|
887 |
+
Attachment point where the joint is fixed to the parent body.
|
888 |
+
child_point : Point
|
889 |
+
Attachment point where the joint is fixed to the child body.
|
890 |
+
parent_axis : Vector
|
891 |
+
The axis fixed in the parent frame that represents the joint.
|
892 |
+
child_axis : Vector
|
893 |
+
The axis fixed in the child frame that represents the joint.
|
894 |
+
parent_interframe : ReferenceFrame
|
895 |
+
Intermediate frame of the parent body with respect to which the joint
|
896 |
+
transformation is formulated.
|
897 |
+
child_interframe : ReferenceFrame
|
898 |
+
Intermediate frame of the child body with respect to which the joint
|
899 |
+
transformation is formulated.
|
900 |
+
kdes : Matrix
|
901 |
+
Kinematical differential equations of the joint.
|
902 |
+
|
903 |
+
Examples
|
904 |
+
=========
|
905 |
+
|
906 |
+
A single prismatic joint is created from two bodies and has the following
|
907 |
+
basic attributes:
|
908 |
+
|
909 |
+
>>> from sympy.physics.mechanics import Body, PrismaticJoint
|
910 |
+
>>> parent = Body('P')
|
911 |
+
>>> parent
|
912 |
+
P
|
913 |
+
>>> child = Body('C')
|
914 |
+
>>> child
|
915 |
+
C
|
916 |
+
>>> joint = PrismaticJoint('PC', parent, child)
|
917 |
+
>>> joint
|
918 |
+
PrismaticJoint: PC parent: P child: C
|
919 |
+
>>> joint.name
|
920 |
+
'PC'
|
921 |
+
>>> joint.parent
|
922 |
+
P
|
923 |
+
>>> joint.child
|
924 |
+
C
|
925 |
+
>>> joint.parent_point
|
926 |
+
P_masscenter
|
927 |
+
>>> joint.child_point
|
928 |
+
C_masscenter
|
929 |
+
>>> joint.parent_axis
|
930 |
+
P_frame.x
|
931 |
+
>>> joint.child_axis
|
932 |
+
C_frame.x
|
933 |
+
>>> joint.coordinates
|
934 |
+
Matrix([[q_PC(t)]])
|
935 |
+
>>> joint.speeds
|
936 |
+
Matrix([[u_PC(t)]])
|
937 |
+
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
|
938 |
+
0
|
939 |
+
>>> joint.child.frame.dcm(joint.parent.frame)
|
940 |
+
Matrix([
|
941 |
+
[1, 0, 0],
|
942 |
+
[0, 1, 0],
|
943 |
+
[0, 0, 1]])
|
944 |
+
>>> joint.child_point.pos_from(joint.parent_point)
|
945 |
+
q_PC(t)*P_frame.x
|
946 |
+
|
947 |
+
To further demonstrate the use of the prismatic joint, the kinematics of two
|
948 |
+
masses sliding, one moving relative to a fixed body and the other relative
|
949 |
+
to the moving body. about the X axis of each connected body can be created
|
950 |
+
as follows.
|
951 |
+
|
952 |
+
>>> from sympy.physics.mechanics import PrismaticJoint, Body
|
953 |
+
|
954 |
+
First create bodies to represent the fixed ceiling and one to represent
|
955 |
+
a particle.
|
956 |
+
|
957 |
+
>>> wall = Body('W')
|
958 |
+
>>> Part1 = Body('P1')
|
959 |
+
>>> Part2 = Body('P2')
|
960 |
+
|
961 |
+
The first joint will connect the particle to the ceiling and the
|
962 |
+
joint axis will be about the X axis for each body.
|
963 |
+
|
964 |
+
>>> J1 = PrismaticJoint('J1', wall, Part1)
|
965 |
+
|
966 |
+
The second joint will connect the second particle to the first particle
|
967 |
+
and the joint axis will also be about the X axis for each body.
|
968 |
+
|
969 |
+
>>> J2 = PrismaticJoint('J2', Part1, Part2)
|
970 |
+
|
971 |
+
Once the joint is established the kinematics of the connected bodies can
|
972 |
+
be accessed. First the direction cosine matrices of Part relative
|
973 |
+
to the ceiling are found:
|
974 |
+
|
975 |
+
>>> Part1.dcm(wall)
|
976 |
+
Matrix([
|
977 |
+
[1, 0, 0],
|
978 |
+
[0, 1, 0],
|
979 |
+
[0, 0, 1]])
|
980 |
+
|
981 |
+
>>> Part2.dcm(wall)
|
982 |
+
Matrix([
|
983 |
+
[1, 0, 0],
|
984 |
+
[0, 1, 0],
|
985 |
+
[0, 0, 1]])
|
986 |
+
|
987 |
+
The position of the particles' masscenter is found with:
|
988 |
+
|
989 |
+
>>> Part1.masscenter.pos_from(wall.masscenter)
|
990 |
+
q_J1(t)*W_frame.x
|
991 |
+
|
992 |
+
>>> Part2.masscenter.pos_from(wall.masscenter)
|
993 |
+
q_J1(t)*W_frame.x + q_J2(t)*P1_frame.x
|
994 |
+
|
995 |
+
The angular velocities of the two particle links can be computed with
|
996 |
+
respect to the ceiling.
|
997 |
+
|
998 |
+
>>> Part1.ang_vel_in(wall)
|
999 |
+
0
|
1000 |
+
|
1001 |
+
>>> Part2.ang_vel_in(wall)
|
1002 |
+
0
|
1003 |
+
|
1004 |
+
And finally, the linear velocities of the two particles can be computed
|
1005 |
+
with respect to the ceiling.
|
1006 |
+
|
1007 |
+
>>> Part1.masscenter_vel(wall)
|
1008 |
+
u_J1(t)*W_frame.x
|
1009 |
+
|
1010 |
+
>>> Part2.masscenter.vel(wall.frame)
|
1011 |
+
u_J1(t)*W_frame.x + Derivative(q_J2(t), t)*P1_frame.x
|
1012 |
+
|
1013 |
+
"""
|
1014 |
+
|
1015 |
+
def __init__(self, name, parent, child, coordinates=None, speeds=None,
|
1016 |
+
parent_point=None, child_point=None, parent_axis=None,
|
1017 |
+
child_axis=None, parent_interframe=None, child_interframe=None,
|
1018 |
+
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
|
1019 |
+
|
1020 |
+
self._joint_axis = joint_axis
|
1021 |
+
super().__init__(name, parent, child, coordinates, speeds, parent_point,
|
1022 |
+
child_point, parent_axis, child_axis,
|
1023 |
+
parent_interframe, child_interframe, parent_joint_pos,
|
1024 |
+
child_joint_pos)
|
1025 |
+
|
1026 |
+
def __str__(self):
|
1027 |
+
return (f'PrismaticJoint: {self.name} parent: {self.parent} '
|
1028 |
+
f'child: {self.child}')
|
1029 |
+
|
1030 |
+
@property
|
1031 |
+
def joint_axis(self):
|
1032 |
+
"""Axis along which the child translates with respect to the parent."""
|
1033 |
+
return self._joint_axis
|
1034 |
+
|
1035 |
+
def _generate_coordinates(self, coordinate):
|
1036 |
+
return self._fill_coordinate_list(coordinate, 1, 'q')
|
1037 |
+
|
1038 |
+
def _generate_speeds(self, speed):
|
1039 |
+
return self._fill_coordinate_list(speed, 1, 'u')
|
1040 |
+
|
1041 |
+
def _orient_frames(self):
|
1042 |
+
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
|
1043 |
+
self.child_interframe.orient_axis(
|
1044 |
+
self.parent_interframe, self.joint_axis, 0)
|
1045 |
+
|
1046 |
+
def _set_angular_velocity(self):
|
1047 |
+
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
|
1048 |
+
|
1049 |
+
def _set_linear_velocity(self):
|
1050 |
+
axis = self.joint_axis.normalize()
|
1051 |
+
self.child_point.set_pos(self.parent_point, self.coordinates[0] * axis)
|
1052 |
+
self.parent_point.set_vel(self.parent.frame, 0)
|
1053 |
+
self.child_point.set_vel(self.child.frame, 0)
|
1054 |
+
self.child_point.set_vel(self.parent.frame, self.speeds[0] * axis)
|
1055 |
+
self.child.masscenter.set_vel(self.parent.frame, self.speeds[0] * axis)
|
1056 |
+
|
1057 |
+
|
1058 |
+
class CylindricalJoint(Joint):
|
1059 |
+
"""Cylindrical Joint.
|
1060 |
+
|
1061 |
+
.. image:: CylindricalJoint.svg
|
1062 |
+
:align: center
|
1063 |
+
:width: 600
|
1064 |
+
|
1065 |
+
Explanation
|
1066 |
+
===========
|
1067 |
+
|
1068 |
+
A cylindrical joint is defined such that the child body both rotates about
|
1069 |
+
and translates along the body-fixed joint axis with respect to the parent
|
1070 |
+
body. The joint axis is both the rotation axis and translation axis. The
|
1071 |
+
location of the joint is defined by two points, one in each body, which
|
1072 |
+
coincide when the generalized coordinate corresponding to the translation is
|
1073 |
+
zero. The direction cosine matrix between the child interframe and parent
|
1074 |
+
interframe is formed using a simple rotation about the joint axis. The page
|
1075 |
+
on the joints framework gives a more detailed explanation of the
|
1076 |
+
intermediate frames.
|
1077 |
+
|
1078 |
+
Parameters
|
1079 |
+
==========
|
1080 |
+
|
1081 |
+
name : string
|
1082 |
+
A unique name for the joint.
|
1083 |
+
parent : Body
|
1084 |
+
The parent body of joint.
|
1085 |
+
child : Body
|
1086 |
+
The child body of joint.
|
1087 |
+
rotation_coordinate : dynamicsymbol, optional
|
1088 |
+
Generalized coordinate corresponding to the rotation angle. The default
|
1089 |
+
value is ``dynamicsymbols(f'q0_{joint.name}')``.
|
1090 |
+
translation_coordinate : dynamicsymbol, optional
|
1091 |
+
Generalized coordinate corresponding to the translation distance. The
|
1092 |
+
default value is ``dynamicsymbols(f'q1_{joint.name}')``.
|
1093 |
+
rotation_speed : dynamicsymbol, optional
|
1094 |
+
Generalized speed corresponding to the angular velocity. The default
|
1095 |
+
value is ``dynamicsymbols(f'u0_{joint.name}')``.
|
1096 |
+
translation_speed : dynamicsymbol, optional
|
1097 |
+
Generalized speed corresponding to the translation velocity. The default
|
1098 |
+
value is ``dynamicsymbols(f'u1_{joint.name}')``.
|
1099 |
+
parent_point : Point or Vector, optional
|
1100 |
+
Attachment point where the joint is fixed to the parent body. If a
|
1101 |
+
vector is provided, then the attachment point is computed by adding the
|
1102 |
+
vector to the body's mass center. The default value is the parent's mass
|
1103 |
+
center.
|
1104 |
+
child_point : Point or Vector, optional
|
1105 |
+
Attachment point where the joint is fixed to the child body. If a
|
1106 |
+
vector is provided, then the attachment point is computed by adding the
|
1107 |
+
vector to the body's mass center. The default value is the child's mass
|
1108 |
+
center.
|
1109 |
+
parent_interframe : ReferenceFrame, optional
|
1110 |
+
Intermediate frame of the parent body with respect to which the joint
|
1111 |
+
transformation is formulated. If a Vector is provided then an interframe
|
1112 |
+
is created which aligns its X axis with the given vector. The default
|
1113 |
+
value is the parent's own frame.
|
1114 |
+
child_interframe : ReferenceFrame, optional
|
1115 |
+
Intermediate frame of the child body with respect to which the joint
|
1116 |
+
transformation is formulated. If a Vector is provided then an interframe
|
1117 |
+
is created which aligns its X axis with the given vector. The default
|
1118 |
+
value is the child's own frame.
|
1119 |
+
joint_axis : Vector, optional
|
1120 |
+
The rotation as well as translation axis. Note that the components of
|
1121 |
+
this axis are the same in the parent_interframe and child_interframe.
|
1122 |
+
|
1123 |
+
Attributes
|
1124 |
+
==========
|
1125 |
+
|
1126 |
+
name : string
|
1127 |
+
The joint's name.
|
1128 |
+
parent : Body
|
1129 |
+
The joint's parent body.
|
1130 |
+
child : Body
|
1131 |
+
The joint's child body.
|
1132 |
+
rotation_coordinate : dynamicsymbol
|
1133 |
+
Generalized coordinate corresponding to the rotation angle.
|
1134 |
+
translation_coordinate : dynamicsymbol
|
1135 |
+
Generalized coordinate corresponding to the translation distance.
|
1136 |
+
rotation_speed : dynamicsymbol
|
1137 |
+
Generalized speed corresponding to the angular velocity.
|
1138 |
+
translation_speed : dynamicsymbol
|
1139 |
+
Generalized speed corresponding to the translation velocity.
|
1140 |
+
coordinates : Matrix
|
1141 |
+
Matrix of the joint's generalized coordinates.
|
1142 |
+
speeds : Matrix
|
1143 |
+
Matrix of the joint's generalized speeds.
|
1144 |
+
parent_point : Point
|
1145 |
+
Attachment point where the joint is fixed to the parent body.
|
1146 |
+
child_point : Point
|
1147 |
+
Attachment point where the joint is fixed to the child body.
|
1148 |
+
parent_interframe : ReferenceFrame
|
1149 |
+
Intermediate frame of the parent body with respect to which the joint
|
1150 |
+
transformation is formulated.
|
1151 |
+
child_interframe : ReferenceFrame
|
1152 |
+
Intermediate frame of the child body with respect to which the joint
|
1153 |
+
transformation is formulated.
|
1154 |
+
kdes : Matrix
|
1155 |
+
Kinematical differential equations of the joint.
|
1156 |
+
joint_axis : Vector
|
1157 |
+
The axis of rotation and translation.
|
1158 |
+
|
1159 |
+
Examples
|
1160 |
+
=========
|
1161 |
+
|
1162 |
+
A single cylindrical joint is created between two bodies and has the
|
1163 |
+
following basic attributes:
|
1164 |
+
|
1165 |
+
>>> from sympy.physics.mechanics import Body, CylindricalJoint
|
1166 |
+
>>> parent = Body('P')
|
1167 |
+
>>> parent
|
1168 |
+
P
|
1169 |
+
>>> child = Body('C')
|
1170 |
+
>>> child
|
1171 |
+
C
|
1172 |
+
>>> joint = CylindricalJoint('PC', parent, child)
|
1173 |
+
>>> joint
|
1174 |
+
CylindricalJoint: PC parent: P child: C
|
1175 |
+
>>> joint.name
|
1176 |
+
'PC'
|
1177 |
+
>>> joint.parent
|
1178 |
+
P
|
1179 |
+
>>> joint.child
|
1180 |
+
C
|
1181 |
+
>>> joint.parent_point
|
1182 |
+
P_masscenter
|
1183 |
+
>>> joint.child_point
|
1184 |
+
C_masscenter
|
1185 |
+
>>> joint.parent_axis
|
1186 |
+
P_frame.x
|
1187 |
+
>>> joint.child_axis
|
1188 |
+
C_frame.x
|
1189 |
+
>>> joint.coordinates
|
1190 |
+
Matrix([
|
1191 |
+
[q0_PC(t)],
|
1192 |
+
[q1_PC(t)]])
|
1193 |
+
>>> joint.speeds
|
1194 |
+
Matrix([
|
1195 |
+
[u0_PC(t)],
|
1196 |
+
[u1_PC(t)]])
|
1197 |
+
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
|
1198 |
+
u0_PC(t)*P_frame.x
|
1199 |
+
>>> joint.child.frame.dcm(joint.parent.frame)
|
1200 |
+
Matrix([
|
1201 |
+
[1, 0, 0],
|
1202 |
+
[0, cos(q0_PC(t)), sin(q0_PC(t))],
|
1203 |
+
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
|
1204 |
+
>>> joint.child_point.pos_from(joint.parent_point)
|
1205 |
+
q1_PC(t)*P_frame.x
|
1206 |
+
>>> child.masscenter.vel(parent.frame)
|
1207 |
+
u1_PC(t)*P_frame.x
|
1208 |
+
|
1209 |
+
To further demonstrate the use of the cylindrical joint, the kinematics of
|
1210 |
+
two cylindrical joints perpendicular to each other can be created as follows.
|
1211 |
+
|
1212 |
+
>>> from sympy import symbols
|
1213 |
+
>>> from sympy.physics.mechanics import Body, CylindricalJoint
|
1214 |
+
>>> r, l, w = symbols('r l w')
|
1215 |
+
|
1216 |
+
First create bodies to represent the fixed floor with a fixed pole on it.
|
1217 |
+
The second body represents a freely moving tube around that pole. The third
|
1218 |
+
body represents a solid flag freely translating along and rotating around
|
1219 |
+
the Y axis of the tube.
|
1220 |
+
|
1221 |
+
>>> floor = Body('floor')
|
1222 |
+
>>> tube = Body('tube')
|
1223 |
+
>>> flag = Body('flag')
|
1224 |
+
|
1225 |
+
The first joint will connect the first tube to the floor with it translating
|
1226 |
+
along and rotating around the Z axis of both bodies.
|
1227 |
+
|
1228 |
+
>>> floor_joint = CylindricalJoint('C1', floor, tube, joint_axis=floor.z)
|
1229 |
+
|
1230 |
+
The second joint will connect the tube perpendicular to the flag along the Y
|
1231 |
+
axis of both the tube and the flag, with the joint located at a distance
|
1232 |
+
``r`` from the tube's center of mass and a combination of the distances
|
1233 |
+
``l`` and ``w`` from the flag's center of mass.
|
1234 |
+
|
1235 |
+
>>> flag_joint = CylindricalJoint('C2', tube, flag,
|
1236 |
+
... parent_point=r * tube.y,
|
1237 |
+
... child_point=-w * flag.y + l * flag.z,
|
1238 |
+
... joint_axis=tube.y)
|
1239 |
+
|
1240 |
+
Once the joints are established the kinematics of the connected bodies can
|
1241 |
+
be accessed. First the direction cosine matrices of both the body and the
|
1242 |
+
flag relative to the floor are found:
|
1243 |
+
|
1244 |
+
>>> tube.dcm(floor)
|
1245 |
+
Matrix([
|
1246 |
+
[ cos(q0_C1(t)), sin(q0_C1(t)), 0],
|
1247 |
+
[-sin(q0_C1(t)), cos(q0_C1(t)), 0],
|
1248 |
+
[ 0, 0, 1]])
|
1249 |
+
>>> flag.dcm(floor)
|
1250 |
+
Matrix([
|
1251 |
+
[cos(q0_C1(t))*cos(q0_C2(t)), sin(q0_C1(t))*cos(q0_C2(t)), -sin(q0_C2(t))],
|
1252 |
+
[ -sin(q0_C1(t)), cos(q0_C1(t)), 0],
|
1253 |
+
[sin(q0_C2(t))*cos(q0_C1(t)), sin(q0_C1(t))*sin(q0_C2(t)), cos(q0_C2(t))]])
|
1254 |
+
|
1255 |
+
The position of the flag's center of mass is found with:
|
1256 |
+
|
1257 |
+
>>> flag.masscenter.pos_from(floor.masscenter)
|
1258 |
+
q1_C1(t)*floor_frame.z + (r + q1_C2(t))*tube_frame.y + w*flag_frame.y - l*flag_frame.z
|
1259 |
+
|
1260 |
+
The angular velocities of the two tubes can be computed with respect to the
|
1261 |
+
floor.
|
1262 |
+
|
1263 |
+
>>> tube.ang_vel_in(floor)
|
1264 |
+
u0_C1(t)*floor_frame.z
|
1265 |
+
>>> flag.ang_vel_in(floor)
|
1266 |
+
u0_C1(t)*floor_frame.z + u0_C2(t)*tube_frame.y
|
1267 |
+
|
1268 |
+
Finally, the linear velocities of the two tube centers of mass can be
|
1269 |
+
computed with respect to the floor, while expressed in the tube's frame.
|
1270 |
+
|
1271 |
+
>>> tube.masscenter.vel(floor.frame).to_matrix(tube.frame)
|
1272 |
+
Matrix([
|
1273 |
+
[ 0],
|
1274 |
+
[ 0],
|
1275 |
+
[u1_C1(t)]])
|
1276 |
+
>>> flag.masscenter.vel(floor.frame).to_matrix(tube.frame).simplify()
|
1277 |
+
Matrix([
|
1278 |
+
[-l*u0_C2(t)*cos(q0_C2(t)) - r*u0_C1(t) - w*u0_C1(t) - q1_C2(t)*u0_C1(t)],
|
1279 |
+
[ -l*u0_C1(t)*sin(q0_C2(t)) + Derivative(q1_C2(t), t)],
|
1280 |
+
[ l*u0_C2(t)*sin(q0_C2(t)) + u1_C1(t)]])
|
1281 |
+
|
1282 |
+
"""
|
1283 |
+
|
1284 |
+
def __init__(self, name, parent, child, rotation_coordinate=None,
|
1285 |
+
translation_coordinate=None, rotation_speed=None,
|
1286 |
+
translation_speed=None, parent_point=None, child_point=None,
|
1287 |
+
parent_interframe=None, child_interframe=None,
|
1288 |
+
joint_axis=None):
|
1289 |
+
self._joint_axis = joint_axis
|
1290 |
+
coordinates = (rotation_coordinate, translation_coordinate)
|
1291 |
+
speeds = (rotation_speed, translation_speed)
|
1292 |
+
super().__init__(name, parent, child, coordinates, speeds,
|
1293 |
+
parent_point, child_point,
|
1294 |
+
parent_interframe=parent_interframe,
|
1295 |
+
child_interframe=child_interframe)
|
1296 |
+
|
1297 |
+
def __str__(self):
|
1298 |
+
return (f'CylindricalJoint: {self.name} parent: {self.parent} '
|
1299 |
+
f'child: {self.child}')
|
1300 |
+
|
1301 |
+
@property
|
1302 |
+
def joint_axis(self):
|
1303 |
+
"""Axis about and along which the rotation and translation occurs."""
|
1304 |
+
return self._joint_axis
|
1305 |
+
|
1306 |
+
@property
|
1307 |
+
def rotation_coordinate(self):
|
1308 |
+
"""Generalized coordinate corresponding to the rotation angle."""
|
1309 |
+
return self.coordinates[0]
|
1310 |
+
|
1311 |
+
@property
|
1312 |
+
def translation_coordinate(self):
|
1313 |
+
"""Generalized coordinate corresponding to the translation distance."""
|
1314 |
+
return self.coordinates[1]
|
1315 |
+
|
1316 |
+
@property
|
1317 |
+
def rotation_speed(self):
|
1318 |
+
"""Generalized speed corresponding to the angular velocity."""
|
1319 |
+
return self.speeds[0]
|
1320 |
+
|
1321 |
+
@property
|
1322 |
+
def translation_speed(self):
|
1323 |
+
"""Generalized speed corresponding to the translation velocity."""
|
1324 |
+
return self.speeds[1]
|
1325 |
+
|
1326 |
+
def _generate_coordinates(self, coordinates):
|
1327 |
+
return self._fill_coordinate_list(coordinates, 2, 'q')
|
1328 |
+
|
1329 |
+
def _generate_speeds(self, speeds):
|
1330 |
+
return self._fill_coordinate_list(speeds, 2, 'u')
|
1331 |
+
|
1332 |
+
def _orient_frames(self):
|
1333 |
+
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
|
1334 |
+
self.child_interframe.orient_axis(
|
1335 |
+
self.parent_interframe, self.joint_axis, self.rotation_coordinate)
|
1336 |
+
|
1337 |
+
def _set_angular_velocity(self):
|
1338 |
+
self.child_interframe.set_ang_vel(
|
1339 |
+
self.parent_interframe,
|
1340 |
+
self.rotation_speed * self.joint_axis.normalize())
|
1341 |
+
|
1342 |
+
def _set_linear_velocity(self):
|
1343 |
+
self.child_point.set_pos(
|
1344 |
+
self.parent_point,
|
1345 |
+
self.translation_coordinate * self.joint_axis.normalize())
|
1346 |
+
self.parent_point.set_vel(self.parent.frame, 0)
|
1347 |
+
self.child_point.set_vel(self.child.frame, 0)
|
1348 |
+
self.child_point.set_vel(
|
1349 |
+
self.parent.frame,
|
1350 |
+
self.translation_speed * self.joint_axis.normalize())
|
1351 |
+
self.child.masscenter.v2pt_theory(self.child_point, self.parent.frame,
|
1352 |
+
self.child_interframe)
|
1353 |
+
|
1354 |
+
|
1355 |
+
class PlanarJoint(Joint):
|
1356 |
+
"""Planar Joint.
|
1357 |
+
|
1358 |
+
.. image:: PlanarJoint.svg
|
1359 |
+
:align: center
|
1360 |
+
:width: 800
|
1361 |
+
|
1362 |
+
Explanation
|
1363 |
+
===========
|
1364 |
+
|
1365 |
+
A planar joint is defined such that the child body translates over a fixed
|
1366 |
+
plane of the parent body as well as rotate about the rotation axis, which
|
1367 |
+
is perpendicular to that plane. The origin of this plane is the
|
1368 |
+
``parent_point`` and the plane is spanned by two nonparallel planar vectors.
|
1369 |
+
The location of the ``child_point`` is based on the planar vectors
|
1370 |
+
($\\vec{v}_1$, $\\vec{v}_2$) and generalized coordinates ($q_1$, $q_2$),
|
1371 |
+
i.e. $\\vec{r} = q_1 \\hat{v}_1 + q_2 \\hat{v}_2$. The direction cosine
|
1372 |
+
matrix between the ``child_interframe`` and ``parent_interframe`` is formed
|
1373 |
+
using a simple rotation ($q_0$) about the rotation axis.
|
1374 |
+
|
1375 |
+
In order to simplify the definition of the ``PlanarJoint``, the
|
1376 |
+
``rotation_axis`` and ``planar_vectors`` are set to be the unit vectors of
|
1377 |
+
the ``parent_interframe`` according to the table below. This ensures that
|
1378 |
+
you can only define these vectors by creating a separate frame and supplying
|
1379 |
+
that as the interframe. If you however would only like to supply the normals
|
1380 |
+
of the plane with respect to the parent and child bodies, then you can also
|
1381 |
+
supply those to the ``parent_interframe`` and ``child_interframe``
|
1382 |
+
arguments. An example of both of these cases is in the examples section
|
1383 |
+
below and the page on the joints framework provides a more detailed
|
1384 |
+
explanation of the intermediate frames.
|
1385 |
+
|
1386 |
+
.. list-table::
|
1387 |
+
|
1388 |
+
* - ``rotation_axis``
|
1389 |
+
- ``parent_interframe.x``
|
1390 |
+
* - ``planar_vectors[0]``
|
1391 |
+
- ``parent_interframe.y``
|
1392 |
+
* - ``planar_vectors[1]``
|
1393 |
+
- ``parent_interframe.z``
|
1394 |
+
|
1395 |
+
Parameters
|
1396 |
+
==========
|
1397 |
+
|
1398 |
+
name : string
|
1399 |
+
A unique name for the joint.
|
1400 |
+
parent : Body
|
1401 |
+
The parent body of joint.
|
1402 |
+
child : Body
|
1403 |
+
The child body of joint.
|
1404 |
+
rotation_coordinate : dynamicsymbol, optional
|
1405 |
+
Generalized coordinate corresponding to the rotation angle. The default
|
1406 |
+
value is ``dynamicsymbols(f'q0_{joint.name}')``.
|
1407 |
+
planar_coordinates : iterable of dynamicsymbols, optional
|
1408 |
+
Two generalized coordinates used for the planar translation. The default
|
1409 |
+
value is ``dynamicsymbols(f'q1_{joint.name} q2_{joint.name}')``.
|
1410 |
+
rotation_speed : dynamicsymbol, optional
|
1411 |
+
Generalized speed corresponding to the angular velocity. The default
|
1412 |
+
value is ``dynamicsymbols(f'u0_{joint.name}')``.
|
1413 |
+
planar_speeds : dynamicsymbols, optional
|
1414 |
+
Two generalized speeds used for the planar translation velocity. The
|
1415 |
+
default value is ``dynamicsymbols(f'u1_{joint.name} u2_{joint.name}')``.
|
1416 |
+
parent_point : Point or Vector, optional
|
1417 |
+
Attachment point where the joint is fixed to the parent body. If a
|
1418 |
+
vector is provided, then the attachment point is computed by adding the
|
1419 |
+
vector to the body's mass center. The default value is the parent's mass
|
1420 |
+
center.
|
1421 |
+
child_point : Point or Vector, optional
|
1422 |
+
Attachment point where the joint is fixed to the child body. If a
|
1423 |
+
vector is provided, then the attachment point is computed by adding the
|
1424 |
+
vector to the body's mass center. The default value is the child's mass
|
1425 |
+
center.
|
1426 |
+
parent_interframe : ReferenceFrame, optional
|
1427 |
+
Intermediate frame of the parent body with respect to which the joint
|
1428 |
+
transformation is formulated. If a Vector is provided then an interframe
|
1429 |
+
is created which aligns its X axis with the given vector. The default
|
1430 |
+
value is the parent's own frame.
|
1431 |
+
child_interframe : ReferenceFrame, optional
|
1432 |
+
Intermediate frame of the child body with respect to which the joint
|
1433 |
+
transformation is formulated. If a Vector is provided then an interframe
|
1434 |
+
is created which aligns its X axis with the given vector. The default
|
1435 |
+
value is the child's own frame.
|
1436 |
+
|
1437 |
+
Attributes
|
1438 |
+
==========
|
1439 |
+
|
1440 |
+
name : string
|
1441 |
+
The joint's name.
|
1442 |
+
parent : Body
|
1443 |
+
The joint's parent body.
|
1444 |
+
child : Body
|
1445 |
+
The joint's child body.
|
1446 |
+
rotation_coordinate : dynamicsymbol
|
1447 |
+
Generalized coordinate corresponding to the rotation angle.
|
1448 |
+
planar_coordinates : Matrix
|
1449 |
+
Two generalized coordinates used for the planar translation.
|
1450 |
+
rotation_speed : dynamicsymbol
|
1451 |
+
Generalized speed corresponding to the angular velocity.
|
1452 |
+
planar_speeds : Matrix
|
1453 |
+
Two generalized speeds used for the planar translation velocity.
|
1454 |
+
coordinates : Matrix
|
1455 |
+
Matrix of the joint's generalized coordinates.
|
1456 |
+
speeds : Matrix
|
1457 |
+
Matrix of the joint's generalized speeds.
|
1458 |
+
parent_point : Point
|
1459 |
+
Attachment point where the joint is fixed to the parent body.
|
1460 |
+
child_point : Point
|
1461 |
+
Attachment point where the joint is fixed to the child body.
|
1462 |
+
parent_interframe : ReferenceFrame
|
1463 |
+
Intermediate frame of the parent body with respect to which the joint
|
1464 |
+
transformation is formulated.
|
1465 |
+
child_interframe : ReferenceFrame
|
1466 |
+
Intermediate frame of the child body with respect to which the joint
|
1467 |
+
transformation is formulated.
|
1468 |
+
kdes : Matrix
|
1469 |
+
Kinematical differential equations of the joint.
|
1470 |
+
rotation_axis : Vector
|
1471 |
+
The axis about which the rotation occurs.
|
1472 |
+
planar_vectors : list
|
1473 |
+
The vectors that describe the planar translation directions.
|
1474 |
+
|
1475 |
+
Examples
|
1476 |
+
=========
|
1477 |
+
|
1478 |
+
A single planar joint is created between two bodies and has the following
|
1479 |
+
basic attributes:
|
1480 |
+
|
1481 |
+
>>> from sympy.physics.mechanics import Body, PlanarJoint
|
1482 |
+
>>> parent = Body('P')
|
1483 |
+
>>> parent
|
1484 |
+
P
|
1485 |
+
>>> child = Body('C')
|
1486 |
+
>>> child
|
1487 |
+
C
|
1488 |
+
>>> joint = PlanarJoint('PC', parent, child)
|
1489 |
+
>>> joint
|
1490 |
+
PlanarJoint: PC parent: P child: C
|
1491 |
+
>>> joint.name
|
1492 |
+
'PC'
|
1493 |
+
>>> joint.parent
|
1494 |
+
P
|
1495 |
+
>>> joint.child
|
1496 |
+
C
|
1497 |
+
>>> joint.parent_point
|
1498 |
+
P_masscenter
|
1499 |
+
>>> joint.child_point
|
1500 |
+
C_masscenter
|
1501 |
+
>>> joint.rotation_axis
|
1502 |
+
P_frame.x
|
1503 |
+
>>> joint.planar_vectors
|
1504 |
+
[P_frame.y, P_frame.z]
|
1505 |
+
>>> joint.rotation_coordinate
|
1506 |
+
q0_PC(t)
|
1507 |
+
>>> joint.planar_coordinates
|
1508 |
+
Matrix([
|
1509 |
+
[q1_PC(t)],
|
1510 |
+
[q2_PC(t)]])
|
1511 |
+
>>> joint.coordinates
|
1512 |
+
Matrix([
|
1513 |
+
[q0_PC(t)],
|
1514 |
+
[q1_PC(t)],
|
1515 |
+
[q2_PC(t)]])
|
1516 |
+
>>> joint.rotation_speed
|
1517 |
+
u0_PC(t)
|
1518 |
+
>>> joint.planar_speeds
|
1519 |
+
Matrix([
|
1520 |
+
[u1_PC(t)],
|
1521 |
+
[u2_PC(t)]])
|
1522 |
+
>>> joint.speeds
|
1523 |
+
Matrix([
|
1524 |
+
[u0_PC(t)],
|
1525 |
+
[u1_PC(t)],
|
1526 |
+
[u2_PC(t)]])
|
1527 |
+
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
|
1528 |
+
u0_PC(t)*P_frame.x
|
1529 |
+
>>> joint.child.frame.dcm(joint.parent.frame)
|
1530 |
+
Matrix([
|
1531 |
+
[1, 0, 0],
|
1532 |
+
[0, cos(q0_PC(t)), sin(q0_PC(t))],
|
1533 |
+
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
|
1534 |
+
>>> joint.child_point.pos_from(joint.parent_point)
|
1535 |
+
q1_PC(t)*P_frame.y + q2_PC(t)*P_frame.z
|
1536 |
+
>>> child.masscenter.vel(parent.frame)
|
1537 |
+
u1_PC(t)*P_frame.y + u2_PC(t)*P_frame.z
|
1538 |
+
|
1539 |
+
To further demonstrate the use of the planar joint, the kinematics of a
|
1540 |
+
block sliding on a slope, can be created as follows.
|
1541 |
+
|
1542 |
+
>>> from sympy import symbols
|
1543 |
+
>>> from sympy.physics.mechanics import PlanarJoint, Body, ReferenceFrame
|
1544 |
+
>>> a, d, h = symbols('a d h')
|
1545 |
+
|
1546 |
+
First create bodies to represent the slope and the block.
|
1547 |
+
|
1548 |
+
>>> ground = Body('G')
|
1549 |
+
>>> block = Body('B')
|
1550 |
+
|
1551 |
+
To define the slope you can either define the plane by specifying the
|
1552 |
+
``planar_vectors`` or/and the ``rotation_axis``. However it is advisable to
|
1553 |
+
create a rotated intermediate frame, so that the ``parent_vectors`` and
|
1554 |
+
``rotation_axis`` will be the unit vectors of this intermediate frame.
|
1555 |
+
|
1556 |
+
>>> slope = ReferenceFrame('A')
|
1557 |
+
>>> slope.orient_axis(ground.frame, ground.y, a)
|
1558 |
+
|
1559 |
+
The planar joint can be created using these bodies and intermediate frame.
|
1560 |
+
We can specify the origin of the slope to be ``d`` above the slope's center
|
1561 |
+
of mass and the block's center of mass to be a distance ``h`` above the
|
1562 |
+
slope's surface. Note that we can specify the normal of the plane using the
|
1563 |
+
rotation axis argument.
|
1564 |
+
|
1565 |
+
>>> joint = PlanarJoint('PC', ground, block, parent_point=d * ground.x,
|
1566 |
+
... child_point=-h * block.x, parent_interframe=slope)
|
1567 |
+
|
1568 |
+
Once the joint is established the kinematics of the bodies can be accessed.
|
1569 |
+
First the ``rotation_axis``, which is normal to the plane and the
|
1570 |
+
``plane_vectors``, can be found.
|
1571 |
+
|
1572 |
+
>>> joint.rotation_axis
|
1573 |
+
A.x
|
1574 |
+
>>> joint.planar_vectors
|
1575 |
+
[A.y, A.z]
|
1576 |
+
|
1577 |
+
The direction cosine matrix of the block with respect to the ground can be
|
1578 |
+
found with:
|
1579 |
+
|
1580 |
+
>>> block.dcm(ground)
|
1581 |
+
Matrix([
|
1582 |
+
[ cos(a), 0, -sin(a)],
|
1583 |
+
[sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
|
1584 |
+
[sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
|
1585 |
+
|
1586 |
+
The angular velocity of the block can be computed with respect to the
|
1587 |
+
ground.
|
1588 |
+
|
1589 |
+
>>> block.ang_vel_in(ground)
|
1590 |
+
u0_PC(t)*A.x
|
1591 |
+
|
1592 |
+
The position of the block's center of mass can be found with:
|
1593 |
+
|
1594 |
+
>>> block.masscenter.pos_from(ground.masscenter)
|
1595 |
+
d*G_frame.x + h*B_frame.x + q1_PC(t)*A.y + q2_PC(t)*A.z
|
1596 |
+
|
1597 |
+
Finally, the linear velocity of the block's center of mass can be
|
1598 |
+
computed with respect to the ground.
|
1599 |
+
|
1600 |
+
>>> block.masscenter.vel(ground.frame)
|
1601 |
+
u1_PC(t)*A.y + u2_PC(t)*A.z
|
1602 |
+
|
1603 |
+
In some cases it could be your preference to only define the normals of the
|
1604 |
+
plane with respect to both bodies. This can most easily be done by supplying
|
1605 |
+
vectors to the ``interframe`` arguments. What will happen in this case is
|
1606 |
+
that an interframe will be created with its ``x`` axis aligned with the
|
1607 |
+
provided vector. For a further explanation of how this is done see the notes
|
1608 |
+
of the ``Joint`` class. In the code below, the above example (with the block
|
1609 |
+
on the slope) is recreated by supplying vectors to the interframe arguments.
|
1610 |
+
Note that the previously described option is however more computationally
|
1611 |
+
efficient, because the algorithm now has to compute the rotation angle
|
1612 |
+
between the provided vector and the 'x' axis.
|
1613 |
+
|
1614 |
+
>>> from sympy import symbols, cos, sin
|
1615 |
+
>>> from sympy.physics.mechanics import PlanarJoint, Body
|
1616 |
+
>>> a, d, h = symbols('a d h')
|
1617 |
+
>>> ground = Body('G')
|
1618 |
+
>>> block = Body('B')
|
1619 |
+
>>> joint = PlanarJoint(
|
1620 |
+
... 'PC', ground, block, parent_point=d * ground.x,
|
1621 |
+
... child_point=-h * block.x, child_interframe=block.x,
|
1622 |
+
... parent_interframe=cos(a) * ground.x + sin(a) * ground.z)
|
1623 |
+
>>> block.dcm(ground).simplify()
|
1624 |
+
Matrix([
|
1625 |
+
[ cos(a), 0, sin(a)],
|
1626 |
+
[-sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
|
1627 |
+
[-sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
|
1628 |
+
|
1629 |
+
"""
|
1630 |
+
|
1631 |
+
def __init__(self, name, parent, child, rotation_coordinate=None,
|
1632 |
+
planar_coordinates=None, rotation_speed=None,
|
1633 |
+
planar_speeds=None, parent_point=None, child_point=None,
|
1634 |
+
parent_interframe=None, child_interframe=None):
|
1635 |
+
# A ready to merge implementation of setting the planar_vectors and
|
1636 |
+
# rotation_axis was added and removed in PR #24046
|
1637 |
+
coordinates = (rotation_coordinate, planar_coordinates)
|
1638 |
+
speeds = (rotation_speed, planar_speeds)
|
1639 |
+
super().__init__(name, parent, child, coordinates, speeds,
|
1640 |
+
parent_point, child_point,
|
1641 |
+
parent_interframe=parent_interframe,
|
1642 |
+
child_interframe=child_interframe)
|
1643 |
+
|
1644 |
+
def __str__(self):
|
1645 |
+
return (f'PlanarJoint: {self.name} parent: {self.parent} '
|
1646 |
+
f'child: {self.child}')
|
1647 |
+
|
1648 |
+
@property
|
1649 |
+
def rotation_coordinate(self):
|
1650 |
+
"""Generalized coordinate corresponding to the rotation angle."""
|
1651 |
+
return self.coordinates[0]
|
1652 |
+
|
1653 |
+
@property
|
1654 |
+
def planar_coordinates(self):
|
1655 |
+
"""Two generalized coordinates used for the planar translation."""
|
1656 |
+
return self.coordinates[1:, 0]
|
1657 |
+
|
1658 |
+
@property
|
1659 |
+
def rotation_speed(self):
|
1660 |
+
"""Generalized speed corresponding to the angular velocity."""
|
1661 |
+
return self.speeds[0]
|
1662 |
+
|
1663 |
+
@property
|
1664 |
+
def planar_speeds(self):
|
1665 |
+
"""Two generalized speeds used for the planar translation velocity."""
|
1666 |
+
return self.speeds[1:, 0]
|
1667 |
+
|
1668 |
+
@property
|
1669 |
+
def rotation_axis(self):
|
1670 |
+
"""The axis about which the rotation occurs."""
|
1671 |
+
return self.parent_interframe.x
|
1672 |
+
|
1673 |
+
@property
|
1674 |
+
def planar_vectors(self):
|
1675 |
+
"""The vectors that describe the planar translation directions."""
|
1676 |
+
return [self.parent_interframe.y, self.parent_interframe.z]
|
1677 |
+
|
1678 |
+
def _generate_coordinates(self, coordinates):
|
1679 |
+
rotation_speed = self._fill_coordinate_list(coordinates[0], 1, 'q',
|
1680 |
+
number_single=True)
|
1681 |
+
planar_speeds = self._fill_coordinate_list(coordinates[1], 2, 'q', 1)
|
1682 |
+
return rotation_speed.col_join(planar_speeds)
|
1683 |
+
|
1684 |
+
def _generate_speeds(self, speeds):
|
1685 |
+
rotation_speed = self._fill_coordinate_list(speeds[0], 1, 'u',
|
1686 |
+
number_single=True)
|
1687 |
+
planar_speeds = self._fill_coordinate_list(speeds[1], 2, 'u', 1)
|
1688 |
+
return rotation_speed.col_join(planar_speeds)
|
1689 |
+
|
1690 |
+
def _orient_frames(self):
|
1691 |
+
self.child_interframe.orient_axis(
|
1692 |
+
self.parent_interframe, self.rotation_axis,
|
1693 |
+
self.rotation_coordinate)
|
1694 |
+
|
1695 |
+
def _set_angular_velocity(self):
|
1696 |
+
self.child_interframe.set_ang_vel(
|
1697 |
+
self.parent_interframe,
|
1698 |
+
self.rotation_speed * self.rotation_axis)
|
1699 |
+
|
1700 |
+
def _set_linear_velocity(self):
|
1701 |
+
self.child_point.set_pos(
|
1702 |
+
self.parent_point,
|
1703 |
+
self.planar_coordinates[0] * self.planar_vectors[0] +
|
1704 |
+
self.planar_coordinates[1] * self.planar_vectors[1])
|
1705 |
+
self.parent_point.set_vel(self.parent_interframe, 0)
|
1706 |
+
self.child_point.set_vel(self.child_interframe, 0)
|
1707 |
+
self.child_point.set_vel(
|
1708 |
+
self.parent.frame, self.planar_speeds[0] * self.planar_vectors[0] +
|
1709 |
+
self.planar_speeds[1] * self.planar_vectors[1])
|
1710 |
+
self.child.masscenter.v2pt_theory(self.child_point, self.parent.frame,
|
1711 |
+
self.child.frame)
|
1712 |
+
|
1713 |
+
|
1714 |
+
class SphericalJoint(Joint):
|
1715 |
+
"""Spherical (Ball-and-Socket) Joint.
|
1716 |
+
|
1717 |
+
.. image:: SphericalJoint.svg
|
1718 |
+
:align: center
|
1719 |
+
:width: 600
|
1720 |
+
|
1721 |
+
Explanation
|
1722 |
+
===========
|
1723 |
+
|
1724 |
+
A spherical joint is defined such that the child body is free to rotate in
|
1725 |
+
any direction, without allowing a translation of the ``child_point``. As can
|
1726 |
+
also be seen in the image, the ``parent_point`` and ``child_point`` are
|
1727 |
+
fixed on top of each other, i.e. the ``joint_point``. This rotation is
|
1728 |
+
defined using the :func:`parent_interframe.orient(child_interframe,
|
1729 |
+
rot_type, amounts, rot_order)
|
1730 |
+
<sympy.physics.vector.frame.ReferenceFrame.orient>` method. The default
|
1731 |
+
rotation consists of three relative rotations, i.e. body-fixed rotations.
|
1732 |
+
Based on the direction cosine matrix following from these rotations, the
|
1733 |
+
angular velocity is computed based on the generalized coordinates and
|
1734 |
+
generalized speeds.
|
1735 |
+
|
1736 |
+
Parameters
|
1737 |
+
==========
|
1738 |
+
|
1739 |
+
name : string
|
1740 |
+
A unique name for the joint.
|
1741 |
+
parent : Body
|
1742 |
+
The parent body of joint.
|
1743 |
+
child : Body
|
1744 |
+
The child body of joint.
|
1745 |
+
coordinates: iterable of dynamicsymbols, optional
|
1746 |
+
Generalized coordinates of the joint.
|
1747 |
+
speeds : iterable of dynamicsymbols, optional
|
1748 |
+
Generalized speeds of joint.
|
1749 |
+
parent_point : Point or Vector, optional
|
1750 |
+
Attachment point where the joint is fixed to the parent body. If a
|
1751 |
+
vector is provided, then the attachment point is computed by adding the
|
1752 |
+
vector to the body's mass center. The default value is the parent's mass
|
1753 |
+
center.
|
1754 |
+
child_point : Point or Vector, optional
|
1755 |
+
Attachment point where the joint is fixed to the child body. If a
|
1756 |
+
vector is provided, then the attachment point is computed by adding the
|
1757 |
+
vector to the body's mass center. The default value is the child's mass
|
1758 |
+
center.
|
1759 |
+
parent_interframe : ReferenceFrame, optional
|
1760 |
+
Intermediate frame of the parent body with respect to which the joint
|
1761 |
+
transformation is formulated. If a Vector is provided then an interframe
|
1762 |
+
is created which aligns its X axis with the given vector. The default
|
1763 |
+
value is the parent's own frame.
|
1764 |
+
child_interframe : ReferenceFrame, optional
|
1765 |
+
Intermediate frame of the child body with respect to which the joint
|
1766 |
+
transformation is formulated. If a Vector is provided then an interframe
|
1767 |
+
is created which aligns its X axis with the given vector. The default
|
1768 |
+
value is the child's own frame.
|
1769 |
+
rot_type : str, optional
|
1770 |
+
The method used to generate the direction cosine matrix. Supported
|
1771 |
+
methods are:
|
1772 |
+
|
1773 |
+
- ``'Body'``: three successive rotations about new intermediate axes,
|
1774 |
+
also called "Euler and Tait-Bryan angles"
|
1775 |
+
- ``'Space'``: three successive rotations about the parent frames' unit
|
1776 |
+
vectors
|
1777 |
+
|
1778 |
+
The default method is ``'Body'``.
|
1779 |
+
amounts :
|
1780 |
+
Expressions defining the rotation angles or direction cosine matrix.
|
1781 |
+
These must match the ``rot_type``. See examples below for details. The
|
1782 |
+
input types are:
|
1783 |
+
|
1784 |
+
- ``'Body'``: 3-tuple of expressions, symbols, or functions
|
1785 |
+
- ``'Space'``: 3-tuple of expressions, symbols, or functions
|
1786 |
+
|
1787 |
+
The default amounts are the given ``coordinates``.
|
1788 |
+
rot_order : str or int, optional
|
1789 |
+
If applicable, the order of the successive of rotations. The string
|
1790 |
+
``'123'`` and integer ``123`` are equivalent, for example. Required for
|
1791 |
+
``'Body'`` and ``'Space'``. The default value is ``123``.
|
1792 |
+
|
1793 |
+
Attributes
|
1794 |
+
==========
|
1795 |
+
|
1796 |
+
name : string
|
1797 |
+
The joint's name.
|
1798 |
+
parent : Body
|
1799 |
+
The joint's parent body.
|
1800 |
+
child : Body
|
1801 |
+
The joint's child body.
|
1802 |
+
coordinates : Matrix
|
1803 |
+
Matrix of the joint's generalized coordinates.
|
1804 |
+
speeds : Matrix
|
1805 |
+
Matrix of the joint's generalized speeds.
|
1806 |
+
parent_point : Point
|
1807 |
+
Attachment point where the joint is fixed to the parent body.
|
1808 |
+
child_point : Point
|
1809 |
+
Attachment point where the joint is fixed to the child body.
|
1810 |
+
parent_interframe : ReferenceFrame
|
1811 |
+
Intermediate frame of the parent body with respect to which the joint
|
1812 |
+
transformation is formulated.
|
1813 |
+
child_interframe : ReferenceFrame
|
1814 |
+
Intermediate frame of the child body with respect to which the joint
|
1815 |
+
transformation is formulated.
|
1816 |
+
kdes : Matrix
|
1817 |
+
Kinematical differential equations of the joint.
|
1818 |
+
|
1819 |
+
Examples
|
1820 |
+
=========
|
1821 |
+
|
1822 |
+
A single spherical joint is created from two bodies and has the following
|
1823 |
+
basic attributes:
|
1824 |
+
|
1825 |
+
>>> from sympy.physics.mechanics import Body, SphericalJoint
|
1826 |
+
>>> parent = Body('P')
|
1827 |
+
>>> parent
|
1828 |
+
P
|
1829 |
+
>>> child = Body('C')
|
1830 |
+
>>> child
|
1831 |
+
C
|
1832 |
+
>>> joint = SphericalJoint('PC', parent, child)
|
1833 |
+
>>> joint
|
1834 |
+
SphericalJoint: PC parent: P child: C
|
1835 |
+
>>> joint.name
|
1836 |
+
'PC'
|
1837 |
+
>>> joint.parent
|
1838 |
+
P
|
1839 |
+
>>> joint.child
|
1840 |
+
C
|
1841 |
+
>>> joint.parent_point
|
1842 |
+
P_masscenter
|
1843 |
+
>>> joint.child_point
|
1844 |
+
C_masscenter
|
1845 |
+
>>> joint.parent_interframe
|
1846 |
+
P_frame
|
1847 |
+
>>> joint.child_interframe
|
1848 |
+
C_frame
|
1849 |
+
>>> joint.coordinates
|
1850 |
+
Matrix([
|
1851 |
+
[q0_PC(t)],
|
1852 |
+
[q1_PC(t)],
|
1853 |
+
[q2_PC(t)]])
|
1854 |
+
>>> joint.speeds
|
1855 |
+
Matrix([
|
1856 |
+
[u0_PC(t)],
|
1857 |
+
[u1_PC(t)],
|
1858 |
+
[u2_PC(t)]])
|
1859 |
+
>>> child.frame.ang_vel_in(parent.frame).to_matrix(child.frame)
|
1860 |
+
Matrix([
|
1861 |
+
[ u0_PC(t)*cos(q1_PC(t))*cos(q2_PC(t)) + u1_PC(t)*sin(q2_PC(t))],
|
1862 |
+
[-u0_PC(t)*sin(q2_PC(t))*cos(q1_PC(t)) + u1_PC(t)*cos(q2_PC(t))],
|
1863 |
+
[ u0_PC(t)*sin(q1_PC(t)) + u2_PC(t)]])
|
1864 |
+
>>> child.frame.x.to_matrix(parent.frame)
|
1865 |
+
Matrix([
|
1866 |
+
[ cos(q1_PC(t))*cos(q2_PC(t))],
|
1867 |
+
[sin(q0_PC(t))*sin(q1_PC(t))*cos(q2_PC(t)) + sin(q2_PC(t))*cos(q0_PC(t))],
|
1868 |
+
[sin(q0_PC(t))*sin(q2_PC(t)) - sin(q1_PC(t))*cos(q0_PC(t))*cos(q2_PC(t))]])
|
1869 |
+
>>> joint.child_point.pos_from(joint.parent_point)
|
1870 |
+
0
|
1871 |
+
|
1872 |
+
To further demonstrate the use of the spherical joint, the kinematics of a
|
1873 |
+
spherical joint with a ZXZ rotation can be created as follows.
|
1874 |
+
|
1875 |
+
>>> from sympy import symbols
|
1876 |
+
>>> from sympy.physics.mechanics import Body, SphericalJoint
|
1877 |
+
>>> l1 = symbols('l1')
|
1878 |
+
|
1879 |
+
First create bodies to represent the fixed floor and a pendulum bob.
|
1880 |
+
|
1881 |
+
>>> floor = Body('F')
|
1882 |
+
>>> bob = Body('B')
|
1883 |
+
|
1884 |
+
The joint will connect the bob to the floor, with the joint located at a
|
1885 |
+
distance of ``l1`` from the child's center of mass and the rotation set to a
|
1886 |
+
body-fixed ZXZ rotation.
|
1887 |
+
|
1888 |
+
>>> joint = SphericalJoint('S', floor, bob, child_point=l1 * bob.y,
|
1889 |
+
... rot_type='body', rot_order='ZXZ')
|
1890 |
+
|
1891 |
+
Now that the joint is established, the kinematics of the connected body can
|
1892 |
+
be accessed.
|
1893 |
+
|
1894 |
+
The position of the bob's masscenter is found with:
|
1895 |
+
|
1896 |
+
>>> bob.masscenter.pos_from(floor.masscenter)
|
1897 |
+
- l1*B_frame.y
|
1898 |
+
|
1899 |
+
The angular velocities of the pendulum link can be computed with respect to
|
1900 |
+
the floor.
|
1901 |
+
|
1902 |
+
>>> bob.frame.ang_vel_in(floor.frame).to_matrix(
|
1903 |
+
... floor.frame).simplify()
|
1904 |
+
Matrix([
|
1905 |
+
[u1_S(t)*cos(q0_S(t)) + u2_S(t)*sin(q0_S(t))*sin(q1_S(t))],
|
1906 |
+
[u1_S(t)*sin(q0_S(t)) - u2_S(t)*sin(q1_S(t))*cos(q0_S(t))],
|
1907 |
+
[ u0_S(t) + u2_S(t)*cos(q1_S(t))]])
|
1908 |
+
|
1909 |
+
Finally, the linear velocity of the bob's center of mass can be computed.
|
1910 |
+
|
1911 |
+
>>> bob.masscenter.vel(floor.frame).to_matrix(bob.frame)
|
1912 |
+
Matrix([
|
1913 |
+
[ l1*(u0_S(t)*cos(q1_S(t)) + u2_S(t))],
|
1914 |
+
[ 0],
|
1915 |
+
[-l1*(u0_S(t)*sin(q1_S(t))*sin(q2_S(t)) + u1_S(t)*cos(q2_S(t)))]])
|
1916 |
+
|
1917 |
+
"""
|
1918 |
+
def __init__(self, name, parent, child, coordinates=None, speeds=None,
|
1919 |
+
parent_point=None, child_point=None, parent_interframe=None,
|
1920 |
+
child_interframe=None, rot_type='BODY', amounts=None,
|
1921 |
+
rot_order=123):
|
1922 |
+
self._rot_type = rot_type
|
1923 |
+
self._amounts = amounts
|
1924 |
+
self._rot_order = rot_order
|
1925 |
+
super().__init__(name, parent, child, coordinates, speeds,
|
1926 |
+
parent_point, child_point,
|
1927 |
+
parent_interframe=parent_interframe,
|
1928 |
+
child_interframe=child_interframe)
|
1929 |
+
|
1930 |
+
def __str__(self):
|
1931 |
+
return (f'SphericalJoint: {self.name} parent: {self.parent} '
|
1932 |
+
f'child: {self.child}')
|
1933 |
+
|
1934 |
+
def _generate_coordinates(self, coordinates):
|
1935 |
+
return self._fill_coordinate_list(coordinates, 3, 'q')
|
1936 |
+
|
1937 |
+
def _generate_speeds(self, speeds):
|
1938 |
+
return self._fill_coordinate_list(speeds, len(self.coordinates), 'u')
|
1939 |
+
|
1940 |
+
def _orient_frames(self):
|
1941 |
+
supported_rot_types = ('BODY', 'SPACE')
|
1942 |
+
if self._rot_type.upper() not in supported_rot_types:
|
1943 |
+
raise NotImplementedError(
|
1944 |
+
f'Rotation type "{self._rot_type}" is not implemented. '
|
1945 |
+
f'Implemented rotation types are: {supported_rot_types}')
|
1946 |
+
amounts = self.coordinates if self._amounts is None else self._amounts
|
1947 |
+
self.child_interframe.orient(self.parent_interframe, self._rot_type,
|
1948 |
+
amounts, self._rot_order)
|
1949 |
+
|
1950 |
+
def _set_angular_velocity(self):
|
1951 |
+
t = dynamicsymbols._t
|
1952 |
+
vel = self.child_interframe.ang_vel_in(self.parent_interframe).xreplace(
|
1953 |
+
{q.diff(t): u for q, u in zip(self.coordinates, self.speeds)}
|
1954 |
+
)
|
1955 |
+
self.child_interframe.set_ang_vel(self.parent_interframe, vel)
|
1956 |
+
|
1957 |
+
def _set_linear_velocity(self):
|
1958 |
+
self.child_point.set_pos(self.parent_point, 0)
|
1959 |
+
self.parent_point.set_vel(self.parent.frame, 0)
|
1960 |
+
self.child_point.set_vel(self.child.frame, 0)
|
1961 |
+
self.child.masscenter.v2pt_theory(self.parent_point, self.parent.frame,
|
1962 |
+
self.child.frame)
|
1963 |
+
|
1964 |
+
|
1965 |
+
class WeldJoint(Joint):
|
1966 |
+
"""Weld Joint.
|
1967 |
+
|
1968 |
+
.. image:: WeldJoint.svg
|
1969 |
+
:align: center
|
1970 |
+
:width: 500
|
1971 |
+
|
1972 |
+
Explanation
|
1973 |
+
===========
|
1974 |
+
|
1975 |
+
A weld joint is defined such that there is no relative motion between the
|
1976 |
+
child and parent bodies. The direction cosine matrix between the attachment
|
1977 |
+
frame (``parent_interframe`` and ``child_interframe``) is the identity
|
1978 |
+
matrix and the attachment points (``parent_point`` and ``child_point``) are
|
1979 |
+
coincident. The page on the joints framework gives a more detailed
|
1980 |
+
explanation of the intermediate frames.
|
1981 |
+
|
1982 |
+
Parameters
|
1983 |
+
==========
|
1984 |
+
|
1985 |
+
name : string
|
1986 |
+
A unique name for the joint.
|
1987 |
+
parent : Body
|
1988 |
+
The parent body of joint.
|
1989 |
+
child : Body
|
1990 |
+
The child body of joint.
|
1991 |
+
parent_point : Point or Vector, optional
|
1992 |
+
Attachment point where the joint is fixed to the parent body. If a
|
1993 |
+
vector is provided, then the attachment point is computed by adding the
|
1994 |
+
vector to the body's mass center. The default value is the parent's mass
|
1995 |
+
center.
|
1996 |
+
child_point : Point or Vector, optional
|
1997 |
+
Attachment point where the joint is fixed to the child body. If a
|
1998 |
+
vector is provided, then the attachment point is computed by adding the
|
1999 |
+
vector to the body's mass center. The default value is the child's mass
|
2000 |
+
center.
|
2001 |
+
parent_interframe : ReferenceFrame, optional
|
2002 |
+
Intermediate frame of the parent body with respect to which the joint
|
2003 |
+
transformation is formulated. If a Vector is provided then an interframe
|
2004 |
+
is created which aligns its X axis with the given vector. The default
|
2005 |
+
value is the parent's own frame.
|
2006 |
+
child_interframe : ReferenceFrame, optional
|
2007 |
+
Intermediate frame of the child body with respect to which the joint
|
2008 |
+
transformation is formulated. If a Vector is provided then an interframe
|
2009 |
+
is created which aligns its X axis with the given vector. The default
|
2010 |
+
value is the child's own frame.
|
2011 |
+
|
2012 |
+
Attributes
|
2013 |
+
==========
|
2014 |
+
|
2015 |
+
name : string
|
2016 |
+
The joint's name.
|
2017 |
+
parent : Body
|
2018 |
+
The joint's parent body.
|
2019 |
+
child : Body
|
2020 |
+
The joint's child body.
|
2021 |
+
coordinates : Matrix
|
2022 |
+
Matrix of the joint's generalized coordinates. The default value is
|
2023 |
+
``dynamicsymbols(f'q_{joint.name}')``.
|
2024 |
+
speeds : Matrix
|
2025 |
+
Matrix of the joint's generalized speeds. The default value is
|
2026 |
+
``dynamicsymbols(f'u_{joint.name}')``.
|
2027 |
+
parent_point : Point
|
2028 |
+
Attachment point where the joint is fixed to the parent body.
|
2029 |
+
child_point : Point
|
2030 |
+
Attachment point where the joint is fixed to the child body.
|
2031 |
+
parent_interframe : ReferenceFrame
|
2032 |
+
Intermediate frame of the parent body with respect to which the joint
|
2033 |
+
transformation is formulated.
|
2034 |
+
child_interframe : ReferenceFrame
|
2035 |
+
Intermediate frame of the child body with respect to which the joint
|
2036 |
+
transformation is formulated.
|
2037 |
+
kdes : Matrix
|
2038 |
+
Kinematical differential equations of the joint.
|
2039 |
+
|
2040 |
+
Examples
|
2041 |
+
=========
|
2042 |
+
|
2043 |
+
A single weld joint is created from two bodies and has the following basic
|
2044 |
+
attributes:
|
2045 |
+
|
2046 |
+
>>> from sympy.physics.mechanics import Body, WeldJoint
|
2047 |
+
>>> parent = Body('P')
|
2048 |
+
>>> parent
|
2049 |
+
P
|
2050 |
+
>>> child = Body('C')
|
2051 |
+
>>> child
|
2052 |
+
C
|
2053 |
+
>>> joint = WeldJoint('PC', parent, child)
|
2054 |
+
>>> joint
|
2055 |
+
WeldJoint: PC parent: P child: C
|
2056 |
+
>>> joint.name
|
2057 |
+
'PC'
|
2058 |
+
>>> joint.parent
|
2059 |
+
P
|
2060 |
+
>>> joint.child
|
2061 |
+
C
|
2062 |
+
>>> joint.parent_point
|
2063 |
+
P_masscenter
|
2064 |
+
>>> joint.child_point
|
2065 |
+
C_masscenter
|
2066 |
+
>>> joint.coordinates
|
2067 |
+
Matrix(0, 0, [])
|
2068 |
+
>>> joint.speeds
|
2069 |
+
Matrix(0, 0, [])
|
2070 |
+
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
|
2071 |
+
0
|
2072 |
+
>>> joint.child.frame.dcm(joint.parent.frame)
|
2073 |
+
Matrix([
|
2074 |
+
[1, 0, 0],
|
2075 |
+
[0, 1, 0],
|
2076 |
+
[0, 0, 1]])
|
2077 |
+
>>> joint.child_point.pos_from(joint.parent_point)
|
2078 |
+
0
|
2079 |
+
|
2080 |
+
To further demonstrate the use of the weld joint, two relatively-fixed
|
2081 |
+
bodies rotated by a quarter turn about the Y axis can be created as follows:
|
2082 |
+
|
2083 |
+
>>> from sympy import symbols, pi
|
2084 |
+
>>> from sympy.physics.mechanics import ReferenceFrame, Body, WeldJoint
|
2085 |
+
>>> l1, l2 = symbols('l1 l2')
|
2086 |
+
|
2087 |
+
First create the bodies to represent the parent and rotated child body.
|
2088 |
+
|
2089 |
+
>>> parent = Body('P')
|
2090 |
+
>>> child = Body('C')
|
2091 |
+
|
2092 |
+
Next the intermediate frame specifying the fixed rotation with respect to
|
2093 |
+
the parent can be created.
|
2094 |
+
|
2095 |
+
>>> rotated_frame = ReferenceFrame('Pr')
|
2096 |
+
>>> rotated_frame.orient_axis(parent.frame, parent.y, pi / 2)
|
2097 |
+
|
2098 |
+
The weld between the parent body and child body is located at a distance
|
2099 |
+
``l1`` from the parent's center of mass in the X direction and ``l2`` from
|
2100 |
+
the child's center of mass in the child's negative X direction.
|
2101 |
+
|
2102 |
+
>>> weld = WeldJoint('weld', parent, child, parent_point=l1 * parent.x,
|
2103 |
+
... child_point=-l2 * child.x,
|
2104 |
+
... parent_interframe=rotated_frame)
|
2105 |
+
|
2106 |
+
Now that the joint has been established, the kinematics of the bodies can be
|
2107 |
+
accessed. The direction cosine matrix of the child body with respect to the
|
2108 |
+
parent can be found:
|
2109 |
+
|
2110 |
+
>>> child.dcm(parent)
|
2111 |
+
Matrix([
|
2112 |
+
[0, 0, -1],
|
2113 |
+
[0, 1, 0],
|
2114 |
+
[1, 0, 0]])
|
2115 |
+
|
2116 |
+
As can also been seen from the direction cosine matrix, the parent X axis is
|
2117 |
+
aligned with the child's Z axis:
|
2118 |
+
>>> parent.x == child.z
|
2119 |
+
True
|
2120 |
+
|
2121 |
+
The position of the child's center of mass with respect to the parent's
|
2122 |
+
center of mass can be found with:
|
2123 |
+
|
2124 |
+
>>> child.masscenter.pos_from(parent.masscenter)
|
2125 |
+
l1*P_frame.x + l2*C_frame.x
|
2126 |
+
|
2127 |
+
The angular velocity of the child with respect to the parent is 0 as one
|
2128 |
+
would expect.
|
2129 |
+
|
2130 |
+
>>> child.ang_vel_in(parent)
|
2131 |
+
0
|
2132 |
+
|
2133 |
+
"""
|
2134 |
+
|
2135 |
+
def __init__(self, name, parent, child, parent_point=None, child_point=None,
|
2136 |
+
parent_interframe=None, child_interframe=None):
|
2137 |
+
super().__init__(name, parent, child, [], [], parent_point,
|
2138 |
+
child_point, parent_interframe=parent_interframe,
|
2139 |
+
child_interframe=child_interframe)
|
2140 |
+
self._kdes = Matrix(1, 0, []).T # Removes stackability problems #10770
|
2141 |
+
|
2142 |
+
def __str__(self):
|
2143 |
+
return (f'WeldJoint: {self.name} parent: {self.parent} '
|
2144 |
+
f'child: {self.child}')
|
2145 |
+
|
2146 |
+
def _generate_coordinates(self, coordinate):
|
2147 |
+
return Matrix()
|
2148 |
+
|
2149 |
+
def _generate_speeds(self, speed):
|
2150 |
+
return Matrix()
|
2151 |
+
|
2152 |
+
def _orient_frames(self):
|
2153 |
+
self.child_interframe.orient_axis(self.parent_interframe,
|
2154 |
+
self.parent_interframe.x, 0)
|
2155 |
+
|
2156 |
+
def _set_angular_velocity(self):
|
2157 |
+
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
|
2158 |
+
|
2159 |
+
def _set_linear_velocity(self):
|
2160 |
+
self.child_point.set_pos(self.parent_point, 0)
|
2161 |
+
self.parent_point.set_vel(self.parent.frame, 0)
|
2162 |
+
self.child_point.set_vel(self.child.frame, 0)
|
2163 |
+
self.child.masscenter.set_vel(self.parent.frame, 0)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/jointsmethod.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.mechanics import (Body, Lagrangian, KanesMethod, LagrangesMethod,
|
2 |
+
RigidBody, Particle)
|
3 |
+
from sympy.physics.mechanics.method import _Methods
|
4 |
+
from sympy.core.backend import Matrix
|
5 |
+
|
6 |
+
__all__ = ['JointsMethod']
|
7 |
+
|
8 |
+
|
9 |
+
class JointsMethod(_Methods):
|
10 |
+
"""Method for formulating the equations of motion using a set of interconnected bodies with joints.
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
==========
|
14 |
+
|
15 |
+
newtonion : Body or ReferenceFrame
|
16 |
+
The newtonion(inertial) frame.
|
17 |
+
*joints : Joint
|
18 |
+
The joints in the system
|
19 |
+
|
20 |
+
Attributes
|
21 |
+
==========
|
22 |
+
|
23 |
+
q, u : iterable
|
24 |
+
Iterable of the generalized coordinates and speeds
|
25 |
+
bodies : iterable
|
26 |
+
Iterable of Body objects in the system.
|
27 |
+
loads : iterable
|
28 |
+
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
|
29 |
+
describing the forces on the system.
|
30 |
+
mass_matrix : Matrix, shape(n, n)
|
31 |
+
The system's mass matrix
|
32 |
+
forcing : Matrix, shape(n, 1)
|
33 |
+
The system's forcing vector
|
34 |
+
mass_matrix_full : Matrix, shape(2*n, 2*n)
|
35 |
+
The "mass matrix" for the u's and q's
|
36 |
+
forcing_full : Matrix, shape(2*n, 1)
|
37 |
+
The "forcing vector" for the u's and q's
|
38 |
+
method : KanesMethod or Lagrange's method
|
39 |
+
Method's object.
|
40 |
+
kdes : iterable
|
41 |
+
Iterable of kde in they system.
|
42 |
+
|
43 |
+
Examples
|
44 |
+
========
|
45 |
+
|
46 |
+
This is a simple example for a one degree of freedom translational
|
47 |
+
spring-mass-damper.
|
48 |
+
|
49 |
+
>>> from sympy import symbols
|
50 |
+
>>> from sympy.physics.mechanics import Body, JointsMethod, PrismaticJoint
|
51 |
+
>>> from sympy.physics.vector import dynamicsymbols
|
52 |
+
>>> c, k = symbols('c k')
|
53 |
+
>>> x, v = dynamicsymbols('x v')
|
54 |
+
>>> wall = Body('W')
|
55 |
+
>>> body = Body('B')
|
56 |
+
>>> J = PrismaticJoint('J', wall, body, coordinates=x, speeds=v)
|
57 |
+
>>> wall.apply_force(c*v*wall.x, reaction_body=body)
|
58 |
+
>>> wall.apply_force(k*x*wall.x, reaction_body=body)
|
59 |
+
>>> method = JointsMethod(wall, J)
|
60 |
+
>>> method.form_eoms()
|
61 |
+
Matrix([[-B_mass*Derivative(v(t), t) - c*v(t) - k*x(t)]])
|
62 |
+
>>> M = method.mass_matrix_full
|
63 |
+
>>> F = method.forcing_full
|
64 |
+
>>> rhs = M.LUsolve(F)
|
65 |
+
>>> rhs
|
66 |
+
Matrix([
|
67 |
+
[ v(t)],
|
68 |
+
[(-c*v(t) - k*x(t))/B_mass]])
|
69 |
+
|
70 |
+
Notes
|
71 |
+
=====
|
72 |
+
|
73 |
+
``JointsMethod`` currently only works with systems that do not have any
|
74 |
+
configuration or motion constraints.
|
75 |
+
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, newtonion, *joints):
|
79 |
+
if isinstance(newtonion, Body):
|
80 |
+
self.frame = newtonion.frame
|
81 |
+
else:
|
82 |
+
self.frame = newtonion
|
83 |
+
|
84 |
+
self._joints = joints
|
85 |
+
self._bodies = self._generate_bodylist()
|
86 |
+
self._loads = self._generate_loadlist()
|
87 |
+
self._q = self._generate_q()
|
88 |
+
self._u = self._generate_u()
|
89 |
+
self._kdes = self._generate_kdes()
|
90 |
+
|
91 |
+
self._method = None
|
92 |
+
|
93 |
+
@property
|
94 |
+
def bodies(self):
|
95 |
+
"""List of bodies in they system."""
|
96 |
+
return self._bodies
|
97 |
+
|
98 |
+
@property
|
99 |
+
def loads(self):
|
100 |
+
"""List of loads on the system."""
|
101 |
+
return self._loads
|
102 |
+
|
103 |
+
@property
|
104 |
+
def q(self):
|
105 |
+
"""List of the generalized coordinates."""
|
106 |
+
return self._q
|
107 |
+
|
108 |
+
@property
|
109 |
+
def u(self):
|
110 |
+
"""List of the generalized speeds."""
|
111 |
+
return self._u
|
112 |
+
|
113 |
+
@property
|
114 |
+
def kdes(self):
|
115 |
+
"""List of the generalized coordinates."""
|
116 |
+
return self._kdes
|
117 |
+
|
118 |
+
@property
|
119 |
+
def forcing_full(self):
|
120 |
+
"""The "forcing vector" for the u's and q's."""
|
121 |
+
return self.method.forcing_full
|
122 |
+
|
123 |
+
@property
|
124 |
+
def mass_matrix_full(self):
|
125 |
+
"""The "mass matrix" for the u's and q's."""
|
126 |
+
return self.method.mass_matrix_full
|
127 |
+
|
128 |
+
@property
|
129 |
+
def mass_matrix(self):
|
130 |
+
"""The system's mass matrix."""
|
131 |
+
return self.method.mass_matrix
|
132 |
+
|
133 |
+
@property
|
134 |
+
def forcing(self):
|
135 |
+
"""The system's forcing vector."""
|
136 |
+
return self.method.forcing
|
137 |
+
|
138 |
+
@property
|
139 |
+
def method(self):
|
140 |
+
"""Object of method used to form equations of systems."""
|
141 |
+
return self._method
|
142 |
+
|
143 |
+
def _generate_bodylist(self):
|
144 |
+
bodies = []
|
145 |
+
for joint in self._joints:
|
146 |
+
if joint.child not in bodies:
|
147 |
+
bodies.append(joint.child)
|
148 |
+
if joint.parent not in bodies:
|
149 |
+
bodies.append(joint.parent)
|
150 |
+
return bodies
|
151 |
+
|
152 |
+
def _generate_loadlist(self):
|
153 |
+
load_list = []
|
154 |
+
for body in self.bodies:
|
155 |
+
load_list.extend(body.loads)
|
156 |
+
return load_list
|
157 |
+
|
158 |
+
def _generate_q(self):
|
159 |
+
q_ind = []
|
160 |
+
for joint in self._joints:
|
161 |
+
for coordinate in joint.coordinates:
|
162 |
+
if coordinate in q_ind:
|
163 |
+
raise ValueError('Coordinates of joints should be unique.')
|
164 |
+
q_ind.append(coordinate)
|
165 |
+
return Matrix(q_ind)
|
166 |
+
|
167 |
+
def _generate_u(self):
|
168 |
+
u_ind = []
|
169 |
+
for joint in self._joints:
|
170 |
+
for speed in joint.speeds:
|
171 |
+
if speed in u_ind:
|
172 |
+
raise ValueError('Speeds of joints should be unique.')
|
173 |
+
u_ind.append(speed)
|
174 |
+
return Matrix(u_ind)
|
175 |
+
|
176 |
+
def _generate_kdes(self):
|
177 |
+
kd_ind = Matrix(1, 0, []).T
|
178 |
+
for joint in self._joints:
|
179 |
+
kd_ind = kd_ind.col_join(joint.kdes)
|
180 |
+
return kd_ind
|
181 |
+
|
182 |
+
def _convert_bodies(self):
|
183 |
+
# Convert `Body` to `Particle` and `RigidBody`
|
184 |
+
bodylist = []
|
185 |
+
for body in self.bodies:
|
186 |
+
if body.is_rigidbody:
|
187 |
+
rb = RigidBody(body.name, body.masscenter, body.frame, body.mass,
|
188 |
+
(body.central_inertia, body.masscenter))
|
189 |
+
rb.potential_energy = body.potential_energy
|
190 |
+
bodylist.append(rb)
|
191 |
+
else:
|
192 |
+
part = Particle(body.name, body.masscenter, body.mass)
|
193 |
+
part.potential_energy = body.potential_energy
|
194 |
+
bodylist.append(part)
|
195 |
+
return bodylist
|
196 |
+
|
197 |
+
def form_eoms(self, method=KanesMethod):
|
198 |
+
"""Method to form system's equation of motions.
|
199 |
+
|
200 |
+
Parameters
|
201 |
+
==========
|
202 |
+
|
203 |
+
method : Class
|
204 |
+
Class name of method.
|
205 |
+
|
206 |
+
Returns
|
207 |
+
========
|
208 |
+
|
209 |
+
Matrix
|
210 |
+
Vector of equations of motions.
|
211 |
+
|
212 |
+
Examples
|
213 |
+
========
|
214 |
+
|
215 |
+
This is a simple example for a one degree of freedom translational
|
216 |
+
spring-mass-damper.
|
217 |
+
|
218 |
+
>>> from sympy import S, symbols
|
219 |
+
>>> from sympy.physics.mechanics import LagrangesMethod, dynamicsymbols, Body
|
220 |
+
>>> from sympy.physics.mechanics import PrismaticJoint, JointsMethod
|
221 |
+
>>> q = dynamicsymbols('q')
|
222 |
+
>>> qd = dynamicsymbols('q', 1)
|
223 |
+
>>> m, k, b = symbols('m k b')
|
224 |
+
>>> wall = Body('W')
|
225 |
+
>>> part = Body('P', mass=m)
|
226 |
+
>>> part.potential_energy = k * q**2 / S(2)
|
227 |
+
>>> J = PrismaticJoint('J', wall, part, coordinates=q, speeds=qd)
|
228 |
+
>>> wall.apply_force(b * qd * wall.x, reaction_body=part)
|
229 |
+
>>> method = JointsMethod(wall, J)
|
230 |
+
>>> method.form_eoms(LagrangesMethod)
|
231 |
+
Matrix([[b*Derivative(q(t), t) + k*q(t) + m*Derivative(q(t), (t, 2))]])
|
232 |
+
|
233 |
+
We can also solve for the states using the 'rhs' method.
|
234 |
+
|
235 |
+
>>> method.rhs()
|
236 |
+
Matrix([
|
237 |
+
[ Derivative(q(t), t)],
|
238 |
+
[(-b*Derivative(q(t), t) - k*q(t))/m]])
|
239 |
+
|
240 |
+
"""
|
241 |
+
|
242 |
+
bodylist = self._convert_bodies()
|
243 |
+
if issubclass(method, LagrangesMethod): #LagrangesMethod or similar
|
244 |
+
L = Lagrangian(self.frame, *bodylist)
|
245 |
+
self._method = method(L, self.q, self.loads, bodylist, self.frame)
|
246 |
+
else: #KanesMethod or similar
|
247 |
+
self._method = method(self.frame, q_ind=self.q, u_ind=self.u, kd_eqs=self.kdes,
|
248 |
+
forcelist=self.loads, bodies=bodylist)
|
249 |
+
soln = self.method._form_eoms()
|
250 |
+
return soln
|
251 |
+
|
252 |
+
def rhs(self, inv_method=None):
|
253 |
+
"""Returns equations that can be solved numerically.
|
254 |
+
|
255 |
+
Parameters
|
256 |
+
==========
|
257 |
+
|
258 |
+
inv_method : str
|
259 |
+
The specific sympy inverse matrix calculation method to use. For a
|
260 |
+
list of valid methods, see
|
261 |
+
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
|
262 |
+
|
263 |
+
Returns
|
264 |
+
========
|
265 |
+
|
266 |
+
Matrix
|
267 |
+
Numerically solvable equations.
|
268 |
+
|
269 |
+
See Also
|
270 |
+
========
|
271 |
+
|
272 |
+
sympy.physics.mechanics.kane.KanesMethod.rhs:
|
273 |
+
KanesMethod's rhs function.
|
274 |
+
sympy.physics.mechanics.lagrange.LagrangesMethod.rhs:
|
275 |
+
LagrangesMethod's rhs function.
|
276 |
+
|
277 |
+
"""
|
278 |
+
|
279 |
+
return self.method.rhs(inv_method=inv_method)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/kane.py
ADDED
@@ -0,0 +1,741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.backend import zeros, Matrix, diff, eye
|
2 |
+
from sympy.core.sorting import default_sort_key
|
3 |
+
from sympy.physics.vector import (ReferenceFrame, dynamicsymbols,
|
4 |
+
partial_velocity)
|
5 |
+
from sympy.physics.mechanics.method import _Methods
|
6 |
+
from sympy.physics.mechanics.particle import Particle
|
7 |
+
from sympy.physics.mechanics.rigidbody import RigidBody
|
8 |
+
from sympy.physics.mechanics.functions import (
|
9 |
+
msubs, find_dynamicsymbols, _f_list_parser, _validate_coordinates)
|
10 |
+
from sympy.physics.mechanics.linearize import Linearizer
|
11 |
+
from sympy.utilities.iterables import iterable
|
12 |
+
|
13 |
+
__all__ = ['KanesMethod']
|
14 |
+
|
15 |
+
|
16 |
+
class KanesMethod(_Methods):
|
17 |
+
r"""Kane's method object.
|
18 |
+
|
19 |
+
Explanation
|
20 |
+
===========
|
21 |
+
|
22 |
+
This object is used to do the "book-keeping" as you go through and form
|
23 |
+
equations of motion in the way Kane presents in:
|
24 |
+
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
|
25 |
+
|
26 |
+
The attributes are for equations in the form [M] udot = forcing.
|
27 |
+
|
28 |
+
Attributes
|
29 |
+
==========
|
30 |
+
|
31 |
+
q, u : Matrix
|
32 |
+
Matrices of the generalized coordinates and speeds
|
33 |
+
bodies : iterable
|
34 |
+
Iterable of Point and RigidBody objects in the system.
|
35 |
+
loads : iterable
|
36 |
+
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
|
37 |
+
describing the forces on the system.
|
38 |
+
auxiliary_eqs : Matrix
|
39 |
+
If applicable, the set of auxiliary Kane's
|
40 |
+
equations used to solve for non-contributing
|
41 |
+
forces.
|
42 |
+
mass_matrix : Matrix
|
43 |
+
The system's dynamics mass matrix: [k_d; k_dnh]
|
44 |
+
forcing : Matrix
|
45 |
+
The system's dynamics forcing vector: -[f_d; f_dnh]
|
46 |
+
mass_matrix_kin : Matrix
|
47 |
+
The "mass matrix" for kinematic differential equations: k_kqdot
|
48 |
+
forcing_kin : Matrix
|
49 |
+
The forcing vector for kinematic differential equations: -(k_ku*u + f_k)
|
50 |
+
mass_matrix_full : Matrix
|
51 |
+
The "mass matrix" for the u's and q's with dynamics and kinematics
|
52 |
+
forcing_full : Matrix
|
53 |
+
The "forcing vector" for the u's and q's with dynamics and kinematics
|
54 |
+
explicit_kinematics : bool
|
55 |
+
Boolean whether the mass matrices and forcing vectors should use the
|
56 |
+
explicit form (default) or implicit form for kinematics.
|
57 |
+
See the notes for more details.
|
58 |
+
|
59 |
+
Notes
|
60 |
+
=====
|
61 |
+
|
62 |
+
The mass matrices and forcing vectors related to kinematic equations
|
63 |
+
are given in the explicit form by default. In other words, the kinematic
|
64 |
+
mass matrix is $\mathbf{k_{k\dot{q}}} = \mathbf{I}$.
|
65 |
+
In order to get the implicit form of those matrices/vectors, you can set the
|
66 |
+
``explicit_kinematics`` attribute to ``False``. So $\mathbf{k_{k\dot{q}}}$ is not
|
67 |
+
necessarily an identity matrix. This can provide more compact equations for
|
68 |
+
non-simple kinematics (see #22626).
|
69 |
+
|
70 |
+
Examples
|
71 |
+
========
|
72 |
+
|
73 |
+
This is a simple example for a one degree of freedom translational
|
74 |
+
spring-mass-damper.
|
75 |
+
|
76 |
+
In this example, we first need to do the kinematics.
|
77 |
+
This involves creating generalized speeds and coordinates and their
|
78 |
+
derivatives.
|
79 |
+
Then we create a point and set its velocity in a frame.
|
80 |
+
|
81 |
+
>>> from sympy import symbols
|
82 |
+
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame
|
83 |
+
>>> from sympy.physics.mechanics import Point, Particle, KanesMethod
|
84 |
+
>>> q, u = dynamicsymbols('q u')
|
85 |
+
>>> qd, ud = dynamicsymbols('q u', 1)
|
86 |
+
>>> m, c, k = symbols('m c k')
|
87 |
+
>>> N = ReferenceFrame('N')
|
88 |
+
>>> P = Point('P')
|
89 |
+
>>> P.set_vel(N, u * N.x)
|
90 |
+
|
91 |
+
Next we need to arrange/store information in the way that KanesMethod
|
92 |
+
requires. The kinematic differential equations need to be stored in a
|
93 |
+
dict. A list of forces/torques must be constructed, where each entry in
|
94 |
+
the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where the
|
95 |
+
Vectors represent the Force or Torque.
|
96 |
+
Next a particle needs to be created, and it needs to have a point and mass
|
97 |
+
assigned to it.
|
98 |
+
Finally, a list of all bodies and particles needs to be created.
|
99 |
+
|
100 |
+
>>> kd = [qd - u]
|
101 |
+
>>> FL = [(P, (-k * q - c * u) * N.x)]
|
102 |
+
>>> pa = Particle('pa', P, m)
|
103 |
+
>>> BL = [pa]
|
104 |
+
|
105 |
+
Finally we can generate the equations of motion.
|
106 |
+
First we create the KanesMethod object and supply an inertial frame,
|
107 |
+
coordinates, generalized speeds, and the kinematic differential equations.
|
108 |
+
Additional quantities such as configuration and motion constraints,
|
109 |
+
dependent coordinates and speeds, and auxiliary speeds are also supplied
|
110 |
+
here (see the online documentation).
|
111 |
+
Next we form FR* and FR to complete: Fr + Fr* = 0.
|
112 |
+
We have the equations of motion at this point.
|
113 |
+
It makes sense to rearrange them though, so we calculate the mass matrix and
|
114 |
+
the forcing terms, for E.o.M. in the form: [MM] udot = forcing, where MM is
|
115 |
+
the mass matrix, udot is a vector of the time derivatives of the
|
116 |
+
generalized speeds, and forcing is a vector representing "forcing" terms.
|
117 |
+
|
118 |
+
>>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd)
|
119 |
+
>>> (fr, frstar) = KM.kanes_equations(BL, FL)
|
120 |
+
>>> MM = KM.mass_matrix
|
121 |
+
>>> forcing = KM.forcing
|
122 |
+
>>> rhs = MM.inv() * forcing
|
123 |
+
>>> rhs
|
124 |
+
Matrix([[(-c*u(t) - k*q(t))/m]])
|
125 |
+
>>> KM.linearize(A_and_B=True)[0]
|
126 |
+
Matrix([
|
127 |
+
[ 0, 1],
|
128 |
+
[-k/m, -c/m]])
|
129 |
+
|
130 |
+
Please look at the documentation pages for more information on how to
|
131 |
+
perform linearization and how to deal with dependent coordinates & speeds,
|
132 |
+
and how do deal with bringing non-contributing forces into evidence.
|
133 |
+
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(self, frame, q_ind, u_ind, kd_eqs=None, q_dependent=None,
|
137 |
+
configuration_constraints=None, u_dependent=None,
|
138 |
+
velocity_constraints=None, acceleration_constraints=None,
|
139 |
+
u_auxiliary=None, bodies=None, forcelist=None, explicit_kinematics=True):
|
140 |
+
|
141 |
+
"""Please read the online documentation. """
|
142 |
+
if not q_ind:
|
143 |
+
q_ind = [dynamicsymbols('dummy_q')]
|
144 |
+
kd_eqs = [dynamicsymbols('dummy_kd')]
|
145 |
+
|
146 |
+
if not isinstance(frame, ReferenceFrame):
|
147 |
+
raise TypeError('An inertial ReferenceFrame must be supplied')
|
148 |
+
self._inertial = frame
|
149 |
+
|
150 |
+
self._fr = None
|
151 |
+
self._frstar = None
|
152 |
+
|
153 |
+
self._forcelist = forcelist
|
154 |
+
self._bodylist = bodies
|
155 |
+
|
156 |
+
self.explicit_kinematics = explicit_kinematics
|
157 |
+
|
158 |
+
self._initialize_vectors(q_ind, q_dependent, u_ind, u_dependent,
|
159 |
+
u_auxiliary)
|
160 |
+
_validate_coordinates(self.q, self.u)
|
161 |
+
self._initialize_kindiffeq_matrices(kd_eqs)
|
162 |
+
self._initialize_constraint_matrices(configuration_constraints,
|
163 |
+
velocity_constraints, acceleration_constraints)
|
164 |
+
|
165 |
+
def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux):
|
166 |
+
"""Initialize the coordinate and speed vectors."""
|
167 |
+
|
168 |
+
none_handler = lambda x: Matrix(x) if x else Matrix()
|
169 |
+
|
170 |
+
# Initialize generalized coordinates
|
171 |
+
q_dep = none_handler(q_dep)
|
172 |
+
if not iterable(q_ind):
|
173 |
+
raise TypeError('Generalized coordinates must be an iterable.')
|
174 |
+
if not iterable(q_dep):
|
175 |
+
raise TypeError('Dependent coordinates must be an iterable.')
|
176 |
+
q_ind = Matrix(q_ind)
|
177 |
+
self._qdep = q_dep
|
178 |
+
self._q = Matrix([q_ind, q_dep])
|
179 |
+
self._qdot = self.q.diff(dynamicsymbols._t)
|
180 |
+
|
181 |
+
# Initialize generalized speeds
|
182 |
+
u_dep = none_handler(u_dep)
|
183 |
+
if not iterable(u_ind):
|
184 |
+
raise TypeError('Generalized speeds must be an iterable.')
|
185 |
+
if not iterable(u_dep):
|
186 |
+
raise TypeError('Dependent speeds must be an iterable.')
|
187 |
+
u_ind = Matrix(u_ind)
|
188 |
+
self._udep = u_dep
|
189 |
+
self._u = Matrix([u_ind, u_dep])
|
190 |
+
self._udot = self.u.diff(dynamicsymbols._t)
|
191 |
+
self._uaux = none_handler(u_aux)
|
192 |
+
|
193 |
+
def _initialize_constraint_matrices(self, config, vel, acc):
|
194 |
+
"""Initializes constraint matrices."""
|
195 |
+
|
196 |
+
# Define vector dimensions
|
197 |
+
o = len(self.u)
|
198 |
+
m = len(self._udep)
|
199 |
+
p = o - m
|
200 |
+
none_handler = lambda x: Matrix(x) if x else Matrix()
|
201 |
+
|
202 |
+
# Initialize configuration constraints
|
203 |
+
config = none_handler(config)
|
204 |
+
if len(self._qdep) != len(config):
|
205 |
+
raise ValueError('There must be an equal number of dependent '
|
206 |
+
'coordinates and configuration constraints.')
|
207 |
+
self._f_h = none_handler(config)
|
208 |
+
|
209 |
+
# Initialize velocity and acceleration constraints
|
210 |
+
vel = none_handler(vel)
|
211 |
+
acc = none_handler(acc)
|
212 |
+
if len(vel) != m:
|
213 |
+
raise ValueError('There must be an equal number of dependent '
|
214 |
+
'speeds and velocity constraints.')
|
215 |
+
if acc and (len(acc) != m):
|
216 |
+
raise ValueError('There must be an equal number of dependent '
|
217 |
+
'speeds and acceleration constraints.')
|
218 |
+
if vel:
|
219 |
+
u_zero = {i: 0 for i in self.u}
|
220 |
+
udot_zero = {i: 0 for i in self._udot}
|
221 |
+
|
222 |
+
# When calling kanes_equations, another class instance will be
|
223 |
+
# created if auxiliary u's are present. In this case, the
|
224 |
+
# computation of kinetic differential equation matrices will be
|
225 |
+
# skipped as this was computed during the original KanesMethod
|
226 |
+
# object, and the qd_u_map will not be available.
|
227 |
+
if self._qdot_u_map is not None:
|
228 |
+
vel = msubs(vel, self._qdot_u_map)
|
229 |
+
|
230 |
+
self._f_nh = msubs(vel, u_zero)
|
231 |
+
self._k_nh = (vel - self._f_nh).jacobian(self.u)
|
232 |
+
# If no acceleration constraints given, calculate them.
|
233 |
+
if not acc:
|
234 |
+
_f_dnh = (self._k_nh.diff(dynamicsymbols._t) * self.u +
|
235 |
+
self._f_nh.diff(dynamicsymbols._t))
|
236 |
+
if self._qdot_u_map is not None:
|
237 |
+
_f_dnh = msubs(_f_dnh, self._qdot_u_map)
|
238 |
+
self._f_dnh = _f_dnh
|
239 |
+
self._k_dnh = self._k_nh
|
240 |
+
else:
|
241 |
+
if self._qdot_u_map is not None:
|
242 |
+
acc = msubs(acc, self._qdot_u_map)
|
243 |
+
self._f_dnh = msubs(acc, udot_zero)
|
244 |
+
self._k_dnh = (acc - self._f_dnh).jacobian(self._udot)
|
245 |
+
|
246 |
+
# Form of non-holonomic constraints is B*u + C = 0.
|
247 |
+
# We partition B into independent and dependent columns:
|
248 |
+
# Ars is then -B_dep.inv() * B_ind, and it relates dependent speeds
|
249 |
+
# to independent speeds as: udep = Ars*uind, neglecting the C term.
|
250 |
+
B_ind = self._k_nh[:, :p]
|
251 |
+
B_dep = self._k_nh[:, p:o]
|
252 |
+
self._Ars = -B_dep.LUsolve(B_ind)
|
253 |
+
else:
|
254 |
+
self._f_nh = Matrix()
|
255 |
+
self._k_nh = Matrix()
|
256 |
+
self._f_dnh = Matrix()
|
257 |
+
self._k_dnh = Matrix()
|
258 |
+
self._Ars = Matrix()
|
259 |
+
|
260 |
+
def _initialize_kindiffeq_matrices(self, kdeqs):
|
261 |
+
"""Initialize the kinematic differential equation matrices.
|
262 |
+
|
263 |
+
Parameters
|
264 |
+
==========
|
265 |
+
kdeqs : sequence of sympy expressions
|
266 |
+
Kinematic differential equations in the form of f(u,q',q,t) where
|
267 |
+
f() = 0. The equations have to be linear in the generalized
|
268 |
+
coordinates and generalized speeds.
|
269 |
+
|
270 |
+
"""
|
271 |
+
|
272 |
+
if kdeqs:
|
273 |
+
if len(self.q) != len(kdeqs):
|
274 |
+
raise ValueError('There must be an equal number of kinematic '
|
275 |
+
'differential equations and coordinates.')
|
276 |
+
|
277 |
+
u = self.u
|
278 |
+
qdot = self._qdot
|
279 |
+
|
280 |
+
kdeqs = Matrix(kdeqs)
|
281 |
+
|
282 |
+
u_zero = {ui: 0 for ui in u}
|
283 |
+
uaux_zero = {uai: 0 for uai in self._uaux}
|
284 |
+
qdot_zero = {qdi: 0 for qdi in qdot}
|
285 |
+
|
286 |
+
# Extract the linear coefficient matrices as per the following
|
287 |
+
# equation:
|
288 |
+
#
|
289 |
+
# k_ku(q,t)*u(t) + k_kqdot(q,t)*q'(t) + f_k(q,t) = 0
|
290 |
+
#
|
291 |
+
k_ku = kdeqs.jacobian(u)
|
292 |
+
k_kqdot = kdeqs.jacobian(qdot)
|
293 |
+
f_k = kdeqs.xreplace(u_zero).xreplace(qdot_zero)
|
294 |
+
|
295 |
+
# The kinematic differential equations should be linear in both q'
|
296 |
+
# and u, so check for u and q' in the components.
|
297 |
+
dy_syms = find_dynamicsymbols(k_ku.row_join(k_kqdot).row_join(f_k))
|
298 |
+
nonlin_vars = [vari for vari in u[:] + qdot[:] if vari in dy_syms]
|
299 |
+
if nonlin_vars:
|
300 |
+
msg = ('The provided kinematic differential equations are '
|
301 |
+
'nonlinear in {}. They must be linear in the '
|
302 |
+
'generalized speeds and derivatives of the generalized '
|
303 |
+
'coordinates.')
|
304 |
+
raise ValueError(msg.format(nonlin_vars))
|
305 |
+
|
306 |
+
self._f_k_implicit = f_k.xreplace(uaux_zero)
|
307 |
+
self._k_ku_implicit = k_ku.xreplace(uaux_zero)
|
308 |
+
self._k_kqdot_implicit = k_kqdot
|
309 |
+
|
310 |
+
# Solve for q'(t) such that the coefficient matrices are now in
|
311 |
+
# this form:
|
312 |
+
#
|
313 |
+
# k_kqdot^-1*k_ku*u(t) + I*q'(t) + k_kqdot^-1*f_k = 0
|
314 |
+
#
|
315 |
+
# NOTE : Solving the kinematic differential equations here is not
|
316 |
+
# necessary and prevents the equations from being provided in fully
|
317 |
+
# implicit form.
|
318 |
+
f_k_explicit = k_kqdot.LUsolve(f_k)
|
319 |
+
k_ku_explicit = k_kqdot.LUsolve(k_ku)
|
320 |
+
self._qdot_u_map = dict(zip(qdot, -(k_ku_explicit*u + f_k_explicit)))
|
321 |
+
|
322 |
+
self._f_k = f_k_explicit.xreplace(uaux_zero)
|
323 |
+
self._k_ku = k_ku_explicit.xreplace(uaux_zero)
|
324 |
+
self._k_kqdot = eye(len(qdot))
|
325 |
+
|
326 |
+
else:
|
327 |
+
self._qdot_u_map = None
|
328 |
+
self._f_k_implicit = self._f_k = Matrix()
|
329 |
+
self._k_ku_implicit = self._k_ku = Matrix()
|
330 |
+
self._k_kqdot_implicit = self._k_kqdot = Matrix()
|
331 |
+
|
332 |
+
def _form_fr(self, fl):
|
333 |
+
"""Form the generalized active force."""
|
334 |
+
if fl is not None and (len(fl) == 0 or not iterable(fl)):
|
335 |
+
raise ValueError('Force pairs must be supplied in an '
|
336 |
+
'non-empty iterable or None.')
|
337 |
+
|
338 |
+
N = self._inertial
|
339 |
+
# pull out relevant velocities for constructing partial velocities
|
340 |
+
vel_list, f_list = _f_list_parser(fl, N)
|
341 |
+
vel_list = [msubs(i, self._qdot_u_map) for i in vel_list]
|
342 |
+
f_list = [msubs(i, self._qdot_u_map) for i in f_list]
|
343 |
+
|
344 |
+
# Fill Fr with dot product of partial velocities and forces
|
345 |
+
o = len(self.u)
|
346 |
+
b = len(f_list)
|
347 |
+
FR = zeros(o, 1)
|
348 |
+
partials = partial_velocity(vel_list, self.u, N)
|
349 |
+
for i in range(o):
|
350 |
+
FR[i] = sum(partials[j][i] & f_list[j] for j in range(b))
|
351 |
+
|
352 |
+
# In case there are dependent speeds
|
353 |
+
if self._udep:
|
354 |
+
p = o - len(self._udep)
|
355 |
+
FRtilde = FR[:p, 0]
|
356 |
+
FRold = FR[p:o, 0]
|
357 |
+
FRtilde += self._Ars.T * FRold
|
358 |
+
FR = FRtilde
|
359 |
+
|
360 |
+
self._forcelist = fl
|
361 |
+
self._fr = FR
|
362 |
+
return FR
|
363 |
+
|
364 |
+
def _form_frstar(self, bl):
|
365 |
+
"""Form the generalized inertia force."""
|
366 |
+
|
367 |
+
if not iterable(bl):
|
368 |
+
raise TypeError('Bodies must be supplied in an iterable.')
|
369 |
+
|
370 |
+
t = dynamicsymbols._t
|
371 |
+
N = self._inertial
|
372 |
+
# Dicts setting things to zero
|
373 |
+
udot_zero = {i: 0 for i in self._udot}
|
374 |
+
uaux_zero = {i: 0 for i in self._uaux}
|
375 |
+
uauxdot = [diff(i, t) for i in self._uaux]
|
376 |
+
uauxdot_zero = {i: 0 for i in uauxdot}
|
377 |
+
# Dictionary of q' and q'' to u and u'
|
378 |
+
q_ddot_u_map = {k.diff(t): v.diff(t) for (k, v) in
|
379 |
+
self._qdot_u_map.items()}
|
380 |
+
q_ddot_u_map.update(self._qdot_u_map)
|
381 |
+
|
382 |
+
# Fill up the list of partials: format is a list with num elements
|
383 |
+
# equal to number of entries in body list. Each of these elements is a
|
384 |
+
# list - either of length 1 for the translational components of
|
385 |
+
# particles or of length 2 for the translational and rotational
|
386 |
+
# components of rigid bodies. The inner most list is the list of
|
387 |
+
# partial velocities.
|
388 |
+
def get_partial_velocity(body):
|
389 |
+
if isinstance(body, RigidBody):
|
390 |
+
vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)]
|
391 |
+
elif isinstance(body, Particle):
|
392 |
+
vlist = [body.point.vel(N),]
|
393 |
+
else:
|
394 |
+
raise TypeError('The body list may only contain either '
|
395 |
+
'RigidBody or Particle as list elements.')
|
396 |
+
v = [msubs(vel, self._qdot_u_map) for vel in vlist]
|
397 |
+
return partial_velocity(v, self.u, N)
|
398 |
+
partials = [get_partial_velocity(body) for body in bl]
|
399 |
+
|
400 |
+
# Compute fr_star in two components:
|
401 |
+
# fr_star = -(MM*u' + nonMM)
|
402 |
+
o = len(self.u)
|
403 |
+
MM = zeros(o, o)
|
404 |
+
nonMM = zeros(o, 1)
|
405 |
+
zero_uaux = lambda expr: msubs(expr, uaux_zero)
|
406 |
+
zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero)
|
407 |
+
for i, body in enumerate(bl):
|
408 |
+
if isinstance(body, RigidBody):
|
409 |
+
M = zero_uaux(body.mass)
|
410 |
+
I = zero_uaux(body.central_inertia)
|
411 |
+
vel = zero_uaux(body.masscenter.vel(N))
|
412 |
+
omega = zero_uaux(body.frame.ang_vel_in(N))
|
413 |
+
acc = zero_udot_uaux(body.masscenter.acc(N))
|
414 |
+
inertial_force = (M.diff(t) * vel + M * acc)
|
415 |
+
inertial_torque = zero_uaux((I.dt(body.frame) & omega) +
|
416 |
+
msubs(I & body.frame.ang_acc_in(N), udot_zero) +
|
417 |
+
(omega ^ (I & omega)))
|
418 |
+
for j in range(o):
|
419 |
+
tmp_vel = zero_uaux(partials[i][0][j])
|
420 |
+
tmp_ang = zero_uaux(I & partials[i][1][j])
|
421 |
+
for k in range(o):
|
422 |
+
# translational
|
423 |
+
MM[j, k] += M * (tmp_vel & partials[i][0][k])
|
424 |
+
# rotational
|
425 |
+
MM[j, k] += (tmp_ang & partials[i][1][k])
|
426 |
+
nonMM[j] += inertial_force & partials[i][0][j]
|
427 |
+
nonMM[j] += inertial_torque & partials[i][1][j]
|
428 |
+
else:
|
429 |
+
M = zero_uaux(body.mass)
|
430 |
+
vel = zero_uaux(body.point.vel(N))
|
431 |
+
acc = zero_udot_uaux(body.point.acc(N))
|
432 |
+
inertial_force = (M.diff(t) * vel + M * acc)
|
433 |
+
for j in range(o):
|
434 |
+
temp = zero_uaux(partials[i][0][j])
|
435 |
+
for k in range(o):
|
436 |
+
MM[j, k] += M * (temp & partials[i][0][k])
|
437 |
+
nonMM[j] += inertial_force & partials[i][0][j]
|
438 |
+
# Compose fr_star out of MM and nonMM
|
439 |
+
MM = zero_uaux(msubs(MM, q_ddot_u_map))
|
440 |
+
nonMM = msubs(msubs(nonMM, q_ddot_u_map),
|
441 |
+
udot_zero, uauxdot_zero, uaux_zero)
|
442 |
+
fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM)
|
443 |
+
|
444 |
+
# If there are dependent speeds, we need to find fr_star_tilde
|
445 |
+
if self._udep:
|
446 |
+
p = o - len(self._udep)
|
447 |
+
fr_star_ind = fr_star[:p, 0]
|
448 |
+
fr_star_dep = fr_star[p:o, 0]
|
449 |
+
fr_star = fr_star_ind + (self._Ars.T * fr_star_dep)
|
450 |
+
# Apply the same to MM
|
451 |
+
MMi = MM[:p, :]
|
452 |
+
MMd = MM[p:o, :]
|
453 |
+
MM = MMi + (self._Ars.T * MMd)
|
454 |
+
|
455 |
+
self._bodylist = bl
|
456 |
+
self._frstar = fr_star
|
457 |
+
self._k_d = MM
|
458 |
+
self._f_d = -msubs(self._fr + self._frstar, udot_zero)
|
459 |
+
return fr_star
|
460 |
+
|
461 |
+
def to_linearizer(self):
|
462 |
+
"""Returns an instance of the Linearizer class, initiated from the
|
463 |
+
data in the KanesMethod class. This may be more desirable than using
|
464 |
+
the linearize class method, as the Linearizer object will allow more
|
465 |
+
efficient recalculation (i.e. about varying operating points)."""
|
466 |
+
|
467 |
+
if (self._fr is None) or (self._frstar is None):
|
468 |
+
raise ValueError('Need to compute Fr, Fr* first.')
|
469 |
+
|
470 |
+
# Get required equation components. The Kane's method class breaks
|
471 |
+
# these into pieces. Need to reassemble
|
472 |
+
f_c = self._f_h
|
473 |
+
if self._f_nh and self._k_nh:
|
474 |
+
f_v = self._f_nh + self._k_nh*Matrix(self.u)
|
475 |
+
else:
|
476 |
+
f_v = Matrix()
|
477 |
+
if self._f_dnh and self._k_dnh:
|
478 |
+
f_a = self._f_dnh + self._k_dnh*Matrix(self._udot)
|
479 |
+
else:
|
480 |
+
f_a = Matrix()
|
481 |
+
# Dicts to sub to zero, for splitting up expressions
|
482 |
+
u_zero = {i: 0 for i in self.u}
|
483 |
+
ud_zero = {i: 0 for i in self._udot}
|
484 |
+
qd_zero = {i: 0 for i in self._qdot}
|
485 |
+
qd_u_zero = {i: 0 for i in Matrix([self._qdot, self.u])}
|
486 |
+
# Break the kinematic differential eqs apart into f_0 and f_1
|
487 |
+
f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot)
|
488 |
+
f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u)
|
489 |
+
# Break the dynamic differential eqs into f_2 and f_3
|
490 |
+
f_2 = msubs(self._frstar, qd_u_zero)
|
491 |
+
f_3 = msubs(self._frstar, ud_zero) + self._fr
|
492 |
+
f_4 = zeros(len(f_2), 1)
|
493 |
+
|
494 |
+
# Get the required vector components
|
495 |
+
q = self.q
|
496 |
+
u = self.u
|
497 |
+
if self._qdep:
|
498 |
+
q_i = q[:-len(self._qdep)]
|
499 |
+
else:
|
500 |
+
q_i = q
|
501 |
+
q_d = self._qdep
|
502 |
+
if self._udep:
|
503 |
+
u_i = u[:-len(self._udep)]
|
504 |
+
else:
|
505 |
+
u_i = u
|
506 |
+
u_d = self._udep
|
507 |
+
|
508 |
+
# Form dictionary to set auxiliary speeds & their derivatives to 0.
|
509 |
+
uaux = self._uaux
|
510 |
+
uauxdot = uaux.diff(dynamicsymbols._t)
|
511 |
+
uaux_zero = {i: 0 for i in Matrix([uaux, uauxdot])}
|
512 |
+
|
513 |
+
# Checking for dynamic symbols outside the dynamic differential
|
514 |
+
# equations; throws error if there is.
|
515 |
+
sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot]))
|
516 |
+
if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot,
|
517 |
+
self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]):
|
518 |
+
raise ValueError('Cannot have dynamicsymbols outside dynamic \
|
519 |
+
forcing vector.')
|
520 |
+
|
521 |
+
# Find all other dynamic symbols, forming the forcing vector r.
|
522 |
+
# Sort r to make it canonical.
|
523 |
+
r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list))
|
524 |
+
r.sort(key=default_sort_key)
|
525 |
+
|
526 |
+
# Check for any derivatives of variables in r that are also found in r.
|
527 |
+
for i in r:
|
528 |
+
if diff(i, dynamicsymbols._t) in r:
|
529 |
+
raise ValueError('Cannot have derivatives of specified \
|
530 |
+
quantities when linearizing forcing terms.')
|
531 |
+
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
|
532 |
+
q_d, u_i, u_d, r)
|
533 |
+
|
534 |
+
# TODO : Remove `new_method` after 1.1 has been released.
|
535 |
+
def linearize(self, *, new_method=None, **kwargs):
|
536 |
+
""" Linearize the equations of motion about a symbolic operating point.
|
537 |
+
|
538 |
+
Explanation
|
539 |
+
===========
|
540 |
+
|
541 |
+
If kwarg A_and_B is False (default), returns M, A, B, r for the
|
542 |
+
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
|
543 |
+
|
544 |
+
If kwarg A_and_B is True, returns A, B, r for the linearized form
|
545 |
+
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
|
546 |
+
computationally intensive if there are many symbolic parameters. For
|
547 |
+
this reason, it may be more desirable to use the default A_and_B=False,
|
548 |
+
returning M, A, and B. Values may then be substituted in to these
|
549 |
+
matrices, and the state space form found as
|
550 |
+
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
|
551 |
+
|
552 |
+
In both cases, r is found as all dynamicsymbols in the equations of
|
553 |
+
motion that are not part of q, u, q', or u'. They are sorted in
|
554 |
+
canonical form.
|
555 |
+
|
556 |
+
The operating points may be also entered using the ``op_point`` kwarg.
|
557 |
+
This takes a dictionary of {symbol: value}, or a an iterable of such
|
558 |
+
dictionaries. The values may be numeric or symbolic. The more values
|
559 |
+
you can specify beforehand, the faster this computation will run.
|
560 |
+
|
561 |
+
For more documentation, please see the ``Linearizer`` class."""
|
562 |
+
linearizer = self.to_linearizer()
|
563 |
+
result = linearizer.linearize(**kwargs)
|
564 |
+
return result + (linearizer.r,)
|
565 |
+
|
566 |
+
def kanes_equations(self, bodies=None, loads=None):
|
567 |
+
""" Method to form Kane's equations, Fr + Fr* = 0.
|
568 |
+
|
569 |
+
Explanation
|
570 |
+
===========
|
571 |
+
|
572 |
+
Returns (Fr, Fr*). In the case where auxiliary generalized speeds are
|
573 |
+
present (say, s auxiliary speeds, o generalized speeds, and m motion
|
574 |
+
constraints) the length of the returned vectors will be o - m + s in
|
575 |
+
length. The first o - m equations will be the constrained Kane's
|
576 |
+
equations, then the s auxiliary Kane's equations. These auxiliary
|
577 |
+
equations can be accessed with the auxiliary_eqs property.
|
578 |
+
|
579 |
+
Parameters
|
580 |
+
==========
|
581 |
+
|
582 |
+
bodies : iterable
|
583 |
+
An iterable of all RigidBody's and Particle's in the system.
|
584 |
+
A system must have at least one body.
|
585 |
+
loads : iterable
|
586 |
+
Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector)
|
587 |
+
tuples which represent the force at a point or torque on a frame.
|
588 |
+
Must be either a non-empty iterable of tuples or None which corresponds
|
589 |
+
to a system with no constraints.
|
590 |
+
"""
|
591 |
+
if bodies is None:
|
592 |
+
bodies = self.bodies
|
593 |
+
if loads is None and self._forcelist is not None:
|
594 |
+
loads = self._forcelist
|
595 |
+
if loads == []:
|
596 |
+
loads = None
|
597 |
+
if not self._k_kqdot:
|
598 |
+
raise AttributeError('Create an instance of KanesMethod with '
|
599 |
+
'kinematic differential equations to use this method.')
|
600 |
+
fr = self._form_fr(loads)
|
601 |
+
frstar = self._form_frstar(bodies)
|
602 |
+
if self._uaux:
|
603 |
+
if not self._udep:
|
604 |
+
km = KanesMethod(self._inertial, self.q, self._uaux,
|
605 |
+
u_auxiliary=self._uaux)
|
606 |
+
else:
|
607 |
+
km = KanesMethod(self._inertial, self.q, self._uaux,
|
608 |
+
u_auxiliary=self._uaux, u_dependent=self._udep,
|
609 |
+
velocity_constraints=(self._k_nh * self.u +
|
610 |
+
self._f_nh),
|
611 |
+
acceleration_constraints=(self._k_dnh * self._udot +
|
612 |
+
self._f_dnh)
|
613 |
+
)
|
614 |
+
km._qdot_u_map = self._qdot_u_map
|
615 |
+
self._km = km
|
616 |
+
fraux = km._form_fr(loads)
|
617 |
+
frstaraux = km._form_frstar(bodies)
|
618 |
+
self._aux_eq = fraux + frstaraux
|
619 |
+
self._fr = fr.col_join(fraux)
|
620 |
+
self._frstar = frstar.col_join(frstaraux)
|
621 |
+
return (self._fr, self._frstar)
|
622 |
+
|
623 |
+
def _form_eoms(self):
|
624 |
+
fr, frstar = self.kanes_equations(self.bodylist, self.forcelist)
|
625 |
+
return fr + frstar
|
626 |
+
|
627 |
+
def rhs(self, inv_method=None):
|
628 |
+
"""Returns the system's equations of motion in first order form. The
|
629 |
+
output is the right hand side of::
|
630 |
+
|
631 |
+
x' = |q'| =: f(q, u, r, p, t)
|
632 |
+
|u'|
|
633 |
+
|
634 |
+
The right hand side is what is needed by most numerical ODE
|
635 |
+
integrators.
|
636 |
+
|
637 |
+
Parameters
|
638 |
+
==========
|
639 |
+
|
640 |
+
inv_method : str
|
641 |
+
The specific sympy inverse matrix calculation method to use. For a
|
642 |
+
list of valid methods, see
|
643 |
+
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
|
644 |
+
|
645 |
+
"""
|
646 |
+
rhs = zeros(len(self.q) + len(self.u), 1)
|
647 |
+
kdes = self.kindiffdict()
|
648 |
+
for i, q_i in enumerate(self.q):
|
649 |
+
rhs[i] = kdes[q_i.diff()]
|
650 |
+
|
651 |
+
if inv_method is None:
|
652 |
+
rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing)
|
653 |
+
else:
|
654 |
+
rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method,
|
655 |
+
try_block_diag=True) *
|
656 |
+
self.forcing)
|
657 |
+
|
658 |
+
return rhs
|
659 |
+
|
660 |
+
def kindiffdict(self):
|
661 |
+
"""Returns a dictionary mapping q' to u."""
|
662 |
+
if not self._qdot_u_map:
|
663 |
+
raise AttributeError('Create an instance of KanesMethod with '
|
664 |
+
'kinematic differential equations to use this method.')
|
665 |
+
return self._qdot_u_map
|
666 |
+
|
667 |
+
@property
|
668 |
+
def auxiliary_eqs(self):
|
669 |
+
"""A matrix containing the auxiliary equations."""
|
670 |
+
if not self._fr or not self._frstar:
|
671 |
+
raise ValueError('Need to compute Fr, Fr* first.')
|
672 |
+
if not self._uaux:
|
673 |
+
raise ValueError('No auxiliary speeds have been declared.')
|
674 |
+
return self._aux_eq
|
675 |
+
|
676 |
+
@property
|
677 |
+
def mass_matrix_kin(self):
|
678 |
+
r"""The kinematic "mass matrix" $\mathbf{k_{k\dot{q}}}$ of the system."""
|
679 |
+
return self._k_kqdot if self.explicit_kinematics else self._k_kqdot_implicit
|
680 |
+
|
681 |
+
@property
|
682 |
+
def forcing_kin(self):
|
683 |
+
"""The kinematic "forcing vector" of the system."""
|
684 |
+
if self.explicit_kinematics:
|
685 |
+
return -(self._k_ku * Matrix(self.u) + self._f_k)
|
686 |
+
else:
|
687 |
+
return -(self._k_ku_implicit * Matrix(self.u) + self._f_k_implicit)
|
688 |
+
|
689 |
+
@property
|
690 |
+
def mass_matrix(self):
|
691 |
+
"""The mass matrix of the system."""
|
692 |
+
if not self._fr or not self._frstar:
|
693 |
+
raise ValueError('Need to compute Fr, Fr* first.')
|
694 |
+
return Matrix([self._k_d, self._k_dnh])
|
695 |
+
|
696 |
+
@property
|
697 |
+
def forcing(self):
|
698 |
+
"""The forcing vector of the system."""
|
699 |
+
if not self._fr or not self._frstar:
|
700 |
+
raise ValueError('Need to compute Fr, Fr* first.')
|
701 |
+
return -Matrix([self._f_d, self._f_dnh])
|
702 |
+
|
703 |
+
@property
|
704 |
+
def mass_matrix_full(self):
|
705 |
+
"""The mass matrix of the system, augmented by the kinematic
|
706 |
+
differential equations in explicit or implicit form."""
|
707 |
+
if not self._fr or not self._frstar:
|
708 |
+
raise ValueError('Need to compute Fr, Fr* first.')
|
709 |
+
o, n = len(self.u), len(self.q)
|
710 |
+
return (self.mass_matrix_kin.row_join(zeros(n, o))).col_join(
|
711 |
+
zeros(o, n).row_join(self.mass_matrix))
|
712 |
+
|
713 |
+
@property
|
714 |
+
def forcing_full(self):
|
715 |
+
"""The forcing vector of the system, augmented by the kinematic
|
716 |
+
differential equations in explicit or implicit form."""
|
717 |
+
return Matrix([self.forcing_kin, self.forcing])
|
718 |
+
|
719 |
+
@property
|
720 |
+
def q(self):
|
721 |
+
return self._q
|
722 |
+
|
723 |
+
@property
|
724 |
+
def u(self):
|
725 |
+
return self._u
|
726 |
+
|
727 |
+
@property
|
728 |
+
def bodylist(self):
|
729 |
+
return self._bodylist
|
730 |
+
|
731 |
+
@property
|
732 |
+
def forcelist(self):
|
733 |
+
return self._forcelist
|
734 |
+
|
735 |
+
@property
|
736 |
+
def bodies(self):
|
737 |
+
return self._bodylist
|
738 |
+
|
739 |
+
@property
|
740 |
+
def loads(self):
|
741 |
+
return self._forcelist
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/lagrange.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.backend import diff, zeros, Matrix, eye, sympify
|
2 |
+
from sympy.core.sorting import default_sort_key
|
3 |
+
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
|
4 |
+
from sympy.physics.mechanics.method import _Methods
|
5 |
+
from sympy.physics.mechanics.functions import (
|
6 |
+
find_dynamicsymbols, msubs, _f_list_parser, _validate_coordinates)
|
7 |
+
from sympy.physics.mechanics.linearize import Linearizer
|
8 |
+
from sympy.utilities.iterables import iterable
|
9 |
+
|
10 |
+
__all__ = ['LagrangesMethod']
|
11 |
+
|
12 |
+
|
13 |
+
class LagrangesMethod(_Methods):
|
14 |
+
"""Lagrange's method object.
|
15 |
+
|
16 |
+
Explanation
|
17 |
+
===========
|
18 |
+
|
19 |
+
This object generates the equations of motion in a two step procedure. The
|
20 |
+
first step involves the initialization of LagrangesMethod by supplying the
|
21 |
+
Lagrangian and the generalized coordinates, at the bare minimum. If there
|
22 |
+
are any constraint equations, they can be supplied as keyword arguments.
|
23 |
+
The Lagrange multipliers are automatically generated and are equal in
|
24 |
+
number to the constraint equations. Similarly any non-conservative forces
|
25 |
+
can be supplied in an iterable (as described below and also shown in the
|
26 |
+
example) along with a ReferenceFrame. This is also discussed further in the
|
27 |
+
__init__ method.
|
28 |
+
|
29 |
+
Attributes
|
30 |
+
==========
|
31 |
+
|
32 |
+
q, u : Matrix
|
33 |
+
Matrices of the generalized coordinates and speeds
|
34 |
+
loads : iterable
|
35 |
+
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
|
36 |
+
describing the forces on the system.
|
37 |
+
bodies : iterable
|
38 |
+
Iterable containing the rigid bodies and particles of the system.
|
39 |
+
mass_matrix : Matrix
|
40 |
+
The system's mass matrix
|
41 |
+
forcing : Matrix
|
42 |
+
The system's forcing vector
|
43 |
+
mass_matrix_full : Matrix
|
44 |
+
The "mass matrix" for the qdot's, qdoubledot's, and the
|
45 |
+
lagrange multipliers (lam)
|
46 |
+
forcing_full : Matrix
|
47 |
+
The forcing vector for the qdot's, qdoubledot's and
|
48 |
+
lagrange multipliers (lam)
|
49 |
+
|
50 |
+
Examples
|
51 |
+
========
|
52 |
+
|
53 |
+
This is a simple example for a one degree of freedom translational
|
54 |
+
spring-mass-damper.
|
55 |
+
|
56 |
+
In this example, we first need to do the kinematics.
|
57 |
+
This involves creating generalized coordinates and their derivatives.
|
58 |
+
Then we create a point and set its velocity in a frame.
|
59 |
+
|
60 |
+
>>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian
|
61 |
+
>>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point
|
62 |
+
>>> from sympy.physics.mechanics import dynamicsymbols
|
63 |
+
>>> from sympy import symbols
|
64 |
+
>>> q = dynamicsymbols('q')
|
65 |
+
>>> qd = dynamicsymbols('q', 1)
|
66 |
+
>>> m, k, b = symbols('m k b')
|
67 |
+
>>> N = ReferenceFrame('N')
|
68 |
+
>>> P = Point('P')
|
69 |
+
>>> P.set_vel(N, qd * N.x)
|
70 |
+
|
71 |
+
We need to then prepare the information as required by LagrangesMethod to
|
72 |
+
generate equations of motion.
|
73 |
+
First we create the Particle, which has a point attached to it.
|
74 |
+
Following this the lagrangian is created from the kinetic and potential
|
75 |
+
energies.
|
76 |
+
Then, an iterable of nonconservative forces/torques must be constructed,
|
77 |
+
where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple,
|
78 |
+
with the Vectors representing the nonconservative forces or torques.
|
79 |
+
|
80 |
+
>>> Pa = Particle('Pa', P, m)
|
81 |
+
>>> Pa.potential_energy = k * q**2 / 2.0
|
82 |
+
>>> L = Lagrangian(N, Pa)
|
83 |
+
>>> fl = [(P, -b * qd * N.x)]
|
84 |
+
|
85 |
+
Finally we can generate the equations of motion.
|
86 |
+
First we create the LagrangesMethod object. To do this one must supply
|
87 |
+
the Lagrangian, and the generalized coordinates. The constraint equations,
|
88 |
+
the forcelist, and the inertial frame may also be provided, if relevant.
|
89 |
+
Next we generate Lagrange's equations of motion, such that:
|
90 |
+
Lagrange's equations of motion = 0.
|
91 |
+
We have the equations of motion at this point.
|
92 |
+
|
93 |
+
>>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N)
|
94 |
+
>>> print(l.form_lagranges_equations())
|
95 |
+
Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), (t, 2))]])
|
96 |
+
|
97 |
+
We can also solve for the states using the 'rhs' method.
|
98 |
+
|
99 |
+
>>> print(l.rhs())
|
100 |
+
Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]])
|
101 |
+
|
102 |
+
Please refer to the docstrings on each method for more details.
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(self, Lagrangian, qs, forcelist=None, bodies=None, frame=None,
|
106 |
+
hol_coneqs=None, nonhol_coneqs=None):
|
107 |
+
"""Supply the following for the initialization of LagrangesMethod.
|
108 |
+
|
109 |
+
Lagrangian : Sympifyable
|
110 |
+
|
111 |
+
qs : array_like
|
112 |
+
The generalized coordinates
|
113 |
+
|
114 |
+
hol_coneqs : array_like, optional
|
115 |
+
The holonomic constraint equations
|
116 |
+
|
117 |
+
nonhol_coneqs : array_like, optional
|
118 |
+
The nonholonomic constraint equations
|
119 |
+
|
120 |
+
forcelist : iterable, optional
|
121 |
+
Takes an iterable of (Point, Vector) or (ReferenceFrame, Vector)
|
122 |
+
tuples which represent the force at a point or torque on a frame.
|
123 |
+
This feature is primarily to account for the nonconservative forces
|
124 |
+
and/or moments.
|
125 |
+
|
126 |
+
bodies : iterable, optional
|
127 |
+
Takes an iterable containing the rigid bodies and particles of the
|
128 |
+
system.
|
129 |
+
|
130 |
+
frame : ReferenceFrame, optional
|
131 |
+
Supply the inertial frame. This is used to determine the
|
132 |
+
generalized forces due to non-conservative forces.
|
133 |
+
"""
|
134 |
+
|
135 |
+
self._L = Matrix([sympify(Lagrangian)])
|
136 |
+
self.eom = None
|
137 |
+
self._m_cd = Matrix() # Mass Matrix of differentiated coneqs
|
138 |
+
self._m_d = Matrix() # Mass Matrix of dynamic equations
|
139 |
+
self._f_cd = Matrix() # Forcing part of the diff coneqs
|
140 |
+
self._f_d = Matrix() # Forcing part of the dynamic equations
|
141 |
+
self.lam_coeffs = Matrix() # The coeffecients of the multipliers
|
142 |
+
|
143 |
+
forcelist = forcelist if forcelist else []
|
144 |
+
if not iterable(forcelist):
|
145 |
+
raise TypeError('Force pairs must be supplied in an iterable.')
|
146 |
+
self._forcelist = forcelist
|
147 |
+
if frame and not isinstance(frame, ReferenceFrame):
|
148 |
+
raise TypeError('frame must be a valid ReferenceFrame')
|
149 |
+
self._bodies = bodies
|
150 |
+
self.inertial = frame
|
151 |
+
|
152 |
+
self.lam_vec = Matrix()
|
153 |
+
|
154 |
+
self._term1 = Matrix()
|
155 |
+
self._term2 = Matrix()
|
156 |
+
self._term3 = Matrix()
|
157 |
+
self._term4 = Matrix()
|
158 |
+
|
159 |
+
# Creating the qs, qdots and qdoubledots
|
160 |
+
if not iterable(qs):
|
161 |
+
raise TypeError('Generalized coordinates must be an iterable')
|
162 |
+
self._q = Matrix(qs)
|
163 |
+
self._qdots = self.q.diff(dynamicsymbols._t)
|
164 |
+
self._qdoubledots = self._qdots.diff(dynamicsymbols._t)
|
165 |
+
_validate_coordinates(self.q)
|
166 |
+
|
167 |
+
mat_build = lambda x: Matrix(x) if x else Matrix()
|
168 |
+
hol_coneqs = mat_build(hol_coneqs)
|
169 |
+
nonhol_coneqs = mat_build(nonhol_coneqs)
|
170 |
+
self.coneqs = Matrix([hol_coneqs.diff(dynamicsymbols._t),
|
171 |
+
nonhol_coneqs])
|
172 |
+
self._hol_coneqs = hol_coneqs
|
173 |
+
|
174 |
+
def form_lagranges_equations(self):
|
175 |
+
"""Method to form Lagrange's equations of motion.
|
176 |
+
|
177 |
+
Returns a vector of equations of motion using Lagrange's equations of
|
178 |
+
the second kind.
|
179 |
+
"""
|
180 |
+
|
181 |
+
qds = self._qdots
|
182 |
+
qdd_zero = {i: 0 for i in self._qdoubledots}
|
183 |
+
n = len(self.q)
|
184 |
+
|
185 |
+
# Internally we represent the EOM as four terms:
|
186 |
+
# EOM = term1 - term2 - term3 - term4 = 0
|
187 |
+
|
188 |
+
# First term
|
189 |
+
self._term1 = self._L.jacobian(qds)
|
190 |
+
self._term1 = self._term1.diff(dynamicsymbols._t).T
|
191 |
+
|
192 |
+
# Second term
|
193 |
+
self._term2 = self._L.jacobian(self.q).T
|
194 |
+
|
195 |
+
# Third term
|
196 |
+
if self.coneqs:
|
197 |
+
coneqs = self.coneqs
|
198 |
+
m = len(coneqs)
|
199 |
+
# Creating the multipliers
|
200 |
+
self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
|
201 |
+
self.lam_coeffs = -coneqs.jacobian(qds)
|
202 |
+
self._term3 = self.lam_coeffs.T * self.lam_vec
|
203 |
+
# Extracting the coeffecients of the qdds from the diff coneqs
|
204 |
+
diffconeqs = coneqs.diff(dynamicsymbols._t)
|
205 |
+
self._m_cd = diffconeqs.jacobian(self._qdoubledots)
|
206 |
+
# The remaining terms i.e. the 'forcing' terms in diff coneqs
|
207 |
+
self._f_cd = -diffconeqs.subs(qdd_zero)
|
208 |
+
else:
|
209 |
+
self._term3 = zeros(n, 1)
|
210 |
+
|
211 |
+
# Fourth term
|
212 |
+
if self.forcelist:
|
213 |
+
N = self.inertial
|
214 |
+
self._term4 = zeros(n, 1)
|
215 |
+
for i, qd in enumerate(qds):
|
216 |
+
flist = zip(*_f_list_parser(self.forcelist, N))
|
217 |
+
self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
|
218 |
+
else:
|
219 |
+
self._term4 = zeros(n, 1)
|
220 |
+
|
221 |
+
# Form the dynamic mass and forcing matrices
|
222 |
+
without_lam = self._term1 - self._term2 - self._term4
|
223 |
+
self._m_d = without_lam.jacobian(self._qdoubledots)
|
224 |
+
self._f_d = -without_lam.subs(qdd_zero)
|
225 |
+
|
226 |
+
# Form the EOM
|
227 |
+
self.eom = without_lam - self._term3
|
228 |
+
return self.eom
|
229 |
+
|
230 |
+
def _form_eoms(self):
|
231 |
+
return self.form_lagranges_equations()
|
232 |
+
|
233 |
+
@property
|
234 |
+
def mass_matrix(self):
|
235 |
+
"""Returns the mass matrix, which is augmented by the Lagrange
|
236 |
+
multipliers, if necessary.
|
237 |
+
|
238 |
+
Explanation
|
239 |
+
===========
|
240 |
+
|
241 |
+
If the system is described by 'n' generalized coordinates and there are
|
242 |
+
no constraint equations then an n X n matrix is returned.
|
243 |
+
|
244 |
+
If there are 'n' generalized coordinates and 'm' constraint equations
|
245 |
+
have been supplied during initialization then an n X (n+m) matrix is
|
246 |
+
returned. The (n + m - 1)th and (n + m)th columns contain the
|
247 |
+
coefficients of the Lagrange multipliers.
|
248 |
+
"""
|
249 |
+
|
250 |
+
if self.eom is None:
|
251 |
+
raise ValueError('Need to compute the equations of motion first')
|
252 |
+
if self.coneqs:
|
253 |
+
return (self._m_d).row_join(self.lam_coeffs.T)
|
254 |
+
else:
|
255 |
+
return self._m_d
|
256 |
+
|
257 |
+
@property
|
258 |
+
def mass_matrix_full(self):
|
259 |
+
"""Augments the coefficients of qdots to the mass_matrix."""
|
260 |
+
|
261 |
+
if self.eom is None:
|
262 |
+
raise ValueError('Need to compute the equations of motion first')
|
263 |
+
n = len(self.q)
|
264 |
+
m = len(self.coneqs)
|
265 |
+
row1 = eye(n).row_join(zeros(n, n + m))
|
266 |
+
row2 = zeros(n, n).row_join(self.mass_matrix)
|
267 |
+
if self.coneqs:
|
268 |
+
row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
|
269 |
+
return row1.col_join(row2).col_join(row3)
|
270 |
+
else:
|
271 |
+
return row1.col_join(row2)
|
272 |
+
|
273 |
+
@property
|
274 |
+
def forcing(self):
|
275 |
+
"""Returns the forcing vector from 'lagranges_equations' method."""
|
276 |
+
|
277 |
+
if self.eom is None:
|
278 |
+
raise ValueError('Need to compute the equations of motion first')
|
279 |
+
return self._f_d
|
280 |
+
|
281 |
+
@property
|
282 |
+
def forcing_full(self):
|
283 |
+
"""Augments qdots to the forcing vector above."""
|
284 |
+
|
285 |
+
if self.eom is None:
|
286 |
+
raise ValueError('Need to compute the equations of motion first')
|
287 |
+
if self.coneqs:
|
288 |
+
return self._qdots.col_join(self.forcing).col_join(self._f_cd)
|
289 |
+
else:
|
290 |
+
return self._qdots.col_join(self.forcing)
|
291 |
+
|
292 |
+
def to_linearizer(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None):
|
293 |
+
"""Returns an instance of the Linearizer class, initiated from the
|
294 |
+
data in the LagrangesMethod class. This may be more desirable than using
|
295 |
+
the linearize class method, as the Linearizer object will allow more
|
296 |
+
efficient recalculation (i.e. about varying operating points).
|
297 |
+
|
298 |
+
Parameters
|
299 |
+
==========
|
300 |
+
|
301 |
+
q_ind, qd_ind : array_like, optional
|
302 |
+
The independent generalized coordinates and speeds.
|
303 |
+
q_dep, qd_dep : array_like, optional
|
304 |
+
The dependent generalized coordinates and speeds.
|
305 |
+
"""
|
306 |
+
|
307 |
+
# Compose vectors
|
308 |
+
t = dynamicsymbols._t
|
309 |
+
q = self.q
|
310 |
+
u = self._qdots
|
311 |
+
ud = u.diff(t)
|
312 |
+
# Get vector of lagrange multipliers
|
313 |
+
lams = self.lam_vec
|
314 |
+
|
315 |
+
mat_build = lambda x: Matrix(x) if x else Matrix()
|
316 |
+
q_i = mat_build(q_ind)
|
317 |
+
q_d = mat_build(q_dep)
|
318 |
+
u_i = mat_build(qd_ind)
|
319 |
+
u_d = mat_build(qd_dep)
|
320 |
+
|
321 |
+
# Compose general form equations
|
322 |
+
f_c = self._hol_coneqs
|
323 |
+
f_v = self.coneqs
|
324 |
+
f_a = f_v.diff(t)
|
325 |
+
f_0 = u
|
326 |
+
f_1 = -u
|
327 |
+
f_2 = self._term1
|
328 |
+
f_3 = -(self._term2 + self._term4)
|
329 |
+
f_4 = -self._term3
|
330 |
+
|
331 |
+
# Check that there are an appropriate number of independent and
|
332 |
+
# dependent coordinates
|
333 |
+
if len(q_d) != len(f_c) or len(u_d) != len(f_v):
|
334 |
+
raise ValueError(("Must supply {:} dependent coordinates, and " +
|
335 |
+
"{:} dependent speeds").format(len(f_c), len(f_v)))
|
336 |
+
if set(Matrix([q_i, q_d])) != set(q):
|
337 |
+
raise ValueError("Must partition q into q_ind and q_dep, with " +
|
338 |
+
"no extra or missing symbols.")
|
339 |
+
if set(Matrix([u_i, u_d])) != set(u):
|
340 |
+
raise ValueError("Must partition qd into qd_ind and qd_dep, " +
|
341 |
+
"with no extra or missing symbols.")
|
342 |
+
|
343 |
+
# Find all other dynamic symbols, forming the forcing vector r.
|
344 |
+
# Sort r to make it canonical.
|
345 |
+
insyms = set(Matrix([q, u, ud, lams]))
|
346 |
+
r = list(find_dynamicsymbols(f_3, insyms))
|
347 |
+
r.sort(key=default_sort_key)
|
348 |
+
# Check for any derivatives of variables in r that are also found in r.
|
349 |
+
for i in r:
|
350 |
+
if diff(i, dynamicsymbols._t) in r:
|
351 |
+
raise ValueError('Cannot have derivatives of specified \
|
352 |
+
quantities when linearizing forcing terms.')
|
353 |
+
|
354 |
+
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
|
355 |
+
q_d, u_i, u_d, r, lams)
|
356 |
+
|
357 |
+
def linearize(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None,
|
358 |
+
**kwargs):
|
359 |
+
"""Linearize the equations of motion about a symbolic operating point.
|
360 |
+
|
361 |
+
Explanation
|
362 |
+
===========
|
363 |
+
|
364 |
+
If kwarg A_and_B is False (default), returns M, A, B, r for the
|
365 |
+
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
|
366 |
+
|
367 |
+
If kwarg A_and_B is True, returns A, B, r for the linearized form
|
368 |
+
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
|
369 |
+
computationally intensive if there are many symbolic parameters. For
|
370 |
+
this reason, it may be more desirable to use the default A_and_B=False,
|
371 |
+
returning M, A, and B. Values may then be substituted in to these
|
372 |
+
matrices, and the state space form found as
|
373 |
+
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
|
374 |
+
|
375 |
+
In both cases, r is found as all dynamicsymbols in the equations of
|
376 |
+
motion that are not part of q, u, q', or u'. They are sorted in
|
377 |
+
canonical form.
|
378 |
+
|
379 |
+
The operating points may be also entered using the ``op_point`` kwarg.
|
380 |
+
This takes a dictionary of {symbol: value}, or a an iterable of such
|
381 |
+
dictionaries. The values may be numeric or symbolic. The more values
|
382 |
+
you can specify beforehand, the faster this computation will run.
|
383 |
+
|
384 |
+
For more documentation, please see the ``Linearizer`` class."""
|
385 |
+
|
386 |
+
linearizer = self.to_linearizer(q_ind, qd_ind, q_dep, qd_dep)
|
387 |
+
result = linearizer.linearize(**kwargs)
|
388 |
+
return result + (linearizer.r,)
|
389 |
+
|
390 |
+
def solve_multipliers(self, op_point=None, sol_type='dict'):
|
391 |
+
"""Solves for the values of the lagrange multipliers symbolically at
|
392 |
+
the specified operating point.
|
393 |
+
|
394 |
+
Parameters
|
395 |
+
==========
|
396 |
+
|
397 |
+
op_point : dict or iterable of dicts, optional
|
398 |
+
Point at which to solve at. The operating point is specified as
|
399 |
+
a dictionary or iterable of dictionaries of {symbol: value}. The
|
400 |
+
value may be numeric or symbolic itself.
|
401 |
+
|
402 |
+
sol_type : str, optional
|
403 |
+
Solution return type. Valid options are:
|
404 |
+
- 'dict': A dict of {symbol : value} (default)
|
405 |
+
- 'Matrix': An ordered column matrix of the solution
|
406 |
+
"""
|
407 |
+
|
408 |
+
# Determine number of multipliers
|
409 |
+
k = len(self.lam_vec)
|
410 |
+
if k == 0:
|
411 |
+
raise ValueError("System has no lagrange multipliers to solve for.")
|
412 |
+
# Compose dict of operating conditions
|
413 |
+
if isinstance(op_point, dict):
|
414 |
+
op_point_dict = op_point
|
415 |
+
elif iterable(op_point):
|
416 |
+
op_point_dict = {}
|
417 |
+
for op in op_point:
|
418 |
+
op_point_dict.update(op)
|
419 |
+
elif op_point is None:
|
420 |
+
op_point_dict = {}
|
421 |
+
else:
|
422 |
+
raise TypeError("op_point must be either a dictionary or an "
|
423 |
+
"iterable of dictionaries.")
|
424 |
+
# Compose the system to be solved
|
425 |
+
mass_matrix = self.mass_matrix.col_join(-self.lam_coeffs.row_join(
|
426 |
+
zeros(k, k)))
|
427 |
+
force_matrix = self.forcing.col_join(self._f_cd)
|
428 |
+
# Sub in the operating point
|
429 |
+
mass_matrix = msubs(mass_matrix, op_point_dict)
|
430 |
+
force_matrix = msubs(force_matrix, op_point_dict)
|
431 |
+
# Solve for the multipliers
|
432 |
+
sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
|
433 |
+
if sol_type == 'dict':
|
434 |
+
return dict(zip(self.lam_vec, sol_list))
|
435 |
+
elif sol_type == 'Matrix':
|
436 |
+
return Matrix(sol_list)
|
437 |
+
else:
|
438 |
+
raise ValueError("Unknown sol_type {:}.".format(sol_type))
|
439 |
+
|
440 |
+
def rhs(self, inv_method=None, **kwargs):
|
441 |
+
"""Returns equations that can be solved numerically.
|
442 |
+
|
443 |
+
Parameters
|
444 |
+
==========
|
445 |
+
|
446 |
+
inv_method : str
|
447 |
+
The specific sympy inverse matrix calculation method to use. For a
|
448 |
+
list of valid methods, see
|
449 |
+
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
|
450 |
+
"""
|
451 |
+
|
452 |
+
if inv_method is None:
|
453 |
+
self._rhs = self.mass_matrix_full.LUsolve(self.forcing_full)
|
454 |
+
else:
|
455 |
+
self._rhs = (self.mass_matrix_full.inv(inv_method,
|
456 |
+
try_block_diag=True) * self.forcing_full)
|
457 |
+
return self._rhs
|
458 |
+
|
459 |
+
@property
|
460 |
+
def q(self):
|
461 |
+
return self._q
|
462 |
+
|
463 |
+
@property
|
464 |
+
def u(self):
|
465 |
+
return self._qdots
|
466 |
+
|
467 |
+
@property
|
468 |
+
def bodies(self):
|
469 |
+
return self._bodies
|
470 |
+
|
471 |
+
@property
|
472 |
+
def forcelist(self):
|
473 |
+
return self._forcelist
|
474 |
+
|
475 |
+
@property
|
476 |
+
def loads(self):
|
477 |
+
return self._forcelist
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/linearize.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['Linearizer']
|
2 |
+
|
3 |
+
from sympy.core.backend import Matrix, eye, zeros
|
4 |
+
from sympy.core.symbol import Dummy
|
5 |
+
from sympy.utilities.iterables import flatten
|
6 |
+
from sympy.physics.vector import dynamicsymbols
|
7 |
+
from sympy.physics.mechanics.functions import msubs
|
8 |
+
|
9 |
+
from collections import namedtuple
|
10 |
+
from collections.abc import Iterable
|
11 |
+
|
12 |
+
class Linearizer:
|
13 |
+
"""This object holds the general model form for a dynamic system.
|
14 |
+
This model is used for computing the linearized form of the system,
|
15 |
+
while properly dealing with constraints leading to dependent
|
16 |
+
coordinates and speeds.
|
17 |
+
|
18 |
+
Attributes
|
19 |
+
==========
|
20 |
+
|
21 |
+
f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : Matrix
|
22 |
+
Matrices holding the general system form.
|
23 |
+
q, u, r : Matrix
|
24 |
+
Matrices holding the generalized coordinates, speeds, and
|
25 |
+
input vectors.
|
26 |
+
q_i, u_i : Matrix
|
27 |
+
Matrices of the independent generalized coordinates and speeds.
|
28 |
+
q_d, u_d : Matrix
|
29 |
+
Matrices of the dependent generalized coordinates and speeds.
|
30 |
+
perm_mat : Matrix
|
31 |
+
Permutation matrix such that [q_ind, u_ind]^T = perm_mat*[q, u]^T
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u,
|
35 |
+
q_i=None, q_d=None, u_i=None, u_d=None, r=None, lams=None):
|
36 |
+
"""
|
37 |
+
Parameters
|
38 |
+
==========
|
39 |
+
|
40 |
+
f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : array_like
|
41 |
+
System of equations holding the general system form.
|
42 |
+
Supply empty array or Matrix if the parameter
|
43 |
+
does not exist.
|
44 |
+
q : array_like
|
45 |
+
The generalized coordinates.
|
46 |
+
u : array_like
|
47 |
+
The generalized speeds
|
48 |
+
q_i, u_i : array_like, optional
|
49 |
+
The independent generalized coordinates and speeds.
|
50 |
+
q_d, u_d : array_like, optional
|
51 |
+
The dependent generalized coordinates and speeds.
|
52 |
+
r : array_like, optional
|
53 |
+
The input variables.
|
54 |
+
lams : array_like, optional
|
55 |
+
The lagrange multipliers
|
56 |
+
"""
|
57 |
+
|
58 |
+
# Generalized equation form
|
59 |
+
self.f_0 = Matrix(f_0)
|
60 |
+
self.f_1 = Matrix(f_1)
|
61 |
+
self.f_2 = Matrix(f_2)
|
62 |
+
self.f_3 = Matrix(f_3)
|
63 |
+
self.f_4 = Matrix(f_4)
|
64 |
+
self.f_c = Matrix(f_c)
|
65 |
+
self.f_v = Matrix(f_v)
|
66 |
+
self.f_a = Matrix(f_a)
|
67 |
+
|
68 |
+
# Generalized equation variables
|
69 |
+
self.q = Matrix(q)
|
70 |
+
self.u = Matrix(u)
|
71 |
+
none_handler = lambda x: Matrix(x) if x else Matrix()
|
72 |
+
self.q_i = none_handler(q_i)
|
73 |
+
self.q_d = none_handler(q_d)
|
74 |
+
self.u_i = none_handler(u_i)
|
75 |
+
self.u_d = none_handler(u_d)
|
76 |
+
self.r = none_handler(r)
|
77 |
+
self.lams = none_handler(lams)
|
78 |
+
|
79 |
+
# Derivatives of generalized equation variables
|
80 |
+
self._qd = self.q.diff(dynamicsymbols._t)
|
81 |
+
self._ud = self.u.diff(dynamicsymbols._t)
|
82 |
+
# If the user doesn't actually use generalized variables, and the
|
83 |
+
# qd and u vectors have any intersecting variables, this can cause
|
84 |
+
# problems. We'll fix this with some hackery, and Dummy variables
|
85 |
+
dup_vars = set(self._qd).intersection(self.u)
|
86 |
+
self._qd_dup = Matrix([var if var not in dup_vars else Dummy()
|
87 |
+
for var in self._qd])
|
88 |
+
|
89 |
+
# Derive dimesion terms
|
90 |
+
l = len(self.f_c)
|
91 |
+
m = len(self.f_v)
|
92 |
+
n = len(self.q)
|
93 |
+
o = len(self.u)
|
94 |
+
s = len(self.r)
|
95 |
+
k = len(self.lams)
|
96 |
+
dims = namedtuple('dims', ['l', 'm', 'n', 'o', 's', 'k'])
|
97 |
+
self._dims = dims(l, m, n, o, s, k)
|
98 |
+
|
99 |
+
self._Pq = None
|
100 |
+
self._Pqi = None
|
101 |
+
self._Pqd = None
|
102 |
+
self._Pu = None
|
103 |
+
self._Pui = None
|
104 |
+
self._Pud = None
|
105 |
+
self._C_0 = None
|
106 |
+
self._C_1 = None
|
107 |
+
self._C_2 = None
|
108 |
+
self.perm_mat = None
|
109 |
+
|
110 |
+
self._setup_done = False
|
111 |
+
|
112 |
+
def _setup(self):
|
113 |
+
# Calculations here only need to be run once. They are moved out of
|
114 |
+
# the __init__ method to increase the speed of Linearizer creation.
|
115 |
+
self._form_permutation_matrices()
|
116 |
+
self._form_block_matrices()
|
117 |
+
self._form_coefficient_matrices()
|
118 |
+
self._setup_done = True
|
119 |
+
|
120 |
+
def _form_permutation_matrices(self):
|
121 |
+
"""Form the permutation matrices Pq and Pu."""
|
122 |
+
|
123 |
+
# Extract dimension variables
|
124 |
+
l, m, n, o, s, k = self._dims
|
125 |
+
# Compute permutation matrices
|
126 |
+
if n != 0:
|
127 |
+
self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d]))
|
128 |
+
if l > 0:
|
129 |
+
self._Pqi = self._Pq[:, :-l]
|
130 |
+
self._Pqd = self._Pq[:, -l:]
|
131 |
+
else:
|
132 |
+
self._Pqi = self._Pq
|
133 |
+
self._Pqd = Matrix()
|
134 |
+
if o != 0:
|
135 |
+
self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d]))
|
136 |
+
if m > 0:
|
137 |
+
self._Pui = self._Pu[:, :-m]
|
138 |
+
self._Pud = self._Pu[:, -m:]
|
139 |
+
else:
|
140 |
+
self._Pui = self._Pu
|
141 |
+
self._Pud = Matrix()
|
142 |
+
# Compute combination permutation matrix for computing A and B
|
143 |
+
P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)])
|
144 |
+
P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)])
|
145 |
+
if P_col1:
|
146 |
+
if P_col2:
|
147 |
+
self.perm_mat = P_col1.row_join(P_col2)
|
148 |
+
else:
|
149 |
+
self.perm_mat = P_col1
|
150 |
+
else:
|
151 |
+
self.perm_mat = P_col2
|
152 |
+
|
153 |
+
def _form_coefficient_matrices(self):
|
154 |
+
"""Form the coefficient matrices C_0, C_1, and C_2."""
|
155 |
+
|
156 |
+
# Extract dimension variables
|
157 |
+
l, m, n, o, s, k = self._dims
|
158 |
+
# Build up the coefficient matrices C_0, C_1, and C_2
|
159 |
+
# If there are configuration constraints (l > 0), form C_0 as normal.
|
160 |
+
# If not, C_0 is I_(nxn). Note that this works even if n=0
|
161 |
+
if l > 0:
|
162 |
+
f_c_jac_q = self.f_c.jacobian(self.q)
|
163 |
+
self._C_0 = (eye(n) - self._Pqd * (f_c_jac_q *
|
164 |
+
self._Pqd).LUsolve(f_c_jac_q)) * self._Pqi
|
165 |
+
else:
|
166 |
+
self._C_0 = eye(n)
|
167 |
+
# If there are motion constraints (m > 0), form C_1 and C_2 as normal.
|
168 |
+
# If not, C_1 is 0, and C_2 is I_(oxo). Note that this works even if
|
169 |
+
# o = 0.
|
170 |
+
if m > 0:
|
171 |
+
f_v_jac_u = self.f_v.jacobian(self.u)
|
172 |
+
temp = f_v_jac_u * self._Pud
|
173 |
+
if n != 0:
|
174 |
+
f_v_jac_q = self.f_v.jacobian(self.q)
|
175 |
+
self._C_1 = -self._Pud * temp.LUsolve(f_v_jac_q)
|
176 |
+
else:
|
177 |
+
self._C_1 = zeros(o, n)
|
178 |
+
self._C_2 = (eye(o) - self._Pud *
|
179 |
+
temp.LUsolve(f_v_jac_u)) * self._Pui
|
180 |
+
else:
|
181 |
+
self._C_1 = zeros(o, n)
|
182 |
+
self._C_2 = eye(o)
|
183 |
+
|
184 |
+
def _form_block_matrices(self):
|
185 |
+
"""Form the block matrices for composing M, A, and B."""
|
186 |
+
|
187 |
+
# Extract dimension variables
|
188 |
+
l, m, n, o, s, k = self._dims
|
189 |
+
# Block Matrix Definitions. These are only defined if under certain
|
190 |
+
# conditions. If undefined, an empty matrix is used instead
|
191 |
+
if n != 0:
|
192 |
+
self._M_qq = self.f_0.jacobian(self._qd)
|
193 |
+
self._A_qq = -(self.f_0 + self.f_1).jacobian(self.q)
|
194 |
+
else:
|
195 |
+
self._M_qq = Matrix()
|
196 |
+
self._A_qq = Matrix()
|
197 |
+
if n != 0 and m != 0:
|
198 |
+
self._M_uqc = self.f_a.jacobian(self._qd_dup)
|
199 |
+
self._A_uqc = -self.f_a.jacobian(self.q)
|
200 |
+
else:
|
201 |
+
self._M_uqc = Matrix()
|
202 |
+
self._A_uqc = Matrix()
|
203 |
+
if n != 0 and o - m + k != 0:
|
204 |
+
self._M_uqd = self.f_3.jacobian(self._qd_dup)
|
205 |
+
self._A_uqd = -(self.f_2 + self.f_3 + self.f_4).jacobian(self.q)
|
206 |
+
else:
|
207 |
+
self._M_uqd = Matrix()
|
208 |
+
self._A_uqd = Matrix()
|
209 |
+
if o != 0 and m != 0:
|
210 |
+
self._M_uuc = self.f_a.jacobian(self._ud)
|
211 |
+
self._A_uuc = -self.f_a.jacobian(self.u)
|
212 |
+
else:
|
213 |
+
self._M_uuc = Matrix()
|
214 |
+
self._A_uuc = Matrix()
|
215 |
+
if o != 0 and o - m + k != 0:
|
216 |
+
self._M_uud = self.f_2.jacobian(self._ud)
|
217 |
+
self._A_uud = -(self.f_2 + self.f_3).jacobian(self.u)
|
218 |
+
else:
|
219 |
+
self._M_uud = Matrix()
|
220 |
+
self._A_uud = Matrix()
|
221 |
+
if o != 0 and n != 0:
|
222 |
+
self._A_qu = -self.f_1.jacobian(self.u)
|
223 |
+
else:
|
224 |
+
self._A_qu = Matrix()
|
225 |
+
if k != 0 and o - m + k != 0:
|
226 |
+
self._M_uld = self.f_4.jacobian(self.lams)
|
227 |
+
else:
|
228 |
+
self._M_uld = Matrix()
|
229 |
+
if s != 0 and o - m + k != 0:
|
230 |
+
self._B_u = -self.f_3.jacobian(self.r)
|
231 |
+
else:
|
232 |
+
self._B_u = Matrix()
|
233 |
+
|
234 |
+
def linearize(self, op_point=None, A_and_B=False, simplify=False):
|
235 |
+
"""Linearize the system about the operating point. Note that
|
236 |
+
q_op, u_op, qd_op, ud_op must satisfy the equations of motion.
|
237 |
+
These may be either symbolic or numeric.
|
238 |
+
|
239 |
+
Parameters
|
240 |
+
==========
|
241 |
+
|
242 |
+
op_point : dict or iterable of dicts, optional
|
243 |
+
Dictionary or iterable of dictionaries containing the operating
|
244 |
+
point conditions. These will be substituted in to the linearized
|
245 |
+
system before the linearization is complete. Leave blank if you
|
246 |
+
want a completely symbolic form. Note that any reduction in
|
247 |
+
symbols (whether substituted for numbers or expressions with a
|
248 |
+
common parameter) will result in faster runtime.
|
249 |
+
|
250 |
+
A_and_B : bool, optional
|
251 |
+
If A_and_B=False (default), (M, A, B) is returned for forming
|
252 |
+
[M]*[q, u]^T = [A]*[q_ind, u_ind]^T + [B]r. If A_and_B=True,
|
253 |
+
(A, B) is returned for forming dx = [A]x + [B]r, where
|
254 |
+
x = [q_ind, u_ind]^T.
|
255 |
+
|
256 |
+
simplify : bool, optional
|
257 |
+
Determines if returned values are simplified before return.
|
258 |
+
For large expressions this may be time consuming. Default is False.
|
259 |
+
|
260 |
+
Potential Issues
|
261 |
+
================
|
262 |
+
|
263 |
+
Note that the process of solving with A_and_B=True is
|
264 |
+
computationally intensive if there are many symbolic parameters.
|
265 |
+
For this reason, it may be more desirable to use the default
|
266 |
+
A_and_B=False, returning M, A, and B. More values may then be
|
267 |
+
substituted in to these matrices later on. The state space form can
|
268 |
+
then be found as A = P.T*M.LUsolve(A), B = P.T*M.LUsolve(B), where
|
269 |
+
P = Linearizer.perm_mat.
|
270 |
+
"""
|
271 |
+
|
272 |
+
# Run the setup if needed:
|
273 |
+
if not self._setup_done:
|
274 |
+
self._setup()
|
275 |
+
|
276 |
+
# Compose dict of operating conditions
|
277 |
+
if isinstance(op_point, dict):
|
278 |
+
op_point_dict = op_point
|
279 |
+
elif isinstance(op_point, Iterable):
|
280 |
+
op_point_dict = {}
|
281 |
+
for op in op_point:
|
282 |
+
op_point_dict.update(op)
|
283 |
+
else:
|
284 |
+
op_point_dict = {}
|
285 |
+
|
286 |
+
# Extract dimension variables
|
287 |
+
l, m, n, o, s, k = self._dims
|
288 |
+
|
289 |
+
# Rename terms to shorten expressions
|
290 |
+
M_qq = self._M_qq
|
291 |
+
M_uqc = self._M_uqc
|
292 |
+
M_uqd = self._M_uqd
|
293 |
+
M_uuc = self._M_uuc
|
294 |
+
M_uud = self._M_uud
|
295 |
+
M_uld = self._M_uld
|
296 |
+
A_qq = self._A_qq
|
297 |
+
A_uqc = self._A_uqc
|
298 |
+
A_uqd = self._A_uqd
|
299 |
+
A_qu = self._A_qu
|
300 |
+
A_uuc = self._A_uuc
|
301 |
+
A_uud = self._A_uud
|
302 |
+
B_u = self._B_u
|
303 |
+
C_0 = self._C_0
|
304 |
+
C_1 = self._C_1
|
305 |
+
C_2 = self._C_2
|
306 |
+
|
307 |
+
# Build up Mass Matrix
|
308 |
+
# |M_qq 0_nxo 0_nxk|
|
309 |
+
# M = |M_uqc M_uuc 0_mxk|
|
310 |
+
# |M_uqd M_uud M_uld|
|
311 |
+
if o != 0:
|
312 |
+
col2 = Matrix([zeros(n, o), M_uuc, M_uud])
|
313 |
+
if k != 0:
|
314 |
+
col3 = Matrix([zeros(n + m, k), M_uld])
|
315 |
+
if n != 0:
|
316 |
+
col1 = Matrix([M_qq, M_uqc, M_uqd])
|
317 |
+
if o != 0 and k != 0:
|
318 |
+
M = col1.row_join(col2).row_join(col3)
|
319 |
+
elif o != 0:
|
320 |
+
M = col1.row_join(col2)
|
321 |
+
else:
|
322 |
+
M = col1
|
323 |
+
elif k != 0:
|
324 |
+
M = col2.row_join(col3)
|
325 |
+
else:
|
326 |
+
M = col2
|
327 |
+
M_eq = msubs(M, op_point_dict)
|
328 |
+
|
329 |
+
# Build up state coefficient matrix A
|
330 |
+
# |(A_qq + A_qu*C_1)*C_0 A_qu*C_2|
|
331 |
+
# A = |(A_uqc + A_uuc*C_1)*C_0 A_uuc*C_2|
|
332 |
+
# |(A_uqd + A_uud*C_1)*C_0 A_uud*C_2|
|
333 |
+
# Col 1 is only defined if n != 0
|
334 |
+
if n != 0:
|
335 |
+
r1c1 = A_qq
|
336 |
+
if o != 0:
|
337 |
+
r1c1 += (A_qu * C_1)
|
338 |
+
r1c1 = r1c1 * C_0
|
339 |
+
if m != 0:
|
340 |
+
r2c1 = A_uqc
|
341 |
+
if o != 0:
|
342 |
+
r2c1 += (A_uuc * C_1)
|
343 |
+
r2c1 = r2c1 * C_0
|
344 |
+
else:
|
345 |
+
r2c1 = Matrix()
|
346 |
+
if o - m + k != 0:
|
347 |
+
r3c1 = A_uqd
|
348 |
+
if o != 0:
|
349 |
+
r3c1 += (A_uud * C_1)
|
350 |
+
r3c1 = r3c1 * C_0
|
351 |
+
else:
|
352 |
+
r3c1 = Matrix()
|
353 |
+
col1 = Matrix([r1c1, r2c1, r3c1])
|
354 |
+
else:
|
355 |
+
col1 = Matrix()
|
356 |
+
# Col 2 is only defined if o != 0
|
357 |
+
if o != 0:
|
358 |
+
if n != 0:
|
359 |
+
r1c2 = A_qu * C_2
|
360 |
+
else:
|
361 |
+
r1c2 = Matrix()
|
362 |
+
if m != 0:
|
363 |
+
r2c2 = A_uuc * C_2
|
364 |
+
else:
|
365 |
+
r2c2 = Matrix()
|
366 |
+
if o - m + k != 0:
|
367 |
+
r3c2 = A_uud * C_2
|
368 |
+
else:
|
369 |
+
r3c2 = Matrix()
|
370 |
+
col2 = Matrix([r1c2, r2c2, r3c2])
|
371 |
+
else:
|
372 |
+
col2 = Matrix()
|
373 |
+
if col1:
|
374 |
+
if col2:
|
375 |
+
Amat = col1.row_join(col2)
|
376 |
+
else:
|
377 |
+
Amat = col1
|
378 |
+
else:
|
379 |
+
Amat = col2
|
380 |
+
Amat_eq = msubs(Amat, op_point_dict)
|
381 |
+
|
382 |
+
# Build up the B matrix if there are forcing variables
|
383 |
+
# |0_(n + m)xs|
|
384 |
+
# B = |B_u |
|
385 |
+
if s != 0 and o - m + k != 0:
|
386 |
+
Bmat = zeros(n + m, s).col_join(B_u)
|
387 |
+
Bmat_eq = msubs(Bmat, op_point_dict)
|
388 |
+
else:
|
389 |
+
Bmat_eq = Matrix()
|
390 |
+
|
391 |
+
# kwarg A_and_B indicates to return A, B for forming the equation
|
392 |
+
# dx = [A]x + [B]r, where x = [q_indnd, u_indnd]^T,
|
393 |
+
if A_and_B:
|
394 |
+
A_cont = self.perm_mat.T * M_eq.LUsolve(Amat_eq)
|
395 |
+
if Bmat_eq:
|
396 |
+
B_cont = self.perm_mat.T * M_eq.LUsolve(Bmat_eq)
|
397 |
+
else:
|
398 |
+
# Bmat = Matrix([]), so no need to sub
|
399 |
+
B_cont = Bmat_eq
|
400 |
+
if simplify:
|
401 |
+
A_cont.simplify()
|
402 |
+
B_cont.simplify()
|
403 |
+
return A_cont, B_cont
|
404 |
+
# Otherwise return M, A, B for forming the equation
|
405 |
+
# [M]dx = [A]x + [B]r, where x = [q, u]^T
|
406 |
+
else:
|
407 |
+
if simplify:
|
408 |
+
M_eq.simplify()
|
409 |
+
Amat_eq.simplify()
|
410 |
+
Bmat_eq.simplify()
|
411 |
+
return M_eq, Amat_eq, Bmat_eq
|
412 |
+
|
413 |
+
|
414 |
+
def permutation_matrix(orig_vec, per_vec):
|
415 |
+
"""Compute the permutation matrix to change order of
|
416 |
+
orig_vec into order of per_vec.
|
417 |
+
|
418 |
+
Parameters
|
419 |
+
==========
|
420 |
+
|
421 |
+
orig_vec : array_like
|
422 |
+
Symbols in original ordering.
|
423 |
+
per_vec : array_like
|
424 |
+
Symbols in new ordering.
|
425 |
+
|
426 |
+
Returns
|
427 |
+
=======
|
428 |
+
|
429 |
+
p_matrix : Matrix
|
430 |
+
Permutation matrix such that orig_vec == (p_matrix * per_vec).
|
431 |
+
"""
|
432 |
+
if not isinstance(orig_vec, (list, tuple)):
|
433 |
+
orig_vec = flatten(orig_vec)
|
434 |
+
if not isinstance(per_vec, (list, tuple)):
|
435 |
+
per_vec = flatten(per_vec)
|
436 |
+
if set(orig_vec) != set(per_vec):
|
437 |
+
raise ValueError("orig_vec and per_vec must be the same length, " +
|
438 |
+
"and contain the same symbols.")
|
439 |
+
ind_list = [orig_vec.index(i) for i in per_vec]
|
440 |
+
p_matrix = zeros(len(orig_vec))
|
441 |
+
for i, j in enumerate(ind_list):
|
442 |
+
p_matrix[i, j] = 1
|
443 |
+
return p_matrix
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/method.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
class _Methods(ABC):
|
4 |
+
"""Abstract Base Class for all methods."""
|
5 |
+
|
6 |
+
@abstractmethod
|
7 |
+
def q(self):
|
8 |
+
pass
|
9 |
+
|
10 |
+
@abstractmethod
|
11 |
+
def u(self):
|
12 |
+
pass
|
13 |
+
|
14 |
+
@abstractmethod
|
15 |
+
def bodies(self):
|
16 |
+
pass
|
17 |
+
|
18 |
+
@abstractmethod
|
19 |
+
def loads(self):
|
20 |
+
pass
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
def mass_matrix(self):
|
24 |
+
pass
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def forcing(self):
|
28 |
+
pass
|
29 |
+
|
30 |
+
@abstractmethod
|
31 |
+
def mass_matrix_full(self):
|
32 |
+
pass
|
33 |
+
|
34 |
+
@abstractmethod
|
35 |
+
def forcing_full(self):
|
36 |
+
pass
|
37 |
+
|
38 |
+
def _form_eoms(self):
|
39 |
+
raise NotImplementedError("Subclasses must implement this.")
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/models.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""This module contains some sample symbolic models used for testing and
|
3 |
+
examples."""
|
4 |
+
|
5 |
+
# Internal imports
|
6 |
+
from sympy.core import backend as sm
|
7 |
+
import sympy.physics.mechanics as me
|
8 |
+
|
9 |
+
|
10 |
+
def multi_mass_spring_damper(n=1, apply_gravity=False,
|
11 |
+
apply_external_forces=False):
|
12 |
+
r"""Returns a system containing the symbolic equations of motion and
|
13 |
+
associated variables for a simple multi-degree of freedom point mass,
|
14 |
+
spring, damper system with optional gravitational and external
|
15 |
+
specified forces. For example, a two mass system under the influence of
|
16 |
+
gravity and external forces looks like:
|
17 |
+
|
18 |
+
::
|
19 |
+
|
20 |
+
----------------
|
21 |
+
| | | | g
|
22 |
+
\ | | | V
|
23 |
+
k0 / --- c0 |
|
24 |
+
| | | x0, v0
|
25 |
+
--------- V
|
26 |
+
| m0 | -----
|
27 |
+
--------- |
|
28 |
+
| | | |
|
29 |
+
\ v | | |
|
30 |
+
k1 / f0 --- c1 |
|
31 |
+
| | | x1, v1
|
32 |
+
--------- V
|
33 |
+
| m1 | -----
|
34 |
+
---------
|
35 |
+
| f1
|
36 |
+
V
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
==========
|
40 |
+
|
41 |
+
n : integer
|
42 |
+
The number of masses in the serial chain.
|
43 |
+
apply_gravity : boolean
|
44 |
+
If true, gravity will be applied to each mass.
|
45 |
+
apply_external_forces : boolean
|
46 |
+
If true, a time varying external force will be applied to each mass.
|
47 |
+
|
48 |
+
Returns
|
49 |
+
=======
|
50 |
+
|
51 |
+
kane : sympy.physics.mechanics.kane.KanesMethod
|
52 |
+
A KanesMethod object.
|
53 |
+
|
54 |
+
"""
|
55 |
+
|
56 |
+
mass = sm.symbols('m:{}'.format(n))
|
57 |
+
stiffness = sm.symbols('k:{}'.format(n))
|
58 |
+
damping = sm.symbols('c:{}'.format(n))
|
59 |
+
|
60 |
+
acceleration_due_to_gravity = sm.symbols('g')
|
61 |
+
|
62 |
+
coordinates = me.dynamicsymbols('x:{}'.format(n))
|
63 |
+
speeds = me.dynamicsymbols('v:{}'.format(n))
|
64 |
+
specifieds = me.dynamicsymbols('f:{}'.format(n))
|
65 |
+
|
66 |
+
ceiling = me.ReferenceFrame('N')
|
67 |
+
origin = me.Point('origin')
|
68 |
+
origin.set_vel(ceiling, 0)
|
69 |
+
|
70 |
+
points = [origin]
|
71 |
+
kinematic_equations = []
|
72 |
+
particles = []
|
73 |
+
forces = []
|
74 |
+
|
75 |
+
for i in range(n):
|
76 |
+
|
77 |
+
center = points[-1].locatenew('center{}'.format(i),
|
78 |
+
coordinates[i] * ceiling.x)
|
79 |
+
center.set_vel(ceiling, points[-1].vel(ceiling) +
|
80 |
+
speeds[i] * ceiling.x)
|
81 |
+
points.append(center)
|
82 |
+
|
83 |
+
block = me.Particle('block{}'.format(i), center, mass[i])
|
84 |
+
|
85 |
+
kinematic_equations.append(speeds[i] - coordinates[i].diff())
|
86 |
+
|
87 |
+
total_force = (-stiffness[i] * coordinates[i] -
|
88 |
+
damping[i] * speeds[i])
|
89 |
+
try:
|
90 |
+
total_force += (stiffness[i + 1] * coordinates[i + 1] +
|
91 |
+
damping[i + 1] * speeds[i + 1])
|
92 |
+
except IndexError: # no force from below on last mass
|
93 |
+
pass
|
94 |
+
|
95 |
+
if apply_gravity:
|
96 |
+
total_force += mass[i] * acceleration_due_to_gravity
|
97 |
+
|
98 |
+
if apply_external_forces:
|
99 |
+
total_force += specifieds[i]
|
100 |
+
|
101 |
+
forces.append((center, total_force * ceiling.x))
|
102 |
+
|
103 |
+
particles.append(block)
|
104 |
+
|
105 |
+
kane = me.KanesMethod(ceiling, q_ind=coordinates, u_ind=speeds,
|
106 |
+
kd_eqs=kinematic_equations)
|
107 |
+
kane.kanes_equations(particles, forces)
|
108 |
+
|
109 |
+
return kane
|
110 |
+
|
111 |
+
|
112 |
+
def n_link_pendulum_on_cart(n=1, cart_force=True, joint_torques=False):
|
113 |
+
r"""Returns the system containing the symbolic first order equations of
|
114 |
+
motion for a 2D n-link pendulum on a sliding cart under the influence of
|
115 |
+
gravity.
|
116 |
+
|
117 |
+
::
|
118 |
+
|
119 |
+
|
|
120 |
+
o y v
|
121 |
+
\ 0 ^ g
|
122 |
+
\ |
|
123 |
+
--\-|----
|
124 |
+
| \| |
|
125 |
+
F-> | o --|---> x
|
126 |
+
| |
|
127 |
+
---------
|
128 |
+
o o
|
129 |
+
|
130 |
+
Parameters
|
131 |
+
==========
|
132 |
+
|
133 |
+
n : integer
|
134 |
+
The number of links in the pendulum.
|
135 |
+
cart_force : boolean, default=True
|
136 |
+
If true an external specified lateral force is applied to the cart.
|
137 |
+
joint_torques : boolean, default=False
|
138 |
+
If true joint torques will be added as specified inputs at each
|
139 |
+
joint.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
=======
|
143 |
+
|
144 |
+
kane : sympy.physics.mechanics.kane.KanesMethod
|
145 |
+
A KanesMethod object.
|
146 |
+
|
147 |
+
Notes
|
148 |
+
=====
|
149 |
+
|
150 |
+
The degrees of freedom of the system are n + 1, i.e. one for each
|
151 |
+
pendulum link and one for the lateral motion of the cart.
|
152 |
+
|
153 |
+
M x' = F, where x = [u0, ..., un+1, q0, ..., qn+1]
|
154 |
+
|
155 |
+
The joint angles are all defined relative to the ground where the x axis
|
156 |
+
defines the ground line and the y axis points up. The joint torques are
|
157 |
+
applied between each adjacent link and the between the cart and the
|
158 |
+
lower link where a positive torque corresponds to positive angle.
|
159 |
+
|
160 |
+
"""
|
161 |
+
if n <= 0:
|
162 |
+
raise ValueError('The number of links must be a positive integer.')
|
163 |
+
|
164 |
+
q = me.dynamicsymbols('q:{}'.format(n + 1))
|
165 |
+
u = me.dynamicsymbols('u:{}'.format(n + 1))
|
166 |
+
|
167 |
+
if joint_torques is True:
|
168 |
+
T = me.dynamicsymbols('T1:{}'.format(n + 1))
|
169 |
+
|
170 |
+
m = sm.symbols('m:{}'.format(n + 1))
|
171 |
+
l = sm.symbols('l:{}'.format(n))
|
172 |
+
g, t = sm.symbols('g t')
|
173 |
+
|
174 |
+
I = me.ReferenceFrame('I')
|
175 |
+
O = me.Point('O')
|
176 |
+
O.set_vel(I, 0)
|
177 |
+
|
178 |
+
P0 = me.Point('P0')
|
179 |
+
P0.set_pos(O, q[0] * I.x)
|
180 |
+
P0.set_vel(I, u[0] * I.x)
|
181 |
+
Pa0 = me.Particle('Pa0', P0, m[0])
|
182 |
+
|
183 |
+
frames = [I]
|
184 |
+
points = [P0]
|
185 |
+
particles = [Pa0]
|
186 |
+
forces = [(P0, -m[0] * g * I.y)]
|
187 |
+
kindiffs = [q[0].diff(t) - u[0]]
|
188 |
+
|
189 |
+
if cart_force is True or joint_torques is True:
|
190 |
+
specified = []
|
191 |
+
else:
|
192 |
+
specified = None
|
193 |
+
|
194 |
+
for i in range(n):
|
195 |
+
Bi = I.orientnew('B{}'.format(i), 'Axis', [q[i + 1], I.z])
|
196 |
+
Bi.set_ang_vel(I, u[i + 1] * I.z)
|
197 |
+
frames.append(Bi)
|
198 |
+
|
199 |
+
Pi = points[-1].locatenew('P{}'.format(i + 1), l[i] * Bi.y)
|
200 |
+
Pi.v2pt_theory(points[-1], I, Bi)
|
201 |
+
points.append(Pi)
|
202 |
+
|
203 |
+
Pai = me.Particle('Pa' + str(i + 1), Pi, m[i + 1])
|
204 |
+
particles.append(Pai)
|
205 |
+
|
206 |
+
forces.append((Pi, -m[i + 1] * g * I.y))
|
207 |
+
|
208 |
+
if joint_torques is True:
|
209 |
+
|
210 |
+
specified.append(T[i])
|
211 |
+
|
212 |
+
if i == 0:
|
213 |
+
forces.append((I, -T[i] * I.z))
|
214 |
+
|
215 |
+
if i == n - 1:
|
216 |
+
forces.append((Bi, T[i] * I.z))
|
217 |
+
else:
|
218 |
+
forces.append((Bi, T[i] * I.z - T[i + 1] * I.z))
|
219 |
+
|
220 |
+
kindiffs.append(q[i + 1].diff(t) - u[i + 1])
|
221 |
+
|
222 |
+
if cart_force is True:
|
223 |
+
F = me.dynamicsymbols('F')
|
224 |
+
forces.append((P0, F * I.x))
|
225 |
+
specified.append(F)
|
226 |
+
|
227 |
+
kane = me.KanesMethod(I, q_ind=q, u_ind=u, kd_eqs=kindiffs)
|
228 |
+
kane.kanes_equations(particles, forces)
|
229 |
+
|
230 |
+
return kane
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/particle.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.backend import sympify
|
2 |
+
from sympy.physics.vector import Point
|
3 |
+
|
4 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
5 |
+
|
6 |
+
__all__ = ['Particle']
|
7 |
+
|
8 |
+
|
9 |
+
class Particle:
|
10 |
+
"""A particle.
|
11 |
+
|
12 |
+
Explanation
|
13 |
+
===========
|
14 |
+
|
15 |
+
Particles have a non-zero mass and lack spatial extension; they take up no
|
16 |
+
space.
|
17 |
+
|
18 |
+
Values need to be supplied on initialization, but can be changed later.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
==========
|
22 |
+
|
23 |
+
name : str
|
24 |
+
Name of particle
|
25 |
+
point : Point
|
26 |
+
A physics/mechanics Point which represents the position, velocity, and
|
27 |
+
acceleration of this Particle
|
28 |
+
mass : sympifyable
|
29 |
+
A SymPy expression representing the Particle's mass
|
30 |
+
|
31 |
+
Examples
|
32 |
+
========
|
33 |
+
|
34 |
+
>>> from sympy.physics.mechanics import Particle, Point
|
35 |
+
>>> from sympy import Symbol
|
36 |
+
>>> po = Point('po')
|
37 |
+
>>> m = Symbol('m')
|
38 |
+
>>> pa = Particle('pa', po, m)
|
39 |
+
>>> # Or you could change these later
|
40 |
+
>>> pa.mass = m
|
41 |
+
>>> pa.point = po
|
42 |
+
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, name, point, mass):
|
46 |
+
if not isinstance(name, str):
|
47 |
+
raise TypeError('Supply a valid name.')
|
48 |
+
self._name = name
|
49 |
+
self.mass = mass
|
50 |
+
self.point = point
|
51 |
+
self.potential_energy = 0
|
52 |
+
|
53 |
+
def __str__(self):
|
54 |
+
return self._name
|
55 |
+
|
56 |
+
def __repr__(self):
|
57 |
+
return self.__str__()
|
58 |
+
|
59 |
+
@property
|
60 |
+
def mass(self):
|
61 |
+
"""Mass of the particle."""
|
62 |
+
return self._mass
|
63 |
+
|
64 |
+
@mass.setter
|
65 |
+
def mass(self, value):
|
66 |
+
self._mass = sympify(value)
|
67 |
+
|
68 |
+
@property
|
69 |
+
def point(self):
|
70 |
+
"""Point of the particle."""
|
71 |
+
return self._point
|
72 |
+
|
73 |
+
@point.setter
|
74 |
+
def point(self, p):
|
75 |
+
if not isinstance(p, Point):
|
76 |
+
raise TypeError("Particle point attribute must be a Point object.")
|
77 |
+
self._point = p
|
78 |
+
|
79 |
+
def linear_momentum(self, frame):
|
80 |
+
"""Linear momentum of the particle.
|
81 |
+
|
82 |
+
Explanation
|
83 |
+
===========
|
84 |
+
|
85 |
+
The linear momentum L, of a particle P, with respect to frame N is
|
86 |
+
given by:
|
87 |
+
|
88 |
+
L = m * v
|
89 |
+
|
90 |
+
where m is the mass of the particle, and v is the velocity of the
|
91 |
+
particle in the frame N.
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
==========
|
95 |
+
|
96 |
+
frame : ReferenceFrame
|
97 |
+
The frame in which linear momentum is desired.
|
98 |
+
|
99 |
+
Examples
|
100 |
+
========
|
101 |
+
|
102 |
+
>>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
|
103 |
+
>>> from sympy.physics.mechanics import dynamicsymbols
|
104 |
+
>>> from sympy.physics.vector import init_vprinting
|
105 |
+
>>> init_vprinting(pretty_print=False)
|
106 |
+
>>> m, v = dynamicsymbols('m v')
|
107 |
+
>>> N = ReferenceFrame('N')
|
108 |
+
>>> P = Point('P')
|
109 |
+
>>> A = Particle('A', P, m)
|
110 |
+
>>> P.set_vel(N, v * N.x)
|
111 |
+
>>> A.linear_momentum(N)
|
112 |
+
m*v*N.x
|
113 |
+
|
114 |
+
"""
|
115 |
+
|
116 |
+
return self.mass * self.point.vel(frame)
|
117 |
+
|
118 |
+
def angular_momentum(self, point, frame):
|
119 |
+
"""Angular momentum of the particle about the point.
|
120 |
+
|
121 |
+
Explanation
|
122 |
+
===========
|
123 |
+
|
124 |
+
The angular momentum H, about some point O of a particle, P, is given
|
125 |
+
by:
|
126 |
+
|
127 |
+
``H = cross(r, m * v)``
|
128 |
+
|
129 |
+
where r is the position vector from point O to the particle P, m is
|
130 |
+
the mass of the particle, and v is the velocity of the particle in
|
131 |
+
the inertial frame, N.
|
132 |
+
|
133 |
+
Parameters
|
134 |
+
==========
|
135 |
+
|
136 |
+
point : Point
|
137 |
+
The point about which angular momentum of the particle is desired.
|
138 |
+
|
139 |
+
frame : ReferenceFrame
|
140 |
+
The frame in which angular momentum is desired.
|
141 |
+
|
142 |
+
Examples
|
143 |
+
========
|
144 |
+
|
145 |
+
>>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
|
146 |
+
>>> from sympy.physics.mechanics import dynamicsymbols
|
147 |
+
>>> from sympy.physics.vector import init_vprinting
|
148 |
+
>>> init_vprinting(pretty_print=False)
|
149 |
+
>>> m, v, r = dynamicsymbols('m v r')
|
150 |
+
>>> N = ReferenceFrame('N')
|
151 |
+
>>> O = Point('O')
|
152 |
+
>>> A = O.locatenew('A', r * N.x)
|
153 |
+
>>> P = Particle('P', A, m)
|
154 |
+
>>> P.point.set_vel(N, v * N.y)
|
155 |
+
>>> P.angular_momentum(O, N)
|
156 |
+
m*r*v*N.z
|
157 |
+
|
158 |
+
"""
|
159 |
+
|
160 |
+
return self.point.pos_from(point) ^ (self.mass * self.point.vel(frame))
|
161 |
+
|
162 |
+
def kinetic_energy(self, frame):
|
163 |
+
"""Kinetic energy of the particle.
|
164 |
+
|
165 |
+
Explanation
|
166 |
+
===========
|
167 |
+
|
168 |
+
The kinetic energy, T, of a particle, P, is given by:
|
169 |
+
|
170 |
+
``T = 1/2 (dot(m * v, v))``
|
171 |
+
|
172 |
+
where m is the mass of particle P, and v is the velocity of the
|
173 |
+
particle in the supplied ReferenceFrame.
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
==========
|
177 |
+
|
178 |
+
frame : ReferenceFrame
|
179 |
+
The Particle's velocity is typically defined with respect to
|
180 |
+
an inertial frame but any relevant frame in which the velocity is
|
181 |
+
known can be supplied.
|
182 |
+
|
183 |
+
Examples
|
184 |
+
========
|
185 |
+
|
186 |
+
>>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
|
187 |
+
>>> from sympy import symbols
|
188 |
+
>>> m, v, r = symbols('m v r')
|
189 |
+
>>> N = ReferenceFrame('N')
|
190 |
+
>>> O = Point('O')
|
191 |
+
>>> P = Particle('P', O, m)
|
192 |
+
>>> P.point.set_vel(N, v * N.y)
|
193 |
+
>>> P.kinetic_energy(N)
|
194 |
+
m*v**2/2
|
195 |
+
|
196 |
+
"""
|
197 |
+
|
198 |
+
return (self.mass / sympify(2) * self.point.vel(frame) &
|
199 |
+
self.point.vel(frame))
|
200 |
+
|
201 |
+
@property
|
202 |
+
def potential_energy(self):
|
203 |
+
"""The potential energy of the Particle.
|
204 |
+
|
205 |
+
Examples
|
206 |
+
========
|
207 |
+
|
208 |
+
>>> from sympy.physics.mechanics import Particle, Point
|
209 |
+
>>> from sympy import symbols
|
210 |
+
>>> m, g, h = symbols('m g h')
|
211 |
+
>>> O = Point('O')
|
212 |
+
>>> P = Particle('P', O, m)
|
213 |
+
>>> P.potential_energy = m * g * h
|
214 |
+
>>> P.potential_energy
|
215 |
+
g*h*m
|
216 |
+
|
217 |
+
"""
|
218 |
+
|
219 |
+
return self._pe
|
220 |
+
|
221 |
+
@potential_energy.setter
|
222 |
+
def potential_energy(self, scalar):
|
223 |
+
"""Used to set the potential energy of the Particle.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
==========
|
227 |
+
|
228 |
+
scalar : Sympifyable
|
229 |
+
The potential energy (a scalar) of the Particle.
|
230 |
+
|
231 |
+
Examples
|
232 |
+
========
|
233 |
+
|
234 |
+
>>> from sympy.physics.mechanics import Particle, Point
|
235 |
+
>>> from sympy import symbols
|
236 |
+
>>> m, g, h = symbols('m g h')
|
237 |
+
>>> O = Point('O')
|
238 |
+
>>> P = Particle('P', O, m)
|
239 |
+
>>> P.potential_energy = m * g * h
|
240 |
+
|
241 |
+
"""
|
242 |
+
|
243 |
+
self._pe = sympify(scalar)
|
244 |
+
|
245 |
+
def set_potential_energy(self, scalar):
|
246 |
+
sympy_deprecation_warning(
|
247 |
+
"""
|
248 |
+
The sympy.physics.mechanics.Particle.set_potential_energy()
|
249 |
+
method is deprecated. Instead use
|
250 |
+
|
251 |
+
P.potential_energy = scalar
|
252 |
+
""",
|
253 |
+
deprecated_since_version="1.5",
|
254 |
+
active_deprecations_target="deprecated-set-potential-energy",
|
255 |
+
)
|
256 |
+
self.potential_energy = scalar
|
257 |
+
|
258 |
+
def parallel_axis(self, point, frame):
|
259 |
+
"""Returns an inertia dyadic of the particle with respect to another
|
260 |
+
point and frame.
|
261 |
+
|
262 |
+
Parameters
|
263 |
+
==========
|
264 |
+
|
265 |
+
point : sympy.physics.vector.Point
|
266 |
+
The point to express the inertia dyadic about.
|
267 |
+
frame : sympy.physics.vector.ReferenceFrame
|
268 |
+
The reference frame used to construct the dyadic.
|
269 |
+
|
270 |
+
Returns
|
271 |
+
=======
|
272 |
+
|
273 |
+
inertia : sympy.physics.vector.Dyadic
|
274 |
+
The inertia dyadic of the particle expressed about the provided
|
275 |
+
point and frame.
|
276 |
+
|
277 |
+
"""
|
278 |
+
# circular import issue
|
279 |
+
from sympy.physics.mechanics import inertia_of_point_mass
|
280 |
+
return inertia_of_point_mass(self.mass, self.point.pos_from(point),
|
281 |
+
frame)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/rigidbody.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.backend import sympify
|
2 |
+
from sympy.physics.vector import Point, ReferenceFrame, Dyadic
|
3 |
+
|
4 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
5 |
+
|
6 |
+
__all__ = ['RigidBody']
|
7 |
+
|
8 |
+
|
9 |
+
class RigidBody:
|
10 |
+
"""An idealized rigid body.
|
11 |
+
|
12 |
+
Explanation
|
13 |
+
===========
|
14 |
+
|
15 |
+
This is essentially a container which holds the various components which
|
16 |
+
describe a rigid body: a name, mass, center of mass, reference frame, and
|
17 |
+
inertia.
|
18 |
+
|
19 |
+
All of these need to be supplied on creation, but can be changed
|
20 |
+
afterwards.
|
21 |
+
|
22 |
+
Attributes
|
23 |
+
==========
|
24 |
+
|
25 |
+
name : string
|
26 |
+
The body's name.
|
27 |
+
masscenter : Point
|
28 |
+
The point which represents the center of mass of the rigid body.
|
29 |
+
frame : ReferenceFrame
|
30 |
+
The ReferenceFrame which the rigid body is fixed in.
|
31 |
+
mass : Sympifyable
|
32 |
+
The body's mass.
|
33 |
+
inertia : (Dyadic, Point)
|
34 |
+
The body's inertia about a point; stored in a tuple as shown above.
|
35 |
+
|
36 |
+
Examples
|
37 |
+
========
|
38 |
+
|
39 |
+
>>> from sympy import Symbol
|
40 |
+
>>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody
|
41 |
+
>>> from sympy.physics.mechanics import outer
|
42 |
+
>>> m = Symbol('m')
|
43 |
+
>>> A = ReferenceFrame('A')
|
44 |
+
>>> P = Point('P')
|
45 |
+
>>> I = outer (A.x, A.x)
|
46 |
+
>>> inertia_tuple = (I, P)
|
47 |
+
>>> B = RigidBody('B', P, A, m, inertia_tuple)
|
48 |
+
>>> # Or you could change them afterwards
|
49 |
+
>>> m2 = Symbol('m2')
|
50 |
+
>>> B.mass = m2
|
51 |
+
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, name, masscenter, frame, mass, inertia):
|
55 |
+
if not isinstance(name, str):
|
56 |
+
raise TypeError('Supply a valid name.')
|
57 |
+
self._name = name
|
58 |
+
self.masscenter = masscenter
|
59 |
+
self.mass = mass
|
60 |
+
self.frame = frame
|
61 |
+
self.inertia = inertia
|
62 |
+
self.potential_energy = 0
|
63 |
+
|
64 |
+
def __str__(self):
|
65 |
+
return self._name
|
66 |
+
|
67 |
+
def __repr__(self):
|
68 |
+
return self.__str__()
|
69 |
+
|
70 |
+
@property
|
71 |
+
def frame(self):
|
72 |
+
"""The ReferenceFrame fixed to the body."""
|
73 |
+
return self._frame
|
74 |
+
|
75 |
+
@frame.setter
|
76 |
+
def frame(self, F):
|
77 |
+
if not isinstance(F, ReferenceFrame):
|
78 |
+
raise TypeError("RigidBody frame must be a ReferenceFrame object.")
|
79 |
+
self._frame = F
|
80 |
+
|
81 |
+
@property
|
82 |
+
def masscenter(self):
|
83 |
+
"""The body's center of mass."""
|
84 |
+
return self._masscenter
|
85 |
+
|
86 |
+
@masscenter.setter
|
87 |
+
def masscenter(self, p):
|
88 |
+
if not isinstance(p, Point):
|
89 |
+
raise TypeError("RigidBody center of mass must be a Point object.")
|
90 |
+
self._masscenter = p
|
91 |
+
|
92 |
+
@property
|
93 |
+
def mass(self):
|
94 |
+
"""The body's mass."""
|
95 |
+
return self._mass
|
96 |
+
|
97 |
+
@mass.setter
|
98 |
+
def mass(self, m):
|
99 |
+
self._mass = sympify(m)
|
100 |
+
|
101 |
+
@property
|
102 |
+
def inertia(self):
|
103 |
+
"""The body's inertia about a point; stored as (Dyadic, Point)."""
|
104 |
+
return (self._inertia, self._inertia_point)
|
105 |
+
|
106 |
+
@inertia.setter
|
107 |
+
def inertia(self, I):
|
108 |
+
if not isinstance(I[0], Dyadic):
|
109 |
+
raise TypeError("RigidBody inertia must be a Dyadic object.")
|
110 |
+
if not isinstance(I[1], Point):
|
111 |
+
raise TypeError("RigidBody inertia must be about a Point.")
|
112 |
+
self._inertia = I[0]
|
113 |
+
self._inertia_point = I[1]
|
114 |
+
# have I S/O, want I S/S*
|
115 |
+
# I S/O = I S/S* + I S*/O; I S/S* = I S/O - I S*/O
|
116 |
+
# I_S/S* = I_S/O - I_S*/O
|
117 |
+
from sympy.physics.mechanics.functions import inertia_of_point_mass
|
118 |
+
I_Ss_O = inertia_of_point_mass(self.mass,
|
119 |
+
self.masscenter.pos_from(I[1]),
|
120 |
+
self.frame)
|
121 |
+
self._central_inertia = I[0] - I_Ss_O
|
122 |
+
|
123 |
+
@property
|
124 |
+
def central_inertia(self):
|
125 |
+
"""The body's central inertia dyadic."""
|
126 |
+
return self._central_inertia
|
127 |
+
|
128 |
+
@central_inertia.setter
|
129 |
+
def central_inertia(self, I):
|
130 |
+
if not isinstance(I, Dyadic):
|
131 |
+
raise TypeError("RigidBody inertia must be a Dyadic object.")
|
132 |
+
self.inertia = (I, self.masscenter)
|
133 |
+
|
134 |
+
def linear_momentum(self, frame):
|
135 |
+
""" Linear momentum of the rigid body.
|
136 |
+
|
137 |
+
Explanation
|
138 |
+
===========
|
139 |
+
|
140 |
+
The linear momentum L, of a rigid body B, with respect to frame N is
|
141 |
+
given by:
|
142 |
+
|
143 |
+
L = M * v*
|
144 |
+
|
145 |
+
where M is the mass of the rigid body and v* is the velocity of
|
146 |
+
the mass center of B in the frame, N.
|
147 |
+
|
148 |
+
Parameters
|
149 |
+
==========
|
150 |
+
|
151 |
+
frame : ReferenceFrame
|
152 |
+
The frame in which linear momentum is desired.
|
153 |
+
|
154 |
+
Examples
|
155 |
+
========
|
156 |
+
|
157 |
+
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
|
158 |
+
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
|
159 |
+
>>> from sympy.physics.vector import init_vprinting
|
160 |
+
>>> init_vprinting(pretty_print=False)
|
161 |
+
>>> M, v = dynamicsymbols('M v')
|
162 |
+
>>> N = ReferenceFrame('N')
|
163 |
+
>>> P = Point('P')
|
164 |
+
>>> P.set_vel(N, v * N.x)
|
165 |
+
>>> I = outer (N.x, N.x)
|
166 |
+
>>> Inertia_tuple = (I, P)
|
167 |
+
>>> B = RigidBody('B', P, N, M, Inertia_tuple)
|
168 |
+
>>> B.linear_momentum(N)
|
169 |
+
M*v*N.x
|
170 |
+
|
171 |
+
"""
|
172 |
+
|
173 |
+
return self.mass * self.masscenter.vel(frame)
|
174 |
+
|
175 |
+
def angular_momentum(self, point, frame):
|
176 |
+
"""Returns the angular momentum of the rigid body about a point in the
|
177 |
+
given frame.
|
178 |
+
|
179 |
+
Explanation
|
180 |
+
===========
|
181 |
+
|
182 |
+
The angular momentum H of a rigid body B about some point O in a frame
|
183 |
+
N is given by:
|
184 |
+
|
185 |
+
``H = dot(I, w) + cross(r, M * v)``
|
186 |
+
|
187 |
+
where I is the central inertia dyadic of B, w is the angular velocity
|
188 |
+
of body B in the frame, N, r is the position vector from point O to the
|
189 |
+
mass center of B, and v is the velocity of the mass center in the
|
190 |
+
frame, N.
|
191 |
+
|
192 |
+
Parameters
|
193 |
+
==========
|
194 |
+
|
195 |
+
point : Point
|
196 |
+
The point about which angular momentum is desired.
|
197 |
+
frame : ReferenceFrame
|
198 |
+
The frame in which angular momentum is desired.
|
199 |
+
|
200 |
+
Examples
|
201 |
+
========
|
202 |
+
|
203 |
+
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
|
204 |
+
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
|
205 |
+
>>> from sympy.physics.vector import init_vprinting
|
206 |
+
>>> init_vprinting(pretty_print=False)
|
207 |
+
>>> M, v, r, omega = dynamicsymbols('M v r omega')
|
208 |
+
>>> N = ReferenceFrame('N')
|
209 |
+
>>> b = ReferenceFrame('b')
|
210 |
+
>>> b.set_ang_vel(N, omega * b.x)
|
211 |
+
>>> P = Point('P')
|
212 |
+
>>> P.set_vel(N, 1 * N.x)
|
213 |
+
>>> I = outer(b.x, b.x)
|
214 |
+
>>> B = RigidBody('B', P, b, M, (I, P))
|
215 |
+
>>> B.angular_momentum(P, N)
|
216 |
+
omega*b.x
|
217 |
+
|
218 |
+
"""
|
219 |
+
I = self.central_inertia
|
220 |
+
w = self.frame.ang_vel_in(frame)
|
221 |
+
m = self.mass
|
222 |
+
r = self.masscenter.pos_from(point)
|
223 |
+
v = self.masscenter.vel(frame)
|
224 |
+
|
225 |
+
return I.dot(w) + r.cross(m * v)
|
226 |
+
|
227 |
+
def kinetic_energy(self, frame):
|
228 |
+
"""Kinetic energy of the rigid body.
|
229 |
+
|
230 |
+
Explanation
|
231 |
+
===========
|
232 |
+
|
233 |
+
The kinetic energy, T, of a rigid body, B, is given by:
|
234 |
+
|
235 |
+
``T = 1/2 * (dot(dot(I, w), w) + dot(m * v, v))``
|
236 |
+
|
237 |
+
where I and m are the central inertia dyadic and mass of rigid body B,
|
238 |
+
respectively, omega is the body's angular velocity and v is the
|
239 |
+
velocity of the body's mass center in the supplied ReferenceFrame.
|
240 |
+
|
241 |
+
Parameters
|
242 |
+
==========
|
243 |
+
|
244 |
+
frame : ReferenceFrame
|
245 |
+
The RigidBody's angular velocity and the velocity of it's mass
|
246 |
+
center are typically defined with respect to an inertial frame but
|
247 |
+
any relevant frame in which the velocities are known can be supplied.
|
248 |
+
|
249 |
+
Examples
|
250 |
+
========
|
251 |
+
|
252 |
+
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
|
253 |
+
>>> from sympy.physics.mechanics import RigidBody
|
254 |
+
>>> from sympy import symbols
|
255 |
+
>>> M, v, r, omega = symbols('M v r omega')
|
256 |
+
>>> N = ReferenceFrame('N')
|
257 |
+
>>> b = ReferenceFrame('b')
|
258 |
+
>>> b.set_ang_vel(N, omega * b.x)
|
259 |
+
>>> P = Point('P')
|
260 |
+
>>> P.set_vel(N, v * N.x)
|
261 |
+
>>> I = outer (b.x, b.x)
|
262 |
+
>>> inertia_tuple = (I, P)
|
263 |
+
>>> B = RigidBody('B', P, b, M, inertia_tuple)
|
264 |
+
>>> B.kinetic_energy(N)
|
265 |
+
M*v**2/2 + omega**2/2
|
266 |
+
|
267 |
+
"""
|
268 |
+
|
269 |
+
rotational_KE = (self.frame.ang_vel_in(frame) & (self.central_inertia &
|
270 |
+
self.frame.ang_vel_in(frame)) / sympify(2))
|
271 |
+
|
272 |
+
translational_KE = (self.mass * (self.masscenter.vel(frame) &
|
273 |
+
self.masscenter.vel(frame)) / sympify(2))
|
274 |
+
|
275 |
+
return rotational_KE + translational_KE
|
276 |
+
|
277 |
+
@property
|
278 |
+
def potential_energy(self):
|
279 |
+
"""The potential energy of the RigidBody.
|
280 |
+
|
281 |
+
Examples
|
282 |
+
========
|
283 |
+
|
284 |
+
>>> from sympy.physics.mechanics import RigidBody, Point, outer, ReferenceFrame
|
285 |
+
>>> from sympy import symbols
|
286 |
+
>>> M, g, h = symbols('M g h')
|
287 |
+
>>> b = ReferenceFrame('b')
|
288 |
+
>>> P = Point('P')
|
289 |
+
>>> I = outer (b.x, b.x)
|
290 |
+
>>> Inertia_tuple = (I, P)
|
291 |
+
>>> B = RigidBody('B', P, b, M, Inertia_tuple)
|
292 |
+
>>> B.potential_energy = M * g * h
|
293 |
+
>>> B.potential_energy
|
294 |
+
M*g*h
|
295 |
+
|
296 |
+
"""
|
297 |
+
|
298 |
+
return self._pe
|
299 |
+
|
300 |
+
@potential_energy.setter
|
301 |
+
def potential_energy(self, scalar):
|
302 |
+
"""Used to set the potential energy of this RigidBody.
|
303 |
+
|
304 |
+
Parameters
|
305 |
+
==========
|
306 |
+
|
307 |
+
scalar: Sympifyable
|
308 |
+
The potential energy (a scalar) of the RigidBody.
|
309 |
+
|
310 |
+
Examples
|
311 |
+
========
|
312 |
+
|
313 |
+
>>> from sympy.physics.mechanics import Point, outer
|
314 |
+
>>> from sympy.physics.mechanics import RigidBody, ReferenceFrame
|
315 |
+
>>> from sympy import symbols
|
316 |
+
>>> b = ReferenceFrame('b')
|
317 |
+
>>> M, g, h = symbols('M g h')
|
318 |
+
>>> P = Point('P')
|
319 |
+
>>> I = outer (b.x, b.x)
|
320 |
+
>>> Inertia_tuple = (I, P)
|
321 |
+
>>> B = RigidBody('B', P, b, M, Inertia_tuple)
|
322 |
+
>>> B.potential_energy = M * g * h
|
323 |
+
|
324 |
+
"""
|
325 |
+
|
326 |
+
self._pe = sympify(scalar)
|
327 |
+
|
328 |
+
def set_potential_energy(self, scalar):
|
329 |
+
sympy_deprecation_warning(
|
330 |
+
"""
|
331 |
+
The sympy.physics.mechanics.RigidBody.set_potential_energy()
|
332 |
+
method is deprecated. Instead use
|
333 |
+
|
334 |
+
B.potential_energy = scalar
|
335 |
+
""",
|
336 |
+
deprecated_since_version="1.5",
|
337 |
+
active_deprecations_target="deprecated-set-potential-energy",
|
338 |
+
)
|
339 |
+
self.potential_energy = scalar
|
340 |
+
|
341 |
+
def parallel_axis(self, point, frame=None):
|
342 |
+
"""Returns the inertia dyadic of the body with respect to another
|
343 |
+
point.
|
344 |
+
|
345 |
+
Parameters
|
346 |
+
==========
|
347 |
+
|
348 |
+
point : sympy.physics.vector.Point
|
349 |
+
The point to express the inertia dyadic about.
|
350 |
+
frame : sympy.physics.vector.ReferenceFrame
|
351 |
+
The reference frame used to construct the dyadic.
|
352 |
+
|
353 |
+
Returns
|
354 |
+
=======
|
355 |
+
|
356 |
+
inertia : sympy.physics.vector.Dyadic
|
357 |
+
The inertia dyadic of the rigid body expressed about the provided
|
358 |
+
point.
|
359 |
+
|
360 |
+
"""
|
361 |
+
# circular import issue
|
362 |
+
from sympy.physics.mechanics.functions import inertia_of_point_mass
|
363 |
+
if frame is None:
|
364 |
+
frame = self.frame
|
365 |
+
return self.central_inertia + inertia_of_point_mass(
|
366 |
+
self.mass, self.masscenter.pos_from(point), frame)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/system.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.backend import eye, Matrix, zeros
|
2 |
+
from sympy.physics.mechanics import dynamicsymbols
|
3 |
+
from sympy.physics.mechanics.functions import find_dynamicsymbols
|
4 |
+
|
5 |
+
__all__ = ['SymbolicSystem']
|
6 |
+
|
7 |
+
|
8 |
+
class SymbolicSystem:
|
9 |
+
"""SymbolicSystem is a class that contains all the information about a
|
10 |
+
system in a symbolic format such as the equations of motions and the bodies
|
11 |
+
and loads in the system.
|
12 |
+
|
13 |
+
There are three ways that the equations of motion can be described for
|
14 |
+
Symbolic System:
|
15 |
+
|
16 |
+
|
17 |
+
[1] Explicit form where the kinematics and dynamics are combined
|
18 |
+
x' = F_1(x, t, r, p)
|
19 |
+
|
20 |
+
[2] Implicit form where the kinematics and dynamics are combined
|
21 |
+
M_2(x, p) x' = F_2(x, t, r, p)
|
22 |
+
|
23 |
+
[3] Implicit form where the kinematics and dynamics are separate
|
24 |
+
M_3(q, p) u' = F_3(q, u, t, r, p)
|
25 |
+
q' = G(q, u, t, r, p)
|
26 |
+
|
27 |
+
where
|
28 |
+
|
29 |
+
x : states, e.g. [q, u]
|
30 |
+
t : time
|
31 |
+
r : specified (exogenous) inputs
|
32 |
+
p : constants
|
33 |
+
q : generalized coordinates
|
34 |
+
u : generalized speeds
|
35 |
+
F_1 : right hand side of the combined equations in explicit form
|
36 |
+
F_2 : right hand side of the combined equations in implicit form
|
37 |
+
F_3 : right hand side of the dynamical equations in implicit form
|
38 |
+
M_2 : mass matrix of the combined equations in implicit form
|
39 |
+
M_3 : mass matrix of the dynamical equations in implicit form
|
40 |
+
G : right hand side of the kinematical differential equations
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
==========
|
44 |
+
|
45 |
+
coord_states : ordered iterable of functions of time
|
46 |
+
This input will either be a collection of the coordinates or states
|
47 |
+
of the system depending on whether or not the speeds are also
|
48 |
+
given. If speeds are specified this input will be assumed to
|
49 |
+
be the coordinates otherwise this input will be assumed to
|
50 |
+
be the states.
|
51 |
+
|
52 |
+
right_hand_side : Matrix
|
53 |
+
This variable is the right hand side of the equations of motion in
|
54 |
+
any of the forms. The specific form will be assumed depending on
|
55 |
+
whether a mass matrix or coordinate derivatives are given.
|
56 |
+
|
57 |
+
speeds : ordered iterable of functions of time, optional
|
58 |
+
This is a collection of the generalized speeds of the system. If
|
59 |
+
given it will be assumed that the first argument (coord_states)
|
60 |
+
will represent the generalized coordinates of the system.
|
61 |
+
|
62 |
+
mass_matrix : Matrix, optional
|
63 |
+
The matrix of the implicit forms of the equations of motion (forms
|
64 |
+
[2] and [3]). The distinction between the forms is determined by
|
65 |
+
whether or not the coordinate derivatives are passed in. If
|
66 |
+
they are given form [3] will be assumed otherwise form [2] is
|
67 |
+
assumed.
|
68 |
+
|
69 |
+
coordinate_derivatives : Matrix, optional
|
70 |
+
The right hand side of the kinematical equations in explicit form.
|
71 |
+
If given it will be assumed that the equations of motion are being
|
72 |
+
entered in form [3].
|
73 |
+
|
74 |
+
alg_con : Iterable, optional
|
75 |
+
The indexes of the rows in the equations of motion that contain
|
76 |
+
algebraic constraints instead of differential equations. If the
|
77 |
+
equations are input in form [3], it will be assumed the indexes are
|
78 |
+
referencing the mass_matrix/right_hand_side combination and not the
|
79 |
+
coordinate_derivatives.
|
80 |
+
|
81 |
+
output_eqns : Dictionary, optional
|
82 |
+
Any output equations that are desired to be tracked are stored in a
|
83 |
+
dictionary where the key corresponds to the name given for the
|
84 |
+
specific equation and the value is the equation itself in symbolic
|
85 |
+
form
|
86 |
+
|
87 |
+
coord_idxs : Iterable, optional
|
88 |
+
If coord_states corresponds to the states rather than the
|
89 |
+
coordinates this variable will tell SymbolicSystem which indexes of
|
90 |
+
the states correspond to generalized coordinates.
|
91 |
+
|
92 |
+
speed_idxs : Iterable, optional
|
93 |
+
If coord_states corresponds to the states rather than the
|
94 |
+
coordinates this variable will tell SymbolicSystem which indexes of
|
95 |
+
the states correspond to generalized speeds.
|
96 |
+
|
97 |
+
bodies : iterable of Body/Rigidbody objects, optional
|
98 |
+
Iterable containing the bodies of the system
|
99 |
+
|
100 |
+
loads : iterable of load instances (described below), optional
|
101 |
+
Iterable containing the loads of the system where forces are given
|
102 |
+
by (point of application, force vector) and torques are given by
|
103 |
+
(reference frame acting upon, torque vector). Ex [(point, force),
|
104 |
+
(ref_frame, torque)]
|
105 |
+
|
106 |
+
Attributes
|
107 |
+
==========
|
108 |
+
|
109 |
+
coordinates : Matrix, shape(n, 1)
|
110 |
+
This is a matrix containing the generalized coordinates of the system
|
111 |
+
|
112 |
+
speeds : Matrix, shape(m, 1)
|
113 |
+
This is a matrix containing the generalized speeds of the system
|
114 |
+
|
115 |
+
states : Matrix, shape(o, 1)
|
116 |
+
This is a matrix containing the state variables of the system
|
117 |
+
|
118 |
+
alg_con : List
|
119 |
+
This list contains the indices of the algebraic constraints in the
|
120 |
+
combined equations of motion. The presence of these constraints
|
121 |
+
requires that a DAE solver be used instead of an ODE solver.
|
122 |
+
If the system is given in form [3] the alg_con variable will be
|
123 |
+
adjusted such that it is a representation of the combined kinematics
|
124 |
+
and dynamics thus make sure it always matches the mass matrix
|
125 |
+
entered.
|
126 |
+
|
127 |
+
dyn_implicit_mat : Matrix, shape(m, m)
|
128 |
+
This is the M matrix in form [3] of the equations of motion (the mass
|
129 |
+
matrix or generalized inertia matrix of the dynamical equations of
|
130 |
+
motion in implicit form).
|
131 |
+
|
132 |
+
dyn_implicit_rhs : Matrix, shape(m, 1)
|
133 |
+
This is the F vector in form [3] of the equations of motion (the right
|
134 |
+
hand side of the dynamical equations of motion in implicit form).
|
135 |
+
|
136 |
+
comb_implicit_mat : Matrix, shape(o, o)
|
137 |
+
This is the M matrix in form [2] of the equations of motion.
|
138 |
+
This matrix contains a block diagonal structure where the top
|
139 |
+
left block (the first rows) represent the matrix in the
|
140 |
+
implicit form of the kinematical equations and the bottom right
|
141 |
+
block (the last rows) represent the matrix in the implicit form
|
142 |
+
of the dynamical equations.
|
143 |
+
|
144 |
+
comb_implicit_rhs : Matrix, shape(o, 1)
|
145 |
+
This is the F vector in form [2] of the equations of motion. The top
|
146 |
+
part of the vector represents the right hand side of the implicit form
|
147 |
+
of the kinemaical equations and the bottom of the vector represents the
|
148 |
+
right hand side of the implicit form of the dynamical equations of
|
149 |
+
motion.
|
150 |
+
|
151 |
+
comb_explicit_rhs : Matrix, shape(o, 1)
|
152 |
+
This vector represents the right hand side of the combined equations of
|
153 |
+
motion in explicit form (form [1] from above).
|
154 |
+
|
155 |
+
kin_explicit_rhs : Matrix, shape(m, 1)
|
156 |
+
This is the right hand side of the explicit form of the kinematical
|
157 |
+
equations of motion as can be seen in form [3] (the G matrix).
|
158 |
+
|
159 |
+
output_eqns : Dictionary
|
160 |
+
If output equations were given they are stored in a dictionary where
|
161 |
+
the key corresponds to the name given for the specific equation and
|
162 |
+
the value is the equation itself in symbolic form
|
163 |
+
|
164 |
+
bodies : Tuple
|
165 |
+
If the bodies in the system were given they are stored in a tuple for
|
166 |
+
future access
|
167 |
+
|
168 |
+
loads : Tuple
|
169 |
+
If the loads in the system were given they are stored in a tuple for
|
170 |
+
future access. This includes forces and torques where forces are given
|
171 |
+
by (point of application, force vector) and torques are given by
|
172 |
+
(reference frame acted upon, torque vector).
|
173 |
+
|
174 |
+
Example
|
175 |
+
=======
|
176 |
+
|
177 |
+
As a simple example, the dynamics of a simple pendulum will be input into a
|
178 |
+
SymbolicSystem object manually. First some imports will be needed and then
|
179 |
+
symbols will be set up for the length of the pendulum (l), mass at the end
|
180 |
+
of the pendulum (m), and a constant for gravity (g). ::
|
181 |
+
|
182 |
+
>>> from sympy import Matrix, sin, symbols
|
183 |
+
>>> from sympy.physics.mechanics import dynamicsymbols, SymbolicSystem
|
184 |
+
>>> l, m, g = symbols('l m g')
|
185 |
+
|
186 |
+
The system will be defined by an angle of theta from the vertical and a
|
187 |
+
generalized speed of omega will be used where omega = theta_dot. ::
|
188 |
+
|
189 |
+
>>> theta, omega = dynamicsymbols('theta omega')
|
190 |
+
|
191 |
+
Now the equations of motion are ready to be formed and passed to the
|
192 |
+
SymbolicSystem object. ::
|
193 |
+
|
194 |
+
>>> kin_explicit_rhs = Matrix([omega])
|
195 |
+
>>> dyn_implicit_mat = Matrix([l**2 * m])
|
196 |
+
>>> dyn_implicit_rhs = Matrix([-g * l * m * sin(theta)])
|
197 |
+
>>> symsystem = SymbolicSystem([theta], dyn_implicit_rhs, [omega],
|
198 |
+
... dyn_implicit_mat)
|
199 |
+
|
200 |
+
Notes
|
201 |
+
=====
|
202 |
+
|
203 |
+
m : number of generalized speeds
|
204 |
+
n : number of generalized coordinates
|
205 |
+
o : number of states
|
206 |
+
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self, coord_states, right_hand_side, speeds=None,
|
210 |
+
mass_matrix=None, coordinate_derivatives=None, alg_con=None,
|
211 |
+
output_eqns={}, coord_idxs=None, speed_idxs=None, bodies=None,
|
212 |
+
loads=None):
|
213 |
+
"""Initializes a SymbolicSystem object"""
|
214 |
+
|
215 |
+
# Extract information on speeds, coordinates and states
|
216 |
+
if speeds is None:
|
217 |
+
self._states = Matrix(coord_states)
|
218 |
+
|
219 |
+
if coord_idxs is None:
|
220 |
+
self._coordinates = None
|
221 |
+
else:
|
222 |
+
coords = [coord_states[i] for i in coord_idxs]
|
223 |
+
self._coordinates = Matrix(coords)
|
224 |
+
|
225 |
+
if speed_idxs is None:
|
226 |
+
self._speeds = None
|
227 |
+
else:
|
228 |
+
speeds_inter = [coord_states[i] for i in speed_idxs]
|
229 |
+
self._speeds = Matrix(speeds_inter)
|
230 |
+
else:
|
231 |
+
self._coordinates = Matrix(coord_states)
|
232 |
+
self._speeds = Matrix(speeds)
|
233 |
+
self._states = self._coordinates.col_join(self._speeds)
|
234 |
+
|
235 |
+
# Extract equations of motion form
|
236 |
+
if coordinate_derivatives is not None:
|
237 |
+
self._kin_explicit_rhs = coordinate_derivatives
|
238 |
+
self._dyn_implicit_rhs = right_hand_side
|
239 |
+
self._dyn_implicit_mat = mass_matrix
|
240 |
+
self._comb_implicit_rhs = None
|
241 |
+
self._comb_implicit_mat = None
|
242 |
+
self._comb_explicit_rhs = None
|
243 |
+
elif mass_matrix is not None:
|
244 |
+
self._kin_explicit_rhs = None
|
245 |
+
self._dyn_implicit_rhs = None
|
246 |
+
self._dyn_implicit_mat = None
|
247 |
+
self._comb_implicit_rhs = right_hand_side
|
248 |
+
self._comb_implicit_mat = mass_matrix
|
249 |
+
self._comb_explicit_rhs = None
|
250 |
+
else:
|
251 |
+
self._kin_explicit_rhs = None
|
252 |
+
self._dyn_implicit_rhs = None
|
253 |
+
self._dyn_implicit_mat = None
|
254 |
+
self._comb_implicit_rhs = None
|
255 |
+
self._comb_implicit_mat = None
|
256 |
+
self._comb_explicit_rhs = right_hand_side
|
257 |
+
|
258 |
+
# Set the remainder of the inputs as instance attributes
|
259 |
+
if alg_con is not None and coordinate_derivatives is not None:
|
260 |
+
alg_con = [i + len(coordinate_derivatives) for i in alg_con]
|
261 |
+
self._alg_con = alg_con
|
262 |
+
self.output_eqns = output_eqns
|
263 |
+
|
264 |
+
# Change the body and loads iterables to tuples if they are not tuples
|
265 |
+
# already
|
266 |
+
if not isinstance(bodies, tuple) and bodies is not None:
|
267 |
+
bodies = tuple(bodies)
|
268 |
+
if not isinstance(loads, tuple) and loads is not None:
|
269 |
+
loads = tuple(loads)
|
270 |
+
self._bodies = bodies
|
271 |
+
self._loads = loads
|
272 |
+
|
273 |
+
@property
|
274 |
+
def coordinates(self):
|
275 |
+
"""Returns the column matrix of the generalized coordinates"""
|
276 |
+
if self._coordinates is None:
|
277 |
+
raise AttributeError("The coordinates were not specified.")
|
278 |
+
else:
|
279 |
+
return self._coordinates
|
280 |
+
|
281 |
+
@property
|
282 |
+
def speeds(self):
|
283 |
+
"""Returns the column matrix of generalized speeds"""
|
284 |
+
if self._speeds is None:
|
285 |
+
raise AttributeError("The speeds were not specified.")
|
286 |
+
else:
|
287 |
+
return self._speeds
|
288 |
+
|
289 |
+
@property
|
290 |
+
def states(self):
|
291 |
+
"""Returns the column matrix of the state variables"""
|
292 |
+
return self._states
|
293 |
+
|
294 |
+
@property
|
295 |
+
def alg_con(self):
|
296 |
+
"""Returns a list with the indices of the rows containing algebraic
|
297 |
+
constraints in the combined form of the equations of motion"""
|
298 |
+
return self._alg_con
|
299 |
+
|
300 |
+
@property
|
301 |
+
def dyn_implicit_mat(self):
|
302 |
+
"""Returns the matrix, M, corresponding to the dynamic equations in
|
303 |
+
implicit form, M x' = F, where the kinematical equations are not
|
304 |
+
included"""
|
305 |
+
if self._dyn_implicit_mat is None:
|
306 |
+
raise AttributeError("dyn_implicit_mat is not specified for "
|
307 |
+
"equations of motion form [1] or [2].")
|
308 |
+
else:
|
309 |
+
return self._dyn_implicit_mat
|
310 |
+
|
311 |
+
@property
|
312 |
+
def dyn_implicit_rhs(self):
|
313 |
+
"""Returns the column matrix, F, corresponding to the dynamic equations
|
314 |
+
in implicit form, M x' = F, where the kinematical equations are not
|
315 |
+
included"""
|
316 |
+
if self._dyn_implicit_rhs is None:
|
317 |
+
raise AttributeError("dyn_implicit_rhs is not specified for "
|
318 |
+
"equations of motion form [1] or [2].")
|
319 |
+
else:
|
320 |
+
return self._dyn_implicit_rhs
|
321 |
+
|
322 |
+
@property
|
323 |
+
def comb_implicit_mat(self):
|
324 |
+
"""Returns the matrix, M, corresponding to the equations of motion in
|
325 |
+
implicit form (form [2]), M x' = F, where the kinematical equations are
|
326 |
+
included"""
|
327 |
+
if self._comb_implicit_mat is None:
|
328 |
+
if self._dyn_implicit_mat is not None:
|
329 |
+
num_kin_eqns = len(self._kin_explicit_rhs)
|
330 |
+
num_dyn_eqns = len(self._dyn_implicit_rhs)
|
331 |
+
zeros1 = zeros(num_kin_eqns, num_dyn_eqns)
|
332 |
+
zeros2 = zeros(num_dyn_eqns, num_kin_eqns)
|
333 |
+
inter1 = eye(num_kin_eqns).row_join(zeros1)
|
334 |
+
inter2 = zeros2.row_join(self._dyn_implicit_mat)
|
335 |
+
self._comb_implicit_mat = inter1.col_join(inter2)
|
336 |
+
return self._comb_implicit_mat
|
337 |
+
else:
|
338 |
+
raise AttributeError("comb_implicit_mat is not specified for "
|
339 |
+
"equations of motion form [1].")
|
340 |
+
else:
|
341 |
+
return self._comb_implicit_mat
|
342 |
+
|
343 |
+
@property
|
344 |
+
def comb_implicit_rhs(self):
|
345 |
+
"""Returns the column matrix, F, corresponding to the equations of
|
346 |
+
motion in implicit form (form [2]), M x' = F, where the kinematical
|
347 |
+
equations are included"""
|
348 |
+
if self._comb_implicit_rhs is None:
|
349 |
+
if self._dyn_implicit_rhs is not None:
|
350 |
+
kin_inter = self._kin_explicit_rhs
|
351 |
+
dyn_inter = self._dyn_implicit_rhs
|
352 |
+
self._comb_implicit_rhs = kin_inter.col_join(dyn_inter)
|
353 |
+
return self._comb_implicit_rhs
|
354 |
+
else:
|
355 |
+
raise AttributeError("comb_implicit_mat is not specified for "
|
356 |
+
"equations of motion in form [1].")
|
357 |
+
else:
|
358 |
+
return self._comb_implicit_rhs
|
359 |
+
|
360 |
+
def compute_explicit_form(self):
|
361 |
+
"""If the explicit right hand side of the combined equations of motion
|
362 |
+
is to provided upon initialization, this method will calculate it. This
|
363 |
+
calculation can potentially take awhile to compute."""
|
364 |
+
if self._comb_explicit_rhs is not None:
|
365 |
+
raise AttributeError("comb_explicit_rhs is already formed.")
|
366 |
+
|
367 |
+
inter1 = getattr(self, 'kin_explicit_rhs', None)
|
368 |
+
if inter1 is not None:
|
369 |
+
inter2 = self._dyn_implicit_mat.LUsolve(self._dyn_implicit_rhs)
|
370 |
+
out = inter1.col_join(inter2)
|
371 |
+
else:
|
372 |
+
out = self._comb_implicit_mat.LUsolve(self._comb_implicit_rhs)
|
373 |
+
|
374 |
+
self._comb_explicit_rhs = out
|
375 |
+
|
376 |
+
@property
|
377 |
+
def comb_explicit_rhs(self):
|
378 |
+
"""Returns the right hand side of the equations of motion in explicit
|
379 |
+
form, x' = F, where the kinematical equations are included"""
|
380 |
+
if self._comb_explicit_rhs is None:
|
381 |
+
raise AttributeError("Please run .combute_explicit_form before "
|
382 |
+
"attempting to access comb_explicit_rhs.")
|
383 |
+
else:
|
384 |
+
return self._comb_explicit_rhs
|
385 |
+
|
386 |
+
@property
|
387 |
+
def kin_explicit_rhs(self):
|
388 |
+
"""Returns the right hand side of the kinematical equations in explicit
|
389 |
+
form, q' = G"""
|
390 |
+
if self._kin_explicit_rhs is None:
|
391 |
+
raise AttributeError("kin_explicit_rhs is not specified for "
|
392 |
+
"equations of motion form [1] or [2].")
|
393 |
+
else:
|
394 |
+
return self._kin_explicit_rhs
|
395 |
+
|
396 |
+
def dynamic_symbols(self):
|
397 |
+
"""Returns a column matrix containing all of the symbols in the system
|
398 |
+
that depend on time"""
|
399 |
+
# Create a list of all of the expressions in the equations of motion
|
400 |
+
if self._comb_explicit_rhs is None:
|
401 |
+
eom_expressions = (self.comb_implicit_mat[:] +
|
402 |
+
self.comb_implicit_rhs[:])
|
403 |
+
else:
|
404 |
+
eom_expressions = (self._comb_explicit_rhs[:])
|
405 |
+
|
406 |
+
functions_of_time = set()
|
407 |
+
for expr in eom_expressions:
|
408 |
+
functions_of_time = functions_of_time.union(
|
409 |
+
find_dynamicsymbols(expr))
|
410 |
+
functions_of_time = functions_of_time.union(self._states)
|
411 |
+
|
412 |
+
return tuple(functions_of_time)
|
413 |
+
|
414 |
+
def constant_symbols(self):
|
415 |
+
"""Returns a column matrix containing all of the symbols in the system
|
416 |
+
that do not depend on time"""
|
417 |
+
# Create a list of all of the expressions in the equations of motion
|
418 |
+
if self._comb_explicit_rhs is None:
|
419 |
+
eom_expressions = (self.comb_implicit_mat[:] +
|
420 |
+
self.comb_implicit_rhs[:])
|
421 |
+
else:
|
422 |
+
eom_expressions = (self._comb_explicit_rhs[:])
|
423 |
+
|
424 |
+
constants = set()
|
425 |
+
for expr in eom_expressions:
|
426 |
+
constants = constants.union(expr.free_symbols)
|
427 |
+
constants.remove(dynamicsymbols._t)
|
428 |
+
|
429 |
+
return tuple(constants)
|
430 |
+
|
431 |
+
@property
|
432 |
+
def bodies(self):
|
433 |
+
"""Returns the bodies in the system"""
|
434 |
+
if self._bodies is None:
|
435 |
+
raise AttributeError("bodies were not specified for the system.")
|
436 |
+
else:
|
437 |
+
return self._bodies
|
438 |
+
|
439 |
+
@property
|
440 |
+
def loads(self):
|
441 |
+
"""Returns the loads in the system"""
|
442 |
+
if self._loads is None:
|
443 |
+
raise AttributeError("loads were not specified for the system.")
|
444 |
+
else:
|
445 |
+
return self._loads
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_body.cpython-310.pyc
ADDED
Binary file (9.43 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_functions.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_joint.cpython-310.pyc
ADDED
Binary file (39.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_jointsmethod.cpython-310.pyc
ADDED
Binary file (8.35 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane2.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane3.cpython-310.pyc
ADDED
Binary file (5.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_kane4.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange.cpython-310.pyc
ADDED
Binary file (6.15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange2.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|