peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/physics
/mechanics
/rigidbody.py
from sympy.core.backend import sympify | |
from sympy.physics.vector import Point, ReferenceFrame, Dyadic | |
from sympy.utilities.exceptions import sympy_deprecation_warning | |
__all__ = ['RigidBody'] | |
class RigidBody: | |
"""An idealized rigid body. | |
Explanation | |
=========== | |
This is essentially a container which holds the various components which | |
describe a rigid body: a name, mass, center of mass, reference frame, and | |
inertia. | |
All of these need to be supplied on creation, but can be changed | |
afterwards. | |
Attributes | |
========== | |
name : string | |
The body's name. | |
masscenter : Point | |
The point which represents the center of mass of the rigid body. | |
frame : ReferenceFrame | |
The ReferenceFrame which the rigid body is fixed in. | |
mass : Sympifyable | |
The body's mass. | |
inertia : (Dyadic, Point) | |
The body's inertia about a point; stored in a tuple as shown above. | |
Examples | |
======== | |
>>> from sympy import Symbol | |
>>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody | |
>>> from sympy.physics.mechanics import outer | |
>>> m = Symbol('m') | |
>>> A = ReferenceFrame('A') | |
>>> P = Point('P') | |
>>> I = outer (A.x, A.x) | |
>>> inertia_tuple = (I, P) | |
>>> B = RigidBody('B', P, A, m, inertia_tuple) | |
>>> # Or you could change them afterwards | |
>>> m2 = Symbol('m2') | |
>>> B.mass = m2 | |
""" | |
def __init__(self, name, masscenter, frame, mass, inertia): | |
if not isinstance(name, str): | |
raise TypeError('Supply a valid name.') | |
self._name = name | |
self.masscenter = masscenter | |
self.mass = mass | |
self.frame = frame | |
self.inertia = inertia | |
self.potential_energy = 0 | |
def __str__(self): | |
return self._name | |
def __repr__(self): | |
return self.__str__() | |
def frame(self): | |
"""The ReferenceFrame fixed to the body.""" | |
return self._frame | |
def frame(self, F): | |
if not isinstance(F, ReferenceFrame): | |
raise TypeError("RigidBody frame must be a ReferenceFrame object.") | |
self._frame = F | |
def masscenter(self): | |
"""The body's center of mass.""" | |
return self._masscenter | |
def masscenter(self, p): | |
if not isinstance(p, Point): | |
raise TypeError("RigidBody center of mass must be a Point object.") | |
self._masscenter = p | |
def mass(self): | |
"""The body's mass.""" | |
return self._mass | |
def mass(self, m): | |
self._mass = sympify(m) | |
def inertia(self): | |
"""The body's inertia about a point; stored as (Dyadic, Point).""" | |
return (self._inertia, self._inertia_point) | |
def inertia(self, I): | |
if not isinstance(I[0], Dyadic): | |
raise TypeError("RigidBody inertia must be a Dyadic object.") | |
if not isinstance(I[1], Point): | |
raise TypeError("RigidBody inertia must be about a Point.") | |
self._inertia = I[0] | |
self._inertia_point = I[1] | |
# have I S/O, want I S/S* | |
# I S/O = I S/S* + I S*/O; I S/S* = I S/O - I S*/O | |
# I_S/S* = I_S/O - I_S*/O | |
from sympy.physics.mechanics.functions import inertia_of_point_mass | |
I_Ss_O = inertia_of_point_mass(self.mass, | |
self.masscenter.pos_from(I[1]), | |
self.frame) | |
self._central_inertia = I[0] - I_Ss_O | |
def central_inertia(self): | |
"""The body's central inertia dyadic.""" | |
return self._central_inertia | |
def central_inertia(self, I): | |
if not isinstance(I, Dyadic): | |
raise TypeError("RigidBody inertia must be a Dyadic object.") | |
self.inertia = (I, self.masscenter) | |
def linear_momentum(self, frame): | |
""" Linear momentum of the rigid body. | |
Explanation | |
=========== | |
The linear momentum L, of a rigid body B, with respect to frame N is | |
given by: | |
L = M * v* | |
where M is the mass of the rigid body and v* is the velocity of | |
the mass center of B in the frame, N. | |
Parameters | |
========== | |
frame : ReferenceFrame | |
The frame in which linear momentum is desired. | |
Examples | |
======== | |
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer | |
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols | |
>>> from sympy.physics.vector import init_vprinting | |
>>> init_vprinting(pretty_print=False) | |
>>> M, v = dynamicsymbols('M v') | |
>>> N = ReferenceFrame('N') | |
>>> P = Point('P') | |
>>> P.set_vel(N, v * N.x) | |
>>> I = outer (N.x, N.x) | |
>>> Inertia_tuple = (I, P) | |
>>> B = RigidBody('B', P, N, M, Inertia_tuple) | |
>>> B.linear_momentum(N) | |
M*v*N.x | |
""" | |
return self.mass * self.masscenter.vel(frame) | |
def angular_momentum(self, point, frame): | |
"""Returns the angular momentum of the rigid body about a point in the | |
given frame. | |
Explanation | |
=========== | |
The angular momentum H of a rigid body B about some point O in a frame | |
N is given by: | |
``H = dot(I, w) + cross(r, M * v)`` | |
where I is the central inertia dyadic of B, w is the angular velocity | |
of body B in the frame, N, r is the position vector from point O to the | |
mass center of B, and v is the velocity of the mass center in the | |
frame, N. | |
Parameters | |
========== | |
point : Point | |
The point about which angular momentum is desired. | |
frame : ReferenceFrame | |
The frame in which angular momentum is desired. | |
Examples | |
======== | |
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer | |
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols | |
>>> from sympy.physics.vector import init_vprinting | |
>>> init_vprinting(pretty_print=False) | |
>>> M, v, r, omega = dynamicsymbols('M v r omega') | |
>>> N = ReferenceFrame('N') | |
>>> b = ReferenceFrame('b') | |
>>> b.set_ang_vel(N, omega * b.x) | |
>>> P = Point('P') | |
>>> P.set_vel(N, 1 * N.x) | |
>>> I = outer(b.x, b.x) | |
>>> B = RigidBody('B', P, b, M, (I, P)) | |
>>> B.angular_momentum(P, N) | |
omega*b.x | |
""" | |
I = self.central_inertia | |
w = self.frame.ang_vel_in(frame) | |
m = self.mass | |
r = self.masscenter.pos_from(point) | |
v = self.masscenter.vel(frame) | |
return I.dot(w) + r.cross(m * v) | |
def kinetic_energy(self, frame): | |
"""Kinetic energy of the rigid body. | |
Explanation | |
=========== | |
The kinetic energy, T, of a rigid body, B, is given by: | |
``T = 1/2 * (dot(dot(I, w), w) + dot(m * v, v))`` | |
where I and m are the central inertia dyadic and mass of rigid body B, | |
respectively, omega is the body's angular velocity and v is the | |
velocity of the body's mass center in the supplied ReferenceFrame. | |
Parameters | |
========== | |
frame : ReferenceFrame | |
The RigidBody's angular velocity and the velocity of it's mass | |
center are typically defined with respect to an inertial frame but | |
any relevant frame in which the velocities are known can be supplied. | |
Examples | |
======== | |
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer | |
>>> from sympy.physics.mechanics import RigidBody | |
>>> from sympy import symbols | |
>>> M, v, r, omega = symbols('M v r omega') | |
>>> N = ReferenceFrame('N') | |
>>> b = ReferenceFrame('b') | |
>>> b.set_ang_vel(N, omega * b.x) | |
>>> P = Point('P') | |
>>> P.set_vel(N, v * N.x) | |
>>> I = outer (b.x, b.x) | |
>>> inertia_tuple = (I, P) | |
>>> B = RigidBody('B', P, b, M, inertia_tuple) | |
>>> B.kinetic_energy(N) | |
M*v**2/2 + omega**2/2 | |
""" | |
rotational_KE = (self.frame.ang_vel_in(frame) & (self.central_inertia & | |
self.frame.ang_vel_in(frame)) / sympify(2)) | |
translational_KE = (self.mass * (self.masscenter.vel(frame) & | |
self.masscenter.vel(frame)) / sympify(2)) | |
return rotational_KE + translational_KE | |
def potential_energy(self): | |
"""The potential energy of the RigidBody. | |
Examples | |
======== | |
>>> from sympy.physics.mechanics import RigidBody, Point, outer, ReferenceFrame | |
>>> from sympy import symbols | |
>>> M, g, h = symbols('M g h') | |
>>> b = ReferenceFrame('b') | |
>>> P = Point('P') | |
>>> I = outer (b.x, b.x) | |
>>> Inertia_tuple = (I, P) | |
>>> B = RigidBody('B', P, b, M, Inertia_tuple) | |
>>> B.potential_energy = M * g * h | |
>>> B.potential_energy | |
M*g*h | |
""" | |
return self._pe | |
def potential_energy(self, scalar): | |
"""Used to set the potential energy of this RigidBody. | |
Parameters | |
========== | |
scalar: Sympifyable | |
The potential energy (a scalar) of the RigidBody. | |
Examples | |
======== | |
>>> from sympy.physics.mechanics import Point, outer | |
>>> from sympy.physics.mechanics import RigidBody, ReferenceFrame | |
>>> from sympy import symbols | |
>>> b = ReferenceFrame('b') | |
>>> M, g, h = symbols('M g h') | |
>>> P = Point('P') | |
>>> I = outer (b.x, b.x) | |
>>> Inertia_tuple = (I, P) | |
>>> B = RigidBody('B', P, b, M, Inertia_tuple) | |
>>> B.potential_energy = M * g * h | |
""" | |
self._pe = sympify(scalar) | |
def set_potential_energy(self, scalar): | |
sympy_deprecation_warning( | |
""" | |
The sympy.physics.mechanics.RigidBody.set_potential_energy() | |
method is deprecated. Instead use | |
B.potential_energy = scalar | |
""", | |
deprecated_since_version="1.5", | |
active_deprecations_target="deprecated-set-potential-energy", | |
) | |
self.potential_energy = scalar | |
def parallel_axis(self, point, frame=None): | |
"""Returns the inertia dyadic of the body with respect to another | |
point. | |
Parameters | |
========== | |
point : sympy.physics.vector.Point | |
The point to express the inertia dyadic about. | |
frame : sympy.physics.vector.ReferenceFrame | |
The reference frame used to construct the dyadic. | |
Returns | |
======= | |
inertia : sympy.physics.vector.Dyadic | |
The inertia dyadic of the rigid body expressed about the provided | |
point. | |
""" | |
# circular import issue | |
from sympy.physics.mechanics.functions import inertia_of_point_mass | |
if frame is None: | |
frame = self.frame | |
return self.central_inertia + inertia_of_point_mass( | |
self.mass, self.masscenter.pos_from(point), frame) | |