peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/finitefield.py
"""Implementation of :class:`FiniteField` class. """ | |
from sympy.polys.domains.field import Field | |
from sympy.polys.domains.modularinteger import ModularIntegerFactory | |
from sympy.polys.domains.simpledomain import SimpleDomain | |
from sympy.polys.polyerrors import CoercionFailed | |
from sympy.utilities import public | |
from sympy.polys.domains.groundtypes import SymPyInteger | |
class FiniteField(Field, SimpleDomain): | |
r"""Finite field of prime order :ref:`GF(p)` | |
A :ref:`GF(p)` domain represents a `finite field`_ `\mathbb{F}_p` of prime | |
order as :py:class:`~.Domain` in the domain system (see | |
:ref:`polys-domainsintro`). | |
A :py:class:`~.Poly` created from an expression with integer | |
coefficients will have the domain :ref:`ZZ`. However, if the ``modulus=p`` | |
option is given then the domain will be a finite field instead. | |
>>> from sympy import Poly, Symbol | |
>>> x = Symbol('x') | |
>>> p = Poly(x**2 + 1) | |
>>> p | |
Poly(x**2 + 1, x, domain='ZZ') | |
>>> p.domain | |
ZZ | |
>>> p2 = Poly(x**2 + 1, modulus=2) | |
>>> p2 | |
Poly(x**2 + 1, x, modulus=2) | |
>>> p2.domain | |
GF(2) | |
It is possible to factorise a polynomial over :ref:`GF(p)` using the | |
modulus argument to :py:func:`~.factor` or by specifying the domain | |
explicitly. The domain can also be given as a string. | |
>>> from sympy import factor, GF | |
>>> factor(x**2 + 1) | |
x**2 + 1 | |
>>> factor(x**2 + 1, modulus=2) | |
(x + 1)**2 | |
>>> factor(x**2 + 1, domain=GF(2)) | |
(x + 1)**2 | |
>>> factor(x**2 + 1, domain='GF(2)') | |
(x + 1)**2 | |
It is also possible to use :ref:`GF(p)` with the :py:func:`~.cancel` | |
and :py:func:`~.gcd` functions. | |
>>> from sympy import cancel, gcd | |
>>> cancel((x**2 + 1)/(x + 1)) | |
(x**2 + 1)/(x + 1) | |
>>> cancel((x**2 + 1)/(x + 1), domain=GF(2)) | |
x + 1 | |
>>> gcd(x**2 + 1, x + 1) | |
1 | |
>>> gcd(x**2 + 1, x + 1, domain=GF(2)) | |
x + 1 | |
When using the domain directly :ref:`GF(p)` can be used as a constructor | |
to create instances which then support the operations ``+,-,*,**,/`` | |
>>> from sympy import GF | |
>>> K = GF(5) | |
>>> K | |
GF(5) | |
>>> x = K(3) | |
>>> y = K(2) | |
>>> x | |
3 mod 5 | |
>>> y | |
2 mod 5 | |
>>> x * y | |
1 mod 5 | |
>>> x / y | |
4 mod 5 | |
Notes | |
===== | |
It is also possible to create a :ref:`GF(p)` domain of **non-prime** | |
order but the resulting ring is **not** a field: it is just the ring of | |
the integers modulo ``n``. | |
>>> K = GF(9) | |
>>> z = K(3) | |
>>> z | |
3 mod 9 | |
>>> z**2 | |
0 mod 9 | |
It would be good to have a proper implementation of prime power fields | |
(``GF(p**n)``) but these are not yet implemented in SymPY. | |
.. _finite field: https://en.wikipedia.org/wiki/Finite_field | |
""" | |
rep = 'FF' | |
alias = 'FF' | |
is_FiniteField = is_FF = True | |
is_Numerical = True | |
has_assoc_Ring = False | |
has_assoc_Field = True | |
dom = None | |
mod = None | |
def __init__(self, mod, symmetric=True): | |
from sympy.polys.domains import ZZ | |
dom = ZZ | |
if mod <= 0: | |
raise ValueError('modulus must be a positive integer, got %s' % mod) | |
self.dtype = ModularIntegerFactory(mod, dom, symmetric, self) | |
self.zero = self.dtype(0) | |
self.one = self.dtype(1) | |
self.dom = dom | |
self.mod = mod | |
def __str__(self): | |
return 'GF(%s)' % self.mod | |
def __hash__(self): | |
return hash((self.__class__.__name__, self.dtype, self.mod, self.dom)) | |
def __eq__(self, other): | |
"""Returns ``True`` if two domains are equivalent. """ | |
return isinstance(other, FiniteField) and \ | |
self.mod == other.mod and self.dom == other.dom | |
def characteristic(self): | |
"""Return the characteristic of this domain. """ | |
return self.mod | |
def get_field(self): | |
"""Returns a field associated with ``self``. """ | |
return self | |
def to_sympy(self, a): | |
"""Convert ``a`` to a SymPy object. """ | |
return SymPyInteger(int(a)) | |
def from_sympy(self, a): | |
"""Convert SymPy's Integer to SymPy's ``Integer``. """ | |
if a.is_Integer: | |
return self.dtype(self.dom.dtype(int(a))) | |
elif a.is_Float and int(a) == a: | |
return self.dtype(self.dom.dtype(int(a))) | |
else: | |
raise CoercionFailed("expected an integer, got %s" % a) | |
def from_FF(K1, a, K0=None): | |
"""Convert ``ModularInteger(int)`` to ``dtype``. """ | |
return K1.dtype(K1.dom.from_ZZ(a.val, K0.dom)) | |
def from_FF_python(K1, a, K0=None): | |
"""Convert ``ModularInteger(int)`` to ``dtype``. """ | |
return K1.dtype(K1.dom.from_ZZ_python(a.val, K0.dom)) | |
def from_ZZ(K1, a, K0=None): | |
"""Convert Python's ``int`` to ``dtype``. """ | |
return K1.dtype(K1.dom.from_ZZ_python(a, K0)) | |
def from_ZZ_python(K1, a, K0=None): | |
"""Convert Python's ``int`` to ``dtype``. """ | |
return K1.dtype(K1.dom.from_ZZ_python(a, K0)) | |
def from_QQ(K1, a, K0=None): | |
"""Convert Python's ``Fraction`` to ``dtype``. """ | |
if a.denominator == 1: | |
return K1.from_ZZ_python(a.numerator) | |
def from_QQ_python(K1, a, K0=None): | |
"""Convert Python's ``Fraction`` to ``dtype``. """ | |
if a.denominator == 1: | |
return K1.from_ZZ_python(a.numerator) | |
def from_FF_gmpy(K1, a, K0=None): | |
"""Convert ``ModularInteger(mpz)`` to ``dtype``. """ | |
return K1.dtype(K1.dom.from_ZZ_gmpy(a.val, K0.dom)) | |
def from_ZZ_gmpy(K1, a, K0=None): | |
"""Convert GMPY's ``mpz`` to ``dtype``. """ | |
return K1.dtype(K1.dom.from_ZZ_gmpy(a, K0)) | |
def from_QQ_gmpy(K1, a, K0=None): | |
"""Convert GMPY's ``mpq`` to ``dtype``. """ | |
if a.denominator == 1: | |
return K1.from_ZZ_gmpy(a.numerator) | |
def from_RealField(K1, a, K0): | |
"""Convert mpmath's ``mpf`` to ``dtype``. """ | |
p, q = K0.to_rational(a) | |
if q == 1: | |
return K1.dtype(K1.dom.dtype(p)) | |
FF = GF = FiniteField | |