peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/fractionfield.py
"""Implementation of :class:`FractionField` class. """ | |
from sympy.polys.domains.compositedomain import CompositeDomain | |
from sympy.polys.domains.field import Field | |
from sympy.polys.polyerrors import CoercionFailed, GeneratorsError | |
from sympy.utilities import public | |
class FractionField(Field, CompositeDomain): | |
"""A class for representing multivariate rational function fields. """ | |
is_FractionField = is_Frac = True | |
has_assoc_Ring = True | |
has_assoc_Field = True | |
def __init__(self, domain_or_field, symbols=None, order=None): | |
from sympy.polys.fields import FracField | |
if isinstance(domain_or_field, FracField) and symbols is None and order is None: | |
field = domain_or_field | |
else: | |
field = FracField(symbols, domain_or_field, order) | |
self.field = field | |
self.dtype = field.dtype | |
self.gens = field.gens | |
self.ngens = field.ngens | |
self.symbols = field.symbols | |
self.domain = field.domain | |
# TODO: remove this | |
self.dom = self.domain | |
def new(self, element): | |
return self.field.field_new(element) | |
def zero(self): | |
return self.field.zero | |
def one(self): | |
return self.field.one | |
def order(self): | |
return self.field.order | |
def is_Exact(self): | |
return self.domain.is_Exact | |
def get_exact(self): | |
return FractionField(self.domain.get_exact(), self.symbols) | |
def __str__(self): | |
return str(self.domain) + '(' + ','.join(map(str, self.symbols)) + ')' | |
def __hash__(self): | |
return hash((self.__class__.__name__, self.dtype.field, self.domain, self.symbols)) | |
def __eq__(self, other): | |
"""Returns ``True`` if two domains are equivalent. """ | |
return isinstance(other, FractionField) and \ | |
(self.dtype.field, self.domain, self.symbols) ==\ | |
(other.dtype.field, other.domain, other.symbols) | |
def to_sympy(self, a): | |
"""Convert ``a`` to a SymPy object. """ | |
return a.as_expr() | |
def from_sympy(self, a): | |
"""Convert SymPy's expression to ``dtype``. """ | |
return self.field.from_expr(a) | |
def from_ZZ(K1, a, K0): | |
"""Convert a Python ``int`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_ZZ_python(K1, a, K0): | |
"""Convert a Python ``int`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_QQ(K1, a, K0): | |
"""Convert a Python ``Fraction`` object to ``dtype``. """ | |
dom = K1.domain | |
conv = dom.convert_from | |
if dom.is_ZZ: | |
return K1(conv(K0.numer(a), K0)) / K1(conv(K0.denom(a), K0)) | |
else: | |
return K1(conv(a, K0)) | |
def from_QQ_python(K1, a, K0): | |
"""Convert a Python ``Fraction`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_ZZ_gmpy(K1, a, K0): | |
"""Convert a GMPY ``mpz`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_QQ_gmpy(K1, a, K0): | |
"""Convert a GMPY ``mpq`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_GaussianRationalField(K1, a, K0): | |
"""Convert a ``GaussianRational`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_GaussianIntegerRing(K1, a, K0): | |
"""Convert a ``GaussianInteger`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_RealField(K1, a, K0): | |
"""Convert a mpmath ``mpf`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_ComplexField(K1, a, K0): | |
"""Convert a mpmath ``mpf`` object to ``dtype``. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_AlgebraicField(K1, a, K0): | |
"""Convert an algebraic number to ``dtype``. """ | |
if K1.domain != K0: | |
a = K1.domain.convert_from(a, K0) | |
if a is not None: | |
return K1.new(a) | |
def from_PolynomialRing(K1, a, K0): | |
"""Convert a polynomial to ``dtype``. """ | |
if a.is_ground: | |
return K1.convert_from(a.coeff(1), K0.domain) | |
try: | |
return K1.new(a.set_ring(K1.field.ring)) | |
except (CoercionFailed, GeneratorsError): | |
# XXX: We get here if K1=ZZ(x,y) and K0=QQ[x,y] | |
# and the poly a in K0 has non-integer coefficients. | |
# It seems that K1.new can handle this but K1.new doesn't work | |
# when K0.domain is an algebraic field... | |
try: | |
return K1.new(a) | |
except (CoercionFailed, GeneratorsError): | |
return None | |
def from_FractionField(K1, a, K0): | |
"""Convert a rational function to ``dtype``. """ | |
try: | |
return a.set_field(K1.field) | |
except (CoercionFailed, GeneratorsError): | |
return None | |
def get_ring(self): | |
"""Returns a field associated with ``self``. """ | |
return self.field.to_ring().to_domain() | |
def is_positive(self, a): | |
"""Returns True if ``LC(a)`` is positive. """ | |
return self.domain.is_positive(a.numer.LC) | |
def is_negative(self, a): | |
"""Returns True if ``LC(a)`` is negative. """ | |
return self.domain.is_negative(a.numer.LC) | |
def is_nonpositive(self, a): | |
"""Returns True if ``LC(a)`` is non-positive. """ | |
return self.domain.is_nonpositive(a.numer.LC) | |
def is_nonnegative(self, a): | |
"""Returns True if ``LC(a)`` is non-negative. """ | |
return self.domain.is_nonnegative(a.numer.LC) | |
def numer(self, a): | |
"""Returns numerator of ``a``. """ | |
return a.numer | |
def denom(self, a): | |
"""Returns denominator of ``a``. """ | |
return a.denom | |
def factorial(self, a): | |
"""Returns factorial of ``a``. """ | |
return self.dtype(self.domain.factorial(a)) | |