peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/rationalfield.py
"""Implementation of :class:`RationalField` class. """ | |
from sympy.external.gmpy import MPQ | |
from sympy.polys.domains.groundtypes import SymPyRational | |
from sympy.polys.domains.characteristiczero import CharacteristicZero | |
from sympy.polys.domains.field import Field | |
from sympy.polys.domains.simpledomain import SimpleDomain | |
from sympy.polys.polyerrors import CoercionFailed | |
from sympy.utilities import public | |
class RationalField(Field, CharacteristicZero, SimpleDomain): | |
r"""Abstract base class for the domain :ref:`QQ`. | |
The :py:class:`RationalField` class represents the field of rational | |
numbers $\mathbb{Q}$ as a :py:class:`~.Domain` in the domain system. | |
:py:class:`RationalField` is a superclass of | |
:py:class:`PythonRationalField` and :py:class:`GMPYRationalField` one of | |
which will be the implementation for :ref:`QQ` depending on whether either | |
of ``gmpy`` or ``gmpy2`` is installed or not. | |
See also | |
======== | |
Domain | |
""" | |
rep = 'QQ' | |
alias = 'QQ' | |
is_RationalField = is_QQ = True | |
is_Numerical = True | |
has_assoc_Ring = True | |
has_assoc_Field = True | |
dtype = MPQ | |
zero = dtype(0) | |
one = dtype(1) | |
tp = type(one) | |
def __init__(self): | |
pass | |
def get_ring(self): | |
"""Returns ring associated with ``self``. """ | |
from sympy.polys.domains import ZZ | |
return ZZ | |
def to_sympy(self, a): | |
"""Convert ``a`` to a SymPy object. """ | |
return SymPyRational(int(a.numerator), int(a.denominator)) | |
def from_sympy(self, a): | |
"""Convert SymPy's Integer to ``dtype``. """ | |
if a.is_Rational: | |
return MPQ(a.p, a.q) | |
elif a.is_Float: | |
from sympy.polys.domains import RR | |
return MPQ(*map(int, RR.to_rational(a))) | |
else: | |
raise CoercionFailed("expected `Rational` object, got %s" % a) | |
def algebraic_field(self, *extension, alias=None): | |
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. | |
Parameters | |
========== | |
*extension : One or more :py:class:`~.Expr` | |
Generators of the extension. These should be expressions that are | |
algebraic over `\mathbb{Q}`. | |
alias : str, :py:class:`~.Symbol`, None, optional (default=None) | |
If provided, this will be used as the alias symbol for the | |
primitive element of the returned :py:class:`~.AlgebraicField`. | |
Returns | |
======= | |
:py:class:`~.AlgebraicField` | |
A :py:class:`~.Domain` representing the algebraic field extension. | |
Examples | |
======== | |
>>> from sympy import QQ, sqrt | |
>>> QQ.algebraic_field(sqrt(2)) | |
QQ<sqrt(2)> | |
""" | |
from sympy.polys.domains import AlgebraicField | |
return AlgebraicField(self, *extension, alias=alias) | |
def from_AlgebraicField(K1, a, K0): | |
"""Convert a :py:class:`~.ANP` object to :ref:`QQ`. | |
See :py:meth:`~.Domain.convert` | |
""" | |
if a.is_ground: | |
return K1.convert(a.LC(), K0.dom) | |
def from_ZZ(K1, a, K0): | |
"""Convert a Python ``int`` object to ``dtype``. """ | |
return MPQ(a) | |
def from_ZZ_python(K1, a, K0): | |
"""Convert a Python ``int`` object to ``dtype``. """ | |
return MPQ(a) | |
def from_QQ(K1, a, K0): | |
"""Convert a Python ``Fraction`` object to ``dtype``. """ | |
return MPQ(a.numerator, a.denominator) | |
def from_QQ_python(K1, a, K0): | |
"""Convert a Python ``Fraction`` object to ``dtype``. """ | |
return MPQ(a.numerator, a.denominator) | |
def from_ZZ_gmpy(K1, a, K0): | |
"""Convert a GMPY ``mpz`` object to ``dtype``. """ | |
return MPQ(a) | |
def from_QQ_gmpy(K1, a, K0): | |
"""Convert a GMPY ``mpq`` object to ``dtype``. """ | |
return a | |
def from_GaussianRationalField(K1, a, K0): | |
"""Convert a ``GaussianElement`` object to ``dtype``. """ | |
if a.y == 0: | |
return MPQ(a.x) | |
def from_RealField(K1, a, K0): | |
"""Convert a mpmath ``mpf`` object to ``dtype``. """ | |
return MPQ(*map(int, K0.to_rational(a))) | |
def exquo(self, a, b): | |
"""Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """ | |
return MPQ(a) / MPQ(b) | |
def quo(self, a, b): | |
"""Quotient of ``a`` and ``b``, implies ``__truediv__``. """ | |
return MPQ(a) / MPQ(b) | |
def rem(self, a, b): | |
"""Remainder of ``a`` and ``b``, implies nothing. """ | |
return self.zero | |
def div(self, a, b): | |
"""Division of ``a`` and ``b``, implies ``__truediv__``. """ | |
return MPQ(a) / MPQ(b), self.zero | |
def numer(self, a): | |
"""Returns numerator of ``a``. """ | |
return a.numerator | |
def denom(self, a): | |
"""Returns denominator of ``a``. """ | |
return a.denominator | |
QQ = RationalField() | |