peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/realfield.py
"""Implementation of :class:`RealField` class. """ | |
from sympy.core.numbers import Float | |
from sympy.polys.domains.field import Field | |
from sympy.polys.domains.simpledomain import SimpleDomain | |
from sympy.polys.domains.characteristiczero import CharacteristicZero | |
from sympy.polys.domains.mpelements import MPContext | |
from sympy.polys.polyerrors import CoercionFailed | |
from sympy.utilities import public | |
class RealField(Field, CharacteristicZero, SimpleDomain): | |
"""Real numbers up to the given precision. """ | |
rep = 'RR' | |
is_RealField = is_RR = True | |
is_Exact = False | |
is_Numerical = True | |
is_PID = False | |
has_assoc_Ring = False | |
has_assoc_Field = True | |
_default_precision = 53 | |
def has_default_precision(self): | |
return self.precision == self._default_precision | |
def precision(self): | |
return self._context.prec | |
def dps(self): | |
return self._context.dps | |
def tolerance(self): | |
return self._context.tolerance | |
def __init__(self, prec=_default_precision, dps=None, tol=None): | |
context = MPContext(prec, dps, tol, True) | |
context._parent = self | |
self._context = context | |
self.dtype = context.mpf | |
self.zero = self.dtype(0) | |
self.one = self.dtype(1) | |
def __eq__(self, other): | |
return (isinstance(other, RealField) | |
and self.precision == other.precision | |
and self.tolerance == other.tolerance) | |
def __hash__(self): | |
return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance)) | |
def to_sympy(self, element): | |
"""Convert ``element`` to SymPy number. """ | |
return Float(element, self.dps) | |
def from_sympy(self, expr): | |
"""Convert SymPy's number to ``dtype``. """ | |
number = expr.evalf(n=self.dps) | |
if number.is_Number: | |
return self.dtype(number) | |
else: | |
raise CoercionFailed("expected real number, got %s" % expr) | |
def from_ZZ(self, element, base): | |
return self.dtype(element) | |
def from_ZZ_python(self, element, base): | |
return self.dtype(element) | |
def from_QQ(self, element, base): | |
return self.dtype(element.numerator) / element.denominator | |
def from_QQ_python(self, element, base): | |
return self.dtype(element.numerator) / element.denominator | |
def from_ZZ_gmpy(self, element, base): | |
return self.dtype(int(element)) | |
def from_QQ_gmpy(self, element, base): | |
return self.dtype(int(element.numerator)) / int(element.denominator) | |
def from_AlgebraicField(self, element, base): | |
return self.from_sympy(base.to_sympy(element).evalf(self.dps)) | |
def from_RealField(self, element, base): | |
if self == base: | |
return element | |
else: | |
return self.dtype(element) | |
def from_ComplexField(self, element, base): | |
if not element.imag: | |
return self.dtype(element.real) | |
def to_rational(self, element, limit=True): | |
"""Convert a real number to rational number. """ | |
return self._context.to_rational(element, limit) | |
def get_ring(self): | |
"""Returns a ring associated with ``self``. """ | |
return self | |
def get_exact(self): | |
"""Returns an exact domain associated with ``self``. """ | |
from sympy.polys.domains import QQ | |
return QQ | |
def gcd(self, a, b): | |
"""Returns GCD of ``a`` and ``b``. """ | |
return self.one | |
def lcm(self, a, b): | |
"""Returns LCM of ``a`` and ``b``. """ | |
return a*b | |
def almosteq(self, a, b, tolerance=None): | |
"""Check if ``a`` and ``b`` are almost equal. """ | |
return self._context.almosteq(a, b, tolerance) | |
RR = RealField() | |