peacock-data-public-datasets-idc-llm_eval
/
lm-evaluation
/build
/lib
/lm_eval
/tasks
/mutual
/utils.py
import numpy as np | |
def process_docs(dataset): | |
def _detokenize(text): | |
text = text.replace(" '", "'") | |
text = text.replace(" \n", "\n") | |
text = text.replace("\n ", "\n") | |
text = text.replace(" n't", "n't") | |
text = text.replace("`` ", '"') | |
text = text.replace("''", '"') | |
# punctuation | |
text = text.replace(" :", ":") | |
text = text.replace(" ;", ";") | |
text = text.replace(" !", "!") | |
text = text.replace(" ?", "?") | |
text = text.replace(" ,", ",") | |
text = text.replace(" .", ".") | |
return text | |
def _process(doc): | |
return { | |
"article": _detokenize(doc["article"]), | |
"options": [_detokenize(option) for option in doc["options"]], | |
} | |
return dataset.map(_process) | |
def process_results(doc, results): | |
gold = ["A", "B", "C", "D"].index(doc["answers"]) | |
r4_1 = np.argmax(results) == gold # r4_1 = accuracy | |
ranks = sorted(results, reverse=True) | |
r4_2 = (ranks.index(results[gold]) == 1) + r4_1 | |
mrr = 1.0 / (ranks.index(results[gold]) + 1) # `+ 1` for index offset | |
return {"r@1": r4_1, "r@2": r4_2, "mrr": mrr} | |