peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/evaluate
/module.py
| # Copyright 2020 The HuggingFace Datasets Authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """ EvaluationModule base class.""" | |
| import collections | |
| import itertools | |
| import os | |
| import types | |
| import uuid | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import pyarrow as pa | |
| from datasets import DatasetInfo, DownloadConfig, DownloadManager | |
| from datasets.arrow_dataset import Dataset | |
| from datasets.arrow_reader import ArrowReader | |
| from datasets.arrow_writer import ArrowWriter | |
| from datasets.features import Features, Sequence, Value | |
| from datasets.features.features import _check_non_null_non_empty_recursive | |
| from datasets.utils.filelock import BaseFileLock, FileLock, Timeout | |
| from datasets.utils.py_utils import copyfunc, temp_seed, zip_dict | |
| from . import config | |
| from .info import EvaluationModuleInfo | |
| from .naming import camelcase_to_snakecase | |
| from .utils.logging import get_logger | |
| logger = get_logger(__name__) | |
| class FileFreeLock(BaseFileLock): | |
| """Thread lock until a file **cannot** be locked""" | |
| def __init__(self, lock_file, *args, **kwargs): | |
| self.filelock = FileLock(lock_file) | |
| super().__init__(lock_file, *args, **kwargs) | |
| def _acquire(self): | |
| try: | |
| self.filelock.acquire(timeout=0.01, poll_intervall=0.02) # Try to lock once | |
| except Timeout: | |
| # We couldn't acquire the lock, the file is locked! | |
| self._lock_file_fd = self.filelock.lock_file | |
| else: | |
| # We were able to acquire the lock, the file is not yet locked! | |
| self.filelock.release() | |
| self._lock_file_fd = None | |
| def _release(self): | |
| self._lock_file_fd = None | |
| # lists - summarize long lists similarly to NumPy | |
| # arrays/tensors - let the frameworks control formatting | |
| def summarize_if_long_list(obj): | |
| if not type(obj) == list or len(obj) <= 6: | |
| return f"{obj}" | |
| def format_chunk(chunk): | |
| return ", ".join(repr(x) for x in chunk) | |
| return f"[{format_chunk(obj[:3])}, ..., {format_chunk(obj[-3:])}]" | |
| class EvaluationModuleInfoMixin: | |
| """This base class exposes some attributes of EvaluationModuleInfo | |
| at the base level of the EvaluationModule for easy access. | |
| """ | |
| def __init__(self, info: EvaluationModuleInfo): | |
| self._module_info = info | |
| def info(self): | |
| """:class:`evaluate.EvaluationModuleInfo` object containing all the metadata in the evaluation module.""" | |
| return self._module_info | |
| def name(self) -> str: | |
| return self._module_info.module_name | |
| def experiment_id(self) -> Optional[str]: | |
| return self._module_info.experiment_id | |
| def description(self) -> str: | |
| return self._module_info.description | |
| def citation(self) -> str: | |
| return self._module_info.citation | |
| def features(self) -> Features: | |
| return self._module_info.features | |
| def inputs_description(self) -> str: | |
| return self._module_info.inputs_description | |
| def homepage(self) -> Optional[str]: | |
| return self._module_info.homepage | |
| def license(self) -> str: | |
| return self._module_info.license | |
| def codebase_urls(self) -> Optional[List[str]]: | |
| return self._module_info.codebase_urls | |
| def reference_urls(self) -> Optional[List[str]]: | |
| return self._module_info.reference_urls | |
| def streamable(self) -> bool: | |
| return self._module_info.streamable | |
| def format(self) -> Optional[str]: | |
| return self._module_info.format | |
| def module_type(self) -> str: | |
| return self._module_info.module_type | |
| class EvaluationModule(EvaluationModuleInfoMixin): | |
| """A `EvaluationModule` is the base class and common API for metrics, comparisons, and measurements. | |
| Args: | |
| config_name (`str`): | |
| This is used to define a hash specific to a module computation script and prevents the module's data | |
| to be overridden when the module loading script is modified. | |
| keep_in_memory (`bool`): | |
| Keep all predictions and references in memory. Not possible in distributed settings. | |
| cache_dir (`str`): | |
| Path to a directory in which temporary prediction/references data will be stored. | |
| The data directory should be located on a shared file-system in distributed setups. | |
| num_process (`int`): | |
| Specify the total number of nodes in a distributed settings. | |
| This is useful to compute module in distributed setups (in particular non-additive modules like F1). | |
| process_id (`int`): | |
| Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
| This is useful to compute module in distributed setups (in particular non-additive metrics like F1). | |
| seed (`int`, optional): | |
| If specified, this will temporarily set numpy's random seed when [`~evaluate.EvaluationModule.compute`] is run. | |
| experiment_id (`str`): | |
| A specific experiment id. This is used if several distributed evaluations share the same file system. | |
| This is useful to compute module in distributed setups (in particular non-additive metrics like F1). | |
| hash (`str`): | |
| Used to identify the evaluation module according to the hashed file contents. | |
| max_concurrent_cache_files (`int`): | |
| Max number of concurrent module cache files (default `10000`). | |
| timeout (`Union[int, float]`): | |
| Timeout in second for distributed setting synchronization. | |
| """ | |
| def __init__( | |
| self, | |
| config_name: Optional[str] = None, | |
| keep_in_memory: bool = False, | |
| cache_dir: Optional[str] = None, | |
| num_process: int = 1, | |
| process_id: int = 0, | |
| seed: Optional[int] = None, | |
| experiment_id: Optional[str] = None, | |
| hash: str = None, | |
| max_concurrent_cache_files: int = 10000, | |
| timeout: Union[int, float] = 100, | |
| **kwargs, | |
| ): | |
| # prepare info | |
| self.config_name = config_name or "default" | |
| info = self._info() | |
| info.module_name = camelcase_to_snakecase(self.__class__.__name__) | |
| info.config_name = self.config_name | |
| info.experiment_id = experiment_id or "default_experiment" | |
| EvaluationModuleInfoMixin.__init__(self, info) # For easy access on low level | |
| # Safety checks on num_process and process_id | |
| if not isinstance(process_id, int) or process_id < 0: | |
| raise ValueError("'process_id' should be a number greater than 0") | |
| if not isinstance(num_process, int) or num_process <= process_id: | |
| raise ValueError("'num_process' should be a number greater than process_id") | |
| if keep_in_memory and num_process != 1: | |
| raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).") | |
| self.num_process = num_process | |
| self.process_id = process_id | |
| self.max_concurrent_cache_files = max_concurrent_cache_files | |
| self.keep_in_memory = keep_in_memory | |
| self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE) | |
| self.data_dir = self._build_data_dir() | |
| if seed is None: | |
| _, seed, pos, *_ = np.random.get_state() | |
| self.seed: int = seed[pos] if pos < 624 else seed[0] | |
| else: | |
| self.seed: int = seed | |
| self.timeout: Union[int, float] = timeout | |
| # Update 'compute' and 'add' docstring | |
| # methods need to be copied otherwise it changes the docstrings of every instance | |
| self.compute = types.MethodType(copyfunc(self.compute), self) | |
| self.add_batch = types.MethodType(copyfunc(self.add_batch), self) | |
| self.add = types.MethodType(copyfunc(self.add), self) | |
| self.compute.__func__.__doc__ += self.info.inputs_description | |
| self.add_batch.__func__.__doc__ += self.info.inputs_description | |
| self.add.__func__.__doc__ += self.info.inputs_description | |
| # self.arrow_schema = pa.schema(field for field in self.info.features.type) | |
| self.selected_feature_format = None | |
| self.buf_writer = None | |
| self.writer = None | |
| self.writer_batch_size = None | |
| self.data = None | |
| # This is the cache file we store our predictions/references in | |
| # Keep it None for now so we can (cloud)pickle the object | |
| self.cache_file_name = None | |
| self.filelock = None | |
| self.rendez_vous_lock = None | |
| # This is all the cache files on which we have a lock when we are in a distributed setting | |
| self.file_paths = None | |
| self.filelocks = None | |
| # This fingerprints the evaluation module according to the hashed contents of the module code | |
| self._hash = hash | |
| def __len__(self): | |
| """Return the number of examples (predictions or predictions/references pair) | |
| currently stored in the evaluation module's cache. | |
| """ | |
| return 0 if self.writer is None else len(self.writer) | |
| def __repr__(self): | |
| return ( | |
| f'EvaluationModule(name: "{self.name}", module_type: "{self.module_type}", ' | |
| f'features: {self.features}, usage: """{self.inputs_description}""", ' | |
| f"stored examples: {len(self)})" | |
| ) | |
| def _build_data_dir(self): | |
| """Path of this evaluation module in cache_dir: | |
| Will be: | |
| self._data_dir_root/self.name/self.config_name/self.hash (if not none)/ | |
| If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped. | |
| """ | |
| builder_data_dir = self._data_dir_root | |
| builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name) | |
| os.makedirs(builder_data_dir, exist_ok=True) | |
| return builder_data_dir | |
| def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]: | |
| """Create a new cache file. If the default cache file is used, we generated a new hash.""" | |
| file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow") | |
| filelock = None | |
| for i in range(self.max_concurrent_cache_files): | |
| filelock = FileLock(file_path + ".lock") | |
| try: | |
| filelock.acquire(timeout=timeout) | |
| except Timeout: | |
| # If we have reached the max number of attempts or we are not allow to find a free name (distributed setup) | |
| # We raise an error | |
| if self.num_process != 1: | |
| raise ValueError( | |
| f"Error in _create_cache_file: another evaluation module instance is already using the local cache file at {file_path}. " | |
| f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " | |
| f"between distributed evaluation module instances." | |
| ) from None | |
| if i == self.max_concurrent_cache_files - 1: | |
| raise ValueError( | |
| f"Cannot acquire lock, too many evaluation module instance are operating concurrently on this file system." | |
| f"You should set a larger value of max_concurrent_cache_files when creating the evaluation module " | |
| f"(current value is {self.max_concurrent_cache_files})." | |
| ) from None | |
| # In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name. | |
| file_uuid = str(uuid.uuid4()) | |
| file_path = os.path.join( | |
| self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow" | |
| ) | |
| else: | |
| break | |
| return file_path, filelock | |
| def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]: | |
| """Get a lock on all the cache files in a distributed setup. | |
| We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds). | |
| """ | |
| if self.num_process == 1: | |
| if self.cache_file_name is None: | |
| raise ValueError( | |
| "Evaluation module cache file doesn't exist. Please make sure that you call `add` or `add_batch` " | |
| "at least once before calling `compute`." | |
| ) | |
| file_paths = [self.cache_file_name] | |
| else: | |
| file_paths = [ | |
| os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow") | |
| for process_id in range(self.num_process) | |
| ] | |
| # Let's acquire a lock on each process files to be sure they are finished writing | |
| filelocks = [] | |
| for process_id, file_path in enumerate(file_paths): | |
| if process_id == 0: # process 0 already has its lock file | |
| filelocks.append(self.filelock) | |
| else: | |
| filelock = FileLock(file_path + ".lock") | |
| try: | |
| filelock.acquire(timeout=self.timeout) | |
| except Timeout: | |
| raise ValueError( | |
| f"Cannot acquire lock on cached file {file_path} for process {process_id}." | |
| ) from None | |
| else: | |
| filelocks.append(filelock) | |
| return file_paths, filelocks | |
| def _check_all_processes_locks(self): | |
| expected_lock_file_names = [ | |
| os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock") | |
| for process_id in range(self.num_process) | |
| ] | |
| for expected_lock_file_name in expected_lock_file_names: | |
| nofilelock = FileFreeLock(expected_lock_file_name) | |
| try: | |
| nofilelock.acquire(timeout=self.timeout) | |
| except Timeout: | |
| raise ValueError( | |
| f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." | |
| ) from None | |
| else: | |
| nofilelock.release() | |
| def _check_rendez_vous(self): | |
| expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock") | |
| nofilelock = FileFreeLock(expected_lock_file_name) | |
| try: | |
| nofilelock.acquire(timeout=self.timeout) | |
| except Timeout: | |
| raise ValueError( | |
| f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." | |
| ) from None | |
| else: | |
| nofilelock.release() | |
| lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") | |
| rendez_vous_lock = FileLock(lock_file_name) | |
| try: | |
| rendez_vous_lock.acquire(timeout=self.timeout) | |
| except Timeout: | |
| raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None | |
| else: | |
| rendez_vous_lock.release() | |
| def _finalize(self): | |
| """Close all the writing process and load/gather the data | |
| from all the nodes if main node or all_process is True. | |
| """ | |
| if self.writer is not None: | |
| self.writer.finalize() | |
| self.writer = None | |
| # release the locks of the processes > 0 so that process 0 can lock them to read + delete the data | |
| if self.filelock is not None and self.process_id > 0: | |
| self.filelock.release() | |
| if self.keep_in_memory: | |
| # Read the predictions and references | |
| reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.selected_feature_format)) | |
| self.data = Dataset.from_buffer(self.buf_writer.getvalue()) | |
| elif self.process_id == 0: | |
| # Let's acquire a lock on each node files to be sure they are finished writing | |
| file_paths, filelocks = self._get_all_cache_files() | |
| # Read the predictions and references | |
| try: | |
| reader = ArrowReader(path="", info=DatasetInfo(features=self.selected_feature_format)) | |
| self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths])) | |
| except FileNotFoundError: | |
| raise ValueError( | |
| "Error in finalize: another evaluation module instance is already using the local cache file. " | |
| "Please specify an experiment_id to avoid collision between distributed evaluation module instances." | |
| ) from None | |
| # Store file paths and locks and we will release/delete them after the computation. | |
| self.file_paths = file_paths | |
| self.filelocks = filelocks | |
| def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: | |
| """Compute the evaluation module. | |
| Usage of positional arguments is not allowed to prevent mistakes. | |
| Args: | |
| predictions (`list/array/tensor`, *optional*): | |
| Predictions. | |
| references (`list/array/tensor`, *optional*): | |
| References. | |
| **kwargs (optional): | |
| Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] | |
| method (see details in the docstring). | |
| Return: | |
| `dict` or `None` | |
| - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). | |
| - `None` if the evaluation module is not run on the main process (`process_id != 0`). | |
| ```py | |
| >>> import evaluate | |
| >>> accuracy = evaluate.load("accuracy") | |
| >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1]) | |
| ``` | |
| """ | |
| all_kwargs = {"predictions": predictions, "references": references, **kwargs} | |
| if predictions is None and references is None: | |
| missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs} | |
| all_kwargs.update(missing_kwargs) | |
| else: | |
| missing_inputs = [k for k in self._feature_names() if k not in all_kwargs] | |
| if missing_inputs: | |
| raise ValueError( | |
| f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}" | |
| ) | |
| inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()} | |
| compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()} | |
| if any(v is not None for v in inputs.values()): | |
| self.add_batch(**inputs) | |
| self._finalize() | |
| self.cache_file_name = None | |
| self.filelock = None | |
| self.selected_feature_format = None | |
| if self.process_id == 0: | |
| self.data.set_format(type=self.info.format) | |
| inputs = {input_name: self.data[input_name] for input_name in self._feature_names()} | |
| with temp_seed(self.seed): | |
| output = self._compute(**inputs, **compute_kwargs) | |
| if self.buf_writer is not None: | |
| self.buf_writer = None | |
| del self.data | |
| self.data = None | |
| else: | |
| # Release locks and delete all the cache files. Process 0 is released last. | |
| for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))): | |
| logger.info(f"Removing {file_path}") | |
| del self.data | |
| self.data = None | |
| del self.writer | |
| self.writer = None | |
| os.remove(file_path) | |
| filelock.release() | |
| return output | |
| else: | |
| return None | |
| def add_batch(self, *, predictions=None, references=None, **kwargs): | |
| """Add a batch of predictions and references for the evaluation module's stack. | |
| Args: | |
| predictions (`list/array/tensor`, *optional*): | |
| Predictions. | |
| references (`list/array/tensor`, *optional*): | |
| References. | |
| Example: | |
| ```py | |
| >>> import evaluate | |
| >>> accuracy = evaluate.load("accuracy") | |
| >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): | |
| ... accuracy.add_batch(references=refs, predictions=preds) | |
| ``` | |
| """ | |
| bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] | |
| if bad_inputs: | |
| raise ValueError( | |
| f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" | |
| ) | |
| batch = {"predictions": predictions, "references": references, **kwargs} | |
| batch = {input_name: batch[input_name] for input_name in self._feature_names()} | |
| if self.writer is None: | |
| self.selected_feature_format = self._infer_feature_from_batch(batch) | |
| self._init_writer() | |
| try: | |
| for key, column in batch.items(): | |
| if len(column) > 0: | |
| self._enforce_nested_string_type(self.selected_feature_format[key], column[0]) | |
| batch = self.selected_feature_format.encode_batch(batch) | |
| self.writer.write_batch(batch) | |
| except (pa.ArrowInvalid, TypeError): | |
| if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch): | |
| col0 = next(iter(batch)) | |
| bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0] | |
| error_msg = ( | |
| f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})" | |
| ) | |
| elif set(self.selected_feature_format) != {"references", "predictions"}: | |
| error_msg = ( | |
| f"Module inputs don't match the expected format.\n" | |
| f"Expected format: {self.selected_feature_format },\n" | |
| ) | |
| error_msg_inputs = ",\n".join( | |
| f"Input {input_name}: {summarize_if_long_list(batch[input_name])}" | |
| for input_name in self.selected_feature_format | |
| ) | |
| error_msg += error_msg_inputs | |
| else: | |
| error_msg = ( | |
| f"Predictions and/or references don't match the expected format.\n" | |
| f"Expected format: {self.selected_feature_format },\n" | |
| f"Input predictions: {summarize_if_long_list(predictions)},\n" | |
| f"Input references: {summarize_if_long_list(references)}" | |
| ) | |
| raise ValueError(error_msg) from None | |
| def add(self, *, prediction=None, reference=None, **kwargs): | |
| """Add one prediction and reference for the evaluation module's stack. | |
| Args: | |
| prediction (`list/array/tensor`, *optional*): | |
| Predictions. | |
| reference (`list/array/tensor`, *optional*): | |
| References. | |
| Example: | |
| ```py | |
| >>> import evaluate | |
| >>> accuracy = evaluate.load("accuracy") | |
| >>> accuracy.add(references=[0,1], predictions=[1,0]) | |
| ``` | |
| """ | |
| bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] | |
| if bad_inputs: | |
| raise ValueError( | |
| f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" | |
| ) | |
| example = {"predictions": prediction, "references": reference, **kwargs} | |
| example = {input_name: example[input_name] for input_name in self._feature_names()} | |
| if self.writer is None: | |
| self.selected_feature_format = self._infer_feature_from_example(example) | |
| self._init_writer() | |
| try: | |
| self._enforce_nested_string_type(self.selected_feature_format, example) | |
| example = self.selected_feature_format.encode_example(example) | |
| self.writer.write(example) | |
| except (pa.ArrowInvalid, TypeError): | |
| error_msg = ( | |
| f"Evaluation module inputs don't match the expected format.\n" | |
| f"Expected format: {self.selected_feature_format},\n" | |
| ) | |
| error_msg_inputs = ",\n".join( | |
| f"Input {input_name}: {summarize_if_long_list(example[input_name])}" | |
| for input_name in self.selected_feature_format | |
| ) | |
| error_msg += error_msg_inputs | |
| raise ValueError(error_msg) from None | |
| def _infer_feature_from_batch(self, batch): | |
| if isinstance(self.features, Features): | |
| return self.features | |
| else: | |
| example = dict([(k, v[0]) for k, v in batch.items()]) | |
| return self._infer_feature_from_example(example) | |
| def _infer_feature_from_example(self, example): | |
| if isinstance(self.features, Features): | |
| return self.features | |
| else: | |
| for features in self.features: | |
| try: | |
| self._enforce_nested_string_type(features, example) | |
| features.encode_example(example) | |
| return features | |
| except (ValueError, TypeError): | |
| continue | |
| feature_strings = "\n".join([f"Feature option {i}: {feature}" for i, feature in enumerate(self.features)]) | |
| error_msg = ( | |
| f"Predictions and/or references don't match the expected format.\n" | |
| f"Expected format:\n{feature_strings},\n" | |
| f"Input predictions: {summarize_if_long_list(example['predictions'])},\n" | |
| f"Input references: {summarize_if_long_list(example['references'])}" | |
| ) | |
| raise ValueError(error_msg) from None | |
| def _feature_names(self): | |
| if isinstance(self.features, list): | |
| feature_names = list(self.features[0].keys()) | |
| else: | |
| feature_names = list(self.features.keys()) | |
| return feature_names | |
| def _init_writer(self, timeout=1): | |
| if self.num_process > 1: | |
| if self.process_id == 0: | |
| file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") | |
| self.rendez_vous_lock = FileLock(file_path) | |
| try: | |
| self.rendez_vous_lock.acquire(timeout=timeout) | |
| except TimeoutError: | |
| raise ValueError( | |
| f"Error in _init_writer: another evalution module instance is already using the local cache file at {file_path}. " | |
| f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " | |
| f"between distributed evaluation module instances." | |
| ) from None | |
| if self.keep_in_memory: | |
| self.buf_writer = pa.BufferOutputStream() | |
| self.writer = ArrowWriter( | |
| features=self.selected_feature_format, stream=self.buf_writer, writer_batch_size=self.writer_batch_size | |
| ) | |
| else: | |
| self.buf_writer = None | |
| # Get cache file name and lock it | |
| if self.cache_file_name is None or self.filelock is None: | |
| cache_file_name, filelock = self._create_cache_file() # get ready | |
| self.cache_file_name = cache_file_name | |
| self.filelock = filelock | |
| self.writer = ArrowWriter( | |
| features=self.selected_feature_format, | |
| path=self.cache_file_name, | |
| writer_batch_size=self.writer_batch_size, | |
| ) | |
| # Setup rendez-vous here if | |
| if self.num_process > 1: | |
| if self.process_id == 0: | |
| self._check_all_processes_locks() # wait for everyone to be ready | |
| self.rendez_vous_lock.release() # let everyone go | |
| else: | |
| self._check_rendez_vous() # wait for master to be ready and to let everyone go | |
| def _info(self) -> EvaluationModuleInfo: | |
| """Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details. | |
| Warning: This function is only called once and the result is cached for all | |
| following .info() calls. | |
| Returns: | |
| info: (EvaluationModuleInfo) The EvaluationModule information | |
| """ | |
| raise NotImplementedError | |
| def download_and_prepare( | |
| self, | |
| download_config: Optional[DownloadConfig] = None, | |
| dl_manager: Optional[DownloadManager] = None, | |
| ): | |
| """Downloads and prepares evaluation module for reading. | |
| Args: | |
| download_config ([`DownloadConfig`], *optional*): | |
| Specific download configuration parameters. | |
| dl_manager ([`DownloadManager`], *optional*): | |
| Specific download manager to use. | |
| Example: | |
| ```py | |
| >>> import evaluate | |
| ``` | |
| """ | |
| if dl_manager is None: | |
| if download_config is None: | |
| download_config = DownloadConfig() | |
| download_config.cache_dir = os.path.join(self.data_dir, "downloads") | |
| download_config.force_download = False | |
| dl_manager = DownloadManager( | |
| dataset_name=self.name, download_config=download_config, data_dir=self.data_dir | |
| ) | |
| self._download_and_prepare(dl_manager) | |
| def _download_and_prepare(self, dl_manager): | |
| """Downloads and prepares resources for the evaluation module. | |
| This is the internal implementation to overwrite called when user calls | |
| `download_and_prepare`. It should download all required resources for the evaluation module. | |
| Args: | |
| dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data. | |
| """ | |
| return None | |
| def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]: | |
| """This method defines the common API for all the evaluation module in the library""" | |
| raise NotImplementedError | |
| def __del__(self): | |
| if hasattr(self, "filelock") and self.filelock is not None: | |
| self.filelock.release() | |
| if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None: | |
| self.rendez_vous_lock.release() | |
| if hasattr(self, "writer"): # in case it was already deleted | |
| del self.writer | |
| if hasattr(self, "data"): # in case it was already deleted | |
| del self.data | |
| def _enforce_nested_string_type(self, schema, obj): | |
| """ | |
| Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string. | |
| Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error. | |
| """ | |
| # Nested structures: we allow dict, list, tuples, sequences | |
| if isinstance(schema, dict): | |
| return [self._enforce_nested_string_type(sub_schema, o) for k, (sub_schema, o) in zip_dict(schema, obj)] | |
| elif isinstance(schema, (list, tuple)): | |
| sub_schema = schema[0] | |
| return [self._enforce_nested_string_type(sub_schema, o) for o in obj] | |
| elif isinstance(schema, Sequence): | |
| # We allow to reverse list of dict => dict of list for compatiblity with tfds | |
| if isinstance(schema.feature, dict): | |
| if isinstance(obj, (list, tuple)): | |
| # obj is a list of dict | |
| for k, dict_tuples in zip_dict(schema.feature, *obj): | |
| for sub_obj in dict_tuples[1:]: | |
| if _check_non_null_non_empty_recursive(sub_obj, dict_tuples[0]): | |
| self._enforce_nested_string_type(dict_tuples[0], sub_obj) | |
| break | |
| return None | |
| else: | |
| # obj is a single dict | |
| for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj): | |
| for sub_obj in sub_objs: | |
| if _check_non_null_non_empty_recursive(sub_obj, sub_schema): | |
| self._enforce_nested_string_type(sub_schema, sub_obj) | |
| break | |
| return None | |
| # schema.feature is not a dict | |
| if isinstance(obj, str): # don't interpret a string as a list | |
| raise ValueError(f"Got a string but expected a list instead: '{obj}'") | |
| if obj is None: | |
| return None | |
| else: | |
| if len(obj) > 0: | |
| for first_elmt in obj: | |
| if _check_non_null_non_empty_recursive(first_elmt, schema.feature): | |
| break | |
| if not isinstance(first_elmt, list): | |
| return self._enforce_nested_string_type(schema.feature, first_elmt) | |
| elif isinstance(schema, Value): | |
| if pa.types.is_string(schema.pa_type) and not isinstance(obj, str): | |
| raise TypeError(f"Expected type str but got {type(obj)}.") | |
| class Metric(EvaluationModule): | |
| """A Metric is the base class and common API for all metrics. | |
| Args: | |
| config_name (`str`): | |
| This is used to define a hash specific to a metric computation script and prevents the metric's data | |
| to be overridden when the metric loading script is modified. | |
| keep_in_memory (`bool`): | |
| Keep all predictions and references in memory. Not possible in distributed settings. | |
| cache_dir (`str`): | |
| Path to a directory in which temporary prediction/references data will be stored. | |
| The data directory should be located on a shared file-system in distributed setups. | |
| num_process (`int`): | |
| Specify the total number of nodes in a distributed settings. | |
| This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). | |
| process_id (`int`): | |
| Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
| This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). | |
| seed (`int`, *optional*): | |
| If specified, this will temporarily set numpy's random seed when [`~evaluate.Metric.compute`] is run. | |
| experiment_id (`str`): | |
| A specific experiment id. This is used if several distributed evaluations share the same file system. | |
| This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). | |
| max_concurrent_cache_files (`int`): | |
| Max number of concurrent metric cache files (default `10000`). | |
| timeout (`Union[int, float]`): | |
| Timeout in second for distributed setting synchronization. | |
| """ | |
| class Comparison(EvaluationModule): | |
| """A Comparison is the base class and common API for all comparisons. | |
| Args: | |
| config_name (`str`): | |
| This is used to define a hash specific to a comparison computation script and prevents the comparison's data | |
| to be overridden when the comparison loading script is modified. | |
| keep_in_memory (`bool`): | |
| Keep all predictions and references in memory. Not possible in distributed settings. | |
| cache_dir (`str`): | |
| Path to a directory in which temporary prediction/references data will be stored. | |
| The data directory should be located on a shared file-system in distributed setups. | |
| num_process (`int`): | |
| Specify the total number of nodes in a distributed settings. | |
| This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). | |
| process_id (`int`): | |
| Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
| This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). | |
| seed (`int`, *optional*): | |
| If specified, this will temporarily set numpy's random seed when [`~evaluate.Comparison.compute`] is run. | |
| experiment_id (`str`): | |
| A specific experiment id. This is used if several distributed evaluations share the same file system. | |
| This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). | |
| max_concurrent_cache_files (`int`): | |
| Max number of concurrent comparison cache files (default `10000`). | |
| timeout (`Union[int, float]`): | |
| Timeout in second for distributed setting synchronization. | |
| """ | |
| class Measurement(EvaluationModule): | |
| """A Measurement is the base class and common API for all measurements. | |
| Args: | |
| config_name (`str`): | |
| This is used to define a hash specific to a measurement computation script and prevents the measurement's data | |
| to be overridden when the measurement loading script is modified. | |
| keep_in_memory (`bool`): | |
| Keep all predictions and references in memory. Not possible in distributed settings. | |
| cache_dir (`str`): | |
| Path to a directory in which temporary prediction/references data will be stored. | |
| The data directory should be located on a shared file-system in distributed setups. | |
| num_process (`int`): | |
| Specify the total number of nodes in a distributed settings. | |
| This is useful to compute measurements in distributed setups (in particular non-additive measurements). | |
| process_id (`int`): | |
| Specify the id of the current process in a distributed setup (between 0 and num_process-1) | |
| This is useful to compute measurements in distributed setups (in particular non-additive measurements). | |
| seed (`int`, *optional*): | |
| If specified, this will temporarily set numpy's random seed when [`~evaluate.Measurement.compute`] is run. | |
| experiment_id (`str`): | |
| A specific experiment id. This is used if several distributed evaluations share the same file system. | |
| This is useful to compute measurements in distributed setups (in particular non-additive measurements). | |
| max_concurrent_cache_files (`int`): | |
| Max number of concurrent measurement cache files (default `10000`). | |
| timeout (`Union[int, float]`): | |
| Timeout in second for distributed setting synchronization. | |
| """ | |
| class CombinedEvaluations: | |
| def __init__(self, evaluation_modules, force_prefix=False): | |
| from .loading import load # avoid circular imports | |
| self.evaluation_module_names = None | |
| if isinstance(evaluation_modules, list): | |
| self.evaluation_modules = evaluation_modules | |
| elif isinstance(evaluation_modules, dict): | |
| self.evaluation_modules = list(evaluation_modules.values()) | |
| self.evaluation_module_names = list(evaluation_modules.keys()) | |
| loaded_modules = [] | |
| for module in self.evaluation_modules: | |
| if isinstance(module, str): | |
| module = load(module) | |
| loaded_modules.append(module) | |
| self.evaluation_modules = loaded_modules | |
| if self.evaluation_module_names is None: | |
| self.evaluation_module_names = [module.name for module in self.evaluation_modules] | |
| self.force_prefix = force_prefix | |
| def add(self, prediction=None, reference=None, **kwargs): | |
| """Add one prediction and reference for each evaluation module's stack. | |
| Args: | |
| predictions (`list/array/tensor`, *optional*): | |
| Predictions. | |
| references (`list/array/tensor`, *optional*): | |
| References. | |
| Example: | |
| ```py | |
| >>> import evaluate | |
| >>> accuracy = evaluate.load("accuracy") | |
| >>> f1 = evaluate.load("f1") | |
| >>> clf_metrics = combine(["accuracy", "f1"]) | |
| >>> for ref, pred in zip([0,1,0,1], [1,0,0,1]): | |
| ... clf_metrics.add(references=ref, predictions=pred) | |
| ``` | |
| """ | |
| for evaluation_module in self.evaluation_modules: | |
| batch = {"predictions": prediction, "references": reference, **kwargs} | |
| batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} | |
| evaluation_module.add(**batch) | |
| def add_batch(self, predictions=None, references=None, **kwargs): | |
| """Add a batch of predictions and references for each evaluation module's stack. | |
| Args: | |
| predictions (`list/array/tensor`, *optional*): | |
| Predictions. | |
| references (`list/array/tensor`, *optional*): | |
| References. | |
| Example: | |
| ```py | |
| >>> import evaluate | |
| >>> accuracy = evaluate.load("accuracy") | |
| >>> f1 = evaluate.load("f1") | |
| >>> clf_metrics = combine(["accuracy", "f1"]) | |
| >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): | |
| ... clf_metrics.add(references=refs, predictions=preds) | |
| ``` | |
| """ | |
| for evaluation_module in self.evaluation_modules: | |
| batch = {"predictions": predictions, "references": references, **kwargs} | |
| batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} | |
| evaluation_module.add_batch(**batch) | |
| def compute(self, predictions=None, references=None, **kwargs): | |
| """Compute each evaluation module. | |
| Usage of positional arguments is not allowed to prevent mistakes. | |
| Args: | |
| predictions (`list/array/tensor`, *optional*): | |
| Predictions. | |
| references (`list/array/tensor`, *optional*): | |
| References. | |
| **kwargs (*optional*): | |
| Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] | |
| method (see details in the docstring). | |
| Return: | |
| `dict` or `None` | |
| - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). | |
| - `None` if the evaluation module is not run on the main process (`process_id != 0`). | |
| Example: | |
| ```py | |
| >>> import evaluate | |
| >>> accuracy = evaluate.load("accuracy") | |
| >>> f1 = evaluate.load("f1") | |
| >>> clf_metrics = combine(["accuracy", "f1"]) | |
| >>> clf_metrics.compute(predictions=[0,1], references=[1,1]) | |
| {'accuracy': 0.5, 'f1': 0.6666666666666666} | |
| ``` | |
| """ | |
| results = [] | |
| for evaluation_module in self.evaluation_modules: | |
| batch = {"predictions": predictions, "references": references, **kwargs} | |
| results.append(evaluation_module.compute(**batch)) | |
| return self._merge_results(results) | |
| def _merge_results(self, results): | |
| merged_results = {} | |
| results_keys = list(itertools.chain.from_iterable([r.keys() for r in results])) | |
| duplicate_keys = {item for item, count in collections.Counter(results_keys).items() if count > 1} | |
| duplicate_names = [ | |
| item for item, count in collections.Counter(self.evaluation_module_names).items() if count > 1 | |
| ] | |
| duplicate_counter = {name: 0 for name in duplicate_names} | |
| for module_name, result in zip(self.evaluation_module_names, results): | |
| for k, v in result.items(): | |
| if k not in duplicate_keys and not self.force_prefix: | |
| merged_results[f"{k}"] = v | |
| elif module_name in duplicate_counter: | |
| merged_results[f"{module_name}_{duplicate_counter[module_name]}_{k}"] = v | |
| else: | |
| merged_results[f"{module_name}_{k}"] = v | |
| if module_name in duplicate_counter: | |
| duplicate_counter[module_name] += 1 | |
| return merged_results | |
| def combine(evaluations, force_prefix=False): | |
| """Combines several metrics, comparisons, or measurements into a single `CombinedEvaluations` object that | |
| can be used like a single evaluation module. | |
| If two scores have the same name, then they are prefixed with their module names. | |
| And if two modules have the same name, please use a dictionary to give them different names, otherwise an integer id is appended to the prefix. | |
| Args: | |
| evaluations (`Union[list, dict]`): | |
| A list or dictionary of evaluation modules. The modules can either be passed | |
| as strings or loaded `EvaluationModule`s. If a dictionary is passed its keys are the names used and the values the modules. | |
| The names are used as prefix in case there are name overlaps in the returned results of each module or if `force_prefix=True`. | |
| force_prefix (`bool`, *optional*, defaults to `False`): | |
| If `True` all scores from the modules are prefixed with their name. If | |
| a dictionary is passed the keys are used as name otherwise the module's name. | |
| Examples: | |
| ```py | |
| >>> import evaluate | |
| >>> accuracy = evaluate.load("accuracy") | |
| >>> f1 = evaluate.load("f1") | |
| >>> clf_metrics = combine(["accuracy", "f1"]) | |
| ``` | |
| """ | |
| return CombinedEvaluations(evaluations, force_prefix=force_prefix) | |