|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import pathlib |
|
from copy import deepcopy |
|
from typing import List, Literal |
|
|
|
import filelock |
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from lm_eval.api.instance import Instance |
|
from lm_eval.api.model import LM |
|
from lm_eval.api.registry import register_model |
|
from lm_eval.models.utils import Collator |
|
from lm_eval.utils import ( |
|
eval_logger, |
|
get_rolling_token_windows, |
|
make_disjoint_window, |
|
simple_parse_args_string, |
|
) |
|
|
|
|
|
def _patch_pretrained_cfg( |
|
pretrained_cfg, trainer, tensor_model_parallel_size, pipeline_model_parallel_size |
|
): |
|
try: |
|
import omegaconf |
|
except ModuleNotFoundError: |
|
raise Exception( |
|
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed" |
|
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, " |
|
"or installing nemo following https://github.com/NVIDIA/NeMo.", |
|
) |
|
|
|
omegaconf.OmegaConf.set_struct(pretrained_cfg, True) |
|
with omegaconf.open_dict(pretrained_cfg): |
|
attributes_to_update = { |
|
"sequence_parallel": False, |
|
"activations_checkpoint_granularity": None, |
|
"activations_checkpoint_method": None, |
|
"precision": trainer.precision, |
|
"global_batch_size": None, |
|
"tensor_model_parallel_size": tensor_model_parallel_size, |
|
"pipeline_model_parallel_size": pipeline_model_parallel_size, |
|
"apply_rope_fusion": False, |
|
} |
|
for name, value in attributes_to_update.items(): |
|
if hasattr(pretrained_cfg, name): |
|
pretrained_cfg[name] = value |
|
return pretrained_cfg |
|
|
|
|
|
def _get_target_from_class(target_class) -> str: |
|
return f"{target_class.__module__}.{target_class.__name__}" |
|
|
|
|
|
def load_model( |
|
model_path: str, |
|
trainer, |
|
tensor_model_parallel_size: int, |
|
pipeline_model_parallel_size: int, |
|
) -> torch.nn.Module: |
|
try: |
|
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import ( |
|
MegatronGPTModel, |
|
) |
|
from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector |
|
except ModuleNotFoundError: |
|
raise Exception( |
|
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed" |
|
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, " |
|
"or installing nemo following https://github.com/NVIDIA/NeMo.", |
|
) |
|
model_path = pathlib.Path(model_path) |
|
|
|
save_restore_connector = NLPSaveRestoreConnector() |
|
if model_path.is_dir(): |
|
save_restore_connector.model_extracted_dir = model_path.as_posix() |
|
pretrained_cfg = save_restore_connector.restore_from( |
|
None, model_path.as_posix(), return_config=True, trainer=trainer |
|
) |
|
if not hasattr(pretrained_cfg, "target"): |
|
pretrained_cfg["target"] = _get_target_from_class(MegatronGPTModel) |
|
|
|
pretrained_cfg = _patch_pretrained_cfg( |
|
pretrained_cfg, |
|
trainer, |
|
tensor_model_parallel_size=tensor_model_parallel_size, |
|
pipeline_model_parallel_size=pipeline_model_parallel_size, |
|
) |
|
|
|
model_to_load_path = model_path |
|
override_config = pretrained_cfg |
|
|
|
module_name, class_name = override_config.target.rsplit(".", 1) |
|
model_class = getattr(importlib.import_module(module_name), class_name) |
|
|
|
|
|
tokenizer_lock = filelock.FileLock(f"/tmp/{model_path.name}.tokenizer.lock") |
|
|
|
def _synced_build_tokenizer(self): |
|
with tokenizer_lock: |
|
self._original_build_tokenizer() |
|
|
|
model_class._original_build_tokenizer = model_class._build_tokenizer |
|
model_class._build_tokenizer = _synced_build_tokenizer |
|
|
|
model = model_class.restore_from( |
|
restore_path=model_to_load_path.as_posix(), |
|
trainer=trainer, |
|
override_config_path=override_config, |
|
save_restore_connector=save_restore_connector, |
|
map_location=f"cuda:{trainer.local_rank}", |
|
) |
|
|
|
model.freeze() |
|
model.training = False |
|
try: |
|
|
|
model.model.language_model.encoder.activations_checkpoint_method = None |
|
except AttributeError: |
|
pass |
|
return model |
|
|
|
|
|
def setup_distributed_environment(trainer): |
|
try: |
|
from nemo.utils.app_state import AppState |
|
except ModuleNotFoundError: |
|
raise Exception( |
|
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed" |
|
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, " |
|
"or installing nemo following https://github.com/NVIDIA/NeMo.", |
|
) |
|
|
|
def dummy(): |
|
return |
|
|
|
if trainer.strategy.launcher is not None: |
|
trainer.strategy.launcher.launch(dummy, trainer=trainer) |
|
trainer.strategy.setup_environment() |
|
|
|
app_state = AppState() |
|
|
|
return app_state |
|
|
|
|
|
@register_model("nemo_lm") |
|
class NeMoLM(LM): |
|
def __init__( |
|
self, |
|
path: str, |
|
max_length: int = 4096, |
|
batch_size: int = 1, |
|
max_gen_toks: int = 256, |
|
devices: int = 1, |
|
num_nodes: int = 1, |
|
tensor_model_parallel_size: int = 1, |
|
pipeline_model_parallel_size: int = 1, |
|
precision: Literal[ |
|
"16-mixed", |
|
"bf16-mixed", |
|
"32-true", |
|
"64-true", |
|
64, |
|
32, |
|
16, |
|
"64", |
|
"32", |
|
"16", |
|
"bf16", |
|
] = "bf16", |
|
**kwargs, |
|
): |
|
try: |
|
from nemo.collections.nlp.modules.common.text_generation_utils import ( |
|
generate, |
|
) |
|
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy |
|
from pytorch_lightning.trainer.trainer import Trainer |
|
|
|
self.generate = generate |
|
except ModuleNotFoundError: |
|
raise Exception( |
|
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed" |
|
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, " |
|
"or installing nemo following https://github.com/NVIDIA/NeMo.", |
|
) |
|
|
|
super().__init__() |
|
|
|
if ( |
|
tensor_model_parallel_size == 1 |
|
and pipeline_model_parallel_size == 1 |
|
and devices > 1 |
|
): |
|
eval_logger.info( |
|
f"The number of data replicas for evaluation is {devices}." |
|
) |
|
eval_logger.info(f"The total number of devices is {devices}.") |
|
eval_logger.info( |
|
"No tensor parallelism or pipeline parallelism is applied." |
|
) |
|
|
|
elif tensor_model_parallel_size * pipeline_model_parallel_size == devices: |
|
eval_logger.info( |
|
f"Setting tensor parallelism to {tensor_model_parallel_size} and pipeline parallelism to {pipeline_model_parallel_size}." |
|
) |
|
eval_logger.info(f"The total number of devices is {devices}.") |
|
eval_logger.info("No data parallelism is applied.") |
|
|
|
else: |
|
raise ValueError( |
|
"Please set the product of tensor_model_parallel_size and pipeline_model_parallel_size" |
|
"equal to the specified number of devices." |
|
) |
|
|
|
if num_nodes > 1: |
|
raise ValueError( |
|
"A number of nodes greater than 1 is not supported yet. Please set num_nodes as 1." |
|
) |
|
|
|
trainer = Trainer( |
|
strategy=NLPDDPStrategy(), |
|
devices=devices, |
|
accelerator="gpu", |
|
num_nodes=num_nodes, |
|
precision=precision, |
|
logger=False, |
|
enable_checkpointing=False, |
|
use_distributed_sampler=False, |
|
) |
|
|
|
if ( |
|
tensor_model_parallel_size == 1 |
|
and pipeline_model_parallel_size == 1 |
|
and devices > 1 |
|
): |
|
self._device = torch.device(f"cuda:{trainer.global_rank}") |
|
self._rank = trainer.global_rank |
|
self._world_size = trainer.world_size |
|
self.model = load_model( |
|
path, |
|
trainer, |
|
tensor_model_parallel_size=tensor_model_parallel_size, |
|
pipeline_model_parallel_size=pipeline_model_parallel_size, |
|
).cuda() |
|
self.tokenizer = self.model.tokenizer |
|
self.app_state = setup_distributed_environment(trainer) |
|
|
|
self._max_length = max_length |
|
self._batch_size = int(batch_size) |
|
self._max_gen_toks = max_gen_toks |
|
|
|
@classmethod |
|
def create_from_arg_string(cls, arg_string, additional_config=None): |
|
args = simple_parse_args_string(arg_string) |
|
if additional_config: |
|
args["batch_size"] = additional_config.get("batch_size", 1) |
|
|
|
return cls(**args) |
|
|
|
@property |
|
def eot_token_id(self): |
|
try: |
|
return self.tokenizer.eos_id |
|
except AttributeError: |
|
return None |
|
|
|
@property |
|
def max_length(self): |
|
return self._max_length |
|
|
|
@property |
|
def max_gen_toks(self): |
|
return self._max_gen_toks |
|
|
|
@property |
|
def batch_size(self): |
|
return self._batch_size |
|
|
|
@property |
|
def device(self): |
|
return self._device |
|
|
|
@property |
|
def rank(self): |
|
return self._rank |
|
|
|
@property |
|
def world_size(self): |
|
return self._world_size |
|
|
|
@property |
|
def accelerator(self): |
|
return self._Accelerator(self.world_size) |
|
|
|
class _Accelerator: |
|
def __init__(self, world_size): |
|
self.world_size = world_size |
|
|
|
def wait_for_everyone(self): |
|
torch.distributed.barrier() |
|
|
|
def gather(self, local_tensor): |
|
gathered_tensors = [ |
|
torch.zeros(1, dtype=local_tensor.dtype).cuda() |
|
for _ in range(self.world_size) |
|
] |
|
torch.distributed.all_gather(gathered_tensors, local_tensor) |
|
return torch.cat(gathered_tensors) |
|
|
|
def tok_encode(self, string: str): |
|
return self.tokenizer.text_to_ids(string) |
|
|
|
def tok_decode(self, tokens): |
|
return self.tokenizer.ids_to_text(tokens) |
|
|
|
def _encode_pair(self, context, continuation): |
|
n_spaces = len(context) - len(context.rstrip()) |
|
if n_spaces > 0: |
|
continuation = context[-n_spaces:] + continuation |
|
context = context[:-n_spaces] |
|
whole_enc = self.tok_encode(context + continuation) |
|
context_enc = self.tok_encode(context) |
|
context_enc_len = len(context_enc) |
|
continuation_enc = whole_enc[context_enc_len:] |
|
return context_enc, continuation_enc |
|
|
|
def loglikelihood(self, requests): |
|
new_reqs = [] |
|
for context, continuation in [req.args for req in requests]: |
|
if context == "": |
|
|
|
context_enc, continuation_enc = ( |
|
[self.eot_token_id], |
|
self.tok_encode(continuation), |
|
) |
|
else: |
|
context_enc, continuation_enc = self._encode_pair(context, continuation) |
|
|
|
new_reqs.append(((context, continuation), context_enc, continuation_enc)) |
|
|
|
return self._loglikelihood_tokens(new_reqs) |
|
|
|
def loglikelihood_rolling( |
|
self, requests: List[Instance], disable_tqdm: bool = False |
|
) -> List[float]: |
|
loglikelihoods = [] |
|
|
|
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm): |
|
rolling_token_windows = list( |
|
map( |
|
make_disjoint_window, |
|
get_rolling_token_windows( |
|
token_list=self.tok_encode(string), |
|
prefix_token=self.eot_token_id, |
|
max_seq_len=self.max_length - 1, |
|
context_len=1, |
|
), |
|
) |
|
) |
|
|
|
rolling_token_windows = [(None,) + x for x in rolling_token_windows] |
|
|
|
string_nll = self._loglikelihood_tokens( |
|
rolling_token_windows, |
|
) |
|
|
|
|
|
string_nll = [x[0] for x in string_nll] |
|
|
|
string_nll = sum(string_nll) |
|
loglikelihoods.append(string_nll) |
|
return loglikelihoods |
|
|
|
def _loglikelihood_tokens(self, requests, disable_tqdm=False): |
|
res = [] |
|
|
|
def _collate(x): |
|
toks = x[1] + x[2] |
|
return -len(toks), tuple(toks) |
|
|
|
re_ord = Collator(requests, sort_fn=_collate) |
|
chunks = re_ord.get_batched(n=self.batch_size, batch_fn=None) |
|
pbar = tqdm( |
|
total=len(requests), |
|
disable=(disable_tqdm or (self.rank != 0)), |
|
desc="Running loglikelihood requests", |
|
) |
|
for chunk in chunks: |
|
inps = [] |
|
ctxlens = [] |
|
contlens = [] |
|
|
|
for _, context_enc, continuation_enc in chunk: |
|
|
|
inp = (context_enc + continuation_enc)[-(self.max_length - 1) :] |
|
|
|
ctxlen = len(context_enc) - max( |
|
0, len(context_enc) + len(continuation_enc) - (self.max_length - 1) |
|
) |
|
ctxlens.append(ctxlen) |
|
contlens.append(len(continuation_enc)) |
|
|
|
inps.append(self.tok_decode(inp)) |
|
|
|
output = self.generate( |
|
self.model, |
|
inputs=inps, |
|
tokens_to_generate=1, |
|
min_tokens_to_generate=1, |
|
compute_logprob=True, |
|
all_probs=True, |
|
) |
|
|
|
batch_token_ids = np.asarray(output["token_ids"])[:, :-1] |
|
batch_logprobs = output["logprob"][:, :-1] |
|
batch_full_logprob = output["full_logprob"][:, :-1, :] |
|
|
|
|
|
|
|
min_ctxlen = min(ctxlens) |
|
|
|
|
|
batch_greedy_tokens = ( |
|
torch.argmax(batch_full_logprob[:, min_ctxlen - 1 :, :], -1) |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
for token_ids, greedy_tokens, logprobs, ctxlen, contlen, ( |
|
cache_key, |
|
_, |
|
_, |
|
) in zip( |
|
batch_token_ids, |
|
batch_greedy_tokens, |
|
batch_logprobs, |
|
ctxlens, |
|
contlens, |
|
chunk, |
|
): |
|
|
|
|
|
logprobs = (logprobs[ctxlen - 1 :])[:contlen] |
|
logprob = sum(logprobs).tolist() |
|
|
|
continuation_tokens = (token_ids[ctxlen:])[:contlen] |
|
len_diff = ctxlen - min_ctxlen |
|
is_greedy = continuation_tokens == (greedy_tokens[len_diff:])[:contlen] |
|
if not isinstance(is_greedy, bool): |
|
is_greedy = is_greedy.all() |
|
answer = (logprob, is_greedy) |
|
|
|
if cache_key is not None: |
|
self.cache_hook.add_partial("loglikelihood", cache_key, answer) |
|
|
|
res.append(answer) |
|
pbar.update(1) |
|
|
|
pbar.close() |
|
|
|
return re_ord.get_original(res) |
|
|
|
def generate_until(self, requests): |
|
if not requests: |
|
return [] |
|
res = [] |
|
|
|
def get_until(req_args): |
|
until = req_args.get("until", []) |
|
until = deepcopy(until) |
|
if self.eot_token_id not in until: |
|
until.append(self.eot_token_id) |
|
return until |
|
|
|
def _collate(x): |
|
toks = self.tok_encode(x[0]) |
|
return len(toks), x[0] |
|
|
|
re_ords = Collator( |
|
[reg.args for reg in requests], sort_fn=_collate, group_by="gen_kwargs" |
|
) |
|
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) |
|
for chunk in chunks: |
|
contexts, all_gen_kwargs = zip(*chunk) |
|
|
|
|
|
req_args = all_gen_kwargs[0] |
|
|
|
until = get_until(req_args) |
|
max_gen_toks = req_args.get("max_gen_toks", self.max_gen_toks) |
|
|
|
remaining_length = self.max_length - max_gen_toks |
|
contexts = [] |
|
for context, _ in chunk: |
|
encoded_context = self.tok_encode(context) |
|
encoded_context = encoded_context[-remaining_length:] |
|
contexts.append(self.tok_decode(encoded_context)) |
|
|
|
output = self.generate( |
|
self.model, |
|
inputs=contexts, |
|
tokens_to_generate=max_gen_toks, |
|
end_strings=until, |
|
greedy=True, |
|
) |
|
|
|
answers = output["sentences"] |
|
|
|
continuations = [] |
|
for context, answer in zip(contexts, answers): |
|
continuations.append(answer[len(context) :]) |
|
|
|
for term in until: |
|
continuations = [answer.split(term)[0] for answer in continuations] |
|
|
|
for request, answer in zip(chunk, continuations): |
|
self.cache_hook.add_partial("greedy_until", request, answer) |
|
res.append(answer) |
|
|
|
return re_ords.get_original(res) |
|
|