|
import collections |
|
import fnmatch |
|
import gc |
|
import itertools |
|
import time |
|
from functools import wraps |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
Iterable, |
|
Iterator, |
|
List, |
|
Literal, |
|
Optional, |
|
Tuple, |
|
Type, |
|
Union, |
|
) |
|
|
|
import torch |
|
import transformers |
|
|
|
from lm_eval.utils import eval_logger |
|
|
|
|
|
def chunks(iter, n: int = 0, fn=None): |
|
""" |
|
Divides an iterable into chunks of specified size or based on a given function. |
|
Useful for batching |
|
|
|
Parameters: |
|
- iter: The input iterable to be divided into chunks. |
|
- n: An integer representing the size of each chunk. Default is 0. |
|
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None. |
|
|
|
Returns: |
|
An iterator that yields chunks of the input iterable. |
|
|
|
Example usage: |
|
``` |
|
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] |
|
for chunk in chunks(data, 3): |
|
print(chunk) |
|
``` |
|
Output: |
|
``` |
|
[1, 2, 3] |
|
[4, 5, 6] |
|
[7, 8, 9] |
|
[10] |
|
``` |
|
""" |
|
arr = [] |
|
for i, x in enumerate(iter): |
|
arr.append(x) |
|
if len(arr) == (fn(i, iter) if fn else n): |
|
yield arr |
|
arr = [] |
|
|
|
if arr: |
|
yield arr |
|
|
|
|
|
class MultiChoice: |
|
def __init__(self, choices) -> None: |
|
self.choices = choices |
|
|
|
|
|
def __contains__(self, values) -> bool: |
|
for value in values.split(","): |
|
if len(fnmatch.filter(self.choices, value)) == 0: |
|
eval_logger.info("Available tasks to choose:") |
|
for choice in self.choices: |
|
eval_logger.info(f" - {choice}") |
|
raise ValueError("'{}' is not in task list".format(value)) |
|
return True |
|
|
|
def __iter__(self) -> Iterator: |
|
for choice in self.choices: |
|
yield choice |
|
|
|
|
|
class Grouper: |
|
""" |
|
takes an array `arr` and function `fn` and returns a dictionary |
|
with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all |
|
objects in `arr` satisfying `key == fn(ob)`. |
|
""" |
|
|
|
def __init__(self, arr, fn) -> None: |
|
|
|
self.size = len(arr) |
|
arr = list(enumerate(arr)) |
|
|
|
def group_return_dict(arr, fn): |
|
res = collections.defaultdict(list) |
|
|
|
for ob in arr: |
|
res[fn(ob)].append(ob) |
|
return res |
|
|
|
arr = group_return_dict(arr, lambda x: fn(x[1])) |
|
|
|
|
|
self.arr = arr |
|
self._grouped = None |
|
|
|
def get_grouped(self): |
|
|
|
if self._grouped: |
|
return self._grouped |
|
grouped = {} |
|
for key in self.arr.keys(): |
|
|
|
grouped[key] = [y[1] for y in self.arr[key]] |
|
self._grouped = grouped |
|
return grouped |
|
|
|
def get_original(self, grouped_dict): |
|
|
|
|
|
|
|
res = [None] * self.size |
|
cov = [False] * self.size |
|
|
|
|
|
assert grouped_dict.keys() == self.arr.keys() |
|
|
|
for key in grouped_dict.keys(): |
|
for (ind, _), v in zip(self.arr[key], grouped_dict[key]): |
|
res[ind] = v |
|
cov[ind] = True |
|
|
|
|
|
assert all(cov) |
|
|
|
|
|
return res |
|
|
|
|
|
def pad_and_concat( |
|
max_length: int, |
|
tensors: List[torch.Tensor], |
|
padding_side: Literal["right", "left"] = "right", |
|
): |
|
""" |
|
Method for padding a list of tensors given the maximum tensor |
|
length in the batch. Used for batching inputs and continuations in |
|
seq2seq models. |
|
""" |
|
assert ( |
|
padding_side == "left" or padding_side == "right" |
|
), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'" |
|
|
|
for i, tensor in enumerate(tensors): |
|
if len(tensor.shape) == 2: |
|
tensor = tensor.squeeze(0) |
|
tensor_len = tensor.shape[0] |
|
if tensor_len < max_length: |
|
if padding_side == "right": |
|
|
|
tensors[i] = torch.cat( |
|
[ |
|
tensor, |
|
torch.zeros( |
|
max_length - tensor_len, |
|
dtype=torch.long, |
|
device=tensor.device, |
|
), |
|
], |
|
dim=0, |
|
).unsqueeze(0) |
|
else: |
|
|
|
tensors[i] = torch.cat( |
|
[ |
|
torch.zeros( |
|
max_length - tensor_len, |
|
dtype=torch.long, |
|
device=tensor.device, |
|
), |
|
tensor, |
|
], |
|
dim=0, |
|
).unsqueeze(0) |
|
else: |
|
tensors[i] = tensor.unsqueeze(0) |
|
|
|
return torch.cat(tensors, dim=0) |
|
|
|
|
|
def clear_torch_cache() -> None: |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype: |
|
"""Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig""" |
|
if isinstance(dtype, str) and dtype != "auto": |
|
|
|
_torch_dtype = getattr(torch, dtype) |
|
else: |
|
_torch_dtype = dtype |
|
return _torch_dtype |
|
|
|
|
|
class MultiTokenEOSCriteria(transformers.StoppingCriteria): |
|
"""Criteria to stop on the specified multi-token sequence.""" |
|
|
|
def __init__( |
|
self, |
|
sequence: str, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
initial_decoder_input_length: int, |
|
batch_size: int, |
|
) -> None: |
|
self.initial_decoder_input_length = initial_decoder_input_length |
|
self.done_tracker = [False] * batch_size |
|
self.sequence = sequence |
|
self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.sequence_id_len = len(self.sequence_ids) + 2 |
|
self.tokenizer = tokenizer |
|
|
|
def __call__(self, input_ids, scores, **kwargs) -> bool: |
|
|
|
lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :] |
|
|
|
lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len :] |
|
|
|
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch) |
|
|
|
for i, done in enumerate(self.done_tracker): |
|
if not done: |
|
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i] |
|
return False not in self.done_tracker |
|
|
|
|
|
def stop_sequences_criteria( |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
stop_sequences: List[str], |
|
initial_decoder_input_length: int, |
|
batch_size: int, |
|
) -> transformers.StoppingCriteriaList: |
|
return transformers.StoppingCriteriaList( |
|
[ |
|
*[ |
|
MultiTokenEOSCriteria( |
|
sequence, tokenizer, initial_decoder_input_length, batch_size |
|
) |
|
for sequence in stop_sequences |
|
], |
|
] |
|
) |
|
|
|
|
|
def undistribute(iterable): |
|
""" |
|
Undoes https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.distribute . |
|
|
|
Re-interleaves results that have been split using more_itertools.distribute: |
|
>>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6]) |
|
>>> list(group_1) |
|
[1, 3, 5] |
|
>>> list(group_2) |
|
[2, 4, 6] |
|
>>> undistribute([group_1, group_2]) |
|
[1, 2, 3, 4, 5, 6] |
|
|
|
Handles non-uniform component lengths: |
|
|
|
>>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7]) |
|
>>> [list(c) for c in children] |
|
[[1, 4, 7], [2, 5], [3, 6]] |
|
>>> undistribute(children) |
|
[1, 2, 3, 4, 5, 6, 7] |
|
|
|
Also handles when some iterables are empty: |
|
|
|
>>> children = distribute(5, [1, 2, 3]) |
|
>>> [list(c) for c in children] |
|
[[1], [2], [3], [], []] |
|
>>> undistribute(children) |
|
[1, 2, 3] |
|
|
|
""" |
|
|
|
return [ |
|
x |
|
for x in itertools.chain.from_iterable( |
|
itertools.zip_longest(*[list(x) for x in iterable]) |
|
) |
|
if x is not None |
|
] |
|
|
|
|
|
def retry_on_specific_exceptions( |
|
on_exceptions: List[Type[Exception]], |
|
max_retries: Optional[int] = None, |
|
backoff_time: float = 3.0, |
|
backoff_multiplier: float = 1.5, |
|
on_exception_callback: Optional[Callable[[Exception, float], Any]] = None, |
|
): |
|
"""Retry on an LLM Provider's rate limit error with exponential backoff |
|
For example, to use for OpenAI, do the following: |
|
``` |
|
from openai import RateLimitError |
|
|
|
# Recommend specifying max_retries to avoid infinite loops! |
|
@retry_on_specific_exceptions([RateLimitError], max_retries=3) |
|
def completion(...): |
|
# Wrap OpenAI completion function here |
|
... |
|
``` |
|
""" |
|
|
|
def decorator(func: Callable): |
|
@wraps(func) |
|
def wrapper(*args, **kwargs): |
|
sleep_time = backoff_time |
|
attempt = 0 |
|
while max_retries is None or attempt < max_retries: |
|
try: |
|
return func(*args, **kwargs) |
|
except tuple(on_exceptions) as e: |
|
if on_exception_callback is not None: |
|
on_exception_callback(e, sleep_time) |
|
time.sleep(sleep_time) |
|
sleep_time *= backoff_multiplier |
|
attempt += 1 |
|
|
|
return wrapper |
|
|
|
return decorator |
|
|
|
|
|
class Collator: |
|
""" |
|
A class for reordering and batching elements of an array. |
|
|
|
This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data. |
|
|
|
Objects of this class have the group_by attribute which determines the method for grouping |
|
the data while batching it. Three options include "gen_kwargs", "contexts", or None: |
|
If group_by == "gen_kwargs" then requests will be grouped by gen_kwargs |
|
If group_by == "contexts" then requests will be grouped by context + cont[:-1] |
|
If None then requests will just be reordered by length descending. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
arr: List, |
|
sort_fn: Callable = lambda x: x, |
|
group_fn: Callable = lambda x: x[1], |
|
group_by: Union[Literal["gen_kwargs", "contexts"], None] = None, |
|
) -> None: |
|
self._group_by = group_by |
|
|
|
self._sort_fn = lambda x: sort_fn(x[1]) |
|
self._group_fn = lambda x: group_fn(x[1]) |
|
self._reorder_indices: List = [] |
|
self._size = len(arr) |
|
self._arr_with_indices: Union[Dict, Tuple[Tuple[int, Any], ...]] = tuple( |
|
enumerate(arr) |
|
) |
|
if self._group_by == "contexts": |
|
self._group_by_context() |
|
elif self._group_by == "gen_kwargs": |
|
self._group_by_index() |
|
|
|
def _group_by_index(self) -> None: |
|
"""Group the elements of a list based on their indices.""" |
|
self._arr_with_indices = self.group( |
|
self._arr_with_indices, fn=self._group_fn, group_by="gen_kwargs" |
|
) |
|
|
|
def _group_by_context(self) -> None: |
|
"""Group the array with indices by context.""" |
|
self._arr_with_indices = self.group( |
|
self._arr_with_indices, fn=self._group_fn, group_by="contexts" |
|
) |
|
|
|
def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator: |
|
""" |
|
Generates and yields batches from the reordered array. The method of grouping and batching |
|
depends on the parameter `group_by`. |
|
If `group_by` is set to "gen_kwargs", it will batch the |
|
re-ordered values with same gen_kwargs for each batch. |
|
If `group_by` is "contexts", it caches the requests by context before batching. |
|
If `group_by` is neither "gen_kwargs" nor "contexts", it yields the reordered array |
|
|
|
Parameters: |
|
- n (int): The size of each batch. Defaults to 1. |
|
- batch_fn ([Callable[[int, Iterable], int]] | None): A function to determine the size of |
|
each batch. Optional, defaults to None. |
|
|
|
Returns: |
|
Iterator: An iterator over batches of reordered elements grouped as per the `group_by` |
|
attribute. |
|
|
|
Yields: |
|
List of batched elements according to the `group_by` attribute. |
|
""" |
|
if self._group_by == "gen_kwargs": |
|
for ( |
|
key, |
|
values, |
|
) in self._arr_with_indices.items(): |
|
values = self._reorder(values) |
|
batch = self.get_chunks(values, n=n, fn=batch_fn) |
|
yield from batch |
|
elif self._group_by == "contexts": |
|
|
|
values = self._reorder( |
|
[value[0] for value in self._arr_with_indices.values()] |
|
) |
|
batch = self.get_chunks(values, n=n, fn=batch_fn) |
|
yield from batch |
|
else: |
|
values = self._reorder(self._arr_with_indices) |
|
batch = self.get_chunks(values, n=n, fn=batch_fn) |
|
yield from batch |
|
|
|
def get_cache( |
|
self, |
|
req_str: Tuple[str, str] = None, |
|
cxt_toks: List[int] = None, |
|
cont_toks: List[int] = None, |
|
logits: torch.Tensor = None, |
|
) -> Iterator[Tuple[Tuple[str, str], List[int], torch.Tensor]]: |
|
""" |
|
Retrieves cached single-token continuations and their associated arguments, updating indices as necessary. |
|
|
|
The behavior of this function varies depending on how the `group_by` attribute is set: |
|
|
|
- When `group_by` is "contexts": |
|
The function identifies single-token continuations by checking for keys that equate to |
|
[context+continuation][-1] and logs the indices for re-ordering. |
|
In this mode, this function can work in two scenarios: |
|
|
|
1. Cache Hit - Single Match: |
|
If a single matching context-continuation pair is found in the cache, |
|
the function yields the original arguments. |
|
|
|
2. Cache Hit - Multiple Matches: |
|
If multiple matching context-continuation pairs are found in the cache, |
|
the function expands the logits batch dimension to match the number of cache hits. |
|
It updates the original requests and continuation tokens. |
|
|
|
- When `group_by` is not set to "contexts": |
|
This method yields the original arguments, logits and continuation tokens, |
|
without checking for one-token continuations. |
|
|
|
Parameters: |
|
- req_str (tuple[str, str]): Original strings used for CachingLM. |
|
- cxt_toks (list[int]): Full context tokens used for lookup. |
|
- cont_toks (list[int]): Continuation tokens for which logits were generated. |
|
- logits (torch.Tensor [1, seq_length, vocab_size]): Logits generated by the model given context and continuation keys. |
|
|
|
Yields: |
|
- Iterator: |
|
- req_str (tuple[str, str]): strings used for CachingLM. |
|
- cont_toks (list[int]) : continuation tokens. |
|
- logits (torch.Tensor [1, seq_length, vocab_size]): The original logits (repeated cache hit times) |
|
""" |
|
if self._group_by == "contexts": |
|
cache_hit: List[ |
|
Tuple[int, Tuple[Tuple[str, str], List[int], List[int]]] |
|
] = self._arr_with_indices.pop(tuple(cxt_toks + cont_toks[:-1])) |
|
if (cache_size := len(cache_hit)) == 1: |
|
self._reorder_indices.extend(x[0] for x in cache_hit) |
|
yield req_str, cont_toks, logits |
|
else: |
|
|
|
|
|
multilogits = logits.expand(cache_size, -1, -1).chunk(cache_size) |
|
indices, req_str, cont_toks = zip( |
|
*[(x[0], x[1][0], x[-1][-1]) for x in cache_hit] |
|
) |
|
self._reorder_indices.extend(indices) |
|
for c_key, cont_tok, logit in zip(req_str, cont_toks, multilogits): |
|
yield c_key, cont_tok, logit |
|
else: |
|
yield req_str, cont_toks, logits |
|
|
|
def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> Iterator: |
|
""" |
|
Reorders the elements in the array based on the sorting function. |
|
|
|
Parameters: |
|
- arr (list | tuple[tuple[int, Any], ...]]): The array or iterable to be reordered. |
|
|
|
Yields: |
|
Iterator |
|
""" |
|
arr = sorted(arr, key=self._sort_fn) |
|
if not self._group_by == "contexts": |
|
|
|
self._reorder_indices.extend([x[0] for x in arr]) |
|
yield from [x[1] for x in arr] |
|
|
|
def get_original(self, newarr: List) -> List: |
|
""" |
|
Restores the original order of elements from the reordered list. |
|
|
|
Parameters: |
|
- newarr (list): The reordered array. |
|
|
|
Returns: |
|
list: The array with elements restored to their original order. |
|
""" |
|
res = [None] * self._size |
|
cov = [False] * self._size |
|
|
|
for ind, v in zip(self._reorder_indices, newarr): |
|
res[ind] = v |
|
cov[ind] = True |
|
|
|
assert all(cov) |
|
|
|
return res |
|
|
|
def __len__(self): |
|
return self._size |
|
|
|
@staticmethod |
|
def group( |
|
arr: Iterable, |
|
fn: Callable, |
|
group_by: Literal["gen_kwargs", "contexts"] = "gen_kwargs", |
|
) -> dict: |
|
""" |
|
Groups elements of an iterable based on a provided function. |
|
|
|
|
|
The `group_by` parameter determines the method of grouping. |
|
If `group_by` is "contexts", the elements are grouped by [context + cont][:-1]. |
|
If `group_by` is "gen_kwargs", the elements are grouped based on the gen_kwargs dict. |
|
|
|
Parameters: |
|
- arr (Iterable): The iterable to be grouped. |
|
- fn (Callable): The function to determine the grouping. |
|
- values (bool): If True, returns the values of the group. Defaults to False. |
|
|
|
Returns: |
|
Iterator: An iterable of grouped elements. |
|
""" |
|
res = collections.defaultdict(list) |
|
for ob in arr: |
|
|
|
if group_by == "contexts": |
|
res[tuple(fn(ob))].append(ob) |
|
else: |
|
try: |
|
hashable_dict = tuple( |
|
( |
|
key, |
|
tuple(value) |
|
if isinstance(value, collections.abc.Iterable) |
|
else value, |
|
) |
|
for key, value in sorted(fn(ob).items()) |
|
) |
|
res[hashable_dict].append(ob) |
|
except (TypeError, AttributeError): |
|
res[tuple(fn(ob))].append(ob) |
|
return res |
|
|
|
@staticmethod |
|
def get_chunks(_iter, n: int = 0, fn=None): |
|
""" |
|
Divides an iterable into chunks of specified size or based on a given function. |
|
Useful for batching |
|
|
|
Parameters: |
|
- iter: The input iterable to be divided into chunks. |
|
- n: An integer representing the size of each chunk. Default is 0. |
|
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None. |
|
|
|
Returns: |
|
An iterator that yields chunks of the input iterable. |
|
|
|
Example usage: |
|
``` |
|
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] |
|
for chunk in chunks(data, 3): |
|
print(chunk) |
|
``` |
|
Output: |
|
``` |
|
[1, 2, 3] |
|
[4, 5, 6] |
|
[7, 8, 9] |
|
[10] |
|
``` |
|
""" |
|
arr = [] |
|
_iter = tuple(_iter) |
|
for i, x in enumerate(_iter): |
|
arr.append(x) |
|
if len(arr) == (fn(i, _iter) if fn else n): |
|
yield arr |
|
arr = [] |
|
|
|
if arr: |
|
yield arr |
|
|