|
import argparse |
|
import json |
|
import logging |
|
import os |
|
import re |
|
import sys |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Union |
|
|
|
import numpy as np |
|
|
|
from lm_eval import evaluator, utils |
|
from lm_eval.evaluator import request_caching_arg_to_dict |
|
from lm_eval.logging_utils import WandbLogger |
|
from lm_eval.tasks import TaskManager |
|
from lm_eval.utils import make_table, simple_parse_args_string |
|
|
|
|
|
DEFAULT_RESULTS_FILE = "results.json" |
|
|
|
|
|
def _handle_non_serializable(o): |
|
if isinstance(o, np.int64) or isinstance(o, np.int32): |
|
return int(o) |
|
elif isinstance(o, set): |
|
return list(o) |
|
else: |
|
return str(o) |
|
|
|
|
|
def _int_or_none_list_arg_type(max_len: int, value: str, split_char: str = ","): |
|
def parse_value(item): |
|
item = item.strip().lower() |
|
if item == "none": |
|
return None |
|
try: |
|
return int(item) |
|
except ValueError: |
|
raise argparse.ArgumentTypeError(f"{item} is not an integer or None") |
|
|
|
items = [parse_value(v) for v in value.split(split_char)] |
|
num_items = len(items) |
|
|
|
if num_items == 1: |
|
|
|
items = items * max_len |
|
elif num_items != max_len: |
|
raise argparse.ArgumentTypeError( |
|
f"Argument requires {max_len} integers or None, separated by '{split_char}'" |
|
) |
|
|
|
return items |
|
|
|
|
|
def check_argument_types(parser: argparse.ArgumentParser): |
|
""" |
|
Check to make sure all CLI args are typed, raises error if not |
|
""" |
|
for action in parser._actions: |
|
if action.dest != "help" and not action.const: |
|
if action.type is None: |
|
raise ValueError( |
|
f"Argument '{action.dest}' doesn't have a type specified." |
|
) |
|
else: |
|
continue |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) |
|
parser.add_argument( |
|
"--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`" |
|
) |
|
parser.add_argument( |
|
"--tasks", |
|
"-t", |
|
default=None, |
|
type=str, |
|
metavar="task1,task2", |
|
help="To get full list of tasks, use the command lm-eval --tasks list", |
|
) |
|
parser.add_argument( |
|
"--model_args", |
|
"-a", |
|
default="", |
|
type=str, |
|
help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`", |
|
) |
|
parser.add_argument( |
|
"--num_fewshot", |
|
"-f", |
|
type=int, |
|
default=None, |
|
metavar="N", |
|
help="Number of examples in few-shot context", |
|
) |
|
parser.add_argument( |
|
"--batch_size", |
|
"-b", |
|
type=str, |
|
default=1, |
|
metavar="auto|auto:N|N", |
|
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.", |
|
) |
|
parser.add_argument( |
|
"--max_batch_size", |
|
type=int, |
|
default=None, |
|
metavar="N", |
|
help="Maximal batch size to try with --batch_size auto.", |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=str, |
|
default=None, |
|
help="Device to use (e.g. cuda, cuda:0, cpu).", |
|
) |
|
parser.add_argument( |
|
"--output_path", |
|
"-o", |
|
default=None, |
|
type=str, |
|
metavar="DIR|DIR/file.json", |
|
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.", |
|
) |
|
parser.add_argument( |
|
"--limit", |
|
"-L", |
|
type=float, |
|
default=None, |
|
metavar="N|0<N<1", |
|
help="Limit the number of examples per task. " |
|
"If <1, limit is a percentage of the total number of examples.", |
|
) |
|
parser.add_argument( |
|
"--use_cache", |
|
"-c", |
|
type=str, |
|
default=None, |
|
metavar="DIR", |
|
help="A path to a sqlite db file for caching model responses. `None` if not caching.", |
|
) |
|
parser.add_argument( |
|
"--cache_requests", |
|
type=str, |
|
default=None, |
|
choices=["true", "refresh", "delete"], |
|
help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.", |
|
) |
|
parser.add_argument( |
|
"--check_integrity", |
|
action="store_true", |
|
help="Whether to run the relevant part of the test suite for the tasks.", |
|
) |
|
parser.add_argument( |
|
"--write_out", |
|
"-w", |
|
action="store_true", |
|
default=False, |
|
help="Prints the prompt for the first few documents.", |
|
) |
|
parser.add_argument( |
|
"--log_samples", |
|
"-s", |
|
action="store_true", |
|
default=False, |
|
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.", |
|
) |
|
parser.add_argument( |
|
"--show_config", |
|
action="store_true", |
|
default=False, |
|
help="If True, shows the the full config of all tasks at the end of the evaluation.", |
|
) |
|
parser.add_argument( |
|
"--include_path", |
|
type=str, |
|
default=None, |
|
metavar="DIR", |
|
help="Additional path to include if there are external tasks to include.", |
|
) |
|
parser.add_argument( |
|
"--gen_kwargs", |
|
type=str, |
|
default=None, |
|
help=( |
|
"String arguments for model generation on greedy_until tasks," |
|
" e.g. `temperature=0,top_k=0,top_p=0`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--verbosity", |
|
"-v", |
|
type=str.upper, |
|
default="INFO", |
|
metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG", |
|
help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.", |
|
) |
|
parser.add_argument( |
|
"--wandb_args", |
|
type=str, |
|
default="", |
|
help="Comma separated string arguments passed to wandb.init, e.g. `project=lm-eval,job_type=eval", |
|
) |
|
parser.add_argument( |
|
"--predict_only", |
|
"-x", |
|
action="store_true", |
|
default=False, |
|
help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.", |
|
) |
|
parser.add_argument( |
|
"--seed", |
|
type=partial(_int_or_none_list_arg_type, 3), |
|
default="0,1234,1234", |
|
help=( |
|
"Set seed for python's random, numpy and torch.\n" |
|
"Accepts a comma-separated list of 3 values for python's random, numpy, and torch seeds, respectively, " |
|
"or a single integer to set the same seed for all three.\n" |
|
"The values are either an integer or 'None' to not set the seed. Default is `0,1234,1234` (for backward compatibility).\n" |
|
"E.g. `--seed 0,None,8` sets `random.seed(0)` and `torch.manual_seed(8)`. Here numpy's seed is not set since the second value is `None`.\n" |
|
"E.g, `--seed 42` sets all three seeds to 42." |
|
), |
|
) |
|
parser.add_argument( |
|
"--trust_remote_code", |
|
action="store_true", |
|
help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub", |
|
) |
|
|
|
return parser |
|
|
|
|
|
def parse_eval_args(parser: argparse.ArgumentParser) -> argparse.Namespace: |
|
check_argument_types(parser) |
|
return parser.parse_args() |
|
|
|
|
|
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None: |
|
if not args: |
|
|
|
parser = setup_parser() |
|
args = parse_eval_args(parser) |
|
|
|
if args.wandb_args: |
|
wandb_logger = WandbLogger(**simple_parse_args_string(args.wandb_args)) |
|
|
|
eval_logger = utils.eval_logger |
|
eval_logger.setLevel(getattr(logging, f"{args.verbosity}")) |
|
eval_logger.info(f"Verbosity set to {args.verbosity}") |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
if args.predict_only: |
|
args.log_samples = True |
|
if (args.log_samples or args.predict_only) and not args.output_path: |
|
raise ValueError( |
|
"Specify --output_path if providing --log_samples or --predict_only" |
|
) |
|
|
|
if args.include_path is not None: |
|
eval_logger.info(f"Including path: {args.include_path}") |
|
task_manager = TaskManager(args.verbosity, include_path=args.include_path) |
|
|
|
if args.limit: |
|
eval_logger.warning( |
|
" --limit SHOULD ONLY BE USED FOR TESTING." |
|
"REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." |
|
) |
|
|
|
if args.tasks is None: |
|
eval_logger.error("Need to specify task to evaluate.") |
|
sys.exit() |
|
elif args.tasks == "list": |
|
eval_logger.info( |
|
"Available Tasks:\n - {}".format("\n - ".join(task_manager.all_tasks)) |
|
) |
|
sys.exit() |
|
else: |
|
if os.path.isdir(args.tasks): |
|
import glob |
|
|
|
task_names = [] |
|
yaml_path = os.path.join(args.tasks, "*.yaml") |
|
for yaml_file in glob.glob(yaml_path): |
|
config = utils.load_yaml_config(yaml_file) |
|
task_names.append(config) |
|
else: |
|
task_list = args.tasks.split(",") |
|
task_names = task_manager.match_tasks(task_list) |
|
for task in [task for task in task_list if task not in task_names]: |
|
if os.path.isfile(task): |
|
config = utils.load_yaml_config(task) |
|
task_names.append(config) |
|
task_missing = [ |
|
task for task in task_list if task not in task_names and "*" not in task |
|
] |
|
|
|
if task_missing: |
|
missing = ", ".join(task_missing) |
|
eval_logger.error( |
|
f"Tasks were not found: {missing}\n" |
|
f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks", |
|
) |
|
raise ValueError( |
|
f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues." |
|
) |
|
|
|
if args.output_path: |
|
path = Path(args.output_path) |
|
|
|
if path.is_file(): |
|
raise FileExistsError(f"File already exists at {path}") |
|
output_path_file = path.joinpath(DEFAULT_RESULTS_FILE) |
|
if output_path_file.is_file(): |
|
eval_logger.warning( |
|
f"File {output_path_file} already exists. Results will be overwritten." |
|
) |
|
|
|
elif path.suffix in (".json", ".jsonl"): |
|
output_path_file = path |
|
path.parent.mkdir(parents=True, exist_ok=True) |
|
path = path.parent |
|
else: |
|
path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
if args.trust_remote_code: |
|
os.environ["HF_DATASETS_TRUST_REMOTE_CODE"] = str(args.trust_remote_code) |
|
args.model_args = ( |
|
args.model_args |
|
+ f",trust_remote_code={os.environ['HF_DATASETS_TRUST_REMOTE_CODE']}" |
|
) |
|
|
|
eval_logger.info(f"Selected Tasks: {task_names}") |
|
|
|
request_caching_args = request_caching_arg_to_dict( |
|
cache_requests=args.cache_requests |
|
) |
|
|
|
results = evaluator.simple_evaluate( |
|
model=args.model, |
|
model_args=args.model_args, |
|
tasks=task_names, |
|
num_fewshot=args.num_fewshot, |
|
batch_size=args.batch_size, |
|
max_batch_size=args.max_batch_size, |
|
device=args.device, |
|
use_cache=args.use_cache, |
|
limit=args.limit, |
|
check_integrity=args.check_integrity, |
|
write_out=args.write_out, |
|
log_samples=args.log_samples, |
|
gen_kwargs=args.gen_kwargs, |
|
task_manager=task_manager, |
|
verbosity=args.verbosity, |
|
predict_only=args.predict_only, |
|
random_seed=args.seed[0], |
|
numpy_random_seed=args.seed[1], |
|
torch_random_seed=args.seed[2], |
|
**request_caching_args, |
|
) |
|
|
|
if results is not None: |
|
if args.log_samples: |
|
samples = results.pop("samples") |
|
dumped = json.dumps( |
|
results, indent=2, default=_handle_non_serializable, ensure_ascii=False |
|
) |
|
if args.show_config: |
|
print(dumped) |
|
|
|
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"])) |
|
|
|
|
|
if args.wandb_args: |
|
try: |
|
wandb_logger.post_init(results) |
|
wandb_logger.log_eval_result() |
|
if args.log_samples: |
|
wandb_logger.log_eval_samples(samples) |
|
except Exception as e: |
|
eval_logger.info(f"Logging to Weights and Biases failed due to {e}") |
|
|
|
if args.output_path: |
|
output_path_file.open("w", encoding="utf-8").write(dumped) |
|
|
|
if args.log_samples: |
|
for task_name, config in results["configs"].items(): |
|
output_name = "{}_{}".format( |
|
re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", args.model_args), |
|
task_name, |
|
) |
|
filename = path.joinpath(f"{output_name}.jsonl") |
|
samples_dumped = json.dumps( |
|
samples[task_name], |
|
indent=2, |
|
default=_handle_non_serializable, |
|
ensure_ascii=False, |
|
) |
|
filename.write_text(samples_dumped, encoding="utf-8") |
|
|
|
print( |
|
f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, " |
|
f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}" |
|
) |
|
print(make_table(results)) |
|
if "groups" in results: |
|
print(make_table(results, "groups")) |
|
|
|
if args.wandb_args: |
|
|
|
wandb_logger.run.finish() |
|
|
|
|
|
if __name__ == "__main__": |
|
cli_evaluate() |
|
|