applied-ai-018's picture
Add files using upload-large-folder tool
d94d830 verified
import hashlib
import os
import dill
from lm_eval.utils import eval_logger
MODULE_DIR = os.path.dirname(os.path.realpath(__file__))
OVERRIDE_PATH = os.getenv("LM_HARNESS_CACHE_PATH")
PATH = OVERRIDE_PATH if OVERRIDE_PATH else f"{MODULE_DIR}/.cache"
# This should be sufficient for uniqueness
HASH_INPUT = "EleutherAI-lm-evaluation-harness"
HASH_PREFIX = hashlib.sha256(HASH_INPUT.encode("utf-8")).hexdigest()
FILE_SUFFIX = f".{HASH_PREFIX}.pickle"
def load_from_cache(file_name):
try:
path = f"{PATH}/{file_name}{FILE_SUFFIX}"
with open(path, "rb") as file:
cached_task_dict = dill.loads(file.read())
return cached_task_dict
except Exception:
eval_logger.debug(f"{file_name} is not cached, generating...")
pass
def save_to_cache(file_name, obj):
if not os.path.exists(PATH):
os.mkdir(PATH)
file_path = f"{PATH}/{file_name}{FILE_SUFFIX}"
eval_logger.debug(f"Saving {file_path} to cache...")
with open(file_path, "wb") as file:
file.write(dill.dumps(obj))
# NOTE the "key" param is to allow for flexibility
def delete_cache(key: str = ""):
files = os.listdir(PATH)
for file in files:
if file.startswith(key) and file.endswith(FILE_SUFFIX):
file_path = f"{PATH}/{file}"
os.unlink(file_path)