|
import copy |
|
import os |
|
from datetime import timedelta |
|
from pathlib import Path |
|
from typing import List, Literal, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import transformers |
|
from accelerate import ( |
|
Accelerator, |
|
DistributedType, |
|
InitProcessGroupKwargs, |
|
find_executable_batch_size, |
|
) |
|
from packaging import version |
|
from peft import PeftModel |
|
from peft import __version__ as PEFT_VERSION |
|
from tqdm import tqdm |
|
from transformers.models.auto.modeling_auto import ( |
|
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, |
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, |
|
) |
|
|
|
from lm_eval import utils |
|
from lm_eval.api.instance import Instance |
|
from lm_eval.api.model import TemplateLM |
|
from lm_eval.api.registry import register_model |
|
from lm_eval.models.utils import ( |
|
Collator, |
|
clear_torch_cache, |
|
get_dtype, |
|
pad_and_concat, |
|
stop_sequences_criteria, |
|
) |
|
|
|
|
|
eval_logger = utils.eval_logger |
|
|
|
|
|
def _get_accelerate_args( |
|
device_map_option: Optional[str] = "auto", |
|
max_memory_per_gpu: Optional[Union[int, str]] = None, |
|
max_cpu_memory: Optional[Union[int, str]] = None, |
|
offload_folder: Optional[str] = "./offload", |
|
) -> dict: |
|
"""Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`.""" |
|
max_memory = {} |
|
if max_memory_per_gpu is not None: |
|
max_memory_per_gpu_map = { |
|
device_idx: max_memory_per_gpu |
|
for device_idx in range(torch.cuda.device_count()) |
|
} |
|
max_memory.update(max_memory_per_gpu_map) |
|
if max_cpu_memory is not None: |
|
max_memory["cpu"] = max_cpu_memory |
|
|
|
args = {} |
|
if max_memory: |
|
args["max_memory"] = max_memory |
|
args["device_map"] = device_map_option |
|
args["offload_folder"] = offload_folder |
|
return args |
|
|
|
|
|
@register_model("hf-auto", "hf", "huggingface") |
|
class HFLM(TemplateLM): |
|
""" |
|
An abstracted Huggingface model class. Enables usage with both models of |
|
`transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes. |
|
|
|
Supports data-parallel multi-GPU with HF Accelerate. |
|
""" |
|
|
|
AUTO_MODEL_CLASS = None |
|
_DEFAULT_MAX_LENGTH = 2048 |
|
|
|
def __init__( |
|
self, |
|
pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2", |
|
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default", |
|
|
|
revision: Optional[str] = "main", |
|
subfolder: Optional[str] = None, |
|
tokenizer: Optional[ |
|
Union[ |
|
str, |
|
transformers.PreTrainedTokenizer, |
|
transformers.PreTrainedTokenizerFast, |
|
] |
|
] = None, |
|
truncation: Optional[bool] = False, |
|
logits_cache: bool = True, |
|
max_length: Optional[int] = None, |
|
device: Optional[str] = "cuda", |
|
dtype: Optional[Union[str, torch.dtype]] = "auto", |
|
batch_size: Optional[Union[int, str]] = 1, |
|
max_batch_size: Optional[int] = 64, |
|
trust_remote_code: Optional[bool] = False, |
|
use_fast_tokenizer: Optional[bool] = True, |
|
add_bos_token: Optional[bool] = False, |
|
prefix_token_id: Optional[int] = None, |
|
|
|
|
|
parallelize: Optional[bool] = False, |
|
device_map_option: Optional[str] = "auto", |
|
max_memory_per_gpu: Optional[Union[int, str]] = None, |
|
max_cpu_memory: Optional[Union[int, str]] = None, |
|
offload_folder: Optional[Union[str, os.PathLike]] = "./offload", |
|
|
|
peft: Optional[str] = None, |
|
autogptq: Optional[Union[bool, str]] = False, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
if not isinstance(pretrained, str): |
|
eval_logger.warning( |
|
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way." |
|
) |
|
assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`" |
|
self._model = pretrained |
|
self._device = self._model.device |
|
self._config = self._model.config |
|
gpus = 0 |
|
|
|
if tokenizer: |
|
assert isinstance( |
|
tokenizer, transformers.PreTrainedTokenizer |
|
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast) |
|
self.tokenizer = tokenizer |
|
else: |
|
|
|
model_name = self._model.name_or_path |
|
self.tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_name, |
|
revision=revision, |
|
trust_remote_code=trust_remote_code, |
|
use_fast=use_fast_tokenizer, |
|
) |
|
|
|
else: |
|
assert isinstance(device, str) |
|
assert isinstance(pretrained, str) |
|
assert isinstance(batch_size, (int, str)) |
|
|
|
gpus = torch.cuda.device_count() |
|
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52)) |
|
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs]) |
|
if accelerator.num_processes > 1: |
|
self.accelerator = accelerator |
|
|
|
if not (parallelize or accelerator.num_processes > 1): |
|
|
|
device_list = set( |
|
["cuda", "cpu"] |
|
+ [f"cuda:{i}" for i in range(torch.cuda.device_count())] |
|
+ ["mps", "mps:0"] |
|
) |
|
if device and device in device_list: |
|
self._device = torch.device(device) |
|
eval_logger.info(f"Using device '{device}'") |
|
if device in ("mps", "mps:0") and version.parse( |
|
torch.__version__ |
|
) < version.parse("2.1"): |
|
raise RuntimeError( |
|
f"mps requires torch >= 2.1. You have {torch.__version__}" |
|
) |
|
else: |
|
eval_logger.info("Device not specified") |
|
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}") |
|
self._device = ( |
|
torch.device("cuda") |
|
if torch.cuda.is_available() |
|
else torch.device("cpu") |
|
) |
|
else: |
|
if device != "cuda": |
|
eval_logger.info( |
|
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model." |
|
) |
|
|
|
self._device = torch.device(device) |
|
|
|
|
|
revision = revision + ("/" + subfolder if subfolder is not None else "") |
|
|
|
self._get_config( |
|
pretrained, |
|
revision=revision, |
|
trust_remote_code=trust_remote_code, |
|
) |
|
|
|
|
|
self._get_backend( |
|
config=self.config, backend=backend, trust_remote_code=trust_remote_code |
|
) |
|
|
|
|
|
if isinstance(pretrained, str): |
|
self._create_model( |
|
pretrained=pretrained, |
|
revision=revision, |
|
dtype=dtype, |
|
trust_remote_code=trust_remote_code, |
|
parallelize=parallelize, |
|
device_map_option=device_map_option, |
|
max_memory_per_gpu=max_memory_per_gpu, |
|
max_cpu_memory=max_cpu_memory, |
|
offload_folder=offload_folder, |
|
peft=peft, |
|
autogptq=autogptq, |
|
**kwargs, |
|
) |
|
|
|
|
|
if isinstance(self.model, torch.nn.Module): |
|
self.model.eval() |
|
self.model.tie_weights() |
|
|
|
if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"): |
|
|
|
if not (parallelize or autogptq or hasattr(self, "accelerator")): |
|
|
|
|
|
|
|
try: |
|
self.model.to(self.device) |
|
except ValueError: |
|
eval_logger.debug( |
|
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore." |
|
) |
|
|
|
self._create_tokenizer( |
|
pretrained, |
|
tokenizer, |
|
revision=revision, |
|
trust_remote_code=trust_remote_code, |
|
use_fast_tokenizer=use_fast_tokenizer, |
|
) |
|
|
|
self.truncation = truncation |
|
self.logits_cache = logits_cache |
|
self.vocab_size = self.tokenizer.vocab_size |
|
|
|
if self.tokenizer.pad_token: |
|
pass |
|
elif self.tokenizer.unk_token: |
|
self.tokenizer.pad_token_id = self.tokenizer.unk_token_id |
|
elif self.tokenizer.eos_token: |
|
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id |
|
else: |
|
if getattr(self.config, "model_type", None) == "qwen": |
|
|
|
self.tokenizer.pad_token = "<|endoftext|>" |
|
elif ( |
|
self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer" |
|
or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer" |
|
): |
|
|
|
|
|
|
|
|
|
|
|
assert self.tokenizer.pad_token_id == 0 |
|
else: |
|
self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"}) |
|
|
|
|
|
self.add_bos_token = add_bos_token |
|
if getattr(self.config, "model_type", None) == "gemma": |
|
self.add_bos_token = True |
|
eval_logger.info( |
|
f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it." |
|
) |
|
|
|
self._max_length = max_length |
|
|
|
self.batch_schedule = 1 |
|
self.batch_sizes = {} |
|
self.max_batch_size = max_batch_size |
|
|
|
if str(batch_size).startswith("auto"): |
|
batch_size = batch_size.split(":") |
|
self.batch_size_per_gpu = batch_size[0] |
|
self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1 |
|
else: |
|
self.batch_size_per_gpu = int(batch_size) |
|
|
|
if isinstance(pretrained, str): |
|
|
|
if gpus > 1: |
|
if parallelize: |
|
if accelerator.num_processes > 1: |
|
raise RuntimeError( |
|
"Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher." |
|
) |
|
else: |
|
pass |
|
elif accelerator.num_processes == 1: |
|
|
|
self._rank = 0 |
|
self._world_size = 1 |
|
else: |
|
if gpus > accelerator.num_processes: |
|
eval_logger.warning( |
|
"WARNING: The number of total system GPUs does not match the number of spawned processes. " |
|
"If you would like to use data parallelism, please launch the script " |
|
"with 'accelerate launch *script*'. " |
|
f"Current run will proceed with {accelerator.num_processes} devices." |
|
) |
|
assert ( |
|
accelerator.distributed_type |
|
in [ |
|
DistributedType.FSDP, |
|
DistributedType.MULTI_GPU, |
|
] |
|
), "Unsupported distributed type provided. Only DDP and FSDP are supported." |
|
if accelerator.distributed_type == DistributedType.FSDP: |
|
self._model = accelerator.prepare(self.model) |
|
else: |
|
self._model = accelerator.prepare_model( |
|
self.model, evaluation_mode=True |
|
) |
|
self._device = torch.device( |
|
f"cuda:{accelerator.local_process_index}" |
|
) |
|
self.accelerator = accelerator |
|
|
|
if self.accelerator.is_local_main_process: |
|
eval_logger.info(f"Using {gpus} devices with data parallelism") |
|
|
|
self._rank = self.accelerator.local_process_index |
|
self._world_size = self.accelerator.num_processes |
|
else: |
|
|
|
eval_logger.warning( |
|
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration" |
|
) |
|
self._rank = 0 |
|
self._world_size = 1 |
|
|
|
self.custom_prefix_token_id = prefix_token_id |
|
if prefix_token_id is not None: |
|
eval_logger.info( |
|
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}" |
|
) |
|
|
|
@property |
|
def config(self): |
|
|
|
return self._config |
|
|
|
@property |
|
def model(self): |
|
|
|
if hasattr(self, "accelerator"): |
|
return self.accelerator.unwrap_model(self._model) |
|
else: |
|
return self._model |
|
|
|
@property |
|
def eot_token_id(self): |
|
|
|
return self.tokenizer.eos_token_id |
|
|
|
@property |
|
def prefix_token_id(self): |
|
|
|
if self.custom_prefix_token_id is not None: |
|
return self.custom_prefix_token_id |
|
if self.tokenizer.bos_token_id is not None: |
|
return self.tokenizer.bos_token_id |
|
return self.tokenizer.eos_token_id |
|
|
|
@property |
|
def max_length(self): |
|
if self._max_length: |
|
return self._max_length |
|
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx") |
|
for attr in seqlen_config_attrs: |
|
if hasattr(self.model.config, attr): |
|
return getattr(self.model.config, attr) |
|
if hasattr(self.tokenizer, "model_max_length"): |
|
if self.tokenizer.model_max_length == 1000000000000000019884624838656: |
|
return self._DEFAULT_MAX_LENGTH |
|
return self.tokenizer.model_max_length |
|
return self._DEFAULT_MAX_LENGTH |
|
|
|
@property |
|
def max_gen_toks(self) -> int: |
|
return 256 |
|
|
|
@property |
|
def batch_size(self): |
|
return self.batch_size_per_gpu |
|
|
|
@property |
|
def device(self): |
|
return self._device |
|
|
|
@property |
|
def rank(self): |
|
return self._rank |
|
|
|
@property |
|
def world_size(self): |
|
return self._world_size |
|
|
|
def _get_backend( |
|
self, |
|
config: Union[transformers.PretrainedConfig, transformers.AutoConfig], |
|
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default", |
|
trust_remote_code: Optional[bool] = False, |
|
) -> None: |
|
""" |
|
Helper method during initialization. |
|
Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) |
|
model type to be used. |
|
""" |
|
assert backend in ["default", "causal", "seq2seq"] |
|
|
|
if backend != "default": |
|
|
|
if backend == "causal": |
|
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM |
|
elif backend == "seq2seq": |
|
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM |
|
eval_logger.info( |
|
f"Overrode HF model backend type, and using type '{backend}'" |
|
) |
|
else: |
|
|
|
if ( |
|
getattr(config, "model_type") |
|
in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES |
|
): |
|
|
|
|
|
|
|
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM |
|
elif ( |
|
getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES |
|
): |
|
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM |
|
else: |
|
if not trust_remote_code: |
|
eval_logger.warning( |
|
"HF model type is neither marked as CausalLM or Seq2SeqLM. \ |
|
This is expected if your model requires `trust_remote_code=True` but may be an error otherwise." |
|
) |
|
|
|
|
|
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM |
|
|
|
assert self.AUTO_MODEL_CLASS in [ |
|
transformers.AutoModelForCausalLM, |
|
transformers.AutoModelForSeq2SeqLM, |
|
] |
|
return None |
|
|
|
def _get_config( |
|
self, |
|
pretrained: str, |
|
revision: str = "main", |
|
trust_remote_code: bool = False, |
|
) -> None: |
|
self._config = transformers.AutoConfig.from_pretrained( |
|
pretrained, |
|
revision=revision, |
|
trust_remote_code=trust_remote_code, |
|
) |
|
|
|
def _create_model( |
|
self, |
|
pretrained: str, |
|
revision: Optional[str] = "main", |
|
dtype: Optional[Union[str, torch.dtype]] = "auto", |
|
trust_remote_code: Optional[bool] = False, |
|
|
|
|
|
|
|
parallelize: Optional[bool] = False, |
|
device_map_option: Optional[str] = "auto", |
|
max_memory_per_gpu: Optional[Union[int, str]] = None, |
|
max_cpu_memory: Optional[Union[int, str]] = None, |
|
offload_folder: Optional[str] = "./offload", |
|
|
|
peft: Optional[str] = None, |
|
autogptq: Optional[Union[bool, str]] = False, |
|
**kwargs, |
|
) -> None: |
|
""" |
|
Initializes an HF or HF-compatible PreTrainedModel from scratch |
|
inside HFLM, using the kwargs passed into self.__init__(). |
|
|
|
Also handles functionality such as AutoGPTQ usage and PEFT wrapping. |
|
|
|
For future similar extensions to AutoGPTQ that are not core to HF's ecosystem, |
|
(such as PyTorch models that are nearly, but not quite, fully mirroring |
|
HF's public interface relied on in this HFLM class) |
|
please consider subclassing HFLM and overriding this and other methods as needed. |
|
""" |
|
|
|
model_kwargs = kwargs if kwargs else {} |
|
|
|
if parallelize: |
|
model_kwargs.update( |
|
_get_accelerate_args( |
|
device_map_option, |
|
max_memory_per_gpu, |
|
max_cpu_memory, |
|
offload_folder, |
|
) |
|
) |
|
elif "device_map" not in model_kwargs: |
|
|
|
|
|
|
|
|
|
if hasattr(self, "accelerator"): |
|
model_kwargs.update( |
|
{"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}} |
|
) |
|
else: |
|
model_kwargs.update({"device_map": {"": str(self.device)}}) |
|
|
|
if not autogptq: |
|
if model_kwargs.get("load_in_4bit", None): |
|
assert ( |
|
transformers.__version__ >= "4.30.0" |
|
), "load_in_4bit requires transformers >= 4.30.0" |
|
if transformers.__version__ >= "4.30.0": |
|
if model_kwargs.get("load_in_4bit", None): |
|
if model_kwargs.get("bnb_4bit_compute_dtype", None): |
|
model_kwargs["bnb_4bit_compute_dtype"] = get_dtype( |
|
model_kwargs["bnb_4bit_compute_dtype"] |
|
) |
|
self._model = self.AUTO_MODEL_CLASS.from_pretrained( |
|
pretrained, |
|
revision=revision, |
|
torch_dtype=get_dtype(dtype), |
|
trust_remote_code=trust_remote_code, |
|
**model_kwargs, |
|
) |
|
else: |
|
try: |
|
from auto_gptq import AutoGPTQForCausalLM |
|
except ModuleNotFoundError: |
|
raise Exception( |
|
"Tried to load auto_gptq, but auto-gptq is not installed ", |
|
"please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]", |
|
) |
|
|
|
self._model = AutoGPTQForCausalLM.from_quantized( |
|
pretrained, |
|
trust_remote_code=trust_remote_code, |
|
model_basename=None if autogptq is True else Path(autogptq).stem, |
|
use_safetensors=True |
|
if autogptq is True |
|
else autogptq.endswith(".safetensors"), |
|
**model_kwargs, |
|
) |
|
|
|
if peft: |
|
if model_kwargs.get("load_in_4bit", None): |
|
if version.parse(PEFT_VERSION) < version.parse("0.4.0"): |
|
raise AssertionError("load_in_4bit requires peft >= 0.4.0") |
|
self._model = PeftModel.from_pretrained( |
|
self._model, peft, revision=revision |
|
) |
|
|
|
return None |
|
|
|
def _create_tokenizer( |
|
self, |
|
pretrained: Union[str, transformers.PreTrainedModel], |
|
tokenizer: Optional[ |
|
Union[ |
|
str, |
|
transformers.PreTrainedTokenizer, |
|
transformers.PreTrainedTokenizerFast, |
|
] |
|
], |
|
revision: Optional[str] = "main", |
|
trust_remote_code: Optional[bool] = False, |
|
use_fast_tokenizer: Optional[bool] = True, |
|
) -> None: |
|
""" |
|
Helper method during initialization. |
|
|
|
Create a tokenizer object corresponding to the correct |
|
tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed. |
|
""" |
|
|
|
if tokenizer: |
|
if isinstance(tokenizer, str): |
|
self.tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
tokenizer, |
|
revision=revision, |
|
trust_remote_code=trust_remote_code, |
|
use_fast=use_fast_tokenizer, |
|
) |
|
else: |
|
assert isinstance( |
|
tokenizer, transformers.PreTrainedTokenizer |
|
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast) |
|
self.tokenizer = tokenizer |
|
else: |
|
|
|
if isinstance(pretrained, str): |
|
model_name = pretrained |
|
else: |
|
|
|
model_name = self.model.name_or_path |
|
self.tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_name, |
|
revision=revision, |
|
trust_remote_code=trust_remote_code, |
|
use_fast=use_fast_tokenizer, |
|
) |
|
return None |
|
|
|
def _detect_batch_size(self, requests=None, pos: int = 0): |
|
if requests: |
|
_, context_enc, continuation_enc = requests[pos] |
|
max_length = len( |
|
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1] |
|
) |
|
max_context_enc = len(context_enc[-(self.max_length + 1) :]) |
|
max_cont_enc = len(continuation_enc[-(self.max_length + 1) :]) |
|
else: |
|
max_length = self.max_length |
|
|
|
|
|
@find_executable_batch_size(starting_batch_size=self.max_batch_size) |
|
def forward_batch(batch_size): |
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: |
|
length = max(max_context_enc, max_cont_enc) |
|
batched_conts = torch.ones( |
|
(batch_size, length), device=self.device |
|
).long() |
|
test_batch = torch.ones((batch_size, length), device=self.device).long() |
|
call_kwargs = { |
|
"attn_mask": test_batch, |
|
"labels": batched_conts, |
|
} |
|
else: |
|
call_kwargs = {} |
|
test_batch = torch.ones( |
|
(batch_size, max_length), device=self.device |
|
).long() |
|
for _ in range(5): |
|
out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1) |
|
|
|
return batch_size |
|
|
|
try: |
|
batch_size = forward_batch() |
|
except RuntimeError as e: |
|
if "No executable batch size found" in str(e): |
|
batch_size = 1 |
|
else: |
|
raise |
|
|
|
if self.world_size > 1: |
|
|
|
max_rnk_bs = torch.tensor([batch_size], device=self.device) |
|
gathered = ( |
|
self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist() |
|
) |
|
batch_size = min(gathered) |
|
clear_torch_cache() |
|
return batch_size |
|
|
|
clear_torch_cache() |
|
return batch_size |
|
|
|
def tok_encode( |
|
self, string: str, left_truncate_len=None, add_special_tokens=None |
|
) -> List[int]: |
|
""" """ |
|
|
|
|
|
special_tokens_kwargs = {} |
|
|
|
|
|
if add_special_tokens is None: |
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: |
|
special_tokens_kwargs = { |
|
"add_special_tokens": False or self.add_bos_token |
|
} |
|
|
|
else: |
|
special_tokens_kwargs = {"add_special_tokens": add_special_tokens} |
|
|
|
encoding = self.tokenizer.encode(string, **special_tokens_kwargs) |
|
|
|
|
|
if left_truncate_len: |
|
encoding = encoding[-left_truncate_len:] |
|
|
|
return encoding |
|
|
|
def tok_batch_encode( |
|
self, |
|
strings: List[str], |
|
padding_side: str = "left", |
|
left_truncate_len: int = None, |
|
truncation: bool = False, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
old_padding_side = self.tokenizer.padding_side |
|
self.tokenizer.padding_side = padding_side |
|
|
|
add_special_tokens = {} |
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: |
|
add_special_tokens = {"add_special_tokens": False or self.add_bos_token} |
|
|
|
encoding = self.tokenizer( |
|
strings, |
|
truncation=truncation, |
|
padding="longest", |
|
return_tensors="pt", |
|
**add_special_tokens, |
|
) |
|
if left_truncate_len: |
|
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:] |
|
encoding["attention_mask"] = encoding["attention_mask"][ |
|
:, -left_truncate_len: |
|
] |
|
self.tokenizer.padding_side = old_padding_side |
|
|
|
return encoding["input_ids"], encoding["attention_mask"] |
|
|
|
def tok_decode(self, tokens, skip_special_tokens=True): |
|
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens) |
|
|
|
def _model_call(self, inps, attn_mask=None, labels=None): |
|
""" |
|
:param inps: torch.Tensor |
|
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape |
|
[batch, sequence_ctx]. the size of sequence may vary from call to call |
|
:param attn_mask: torch.Tensor, optional |
|
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed |
|
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM |
|
:param labels: torch.Tensor, optional |
|
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed |
|
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM |
|
:return |
|
A torch tensor of shape [batch, sequence, vocab] with the |
|
logits returned from the model's decoder |
|
""" |
|
with torch.no_grad(): |
|
if attn_mask is not None or labels is not None: |
|
assert attn_mask is not None and labels is not None |
|
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM |
|
return self.model( |
|
input_ids=inps, attention_mask=attn_mask, labels=labels |
|
).logits |
|
else: |
|
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM |
|
return self.model(inps).logits |
|
|
|
def _model_generate(self, context, max_length, stop, **generation_kwargs): |
|
|
|
|
|
|
|
|
|
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0) |
|
do_sample = generation_kwargs.get("do_sample", None) |
|
|
|
|
|
if generation_kwargs.get("temperature") == 0.0 and do_sample is None: |
|
generation_kwargs["do_sample"] = do_sample = False |
|
|
|
if do_sample is False and generation_kwargs.get("temperature") == 0.0: |
|
generation_kwargs.pop("temperature") |
|
|
|
stopping_criteria = stop_sequences_criteria( |
|
self.tokenizer, stop, context.shape[1], context.shape[0] |
|
) |
|
return self.model.generate( |
|
input_ids=context, |
|
max_length=max_length, |
|
stopping_criteria=stopping_criteria, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
use_cache=True, |
|
**generation_kwargs, |
|
) |
|
|
|
def _select_cont_toks( |
|
self, logits: torch.Tensor, contlen: int = None, inplen: int = None |
|
) -> torch.Tensor: |
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: |
|
assert ( |
|
contlen and inplen |
|
), "Must pass input len and cont. len to select scored logits for causal LM" |
|
|
|
|
|
logits = logits[inplen - contlen : inplen] |
|
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: |
|
assert ( |
|
contlen and not inplen |
|
), "Selecting scored logits for Seq2SeqLM requires only cont. len" |
|
|
|
|
|
logits = logits[:contlen] |
|
|
|
return logits |
|
|
|
def loglikelihood_rolling( |
|
self, requests: List[Instance], disable_tqdm: bool = False |
|
) -> List[float]: |
|
loglikelihoods = [] |
|
|
|
adaptive_batch_size = None |
|
if self.batch_size == "auto": |
|
|
|
print("Passed argument batch_size = auto. Detecting largest batch size") |
|
batch_size = self._detect_batch_size() |
|
print(f"Determined Largest batch size: {batch_size}") |
|
adaptive_batch_size = batch_size |
|
|
|
for (string,) in tqdm( |
|
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0)) |
|
): |
|
rolling_token_windows = list( |
|
map( |
|
utils.make_disjoint_window, |
|
utils.get_rolling_token_windows( |
|
token_list=self.tok_encode(string), |
|
prefix_token=self.prefix_token_id, |
|
max_seq_len=self.max_length, |
|
context_len=1, |
|
), |
|
) |
|
) |
|
|
|
|
|
rolling_token_windows = [(None,) + x for x in rolling_token_windows] |
|
|
|
pad_amnt = 0 |
|
if self.world_size > 1: |
|
|
|
mytensor = torch.tensor(len(rolling_token_windows), device=self.device) |
|
gathered = ( |
|
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist() |
|
) |
|
|
|
pad_amnt = max(gathered) - gathered[self.rank] |
|
if pad_amnt > 0: |
|
rolling_token_windows += pad_amnt * [rolling_token_windows[0]] |
|
|
|
string_nll = self._loglikelihood_tokens( |
|
requests=rolling_token_windows, |
|
disable_tqdm=True, |
|
override_bs=adaptive_batch_size, |
|
) |
|
|
|
if (self.world_size > 1) and (pad_amnt > 0): |
|
string_nll = [x[0] for x in string_nll[:-pad_amnt]] |
|
else: |
|
|
|
string_nll = [x[0] for x in string_nll] |
|
|
|
string_nll = sum(string_nll) |
|
loglikelihoods.append(string_nll) |
|
|
|
return loglikelihoods |
|
|
|
def _batch_scheduler(self, pos, n_reordered_requests): |
|
sched = pos // int(len(n_reordered_requests) / self.batch_schedule) |
|
if sched in self.batch_sizes: |
|
return self.batch_sizes[sched] |
|
if (len(self.batch_sizes) > 1) and ( |
|
self.batch_sizes[sched - 1] == self.max_batch_size |
|
): |
|
|
|
self.batch_sizes[sched] = self.max_batch_size |
|
return self.batch_sizes[sched] |
|
print( |
|
f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size" |
|
) |
|
self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos) |
|
print(f"Determined largest batch size: {self.batch_sizes[sched]}") |
|
return self.batch_sizes[sched] |
|
|
|
def _loglikelihood_tokens( |
|
self, |
|
requests: List[Tuple[Tuple[str, str], List[int], List[int]]], |
|
disable_tqdm: bool = False, |
|
override_bs: int = None, |
|
) -> List[Tuple[float, bool]]: |
|
|
|
res = [] |
|
|
|
def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]): |
|
"""Defines the key for the sorted method""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
toks = req[1] + req[2] |
|
return -len(toks), tuple(toks) |
|
|
|
def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]): |
|
"""Defines the key to group and lookup one-token continuations""" |
|
|
|
|
|
|
|
|
|
return req[-2] + req[-1][:-1] |
|
|
|
re_ord = Collator( |
|
requests, |
|
sort_fn=_collate, |
|
group_by="contexts" |
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM |
|
and self.logits_cache |
|
else None, |
|
group_fn=_lookup_one_token_cont, |
|
) |
|
|
|
|
|
|
|
n_reordered_requests = len(re_ord) |
|
batch_size = ( |
|
self.batch_size |
|
if self.batch_size != "auto" |
|
else override_bs |
|
if override_bs is not None |
|
else 0 |
|
) |
|
batch_fn = ( |
|
self._batch_scheduler |
|
if self.batch_size == "auto" |
|
and n_reordered_requests > 0 |
|
and not override_bs |
|
else None |
|
) |
|
|
|
chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn) |
|
pbar = tqdm( |
|
total=len(requests), |
|
disable=(disable_tqdm or (self.rank != 0)), |
|
desc="Running loglikelihood requests", |
|
) |
|
for chunk in chunks: |
|
inps = [] |
|
cont_toks_list = [] |
|
inplens = [] |
|
|
|
conts = [] |
|
encoder_attns = [] |
|
|
|
padding_len_inp = None |
|
padding_len_cont = None |
|
|
|
|
|
|
|
|
|
for _, context_enc, continuation_enc in chunk: |
|
|
|
assert len(context_enc) > 0 |
|
assert len(continuation_enc) > 0 |
|
assert len(continuation_enc) <= self.max_length |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: |
|
inp = torch.tensor( |
|
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1], |
|
dtype=torch.long, |
|
device=self.device, |
|
) |
|
(inplen,) = inp.shape |
|
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: |
|
inp = torch.tensor( |
|
(context_enc)[-self.max_length :], |
|
dtype=torch.long, |
|
device=self.device, |
|
) |
|
(inplen,) = inp.shape |
|
|
|
|
|
encoder_attns.append(torch.ones_like(inp)) |
|
|
|
cont = torch.tensor( |
|
(continuation_enc)[-self.max_length :], |
|
|
|
|
|
dtype=torch.long, |
|
device=self.device, |
|
) |
|
(contlen,) = cont.shape |
|
|
|
conts.append(cont) |
|
|
|
padding_len_cont = ( |
|
max(padding_len_cont, contlen) |
|
if padding_len_cont is not None |
|
else contlen |
|
) |
|
|
|
padding_len_inp = ( |
|
max(padding_len_inp, inplen) |
|
if padding_len_inp is not None |
|
else inplen |
|
) |
|
|
|
inps.append(inp) |
|
cont_toks_list.append(continuation_enc) |
|
inplens.append(inplen) |
|
|
|
|
|
call_kwargs = {} |
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: |
|
batched_inps = pad_and_concat( |
|
padding_len_inp, inps, padding_side="right" |
|
) |
|
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: |
|
|
|
batched_inps = pad_and_concat( |
|
padding_len_inp, inps |
|
) |
|
batched_conts = pad_and_concat( |
|
padding_len_cont, conts |
|
) |
|
batched_encoder_mask = pad_and_concat( |
|
padding_len_inp, encoder_attns |
|
) |
|
call_kwargs = { |
|
"attn_mask": batched_encoder_mask, |
|
"labels": batched_conts, |
|
} |
|
|
|
multi_logits = F.log_softmax( |
|
self._model_call(batched_inps, **call_kwargs), dim=-1 |
|
) |
|
|
|
for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip( |
|
chunk, multi_logits, inplens, cont_toks_list |
|
): |
|
|
|
contlen = len(cont_toks) |
|
|
|
|
|
|
|
|
|
ctx_len = ( |
|
inplen + (logits.shape[0] - padding_len_inp) |
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM |
|
else None |
|
) |
|
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len) |
|
logits = logits.unsqueeze(0) |
|
|
|
|
|
greedy_tokens = logits.argmax(dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
for request_str, cont_toks, logits in re_ord.get_cache( |
|
req_str=request_str, |
|
cxt_toks=ctx_tokens, |
|
cont_toks=cont_toks, |
|
logits=logits, |
|
): |
|
cont_toks = torch.tensor( |
|
cont_toks, dtype=torch.long, device=self.device |
|
).unsqueeze(0) |
|
max_equal = (greedy_tokens == cont_toks).all() |
|
|
|
|
|
|
|
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze( |
|
-1 |
|
) |
|
|
|
|
|
answer = (float(logits.sum()), bool(max_equal)) |
|
|
|
res.append(answer) |
|
|
|
self.cache_hook.add_partial("loglikelihood", request_str, answer) |
|
pbar.update(1) |
|
|
|
pbar.close() |
|
|
|
return re_ord.get_original(res) |
|
|
|
def generate_until( |
|
self, requests: List[Instance], disable_tqdm: bool = False |
|
) -> List[str]: |
|
res = [] |
|
|
|
def _collate(req: Tuple[str, dict]): |
|
"""Defines the key for the sorted method""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
toks = self.tok_encode(req[0]) |
|
return -len(toks), req[0] |
|
|
|
pbar = tqdm( |
|
total=len(requests), |
|
disable=(disable_tqdm or (self.rank != 0)), |
|
desc="Running generate_until requests", |
|
) |
|
adaptive_batch_size = None |
|
if self.batch_size == "auto": |
|
|
|
print("Passed argument batch_size = auto. Detecting largest batch size") |
|
batch_size = self._detect_batch_size() |
|
print(f"Determined Largest batch size: {batch_size}") |
|
adaptive_batch_size = batch_size |
|
|
|
batch_size = ( |
|
self.batch_size |
|
if self.batch_size != "auto" |
|
else adaptive_batch_size |
|
if adaptive_batch_size is not None |
|
else 0 |
|
) |
|
batch_fn = ( |
|
self._batch_scheduler |
|
if self.batch_size == "auto" and not adaptive_batch_size |
|
else None |
|
) |
|
|
|
|
|
|
|
|
|
|
|
re_ords = Collator( |
|
[reg.args for reg in requests], |
|
sort_fn=_collate, |
|
group_by="gen_kwargs", |
|
group_fn=lambda x: x[1], |
|
) |
|
chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn) |
|
for chunk in chunks: |
|
contexts, all_gen_kwargs = zip(*chunk) |
|
|
|
|
|
gen_kwargs = all_gen_kwargs[0] |
|
|
|
until = None |
|
if isinstance(gen_kwargs, dict): |
|
kwargs = copy.deepcopy(gen_kwargs) |
|
if "until" in kwargs.keys(): |
|
until = kwargs.pop("until") |
|
if isinstance(until, str): |
|
until = [until] |
|
elif not isinstance(until, list): |
|
raise ValueError( |
|
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}" |
|
) |
|
else: |
|
raise ValueError( |
|
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}" |
|
) |
|
|
|
eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False) |
|
if not until: |
|
until = [eos] |
|
else: |
|
until.append(eos) |
|
if "max_gen_toks" in kwargs.keys(): |
|
max_gen_toks = kwargs.pop("max_gen_toks") |
|
else: |
|
max_gen_toks = self.max_gen_toks |
|
|
|
|
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: |
|
|
|
max_ctx_len = self.max_length - max_gen_toks |
|
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: |
|
|
|
max_ctx_len = self.max_length |
|
|
|
|
|
context_enc, attn_masks = self.tok_batch_encode( |
|
contexts, |
|
left_truncate_len=max_ctx_len, |
|
truncation=self.truncation, |
|
) |
|
context_enc = context_enc.to(self.device) |
|
attn_masks = attn_masks.to(self.device) |
|
|
|
if "max_length" not in kwargs: |
|
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks |
|
|
|
|
|
cont = self._model_generate( |
|
context=context_enc, |
|
attention_mask=attn_masks, |
|
stop=until, |
|
**kwargs, |
|
) |
|
|
|
cont_toks_list = cont.tolist() |
|
for cont_toks, context in zip(cont_toks_list, contexts): |
|
|
|
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: |
|
cont_toks = cont_toks[context_enc.shape[1] :] |
|
|
|
s = self.tok_decode(cont_toks) |
|
|
|
|
|
for term in until: |
|
if len(term) > 0: |
|
|
|
|
|
s = s.split(term)[0] |
|
|
|
res.append(s) |
|
|
|
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s) |
|
pbar.update(1) |
|
|
|
res = re_ords.get_original(res) |
|
|
|
pbar.close() |
|
|
|
return res |
|
|