|
import itertools |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from lm_eval.api.metrics import ( |
|
aggregate_subtask_metrics, |
|
mean, |
|
pooled_sample_stderr, |
|
stderr_for_metric, |
|
) |
|
from lm_eval.models.utils import Collator |
|
from lm_eval.utils import ( |
|
get_rolling_token_windows, |
|
make_disjoint_window, |
|
) |
|
|
|
|
|
|
|
def test_get_rolling_token_windows_v1(): |
|
gold = [ |
|
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
( |
|
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18], |
|
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], |
|
), |
|
( |
|
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28], |
|
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29], |
|
), |
|
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [30, 31, 32, 33]), |
|
] |
|
x = list(range(34)) |
|
generator = get_rolling_token_windows( |
|
token_list=x, |
|
prefix_token=-100, |
|
max_seq_len=10, |
|
context_len=1, |
|
) |
|
pred_length = 0 |
|
output = [] |
|
for input_tokens, pred_tokens in generator: |
|
output.append((input_tokens, pred_tokens)) |
|
pred_length += len(pred_tokens) |
|
assert pred_length == len(x) |
|
assert gold == output |
|
|
|
|
|
|
|
def test_get_rolling_token_windows_v2(): |
|
gold = [ |
|
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [10, 11, 12]), |
|
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [13, 14, 15]), |
|
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [16, 17, 18]), |
|
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [19, 20, 21]), |
|
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [22, 23, 24]), |
|
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [25, 26, 27]), |
|
([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [28, 29, 30]), |
|
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [31, 32, 33]), |
|
] |
|
x = list(range(34)) |
|
generator = get_rolling_token_windows( |
|
token_list=x, |
|
prefix_token=-100, |
|
max_seq_len=10, |
|
context_len=8, |
|
) |
|
pred_length = 0 |
|
output = [] |
|
for input_tokens, pred_tokens in generator: |
|
output.append((input_tokens, pred_tokens)) |
|
pred_length += len(pred_tokens) |
|
assert pred_length == len(x) |
|
assert gold == output |
|
|
|
|
|
|
|
def test_get_rolling_token_windows_v3(): |
|
gold = [ |
|
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]), |
|
([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]), |
|
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]), |
|
([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]), |
|
([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]), |
|
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]), |
|
([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]), |
|
([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]), |
|
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]), |
|
([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]), |
|
([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]), |
|
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]), |
|
([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]), |
|
([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]), |
|
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]), |
|
([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]), |
|
([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]), |
|
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]), |
|
([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]), |
|
([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]), |
|
([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30]), |
|
([21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [31]), |
|
([22, 23, 24, 25, 26, 27, 28, 29, 30, 31], [32]), |
|
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [33]), |
|
] |
|
x = list(range(34)) |
|
generator = get_rolling_token_windows( |
|
token_list=x, |
|
prefix_token=-100, |
|
max_seq_len=10, |
|
context_len=10, |
|
) |
|
pred_length = 0 |
|
output = [] |
|
for input_tokens, pred_tokens in generator: |
|
output.append((input_tokens, pred_tokens)) |
|
pred_length += len(pred_tokens) |
|
assert pred_length == len(x) |
|
assert gold == output |
|
|
|
|
|
|
|
def test_get_rolling_token_windows_v4(): |
|
gold = [ |
|
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]), |
|
([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]), |
|
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]), |
|
([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]), |
|
([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]), |
|
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]), |
|
([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]), |
|
([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]), |
|
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]), |
|
([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]), |
|
([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]), |
|
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]), |
|
([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]), |
|
([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]), |
|
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]), |
|
([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]), |
|
([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]), |
|
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]), |
|
([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]), |
|
([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]), |
|
] |
|
x = list(range(30)) |
|
generator = get_rolling_token_windows( |
|
token_list=x, |
|
prefix_token=-100, |
|
max_seq_len=10, |
|
context_len=10, |
|
) |
|
pred_length = 0 |
|
output = [] |
|
for input_tokens, pred_tokens in generator: |
|
output.append((input_tokens, pred_tokens)) |
|
pred_length += len(pred_tokens) |
|
assert pred_length == len(x) |
|
assert gold == output |
|
|
|
|
|
|
|
def test_get_rolling_token_windows_v5(): |
|
gold = [ |
|
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
( |
|
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18], |
|
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], |
|
), |
|
( |
|
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28], |
|
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29], |
|
), |
|
] |
|
x = list(range(30)) |
|
generator = get_rolling_token_windows( |
|
token_list=x, |
|
prefix_token=-100, |
|
max_seq_len=10, |
|
context_len=1, |
|
) |
|
pred_length = 0 |
|
output = [] |
|
for input_tokens, pred_tokens in generator: |
|
output.append((input_tokens, pred_tokens)) |
|
pred_length += len(pred_tokens) |
|
assert pred_length == len(x) |
|
assert gold == output |
|
|
|
|
|
|
|
def test_get_rolling_token_windows_v6(): |
|
gold = [ |
|
([-100, 0], [0, 1]), |
|
([1, 2], [2, 3]), |
|
([3, 4], [4, 5]), |
|
([5, 6], [6, 7]), |
|
([6, 7], [8]), |
|
] |
|
x = list(range(9)) |
|
generator = get_rolling_token_windows( |
|
token_list=x, |
|
prefix_token=-100, |
|
max_seq_len=2, |
|
context_len=1, |
|
) |
|
pred_length = 0 |
|
output = [] |
|
for input_tokens, pred_tokens in generator: |
|
output.append((input_tokens, pred_tokens)) |
|
pred_length += len(pred_tokens) |
|
assert pred_length == len(x) |
|
assert gold == output |
|
|
|
|
|
def test_get_rolling_token_windows_empty(): |
|
generator = get_rolling_token_windows( |
|
token_list=[], |
|
prefix_token=-100, |
|
max_seq_len=2, |
|
context_len=1, |
|
) |
|
n = 0 |
|
for _ in generator: |
|
n += 1 |
|
assert n == 0 |
|
|
|
|
|
def test_make_disjoint_window(): |
|
assert make_disjoint_window(([1, 2, 3, 4, 5], [2, 3, 4, 5, 6])) == ( |
|
[1], |
|
[2, 3, 4, 5, 6], |
|
) |
|
assert make_disjoint_window(([1, 2, 3, 4, 5], [4, 5, 6])) == ([1, 2, 3], [4, 5, 6]) |
|
assert make_disjoint_window(([1, 2, 3, 4, 5], [6])) == ([1, 2, 3, 4, 5], [6]) |
|
|
|
|
|
class TestCollator: |
|
def make_generate_sample(self, end=10): |
|
strings = ["x" * i for i in range(1, end + 1)] |
|
gen_kwargs1, gen_kwargs2 = ( |
|
{"temperature": 0}, |
|
{"temperature": 0, "until": ["nn", "\n\n"]}, |
|
) |
|
args = [ |
|
(string, gen_kwargs1 if i < len(strings) // 2 else gen_kwargs2) |
|
for i, string in enumerate(strings) |
|
] |
|
|
|
return args |
|
|
|
def make_loglikelihood_sample(self, end=11): |
|
samples = [ |
|
(("x", "x"), list(range(1, total_length + 1))) |
|
for total_length in range(1, end + 1) |
|
] |
|
return samples |
|
|
|
def make_loglikelihood_sample_group(self, end=11): |
|
a = [(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x]) for x in range(9)] |
|
b = [ |
|
(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x, y, z]) |
|
for x, y, z in zip(range(9), range(9, 18), range(18, 27)) |
|
] |
|
return a + b |
|
|
|
@pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 9)]) |
|
def test_generations(self, batch_size, end): |
|
_collate_gen = lambda x: (-len(x[0]), x[0]) |
|
|
|
generation_samples = self.make_generate_sample(int(end)) |
|
gens = Collator(generation_samples, _collate_gen, group_by="gen_kwargs") |
|
chunks = gens.get_batched(n=int(batch_size), batch_fn=None) |
|
output = [] |
|
for chunks in chunks: |
|
|
|
group_one = end // 2 |
|
group_two = end - end // 2 |
|
assert ( |
|
len(chunks) <= batch_size |
|
if batch_size != 0 |
|
else len(chunks) in [group_one, group_two] |
|
) |
|
|
|
assert all( |
|
len(chunks[i][0]) <= len(chunks[i - 1][0]) |
|
for i in range(1, len(chunks)) |
|
) |
|
|
|
assert all(x[1] == chunks[0][1] for x in chunks) |
|
for x in chunks: |
|
output.append(x) |
|
reordered_output = gens.get_original(output) |
|
|
|
assert reordered_output == generation_samples |
|
|
|
@pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 3)]) |
|
def test_loglikelihood(self, batch_size, end): |
|
_collate_log = lambda x: (-len(x[1]), tuple(x[1])) |
|
loglikelihood_samples = self.make_loglikelihood_sample(int(end)) |
|
loglikelihoods = Collator( |
|
loglikelihood_samples, |
|
_collate_log, |
|
) |
|
chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None) |
|
output = [] |
|
for chunks in chunks: |
|
|
|
assert len(chunks) <= batch_size if batch_size != 0 else len(chunks) == end |
|
|
|
assert all( |
|
len(chunks[i][1]) <= len(chunks[i - 1][1]) |
|
for i in range(1, len(chunks)) |
|
) |
|
for x in chunks: |
|
output.append(x[1]) |
|
|
|
reordered_output = loglikelihoods.get_original(output) |
|
assert reordered_output == [x[1] for x in loglikelihood_samples] |
|
|
|
@pytest.mark.parametrize("batch_size", [17, 8, 12, 0]) |
|
def test_context_grouping(self, batch_size): |
|
def _collate(x): |
|
toks = x[1] + x[2] |
|
return -len(toks), tuple(toks) |
|
|
|
_collate_log = _collate |
|
loglikelihood_samples = self.make_loglikelihood_sample_group() |
|
loglikelihoods = Collator( |
|
loglikelihood_samples, |
|
_collate_log, |
|
group_fn=lambda a: a[-2] + a[-1][:-1], |
|
group_by="contexts", |
|
) |
|
chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None) |
|
output = [] |
|
outputs_ = [] |
|
for chunks in chunks: |
|
|
|
if batch_size != 0: |
|
assert len(chunks) <= batch_size |
|
|
|
assert all( |
|
len(chunks[i][1]) <= len(chunks[i - 1][1]) |
|
for i in range(1, len(chunks)) |
|
) |
|
for x in chunks: |
|
for request_str, cont_toks, logits in loglikelihoods.get_cache( |
|
req_str="".join(x[0]), |
|
cxt_toks=x[1], |
|
cont_toks=x[2], |
|
logits=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]) |
|
.unsqueeze(0) |
|
.unsqueeze(0), |
|
): |
|
output.append(x[1]) |
|
outputs_.append(cont_toks) |
|
assert len(output) == len(outputs_) |
|
|
|
reordered_output = loglikelihoods.get_original(output) |
|
assert reordered_output == [x[1] for x in loglikelihood_samples] |
|
|
|
|
|
def test_aggregate_mean(): |
|
|
|
assert ( |
|
aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=False) |
|
== 0.3 |
|
) |
|
assert ( |
|
aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=True) |
|
== 0.3375 |
|
) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"samples", |
|
[ |
|
[40 * [1.0] + 60 * [0.0], 30 * [1.0] + 30 * [0.0], 20 * [1.0] + 60 * [0.0]], |
|
[35 * [1.0] + 65 * [0.0], 20 * [1.0] + 20 * [0.0]], |
|
], |
|
) |
|
def test_aggregate_stderrs(samples): |
|
|
|
|
|
|
|
mean_stderr = stderr_for_metric(metric=mean, bootstrap_iters=100000) |
|
|
|
stderrs = [mean_stderr(subtask) for subtask in samples] |
|
|
|
sizes = [len(subtask) for subtask in samples] |
|
|
|
assert np.allclose( |
|
pooled_sample_stderr(stderrs, sizes), |
|
mean_stderr(list(itertools.chain.from_iterable(samples))), |
|
atol=1.0e-3, |
|
) |
|
|