applied-ai-018 commited on
Commit
03a01d6
·
verified ·
1 Parent(s): 54e8b1e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/__init__.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/activations.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/activations_tf.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/audio_utils.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_graph_to_onnx.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_slow_tokenizer.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_slow_tokenizers_checkpoints_to_fast.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_tf_hub_seq_to_seq_bert_to_pytorch.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/deepspeed.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/dependency_versions_check.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/dependency_versions_table.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/dynamic_module_utils.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_sequence_utils.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/file_utils.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/generation_flax_utils.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/generation_utils.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/hf_argparser.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/image_transforms.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/image_utils.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modelcard.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_tf_outputs.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/optimization_tf.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/pytorch_utils.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tf_utils.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/time_series_utils.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_base.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_fast.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_callback.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_pt_utils.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/training_args.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/training_args_seq2seq.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/__pycache__/__init__.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__init__.py +18 -0
  35. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/glue.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/squad.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/utils.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/xnli.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/glue.py +643 -0
  40. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/squad.py +845 -0
  41. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/utils.py +349 -0
  42. env-llmeval/lib/python3.10/site-packages/transformers/data/processors/xnli.py +97 -0
  43. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__init__.py +1107 -0
  44. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/__init__.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/audio_classification.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/base.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/conversational.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/document_question_answering.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/fill_mask.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_classification.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (181 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/activations.cpython-310.pyc ADDED
Binary file (9.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/activations_tf.cpython-310.pyc ADDED
Binary file (4.53 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/audio_utils.cpython-310.pyc ADDED
Binary file (30.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_graph_to_onnx.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_slow_tokenizer.cpython-310.pyc ADDED
Binary file (38.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_slow_tokenizers_checkpoints_to_fast.cpython-310.pyc ADDED
Binary file (2.98 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_tf_hub_seq_to_seq_bert_to_pytorch.cpython-310.pyc ADDED
Binary file (1.91 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/deepspeed.cpython-310.pyc ADDED
Binary file (999 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/dependency_versions_check.cpython-310.pyc ADDED
Binary file (941 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/dependency_versions_table.cpython-310.pyc ADDED
Binary file (3.04 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/dynamic_module_utils.cpython-310.pyc ADDED
Binary file (19.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_sequence_utils.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/file_utils.cpython-310.pyc ADDED
Binary file (3.74 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/generation_flax_utils.cpython-310.pyc ADDED
Binary file (667 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/generation_utils.cpython-310.pyc ADDED
Binary file (645 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/hf_argparser.cpython-310.pyc ADDED
Binary file (15.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/image_transforms.cpython-310.pyc ADDED
Binary file (24.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/image_utils.cpython-310.pyc ADDED
Binary file (23.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modelcard.cpython-310.pyc ADDED
Binary file (25.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_tf_outputs.cpython-310.pyc ADDED
Binary file (55.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/optimization_tf.cpython-310.pyc ADDED
Binary file (14.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/pytorch_utils.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tf_utils.cpython-310.pyc ADDED
Binary file (8.16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/time_series_utils.cpython-310.pyc ADDED
Binary file (8.94 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils.cpython-310.pyc ADDED
Binary file (29.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_base.cpython-310.pyc ADDED
Binary file (147 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_fast.cpython-310.pyc ADDED
Binary file (25.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_callback.cpython-310.pyc ADDED
Binary file (23.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_pt_utils.cpython-310.pyc ADDED
Binary file (50.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/training_args.cpython-310.pyc ADDED
Binary file (114 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/training_args_seq2seq.cpython-310.pyc ADDED
Binary file (3.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.54 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
16
+ from .squad import SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features
17
+ from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
18
+ from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/glue.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/squad.cpython-310.pyc ADDED
Binary file (20 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/utils.cpython-310.pyc ADDED
Binary file (12.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/xnli.cpython-310.pyc ADDED
Binary file (2.53 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/glue.py ADDED
@@ -0,0 +1,643 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ GLUE processors and helpers"""
17
+
18
+ import os
19
+ import warnings
20
+ from dataclasses import asdict
21
+ from enum import Enum
22
+ from typing import List, Optional, Union
23
+
24
+ from ...tokenization_utils import PreTrainedTokenizer
25
+ from ...utils import is_tf_available, logging
26
+ from .utils import DataProcessor, InputExample, InputFeatures
27
+
28
+
29
+ if is_tf_available():
30
+ import tensorflow as tf
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ DEPRECATION_WARNING = (
35
+ "This {0} will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
36
+ "library. You can have a look at this example script for pointers: "
37
+ "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
38
+ )
39
+
40
+
41
+ def glue_convert_examples_to_features(
42
+ examples: Union[List[InputExample], "tf.data.Dataset"],
43
+ tokenizer: PreTrainedTokenizer,
44
+ max_length: Optional[int] = None,
45
+ task=None,
46
+ label_list=None,
47
+ output_mode=None,
48
+ ):
49
+ """
50
+ Loads a data file into a list of `InputFeatures`
51
+
52
+ Args:
53
+ examples: List of `InputExamples` or `tf.data.Dataset` containing the examples.
54
+ tokenizer: Instance of a tokenizer that will tokenize the examples
55
+ max_length: Maximum example length. Defaults to the tokenizer's max_len
56
+ task: GLUE task
57
+ label_list: List of labels. Can be obtained from the processor using the `processor.get_labels()` method
58
+ output_mode: String indicating the output mode. Either `regression` or `classification`
59
+
60
+ Returns:
61
+ If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the task-specific
62
+ features. If the input is a list of `InputExamples`, will return a list of task-specific `InputFeatures` which
63
+ can be fed to the model.
64
+
65
+ """
66
+ warnings.warn(DEPRECATION_WARNING.format("function"), FutureWarning)
67
+ if is_tf_available() and isinstance(examples, tf.data.Dataset):
68
+ if task is None:
69
+ raise ValueError("When calling glue_convert_examples_to_features from TF, the task parameter is required.")
70
+ return _tf_glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task)
71
+ return _glue_convert_examples_to_features(
72
+ examples, tokenizer, max_length=max_length, task=task, label_list=label_list, output_mode=output_mode
73
+ )
74
+
75
+
76
+ if is_tf_available():
77
+
78
+ def _tf_glue_convert_examples_to_features(
79
+ examples: tf.data.Dataset,
80
+ tokenizer: PreTrainedTokenizer,
81
+ task=str,
82
+ max_length: Optional[int] = None,
83
+ ) -> tf.data.Dataset:
84
+ """
85
+ Returns:
86
+ A `tf.data.Dataset` containing the task-specific features.
87
+
88
+ """
89
+ processor = glue_processors[task]()
90
+ examples = [processor.tfds_map(processor.get_example_from_tensor_dict(example)) for example in examples]
91
+ features = glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task)
92
+ label_type = tf.float32 if task == "sts-b" else tf.int64
93
+
94
+ def gen():
95
+ for ex in features:
96
+ d = {k: v for k, v in asdict(ex).items() if v is not None}
97
+ label = d.pop("label")
98
+ yield (d, label)
99
+
100
+ input_names = tokenizer.model_input_names
101
+
102
+ return tf.data.Dataset.from_generator(
103
+ gen,
104
+ ({k: tf.int32 for k in input_names}, label_type),
105
+ ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
106
+ )
107
+
108
+
109
+ def _glue_convert_examples_to_features(
110
+ examples: List[InputExample],
111
+ tokenizer: PreTrainedTokenizer,
112
+ max_length: Optional[int] = None,
113
+ task=None,
114
+ label_list=None,
115
+ output_mode=None,
116
+ ):
117
+ if max_length is None:
118
+ max_length = tokenizer.model_max_length
119
+
120
+ if task is not None:
121
+ processor = glue_processors[task]()
122
+ if label_list is None:
123
+ label_list = processor.get_labels()
124
+ logger.info(f"Using label list {label_list} for task {task}")
125
+ if output_mode is None:
126
+ output_mode = glue_output_modes[task]
127
+ logger.info(f"Using output mode {output_mode} for task {task}")
128
+
129
+ label_map = {label: i for i, label in enumerate(label_list)}
130
+
131
+ def label_from_example(example: InputExample) -> Union[int, float, None]:
132
+ if example.label is None:
133
+ return None
134
+ if output_mode == "classification":
135
+ return label_map[example.label]
136
+ elif output_mode == "regression":
137
+ return float(example.label)
138
+ raise KeyError(output_mode)
139
+
140
+ labels = [label_from_example(example) for example in examples]
141
+
142
+ batch_encoding = tokenizer(
143
+ [(example.text_a, example.text_b) for example in examples],
144
+ max_length=max_length,
145
+ padding="max_length",
146
+ truncation=True,
147
+ )
148
+
149
+ features = []
150
+ for i in range(len(examples)):
151
+ inputs = {k: batch_encoding[k][i] for k in batch_encoding}
152
+
153
+ feature = InputFeatures(**inputs, label=labels[i])
154
+ features.append(feature)
155
+
156
+ for i, example in enumerate(examples[:5]):
157
+ logger.info("*** Example ***")
158
+ logger.info(f"guid: {example.guid}")
159
+ logger.info(f"features: {features[i]}")
160
+
161
+ return features
162
+
163
+
164
+ class OutputMode(Enum):
165
+ classification = "classification"
166
+ regression = "regression"
167
+
168
+
169
+ class MrpcProcessor(DataProcessor):
170
+ """Processor for the MRPC data set (GLUE version)."""
171
+
172
+ def __init__(self, *args, **kwargs):
173
+ super().__init__(*args, **kwargs)
174
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
175
+
176
+ def get_example_from_tensor_dict(self, tensor_dict):
177
+ """See base class."""
178
+ return InputExample(
179
+ tensor_dict["idx"].numpy(),
180
+ tensor_dict["sentence1"].numpy().decode("utf-8"),
181
+ tensor_dict["sentence2"].numpy().decode("utf-8"),
182
+ str(tensor_dict["label"].numpy()),
183
+ )
184
+
185
+ def get_train_examples(self, data_dir):
186
+ """See base class."""
187
+ logger.info(f"LOOKING AT {os.path.join(data_dir, 'train.tsv')}")
188
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
189
+
190
+ def get_dev_examples(self, data_dir):
191
+ """See base class."""
192
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
193
+
194
+ def get_test_examples(self, data_dir):
195
+ """See base class."""
196
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
197
+
198
+ def get_labels(self):
199
+ """See base class."""
200
+ return ["0", "1"]
201
+
202
+ def _create_examples(self, lines, set_type):
203
+ """Creates examples for the training, dev and test sets."""
204
+ examples = []
205
+ for i, line in enumerate(lines):
206
+ if i == 0:
207
+ continue
208
+ guid = f"{set_type}-{i}"
209
+ text_a = line[3]
210
+ text_b = line[4]
211
+ label = None if set_type == "test" else line[0]
212
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
213
+ return examples
214
+
215
+
216
+ class MnliProcessor(DataProcessor):
217
+ """Processor for the MultiNLI data set (GLUE version)."""
218
+
219
+ def __init__(self, *args, **kwargs):
220
+ super().__init__(*args, **kwargs)
221
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
222
+
223
+ def get_example_from_tensor_dict(self, tensor_dict):
224
+ """See base class."""
225
+ return InputExample(
226
+ tensor_dict["idx"].numpy(),
227
+ tensor_dict["premise"].numpy().decode("utf-8"),
228
+ tensor_dict["hypothesis"].numpy().decode("utf-8"),
229
+ str(tensor_dict["label"].numpy()),
230
+ )
231
+
232
+ def get_train_examples(self, data_dir):
233
+ """See base class."""
234
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
235
+
236
+ def get_dev_examples(self, data_dir):
237
+ """See base class."""
238
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
239
+
240
+ def get_test_examples(self, data_dir):
241
+ """See base class."""
242
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched")
243
+
244
+ def get_labels(self):
245
+ """See base class."""
246
+ return ["contradiction", "entailment", "neutral"]
247
+
248
+ def _create_examples(self, lines, set_type):
249
+ """Creates examples for the training, dev and test sets."""
250
+ examples = []
251
+ for i, line in enumerate(lines):
252
+ if i == 0:
253
+ continue
254
+ guid = f"{set_type}-{line[0]}"
255
+ text_a = line[8]
256
+ text_b = line[9]
257
+ label = None if set_type.startswith("test") else line[-1]
258
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
259
+ return examples
260
+
261
+
262
+ class MnliMismatchedProcessor(MnliProcessor):
263
+ """Processor for the MultiNLI Mismatched data set (GLUE version)."""
264
+
265
+ def __init__(self, *args, **kwargs):
266
+ super().__init__(*args, **kwargs)
267
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
268
+
269
+ def get_dev_examples(self, data_dir):
270
+ """See base class."""
271
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched")
272
+
273
+ def get_test_examples(self, data_dir):
274
+ """See base class."""
275
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test_mismatched")
276
+
277
+
278
+ class ColaProcessor(DataProcessor):
279
+ """Processor for the CoLA data set (GLUE version)."""
280
+
281
+ def __init__(self, *args, **kwargs):
282
+ super().__init__(*args, **kwargs)
283
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
284
+
285
+ def get_example_from_tensor_dict(self, tensor_dict):
286
+ """See base class."""
287
+ return InputExample(
288
+ tensor_dict["idx"].numpy(),
289
+ tensor_dict["sentence"].numpy().decode("utf-8"),
290
+ None,
291
+ str(tensor_dict["label"].numpy()),
292
+ )
293
+
294
+ def get_train_examples(self, data_dir):
295
+ """See base class."""
296
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
297
+
298
+ def get_dev_examples(self, data_dir):
299
+ """See base class."""
300
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
301
+
302
+ def get_test_examples(self, data_dir):
303
+ """See base class."""
304
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
305
+
306
+ def get_labels(self):
307
+ """See base class."""
308
+ return ["0", "1"]
309
+
310
+ def _create_examples(self, lines, set_type):
311
+ """Creates examples for the training, dev and test sets."""
312
+ test_mode = set_type == "test"
313
+ if test_mode:
314
+ lines = lines[1:]
315
+ text_index = 1 if test_mode else 3
316
+ examples = []
317
+ for i, line in enumerate(lines):
318
+ guid = f"{set_type}-{i}"
319
+ text_a = line[text_index]
320
+ label = None if test_mode else line[1]
321
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
322
+ return examples
323
+
324
+
325
+ class Sst2Processor(DataProcessor):
326
+ """Processor for the SST-2 data set (GLUE version)."""
327
+
328
+ def __init__(self, *args, **kwargs):
329
+ super().__init__(*args, **kwargs)
330
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
331
+
332
+ def get_example_from_tensor_dict(self, tensor_dict):
333
+ """See base class."""
334
+ return InputExample(
335
+ tensor_dict["idx"].numpy(),
336
+ tensor_dict["sentence"].numpy().decode("utf-8"),
337
+ None,
338
+ str(tensor_dict["label"].numpy()),
339
+ )
340
+
341
+ def get_train_examples(self, data_dir):
342
+ """See base class."""
343
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
344
+
345
+ def get_dev_examples(self, data_dir):
346
+ """See base class."""
347
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
348
+
349
+ def get_test_examples(self, data_dir):
350
+ """See base class."""
351
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
352
+
353
+ def get_labels(self):
354
+ """See base class."""
355
+ return ["0", "1"]
356
+
357
+ def _create_examples(self, lines, set_type):
358
+ """Creates examples for the training, dev and test sets."""
359
+ examples = []
360
+ text_index = 1 if set_type == "test" else 0
361
+ for i, line in enumerate(lines):
362
+ if i == 0:
363
+ continue
364
+ guid = f"{set_type}-{i}"
365
+ text_a = line[text_index]
366
+ label = None if set_type == "test" else line[1]
367
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
368
+ return examples
369
+
370
+
371
+ class StsbProcessor(DataProcessor):
372
+ """Processor for the STS-B data set (GLUE version)."""
373
+
374
+ def __init__(self, *args, **kwargs):
375
+ super().__init__(*args, **kwargs)
376
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
377
+
378
+ def get_example_from_tensor_dict(self, tensor_dict):
379
+ """See base class."""
380
+ return InputExample(
381
+ tensor_dict["idx"].numpy(),
382
+ tensor_dict["sentence1"].numpy().decode("utf-8"),
383
+ tensor_dict["sentence2"].numpy().decode("utf-8"),
384
+ str(tensor_dict["label"].numpy()),
385
+ )
386
+
387
+ def get_train_examples(self, data_dir):
388
+ """See base class."""
389
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
390
+
391
+ def get_dev_examples(self, data_dir):
392
+ """See base class."""
393
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
394
+
395
+ def get_test_examples(self, data_dir):
396
+ """See base class."""
397
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
398
+
399
+ def get_labels(self):
400
+ """See base class."""
401
+ return [None]
402
+
403
+ def _create_examples(self, lines, set_type):
404
+ """Creates examples for the training, dev and test sets."""
405
+ examples = []
406
+ for i, line in enumerate(lines):
407
+ if i == 0:
408
+ continue
409
+ guid = f"{set_type}-{line[0]}"
410
+ text_a = line[7]
411
+ text_b = line[8]
412
+ label = None if set_type == "test" else line[-1]
413
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
414
+ return examples
415
+
416
+
417
+ class QqpProcessor(DataProcessor):
418
+ """Processor for the QQP data set (GLUE version)."""
419
+
420
+ def __init__(self, *args, **kwargs):
421
+ super().__init__(*args, **kwargs)
422
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
423
+
424
+ def get_example_from_tensor_dict(self, tensor_dict):
425
+ """See base class."""
426
+ return InputExample(
427
+ tensor_dict["idx"].numpy(),
428
+ tensor_dict["question1"].numpy().decode("utf-8"),
429
+ tensor_dict["question2"].numpy().decode("utf-8"),
430
+ str(tensor_dict["label"].numpy()),
431
+ )
432
+
433
+ def get_train_examples(self, data_dir):
434
+ """See base class."""
435
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
436
+
437
+ def get_dev_examples(self, data_dir):
438
+ """See base class."""
439
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
440
+
441
+ def get_test_examples(self, data_dir):
442
+ """See base class."""
443
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
444
+
445
+ def get_labels(self):
446
+ """See base class."""
447
+ return ["0", "1"]
448
+
449
+ def _create_examples(self, lines, set_type):
450
+ """Creates examples for the training, dev and test sets."""
451
+ test_mode = set_type == "test"
452
+ q1_index = 1 if test_mode else 3
453
+ q2_index = 2 if test_mode else 4
454
+ examples = []
455
+ for i, line in enumerate(lines):
456
+ if i == 0:
457
+ continue
458
+ guid = f"{set_type}-{line[0]}"
459
+ try:
460
+ text_a = line[q1_index]
461
+ text_b = line[q2_index]
462
+ label = None if test_mode else line[5]
463
+ except IndexError:
464
+ continue
465
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
466
+ return examples
467
+
468
+
469
+ class QnliProcessor(DataProcessor):
470
+ """Processor for the QNLI data set (GLUE version)."""
471
+
472
+ def __init__(self, *args, **kwargs):
473
+ super().__init__(*args, **kwargs)
474
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
475
+
476
+ def get_example_from_tensor_dict(self, tensor_dict):
477
+ """See base class."""
478
+ return InputExample(
479
+ tensor_dict["idx"].numpy(),
480
+ tensor_dict["question"].numpy().decode("utf-8"),
481
+ tensor_dict["sentence"].numpy().decode("utf-8"),
482
+ str(tensor_dict["label"].numpy()),
483
+ )
484
+
485
+ def get_train_examples(self, data_dir):
486
+ """See base class."""
487
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
488
+
489
+ def get_dev_examples(self, data_dir):
490
+ """See base class."""
491
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
492
+
493
+ def get_test_examples(self, data_dir):
494
+ """See base class."""
495
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
496
+
497
+ def get_labels(self):
498
+ """See base class."""
499
+ return ["entailment", "not_entailment"]
500
+
501
+ def _create_examples(self, lines, set_type):
502
+ """Creates examples for the training, dev and test sets."""
503
+ examples = []
504
+ for i, line in enumerate(lines):
505
+ if i == 0:
506
+ continue
507
+ guid = f"{set_type}-{line[0]}"
508
+ text_a = line[1]
509
+ text_b = line[2]
510
+ label = None if set_type == "test" else line[-1]
511
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
512
+ return examples
513
+
514
+
515
+ class RteProcessor(DataProcessor):
516
+ """Processor for the RTE data set (GLUE version)."""
517
+
518
+ def __init__(self, *args, **kwargs):
519
+ super().__init__(*args, **kwargs)
520
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
521
+
522
+ def get_example_from_tensor_dict(self, tensor_dict):
523
+ """See base class."""
524
+ return InputExample(
525
+ tensor_dict["idx"].numpy(),
526
+ tensor_dict["sentence1"].numpy().decode("utf-8"),
527
+ tensor_dict["sentence2"].numpy().decode("utf-8"),
528
+ str(tensor_dict["label"].numpy()),
529
+ )
530
+
531
+ def get_train_examples(self, data_dir):
532
+ """See base class."""
533
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
534
+
535
+ def get_dev_examples(self, data_dir):
536
+ """See base class."""
537
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
538
+
539
+ def get_test_examples(self, data_dir):
540
+ """See base class."""
541
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
542
+
543
+ def get_labels(self):
544
+ """See base class."""
545
+ return ["entailment", "not_entailment"]
546
+
547
+ def _create_examples(self, lines, set_type):
548
+ """Creates examples for the training, dev and test sets."""
549
+ examples = []
550
+ for i, line in enumerate(lines):
551
+ if i == 0:
552
+ continue
553
+ guid = f"{set_type}-{line[0]}"
554
+ text_a = line[1]
555
+ text_b = line[2]
556
+ label = None if set_type == "test" else line[-1]
557
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
558
+ return examples
559
+
560
+
561
+ class WnliProcessor(DataProcessor):
562
+ """Processor for the WNLI data set (GLUE version)."""
563
+
564
+ def __init__(self, *args, **kwargs):
565
+ super().__init__(*args, **kwargs)
566
+ warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
567
+
568
+ def get_example_from_tensor_dict(self, tensor_dict):
569
+ """See base class."""
570
+ return InputExample(
571
+ tensor_dict["idx"].numpy(),
572
+ tensor_dict["sentence1"].numpy().decode("utf-8"),
573
+ tensor_dict["sentence2"].numpy().decode("utf-8"),
574
+ str(tensor_dict["label"].numpy()),
575
+ )
576
+
577
+ def get_train_examples(self, data_dir):
578
+ """See base class."""
579
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
580
+
581
+ def get_dev_examples(self, data_dir):
582
+ """See base class."""
583
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
584
+
585
+ def get_test_examples(self, data_dir):
586
+ """See base class."""
587
+ return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
588
+
589
+ def get_labels(self):
590
+ """See base class."""
591
+ return ["0", "1"]
592
+
593
+ def _create_examples(self, lines, set_type):
594
+ """Creates examples for the training, dev and test sets."""
595
+ examples = []
596
+ for i, line in enumerate(lines):
597
+ if i == 0:
598
+ continue
599
+ guid = f"{set_type}-{line[0]}"
600
+ text_a = line[1]
601
+ text_b = line[2]
602
+ label = None if set_type == "test" else line[-1]
603
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
604
+ return examples
605
+
606
+
607
+ glue_tasks_num_labels = {
608
+ "cola": 2,
609
+ "mnli": 3,
610
+ "mrpc": 2,
611
+ "sst-2": 2,
612
+ "sts-b": 1,
613
+ "qqp": 2,
614
+ "qnli": 2,
615
+ "rte": 2,
616
+ "wnli": 2,
617
+ }
618
+
619
+ glue_processors = {
620
+ "cola": ColaProcessor,
621
+ "mnli": MnliProcessor,
622
+ "mnli-mm": MnliMismatchedProcessor,
623
+ "mrpc": MrpcProcessor,
624
+ "sst-2": Sst2Processor,
625
+ "sts-b": StsbProcessor,
626
+ "qqp": QqpProcessor,
627
+ "qnli": QnliProcessor,
628
+ "rte": RteProcessor,
629
+ "wnli": WnliProcessor,
630
+ }
631
+
632
+ glue_output_modes = {
633
+ "cola": "classification",
634
+ "mnli": "classification",
635
+ "mnli-mm": "classification",
636
+ "mrpc": "classification",
637
+ "sst-2": "classification",
638
+ "sts-b": "regression",
639
+ "qqp": "classification",
640
+ "qnli": "classification",
641
+ "rte": "classification",
642
+ "wnli": "classification",
643
+ }
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/squad.py ADDED
@@ -0,0 +1,845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import json
16
+ import os
17
+ from functools import partial
18
+ from multiprocessing import Pool, cpu_count
19
+
20
+ import numpy as np
21
+ from tqdm import tqdm
22
+
23
+ from ...models.bert.tokenization_bert import whitespace_tokenize
24
+ from ...tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TruncationStrategy
25
+ from ...utils import is_tf_available, is_torch_available, logging
26
+ from .utils import DataProcessor
27
+
28
+
29
+ # Store the tokenizers which insert 2 separators tokens
30
+ MULTI_SEP_TOKENS_TOKENIZERS_SET = {"roberta", "camembert", "bart", "mpnet"}
31
+
32
+
33
+ if is_torch_available():
34
+ import torch
35
+ from torch.utils.data import TensorDataset
36
+
37
+ if is_tf_available():
38
+ import tensorflow as tf
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+
43
+ def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
44
+ """Returns tokenized answer spans that better match the annotated answer."""
45
+ tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
46
+
47
+ for new_start in range(input_start, input_end + 1):
48
+ for new_end in range(input_end, new_start - 1, -1):
49
+ text_span = " ".join(doc_tokens[new_start : (new_end + 1)])
50
+ if text_span == tok_answer_text:
51
+ return (new_start, new_end)
52
+
53
+ return (input_start, input_end)
54
+
55
+
56
+ def _check_is_max_context(doc_spans, cur_span_index, position):
57
+ """Check if this is the 'max context' doc span for the token."""
58
+ best_score = None
59
+ best_span_index = None
60
+ for span_index, doc_span in enumerate(doc_spans):
61
+ end = doc_span.start + doc_span.length - 1
62
+ if position < doc_span.start:
63
+ continue
64
+ if position > end:
65
+ continue
66
+ num_left_context = position - doc_span.start
67
+ num_right_context = end - position
68
+ score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
69
+ if best_score is None or score > best_score:
70
+ best_score = score
71
+ best_span_index = span_index
72
+
73
+ return cur_span_index == best_span_index
74
+
75
+
76
+ def _new_check_is_max_context(doc_spans, cur_span_index, position):
77
+ """Check if this is the 'max context' doc span for the token."""
78
+ # if len(doc_spans) == 1:
79
+ # return True
80
+ best_score = None
81
+ best_span_index = None
82
+ for span_index, doc_span in enumerate(doc_spans):
83
+ end = doc_span["start"] + doc_span["length"] - 1
84
+ if position < doc_span["start"]:
85
+ continue
86
+ if position > end:
87
+ continue
88
+ num_left_context = position - doc_span["start"]
89
+ num_right_context = end - position
90
+ score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"]
91
+ if best_score is None or score > best_score:
92
+ best_score = score
93
+ best_span_index = span_index
94
+
95
+ return cur_span_index == best_span_index
96
+
97
+
98
+ def _is_whitespace(c):
99
+ if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
100
+ return True
101
+ return False
102
+
103
+
104
+ def squad_convert_example_to_features(
105
+ example, max_seq_length, doc_stride, max_query_length, padding_strategy, is_training
106
+ ):
107
+ features = []
108
+ if is_training and not example.is_impossible:
109
+ # Get start and end position
110
+ start_position = example.start_position
111
+ end_position = example.end_position
112
+
113
+ # If the answer cannot be found in the text, then skip this example.
114
+ actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)])
115
+ cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text))
116
+ if actual_text.find(cleaned_answer_text) == -1:
117
+ logger.warning(f"Could not find answer: '{actual_text}' vs. '{cleaned_answer_text}'")
118
+ return []
119
+
120
+ tok_to_orig_index = []
121
+ orig_to_tok_index = []
122
+ all_doc_tokens = []
123
+ for i, token in enumerate(example.doc_tokens):
124
+ orig_to_tok_index.append(len(all_doc_tokens))
125
+ if tokenizer.__class__.__name__ in [
126
+ "RobertaTokenizer",
127
+ "LongformerTokenizer",
128
+ "BartTokenizer",
129
+ "RobertaTokenizerFast",
130
+ "LongformerTokenizerFast",
131
+ "BartTokenizerFast",
132
+ ]:
133
+ sub_tokens = tokenizer.tokenize(token, add_prefix_space=True)
134
+ else:
135
+ sub_tokens = tokenizer.tokenize(token)
136
+ for sub_token in sub_tokens:
137
+ tok_to_orig_index.append(i)
138
+ all_doc_tokens.append(sub_token)
139
+
140
+ if is_training and not example.is_impossible:
141
+ tok_start_position = orig_to_tok_index[example.start_position]
142
+ if example.end_position < len(example.doc_tokens) - 1:
143
+ tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
144
+ else:
145
+ tok_end_position = len(all_doc_tokens) - 1
146
+
147
+ (tok_start_position, tok_end_position) = _improve_answer_span(
148
+ all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text
149
+ )
150
+
151
+ spans = []
152
+
153
+ truncated_query = tokenizer.encode(
154
+ example.question_text, add_special_tokens=False, truncation=True, max_length=max_query_length
155
+ )
156
+
157
+ # Tokenizers who insert 2 SEP tokens in-between <context> & <question> need to have special handling
158
+ # in the way they compute mask of added tokens.
159
+ tokenizer_type = type(tokenizer).__name__.replace("Tokenizer", "").lower()
160
+ sequence_added_tokens = (
161
+ tokenizer.model_max_length - tokenizer.max_len_single_sentence + 1
162
+ if tokenizer_type in MULTI_SEP_TOKENS_TOKENIZERS_SET
163
+ else tokenizer.model_max_length - tokenizer.max_len_single_sentence
164
+ )
165
+ sequence_pair_added_tokens = tokenizer.model_max_length - tokenizer.max_len_sentences_pair
166
+
167
+ span_doc_tokens = all_doc_tokens
168
+ while len(spans) * doc_stride < len(all_doc_tokens):
169
+ # Define the side we want to truncate / pad and the text/pair sorting
170
+ if tokenizer.padding_side == "right":
171
+ texts = truncated_query
172
+ pairs = span_doc_tokens
173
+ truncation = TruncationStrategy.ONLY_SECOND.value
174
+ else:
175
+ texts = span_doc_tokens
176
+ pairs = truncated_query
177
+ truncation = TruncationStrategy.ONLY_FIRST.value
178
+
179
+ encoded_dict = tokenizer.encode_plus( # TODO(thom) update this logic
180
+ texts,
181
+ pairs,
182
+ truncation=truncation,
183
+ padding=padding_strategy,
184
+ max_length=max_seq_length,
185
+ return_overflowing_tokens=True,
186
+ stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens,
187
+ return_token_type_ids=True,
188
+ )
189
+
190
+ paragraph_len = min(
191
+ len(all_doc_tokens) - len(spans) * doc_stride,
192
+ max_seq_length - len(truncated_query) - sequence_pair_added_tokens,
193
+ )
194
+
195
+ if tokenizer.pad_token_id in encoded_dict["input_ids"]:
196
+ if tokenizer.padding_side == "right":
197
+ non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)]
198
+ else:
199
+ last_padding_id_position = (
200
+ len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id)
201
+ )
202
+ non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :]
203
+
204
+ else:
205
+ non_padded_ids = encoded_dict["input_ids"]
206
+
207
+ tokens = tokenizer.convert_ids_to_tokens(non_padded_ids)
208
+
209
+ token_to_orig_map = {}
210
+ for i in range(paragraph_len):
211
+ index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i
212
+ token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i]
213
+
214
+ encoded_dict["paragraph_len"] = paragraph_len
215
+ encoded_dict["tokens"] = tokens
216
+ encoded_dict["token_to_orig_map"] = token_to_orig_map
217
+ encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens
218
+ encoded_dict["token_is_max_context"] = {}
219
+ encoded_dict["start"] = len(spans) * doc_stride
220
+ encoded_dict["length"] = paragraph_len
221
+
222
+ spans.append(encoded_dict)
223
+
224
+ if "overflowing_tokens" not in encoded_dict or (
225
+ "overflowing_tokens" in encoded_dict and len(encoded_dict["overflowing_tokens"]) == 0
226
+ ):
227
+ break
228
+ span_doc_tokens = encoded_dict["overflowing_tokens"]
229
+
230
+ for doc_span_index in range(len(spans)):
231
+ for j in range(spans[doc_span_index]["paragraph_len"]):
232
+ is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j)
233
+ index = (
234
+ j
235
+ if tokenizer.padding_side == "left"
236
+ else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j
237
+ )
238
+ spans[doc_span_index]["token_is_max_context"][index] = is_max_context
239
+
240
+ for span in spans:
241
+ # Identify the position of the CLS token
242
+ cls_index = span["input_ids"].index(tokenizer.cls_token_id)
243
+
244
+ # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
245
+ # Original TF implementation also keep the classification token (set to 0)
246
+ p_mask = np.ones_like(span["token_type_ids"])
247
+ if tokenizer.padding_side == "right":
248
+ p_mask[len(truncated_query) + sequence_added_tokens :] = 0
249
+ else:
250
+ p_mask[-len(span["tokens"]) : -(len(truncated_query) + sequence_added_tokens)] = 0
251
+
252
+ pad_token_indices = np.where(span["input_ids"] == tokenizer.pad_token_id)
253
+ special_token_indices = np.asarray(
254
+ tokenizer.get_special_tokens_mask(span["input_ids"], already_has_special_tokens=True)
255
+ ).nonzero()
256
+
257
+ p_mask[pad_token_indices] = 1
258
+ p_mask[special_token_indices] = 1
259
+
260
+ # Set the cls index to 0: the CLS index can be used for impossible answers
261
+ p_mask[cls_index] = 0
262
+
263
+ span_is_impossible = example.is_impossible
264
+ start_position = 0
265
+ end_position = 0
266
+ if is_training and not span_is_impossible:
267
+ # For training, if our document chunk does not contain an annotation
268
+ # we throw it out, since there is nothing to predict.
269
+ doc_start = span["start"]
270
+ doc_end = span["start"] + span["length"] - 1
271
+ out_of_span = False
272
+
273
+ if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
274
+ out_of_span = True
275
+
276
+ if out_of_span:
277
+ start_position = cls_index
278
+ end_position = cls_index
279
+ span_is_impossible = True
280
+ else:
281
+ if tokenizer.padding_side == "left":
282
+ doc_offset = 0
283
+ else:
284
+ doc_offset = len(truncated_query) + sequence_added_tokens
285
+
286
+ start_position = tok_start_position - doc_start + doc_offset
287
+ end_position = tok_end_position - doc_start + doc_offset
288
+
289
+ features.append(
290
+ SquadFeatures(
291
+ span["input_ids"],
292
+ span["attention_mask"],
293
+ span["token_type_ids"],
294
+ cls_index,
295
+ p_mask.tolist(),
296
+ example_index=0, # Can not set unique_id and example_index here. They will be set after multiple processing.
297
+ unique_id=0,
298
+ paragraph_len=span["paragraph_len"],
299
+ token_is_max_context=span["token_is_max_context"],
300
+ tokens=span["tokens"],
301
+ token_to_orig_map=span["token_to_orig_map"],
302
+ start_position=start_position,
303
+ end_position=end_position,
304
+ is_impossible=span_is_impossible,
305
+ qas_id=example.qas_id,
306
+ )
307
+ )
308
+ return features
309
+
310
+
311
+ def squad_convert_example_to_features_init(tokenizer_for_convert: PreTrainedTokenizerBase):
312
+ global tokenizer
313
+ tokenizer = tokenizer_for_convert
314
+
315
+
316
+ def squad_convert_examples_to_features(
317
+ examples,
318
+ tokenizer,
319
+ max_seq_length,
320
+ doc_stride,
321
+ max_query_length,
322
+ is_training,
323
+ padding_strategy="max_length",
324
+ return_dataset=False,
325
+ threads=1,
326
+ tqdm_enabled=True,
327
+ ):
328
+ """
329
+ Converts a list of examples into a list of features that can be directly given as input to a model. It is
330
+ model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.
331
+
332
+ Args:
333
+ examples: list of [`~data.processors.squad.SquadExample`]
334
+ tokenizer: an instance of a child of [`PreTrainedTokenizer`]
335
+ max_seq_length: The maximum sequence length of the inputs.
336
+ doc_stride: The stride used when the context is too large and is split across several features.
337
+ max_query_length: The maximum length of the query.
338
+ is_training: whether to create features for model evaluation or model training.
339
+ padding_strategy: Default to "max_length". Which padding strategy to use
340
+ return_dataset: Default False. Either 'pt' or 'tf'.
341
+ if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset
342
+ threads: multiple processing threads.
343
+
344
+
345
+ Returns:
346
+ list of [`~data.processors.squad.SquadFeatures`]
347
+
348
+ Example:
349
+
350
+ ```python
351
+ processor = SquadV2Processor()
352
+ examples = processor.get_dev_examples(data_dir)
353
+
354
+ features = squad_convert_examples_to_features(
355
+ examples=examples,
356
+ tokenizer=tokenizer,
357
+ max_seq_length=args.max_seq_length,
358
+ doc_stride=args.doc_stride,
359
+ max_query_length=args.max_query_length,
360
+ is_training=not evaluate,
361
+ )
362
+ ```"""
363
+ # Defining helper methods
364
+ features = []
365
+
366
+ threads = min(threads, cpu_count())
367
+ with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p:
368
+ annotate_ = partial(
369
+ squad_convert_example_to_features,
370
+ max_seq_length=max_seq_length,
371
+ doc_stride=doc_stride,
372
+ max_query_length=max_query_length,
373
+ padding_strategy=padding_strategy,
374
+ is_training=is_training,
375
+ )
376
+ features = list(
377
+ tqdm(
378
+ p.imap(annotate_, examples, chunksize=32),
379
+ total=len(examples),
380
+ desc="convert squad examples to features",
381
+ disable=not tqdm_enabled,
382
+ )
383
+ )
384
+
385
+ new_features = []
386
+ unique_id = 1000000000
387
+ example_index = 0
388
+ for example_features in tqdm(
389
+ features, total=len(features), desc="add example index and unique id", disable=not tqdm_enabled
390
+ ):
391
+ if not example_features:
392
+ continue
393
+ for example_feature in example_features:
394
+ example_feature.example_index = example_index
395
+ example_feature.unique_id = unique_id
396
+ new_features.append(example_feature)
397
+ unique_id += 1
398
+ example_index += 1
399
+ features = new_features
400
+ del new_features
401
+ if return_dataset == "pt":
402
+ if not is_torch_available():
403
+ raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.")
404
+
405
+ # Convert to Tensors and build dataset
406
+ all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
407
+ all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
408
+ all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
409
+ all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
410
+ all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
411
+ all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float)
412
+
413
+ if not is_training:
414
+ all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
415
+ dataset = TensorDataset(
416
+ all_input_ids, all_attention_masks, all_token_type_ids, all_feature_index, all_cls_index, all_p_mask
417
+ )
418
+ else:
419
+ all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
420
+ all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
421
+ dataset = TensorDataset(
422
+ all_input_ids,
423
+ all_attention_masks,
424
+ all_token_type_ids,
425
+ all_start_positions,
426
+ all_end_positions,
427
+ all_cls_index,
428
+ all_p_mask,
429
+ all_is_impossible,
430
+ )
431
+
432
+ return features, dataset
433
+ elif return_dataset == "tf":
434
+ if not is_tf_available():
435
+ raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.")
436
+
437
+ def gen():
438
+ for i, ex in enumerate(features):
439
+ if ex.token_type_ids is None:
440
+ yield (
441
+ {
442
+ "input_ids": ex.input_ids,
443
+ "attention_mask": ex.attention_mask,
444
+ "feature_index": i,
445
+ "qas_id": ex.qas_id,
446
+ },
447
+ {
448
+ "start_positions": ex.start_position,
449
+ "end_positions": ex.end_position,
450
+ "cls_index": ex.cls_index,
451
+ "p_mask": ex.p_mask,
452
+ "is_impossible": ex.is_impossible,
453
+ },
454
+ )
455
+ else:
456
+ yield (
457
+ {
458
+ "input_ids": ex.input_ids,
459
+ "attention_mask": ex.attention_mask,
460
+ "token_type_ids": ex.token_type_ids,
461
+ "feature_index": i,
462
+ "qas_id": ex.qas_id,
463
+ },
464
+ {
465
+ "start_positions": ex.start_position,
466
+ "end_positions": ex.end_position,
467
+ "cls_index": ex.cls_index,
468
+ "p_mask": ex.p_mask,
469
+ "is_impossible": ex.is_impossible,
470
+ },
471
+ )
472
+
473
+ # Why have we split the batch into a tuple? PyTorch just has a list of tensors.
474
+ if "token_type_ids" in tokenizer.model_input_names:
475
+ train_types = (
476
+ {
477
+ "input_ids": tf.int32,
478
+ "attention_mask": tf.int32,
479
+ "token_type_ids": tf.int32,
480
+ "feature_index": tf.int64,
481
+ "qas_id": tf.string,
482
+ },
483
+ {
484
+ "start_positions": tf.int64,
485
+ "end_positions": tf.int64,
486
+ "cls_index": tf.int64,
487
+ "p_mask": tf.int32,
488
+ "is_impossible": tf.int32,
489
+ },
490
+ )
491
+
492
+ train_shapes = (
493
+ {
494
+ "input_ids": tf.TensorShape([None]),
495
+ "attention_mask": tf.TensorShape([None]),
496
+ "token_type_ids": tf.TensorShape([None]),
497
+ "feature_index": tf.TensorShape([]),
498
+ "qas_id": tf.TensorShape([]),
499
+ },
500
+ {
501
+ "start_positions": tf.TensorShape([]),
502
+ "end_positions": tf.TensorShape([]),
503
+ "cls_index": tf.TensorShape([]),
504
+ "p_mask": tf.TensorShape([None]),
505
+ "is_impossible": tf.TensorShape([]),
506
+ },
507
+ )
508
+ else:
509
+ train_types = (
510
+ {"input_ids": tf.int32, "attention_mask": tf.int32, "feature_index": tf.int64, "qas_id": tf.string},
511
+ {
512
+ "start_positions": tf.int64,
513
+ "end_positions": tf.int64,
514
+ "cls_index": tf.int64,
515
+ "p_mask": tf.int32,
516
+ "is_impossible": tf.int32,
517
+ },
518
+ )
519
+
520
+ train_shapes = (
521
+ {
522
+ "input_ids": tf.TensorShape([None]),
523
+ "attention_mask": tf.TensorShape([None]),
524
+ "feature_index": tf.TensorShape([]),
525
+ "qas_id": tf.TensorShape([]),
526
+ },
527
+ {
528
+ "start_positions": tf.TensorShape([]),
529
+ "end_positions": tf.TensorShape([]),
530
+ "cls_index": tf.TensorShape([]),
531
+ "p_mask": tf.TensorShape([None]),
532
+ "is_impossible": tf.TensorShape([]),
533
+ },
534
+ )
535
+
536
+ return tf.data.Dataset.from_generator(gen, train_types, train_shapes)
537
+ else:
538
+ return features
539
+
540
+
541
+ class SquadProcessor(DataProcessor):
542
+ """
543
+ Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and
544
+ version 2.0 of SQuAD, respectively.
545
+ """
546
+
547
+ train_file = None
548
+ dev_file = None
549
+
550
+ def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False):
551
+ if not evaluate:
552
+ answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8")
553
+ answer_start = tensor_dict["answers"]["answer_start"][0].numpy()
554
+ answers = []
555
+ else:
556
+ answers = [
557
+ {"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")}
558
+ for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"])
559
+ ]
560
+
561
+ answer = None
562
+ answer_start = None
563
+
564
+ return SquadExample(
565
+ qas_id=tensor_dict["id"].numpy().decode("utf-8"),
566
+ question_text=tensor_dict["question"].numpy().decode("utf-8"),
567
+ context_text=tensor_dict["context"].numpy().decode("utf-8"),
568
+ answer_text=answer,
569
+ start_position_character=answer_start,
570
+ title=tensor_dict["title"].numpy().decode("utf-8"),
571
+ answers=answers,
572
+ )
573
+
574
+ def get_examples_from_dataset(self, dataset, evaluate=False):
575
+ """
576
+ Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset.
577
+
578
+ Args:
579
+ dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")*
580
+ evaluate: Boolean specifying if in evaluation mode or in training mode
581
+
582
+ Returns:
583
+ List of SquadExample
584
+
585
+ Examples:
586
+
587
+ ```python
588
+ >>> import tensorflow_datasets as tfds
589
+
590
+ >>> dataset = tfds.load("squad")
591
+
592
+ >>> training_examples = get_examples_from_dataset(dataset, evaluate=False)
593
+ >>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True)
594
+ ```"""
595
+
596
+ if evaluate:
597
+ dataset = dataset["validation"]
598
+ else:
599
+ dataset = dataset["train"]
600
+
601
+ examples = []
602
+ for tensor_dict in tqdm(dataset):
603
+ examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate))
604
+
605
+ return examples
606
+
607
+ def get_train_examples(self, data_dir, filename=None):
608
+ """
609
+ Returns the training examples from the data directory.
610
+
611
+ Args:
612
+ data_dir: Directory containing the data files used for training and evaluating.
613
+ filename: None by default, specify this if the training file has a different name than the original one
614
+ which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.
615
+
616
+ """
617
+ if data_dir is None:
618
+ data_dir = ""
619
+
620
+ if self.train_file is None:
621
+ raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
622
+
623
+ with open(
624
+ os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8"
625
+ ) as reader:
626
+ input_data = json.load(reader)["data"]
627
+ return self._create_examples(input_data, "train")
628
+
629
+ def get_dev_examples(self, data_dir, filename=None):
630
+ """
631
+ Returns the evaluation example from the data directory.
632
+
633
+ Args:
634
+ data_dir: Directory containing the data files used for training and evaluating.
635
+ filename: None by default, specify this if the evaluation file has a different name than the original one
636
+ which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively.
637
+ """
638
+ if data_dir is None:
639
+ data_dir = ""
640
+
641
+ if self.dev_file is None:
642
+ raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
643
+
644
+ with open(
645
+ os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8"
646
+ ) as reader:
647
+ input_data = json.load(reader)["data"]
648
+ return self._create_examples(input_data, "dev")
649
+
650
+ def _create_examples(self, input_data, set_type):
651
+ is_training = set_type == "train"
652
+ examples = []
653
+ for entry in tqdm(input_data):
654
+ title = entry["title"]
655
+ for paragraph in entry["paragraphs"]:
656
+ context_text = paragraph["context"]
657
+ for qa in paragraph["qas"]:
658
+ qas_id = qa["id"]
659
+ question_text = qa["question"]
660
+ start_position_character = None
661
+ answer_text = None
662
+ answers = []
663
+
664
+ is_impossible = qa.get("is_impossible", False)
665
+ if not is_impossible:
666
+ if is_training:
667
+ answer = qa["answers"][0]
668
+ answer_text = answer["text"]
669
+ start_position_character = answer["answer_start"]
670
+ else:
671
+ answers = qa["answers"]
672
+
673
+ example = SquadExample(
674
+ qas_id=qas_id,
675
+ question_text=question_text,
676
+ context_text=context_text,
677
+ answer_text=answer_text,
678
+ start_position_character=start_position_character,
679
+ title=title,
680
+ is_impossible=is_impossible,
681
+ answers=answers,
682
+ )
683
+ examples.append(example)
684
+ return examples
685
+
686
+
687
+ class SquadV1Processor(SquadProcessor):
688
+ train_file = "train-v1.1.json"
689
+ dev_file = "dev-v1.1.json"
690
+
691
+
692
+ class SquadV2Processor(SquadProcessor):
693
+ train_file = "train-v2.0.json"
694
+ dev_file = "dev-v2.0.json"
695
+
696
+
697
+ class SquadExample:
698
+ """
699
+ A single training/test example for the Squad dataset, as loaded from disk.
700
+
701
+ Args:
702
+ qas_id: The example's unique identifier
703
+ question_text: The question string
704
+ context_text: The context string
705
+ answer_text: The answer string
706
+ start_position_character: The character position of the start of the answer
707
+ title: The title of the example
708
+ answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
709
+ is_impossible: False by default, set to True if the example has no possible answer.
710
+ """
711
+
712
+ def __init__(
713
+ self,
714
+ qas_id,
715
+ question_text,
716
+ context_text,
717
+ answer_text,
718
+ start_position_character,
719
+ title,
720
+ answers=[],
721
+ is_impossible=False,
722
+ ):
723
+ self.qas_id = qas_id
724
+ self.question_text = question_text
725
+ self.context_text = context_text
726
+ self.answer_text = answer_text
727
+ self.title = title
728
+ self.is_impossible = is_impossible
729
+ self.answers = answers
730
+
731
+ self.start_position, self.end_position = 0, 0
732
+
733
+ doc_tokens = []
734
+ char_to_word_offset = []
735
+ prev_is_whitespace = True
736
+
737
+ # Split on whitespace so that different tokens may be attributed to their original position.
738
+ for c in self.context_text:
739
+ if _is_whitespace(c):
740
+ prev_is_whitespace = True
741
+ else:
742
+ if prev_is_whitespace:
743
+ doc_tokens.append(c)
744
+ else:
745
+ doc_tokens[-1] += c
746
+ prev_is_whitespace = False
747
+ char_to_word_offset.append(len(doc_tokens) - 1)
748
+
749
+ self.doc_tokens = doc_tokens
750
+ self.char_to_word_offset = char_to_word_offset
751
+
752
+ # Start and end positions only has a value during evaluation.
753
+ if start_position_character is not None and not is_impossible:
754
+ self.start_position = char_to_word_offset[start_position_character]
755
+ self.end_position = char_to_word_offset[
756
+ min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1)
757
+ ]
758
+
759
+
760
+ class SquadFeatures:
761
+ """
762
+ Single squad example features to be fed to a model. Those features are model-specific and can be crafted from
763
+ [`~data.processors.squad.SquadExample`] using the
764
+ :method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method.
765
+
766
+ Args:
767
+ input_ids: Indices of input sequence tokens in the vocabulary.
768
+ attention_mask: Mask to avoid performing attention on padding token indices.
769
+ token_type_ids: Segment token indices to indicate first and second portions of the inputs.
770
+ cls_index: the index of the CLS token.
771
+ p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
772
+ Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
773
+ example_index: the index of the example
774
+ unique_id: The unique Feature identifier
775
+ paragraph_len: The length of the context
776
+ token_is_max_context:
777
+ List of booleans identifying which tokens have their maximum context in this feature object. If a token
778
+ does not have their maximum context in this feature object, it means that another feature object has more
779
+ information related to that token and should be prioritized over this feature for that token.
780
+ tokens: list of tokens corresponding to the input ids
781
+ token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
782
+ start_position: start of the answer token index
783
+ end_position: end of the answer token index
784
+ encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods.
785
+ """
786
+
787
+ def __init__(
788
+ self,
789
+ input_ids,
790
+ attention_mask,
791
+ token_type_ids,
792
+ cls_index,
793
+ p_mask,
794
+ example_index,
795
+ unique_id,
796
+ paragraph_len,
797
+ token_is_max_context,
798
+ tokens,
799
+ token_to_orig_map,
800
+ start_position,
801
+ end_position,
802
+ is_impossible,
803
+ qas_id: str = None,
804
+ encoding: BatchEncoding = None,
805
+ ):
806
+ self.input_ids = input_ids
807
+ self.attention_mask = attention_mask
808
+ self.token_type_ids = token_type_ids
809
+ self.cls_index = cls_index
810
+ self.p_mask = p_mask
811
+
812
+ self.example_index = example_index
813
+ self.unique_id = unique_id
814
+ self.paragraph_len = paragraph_len
815
+ self.token_is_max_context = token_is_max_context
816
+ self.tokens = tokens
817
+ self.token_to_orig_map = token_to_orig_map
818
+
819
+ self.start_position = start_position
820
+ self.end_position = end_position
821
+ self.is_impossible = is_impossible
822
+ self.qas_id = qas_id
823
+
824
+ self.encoding = encoding
825
+
826
+
827
+ class SquadResult:
828
+ """
829
+ Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset.
830
+
831
+ Args:
832
+ unique_id: The unique identifier corresponding to that example.
833
+ start_logits: The logits corresponding to the start of the answer
834
+ end_logits: The logits corresponding to the end of the answer
835
+ """
836
+
837
+ def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None):
838
+ self.start_logits = start_logits
839
+ self.end_logits = end_logits
840
+ self.unique_id = unique_id
841
+
842
+ if start_top_index:
843
+ self.start_top_index = start_top_index
844
+ self.end_top_index = end_top_index
845
+ self.cls_logits = cls_logits
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/utils.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ import csv
18
+ import dataclasses
19
+ import json
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Union
22
+
23
+ from ...utils import is_tf_available, is_torch_available, logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ @dataclass
30
+ class InputExample:
31
+ """
32
+ A single training/test example for simple sequence classification.
33
+
34
+ Args:
35
+ guid: Unique id for the example.
36
+ text_a: string. The untokenized text of the first sequence. For single
37
+ sequence tasks, only this sequence must be specified.
38
+ text_b: (Optional) string. The untokenized text of the second sequence.
39
+ Only must be specified for sequence pair tasks.
40
+ label: (Optional) string. The label of the example. This should be
41
+ specified for train and dev examples, but not for test examples.
42
+ """
43
+
44
+ guid: str
45
+ text_a: str
46
+ text_b: Optional[str] = None
47
+ label: Optional[str] = None
48
+
49
+ def to_json_string(self):
50
+ """Serializes this instance to a JSON string."""
51
+ return json.dumps(dataclasses.asdict(self), indent=2) + "\n"
52
+
53
+
54
+ @dataclass(frozen=True)
55
+ class InputFeatures:
56
+ """
57
+ A single set of features of data. Property names are the same names as the corresponding inputs to a model.
58
+
59
+ Args:
60
+ input_ids: Indices of input sequence tokens in the vocabulary.
61
+ attention_mask: Mask to avoid performing attention on padding token indices.
62
+ Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded)
63
+ tokens.
64
+ token_type_ids: (Optional) Segment token indices to indicate first and second
65
+ portions of the inputs. Only some models use them.
66
+ label: (Optional) Label corresponding to the input. Int for classification problems,
67
+ float for regression problems.
68
+ """
69
+
70
+ input_ids: List[int]
71
+ attention_mask: Optional[List[int]] = None
72
+ token_type_ids: Optional[List[int]] = None
73
+ label: Optional[Union[int, float]] = None
74
+
75
+ def to_json_string(self):
76
+ """Serializes this instance to a JSON string."""
77
+ return json.dumps(dataclasses.asdict(self)) + "\n"
78
+
79
+
80
+ class DataProcessor:
81
+ """Base class for data converters for sequence classification data sets."""
82
+
83
+ def get_example_from_tensor_dict(self, tensor_dict):
84
+ """
85
+ Gets an example from a dict with tensorflow tensors.
86
+
87
+ Args:
88
+ tensor_dict: Keys and values should match the corresponding Glue
89
+ tensorflow_dataset examples.
90
+ """
91
+ raise NotImplementedError()
92
+
93
+ def get_train_examples(self, data_dir):
94
+ """Gets a collection of [`InputExample`] for the train set."""
95
+ raise NotImplementedError()
96
+
97
+ def get_dev_examples(self, data_dir):
98
+ """Gets a collection of [`InputExample`] for the dev set."""
99
+ raise NotImplementedError()
100
+
101
+ def get_test_examples(self, data_dir):
102
+ """Gets a collection of [`InputExample`] for the test set."""
103
+ raise NotImplementedError()
104
+
105
+ def get_labels(self):
106
+ """Gets the list of labels for this data set."""
107
+ raise NotImplementedError()
108
+
109
+ def tfds_map(self, example):
110
+ """
111
+ Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts
112
+ examples to the correct format.
113
+ """
114
+ if len(self.get_labels()) > 1:
115
+ example.label = self.get_labels()[int(example.label)]
116
+ return example
117
+
118
+ @classmethod
119
+ def _read_tsv(cls, input_file, quotechar=None):
120
+ """Reads a tab separated value file."""
121
+ with open(input_file, "r", encoding="utf-8-sig") as f:
122
+ return list(csv.reader(f, delimiter="\t", quotechar=quotechar))
123
+
124
+
125
+ class SingleSentenceClassificationProcessor(DataProcessor):
126
+ """Generic processor for a single sentence classification data set."""
127
+
128
+ def __init__(self, labels=None, examples=None, mode="classification", verbose=False):
129
+ self.labels = [] if labels is None else labels
130
+ self.examples = [] if examples is None else examples
131
+ self.mode = mode
132
+ self.verbose = verbose
133
+
134
+ def __len__(self):
135
+ return len(self.examples)
136
+
137
+ def __getitem__(self, idx):
138
+ if isinstance(idx, slice):
139
+ return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx])
140
+ return self.examples[idx]
141
+
142
+ @classmethod
143
+ def create_from_csv(
144
+ cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs
145
+ ):
146
+ processor = cls(**kwargs)
147
+ processor.add_examples_from_csv(
148
+ file_name,
149
+ split_name=split_name,
150
+ column_label=column_label,
151
+ column_text=column_text,
152
+ column_id=column_id,
153
+ skip_first_row=skip_first_row,
154
+ overwrite_labels=True,
155
+ overwrite_examples=True,
156
+ )
157
+ return processor
158
+
159
+ @classmethod
160
+ def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs):
161
+ processor = cls(**kwargs)
162
+ processor.add_examples(texts_or_text_and_labels, labels=labels)
163
+ return processor
164
+
165
+ def add_examples_from_csv(
166
+ self,
167
+ file_name,
168
+ split_name="",
169
+ column_label=0,
170
+ column_text=1,
171
+ column_id=None,
172
+ skip_first_row=False,
173
+ overwrite_labels=False,
174
+ overwrite_examples=False,
175
+ ):
176
+ lines = self._read_tsv(file_name)
177
+ if skip_first_row:
178
+ lines = lines[1:]
179
+ texts = []
180
+ labels = []
181
+ ids = []
182
+ for i, line in enumerate(lines):
183
+ texts.append(line[column_text])
184
+ labels.append(line[column_label])
185
+ if column_id is not None:
186
+ ids.append(line[column_id])
187
+ else:
188
+ guid = f"{split_name}-{i}" if split_name else str(i)
189
+ ids.append(guid)
190
+
191
+ return self.add_examples(
192
+ texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples
193
+ )
194
+
195
+ def add_examples(
196
+ self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False
197
+ ):
198
+ if labels is not None and len(texts_or_text_and_labels) != len(labels):
199
+ raise ValueError(
200
+ f"Text and labels have mismatched lengths {len(texts_or_text_and_labels)} and {len(labels)}"
201
+ )
202
+ if ids is not None and len(texts_or_text_and_labels) != len(ids):
203
+ raise ValueError(f"Text and ids have mismatched lengths {len(texts_or_text_and_labels)} and {len(ids)}")
204
+ if ids is None:
205
+ ids = [None] * len(texts_or_text_and_labels)
206
+ if labels is None:
207
+ labels = [None] * len(texts_or_text_and_labels)
208
+ examples = []
209
+ added_labels = set()
210
+ for text_or_text_and_label, label, guid in zip(texts_or_text_and_labels, labels, ids):
211
+ if isinstance(text_or_text_and_label, (tuple, list)) and label is None:
212
+ text, label = text_or_text_and_label
213
+ else:
214
+ text = text_or_text_and_label
215
+ added_labels.add(label)
216
+ examples.append(InputExample(guid=guid, text_a=text, text_b=None, label=label))
217
+
218
+ # Update examples
219
+ if overwrite_examples:
220
+ self.examples = examples
221
+ else:
222
+ self.examples.extend(examples)
223
+
224
+ # Update labels
225
+ if overwrite_labels:
226
+ self.labels = list(added_labels)
227
+ else:
228
+ self.labels = list(set(self.labels).union(added_labels))
229
+
230
+ return self.examples
231
+
232
+ def get_features(
233
+ self,
234
+ tokenizer,
235
+ max_length=None,
236
+ pad_on_left=False,
237
+ pad_token=0,
238
+ mask_padding_with_zero=True,
239
+ return_tensors=None,
240
+ ):
241
+ """
242
+ Convert examples in a list of `InputFeatures`
243
+
244
+ Args:
245
+ tokenizer: Instance of a tokenizer that will tokenize the examples
246
+ max_length: Maximum example length
247
+ pad_on_left: If set to `True`, the examples will be padded on the left rather than on the right (default)
248
+ pad_token: Padding token
249
+ mask_padding_with_zero: If set to `True`, the attention mask will be filled by `1` for actual values
250
+ and by `0` for padded values. If set to `False`, inverts it (`1` for padded values, `0` for actual
251
+ values)
252
+
253
+ Returns:
254
+ If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the
255
+ task-specific features. If the input is a list of `InputExamples`, will return a list of task-specific
256
+ `InputFeatures` which can be fed to the model.
257
+
258
+ """
259
+ if max_length is None:
260
+ max_length = tokenizer.max_len
261
+
262
+ label_map = {label: i for i, label in enumerate(self.labels)}
263
+
264
+ all_input_ids = []
265
+ for ex_index, example in enumerate(self.examples):
266
+ if ex_index % 10000 == 0:
267
+ logger.info(f"Tokenizing example {ex_index}")
268
+
269
+ input_ids = tokenizer.encode(
270
+ example.text_a,
271
+ add_special_tokens=True,
272
+ max_length=min(max_length, tokenizer.max_len),
273
+ )
274
+ all_input_ids.append(input_ids)
275
+
276
+ batch_length = max(len(input_ids) for input_ids in all_input_ids)
277
+
278
+ features = []
279
+ for ex_index, (input_ids, example) in enumerate(zip(all_input_ids, self.examples)):
280
+ if ex_index % 10000 == 0:
281
+ logger.info(f"Writing example {ex_index}/{len(self.examples)}")
282
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
283
+ # tokens are attended to.
284
+ attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
285
+
286
+ # Zero-pad up to the sequence length.
287
+ padding_length = batch_length - len(input_ids)
288
+ if pad_on_left:
289
+ input_ids = ([pad_token] * padding_length) + input_ids
290
+ attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask
291
+ else:
292
+ input_ids = input_ids + ([pad_token] * padding_length)
293
+ attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
294
+
295
+ if len(input_ids) != batch_length:
296
+ raise ValueError(f"Error with input length {len(input_ids)} vs {batch_length}")
297
+ if len(attention_mask) != batch_length:
298
+ raise ValueError(f"Error with input length {len(attention_mask)} vs {batch_length}")
299
+
300
+ if self.mode == "classification":
301
+ label = label_map[example.label]
302
+ elif self.mode == "regression":
303
+ label = float(example.label)
304
+ else:
305
+ raise ValueError(self.mode)
306
+
307
+ if ex_index < 5 and self.verbose:
308
+ logger.info("*** Example ***")
309
+ logger.info(f"guid: {example.guid}")
310
+ logger.info(f"input_ids: {' '.join([str(x) for x in input_ids])}")
311
+ logger.info(f"attention_mask: {' '.join([str(x) for x in attention_mask])}")
312
+ logger.info(f"label: {example.label} (id = {label})")
313
+
314
+ features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label))
315
+
316
+ if return_tensors is None:
317
+ return features
318
+ elif return_tensors == "tf":
319
+ if not is_tf_available():
320
+ raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported")
321
+ import tensorflow as tf
322
+
323
+ def gen():
324
+ for ex in features:
325
+ yield ({"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label)
326
+
327
+ dataset = tf.data.Dataset.from_generator(
328
+ gen,
329
+ ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64),
330
+ ({"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([])),
331
+ )
332
+ return dataset
333
+ elif return_tensors == "pt":
334
+ if not is_torch_available():
335
+ raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported")
336
+ import torch
337
+ from torch.utils.data import TensorDataset
338
+
339
+ all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
340
+ all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
341
+ if self.mode == "classification":
342
+ all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
343
+ elif self.mode == "regression":
344
+ all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
345
+
346
+ dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels)
347
+ return dataset
348
+ else:
349
+ raise ValueError("return_tensors should be one of 'tf' or 'pt'")
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/xnli.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ XNLI utils (dataset loading and evaluation)"""
17
+
18
+
19
+ import os
20
+
21
+ from ...utils import logging
22
+ from .utils import DataProcessor, InputExample
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class XnliProcessor(DataProcessor):
29
+ """
30
+ Processor for the XNLI dataset. Adapted from
31
+ https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207
32
+ """
33
+
34
+ def __init__(self, language, train_language=None):
35
+ self.language = language
36
+ self.train_language = train_language
37
+
38
+ def get_train_examples(self, data_dir):
39
+ """See base class."""
40
+ lg = self.language if self.train_language is None else self.train_language
41
+ lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv"))
42
+ examples = []
43
+ for i, line in enumerate(lines):
44
+ if i == 0:
45
+ continue
46
+ guid = f"train-{i}"
47
+ text_a = line[0]
48
+ text_b = line[1]
49
+ label = "contradiction" if line[2] == "contradictory" else line[2]
50
+ if not isinstance(text_a, str):
51
+ raise ValueError(f"Training input {text_a} is not a string")
52
+ if not isinstance(text_b, str):
53
+ raise ValueError(f"Training input {text_b} is not a string")
54
+ if not isinstance(label, str):
55
+ raise ValueError(f"Training label {label} is not a string")
56
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
57
+ return examples
58
+
59
+ def get_test_examples(self, data_dir):
60
+ """See base class."""
61
+ lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv"))
62
+ examples = []
63
+ for i, line in enumerate(lines):
64
+ if i == 0:
65
+ continue
66
+ language = line[0]
67
+ if language != self.language:
68
+ continue
69
+ guid = f"test-{i}"
70
+ text_a = line[6]
71
+ text_b = line[7]
72
+ label = line[1]
73
+ if not isinstance(text_a, str):
74
+ raise ValueError(f"Training input {text_a} is not a string")
75
+ if not isinstance(text_b, str):
76
+ raise ValueError(f"Training input {text_b} is not a string")
77
+ if not isinstance(label, str):
78
+ raise ValueError(f"Training label {label} is not a string")
79
+ examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
80
+ return examples
81
+
82
+ def get_labels(self):
83
+ """See base class."""
84
+ return ["contradiction", "entailment", "neutral"]
85
+
86
+
87
+ xnli_processors = {
88
+ "xnli": XnliProcessor,
89
+ }
90
+
91
+ xnli_output_modes = {
92
+ "xnli": "classification",
93
+ }
94
+
95
+ xnli_tasks_num_labels = {
96
+ "xnli": 3,
97
+ }
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__init__.py ADDED
@@ -0,0 +1,1107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import json
16
+ import os
17
+ import warnings
18
+ from pathlib import Path
19
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
20
+
21
+ from huggingface_hub import model_info
22
+
23
+ from ..configuration_utils import PretrainedConfig
24
+ from ..dynamic_module_utils import get_class_from_dynamic_module
25
+ from ..feature_extraction_utils import PreTrainedFeatureExtractor
26
+ from ..image_processing_utils import BaseImageProcessor
27
+ from ..models.auto.configuration_auto import AutoConfig
28
+ from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
29
+ from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
30
+ from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
31
+ from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
32
+ from ..tokenization_utils import PreTrainedTokenizer
33
+ from ..utils import (
34
+ CONFIG_NAME,
35
+ HUGGINGFACE_CO_RESOLVE_ENDPOINT,
36
+ cached_file,
37
+ extract_commit_hash,
38
+ find_adapter_config_file,
39
+ is_kenlm_available,
40
+ is_offline_mode,
41
+ is_peft_available,
42
+ is_pyctcdecode_available,
43
+ is_tf_available,
44
+ is_torch_available,
45
+ logging,
46
+ )
47
+ from .audio_classification import AudioClassificationPipeline
48
+ from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
49
+ from .base import (
50
+ ArgumentHandler,
51
+ CsvPipelineDataFormat,
52
+ JsonPipelineDataFormat,
53
+ PipedPipelineDataFormat,
54
+ Pipeline,
55
+ PipelineDataFormat,
56
+ PipelineException,
57
+ PipelineRegistry,
58
+ get_default_model_and_revision,
59
+ infer_framework_load_model,
60
+ )
61
+ from .conversational import Conversation, ConversationalPipeline
62
+ from .depth_estimation import DepthEstimationPipeline
63
+ from .document_question_answering import DocumentQuestionAnsweringPipeline
64
+ from .feature_extraction import FeatureExtractionPipeline
65
+ from .fill_mask import FillMaskPipeline
66
+ from .image_classification import ImageClassificationPipeline
67
+ from .image_feature_extraction import ImageFeatureExtractionPipeline
68
+ from .image_segmentation import ImageSegmentationPipeline
69
+ from .image_to_image import ImageToImagePipeline
70
+ from .image_to_text import ImageToTextPipeline
71
+ from .mask_generation import MaskGenerationPipeline
72
+ from .object_detection import ObjectDetectionPipeline
73
+ from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
74
+ from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
75
+ from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
76
+ from .text_classification import TextClassificationPipeline
77
+ from .text_generation import TextGenerationPipeline
78
+ from .text_to_audio import TextToAudioPipeline
79
+ from .token_classification import (
80
+ AggregationStrategy,
81
+ NerPipeline,
82
+ TokenClassificationArgumentHandler,
83
+ TokenClassificationPipeline,
84
+ )
85
+ from .video_classification import VideoClassificationPipeline
86
+ from .visual_question_answering import VisualQuestionAnsweringPipeline
87
+ from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
88
+ from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
89
+ from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
90
+ from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
91
+
92
+
93
+ if is_tf_available():
94
+ import tensorflow as tf
95
+
96
+ from ..models.auto.modeling_tf_auto import (
97
+ TFAutoModel,
98
+ TFAutoModelForCausalLM,
99
+ TFAutoModelForImageClassification,
100
+ TFAutoModelForMaskedLM,
101
+ TFAutoModelForQuestionAnswering,
102
+ TFAutoModelForSeq2SeqLM,
103
+ TFAutoModelForSequenceClassification,
104
+ TFAutoModelForTableQuestionAnswering,
105
+ TFAutoModelForTokenClassification,
106
+ TFAutoModelForVision2Seq,
107
+ TFAutoModelForZeroShotImageClassification,
108
+ )
109
+
110
+ if is_torch_available():
111
+ import torch
112
+
113
+ from ..models.auto.modeling_auto import (
114
+ AutoModel,
115
+ AutoModelForAudioClassification,
116
+ AutoModelForCausalLM,
117
+ AutoModelForCTC,
118
+ AutoModelForDocumentQuestionAnswering,
119
+ AutoModelForImageClassification,
120
+ AutoModelForImageSegmentation,
121
+ AutoModelForMaskedLM,
122
+ AutoModelForMaskGeneration,
123
+ AutoModelForObjectDetection,
124
+ AutoModelForQuestionAnswering,
125
+ AutoModelForSemanticSegmentation,
126
+ AutoModelForSeq2SeqLM,
127
+ AutoModelForSequenceClassification,
128
+ AutoModelForSpeechSeq2Seq,
129
+ AutoModelForTableQuestionAnswering,
130
+ AutoModelForTextToSpectrogram,
131
+ AutoModelForTextToWaveform,
132
+ AutoModelForTokenClassification,
133
+ AutoModelForVideoClassification,
134
+ AutoModelForVision2Seq,
135
+ AutoModelForVisualQuestionAnswering,
136
+ AutoModelForZeroShotImageClassification,
137
+ AutoModelForZeroShotObjectDetection,
138
+ )
139
+
140
+
141
+ if TYPE_CHECKING:
142
+ from ..modeling_tf_utils import TFPreTrainedModel
143
+ from ..modeling_utils import PreTrainedModel
144
+ from ..tokenization_utils_fast import PreTrainedTokenizerFast
145
+
146
+
147
+ logger = logging.get_logger(__name__)
148
+
149
+
150
+ # Register all the supported tasks here
151
+ TASK_ALIASES = {
152
+ "sentiment-analysis": "text-classification",
153
+ "ner": "token-classification",
154
+ "vqa": "visual-question-answering",
155
+ "text-to-speech": "text-to-audio",
156
+ }
157
+ SUPPORTED_TASKS = {
158
+ "audio-classification": {
159
+ "impl": AudioClassificationPipeline,
160
+ "tf": (),
161
+ "pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
162
+ "default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
163
+ "type": "audio",
164
+ },
165
+ "automatic-speech-recognition": {
166
+ "impl": AutomaticSpeechRecognitionPipeline,
167
+ "tf": (),
168
+ "pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
169
+ "default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
170
+ "type": "multimodal",
171
+ },
172
+ "text-to-audio": {
173
+ "impl": TextToAudioPipeline,
174
+ "tf": (),
175
+ "pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
176
+ "default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
177
+ "type": "text",
178
+ },
179
+ "feature-extraction": {
180
+ "impl": FeatureExtractionPipeline,
181
+ "tf": (TFAutoModel,) if is_tf_available() else (),
182
+ "pt": (AutoModel,) if is_torch_available() else (),
183
+ "default": {
184
+ "model": {
185
+ "pt": ("distilbert/distilbert-base-cased", "935ac13"),
186
+ "tf": ("distilbert/distilbert-base-cased", "935ac13"),
187
+ }
188
+ },
189
+ "type": "multimodal",
190
+ },
191
+ "text-classification": {
192
+ "impl": TextClassificationPipeline,
193
+ "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
194
+ "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
195
+ "default": {
196
+ "model": {
197
+ "pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
198
+ "tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
199
+ },
200
+ },
201
+ "type": "text",
202
+ },
203
+ "token-classification": {
204
+ "impl": TokenClassificationPipeline,
205
+ "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
206
+ "pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
207
+ "default": {
208
+ "model": {
209
+ "pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
210
+ "tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
211
+ },
212
+ },
213
+ "type": "text",
214
+ },
215
+ "question-answering": {
216
+ "impl": QuestionAnsweringPipeline,
217
+ "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
218
+ "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
219
+ "default": {
220
+ "model": {
221
+ "pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
222
+ "tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
223
+ },
224
+ },
225
+ "type": "text",
226
+ },
227
+ "table-question-answering": {
228
+ "impl": TableQuestionAnsweringPipeline,
229
+ "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
230
+ "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
231
+ "default": {
232
+ "model": {
233
+ "pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
234
+ "tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
235
+ },
236
+ },
237
+ "type": "text",
238
+ },
239
+ "visual-question-answering": {
240
+ "impl": VisualQuestionAnsweringPipeline,
241
+ "pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
242
+ "tf": (),
243
+ "default": {
244
+ "model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
245
+ },
246
+ "type": "multimodal",
247
+ },
248
+ "document-question-answering": {
249
+ "impl": DocumentQuestionAnsweringPipeline,
250
+ "pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
251
+ "tf": (),
252
+ "default": {
253
+ "model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
254
+ },
255
+ "type": "multimodal",
256
+ },
257
+ "fill-mask": {
258
+ "impl": FillMaskPipeline,
259
+ "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
260
+ "pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
261
+ "default": {
262
+ "model": {
263
+ "pt": ("distilbert/distilroberta-base", "ec58a5b"),
264
+ "tf": ("distilbert/distilroberta-base", "ec58a5b"),
265
+ }
266
+ },
267
+ "type": "text",
268
+ },
269
+ "summarization": {
270
+ "impl": SummarizationPipeline,
271
+ "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
272
+ "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
273
+ "default": {
274
+ "model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
275
+ },
276
+ "type": "text",
277
+ },
278
+ # This task is a special case as it's parametrized by SRC, TGT languages.
279
+ "translation": {
280
+ "impl": TranslationPipeline,
281
+ "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
282
+ "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
283
+ "default": {
284
+ ("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
285
+ ("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
286
+ ("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
287
+ },
288
+ "type": "text",
289
+ },
290
+ "text2text-generation": {
291
+ "impl": Text2TextGenerationPipeline,
292
+ "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
293
+ "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
294
+ "default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
295
+ "type": "text",
296
+ },
297
+ "text-generation": {
298
+ "impl": TextGenerationPipeline,
299
+ "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
300
+ "pt": (AutoModelForCausalLM,) if is_torch_available() else (),
301
+ "default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
302
+ "type": "text",
303
+ },
304
+ "zero-shot-classification": {
305
+ "impl": ZeroShotClassificationPipeline,
306
+ "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
307
+ "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
308
+ "default": {
309
+ "model": {
310
+ "pt": ("facebook/bart-large-mnli", "c626438"),
311
+ "tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
312
+ },
313
+ "config": {
314
+ "pt": ("facebook/bart-large-mnli", "c626438"),
315
+ "tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
316
+ },
317
+ },
318
+ "type": "text",
319
+ },
320
+ "zero-shot-image-classification": {
321
+ "impl": ZeroShotImageClassificationPipeline,
322
+ "tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
323
+ "pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
324
+ "default": {
325
+ "model": {
326
+ "pt": ("openai/clip-vit-base-patch32", "f4881ba"),
327
+ "tf": ("openai/clip-vit-base-patch32", "f4881ba"),
328
+ }
329
+ },
330
+ "type": "multimodal",
331
+ },
332
+ "zero-shot-audio-classification": {
333
+ "impl": ZeroShotAudioClassificationPipeline,
334
+ "tf": (),
335
+ "pt": (AutoModel,) if is_torch_available() else (),
336
+ "default": {
337
+ "model": {
338
+ "pt": ("laion/clap-htsat-fused", "973b6e5"),
339
+ }
340
+ },
341
+ "type": "multimodal",
342
+ },
343
+ "conversational": {
344
+ "impl": ConversationalPipeline,
345
+ "tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
346
+ "pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
347
+ "default": {
348
+ "model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
349
+ },
350
+ "type": "text",
351
+ },
352
+ "image-classification": {
353
+ "impl": ImageClassificationPipeline,
354
+ "tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
355
+ "pt": (AutoModelForImageClassification,) if is_torch_available() else (),
356
+ "default": {
357
+ "model": {
358
+ "pt": ("google/vit-base-patch16-224", "5dca96d"),
359
+ "tf": ("google/vit-base-patch16-224", "5dca96d"),
360
+ }
361
+ },
362
+ "type": "image",
363
+ },
364
+ "image-feature-extraction": {
365
+ "impl": ImageFeatureExtractionPipeline,
366
+ "tf": (TFAutoModel,) if is_tf_available() else (),
367
+ "pt": (AutoModel,) if is_torch_available() else (),
368
+ "default": {
369
+ "model": {
370
+ "pt": ("google/vit-base-patch16-224", "29e7a1e183"),
371
+ "tf": ("google/vit-base-patch16-224", "29e7a1e183"),
372
+ }
373
+ },
374
+ "type": "image",
375
+ },
376
+ "image-segmentation": {
377
+ "impl": ImageSegmentationPipeline,
378
+ "tf": (),
379
+ "pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
380
+ "default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
381
+ "type": "multimodal",
382
+ },
383
+ "image-to-text": {
384
+ "impl": ImageToTextPipeline,
385
+ "tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
386
+ "pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
387
+ "default": {
388
+ "model": {
389
+ "pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
390
+ "tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
391
+ }
392
+ },
393
+ "type": "multimodal",
394
+ },
395
+ "object-detection": {
396
+ "impl": ObjectDetectionPipeline,
397
+ "tf": (),
398
+ "pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
399
+ "default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
400
+ "type": "multimodal",
401
+ },
402
+ "zero-shot-object-detection": {
403
+ "impl": ZeroShotObjectDetectionPipeline,
404
+ "tf": (),
405
+ "pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
406
+ "default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
407
+ "type": "multimodal",
408
+ },
409
+ "depth-estimation": {
410
+ "impl": DepthEstimationPipeline,
411
+ "tf": (),
412
+ "pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
413
+ "default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
414
+ "type": "image",
415
+ },
416
+ "video-classification": {
417
+ "impl": VideoClassificationPipeline,
418
+ "tf": (),
419
+ "pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
420
+ "default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
421
+ "type": "video",
422
+ },
423
+ "mask-generation": {
424
+ "impl": MaskGenerationPipeline,
425
+ "tf": (),
426
+ "pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
427
+ "default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
428
+ "type": "multimodal",
429
+ },
430
+ "image-to-image": {
431
+ "impl": ImageToImagePipeline,
432
+ "tf": (),
433
+ "pt": (AutoModelForImageToImage,) if is_torch_available() else (),
434
+ "default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
435
+ "type": "image",
436
+ },
437
+ }
438
+
439
+ NO_FEATURE_EXTRACTOR_TASKS = set()
440
+ NO_IMAGE_PROCESSOR_TASKS = set()
441
+ NO_TOKENIZER_TASKS = set()
442
+
443
+ # Those model configs are special, they are generic over their task, meaning
444
+ # any tokenizer/feature_extractor might be use for a given model so we cannot
445
+ # use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to
446
+ # see if the model defines such objects or not.
447
+ MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"}
448
+ MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
449
+ for task, values in SUPPORTED_TASKS.items():
450
+ if values["type"] == "text":
451
+ NO_FEATURE_EXTRACTOR_TASKS.add(task)
452
+ NO_IMAGE_PROCESSOR_TASKS.add(task)
453
+ elif values["type"] in {"image", "video"}:
454
+ NO_TOKENIZER_TASKS.add(task)
455
+ elif values["type"] in {"audio"}:
456
+ NO_TOKENIZER_TASKS.add(task)
457
+ NO_IMAGE_PROCESSOR_TASKS.add(task)
458
+ elif values["type"] != "multimodal":
459
+ raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}")
460
+
461
+ PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
462
+
463
+
464
+ def get_supported_tasks() -> List[str]:
465
+ """
466
+ Returns a list of supported task strings.
467
+ """
468
+ return PIPELINE_REGISTRY.get_supported_tasks()
469
+
470
+
471
+ def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
472
+ use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
473
+ if use_auth_token is not None:
474
+ warnings.warn(
475
+ "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
476
+ FutureWarning,
477
+ )
478
+ if token is not None:
479
+ raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
480
+ token = use_auth_token
481
+
482
+ if is_offline_mode():
483
+ raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
484
+ try:
485
+ info = model_info(model, token=token)
486
+ except Exception as e:
487
+ raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
488
+ if not info.pipeline_tag:
489
+ raise RuntimeError(
490
+ f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
491
+ )
492
+ if getattr(info, "library_name", "transformers") != "transformers":
493
+ raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers")
494
+ task = info.pipeline_tag
495
+ return task
496
+
497
+
498
+ def check_task(task: str) -> Tuple[str, Dict, Any]:
499
+ """
500
+ Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and
501
+ default models if they exist.
502
+
503
+ Args:
504
+ task (`str`):
505
+ The task defining which pipeline will be returned. Currently accepted tasks are:
506
+
507
+ - `"audio-classification"`
508
+ - `"automatic-speech-recognition"`
509
+ - `"conversational"`
510
+ - `"depth-estimation"`
511
+ - `"document-question-answering"`
512
+ - `"feature-extraction"`
513
+ - `"fill-mask"`
514
+ - `"image-classification"`
515
+ - `"image-feature-extraction"`
516
+ - `"image-segmentation"`
517
+ - `"image-to-text"`
518
+ - `"image-to-image"`
519
+ - `"object-detection"`
520
+ - `"question-answering"`
521
+ - `"summarization"`
522
+ - `"table-question-answering"`
523
+ - `"text2text-generation"`
524
+ - `"text-classification"` (alias `"sentiment-analysis"` available)
525
+ - `"text-generation"`
526
+ - `"text-to-audio"` (alias `"text-to-speech"` available)
527
+ - `"token-classification"` (alias `"ner"` available)
528
+ - `"translation"`
529
+ - `"translation_xx_to_yy"`
530
+ - `"video-classification"`
531
+ - `"visual-question-answering"` (alias `"vqa"` available)
532
+ - `"zero-shot-classification"`
533
+ - `"zero-shot-image-classification"`
534
+ - `"zero-shot-object-detection"`
535
+
536
+ Returns:
537
+ (normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name
538
+ (removed alias and options). The actual dictionary required to initialize the pipeline and some extra task
539
+ options for parametrized tasks like "translation_XX_to_YY"
540
+
541
+
542
+ """
543
+ return PIPELINE_REGISTRY.check_task(task)
544
+
545
+
546
+ def clean_custom_task(task_info):
547
+ import transformers
548
+
549
+ if "impl" not in task_info:
550
+ raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.")
551
+ pt_class_names = task_info.get("pt", ())
552
+ if isinstance(pt_class_names, str):
553
+ pt_class_names = [pt_class_names]
554
+ task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names)
555
+ tf_class_names = task_info.get("tf", ())
556
+ if isinstance(tf_class_names, str):
557
+ tf_class_names = [tf_class_names]
558
+ task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names)
559
+ return task_info, None
560
+
561
+
562
+ def pipeline(
563
+ task: str = None,
564
+ model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None,
565
+ config: Optional[Union[str, PretrainedConfig]] = None,
566
+ tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None,
567
+ feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None,
568
+ image_processor: Optional[Union[str, BaseImageProcessor]] = None,
569
+ framework: Optional[str] = None,
570
+ revision: Optional[str] = None,
571
+ use_fast: bool = True,
572
+ token: Optional[Union[str, bool]] = None,
573
+ device: Optional[Union[int, str, "torch.device"]] = None,
574
+ device_map=None,
575
+ torch_dtype=None,
576
+ trust_remote_code: Optional[bool] = None,
577
+ model_kwargs: Dict[str, Any] = None,
578
+ pipeline_class: Optional[Any] = None,
579
+ **kwargs,
580
+ ) -> Pipeline:
581
+ """
582
+ Utility factory method to build a [`Pipeline`].
583
+
584
+ Pipelines are made of:
585
+
586
+ - A [tokenizer](tokenizer) in charge of mapping raw textual input to token.
587
+ - A [model](model) to make predictions from the inputs.
588
+ - Some (optional) post processing for enhancing model's output.
589
+
590
+ Args:
591
+ task (`str`):
592
+ The task defining which pipeline will be returned. Currently accepted tasks are:
593
+
594
+ - `"audio-classification"`: will return a [`AudioClassificationPipeline`].
595
+ - `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
596
+ - `"conversational"`: will return a [`ConversationalPipeline`].
597
+ - `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
598
+ - `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
599
+ - `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
600
+ - `"fill-mask"`: will return a [`FillMaskPipeline`]:.
601
+ - `"image-classification"`: will return a [`ImageClassificationPipeline`].
602
+ - `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`].
603
+ - `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
604
+ - `"image-to-image"`: will return a [`ImageToImagePipeline`].
605
+ - `"image-to-text"`: will return a [`ImageToTextPipeline`].
606
+ - `"mask-generation"`: will return a [`MaskGenerationPipeline`].
607
+ - `"object-detection"`: will return a [`ObjectDetectionPipeline`].
608
+ - `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
609
+ - `"summarization"`: will return a [`SummarizationPipeline`].
610
+ - `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
611
+ - `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
612
+ - `"text-classification"` (alias `"sentiment-analysis"` available): will return a
613
+ [`TextClassificationPipeline`].
614
+ - `"text-generation"`: will return a [`TextGenerationPipeline`]:.
615
+ - `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
616
+ - `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
617
+ - `"translation"`: will return a [`TranslationPipeline`].
618
+ - `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
619
+ - `"video-classification"`: will return a [`VideoClassificationPipeline`].
620
+ - `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
621
+ - `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
622
+ - `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
623
+ - `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
624
+ - `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].
625
+
626
+ model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*):
627
+ The model that will be used by the pipeline to make predictions. This can be a model identifier or an
628
+ actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or
629
+ [`TFPreTrainedModel`] (for TensorFlow).
630
+
631
+ If not provided, the default for the `task` will be loaded.
632
+ config (`str` or [`PretrainedConfig`], *optional*):
633
+ The configuration that will be used by the pipeline to instantiate the model. This can be a model
634
+ identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`].
635
+
636
+ If not provided, the default configuration file for the requested model will be used. That means that if
637
+ `model` is given, its default configuration will be used. However, if `model` is not supplied, this
638
+ `task`'s default model's config is used instead.
639
+ tokenizer (`str` or [`PreTrainedTokenizer`], *optional*):
640
+ The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
641
+ identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`].
642
+
643
+ If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model`
644
+ is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string).
645
+ However, if `config` is also not given or not a string, then the default tokenizer for the given `task`
646
+ will be loaded.
647
+ feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*):
648
+ The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
649
+ identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`].
650
+
651
+ Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal
652
+ models. Multi-modal models will also require a tokenizer to be passed.
653
+
654
+ If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If
655
+ `model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it
656
+ is a string). However, if `config` is also not given or not a string, then the default feature extractor
657
+ for the given `task` will be loaded.
658
+ framework (`str`, *optional*):
659
+ The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
660
+ installed.
661
+
662
+ If no framework is specified, will default to the one currently installed. If no framework is specified and
663
+ both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
664
+ provided.
665
+ revision (`str`, *optional*, defaults to `"main"`):
666
+ When passing a task name or a string model identifier: The specific model version to use. It can be a
667
+ branch name, a tag name, or a commit id, since we use a git-based system for storing models and other
668
+ artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
669
+ use_fast (`bool`, *optional*, defaults to `True`):
670
+ Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]).
671
+ use_auth_token (`str` or *bool*, *optional*):
672
+ The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
673
+ when running `huggingface-cli login` (stored in `~/.huggingface`).
674
+ device (`int` or `str` or `torch.device`):
675
+ Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this
676
+ pipeline will be allocated.
677
+ device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*):
678
+ Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set
679
+ `device_map="auto"` to compute the most optimized `device_map` automatically (see
680
+ [here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload)
681
+ for more information).
682
+
683
+ <Tip warning={true}>
684
+
685
+ Do not use `device_map` AND `device` at the same time as they will conflict
686
+
687
+ </Tip>
688
+
689
+ torch_dtype (`str` or `torch.dtype`, *optional*):
690
+ Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model
691
+ (`torch.float16`, `torch.bfloat16`, ... or `"auto"`).
692
+ trust_remote_code (`bool`, *optional*, defaults to `False`):
693
+ Whether or not to allow for custom code defined on the Hub in their own modeling, configuration,
694
+ tokenization or even pipeline files. This option should only be set to `True` for repositories you trust
695
+ and in which you have read the code, as it will execute code present on the Hub on your local machine.
696
+ model_kwargs (`Dict[str, Any]`, *optional*):
697
+ Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
698
+ **model_kwargs)` function.
699
+ kwargs (`Dict[str, Any]`, *optional*):
700
+ Additional keyword arguments passed along to the specific pipeline init (see the documentation for the
701
+ corresponding pipeline class for possible values).
702
+
703
+ Returns:
704
+ [`Pipeline`]: A suitable pipeline for the task.
705
+
706
+ Examples:
707
+
708
+ ```python
709
+ >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
710
+
711
+ >>> # Sentiment analysis pipeline
712
+ >>> analyzer = pipeline("sentiment-analysis")
713
+
714
+ >>> # Question answering pipeline, specifying the checkpoint identifier
715
+ >>> oracle = pipeline(
716
+ ... "question-answering", model="distilbert/distilbert-base-cased-distilled-squad", tokenizer="google-bert/bert-base-cased"
717
+ ... )
718
+
719
+ >>> # Named entity recognition pipeline, passing in a specific model and tokenizer
720
+ >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
721
+ >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
722
+ >>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer)
723
+ ```"""
724
+ if model_kwargs is None:
725
+ model_kwargs = {}
726
+ # Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs,
727
+ # this is to keep BC).
728
+ use_auth_token = model_kwargs.pop("use_auth_token", None)
729
+ if use_auth_token is not None:
730
+ warnings.warn(
731
+ "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
732
+ FutureWarning,
733
+ )
734
+ if token is not None:
735
+ raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
736
+ token = use_auth_token
737
+
738
+ code_revision = kwargs.pop("code_revision", None)
739
+ commit_hash = kwargs.pop("_commit_hash", None)
740
+
741
+ hub_kwargs = {
742
+ "revision": revision,
743
+ "token": token,
744
+ "trust_remote_code": trust_remote_code,
745
+ "_commit_hash": commit_hash,
746
+ }
747
+
748
+ if task is None and model is None:
749
+ raise RuntimeError(
750
+ "Impossible to instantiate a pipeline without either a task or a model "
751
+ "being specified. "
752
+ "Please provide a task class or a model"
753
+ )
754
+
755
+ if model is None and tokenizer is not None:
756
+ raise RuntimeError(
757
+ "Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer"
758
+ " may not be compatible with the default model. Please provide a PreTrainedModel class or a"
759
+ " path/identifier to a pretrained model when providing tokenizer."
760
+ )
761
+ if model is None and feature_extractor is not None:
762
+ raise RuntimeError(
763
+ "Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided"
764
+ " feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class"
765
+ " or a path/identifier to a pretrained model when providing feature_extractor."
766
+ )
767
+ if isinstance(model, Path):
768
+ model = str(model)
769
+
770
+ if commit_hash is None:
771
+ pretrained_model_name_or_path = None
772
+ if isinstance(config, str):
773
+ pretrained_model_name_or_path = config
774
+ elif config is None and isinstance(model, str):
775
+ pretrained_model_name_or_path = model
776
+
777
+ if not isinstance(config, PretrainedConfig) and pretrained_model_name_or_path is not None:
778
+ # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
779
+ resolved_config_file = cached_file(
780
+ pretrained_model_name_or_path,
781
+ CONFIG_NAME,
782
+ _raise_exceptions_for_gated_repo=False,
783
+ _raise_exceptions_for_missing_entries=False,
784
+ _raise_exceptions_for_connection_errors=False,
785
+ **hub_kwargs,
786
+ )
787
+ hub_kwargs["_commit_hash"] = extract_commit_hash(resolved_config_file, commit_hash)
788
+ else:
789
+ hub_kwargs["_commit_hash"] = getattr(config, "_commit_hash", None)
790
+
791
+ # Config is the primordial information item.
792
+ # Instantiate config if needed
793
+ if isinstance(config, str):
794
+ config = AutoConfig.from_pretrained(
795
+ config, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs
796
+ )
797
+ hub_kwargs["_commit_hash"] = config._commit_hash
798
+ elif config is None and isinstance(model, str):
799
+ # Check for an adapter file in the model path if PEFT is available
800
+ if is_peft_available():
801
+ # `find_adapter_config_file` doesn't accept `trust_remote_code`
802
+ _hub_kwargs = {k: v for k, v in hub_kwargs.items() if k != "trust_remote_code"}
803
+ maybe_adapter_path = find_adapter_config_file(
804
+ model,
805
+ token=hub_kwargs["token"],
806
+ revision=hub_kwargs["revision"],
807
+ _commit_hash=hub_kwargs["_commit_hash"],
808
+ )
809
+
810
+ if maybe_adapter_path is not None:
811
+ with open(maybe_adapter_path, "r", encoding="utf-8") as f:
812
+ adapter_config = json.load(f)
813
+ model = adapter_config["base_model_name_or_path"]
814
+
815
+ config = AutoConfig.from_pretrained(
816
+ model, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs
817
+ )
818
+ hub_kwargs["_commit_hash"] = config._commit_hash
819
+
820
+ custom_tasks = {}
821
+ if config is not None and len(getattr(config, "custom_pipelines", {})) > 0:
822
+ custom_tasks = config.custom_pipelines
823
+ if task is None and trust_remote_code is not False:
824
+ if len(custom_tasks) == 1:
825
+ task = list(custom_tasks.keys())[0]
826
+ else:
827
+ raise RuntimeError(
828
+ "We can't infer the task automatically for this model as there are multiple tasks available. Pick "
829
+ f"one in {', '.join(custom_tasks.keys())}"
830
+ )
831
+
832
+ if task is None and model is not None:
833
+ if not isinstance(model, str):
834
+ raise RuntimeError(
835
+ "Inferring the task automatically requires to check the hub with a model_id defined as a `str`. "
836
+ f"{model} is not a valid model_id."
837
+ )
838
+ task = get_task(model, token)
839
+
840
+ # Retrieve the task
841
+ if task in custom_tasks:
842
+ normalized_task = task
843
+ targeted_task, task_options = clean_custom_task(custom_tasks[task])
844
+ if pipeline_class is None:
845
+ if not trust_remote_code:
846
+ raise ValueError(
847
+ "Loading this pipeline requires you to execute the code in the pipeline file in that"
848
+ " repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
849
+ " set the option `trust_remote_code=True` to remove this error."
850
+ )
851
+ class_ref = targeted_task["impl"]
852
+ pipeline_class = get_class_from_dynamic_module(
853
+ class_ref,
854
+ model,
855
+ code_revision=code_revision,
856
+ **hub_kwargs,
857
+ )
858
+ else:
859
+ normalized_task, targeted_task, task_options = check_task(task)
860
+ if pipeline_class is None:
861
+ pipeline_class = targeted_task["impl"]
862
+
863
+ # Use default model/config/tokenizer for the task if no model is provided
864
+ if model is None:
865
+ # At that point framework might still be undetermined
866
+ model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options)
867
+ revision = revision if revision is not None else default_revision
868
+ logger.warning(
869
+ f"No model was supplied, defaulted to {model} and revision"
870
+ f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n"
871
+ "Using a pipeline without specifying a model name and revision in production is not recommended."
872
+ )
873
+ if config is None and isinstance(model, str):
874
+ config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
875
+ hub_kwargs["_commit_hash"] = config._commit_hash
876
+
877
+ if device_map is not None:
878
+ if "device_map" in model_kwargs:
879
+ raise ValueError(
880
+ 'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those'
881
+ " arguments might conflict, use only one.)"
882
+ )
883
+ if device is not None:
884
+ logger.warning(
885
+ "Both `device` and `device_map` are specified. `device` will override `device_map`. You"
886
+ " will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`."
887
+ )
888
+ model_kwargs["device_map"] = device_map
889
+ if torch_dtype is not None:
890
+ if "torch_dtype" in model_kwargs:
891
+ raise ValueError(
892
+ 'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those'
893
+ " arguments might conflict, use only one.)"
894
+ )
895
+ if isinstance(torch_dtype, str) and hasattr(torch, torch_dtype):
896
+ torch_dtype = getattr(torch, torch_dtype)
897
+ model_kwargs["torch_dtype"] = torch_dtype
898
+
899
+ model_name = model if isinstance(model, str) else None
900
+
901
+ # Load the correct model if possible
902
+ # Infer the framework from the model if not already defined
903
+ if isinstance(model, str) or framework is None:
904
+ model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]}
905
+ framework, model = infer_framework_load_model(
906
+ model,
907
+ model_classes=model_classes,
908
+ config=config,
909
+ framework=framework,
910
+ task=task,
911
+ **hub_kwargs,
912
+ **model_kwargs,
913
+ )
914
+
915
+ model_config = model.config
916
+ hub_kwargs["_commit_hash"] = model.config._commit_hash
917
+ load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None
918
+ load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None
919
+ load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None
920
+
921
+ # If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while
922
+ # `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some
923
+ # vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`.
924
+ # TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue.
925
+ # This block is only temporarily to make CI green.
926
+ if load_image_processor and load_feature_extractor:
927
+ load_feature_extractor = False
928
+
929
+ if (
930
+ tokenizer is None
931
+ and not load_tokenizer
932
+ and normalized_task not in NO_TOKENIZER_TASKS
933
+ # Using class name to avoid importing the real class.
934
+ and (
935
+ model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS
936
+ or model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS
937
+ )
938
+ ):
939
+ # This is a special category of models, that are fusions of multiple models
940
+ # so the model_config might not define a tokenizer, but it seems to be
941
+ # necessary for the task, so we're force-trying to load it.
942
+ load_tokenizer = True
943
+ if (
944
+ image_processor is None
945
+ and not load_image_processor
946
+ and normalized_task not in NO_IMAGE_PROCESSOR_TASKS
947
+ # Using class name to avoid importing the real class.
948
+ and model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS
949
+ ):
950
+ # This is a special category of models, that are fusions of multiple models
951
+ # so the model_config might not define a tokenizer, but it seems to be
952
+ # necessary for the task, so we're force-trying to load it.
953
+ load_image_processor = True
954
+ if (
955
+ feature_extractor is None
956
+ and not load_feature_extractor
957
+ and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS
958
+ # Using class name to avoid importing the real class.
959
+ and model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS
960
+ ):
961
+ # This is a special category of models, that are fusions of multiple models
962
+ # so the model_config might not define a tokenizer, but it seems to be
963
+ # necessary for the task, so we're force-trying to load it.
964
+ load_feature_extractor = True
965
+
966
+ if task in NO_TOKENIZER_TASKS:
967
+ # These will never require a tokenizer.
968
+ # the model on the other hand might have a tokenizer, but
969
+ # the files could be missing from the hub, instead of failing
970
+ # on such repos, we just force to not load it.
971
+ load_tokenizer = False
972
+
973
+ if task in NO_FEATURE_EXTRACTOR_TASKS:
974
+ load_feature_extractor = False
975
+ if task in NO_IMAGE_PROCESSOR_TASKS:
976
+ load_image_processor = False
977
+
978
+ if load_tokenizer:
979
+ # Try to infer tokenizer from model or config name (if provided as str)
980
+ if tokenizer is None:
981
+ if isinstance(model_name, str):
982
+ tokenizer = model_name
983
+ elif isinstance(config, str):
984
+ tokenizer = config
985
+ else:
986
+ # Impossible to guess what is the right tokenizer here
987
+ raise Exception(
988
+ "Impossible to guess which tokenizer to use. "
989
+ "Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
990
+ )
991
+
992
+ # Instantiate tokenizer if needed
993
+ if isinstance(tokenizer, (str, tuple)):
994
+ if isinstance(tokenizer, tuple):
995
+ # For tuple we have (tokenizer name, {kwargs})
996
+ use_fast = tokenizer[1].pop("use_fast", use_fast)
997
+ tokenizer_identifier = tokenizer[0]
998
+ tokenizer_kwargs = tokenizer[1]
999
+ else:
1000
+ tokenizer_identifier = tokenizer
1001
+ tokenizer_kwargs = model_kwargs.copy()
1002
+ tokenizer_kwargs.pop("torch_dtype", None)
1003
+
1004
+ tokenizer = AutoTokenizer.from_pretrained(
1005
+ tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs
1006
+ )
1007
+
1008
+ if load_image_processor:
1009
+ # Try to infer image processor from model or config name (if provided as str)
1010
+ if image_processor is None:
1011
+ if isinstance(model_name, str):
1012
+ image_processor = model_name
1013
+ elif isinstance(config, str):
1014
+ image_processor = config
1015
+ # Backward compatibility, as `feature_extractor` used to be the name
1016
+ # for `ImageProcessor`.
1017
+ elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor):
1018
+ image_processor = feature_extractor
1019
+ else:
1020
+ # Impossible to guess what is the right image_processor here
1021
+ raise Exception(
1022
+ "Impossible to guess which image processor to use. "
1023
+ "Please provide a PreTrainedImageProcessor class or a path/identifier "
1024
+ "to a pretrained image processor."
1025
+ )
1026
+
1027
+ # Instantiate image_processor if needed
1028
+ if isinstance(image_processor, (str, tuple)):
1029
+ image_processor = AutoImageProcessor.from_pretrained(
1030
+ image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs
1031
+ )
1032
+
1033
+ if load_feature_extractor:
1034
+ # Try to infer feature extractor from model or config name (if provided as str)
1035
+ if feature_extractor is None:
1036
+ if isinstance(model_name, str):
1037
+ feature_extractor = model_name
1038
+ elif isinstance(config, str):
1039
+ feature_extractor = config
1040
+ else:
1041
+ # Impossible to guess what is the right feature_extractor here
1042
+ raise Exception(
1043
+ "Impossible to guess which feature extractor to use. "
1044
+ "Please provide a PreTrainedFeatureExtractor class or a path/identifier "
1045
+ "to a pretrained feature extractor."
1046
+ )
1047
+
1048
+ # Instantiate feature_extractor if needed
1049
+ if isinstance(feature_extractor, (str, tuple)):
1050
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
1051
+ feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs
1052
+ )
1053
+
1054
+ if (
1055
+ feature_extractor._processor_class
1056
+ and feature_extractor._processor_class.endswith("WithLM")
1057
+ and isinstance(model_name, str)
1058
+ ):
1059
+ try:
1060
+ import kenlm # to trigger `ImportError` if not installed
1061
+ from pyctcdecode import BeamSearchDecoderCTC
1062
+
1063
+ if os.path.isdir(model_name) or os.path.isfile(model_name):
1064
+ decoder = BeamSearchDecoderCTC.load_from_dir(model_name)
1065
+ else:
1066
+ language_model_glob = os.path.join(
1067
+ BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*"
1068
+ )
1069
+ alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME
1070
+ allow_patterns = [language_model_glob, alphabet_filename]
1071
+ decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns)
1072
+
1073
+ kwargs["decoder"] = decoder
1074
+ except ImportError as e:
1075
+ logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}")
1076
+ if not is_kenlm_available():
1077
+ logger.warning("Try to install `kenlm`: `pip install kenlm")
1078
+
1079
+ if not is_pyctcdecode_available():
1080
+ logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode")
1081
+
1082
+ if task == "translation" and model.config.task_specific_params:
1083
+ for key in model.config.task_specific_params:
1084
+ if key.startswith("translation"):
1085
+ task = key
1086
+ warnings.warn(
1087
+ f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"',
1088
+ UserWarning,
1089
+ )
1090
+ break
1091
+
1092
+ if tokenizer is not None:
1093
+ kwargs["tokenizer"] = tokenizer
1094
+
1095
+ if feature_extractor is not None:
1096
+ kwargs["feature_extractor"] = feature_extractor
1097
+
1098
+ if torch_dtype is not None:
1099
+ kwargs["torch_dtype"] = torch_dtype
1100
+
1101
+ if image_processor is not None:
1102
+ kwargs["image_processor"] = image_processor
1103
+
1104
+ if device is not None:
1105
+ kwargs["device"] = device
1106
+
1107
+ return pipeline_class(model=model, framework=framework, task=task, **kwargs)
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (32 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/audio_classification.cpython-310.pyc ADDED
Binary file (7.55 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/base.cpython-310.pyc ADDED
Binary file (44.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/conversational.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/document_question_answering.cpython-310.pyc ADDED
Binary file (17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/fill_mask.cpython-310.pyc ADDED
Binary file (9.42 kB). View file
 
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/__pycache__/image_classification.cpython-310.pyc ADDED
Binary file (8.41 kB). View file