Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__init__.py +73 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/configuration_bit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/convert_bit_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/image_processing_bit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/modeling_bit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/configuration_bit.py +136 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/convert_bit_to_pytorch.py +178 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/image_processing_bit.py +345 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bit/modeling_bit.py +898 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/configuration_camembert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_camembert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_tf_camembert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/tokenization_camembert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/tokenization_camembert_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__init__.py +56 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/configuration_depth_anything.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/convert_depth_anything_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/modeling_depth_anything.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/configuration_depth_anything.py +145 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/convert_depth_anything_to_hf.py +299 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/modeling_depth_anything.py +463 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__init__.py +168 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py +187 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py +80 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py +1679 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py +1601 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py +1768 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py +503 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py +169 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +330 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__init__.py +70 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/configuration_wav2vec2_bert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/convert_wav2vec2_seamless_checkpoint.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/modeling_wav2vec2_bert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/processing_wav2vec2_bert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +314 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py +218 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +1671 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_bit": ["BIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BitConfig", "BitOnnxConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_torch_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["modeling_bit"] = [
|
28 |
+
"BIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
29 |
+
"BitForImageClassification",
|
30 |
+
"BitModel",
|
31 |
+
"BitPreTrainedModel",
|
32 |
+
"BitBackbone",
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_vision_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["image_processing_bit"] = ["BitImageProcessor"]
|
43 |
+
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_bit import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BitConfig, BitOnnxConfig
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_torch_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .modeling_bit import (
|
55 |
+
BIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
56 |
+
BitBackbone,
|
57 |
+
BitForImageClassification,
|
58 |
+
BitModel,
|
59 |
+
BitPreTrainedModel,
|
60 |
+
)
|
61 |
+
|
62 |
+
try:
|
63 |
+
if not is_vision_available():
|
64 |
+
raise OptionalDependencyNotAvailable()
|
65 |
+
except OptionalDependencyNotAvailable:
|
66 |
+
pass
|
67 |
+
else:
|
68 |
+
from .image_processing_bit import BitImageProcessor
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/configuration_bit.cpython-310.pyc
ADDED
Binary file (5.58 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/convert_bit_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.51 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/image_processing_bit.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/__pycache__/modeling_bit.cpython-310.pyc
ADDED
Binary file (23.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/configuration_bit.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BiT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import BIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class BitConfig(BackboneConfigMixin, PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the BiT
|
33 |
+
[google/bit-50](https://huggingface.co/google/bit-50) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
num_channels (`int`, *optional*, defaults to 3):
|
40 |
+
The number of input channels.
|
41 |
+
embedding_size (`int`, *optional*, defaults to 64):
|
42 |
+
Dimensionality (hidden size) for the embedding layer.
|
43 |
+
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
|
44 |
+
Dimensionality (hidden size) at each stage.
|
45 |
+
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
|
46 |
+
Depth (number of layers) for each stage.
|
47 |
+
layer_type (`str`, *optional*, defaults to `"preactivation"`):
|
48 |
+
The layer to use, it can be either `"preactivation"` or `"bottleneck"`.
|
49 |
+
hidden_act (`str`, *optional*, defaults to `"relu"`):
|
50 |
+
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
|
51 |
+
are supported.
|
52 |
+
global_padding (`str`, *optional*):
|
53 |
+
Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`.
|
54 |
+
num_groups (`int`, *optional*, defaults to 32):
|
55 |
+
Number of groups used for the `BitGroupNormActivation` layers.
|
56 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
57 |
+
The drop path rate for the stochastic depth.
|
58 |
+
embedding_dynamic_padding (`bool`, *optional*, defaults to `False`):
|
59 |
+
Whether or not to make use of dynamic padding for the embedding layer.
|
60 |
+
output_stride (`int`, *optional*, defaults to 32):
|
61 |
+
The output stride of the model.
|
62 |
+
width_factor (`int`, *optional*, defaults to 1):
|
63 |
+
The width factor for the model.
|
64 |
+
out_features (`List[str]`, *optional*):
|
65 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
66 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
67 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
68 |
+
same order as defined in the `stage_names` attribute.
|
69 |
+
out_indices (`List[int]`, *optional*):
|
70 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
71 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
72 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
73 |
+
same order as defined in the `stage_names` attribute.
|
74 |
+
|
75 |
+
Example:
|
76 |
+
```python
|
77 |
+
>>> from transformers import BitConfig, BitModel
|
78 |
+
|
79 |
+
>>> # Initializing a BiT bit-50 style configuration
|
80 |
+
>>> configuration = BitConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a model (with random weights) from the bit-50 style configuration
|
83 |
+
>>> model = BitModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```
|
88 |
+
"""
|
89 |
+
|
90 |
+
model_type = "bit"
|
91 |
+
layer_types = ["preactivation", "bottleneck"]
|
92 |
+
supported_padding = ["SAME", "VALID"]
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
num_channels=3,
|
97 |
+
embedding_size=64,
|
98 |
+
hidden_sizes=[256, 512, 1024, 2048],
|
99 |
+
depths=[3, 4, 6, 3],
|
100 |
+
layer_type="preactivation",
|
101 |
+
hidden_act="relu",
|
102 |
+
global_padding=None,
|
103 |
+
num_groups=32,
|
104 |
+
drop_path_rate=0.0,
|
105 |
+
embedding_dynamic_padding=False,
|
106 |
+
output_stride=32,
|
107 |
+
width_factor=1,
|
108 |
+
out_features=None,
|
109 |
+
out_indices=None,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
super().__init__(**kwargs)
|
113 |
+
if layer_type not in self.layer_types:
|
114 |
+
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
|
115 |
+
if global_padding is not None:
|
116 |
+
if global_padding.upper() in self.supported_padding:
|
117 |
+
global_padding = global_padding.upper()
|
118 |
+
else:
|
119 |
+
raise ValueError(f"Padding strategy {global_padding} not supported")
|
120 |
+
self.num_channels = num_channels
|
121 |
+
self.embedding_size = embedding_size
|
122 |
+
self.hidden_sizes = hidden_sizes
|
123 |
+
self.depths = depths
|
124 |
+
self.layer_type = layer_type
|
125 |
+
self.hidden_act = hidden_act
|
126 |
+
self.global_padding = global_padding
|
127 |
+
self.num_groups = num_groups
|
128 |
+
self.drop_path_rate = drop_path_rate
|
129 |
+
self.embedding_dynamic_padding = embedding_dynamic_padding
|
130 |
+
self.output_stride = output_stride
|
131 |
+
self.width_factor = width_factor
|
132 |
+
|
133 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
|
134 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
135 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
136 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/convert_bit_to_pytorch.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BiT checkpoints from the timm library."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from PIL import Image
|
26 |
+
from timm import create_model
|
27 |
+
from timm.data import resolve_data_config
|
28 |
+
from timm.data.transforms_factory import create_transform
|
29 |
+
|
30 |
+
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
|
31 |
+
from transformers.image_utils import PILImageResampling
|
32 |
+
from transformers.utils import logging
|
33 |
+
|
34 |
+
|
35 |
+
logging.set_verbosity_info()
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
def get_config(model_name):
|
40 |
+
repo_id = "huggingface/label-files"
|
41 |
+
filename = "imagenet-1k-id2label.json"
|
42 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
43 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
44 |
+
label2id = {v: k for k, v in id2label.items()}
|
45 |
+
|
46 |
+
conv_layer = "std_conv" if "bit" in model_name else False
|
47 |
+
|
48 |
+
# note that when using BiT as backbone for ViT-hybrid checkpoints,
|
49 |
+
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
|
50 |
+
# config.conv_layer = "std_conv_same"
|
51 |
+
config = BitConfig(
|
52 |
+
conv_layer=conv_layer,
|
53 |
+
num_labels=1000,
|
54 |
+
id2label=id2label,
|
55 |
+
label2id=label2id,
|
56 |
+
)
|
57 |
+
|
58 |
+
return config
|
59 |
+
|
60 |
+
|
61 |
+
def rename_key(name):
|
62 |
+
if "stem.conv" in name:
|
63 |
+
name = name.replace("stem.conv", "bit.embedder.convolution")
|
64 |
+
if "blocks" in name:
|
65 |
+
name = name.replace("blocks", "layers")
|
66 |
+
if "head.fc" in name:
|
67 |
+
name = name.replace("head.fc", "classifier.1")
|
68 |
+
if name.startswith("norm"):
|
69 |
+
name = "bit." + name
|
70 |
+
if "bit" not in name and "classifier" not in name:
|
71 |
+
name = "bit.encoder." + name
|
72 |
+
|
73 |
+
return name
|
74 |
+
|
75 |
+
|
76 |
+
# We will verify our results on an image of cute cats
|
77 |
+
def prepare_img():
|
78 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
79 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
80 |
+
return im
|
81 |
+
|
82 |
+
|
83 |
+
@torch.no_grad()
|
84 |
+
def convert_bit_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
|
85 |
+
"""
|
86 |
+
Copy/paste/tweak model's weights to our BiT structure.
|
87 |
+
"""
|
88 |
+
|
89 |
+
# define default BiT configuration
|
90 |
+
config = get_config(model_name)
|
91 |
+
|
92 |
+
# load original model from timm
|
93 |
+
timm_model = create_model(model_name, pretrained=True)
|
94 |
+
timm_model.eval()
|
95 |
+
|
96 |
+
# load state_dict of original model
|
97 |
+
state_dict = timm_model.state_dict()
|
98 |
+
for key in state_dict.copy().keys():
|
99 |
+
val = state_dict.pop(key)
|
100 |
+
state_dict[rename_key(key)] = val.squeeze() if "head" in key else val
|
101 |
+
|
102 |
+
# load HuggingFace model
|
103 |
+
model = BitForImageClassification(config)
|
104 |
+
model.eval()
|
105 |
+
model.load_state_dict(state_dict)
|
106 |
+
|
107 |
+
# create image processor
|
108 |
+
transform = create_transform(**resolve_data_config({}, model=timm_model))
|
109 |
+
timm_transforms = transform.transforms
|
110 |
+
|
111 |
+
pillow_resamplings = {
|
112 |
+
"bilinear": PILImageResampling.BILINEAR,
|
113 |
+
"bicubic": PILImageResampling.BICUBIC,
|
114 |
+
"nearest": PILImageResampling.NEAREST,
|
115 |
+
}
|
116 |
+
|
117 |
+
processor = BitImageProcessor(
|
118 |
+
do_resize=True,
|
119 |
+
size={"shortest_edge": timm_transforms[0].size},
|
120 |
+
resample=pillow_resamplings[timm_transforms[0].interpolation.value],
|
121 |
+
do_center_crop=True,
|
122 |
+
crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]},
|
123 |
+
do_normalize=True,
|
124 |
+
image_mean=timm_transforms[-1].mean.tolist(),
|
125 |
+
image_std=timm_transforms[-1].std.tolist(),
|
126 |
+
)
|
127 |
+
|
128 |
+
image = prepare_img()
|
129 |
+
timm_pixel_values = transform(image).unsqueeze(0)
|
130 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
131 |
+
|
132 |
+
# verify pixel values
|
133 |
+
assert torch.allclose(timm_pixel_values, pixel_values)
|
134 |
+
|
135 |
+
# verify logits
|
136 |
+
with torch.no_grad():
|
137 |
+
outputs = model(pixel_values)
|
138 |
+
logits = outputs.logits
|
139 |
+
|
140 |
+
print("Logits:", logits[0, :3])
|
141 |
+
print("Predicted class:", model.config.id2label[logits.argmax(-1).item()])
|
142 |
+
timm_logits = timm_model(pixel_values)
|
143 |
+
assert timm_logits.shape == outputs.logits.shape
|
144 |
+
assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
|
145 |
+
print("Looks ok!")
|
146 |
+
|
147 |
+
if pytorch_dump_folder_path is not None:
|
148 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
149 |
+
print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}")
|
150 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
151 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
152 |
+
|
153 |
+
if push_to_hub:
|
154 |
+
print(f"Pushing model {model_name} and processor to the hub")
|
155 |
+
model.push_to_hub(f"ybelkada/{model_name}")
|
156 |
+
processor.push_to_hub(f"ybelkada/{model_name}")
|
157 |
+
|
158 |
+
|
159 |
+
if __name__ == "__main__":
|
160 |
+
parser = argparse.ArgumentParser()
|
161 |
+
# Required parameters
|
162 |
+
parser.add_argument(
|
163 |
+
"--model_name",
|
164 |
+
default="resnetv2_50x1_bitm",
|
165 |
+
type=str,
|
166 |
+
help="Name of the BiT timm model you'd like to convert.",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--push_to_hub",
|
173 |
+
action="store_true",
|
174 |
+
help="Whether to push the model to the hub.",
|
175 |
+
)
|
176 |
+
|
177 |
+
args = parser.parse_args()
|
178 |
+
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/image_processing_bit.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for BiT."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
convert_to_rgb,
|
24 |
+
get_resize_output_image_size,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from ...image_utils import (
|
29 |
+
OPENAI_CLIP_MEAN,
|
30 |
+
OPENAI_CLIP_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
infer_channel_dimension_format,
|
35 |
+
is_scaled_image,
|
36 |
+
make_list_of_images,
|
37 |
+
to_numpy_array,
|
38 |
+
valid_images,
|
39 |
+
validate_kwargs,
|
40 |
+
validate_preprocess_arguments,
|
41 |
+
)
|
42 |
+
from ...utils import TensorType, is_vision_available, logging
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
|
48 |
+
if is_vision_available():
|
49 |
+
import PIL
|
50 |
+
|
51 |
+
|
52 |
+
class BitImageProcessor(BaseImageProcessor):
|
53 |
+
r"""
|
54 |
+
Constructs a BiT image processor.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
58 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
59 |
+
`do_resize` in the `preprocess` method.
|
60 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
61 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
62 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
63 |
+
method.
|
64 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
65 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
66 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
68 |
+
`preprocess` method.
|
69 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
70 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
71 |
+
method.
|
72 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
74 |
+
the `preprocess` method.
|
75 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
76 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
77 |
+
method.
|
78 |
+
do_normalize:
|
79 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
80 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
|
81 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
82 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
83 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
|
84 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
85 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
86 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
87 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to convert the image to RGB.
|
89 |
+
"""
|
90 |
+
|
91 |
+
model_input_names = ["pixel_values"]
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
do_resize: bool = True,
|
96 |
+
size: Dict[str, int] = None,
|
97 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
98 |
+
do_center_crop: bool = True,
|
99 |
+
crop_size: Dict[str, int] = None,
|
100 |
+
do_rescale: bool = True,
|
101 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
102 |
+
do_normalize: bool = True,
|
103 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
104 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
105 |
+
do_convert_rgb: bool = True,
|
106 |
+
**kwargs,
|
107 |
+
) -> None:
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
size = size if size is not None else {"shortest_edge": 224}
|
110 |
+
size = get_size_dict(size, default_to_square=False)
|
111 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
112 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
113 |
+
|
114 |
+
self.do_resize = do_resize
|
115 |
+
self.size = size
|
116 |
+
self.resample = resample
|
117 |
+
self.do_center_crop = do_center_crop
|
118 |
+
self.crop_size = crop_size
|
119 |
+
self.do_rescale = do_rescale
|
120 |
+
self.rescale_factor = rescale_factor
|
121 |
+
self.do_normalize = do_normalize
|
122 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
123 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
124 |
+
self.do_convert_rgb = do_convert_rgb
|
125 |
+
self._valid_processor_keys = [
|
126 |
+
"images",
|
127 |
+
"do_resize",
|
128 |
+
"size",
|
129 |
+
"resample",
|
130 |
+
"do_center_crop",
|
131 |
+
"crop_size",
|
132 |
+
"do_rescale",
|
133 |
+
"rescale_factor",
|
134 |
+
"do_normalize",
|
135 |
+
"image_mean",
|
136 |
+
"image_std",
|
137 |
+
"do_convert_rgb",
|
138 |
+
"return_tensors",
|
139 |
+
"data_format",
|
140 |
+
"input_data_format",
|
141 |
+
]
|
142 |
+
|
143 |
+
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
|
144 |
+
def resize(
|
145 |
+
self,
|
146 |
+
image: np.ndarray,
|
147 |
+
size: Dict[str, int],
|
148 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
149 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
150 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
151 |
+
**kwargs,
|
152 |
+
) -> np.ndarray:
|
153 |
+
"""
|
154 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
155 |
+
resized to keep the input aspect ratio.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
image (`np.ndarray`):
|
159 |
+
Image to resize.
|
160 |
+
size (`Dict[str, int]`):
|
161 |
+
Size of the output image.
|
162 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
163 |
+
Resampling filter to use when resiizing the image.
|
164 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
165 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
166 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
167 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
168 |
+
"""
|
169 |
+
default_to_square = True
|
170 |
+
if "shortest_edge" in size:
|
171 |
+
size = size["shortest_edge"]
|
172 |
+
default_to_square = False
|
173 |
+
elif "height" in size and "width" in size:
|
174 |
+
size = (size["height"], size["width"])
|
175 |
+
else:
|
176 |
+
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
|
177 |
+
|
178 |
+
output_size = get_resize_output_image_size(
|
179 |
+
image,
|
180 |
+
size=size,
|
181 |
+
default_to_square=default_to_square,
|
182 |
+
input_data_format=input_data_format,
|
183 |
+
)
|
184 |
+
return resize(
|
185 |
+
image,
|
186 |
+
size=output_size,
|
187 |
+
resample=resample,
|
188 |
+
data_format=data_format,
|
189 |
+
input_data_format=input_data_format,
|
190 |
+
**kwargs,
|
191 |
+
)
|
192 |
+
|
193 |
+
def preprocess(
|
194 |
+
self,
|
195 |
+
images: ImageInput,
|
196 |
+
do_resize: bool = None,
|
197 |
+
size: Dict[str, int] = None,
|
198 |
+
resample: PILImageResampling = None,
|
199 |
+
do_center_crop: bool = None,
|
200 |
+
crop_size: int = None,
|
201 |
+
do_rescale: bool = None,
|
202 |
+
rescale_factor: float = None,
|
203 |
+
do_normalize: bool = None,
|
204 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
205 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
206 |
+
do_convert_rgb: bool = None,
|
207 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
208 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
209 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
210 |
+
**kwargs,
|
211 |
+
) -> PIL.Image.Image:
|
212 |
+
"""
|
213 |
+
Preprocess an image or batch of images.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
images (`ImageInput`):
|
217 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
218 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
219 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
220 |
+
Whether to resize the image.
|
221 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
222 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
223 |
+
the longest edge resized to keep the input aspect ratio.
|
224 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
225 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
226 |
+
has an effect if `do_resize` is set to `True`.
|
227 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
228 |
+
Whether to center crop the image.
|
229 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
230 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
231 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
232 |
+
Whether to rescale the image.
|
233 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
234 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
235 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
236 |
+
Whether to normalize the image.
|
237 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
238 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
239 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
240 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
241 |
+
`True`.
|
242 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
243 |
+
Whether to convert the image to RGB.
|
244 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
245 |
+
The type of tensors to return. Can be one of:
|
246 |
+
- Unset: Return a list of `np.ndarray`.
|
247 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
248 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
249 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
250 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
251 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
252 |
+
The channel dimension format for the output image. Can be one of:
|
253 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
254 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
255 |
+
- Unset: Use the channel dimension format of the input image.
|
256 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
257 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
258 |
+
from the input image. Can be one of:
|
259 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
260 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
261 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
262 |
+
"""
|
263 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
264 |
+
size = size if size is not None else self.size
|
265 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
266 |
+
resample = resample if resample is not None else self.resample
|
267 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
268 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
269 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
270 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
271 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
272 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
273 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
274 |
+
image_std = image_std if image_std is not None else self.image_std
|
275 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
276 |
+
|
277 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
278 |
+
|
279 |
+
images = make_list_of_images(images)
|
280 |
+
|
281 |
+
if not valid_images(images):
|
282 |
+
raise ValueError(
|
283 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
284 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
285 |
+
)
|
286 |
+
|
287 |
+
validate_preprocess_arguments(
|
288 |
+
do_rescale=do_rescale,
|
289 |
+
rescale_factor=rescale_factor,
|
290 |
+
do_normalize=do_normalize,
|
291 |
+
image_mean=image_mean,
|
292 |
+
image_std=image_std,
|
293 |
+
do_center_crop=do_center_crop,
|
294 |
+
crop_size=crop_size,
|
295 |
+
do_resize=do_resize,
|
296 |
+
size=size,
|
297 |
+
resample=resample,
|
298 |
+
)
|
299 |
+
|
300 |
+
# PIL RGBA images are converted to RGB
|
301 |
+
if do_convert_rgb:
|
302 |
+
images = [convert_to_rgb(image) for image in images]
|
303 |
+
|
304 |
+
# All transformations expect numpy arrays.
|
305 |
+
images = [to_numpy_array(image) for image in images]
|
306 |
+
|
307 |
+
if is_scaled_image(images[0]) and do_rescale:
|
308 |
+
logger.warning_once(
|
309 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
310 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
311 |
+
)
|
312 |
+
|
313 |
+
if input_data_format is None:
|
314 |
+
# We assume that all images have the same channel dimension format.
|
315 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
316 |
+
|
317 |
+
if do_resize:
|
318 |
+
images = [
|
319 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
320 |
+
for image in images
|
321 |
+
]
|
322 |
+
|
323 |
+
if do_center_crop:
|
324 |
+
images = [
|
325 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
326 |
+
]
|
327 |
+
|
328 |
+
if do_rescale:
|
329 |
+
images = [
|
330 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
331 |
+
for image in images
|
332 |
+
]
|
333 |
+
|
334 |
+
if do_normalize:
|
335 |
+
images = [
|
336 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
337 |
+
for image in images
|
338 |
+
]
|
339 |
+
|
340 |
+
images = [
|
341 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
342 |
+
]
|
343 |
+
|
344 |
+
data = {"pixel_values": images}
|
345 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bit/modeling_bit.py
ADDED
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BiT model. Also supports backbone for ViT hybrid."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import Tensor, nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BackboneOutput,
|
30 |
+
BaseModelOutputWithNoAttention,
|
31 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
32 |
+
ImageClassifierOutputWithNoAttention,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
from ...utils.backbone_utils import BackboneMixin
|
43 |
+
from .configuration_bit import BitConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
# General docstring
|
49 |
+
_CONFIG_FOR_DOC = "BitConfig"
|
50 |
+
|
51 |
+
# Base docstring
|
52 |
+
_CHECKPOINT_FOR_DOC = "google/bit-50"
|
53 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
|
54 |
+
|
55 |
+
# Image classification docstring
|
56 |
+
_IMAGE_CLASS_CHECKPOINT = "google/bit-50"
|
57 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
|
58 |
+
|
59 |
+
|
60 |
+
from ..deprecated._archive_maps import BIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
61 |
+
|
62 |
+
|
63 |
+
def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]:
|
64 |
+
r"""
|
65 |
+
Utility function to get the tuple padding value given the kernel_size and padding.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
padding (Union[`str`, `int`], *optional*):
|
69 |
+
Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from
|
70 |
+
PyTorch is used.
|
71 |
+
kernel_size (`int`, *optional*, defaults to 7):
|
72 |
+
Kernel size of the convolution layers.
|
73 |
+
stride (`int`, *optional*, defaults to 1):
|
74 |
+
Stride value of the convolution layers.
|
75 |
+
dilation (`int`, *optional*, defaults to 1):
|
76 |
+
Dilation value of the convolution layers.
|
77 |
+
"""
|
78 |
+
dynamic = False
|
79 |
+
if padding is None:
|
80 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
81 |
+
return padding, dynamic
|
82 |
+
|
83 |
+
if isinstance(padding, str):
|
84 |
+
# for any string padding, the padding will be calculated for you, one of three ways
|
85 |
+
padding = padding.lower()
|
86 |
+
if padding == "same":
|
87 |
+
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
88 |
+
if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0:
|
89 |
+
# static case, no extra overhead
|
90 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
91 |
+
else:
|
92 |
+
# dynamic 'SAME' padding, has runtime/GPU memory overhead
|
93 |
+
padding = 0
|
94 |
+
dynamic = True
|
95 |
+
elif padding == "valid":
|
96 |
+
# 'VALID' padding, same as padding=0
|
97 |
+
padding = 0
|
98 |
+
else:
|
99 |
+
# Default to PyTorch style 'same'-ish symmetric padding
|
100 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
101 |
+
return padding, dynamic
|
102 |
+
|
103 |
+
|
104 |
+
class WeightStandardizedConv2d(nn.Conv2d):
|
105 |
+
"""Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model.
|
106 |
+
|
107 |
+
Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight
|
108 |
+
Standardization](https://arxiv.org/abs/1903.10520v2)
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
in_channel,
|
114 |
+
out_channels,
|
115 |
+
kernel_size,
|
116 |
+
stride=1,
|
117 |
+
padding="SAME",
|
118 |
+
dilation=1,
|
119 |
+
groups=1,
|
120 |
+
bias=False,
|
121 |
+
eps=1e-6,
|
122 |
+
):
|
123 |
+
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation)
|
124 |
+
super().__init__(
|
125 |
+
in_channel,
|
126 |
+
out_channels,
|
127 |
+
kernel_size,
|
128 |
+
stride=stride,
|
129 |
+
padding=padding,
|
130 |
+
dilation=dilation,
|
131 |
+
groups=groups,
|
132 |
+
bias=bias,
|
133 |
+
)
|
134 |
+
if is_dynamic:
|
135 |
+
self.pad = DynamicPad2d(kernel_size, stride, dilation)
|
136 |
+
else:
|
137 |
+
self.pad = None
|
138 |
+
self.eps = eps
|
139 |
+
|
140 |
+
def forward(self, hidden_state):
|
141 |
+
if self.pad is not None:
|
142 |
+
hidden_state = self.pad(hidden_state)
|
143 |
+
weight = nn.functional.batch_norm(
|
144 |
+
self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps
|
145 |
+
).reshape_as(self.weight)
|
146 |
+
hidden_state = nn.functional.conv2d(
|
147 |
+
hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
|
148 |
+
)
|
149 |
+
return hidden_state
|
150 |
+
|
151 |
+
|
152 |
+
class BitGroupNormActivation(nn.GroupNorm):
|
153 |
+
r"""
|
154 |
+
A module that combines group normalization with an activation function.
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True):
|
158 |
+
super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine)
|
159 |
+
if apply_activation:
|
160 |
+
self.activation = ACT2FN[config.hidden_act]
|
161 |
+
else:
|
162 |
+
self.activation = nn.Identity()
|
163 |
+
|
164 |
+
def forward(self, hidden_state):
|
165 |
+
hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps)
|
166 |
+
hidden_state = self.activation(hidden_state)
|
167 |
+
return hidden_state
|
168 |
+
|
169 |
+
|
170 |
+
class DynamicPad2d(nn.Module):
|
171 |
+
r"""
|
172 |
+
A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input
|
173 |
+
hidden states.
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, kernel_size, stride, dilation, value=0):
|
177 |
+
super().__init__()
|
178 |
+
# Safety checkers
|
179 |
+
if isinstance(kernel_size, int):
|
180 |
+
kernel_size = (kernel_size, kernel_size)
|
181 |
+
|
182 |
+
if isinstance(stride, int):
|
183 |
+
stride = (stride, stride)
|
184 |
+
|
185 |
+
if isinstance(dilation, int):
|
186 |
+
dilation = (dilation, dilation)
|
187 |
+
|
188 |
+
self.kernel_size = kernel_size
|
189 |
+
self.stride = stride
|
190 |
+
self.dilation = dilation
|
191 |
+
self.value = value
|
192 |
+
|
193 |
+
def compute_padding(x, kernel_size, stride, dilation):
|
194 |
+
return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0)
|
195 |
+
|
196 |
+
self.compute_padding = compute_padding
|
197 |
+
|
198 |
+
def __call__(self, input):
|
199 |
+
# Get width and height
|
200 |
+
input_height, input_width = input.size()[-2:]
|
201 |
+
|
202 |
+
# Compute the padding values
|
203 |
+
padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0])
|
204 |
+
padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1])
|
205 |
+
|
206 |
+
# apply pad
|
207 |
+
if padding_height > 0 or padding_width > 0:
|
208 |
+
input = nn.functional.pad(
|
209 |
+
input,
|
210 |
+
[
|
211 |
+
padding_width // 2,
|
212 |
+
padding_width - padding_width // 2,
|
213 |
+
padding_height // 2,
|
214 |
+
padding_height - padding_height // 2,
|
215 |
+
],
|
216 |
+
value=self.value,
|
217 |
+
)
|
218 |
+
return input
|
219 |
+
|
220 |
+
|
221 |
+
class BitMaxPool2d(nn.MaxPool2d):
|
222 |
+
"""Tensorflow like 'SAME' wrapper for 2D max pooling"""
|
223 |
+
|
224 |
+
def __init__(
|
225 |
+
self,
|
226 |
+
kernel_size: int,
|
227 |
+
stride=None,
|
228 |
+
dilation=1,
|
229 |
+
ceil_mode=False,
|
230 |
+
padding=(0, 0),
|
231 |
+
padding_value=0,
|
232 |
+
use_dynamic_padding=True,
|
233 |
+
):
|
234 |
+
kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size)
|
235 |
+
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
|
236 |
+
dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation)
|
237 |
+
super().__init__(kernel_size, stride, padding, dilation, ceil_mode)
|
238 |
+
if use_dynamic_padding:
|
239 |
+
self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value)
|
240 |
+
else:
|
241 |
+
self.pad = nn.Identity()
|
242 |
+
|
243 |
+
def forward(self, hidden_states):
|
244 |
+
hidden_states = self.pad(hidden_states)
|
245 |
+
return nn.functional.max_pool2d(
|
246 |
+
hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
+
class BitEmbeddings(nn.Module):
|
251 |
+
"""
|
252 |
+
BiT Embeddings (stem) composed of a single aggressive convolution.
|
253 |
+
"""
|
254 |
+
|
255 |
+
def __init__(self, config: BitConfig):
|
256 |
+
super().__init__()
|
257 |
+
|
258 |
+
self.convolution = WeightStandardizedConv2d(
|
259 |
+
config.num_channels,
|
260 |
+
config.embedding_size,
|
261 |
+
kernel_size=7,
|
262 |
+
stride=2,
|
263 |
+
eps=1e-8,
|
264 |
+
padding=config.global_padding,
|
265 |
+
)
|
266 |
+
|
267 |
+
self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding)
|
268 |
+
|
269 |
+
# Use the same padding strategy as convolutional layers
|
270 |
+
if config.global_padding is not None and config.global_padding.upper() == "SAME":
|
271 |
+
self.pad = nn.Identity()
|
272 |
+
else:
|
273 |
+
self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0)
|
274 |
+
|
275 |
+
if not config.layer_type == "preactivation":
|
276 |
+
self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size)
|
277 |
+
else:
|
278 |
+
self.norm = nn.Identity()
|
279 |
+
|
280 |
+
self.num_channels = config.num_channels
|
281 |
+
|
282 |
+
def forward(self, pixel_values: Tensor) -> Tensor:
|
283 |
+
num_channels = pixel_values.shape[1]
|
284 |
+
if num_channels != self.num_channels:
|
285 |
+
raise ValueError(
|
286 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
287 |
+
)
|
288 |
+
|
289 |
+
embedding = self.convolution(pixel_values)
|
290 |
+
|
291 |
+
embedding = self.pad(embedding)
|
292 |
+
|
293 |
+
embedding = self.norm(embedding)
|
294 |
+
|
295 |
+
embedding = self.pooler(embedding)
|
296 |
+
|
297 |
+
return embedding
|
298 |
+
|
299 |
+
|
300 |
+
# Copied from transformers.models.convnext.modeling_convnext.drop_path
|
301 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
302 |
+
"""
|
303 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
304 |
+
|
305 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
306 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
307 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
308 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
309 |
+
argument.
|
310 |
+
"""
|
311 |
+
if drop_prob == 0.0 or not training:
|
312 |
+
return input
|
313 |
+
keep_prob = 1 - drop_prob
|
314 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
315 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
316 |
+
random_tensor.floor_() # binarize
|
317 |
+
output = input.div(keep_prob) * random_tensor
|
318 |
+
return output
|
319 |
+
|
320 |
+
|
321 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Bit
|
322 |
+
class BitDropPath(nn.Module):
|
323 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
324 |
+
|
325 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
326 |
+
super().__init__()
|
327 |
+
self.drop_prob = drop_prob
|
328 |
+
|
329 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
330 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
331 |
+
|
332 |
+
def extra_repr(self) -> str:
|
333 |
+
return "p={}".format(self.drop_prob)
|
334 |
+
|
335 |
+
|
336 |
+
def make_div(value, divisor=8):
|
337 |
+
min_value = divisor
|
338 |
+
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
|
339 |
+
if new_value < 0.9 * value:
|
340 |
+
new_value += divisor
|
341 |
+
return new_value
|
342 |
+
|
343 |
+
|
344 |
+
class BitPreActivationBottleneckLayer(nn.Module):
|
345 |
+
"""Pre-activation (v2) bottleneck block.
|
346 |
+
Follows the implementation of "Identity Mappings in Deep Residual Networks":
|
347 |
+
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
|
348 |
+
|
349 |
+
Except it puts the stride on 3x3 conv when available.
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(
|
353 |
+
self,
|
354 |
+
config,
|
355 |
+
in_channels,
|
356 |
+
out_channels=None,
|
357 |
+
bottle_ratio=0.25,
|
358 |
+
stride=1,
|
359 |
+
dilation=1,
|
360 |
+
first_dilation=None,
|
361 |
+
groups=1,
|
362 |
+
drop_path_rate=0.0,
|
363 |
+
is_first_layer=False,
|
364 |
+
):
|
365 |
+
super().__init__()
|
366 |
+
|
367 |
+
first_dilation = first_dilation or dilation
|
368 |
+
|
369 |
+
out_channels = out_channels or in_channels
|
370 |
+
mid_channels = make_div(out_channels * bottle_ratio)
|
371 |
+
|
372 |
+
if is_first_layer:
|
373 |
+
self.downsample = BitDownsampleConv(
|
374 |
+
config,
|
375 |
+
in_channels,
|
376 |
+
out_channels,
|
377 |
+
stride=stride,
|
378 |
+
preact=True,
|
379 |
+
)
|
380 |
+
else:
|
381 |
+
self.downsample = None
|
382 |
+
|
383 |
+
self.norm1 = BitGroupNormActivation(config, in_channels)
|
384 |
+
self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding)
|
385 |
+
|
386 |
+
self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels)
|
387 |
+
self.conv2 = WeightStandardizedConv2d(
|
388 |
+
mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding
|
389 |
+
)
|
390 |
+
|
391 |
+
self.norm3 = BitGroupNormActivation(config, mid_channels)
|
392 |
+
self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding)
|
393 |
+
|
394 |
+
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
395 |
+
|
396 |
+
def forward(self, hidden_states):
|
397 |
+
hidden_states_preact = self.norm1(hidden_states)
|
398 |
+
|
399 |
+
# shortcut branch
|
400 |
+
shortcut = hidden_states
|
401 |
+
if self.downsample is not None:
|
402 |
+
shortcut = self.downsample(hidden_states_preact)
|
403 |
+
|
404 |
+
# residual branch
|
405 |
+
hidden_states = self.conv1(hidden_states_preact)
|
406 |
+
hidden_states = self.conv2(self.norm2(hidden_states))
|
407 |
+
hidden_states = self.conv3(self.norm3(hidden_states))
|
408 |
+
hidden_states = self.drop_path(hidden_states)
|
409 |
+
return hidden_states + shortcut
|
410 |
+
|
411 |
+
|
412 |
+
class BitBottleneckLayer(nn.Module):
|
413 |
+
"""Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid."""
|
414 |
+
|
415 |
+
def __init__(
|
416 |
+
self,
|
417 |
+
config,
|
418 |
+
in_channels,
|
419 |
+
out_channels=None,
|
420 |
+
bottle_ratio=0.25,
|
421 |
+
stride=1,
|
422 |
+
dilation=1,
|
423 |
+
first_dilation=None,
|
424 |
+
groups=1,
|
425 |
+
drop_path_rate=0.0,
|
426 |
+
is_first_layer=False,
|
427 |
+
):
|
428 |
+
super().__init__()
|
429 |
+
first_dilation = first_dilation or dilation
|
430 |
+
|
431 |
+
out_channels = out_channels or in_channels
|
432 |
+
mid_chs = make_div(out_channels * bottle_ratio)
|
433 |
+
|
434 |
+
if is_first_layer:
|
435 |
+
self.downsample = BitDownsampleConv(
|
436 |
+
config,
|
437 |
+
in_channels,
|
438 |
+
out_channels,
|
439 |
+
stride=stride,
|
440 |
+
preact=False,
|
441 |
+
)
|
442 |
+
else:
|
443 |
+
self.downsample = None
|
444 |
+
|
445 |
+
self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding)
|
446 |
+
self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs)
|
447 |
+
self.conv2 = WeightStandardizedConv2d(
|
448 |
+
mid_chs,
|
449 |
+
mid_chs,
|
450 |
+
3,
|
451 |
+
stride=stride,
|
452 |
+
dilation=first_dilation,
|
453 |
+
groups=groups,
|
454 |
+
eps=1e-8,
|
455 |
+
padding=config.global_padding,
|
456 |
+
)
|
457 |
+
self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs)
|
458 |
+
self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding)
|
459 |
+
self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
|
460 |
+
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
461 |
+
|
462 |
+
self.activation = ACT2FN[config.hidden_act]
|
463 |
+
|
464 |
+
def forward(self, hidden_states):
|
465 |
+
# shortcut branch
|
466 |
+
shortcut = hidden_states
|
467 |
+
if self.downsample is not None:
|
468 |
+
shortcut = self.downsample(hidden_states)
|
469 |
+
|
470 |
+
# residual
|
471 |
+
hidden_states = self.conv1(hidden_states)
|
472 |
+
hidden_states = self.norm1(hidden_states)
|
473 |
+
|
474 |
+
hidden_states = self.conv2(hidden_states)
|
475 |
+
hidden_states = self.norm2(hidden_states)
|
476 |
+
|
477 |
+
hidden_states = self.conv3(hidden_states)
|
478 |
+
hidden_states = self.norm3(hidden_states)
|
479 |
+
|
480 |
+
hidden_states = self.drop_path(hidden_states)
|
481 |
+
hidden_states = self.activation(hidden_states + shortcut)
|
482 |
+
return hidden_states
|
483 |
+
|
484 |
+
|
485 |
+
class BitDownsampleConv(nn.Module):
|
486 |
+
def __init__(
|
487 |
+
self,
|
488 |
+
config,
|
489 |
+
in_channels,
|
490 |
+
out_channels,
|
491 |
+
stride=1,
|
492 |
+
preact=True,
|
493 |
+
):
|
494 |
+
super().__init__()
|
495 |
+
self.conv = WeightStandardizedConv2d(
|
496 |
+
in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding
|
497 |
+
)
|
498 |
+
self.norm = (
|
499 |
+
nn.Identity()
|
500 |
+
if preact
|
501 |
+
else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
|
502 |
+
)
|
503 |
+
|
504 |
+
def forward(self, x):
|
505 |
+
return self.norm(self.conv(x))
|
506 |
+
|
507 |
+
|
508 |
+
class BitStage(nn.Module):
|
509 |
+
"""
|
510 |
+
A ResNet v2 stage composed by stacked layers.
|
511 |
+
"""
|
512 |
+
|
513 |
+
def __init__(
|
514 |
+
self,
|
515 |
+
config,
|
516 |
+
in_channels,
|
517 |
+
out_channels,
|
518 |
+
stride,
|
519 |
+
dilation,
|
520 |
+
depth,
|
521 |
+
bottle_ratio=0.25,
|
522 |
+
layer_dropout=None,
|
523 |
+
):
|
524 |
+
super().__init__()
|
525 |
+
|
526 |
+
first_dilation = 1 if dilation in (1, 2) else 2
|
527 |
+
|
528 |
+
# Get the layer type
|
529 |
+
if config.layer_type == "bottleneck":
|
530 |
+
layer_cls = BitBottleneckLayer
|
531 |
+
else:
|
532 |
+
layer_cls = BitPreActivationBottleneckLayer
|
533 |
+
|
534 |
+
prev_chs = in_channels
|
535 |
+
self.layers = nn.Sequential()
|
536 |
+
for layer_idx in range(depth):
|
537 |
+
# Get the current hyper-parameters
|
538 |
+
stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters(
|
539 |
+
layer_idx, stride, layer_dropout
|
540 |
+
)
|
541 |
+
|
542 |
+
self.layers.add_module(
|
543 |
+
str(layer_idx),
|
544 |
+
layer_cls(
|
545 |
+
config,
|
546 |
+
prev_chs,
|
547 |
+
out_channels,
|
548 |
+
stride=stride,
|
549 |
+
dilation=dilation,
|
550 |
+
bottle_ratio=bottle_ratio,
|
551 |
+
first_dilation=first_dilation,
|
552 |
+
drop_path_rate=drop_path_rate,
|
553 |
+
is_first_layer=is_first_layer,
|
554 |
+
),
|
555 |
+
)
|
556 |
+
prev_chs = out_channels
|
557 |
+
first_dilation = dilation
|
558 |
+
|
559 |
+
def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout):
|
560 |
+
r"""
|
561 |
+
Get the new hyper-parameters with respect to the previous ones and the index of the current layer.
|
562 |
+
"""
|
563 |
+
if layer_dropout:
|
564 |
+
drop_path_rate = layer_dropout[layer_idx]
|
565 |
+
else:
|
566 |
+
drop_path_rate = 0.0
|
567 |
+
|
568 |
+
if layer_idx != 0:
|
569 |
+
stride = 1
|
570 |
+
|
571 |
+
is_first_layer = layer_idx == 0
|
572 |
+
|
573 |
+
return stride, drop_path_rate, is_first_layer
|
574 |
+
|
575 |
+
def forward(self, input: Tensor) -> Tensor:
|
576 |
+
hidden_state = input
|
577 |
+
for _, layer in enumerate(self.layers):
|
578 |
+
hidden_state = layer(hidden_state)
|
579 |
+
return hidden_state
|
580 |
+
|
581 |
+
|
582 |
+
class BitEncoder(nn.Module):
|
583 |
+
def __init__(self, config: BitConfig):
|
584 |
+
super().__init__()
|
585 |
+
self.stages = nn.ModuleList([])
|
586 |
+
|
587 |
+
prev_chs = config.embedding_size
|
588 |
+
|
589 |
+
# These needs to stay hardcoded
|
590 |
+
current_stride = 4
|
591 |
+
dilation = 1
|
592 |
+
|
593 |
+
layer_dropouts = [
|
594 |
+
x.tolist()
|
595 |
+
for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths)
|
596 |
+
]
|
597 |
+
|
598 |
+
for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate(
|
599 |
+
zip(config.depths, config.hidden_sizes, layer_dropouts)
|
600 |
+
):
|
601 |
+
# Get the updated hyper params
|
602 |
+
out_channels, stride, dilation = self._get_updated_hyperparameters(
|
603 |
+
stage_idx, current_stride, current_hidden_size, dilation, config
|
604 |
+
)
|
605 |
+
|
606 |
+
stage = BitStage(
|
607 |
+
config,
|
608 |
+
prev_chs,
|
609 |
+
out_channels,
|
610 |
+
stride=stride,
|
611 |
+
dilation=dilation,
|
612 |
+
depth=current_depth,
|
613 |
+
layer_dropout=layer_dropout,
|
614 |
+
)
|
615 |
+
|
616 |
+
prev_chs = out_channels
|
617 |
+
current_stride *= stride
|
618 |
+
|
619 |
+
self.stages.add_module(str(stage_idx), stage)
|
620 |
+
|
621 |
+
def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config):
|
622 |
+
out_channels = make_div(current_hidden_size * config.width_factor)
|
623 |
+
stride = 1 if stage_idx == 0 else 2
|
624 |
+
if current_stride >= config.output_stride:
|
625 |
+
dilation *= stride
|
626 |
+
stride = 1
|
627 |
+
return out_channels, stride, dilation
|
628 |
+
|
629 |
+
def forward(
|
630 |
+
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
|
631 |
+
) -> BaseModelOutputWithNoAttention:
|
632 |
+
hidden_states = () if output_hidden_states else None
|
633 |
+
|
634 |
+
for stage_module in self.stages:
|
635 |
+
if output_hidden_states:
|
636 |
+
hidden_states = hidden_states + (hidden_state,)
|
637 |
+
|
638 |
+
hidden_state = stage_module(hidden_state)
|
639 |
+
|
640 |
+
if output_hidden_states:
|
641 |
+
hidden_states = hidden_states + (hidden_state,)
|
642 |
+
|
643 |
+
if not return_dict:
|
644 |
+
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
|
645 |
+
|
646 |
+
return BaseModelOutputWithNoAttention(
|
647 |
+
last_hidden_state=hidden_state,
|
648 |
+
hidden_states=hidden_states,
|
649 |
+
)
|
650 |
+
|
651 |
+
|
652 |
+
class BitPreTrainedModel(PreTrainedModel):
|
653 |
+
"""
|
654 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
655 |
+
models.
|
656 |
+
"""
|
657 |
+
|
658 |
+
config_class = BitConfig
|
659 |
+
base_model_prefix = "bit"
|
660 |
+
main_input_name = "pixel_values"
|
661 |
+
|
662 |
+
def _init_weights(self, module):
|
663 |
+
if isinstance(module, nn.Conv2d):
|
664 |
+
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
|
665 |
+
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
|
666 |
+
nn.init.constant_(module.weight, 1)
|
667 |
+
nn.init.constant_(module.bias, 0)
|
668 |
+
|
669 |
+
|
670 |
+
BIT_START_DOCSTRING = r"""
|
671 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
672 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
673 |
+
behavior.
|
674 |
+
|
675 |
+
Parameters:
|
676 |
+
config ([`BitConfig`]): Model configuration class with all the parameters of the model.
|
677 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
678 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
679 |
+
"""
|
680 |
+
|
681 |
+
BIT_INPUTS_DOCSTRING = r"""
|
682 |
+
Args:
|
683 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
684 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
|
685 |
+
for details.
|
686 |
+
|
687 |
+
output_hidden_states (`bool`, *optional*):
|
688 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
689 |
+
more detail.
|
690 |
+
return_dict (`bool`, *optional*):
|
691 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
692 |
+
"""
|
693 |
+
|
694 |
+
|
695 |
+
@add_start_docstrings(
|
696 |
+
"The bare BiT model outputting raw features without any specific head on top.",
|
697 |
+
BIT_START_DOCSTRING,
|
698 |
+
)
|
699 |
+
class BitModel(BitPreTrainedModel):
|
700 |
+
def __init__(self, config):
|
701 |
+
super().__init__(config)
|
702 |
+
self.config = config
|
703 |
+
|
704 |
+
self.embedder = BitEmbeddings(config)
|
705 |
+
|
706 |
+
self.encoder = BitEncoder(config)
|
707 |
+
self.norm = (
|
708 |
+
BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1])
|
709 |
+
if config.layer_type == "preactivation"
|
710 |
+
else nn.Identity()
|
711 |
+
)
|
712 |
+
|
713 |
+
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
|
714 |
+
# Initialize weights and apply final processing
|
715 |
+
self.post_init()
|
716 |
+
|
717 |
+
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
|
718 |
+
@add_code_sample_docstrings(
|
719 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
720 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
721 |
+
config_class=_CONFIG_FOR_DOC,
|
722 |
+
modality="vision",
|
723 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
724 |
+
)
|
725 |
+
def forward(
|
726 |
+
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
|
727 |
+
) -> BaseModelOutputWithPoolingAndNoAttention:
|
728 |
+
output_hidden_states = (
|
729 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
730 |
+
)
|
731 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
732 |
+
|
733 |
+
embedding_output = self.embedder(pixel_values)
|
734 |
+
|
735 |
+
encoder_outputs = self.encoder(
|
736 |
+
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
|
737 |
+
)
|
738 |
+
|
739 |
+
last_hidden_state = encoder_outputs[0]
|
740 |
+
|
741 |
+
last_hidden_state = self.norm(last_hidden_state)
|
742 |
+
|
743 |
+
pooled_output = self.pooler(last_hidden_state)
|
744 |
+
|
745 |
+
if not return_dict:
|
746 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
747 |
+
|
748 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
749 |
+
last_hidden_state=last_hidden_state,
|
750 |
+
pooler_output=pooled_output,
|
751 |
+
hidden_states=encoder_outputs.hidden_states,
|
752 |
+
)
|
753 |
+
|
754 |
+
|
755 |
+
@add_start_docstrings(
|
756 |
+
"""
|
757 |
+
BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
758 |
+
ImageNet.
|
759 |
+
""",
|
760 |
+
BIT_START_DOCSTRING,
|
761 |
+
)
|
762 |
+
class BitForImageClassification(BitPreTrainedModel):
|
763 |
+
def __init__(self, config):
|
764 |
+
super().__init__(config)
|
765 |
+
self.num_labels = config.num_labels
|
766 |
+
self.bit = BitModel(config)
|
767 |
+
# classification head
|
768 |
+
self.classifier = nn.Sequential(
|
769 |
+
nn.Flatten(),
|
770 |
+
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
|
771 |
+
)
|
772 |
+
# initialize weights and apply final processing
|
773 |
+
self.post_init()
|
774 |
+
|
775 |
+
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
|
776 |
+
@add_code_sample_docstrings(
|
777 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
778 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
779 |
+
config_class=_CONFIG_FOR_DOC,
|
780 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
781 |
+
)
|
782 |
+
def forward(
|
783 |
+
self,
|
784 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
785 |
+
labels: Optional[torch.LongTensor] = None,
|
786 |
+
output_hidden_states: Optional[bool] = None,
|
787 |
+
return_dict: Optional[bool] = None,
|
788 |
+
) -> ImageClassifierOutputWithNoAttention:
|
789 |
+
r"""
|
790 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
791 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
792 |
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
793 |
+
"""
|
794 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
795 |
+
|
796 |
+
outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
797 |
+
|
798 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
799 |
+
|
800 |
+
logits = self.classifier(pooled_output)
|
801 |
+
|
802 |
+
loss = None
|
803 |
+
|
804 |
+
if labels is not None:
|
805 |
+
if self.config.problem_type is None:
|
806 |
+
if self.num_labels == 1:
|
807 |
+
self.config.problem_type = "regression"
|
808 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
809 |
+
self.config.problem_type = "single_label_classification"
|
810 |
+
else:
|
811 |
+
self.config.problem_type = "multi_label_classification"
|
812 |
+
if self.config.problem_type == "regression":
|
813 |
+
loss_fct = MSELoss()
|
814 |
+
if self.num_labels == 1:
|
815 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
816 |
+
else:
|
817 |
+
loss = loss_fct(logits, labels)
|
818 |
+
elif self.config.problem_type == "single_label_classification":
|
819 |
+
loss_fct = CrossEntropyLoss()
|
820 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
821 |
+
elif self.config.problem_type == "multi_label_classification":
|
822 |
+
loss_fct = BCEWithLogitsLoss()
|
823 |
+
loss = loss_fct(logits, labels)
|
824 |
+
|
825 |
+
if not return_dict:
|
826 |
+
output = (logits,) + outputs[2:]
|
827 |
+
return (loss,) + output if loss is not None else output
|
828 |
+
|
829 |
+
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
830 |
+
|
831 |
+
|
832 |
+
@add_start_docstrings(
|
833 |
+
"""
|
834 |
+
BiT backbone, to be used with frameworks like DETR and MaskFormer.
|
835 |
+
""",
|
836 |
+
BIT_START_DOCSTRING,
|
837 |
+
)
|
838 |
+
class BitBackbone(BitPreTrainedModel, BackboneMixin):
|
839 |
+
def __init__(self, config):
|
840 |
+
super().__init__(config)
|
841 |
+
super()._init_backbone(config)
|
842 |
+
|
843 |
+
self.bit = BitModel(config)
|
844 |
+
self.num_features = [config.embedding_size] + config.hidden_sizes
|
845 |
+
|
846 |
+
# initialize weights and apply final processing
|
847 |
+
self.post_init()
|
848 |
+
|
849 |
+
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
|
850 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
851 |
+
def forward(
|
852 |
+
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
|
853 |
+
) -> BackboneOutput:
|
854 |
+
"""
|
855 |
+
Returns:
|
856 |
+
|
857 |
+
Examples:
|
858 |
+
|
859 |
+
```python
|
860 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
861 |
+
>>> import torch
|
862 |
+
>>> from PIL import Image
|
863 |
+
>>> import requests
|
864 |
+
|
865 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
866 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
867 |
+
|
868 |
+
>>> processor = AutoImageProcessor.from_pretrained("google/resnetnv2-50")
|
869 |
+
>>> model = AutoBackbone.from_pretrained("google/resnetnv2-50")
|
870 |
+
|
871 |
+
>>> inputs = processor(image, return_tensors="pt")
|
872 |
+
>>> outputs = model(**inputs)
|
873 |
+
```"""
|
874 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
875 |
+
output_hidden_states = (
|
876 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
877 |
+
)
|
878 |
+
|
879 |
+
outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True)
|
880 |
+
|
881 |
+
hidden_states = outputs.hidden_states
|
882 |
+
|
883 |
+
feature_maps = ()
|
884 |
+
for idx, stage in enumerate(self.stage_names):
|
885 |
+
if stage in self.out_features:
|
886 |
+
feature_maps += (hidden_states[idx],)
|
887 |
+
|
888 |
+
if not return_dict:
|
889 |
+
output = (feature_maps,)
|
890 |
+
if output_hidden_states:
|
891 |
+
output += (outputs.hidden_states,)
|
892 |
+
return output
|
893 |
+
|
894 |
+
return BackboneOutput(
|
895 |
+
feature_maps=feature_maps,
|
896 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
897 |
+
attentions=None,
|
898 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/configuration_camembert.cpython-310.pyc
ADDED
Binary file (6.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_camembert.cpython-310.pyc
ADDED
Binary file (45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_tf_camembert.cpython-310.pyc
ADDED
Binary file (51.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/tokenization_camembert.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/tokenization_camembert_fast.cpython-310.pyc
ADDED
Binary file (7.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...file_utils import _LazyModule, is_torch_available
|
17 |
+
from ...utils import OptionalDependencyNotAvailable
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_depth_anything": ["DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP", "DepthAnythingConfig"]
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_depth_anything"] = [
|
31 |
+
"DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST",
|
32 |
+
"DepthAnythingForDepthEstimation",
|
33 |
+
"DepthAnythingPreTrainedModel",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
if TYPE_CHECKING:
|
38 |
+
from .configuration_depth_anything import DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP, DepthAnythingConfig
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
from .modeling_depth_anything import (
|
47 |
+
DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST,
|
48 |
+
DepthAnythingForDepthEstimation,
|
49 |
+
DepthAnythingPreTrainedModel,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
else:
|
54 |
+
import sys
|
55 |
+
|
56 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (985 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/configuration_depth_anything.cpython-310.pyc
ADDED
Binary file (5.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/convert_depth_anything_to_hf.cpython-310.pyc
ADDED
Binary file (9.09 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/__pycache__/modeling_depth_anything.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/configuration_depth_anything.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DepthAnything model configuration"""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
from ..auto.configuration_auto import CONFIG_MAPPING
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class DepthAnythingConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`DepthAnythingModel`]. It is used to instantiate an DepthAnything
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the DepthAnything
|
35 |
+
[LiheYoung/depth-anything-small-hf](https://huggingface.co/LiheYoung/depth-anything-small-hf) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*):
|
42 |
+
The configuration of the backbone model. Only used in case `is_hybrid` is `True` or in case you want to
|
43 |
+
leverage the [`AutoBackbone`] API.
|
44 |
+
backbone (`str`, *optional*):
|
45 |
+
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
46 |
+
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
47 |
+
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
48 |
+
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
|
49 |
+
Whether to use pretrained weights for the backbone.
|
50 |
+
patch_size (`int`, *optional*, defaults to 14):
|
51 |
+
The size of the patches to extract from the backbone features.
|
52 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
53 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
54 |
+
reassemble_hidden_size (`int`, *optional*, defaults to 384):
|
55 |
+
The number of input channels of the reassemble layers.
|
56 |
+
reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`):
|
57 |
+
The up/downsampling factors of the reassemble layers.
|
58 |
+
neck_hidden_sizes (`List[str]`, *optional*, defaults to `[48, 96, 192, 384]`):
|
59 |
+
The hidden sizes to project to for the feature maps of the backbone.
|
60 |
+
fusion_hidden_size (`int`, *optional*, defaults to 64):
|
61 |
+
The number of channels before fusion.
|
62 |
+
head_in_index (`int`, *optional*, defaults to -1):
|
63 |
+
The index of the features to use in the depth estimation head.
|
64 |
+
head_hidden_size (`int`, *optional*, defaults to 32):
|
65 |
+
The number of output channels in the second convolution of the depth estimation head.
|
66 |
+
|
67 |
+
Example:
|
68 |
+
|
69 |
+
```python
|
70 |
+
>>> from transformers import DepthAnythingConfig, DepthAnythingForDepthEstimation
|
71 |
+
|
72 |
+
>>> # Initializing a DepthAnything small style configuration
|
73 |
+
>>> configuration = DepthAnythingConfig()
|
74 |
+
|
75 |
+
>>> # Initializing a model from the DepthAnything small style configuration
|
76 |
+
>>> model = DepthAnythingForDepthEstimation(configuration)
|
77 |
+
|
78 |
+
>>> # Accessing the model configuration
|
79 |
+
>>> configuration = model.config
|
80 |
+
```"""
|
81 |
+
|
82 |
+
model_type = "depth_anything"
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
backbone_config=None,
|
87 |
+
backbone=None,
|
88 |
+
use_pretrained_backbone=False,
|
89 |
+
patch_size=14,
|
90 |
+
initializer_range=0.02,
|
91 |
+
reassemble_hidden_size=384,
|
92 |
+
reassemble_factors=[4, 2, 1, 0.5],
|
93 |
+
neck_hidden_sizes=[48, 96, 192, 384],
|
94 |
+
fusion_hidden_size=64,
|
95 |
+
head_in_index=-1,
|
96 |
+
head_hidden_size=32,
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
super().__init__(**kwargs)
|
100 |
+
|
101 |
+
if use_pretrained_backbone:
|
102 |
+
raise ValueError("Pretrained backbones are not supported yet.")
|
103 |
+
|
104 |
+
if backbone_config is not None and backbone is not None:
|
105 |
+
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
|
106 |
+
|
107 |
+
if backbone_config is None and backbone is None:
|
108 |
+
logger.info("`backbone_config` is `None`. Initializing the config with the default `Dinov2` backbone.")
|
109 |
+
backbone_config = CONFIG_MAPPING["dinov2"](
|
110 |
+
image_size=518,
|
111 |
+
hidden_size=384,
|
112 |
+
num_attention_heads=6,
|
113 |
+
out_indices=[9, 10, 11, 12],
|
114 |
+
apply_layernorm=True,
|
115 |
+
reshape_hidden_states=False,
|
116 |
+
)
|
117 |
+
elif isinstance(backbone_config, dict):
|
118 |
+
backbone_model_type = backbone_config.get("model_type")
|
119 |
+
config_class = CONFIG_MAPPING[backbone_model_type]
|
120 |
+
backbone_config = config_class.from_dict(backbone_config)
|
121 |
+
|
122 |
+
self.backbone_config = backbone_config
|
123 |
+
self.backbone = backbone
|
124 |
+
self.use_pretrained_backbone = use_pretrained_backbone
|
125 |
+
self.reassemble_hidden_size = reassemble_hidden_size
|
126 |
+
self.patch_size = patch_size
|
127 |
+
self.initializer_range = initializer_range
|
128 |
+
self.reassemble_factors = reassemble_factors
|
129 |
+
self.neck_hidden_sizes = neck_hidden_sizes
|
130 |
+
self.fusion_hidden_size = fusion_hidden_size
|
131 |
+
self.head_in_index = head_in_index
|
132 |
+
self.head_hidden_size = head_hidden_size
|
133 |
+
|
134 |
+
def to_dict(self):
|
135 |
+
"""
|
136 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
|
137 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
138 |
+
"""
|
139 |
+
output = copy.deepcopy(self.__dict__)
|
140 |
+
|
141 |
+
if output["backbone_config"] is not None:
|
142 |
+
output["backbone_config"] = self.backbone_config.to_dict()
|
143 |
+
|
144 |
+
output["model_type"] = self.__class__.model_type
|
145 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/convert_depth_anything_to_hf.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Depth Anything checkpoints from the original repository. URL:
|
16 |
+
https://github.com/LiheYoung/Depth-Anything"""
|
17 |
+
|
18 |
+
|
19 |
+
import argparse
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
from transformers import DepthAnythingConfig, DepthAnythingForDepthEstimation, Dinov2Config, DPTImageProcessor
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logging.set_verbosity_info()
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def get_dpt_config(model_name):
|
36 |
+
if "small" in model_name:
|
37 |
+
backbone_config = Dinov2Config.from_pretrained(
|
38 |
+
"facebook/dinov2-small", out_indices=[9, 10, 11, 12], apply_layernorm=True, reshape_hidden_states=False
|
39 |
+
)
|
40 |
+
fusion_hidden_size = 64
|
41 |
+
neck_hidden_sizes = [48, 96, 192, 384]
|
42 |
+
elif "base" in model_name:
|
43 |
+
backbone_config = Dinov2Config.from_pretrained(
|
44 |
+
"facebook/dinov2-base", out_indices=[9, 10, 11, 12], apply_layernorm=True, reshape_hidden_states=False
|
45 |
+
)
|
46 |
+
fusion_hidden_size = 128
|
47 |
+
neck_hidden_sizes = [96, 192, 384, 768]
|
48 |
+
elif "large" in model_name:
|
49 |
+
backbone_config = Dinov2Config.from_pretrained(
|
50 |
+
"facebook/dinov2-large", out_indices=[21, 22, 23, 24], apply_layernorm=True, reshape_hidden_states=False
|
51 |
+
)
|
52 |
+
fusion_hidden_size = 256
|
53 |
+
neck_hidden_sizes = [256, 512, 1024, 1024]
|
54 |
+
else:
|
55 |
+
raise NotImplementedError("To do")
|
56 |
+
|
57 |
+
config = DepthAnythingConfig(
|
58 |
+
reassemble_hidden_size=backbone_config.hidden_size,
|
59 |
+
patch_size=backbone_config.patch_size,
|
60 |
+
backbone_config=backbone_config,
|
61 |
+
fusion_hidden_size=fusion_hidden_size,
|
62 |
+
neck_hidden_sizes=neck_hidden_sizes,
|
63 |
+
)
|
64 |
+
|
65 |
+
return config
|
66 |
+
|
67 |
+
|
68 |
+
def create_rename_keys(config):
|
69 |
+
rename_keys = []
|
70 |
+
|
71 |
+
# fmt: off
|
72 |
+
# stem
|
73 |
+
rename_keys.append(("pretrained.cls_token", "backbone.embeddings.cls_token"))
|
74 |
+
rename_keys.append(("pretrained.mask_token", "backbone.embeddings.mask_token"))
|
75 |
+
rename_keys.append(("pretrained.pos_embed", "backbone.embeddings.position_embeddings"))
|
76 |
+
rename_keys.append(("pretrained.patch_embed.proj.weight", "backbone.embeddings.patch_embeddings.projection.weight"))
|
77 |
+
rename_keys.append(("pretrained.patch_embed.proj.bias", "backbone.embeddings.patch_embeddings.projection.bias"))
|
78 |
+
|
79 |
+
# Transfomer encoder
|
80 |
+
for i in range(config.backbone_config.num_hidden_layers):
|
81 |
+
rename_keys.append((f"pretrained.blocks.{i}.ls1.gamma", f"backbone.encoder.layer.{i}.layer_scale1.lambda1"))
|
82 |
+
rename_keys.append((f"pretrained.blocks.{i}.ls2.gamma", f"backbone.encoder.layer.{i}.layer_scale2.lambda1"))
|
83 |
+
rename_keys.append((f"pretrained.blocks.{i}.norm1.weight", f"backbone.encoder.layer.{i}.norm1.weight"))
|
84 |
+
rename_keys.append((f"pretrained.blocks.{i}.norm1.bias", f"backbone.encoder.layer.{i}.norm1.bias"))
|
85 |
+
rename_keys.append((f"pretrained.blocks.{i}.norm2.weight", f"backbone.encoder.layer.{i}.norm2.weight"))
|
86 |
+
rename_keys.append((f"pretrained.blocks.{i}.norm2.bias", f"backbone.encoder.layer.{i}.norm2.bias"))
|
87 |
+
rename_keys.append((f"pretrained.blocks.{i}.mlp.fc1.weight", f"backbone.encoder.layer.{i}.mlp.fc1.weight"))
|
88 |
+
rename_keys.append((f"pretrained.blocks.{i}.mlp.fc1.bias", f"backbone.encoder.layer.{i}.mlp.fc1.bias"))
|
89 |
+
rename_keys.append((f"pretrained.blocks.{i}.mlp.fc2.weight", f"backbone.encoder.layer.{i}.mlp.fc2.weight"))
|
90 |
+
rename_keys.append((f"pretrained.blocks.{i}.mlp.fc2.bias", f"backbone.encoder.layer.{i}.mlp.fc2.bias"))
|
91 |
+
rename_keys.append((f"pretrained.blocks.{i}.attn.proj.weight", f"backbone.encoder.layer.{i}.attention.output.dense.weight"))
|
92 |
+
rename_keys.append((f"pretrained.blocks.{i}.attn.proj.bias", f"backbone.encoder.layer.{i}.attention.output.dense.bias"))
|
93 |
+
|
94 |
+
# Head
|
95 |
+
rename_keys.append(("pretrained.norm.weight", "backbone.layernorm.weight"))
|
96 |
+
rename_keys.append(("pretrained.norm.bias", "backbone.layernorm.bias"))
|
97 |
+
|
98 |
+
# activation postprocessing (readout projections + resize blocks)
|
99 |
+
# Depth Anything does not use CLS token => readout_projects not required
|
100 |
+
|
101 |
+
for i in range(4):
|
102 |
+
rename_keys.append((f"depth_head.projects.{i}.weight", f"neck.reassemble_stage.layers.{i}.projection.weight"))
|
103 |
+
rename_keys.append((f"depth_head.projects.{i}.bias", f"neck.reassemble_stage.layers.{i}.projection.bias"))
|
104 |
+
|
105 |
+
if i != 2:
|
106 |
+
rename_keys.append((f"depth_head.resize_layers.{i}.weight", f"neck.reassemble_stage.layers.{i}.resize.weight"))
|
107 |
+
rename_keys.append((f"depth_head.resize_layers.{i}.bias", f"neck.reassemble_stage.layers.{i}.resize.bias"))
|
108 |
+
|
109 |
+
# refinenet (tricky here)
|
110 |
+
mapping = {1:3, 2:2, 3:1, 4:0}
|
111 |
+
|
112 |
+
for i in range(1, 5):
|
113 |
+
j = mapping[i]
|
114 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.out_conv.weight", f"neck.fusion_stage.layers.{j}.projection.weight"))
|
115 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.out_conv.bias", f"neck.fusion_stage.layers.{j}.projection.bias"))
|
116 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit1.conv1.weight", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution1.weight"))
|
117 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit1.conv1.bias", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution1.bias"))
|
118 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit1.conv2.weight", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution2.weight"))
|
119 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit1.conv2.bias", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution2.bias"))
|
120 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit2.conv1.weight", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution1.weight"))
|
121 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit2.conv1.bias", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution1.bias"))
|
122 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit2.conv2.weight", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution2.weight"))
|
123 |
+
rename_keys.append((f"depth_head.scratch.refinenet{i}.resConfUnit2.conv2.bias", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution2.bias"))
|
124 |
+
|
125 |
+
# scratch convolutions
|
126 |
+
for i in range(4):
|
127 |
+
rename_keys.append((f"depth_head.scratch.layer{i+1}_rn.weight", f"neck.convs.{i}.weight"))
|
128 |
+
|
129 |
+
# head
|
130 |
+
rename_keys.append(("depth_head.scratch.output_conv1.weight", "head.conv1.weight"))
|
131 |
+
rename_keys.append(("depth_head.scratch.output_conv1.bias", "head.conv1.bias"))
|
132 |
+
rename_keys.append(("depth_head.scratch.output_conv2.0.weight", "head.conv2.weight"))
|
133 |
+
rename_keys.append(("depth_head.scratch.output_conv2.0.bias", "head.conv2.bias"))
|
134 |
+
rename_keys.append(("depth_head.scratch.output_conv2.2.weight", "head.conv3.weight"))
|
135 |
+
rename_keys.append(("depth_head.scratch.output_conv2.2.bias", "head.conv3.bias"))
|
136 |
+
|
137 |
+
return rename_keys
|
138 |
+
|
139 |
+
|
140 |
+
# we split up the matrix of each encoder layer into queries, keys and values
|
141 |
+
def read_in_q_k_v(state_dict, config):
|
142 |
+
hidden_size = config.backbone_config.hidden_size
|
143 |
+
for i in range(config.backbone_config.num_hidden_layers):
|
144 |
+
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
|
145 |
+
in_proj_weight = state_dict.pop(f"pretrained.blocks.{i}.attn.qkv.weight")
|
146 |
+
in_proj_bias = state_dict.pop(f"pretrained.blocks.{i}.attn.qkv.bias")
|
147 |
+
# next, add query, keys and values (in that order) to the state dict
|
148 |
+
state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[:hidden_size, :]
|
149 |
+
state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[:hidden_size]
|
150 |
+
state_dict[f"backbone.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
|
151 |
+
hidden_size : hidden_size * 2, :
|
152 |
+
]
|
153 |
+
state_dict[f"backbone.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
|
154 |
+
hidden_size : hidden_size * 2
|
155 |
+
]
|
156 |
+
state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-hidden_size:, :]
|
157 |
+
state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-hidden_size:]
|
158 |
+
|
159 |
+
|
160 |
+
def rename_key(dct, old, new):
|
161 |
+
val = dct.pop(old)
|
162 |
+
dct[new] = val
|
163 |
+
|
164 |
+
|
165 |
+
# We will verify our results on an image of cute cats
|
166 |
+
def prepare_img():
|
167 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
168 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
169 |
+
return im
|
170 |
+
|
171 |
+
|
172 |
+
name_to_checkpoint = {
|
173 |
+
"depth-anything-small": "depth_anything_vits14.pth",
|
174 |
+
"depth-anything-base": "depth_anything_vitb14.pth",
|
175 |
+
"depth-anything-large": "depth_anything_vitl14.pth",
|
176 |
+
}
|
177 |
+
|
178 |
+
|
179 |
+
@torch.no_grad()
|
180 |
+
def convert_dpt_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub, verify_logits):
|
181 |
+
"""
|
182 |
+
Copy/paste/tweak model's weights to our DPT structure.
|
183 |
+
"""
|
184 |
+
|
185 |
+
# define DPT configuration
|
186 |
+
config = get_dpt_config(model_name)
|
187 |
+
|
188 |
+
model_name_to_filename = {
|
189 |
+
"depth-anything-small": "depth_anything_vits14.pth",
|
190 |
+
"depth-anything-base": "depth_anything_vitb14.pth",
|
191 |
+
"depth-anything-large": "depth_anything_vitl14.pth",
|
192 |
+
}
|
193 |
+
|
194 |
+
# load original state_dict
|
195 |
+
filename = model_name_to_filename[model_name]
|
196 |
+
filepath = hf_hub_download(
|
197 |
+
repo_id="LiheYoung/Depth-Anything", filename=f"checkpoints/{filename}", repo_type="space"
|
198 |
+
)
|
199 |
+
state_dict = torch.load(filepath, map_location="cpu")
|
200 |
+
# rename keys
|
201 |
+
rename_keys = create_rename_keys(config)
|
202 |
+
for src, dest in rename_keys:
|
203 |
+
rename_key(state_dict, src, dest)
|
204 |
+
# read in qkv matrices
|
205 |
+
read_in_q_k_v(state_dict, config)
|
206 |
+
|
207 |
+
# load HuggingFace model
|
208 |
+
model = DepthAnythingForDepthEstimation(config)
|
209 |
+
model.load_state_dict(state_dict)
|
210 |
+
model.eval()
|
211 |
+
|
212 |
+
processor = DPTImageProcessor(
|
213 |
+
do_resize=True,
|
214 |
+
size={"height": 518, "width": 518},
|
215 |
+
ensure_multiple_of=14,
|
216 |
+
keep_aspect_ratio=True,
|
217 |
+
do_rescale=True,
|
218 |
+
do_normalize=True,
|
219 |
+
image_mean=[0.485, 0.456, 0.406],
|
220 |
+
image_std=[0.229, 0.224, 0.225],
|
221 |
+
)
|
222 |
+
|
223 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
224 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
225 |
+
|
226 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
227 |
+
|
228 |
+
# Verify forward pass
|
229 |
+
with torch.no_grad():
|
230 |
+
outputs = model(pixel_values)
|
231 |
+
predicted_depth = outputs.predicted_depth
|
232 |
+
|
233 |
+
print("Shape of predicted depth:", predicted_depth.shape)
|
234 |
+
print("First values:", predicted_depth[0, :3, :3])
|
235 |
+
|
236 |
+
# assert logits
|
237 |
+
if verify_logits:
|
238 |
+
expected_shape = torch.Size([1, 518, 686])
|
239 |
+
if model_name == "depth-anything-small":
|
240 |
+
expected_slice = torch.tensor(
|
241 |
+
[[8.8204, 8.6468, 8.6195], [8.3313, 8.6027, 8.7526], [8.6526, 8.6866, 8.7453]],
|
242 |
+
)
|
243 |
+
elif model_name == "depth-anything-base":
|
244 |
+
expected_slice = torch.tensor(
|
245 |
+
[[26.3997, 26.3004, 26.3928], [26.2260, 26.2092, 26.3427], [26.0719, 26.0483, 26.1254]],
|
246 |
+
)
|
247 |
+
elif model_name == "depth-anything-large":
|
248 |
+
expected_slice = torch.tensor(
|
249 |
+
[[87.9968, 87.7493, 88.2704], [87.1927, 87.6611, 87.3640], [86.7789, 86.9469, 86.7991]]
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
raise ValueError("Not supported")
|
253 |
+
|
254 |
+
assert predicted_depth.shape == torch.Size(expected_shape)
|
255 |
+
assert torch.allclose(predicted_depth[0, :3, :3], expected_slice, atol=1e-6)
|
256 |
+
print("Looks ok!")
|
257 |
+
|
258 |
+
if pytorch_dump_folder_path is not None:
|
259 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
260 |
+
print(f"Saving model and processor to {pytorch_dump_folder_path}")
|
261 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
262 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
263 |
+
|
264 |
+
if push_to_hub:
|
265 |
+
print("Pushing model and processor to hub...")
|
266 |
+
model.push_to_hub(repo_id=f"LiheYoung/{model_name}-hf")
|
267 |
+
processor.push_to_hub(repo_id=f"LiheYoung/{model_name}-hf")
|
268 |
+
|
269 |
+
|
270 |
+
if __name__ == "__main__":
|
271 |
+
parser = argparse.ArgumentParser()
|
272 |
+
# Required parameters
|
273 |
+
parser.add_argument(
|
274 |
+
"--model_name",
|
275 |
+
default="depth-anything-small",
|
276 |
+
type=str,
|
277 |
+
choices=name_to_checkpoint.keys(),
|
278 |
+
help="Name of the model you'd like to convert.",
|
279 |
+
)
|
280 |
+
parser.add_argument(
|
281 |
+
"--pytorch_dump_folder_path",
|
282 |
+
default=None,
|
283 |
+
type=str,
|
284 |
+
help="Path to the output PyTorch model directory.",
|
285 |
+
)
|
286 |
+
parser.add_argument(
|
287 |
+
"--push_to_hub",
|
288 |
+
action="store_true",
|
289 |
+
help="Whether to push the model to the hub after conversion.",
|
290 |
+
)
|
291 |
+
parser.add_argument(
|
292 |
+
"--verify_logits",
|
293 |
+
action="store_false",
|
294 |
+
required=False,
|
295 |
+
help="Whether to verify the logits after conversion.",
|
296 |
+
)
|
297 |
+
|
298 |
+
args = parser.parse_args()
|
299 |
+
convert_dpt_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.verify_logits)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/depth_anything/modeling_depth_anything.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 TikTok and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Depth Anything model."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
from ...file_utils import (
|
25 |
+
add_start_docstrings,
|
26 |
+
add_start_docstrings_to_model_forward,
|
27 |
+
replace_return_docstrings,
|
28 |
+
)
|
29 |
+
from ...modeling_outputs import DepthEstimatorOutput
|
30 |
+
from ...modeling_utils import PreTrainedModel
|
31 |
+
from ...utils import logging
|
32 |
+
from ..auto import AutoBackbone
|
33 |
+
from .configuration_depth_anything import DepthAnythingConfig
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
# General docstring
|
39 |
+
_CONFIG_FOR_DOC = "DepthAnythingConfig"
|
40 |
+
|
41 |
+
|
42 |
+
from ..deprecated._archive_maps import DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
43 |
+
|
44 |
+
|
45 |
+
DEPTH_ANYTHING_START_DOCSTRING = r"""
|
46 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
47 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
48 |
+
behavior.
|
49 |
+
|
50 |
+
Parameters:
|
51 |
+
config ([`DepthAnythingConfig`]): Model configuration class with all the parameters of the model.
|
52 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
53 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
54 |
+
"""
|
55 |
+
|
56 |
+
DEPTH_ANYTHING_INPUTS_DOCSTRING = r"""
|
57 |
+
Args:
|
58 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
59 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`]
|
60 |
+
for details.
|
61 |
+
|
62 |
+
output_attentions (`bool`, *optional*):
|
63 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
64 |
+
tensors for more detail.
|
65 |
+
output_hidden_states (`bool`, *optional*):
|
66 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
67 |
+
more detail.
|
68 |
+
return_dict (`bool`, *optional*):
|
69 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
70 |
+
"""
|
71 |
+
|
72 |
+
|
73 |
+
class DepthAnythingReassembleLayer(nn.Module):
|
74 |
+
def __init__(self, config, channels, factor):
|
75 |
+
super().__init__()
|
76 |
+
self.projection = nn.Conv2d(in_channels=config.reassemble_hidden_size, out_channels=channels, kernel_size=1)
|
77 |
+
|
78 |
+
# up/down sampling depending on factor
|
79 |
+
if factor > 1:
|
80 |
+
self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0)
|
81 |
+
elif factor == 1:
|
82 |
+
self.resize = nn.Identity()
|
83 |
+
elif factor < 1:
|
84 |
+
# so should downsample
|
85 |
+
self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1)
|
86 |
+
|
87 |
+
# Copied from transformers.models.dpt.modeling_dpt.DPTReassembleLayer.forward
|
88 |
+
def forward(self, hidden_state):
|
89 |
+
hidden_state = self.projection(hidden_state)
|
90 |
+
hidden_state = self.resize(hidden_state)
|
91 |
+
|
92 |
+
return hidden_state
|
93 |
+
|
94 |
+
|
95 |
+
class DepthAnythingReassembleStage(nn.Module):
|
96 |
+
"""
|
97 |
+
This class reassembles the hidden states of the backbone into image-like feature representations at various
|
98 |
+
resolutions.
|
99 |
+
|
100 |
+
This happens in 3 stages:
|
101 |
+
1. Take the patch embeddings and reshape them to image-like feature representations.
|
102 |
+
2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`.
|
103 |
+
3. Resizing the spatial dimensions (height, width).
|
104 |
+
|
105 |
+
Args:
|
106 |
+
config (`[DepthAnythingConfig]`):
|
107 |
+
Model configuration class defining the model architecture.
|
108 |
+
"""
|
109 |
+
|
110 |
+
def __init__(self, config):
|
111 |
+
super().__init__()
|
112 |
+
|
113 |
+
self.config = config
|
114 |
+
self.layers = nn.ModuleList()
|
115 |
+
for channels, factor in zip(config.neck_hidden_sizes, config.reassemble_factors):
|
116 |
+
self.layers.append(DepthAnythingReassembleLayer(config, channels=channels, factor=factor))
|
117 |
+
|
118 |
+
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
|
119 |
+
"""
|
120 |
+
Args:
|
121 |
+
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`):
|
122 |
+
List of hidden states from the backbone.
|
123 |
+
"""
|
124 |
+
out = []
|
125 |
+
|
126 |
+
for i, hidden_state in enumerate(hidden_states):
|
127 |
+
# reshape to (batch_size, num_channels, height, width)
|
128 |
+
hidden_state = hidden_state[:, 1:]
|
129 |
+
batch_size, _, num_channels = hidden_state.shape
|
130 |
+
hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels)
|
131 |
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
132 |
+
hidden_state = self.layers[i](hidden_state)
|
133 |
+
out.append(hidden_state)
|
134 |
+
|
135 |
+
return out
|
136 |
+
|
137 |
+
|
138 |
+
class DepthAnythingPreActResidualLayer(nn.Module):
|
139 |
+
"""
|
140 |
+
ResidualConvUnit, pre-activate residual unit.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
config (`[DepthAnythingConfig]`):
|
144 |
+
Model configuration class defining the model architecture.
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self, config):
|
148 |
+
super().__init__()
|
149 |
+
|
150 |
+
self.activation1 = nn.ReLU()
|
151 |
+
self.convolution1 = nn.Conv2d(
|
152 |
+
config.fusion_hidden_size,
|
153 |
+
config.fusion_hidden_size,
|
154 |
+
kernel_size=3,
|
155 |
+
stride=1,
|
156 |
+
padding=1,
|
157 |
+
bias=True,
|
158 |
+
)
|
159 |
+
|
160 |
+
self.activation2 = nn.ReLU()
|
161 |
+
self.convolution2 = nn.Conv2d(
|
162 |
+
config.fusion_hidden_size,
|
163 |
+
config.fusion_hidden_size,
|
164 |
+
kernel_size=3,
|
165 |
+
stride=1,
|
166 |
+
padding=1,
|
167 |
+
bias=True,
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
171 |
+
residual = hidden_state
|
172 |
+
hidden_state = self.activation1(hidden_state)
|
173 |
+
hidden_state = self.convolution1(hidden_state)
|
174 |
+
hidden_state = self.activation2(hidden_state)
|
175 |
+
hidden_state = self.convolution2(hidden_state)
|
176 |
+
|
177 |
+
return hidden_state + residual
|
178 |
+
|
179 |
+
|
180 |
+
class DepthAnythingFeatureFusionLayer(nn.Module):
|
181 |
+
"""Feature fusion layer, merges feature maps from different stages.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
config (`[DepthAnythingConfig]`):
|
185 |
+
Model configuration class defining the model architecture.
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(self, config):
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True)
|
192 |
+
|
193 |
+
self.residual_layer1 = DepthAnythingPreActResidualLayer(config)
|
194 |
+
self.residual_layer2 = DepthAnythingPreActResidualLayer(config)
|
195 |
+
|
196 |
+
def forward(self, hidden_state, residual=None, size=None):
|
197 |
+
if residual is not None:
|
198 |
+
if hidden_state.shape != residual.shape:
|
199 |
+
residual = nn.functional.interpolate(
|
200 |
+
residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False
|
201 |
+
)
|
202 |
+
hidden_state = hidden_state + self.residual_layer1(residual)
|
203 |
+
|
204 |
+
hidden_state = self.residual_layer2(hidden_state)
|
205 |
+
|
206 |
+
modifier = {"scale_factor": 2} if size is None else {"size": size}
|
207 |
+
|
208 |
+
hidden_state = nn.functional.interpolate(
|
209 |
+
hidden_state,
|
210 |
+
**modifier,
|
211 |
+
mode="bilinear",
|
212 |
+
align_corners=True,
|
213 |
+
)
|
214 |
+
hidden_state = self.projection(hidden_state)
|
215 |
+
|
216 |
+
return hidden_state
|
217 |
+
|
218 |
+
|
219 |
+
class DepthAnythingFeatureFusionStage(nn.Module):
|
220 |
+
# Copied from transformers.models.dpt.modeling_dpt.DPTFeatureFusionStage.__init__ with DPT->DepthAnything
|
221 |
+
def __init__(self, config):
|
222 |
+
super().__init__()
|
223 |
+
self.layers = nn.ModuleList()
|
224 |
+
for _ in range(len(config.neck_hidden_sizes)):
|
225 |
+
self.layers.append(DepthAnythingFeatureFusionLayer(config))
|
226 |
+
|
227 |
+
def forward(self, hidden_states, size=None):
|
228 |
+
# reversing the hidden_states, we start from the last
|
229 |
+
hidden_states = hidden_states[::-1]
|
230 |
+
|
231 |
+
fused_hidden_states = []
|
232 |
+
# first layer only uses the last hidden_state
|
233 |
+
size = hidden_states[1].shape[2:]
|
234 |
+
fused_hidden_state = self.layers[0](hidden_states[0], size=size)
|
235 |
+
fused_hidden_states.append(fused_hidden_state)
|
236 |
+
|
237 |
+
# looping from the last layer to the second
|
238 |
+
for idx, (hidden_state, layer) in enumerate(zip(hidden_states[1:], self.layers[1:])):
|
239 |
+
size = hidden_states[1:][idx + 1].shape[2:] if idx != (len(hidden_states[1:]) - 1) else None
|
240 |
+
|
241 |
+
fused_hidden_state = layer(fused_hidden_state, hidden_state, size=size)
|
242 |
+
|
243 |
+
fused_hidden_states.append(fused_hidden_state)
|
244 |
+
|
245 |
+
return fused_hidden_states
|
246 |
+
|
247 |
+
|
248 |
+
# Copied from transformers.models.dpt.modeling_dpt.DPTPreTrainedModel with DPT->DepthAnything,dpt->depth_anything
|
249 |
+
class DepthAnythingPreTrainedModel(PreTrainedModel):
|
250 |
+
"""
|
251 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
252 |
+
models.
|
253 |
+
"""
|
254 |
+
|
255 |
+
config_class = DepthAnythingConfig
|
256 |
+
base_model_prefix = "depth_anything"
|
257 |
+
main_input_name = "pixel_values"
|
258 |
+
supports_gradient_checkpointing = True
|
259 |
+
|
260 |
+
def _init_weights(self, module):
|
261 |
+
"""Initialize the weights"""
|
262 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
263 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
264 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
265 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
266 |
+
if module.bias is not None:
|
267 |
+
module.bias.data.zero_()
|
268 |
+
elif isinstance(module, nn.LayerNorm):
|
269 |
+
module.bias.data.zero_()
|
270 |
+
module.weight.data.fill_(1.0)
|
271 |
+
|
272 |
+
|
273 |
+
class DepthAnythingNeck(nn.Module):
|
274 |
+
"""
|
275 |
+
DepthAnythingNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as
|
276 |
+
input and produces another list of tensors as output. For DepthAnything, it includes 2 stages:
|
277 |
+
|
278 |
+
* DepthAnythingReassembleStage
|
279 |
+
* DepthAnythingFeatureFusionStage.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
config (dict): config dict.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def __init__(self, config):
|
286 |
+
super().__init__()
|
287 |
+
self.config = config
|
288 |
+
|
289 |
+
self.reassemble_stage = DepthAnythingReassembleStage(config)
|
290 |
+
|
291 |
+
self.convs = nn.ModuleList()
|
292 |
+
for channel in config.neck_hidden_sizes:
|
293 |
+
self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False))
|
294 |
+
|
295 |
+
# fusion
|
296 |
+
self.fusion_stage = DepthAnythingFeatureFusionStage(config)
|
297 |
+
|
298 |
+
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
|
299 |
+
"""
|
300 |
+
Args:
|
301 |
+
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`):
|
302 |
+
List of hidden states from the backbone.
|
303 |
+
"""
|
304 |
+
if not isinstance(hidden_states, (tuple, list)):
|
305 |
+
raise ValueError("hidden_states should be a tuple or list of tensors")
|
306 |
+
|
307 |
+
if len(hidden_states) != len(self.config.neck_hidden_sizes):
|
308 |
+
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
|
309 |
+
|
310 |
+
# postprocess hidden states
|
311 |
+
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
|
312 |
+
|
313 |
+
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
|
314 |
+
|
315 |
+
# fusion blocks
|
316 |
+
output = self.fusion_stage(features)
|
317 |
+
|
318 |
+
return output
|
319 |
+
|
320 |
+
|
321 |
+
class DepthAnythingDepthEstimationHead(nn.Module):
|
322 |
+
"""
|
323 |
+
Output head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples
|
324 |
+
the predictions to the input resolution after the first convolutional layer (details can be found in the DPT paper's
|
325 |
+
supplementary material).
|
326 |
+
"""
|
327 |
+
|
328 |
+
def __init__(self, config):
|
329 |
+
super().__init__()
|
330 |
+
|
331 |
+
self.head_in_index = config.head_in_index
|
332 |
+
self.patch_size = config.patch_size
|
333 |
+
|
334 |
+
features = config.fusion_hidden_size
|
335 |
+
self.conv1 = nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1)
|
336 |
+
self.conv2 = nn.Conv2d(features // 2, config.head_hidden_size, kernel_size=3, stride=1, padding=1)
|
337 |
+
self.activation1 = nn.ReLU()
|
338 |
+
self.conv3 = nn.Conv2d(config.head_hidden_size, 1, kernel_size=1, stride=1, padding=0)
|
339 |
+
self.activation2 = nn.ReLU()
|
340 |
+
|
341 |
+
def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> torch.Tensor:
|
342 |
+
hidden_states = hidden_states[self.head_in_index]
|
343 |
+
|
344 |
+
predicted_depth = self.conv1(hidden_states)
|
345 |
+
predicted_depth = nn.functional.interpolate(
|
346 |
+
predicted_depth,
|
347 |
+
(int(patch_height * self.patch_size), int(patch_width * self.patch_size)),
|
348 |
+
mode="bilinear",
|
349 |
+
align_corners=True,
|
350 |
+
)
|
351 |
+
predicted_depth = self.conv2(predicted_depth)
|
352 |
+
predicted_depth = self.activation1(predicted_depth)
|
353 |
+
predicted_depth = self.conv3(predicted_depth)
|
354 |
+
predicted_depth = self.activation2(predicted_depth)
|
355 |
+
predicted_depth = predicted_depth.squeeze(dim=1) # shape (batch_size, height, width)
|
356 |
+
|
357 |
+
return predicted_depth
|
358 |
+
|
359 |
+
|
360 |
+
@add_start_docstrings(
|
361 |
+
"""
|
362 |
+
Depth Anything Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2.
|
363 |
+
""",
|
364 |
+
DEPTH_ANYTHING_START_DOCSTRING,
|
365 |
+
)
|
366 |
+
class DepthAnythingForDepthEstimation(DepthAnythingPreTrainedModel):
|
367 |
+
def __init__(self, config):
|
368 |
+
super().__init__(config)
|
369 |
+
|
370 |
+
self.backbone = AutoBackbone.from_config(config.backbone_config)
|
371 |
+
self.neck = DepthAnythingNeck(config)
|
372 |
+
self.head = DepthAnythingDepthEstimationHead(config)
|
373 |
+
|
374 |
+
# Initialize weights and apply final processing
|
375 |
+
self.post_init()
|
376 |
+
|
377 |
+
@add_start_docstrings_to_model_forward(DEPTH_ANYTHING_INPUTS_DOCSTRING)
|
378 |
+
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
|
379 |
+
def forward(
|
380 |
+
self,
|
381 |
+
pixel_values: torch.FloatTensor,
|
382 |
+
labels: Optional[torch.LongTensor] = None,
|
383 |
+
output_attentions: Optional[bool] = None,
|
384 |
+
output_hidden_states: Optional[bool] = None,
|
385 |
+
return_dict: Optional[bool] = None,
|
386 |
+
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
|
387 |
+
r"""
|
388 |
+
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
389 |
+
Ground truth depth estimation maps for computing the loss.
|
390 |
+
|
391 |
+
Returns:
|
392 |
+
|
393 |
+
Examples:
|
394 |
+
```python
|
395 |
+
>>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
396 |
+
>>> import torch
|
397 |
+
>>> import numpy as np
|
398 |
+
>>> from PIL import Image
|
399 |
+
>>> import requests
|
400 |
+
|
401 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
402 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
403 |
+
|
404 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf")
|
405 |
+
>>> model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf")
|
406 |
+
|
407 |
+
>>> # prepare image for the model
|
408 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
409 |
+
|
410 |
+
>>> with torch.no_grad():
|
411 |
+
... outputs = model(**inputs)
|
412 |
+
... predicted_depth = outputs.predicted_depth
|
413 |
+
|
414 |
+
>>> # interpolate to original size
|
415 |
+
>>> prediction = torch.nn.functional.interpolate(
|
416 |
+
... predicted_depth.unsqueeze(1),
|
417 |
+
... size=image.size[::-1],
|
418 |
+
... mode="bicubic",
|
419 |
+
... align_corners=False,
|
420 |
+
... )
|
421 |
+
|
422 |
+
>>> # visualize the prediction
|
423 |
+
>>> output = prediction.squeeze().cpu().numpy()
|
424 |
+
>>> formatted = (output * 255 / np.max(output)).astype("uint8")
|
425 |
+
>>> depth = Image.fromarray(formatted)
|
426 |
+
```"""
|
427 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
428 |
+
output_hidden_states = (
|
429 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
430 |
+
)
|
431 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
432 |
+
|
433 |
+
outputs = self.backbone.forward_with_filtered_kwargs(
|
434 |
+
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
|
435 |
+
)
|
436 |
+
hidden_states = outputs.feature_maps
|
437 |
+
|
438 |
+
_, _, height, width = pixel_values.shape
|
439 |
+
patch_size = self.config.patch_size
|
440 |
+
patch_height = height // patch_size
|
441 |
+
patch_width = width // patch_size
|
442 |
+
|
443 |
+
hidden_states = self.neck(hidden_states, patch_height, patch_width)
|
444 |
+
|
445 |
+
predicted_depth = self.head(hidden_states, patch_height, patch_width)
|
446 |
+
|
447 |
+
loss = None
|
448 |
+
if labels is not None:
|
449 |
+
raise NotImplementedError("Training is not implemented yet")
|
450 |
+
|
451 |
+
if not return_dict:
|
452 |
+
if output_hidden_states:
|
453 |
+
output = (predicted_depth,) + outputs[1:]
|
454 |
+
else:
|
455 |
+
output = (predicted_depth,) + outputs[2:]
|
456 |
+
return ((loss,) + output) if loss is not None else output
|
457 |
+
|
458 |
+
return DepthEstimatorOutput(
|
459 |
+
loss=loss,
|
460 |
+
predicted_depth=predicted_depth,
|
461 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
462 |
+
attentions=outputs.attentions,
|
463 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__init__.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"],
|
29 |
+
"tokenization_electra": ["ElectraTokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_electra_fast"] = ["ElectraTokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_electra"] = [
|
47 |
+
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"ElectraForCausalLM",
|
49 |
+
"ElectraForMaskedLM",
|
50 |
+
"ElectraForMultipleChoice",
|
51 |
+
"ElectraForPreTraining",
|
52 |
+
"ElectraForQuestionAnswering",
|
53 |
+
"ElectraForSequenceClassification",
|
54 |
+
"ElectraForTokenClassification",
|
55 |
+
"ElectraModel",
|
56 |
+
"ElectraPreTrainedModel",
|
57 |
+
"load_tf_weights_in_electra",
|
58 |
+
]
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_tf_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
_import_structure["modeling_tf_electra"] = [
|
67 |
+
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
68 |
+
"TFElectraForMaskedLM",
|
69 |
+
"TFElectraForMultipleChoice",
|
70 |
+
"TFElectraForPreTraining",
|
71 |
+
"TFElectraForQuestionAnswering",
|
72 |
+
"TFElectraForSequenceClassification",
|
73 |
+
"TFElectraForTokenClassification",
|
74 |
+
"TFElectraModel",
|
75 |
+
"TFElectraPreTrainedModel",
|
76 |
+
]
|
77 |
+
|
78 |
+
try:
|
79 |
+
if not is_flax_available():
|
80 |
+
raise OptionalDependencyNotAvailable()
|
81 |
+
except OptionalDependencyNotAvailable:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
_import_structure["modeling_flax_electra"] = [
|
85 |
+
"FlaxElectraForCausalLM",
|
86 |
+
"FlaxElectraForMaskedLM",
|
87 |
+
"FlaxElectraForMultipleChoice",
|
88 |
+
"FlaxElectraForPreTraining",
|
89 |
+
"FlaxElectraForQuestionAnswering",
|
90 |
+
"FlaxElectraForSequenceClassification",
|
91 |
+
"FlaxElectraForTokenClassification",
|
92 |
+
"FlaxElectraModel",
|
93 |
+
"FlaxElectraPreTrainedModel",
|
94 |
+
]
|
95 |
+
|
96 |
+
|
97 |
+
if TYPE_CHECKING:
|
98 |
+
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
|
99 |
+
from .tokenization_electra import ElectraTokenizer
|
100 |
+
|
101 |
+
try:
|
102 |
+
if not is_tokenizers_available():
|
103 |
+
raise OptionalDependencyNotAvailable()
|
104 |
+
except OptionalDependencyNotAvailable:
|
105 |
+
pass
|
106 |
+
else:
|
107 |
+
from .tokenization_electra_fast import ElectraTokenizerFast
|
108 |
+
|
109 |
+
try:
|
110 |
+
if not is_torch_available():
|
111 |
+
raise OptionalDependencyNotAvailable()
|
112 |
+
except OptionalDependencyNotAvailable:
|
113 |
+
pass
|
114 |
+
else:
|
115 |
+
from .modeling_electra import (
|
116 |
+
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
117 |
+
ElectraForCausalLM,
|
118 |
+
ElectraForMaskedLM,
|
119 |
+
ElectraForMultipleChoice,
|
120 |
+
ElectraForPreTraining,
|
121 |
+
ElectraForQuestionAnswering,
|
122 |
+
ElectraForSequenceClassification,
|
123 |
+
ElectraForTokenClassification,
|
124 |
+
ElectraModel,
|
125 |
+
ElectraPreTrainedModel,
|
126 |
+
load_tf_weights_in_electra,
|
127 |
+
)
|
128 |
+
|
129 |
+
try:
|
130 |
+
if not is_tf_available():
|
131 |
+
raise OptionalDependencyNotAvailable()
|
132 |
+
except OptionalDependencyNotAvailable:
|
133 |
+
pass
|
134 |
+
else:
|
135 |
+
from .modeling_tf_electra import (
|
136 |
+
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
137 |
+
TFElectraForMaskedLM,
|
138 |
+
TFElectraForMultipleChoice,
|
139 |
+
TFElectraForPreTraining,
|
140 |
+
TFElectraForQuestionAnswering,
|
141 |
+
TFElectraForSequenceClassification,
|
142 |
+
TFElectraForTokenClassification,
|
143 |
+
TFElectraModel,
|
144 |
+
TFElectraPreTrainedModel,
|
145 |
+
)
|
146 |
+
|
147 |
+
try:
|
148 |
+
if not is_flax_available():
|
149 |
+
raise OptionalDependencyNotAvailable()
|
150 |
+
except OptionalDependencyNotAvailable:
|
151 |
+
pass
|
152 |
+
else:
|
153 |
+
from .modeling_flax_electra import (
|
154 |
+
FlaxElectraForCausalLM,
|
155 |
+
FlaxElectraForMaskedLM,
|
156 |
+
FlaxElectraForMultipleChoice,
|
157 |
+
FlaxElectraForPreTraining,
|
158 |
+
FlaxElectraForQuestionAnswering,
|
159 |
+
FlaxElectraForSequenceClassification,
|
160 |
+
FlaxElectraForTokenClassification,
|
161 |
+
FlaxElectraModel,
|
162 |
+
FlaxElectraPreTrainedModel,
|
163 |
+
)
|
164 |
+
|
165 |
+
else:
|
166 |
+
import sys
|
167 |
+
|
168 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc
ADDED
Binary file (8.26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.87 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc
ADDED
Binary file (49.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc
ADDED
Binary file (40.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc
ADDED
Binary file (51.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc
ADDED
Binary file (6.68 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" ELECTRA model configuration"""
|
17 |
+
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import Mapping
|
20 |
+
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from ..deprecated._archive_maps import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class ElectraConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is
|
35 |
+
used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture.
|
36 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA
|
37 |
+
[google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
45 |
+
Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
|
46 |
+
`inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
|
47 |
+
embedding_size (`int`, *optional*, defaults to 128):
|
48 |
+
Dimensionality of the encoder layers and the pooler layer.
|
49 |
+
hidden_size (`int`, *optional*, defaults to 256):
|
50 |
+
Dimensionality of the encoder layers and the pooler layer.
|
51 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 4):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
intermediate_size (`int`, *optional*, defaults to 1024):
|
56 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
57 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
59 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
68 |
+
The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
|
69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
72 |
+
The epsilon used by the layer normalization layers.
|
73 |
+
summary_type (`str`, *optional*, defaults to `"first"`):
|
74 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
75 |
+
|
76 |
+
Has to be one of the following options:
|
77 |
+
|
78 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
79 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
80 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
81 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
82 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
83 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
84 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
85 |
+
|
86 |
+
Whether or not to add a projection after the vector extraction.
|
87 |
+
summary_activation (`str`, *optional*):
|
88 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
89 |
+
|
90 |
+
Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation.
|
91 |
+
summary_last_dropout (`float`, *optional*, defaults to 0.0):
|
92 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
93 |
+
|
94 |
+
The dropout ratio to be used after the projection and activation.
|
95 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
96 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
97 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
98 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
99 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
100 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
101 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
103 |
+
relevant if `config.is_decoder=True`.
|
104 |
+
classifier_dropout (`float`, *optional*):
|
105 |
+
The dropout ratio for the classification head.
|
106 |
+
|
107 |
+
Examples:
|
108 |
+
|
109 |
+
```python
|
110 |
+
>>> from transformers import ElectraConfig, ElectraModel
|
111 |
+
|
112 |
+
>>> # Initializing a ELECTRA electra-base-uncased style configuration
|
113 |
+
>>> configuration = ElectraConfig()
|
114 |
+
|
115 |
+
>>> # Initializing a model (with random weights) from the electra-base-uncased style configuration
|
116 |
+
>>> model = ElectraModel(configuration)
|
117 |
+
|
118 |
+
>>> # Accessing the model configuration
|
119 |
+
>>> configuration = model.config
|
120 |
+
```"""
|
121 |
+
|
122 |
+
model_type = "electra"
|
123 |
+
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
vocab_size=30522,
|
127 |
+
embedding_size=128,
|
128 |
+
hidden_size=256,
|
129 |
+
num_hidden_layers=12,
|
130 |
+
num_attention_heads=4,
|
131 |
+
intermediate_size=1024,
|
132 |
+
hidden_act="gelu",
|
133 |
+
hidden_dropout_prob=0.1,
|
134 |
+
attention_probs_dropout_prob=0.1,
|
135 |
+
max_position_embeddings=512,
|
136 |
+
type_vocab_size=2,
|
137 |
+
initializer_range=0.02,
|
138 |
+
layer_norm_eps=1e-12,
|
139 |
+
summary_type="first",
|
140 |
+
summary_use_proj=True,
|
141 |
+
summary_activation="gelu",
|
142 |
+
summary_last_dropout=0.1,
|
143 |
+
pad_token_id=0,
|
144 |
+
position_embedding_type="absolute",
|
145 |
+
use_cache=True,
|
146 |
+
classifier_dropout=None,
|
147 |
+
**kwargs,
|
148 |
+
):
|
149 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
150 |
+
|
151 |
+
self.vocab_size = vocab_size
|
152 |
+
self.embedding_size = embedding_size
|
153 |
+
self.hidden_size = hidden_size
|
154 |
+
self.num_hidden_layers = num_hidden_layers
|
155 |
+
self.num_attention_heads = num_attention_heads
|
156 |
+
self.intermediate_size = intermediate_size
|
157 |
+
self.hidden_act = hidden_act
|
158 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
159 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
160 |
+
self.max_position_embeddings = max_position_embeddings
|
161 |
+
self.type_vocab_size = type_vocab_size
|
162 |
+
self.initializer_range = initializer_range
|
163 |
+
self.layer_norm_eps = layer_norm_eps
|
164 |
+
|
165 |
+
self.summary_type = summary_type
|
166 |
+
self.summary_use_proj = summary_use_proj
|
167 |
+
self.summary_activation = summary_activation
|
168 |
+
self.summary_last_dropout = summary_last_dropout
|
169 |
+
self.position_embedding_type = position_embedding_type
|
170 |
+
self.use_cache = use_cache
|
171 |
+
self.classifier_dropout = classifier_dropout
|
172 |
+
|
173 |
+
|
174 |
+
class ElectraOnnxConfig(OnnxConfig):
|
175 |
+
@property
|
176 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
177 |
+
if self.task == "multiple-choice":
|
178 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
179 |
+
else:
|
180 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
181 |
+
return OrderedDict(
|
182 |
+
[
|
183 |
+
("input_ids", dynamic_axis),
|
184 |
+
("attention_mask", dynamic_axis),
|
185 |
+
("token_type_ids", dynamic_axis),
|
186 |
+
]
|
187 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ELECTRA checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = ElectraConfig.from_json_file(config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
|
34 |
+
if discriminator_or_generator == "discriminator":
|
35 |
+
model = ElectraForPreTraining(config)
|
36 |
+
elif discriminator_or_generator == "generator":
|
37 |
+
model = ElectraForMaskedLM(config)
|
38 |
+
else:
|
39 |
+
raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'")
|
40 |
+
|
41 |
+
# Load weights from tf checkpoint
|
42 |
+
load_tf_weights_in_electra(
|
43 |
+
model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator
|
44 |
+
)
|
45 |
+
|
46 |
+
# Save pytorch-model
|
47 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
48 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
parser = argparse.ArgumentParser()
|
53 |
+
# Required parameters
|
54 |
+
parser.add_argument(
|
55 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"--config_file",
|
59 |
+
default=None,
|
60 |
+
type=str,
|
61 |
+
required=True,
|
62 |
+
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
66 |
+
)
|
67 |
+
parser.add_argument(
|
68 |
+
"--discriminator_or_generator",
|
69 |
+
default=None,
|
70 |
+
type=str,
|
71 |
+
required=True,
|
72 |
+
help=(
|
73 |
+
"Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or "
|
74 |
+
"'generator'."
|
75 |
+
),
|
76 |
+
)
|
77 |
+
args = parser.parse_args()
|
78 |
+
convert_tf_checkpoint_to_pytorch(
|
79 |
+
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator
|
80 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py
ADDED
@@ -0,0 +1,1679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch ELECTRA model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN, get_activation
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithCrossAttentions,
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
CausalLMOutputWithCrossAttentions,
|
32 |
+
MaskedLMOutput,
|
33 |
+
MultipleChoiceModelOutput,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutput,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from ...modeling_utils import PreTrainedModel, SequenceSummary
|
39 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
40 |
+
from ...utils import (
|
41 |
+
ModelOutput,
|
42 |
+
add_code_sample_docstrings,
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
logging,
|
46 |
+
replace_return_docstrings,
|
47 |
+
)
|
48 |
+
from .configuration_electra import ElectraConfig
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
|
54 |
+
_CONFIG_FOR_DOC = "ElectraConfig"
|
55 |
+
|
56 |
+
|
57 |
+
from ..deprecated._archive_maps import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
58 |
+
|
59 |
+
|
60 |
+
def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
|
61 |
+
"""Load tf checkpoints in a pytorch model."""
|
62 |
+
try:
|
63 |
+
import re
|
64 |
+
|
65 |
+
import numpy as np
|
66 |
+
import tensorflow as tf
|
67 |
+
except ImportError:
|
68 |
+
logger.error(
|
69 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
70 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
71 |
+
)
|
72 |
+
raise
|
73 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
74 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
75 |
+
# Load weights from TF model
|
76 |
+
init_vars = tf.train.list_variables(tf_path)
|
77 |
+
names = []
|
78 |
+
arrays = []
|
79 |
+
for name, shape in init_vars:
|
80 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
81 |
+
array = tf.train.load_variable(tf_path, name)
|
82 |
+
names.append(name)
|
83 |
+
arrays.append(array)
|
84 |
+
for name, array in zip(names, arrays):
|
85 |
+
original_name: str = name
|
86 |
+
|
87 |
+
try:
|
88 |
+
if isinstance(model, ElectraForMaskedLM):
|
89 |
+
name = name.replace("electra/embeddings/", "generator/embeddings/")
|
90 |
+
|
91 |
+
if discriminator_or_generator == "generator":
|
92 |
+
name = name.replace("electra/", "discriminator/")
|
93 |
+
name = name.replace("generator/", "electra/")
|
94 |
+
|
95 |
+
name = name.replace("dense_1", "dense_prediction")
|
96 |
+
name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")
|
97 |
+
|
98 |
+
name = name.split("/")
|
99 |
+
# print(original_name, name)
|
100 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
101 |
+
# which are not required for using pretrained model
|
102 |
+
if any(n in ["global_step", "temperature"] for n in name):
|
103 |
+
logger.info(f"Skipping {original_name}")
|
104 |
+
continue
|
105 |
+
pointer = model
|
106 |
+
for m_name in name:
|
107 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
108 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
109 |
+
else:
|
110 |
+
scope_names = [m_name]
|
111 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
112 |
+
pointer = getattr(pointer, "weight")
|
113 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
114 |
+
pointer = getattr(pointer, "bias")
|
115 |
+
elif scope_names[0] == "output_weights":
|
116 |
+
pointer = getattr(pointer, "weight")
|
117 |
+
elif scope_names[0] == "squad":
|
118 |
+
pointer = getattr(pointer, "classifier")
|
119 |
+
else:
|
120 |
+
pointer = getattr(pointer, scope_names[0])
|
121 |
+
if len(scope_names) >= 2:
|
122 |
+
num = int(scope_names[1])
|
123 |
+
pointer = pointer[num]
|
124 |
+
if m_name.endswith("_embeddings"):
|
125 |
+
pointer = getattr(pointer, "weight")
|
126 |
+
elif m_name == "kernel":
|
127 |
+
array = np.transpose(array)
|
128 |
+
try:
|
129 |
+
if pointer.shape != array.shape:
|
130 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
131 |
+
except ValueError as e:
|
132 |
+
e.args += (pointer.shape, array.shape)
|
133 |
+
raise
|
134 |
+
print(f"Initialize PyTorch weight {name}", original_name)
|
135 |
+
pointer.data = torch.from_numpy(array)
|
136 |
+
except AttributeError as e:
|
137 |
+
print(f"Skipping {original_name}", name, e)
|
138 |
+
continue
|
139 |
+
return model
|
140 |
+
|
141 |
+
|
142 |
+
class ElectraEmbeddings(nn.Module):
|
143 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
144 |
+
|
145 |
+
def __init__(self, config):
|
146 |
+
super().__init__()
|
147 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
|
148 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
|
149 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
|
150 |
+
|
151 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
152 |
+
# any TensorFlow checkpoint file
|
153 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
154 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
155 |
+
|
156 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
157 |
+
self.register_buffer(
|
158 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
159 |
+
)
|
160 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
161 |
+
self.register_buffer(
|
162 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
163 |
+
)
|
164 |
+
|
165 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
|
166 |
+
def forward(
|
167 |
+
self,
|
168 |
+
input_ids: Optional[torch.LongTensor] = None,
|
169 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
170 |
+
position_ids: Optional[torch.LongTensor] = None,
|
171 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
172 |
+
past_key_values_length: int = 0,
|
173 |
+
) -> torch.Tensor:
|
174 |
+
if input_ids is not None:
|
175 |
+
input_shape = input_ids.size()
|
176 |
+
else:
|
177 |
+
input_shape = inputs_embeds.size()[:-1]
|
178 |
+
|
179 |
+
seq_length = input_shape[1]
|
180 |
+
|
181 |
+
if position_ids is None:
|
182 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
183 |
+
|
184 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
185 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
186 |
+
# issue #5664
|
187 |
+
if token_type_ids is None:
|
188 |
+
if hasattr(self, "token_type_ids"):
|
189 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
190 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
191 |
+
token_type_ids = buffered_token_type_ids_expanded
|
192 |
+
else:
|
193 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
194 |
+
|
195 |
+
if inputs_embeds is None:
|
196 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
197 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
198 |
+
|
199 |
+
embeddings = inputs_embeds + token_type_embeddings
|
200 |
+
if self.position_embedding_type == "absolute":
|
201 |
+
position_embeddings = self.position_embeddings(position_ids)
|
202 |
+
embeddings += position_embeddings
|
203 |
+
embeddings = self.LayerNorm(embeddings)
|
204 |
+
embeddings = self.dropout(embeddings)
|
205 |
+
return embeddings
|
206 |
+
|
207 |
+
|
208 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
|
209 |
+
class ElectraSelfAttention(nn.Module):
|
210 |
+
def __init__(self, config, position_embedding_type=None):
|
211 |
+
super().__init__()
|
212 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
213 |
+
raise ValueError(
|
214 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
215 |
+
f"heads ({config.num_attention_heads})"
|
216 |
+
)
|
217 |
+
|
218 |
+
self.num_attention_heads = config.num_attention_heads
|
219 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
220 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
221 |
+
|
222 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
223 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
224 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
225 |
+
|
226 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
227 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
228 |
+
config, "position_embedding_type", "absolute"
|
229 |
+
)
|
230 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
231 |
+
self.max_position_embeddings = config.max_position_embeddings
|
232 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
233 |
+
|
234 |
+
self.is_decoder = config.is_decoder
|
235 |
+
|
236 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
237 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
238 |
+
x = x.view(new_x_shape)
|
239 |
+
return x.permute(0, 2, 1, 3)
|
240 |
+
|
241 |
+
def forward(
|
242 |
+
self,
|
243 |
+
hidden_states: torch.Tensor,
|
244 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
245 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
246 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
247 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
248 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
249 |
+
output_attentions: Optional[bool] = False,
|
250 |
+
) -> Tuple[torch.Tensor]:
|
251 |
+
mixed_query_layer = self.query(hidden_states)
|
252 |
+
|
253 |
+
# If this is instantiated as a cross-attention module, the keys
|
254 |
+
# and values come from an encoder; the attention mask needs to be
|
255 |
+
# such that the encoder's padding tokens are not attended to.
|
256 |
+
is_cross_attention = encoder_hidden_states is not None
|
257 |
+
|
258 |
+
if is_cross_attention and past_key_value is not None:
|
259 |
+
# reuse k,v, cross_attentions
|
260 |
+
key_layer = past_key_value[0]
|
261 |
+
value_layer = past_key_value[1]
|
262 |
+
attention_mask = encoder_attention_mask
|
263 |
+
elif is_cross_attention:
|
264 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
265 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
266 |
+
attention_mask = encoder_attention_mask
|
267 |
+
elif past_key_value is not None:
|
268 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
269 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
270 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
271 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
272 |
+
else:
|
273 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
274 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
275 |
+
|
276 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
277 |
+
|
278 |
+
use_cache = past_key_value is not None
|
279 |
+
if self.is_decoder:
|
280 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
281 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
282 |
+
# key/value_states (first "if" case)
|
283 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
284 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
285 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
286 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
287 |
+
past_key_value = (key_layer, value_layer)
|
288 |
+
|
289 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
290 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
291 |
+
|
292 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
293 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
294 |
+
if use_cache:
|
295 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
296 |
+
-1, 1
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
300 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
301 |
+
distance = position_ids_l - position_ids_r
|
302 |
+
|
303 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
304 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
305 |
+
|
306 |
+
if self.position_embedding_type == "relative_key":
|
307 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
308 |
+
attention_scores = attention_scores + relative_position_scores
|
309 |
+
elif self.position_embedding_type == "relative_key_query":
|
310 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
311 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
312 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
313 |
+
|
314 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
315 |
+
if attention_mask is not None:
|
316 |
+
# Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
|
317 |
+
attention_scores = attention_scores + attention_mask
|
318 |
+
|
319 |
+
# Normalize the attention scores to probabilities.
|
320 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
321 |
+
|
322 |
+
# This is actually dropping out entire tokens to attend to, which might
|
323 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
324 |
+
attention_probs = self.dropout(attention_probs)
|
325 |
+
|
326 |
+
# Mask heads if we want to
|
327 |
+
if head_mask is not None:
|
328 |
+
attention_probs = attention_probs * head_mask
|
329 |
+
|
330 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
331 |
+
|
332 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
333 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
334 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
335 |
+
|
336 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
337 |
+
|
338 |
+
if self.is_decoder:
|
339 |
+
outputs = outputs + (past_key_value,)
|
340 |
+
return outputs
|
341 |
+
|
342 |
+
|
343 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
344 |
+
class ElectraSelfOutput(nn.Module):
|
345 |
+
def __init__(self, config):
|
346 |
+
super().__init__()
|
347 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
348 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
349 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
350 |
+
|
351 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
352 |
+
hidden_states = self.dense(hidden_states)
|
353 |
+
hidden_states = self.dropout(hidden_states)
|
354 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
355 |
+
return hidden_states
|
356 |
+
|
357 |
+
|
358 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
|
359 |
+
class ElectraAttention(nn.Module):
|
360 |
+
def __init__(self, config, position_embedding_type=None):
|
361 |
+
super().__init__()
|
362 |
+
self.self = ElectraSelfAttention(config, position_embedding_type=position_embedding_type)
|
363 |
+
self.output = ElectraSelfOutput(config)
|
364 |
+
self.pruned_heads = set()
|
365 |
+
|
366 |
+
def prune_heads(self, heads):
|
367 |
+
if len(heads) == 0:
|
368 |
+
return
|
369 |
+
heads, index = find_pruneable_heads_and_indices(
|
370 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
371 |
+
)
|
372 |
+
|
373 |
+
# Prune linear layers
|
374 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
375 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
376 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
377 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
378 |
+
|
379 |
+
# Update hyper params and store pruned heads
|
380 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
381 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
382 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
383 |
+
|
384 |
+
def forward(
|
385 |
+
self,
|
386 |
+
hidden_states: torch.Tensor,
|
387 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
388 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
389 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
390 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
391 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
392 |
+
output_attentions: Optional[bool] = False,
|
393 |
+
) -> Tuple[torch.Tensor]:
|
394 |
+
self_outputs = self.self(
|
395 |
+
hidden_states,
|
396 |
+
attention_mask,
|
397 |
+
head_mask,
|
398 |
+
encoder_hidden_states,
|
399 |
+
encoder_attention_mask,
|
400 |
+
past_key_value,
|
401 |
+
output_attentions,
|
402 |
+
)
|
403 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
404 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
405 |
+
return outputs
|
406 |
+
|
407 |
+
|
408 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
409 |
+
class ElectraIntermediate(nn.Module):
|
410 |
+
def __init__(self, config):
|
411 |
+
super().__init__()
|
412 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
413 |
+
if isinstance(config.hidden_act, str):
|
414 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
415 |
+
else:
|
416 |
+
self.intermediate_act_fn = config.hidden_act
|
417 |
+
|
418 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
419 |
+
hidden_states = self.dense(hidden_states)
|
420 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
421 |
+
return hidden_states
|
422 |
+
|
423 |
+
|
424 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
425 |
+
class ElectraOutput(nn.Module):
|
426 |
+
def __init__(self, config):
|
427 |
+
super().__init__()
|
428 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
429 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
430 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
431 |
+
|
432 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
433 |
+
hidden_states = self.dense(hidden_states)
|
434 |
+
hidden_states = self.dropout(hidden_states)
|
435 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
436 |
+
return hidden_states
|
437 |
+
|
438 |
+
|
439 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
|
440 |
+
class ElectraLayer(nn.Module):
|
441 |
+
def __init__(self, config):
|
442 |
+
super().__init__()
|
443 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
444 |
+
self.seq_len_dim = 1
|
445 |
+
self.attention = ElectraAttention(config)
|
446 |
+
self.is_decoder = config.is_decoder
|
447 |
+
self.add_cross_attention = config.add_cross_attention
|
448 |
+
if self.add_cross_attention:
|
449 |
+
if not self.is_decoder:
|
450 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
451 |
+
self.crossattention = ElectraAttention(config, position_embedding_type="absolute")
|
452 |
+
self.intermediate = ElectraIntermediate(config)
|
453 |
+
self.output = ElectraOutput(config)
|
454 |
+
|
455 |
+
def forward(
|
456 |
+
self,
|
457 |
+
hidden_states: torch.Tensor,
|
458 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
459 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
460 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
461 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
462 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
463 |
+
output_attentions: Optional[bool] = False,
|
464 |
+
) -> Tuple[torch.Tensor]:
|
465 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
466 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
467 |
+
self_attention_outputs = self.attention(
|
468 |
+
hidden_states,
|
469 |
+
attention_mask,
|
470 |
+
head_mask,
|
471 |
+
output_attentions=output_attentions,
|
472 |
+
past_key_value=self_attn_past_key_value,
|
473 |
+
)
|
474 |
+
attention_output = self_attention_outputs[0]
|
475 |
+
|
476 |
+
# if decoder, the last output is tuple of self-attn cache
|
477 |
+
if self.is_decoder:
|
478 |
+
outputs = self_attention_outputs[1:-1]
|
479 |
+
present_key_value = self_attention_outputs[-1]
|
480 |
+
else:
|
481 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
482 |
+
|
483 |
+
cross_attn_present_key_value = None
|
484 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
485 |
+
if not hasattr(self, "crossattention"):
|
486 |
+
raise ValueError(
|
487 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
488 |
+
" by setting `config.add_cross_attention=True`"
|
489 |
+
)
|
490 |
+
|
491 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
492 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
493 |
+
cross_attention_outputs = self.crossattention(
|
494 |
+
attention_output,
|
495 |
+
attention_mask,
|
496 |
+
head_mask,
|
497 |
+
encoder_hidden_states,
|
498 |
+
encoder_attention_mask,
|
499 |
+
cross_attn_past_key_value,
|
500 |
+
output_attentions,
|
501 |
+
)
|
502 |
+
attention_output = cross_attention_outputs[0]
|
503 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
504 |
+
|
505 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
506 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
507 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
508 |
+
|
509 |
+
layer_output = apply_chunking_to_forward(
|
510 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
511 |
+
)
|
512 |
+
outputs = (layer_output,) + outputs
|
513 |
+
|
514 |
+
# if decoder, return the attn key/values as the last output
|
515 |
+
if self.is_decoder:
|
516 |
+
outputs = outputs + (present_key_value,)
|
517 |
+
|
518 |
+
return outputs
|
519 |
+
|
520 |
+
def feed_forward_chunk(self, attention_output):
|
521 |
+
intermediate_output = self.intermediate(attention_output)
|
522 |
+
layer_output = self.output(intermediate_output, attention_output)
|
523 |
+
return layer_output
|
524 |
+
|
525 |
+
|
526 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
|
527 |
+
class ElectraEncoder(nn.Module):
|
528 |
+
def __init__(self, config):
|
529 |
+
super().__init__()
|
530 |
+
self.config = config
|
531 |
+
self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])
|
532 |
+
self.gradient_checkpointing = False
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self,
|
536 |
+
hidden_states: torch.Tensor,
|
537 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
538 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
539 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
540 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
541 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
542 |
+
use_cache: Optional[bool] = None,
|
543 |
+
output_attentions: Optional[bool] = False,
|
544 |
+
output_hidden_states: Optional[bool] = False,
|
545 |
+
return_dict: Optional[bool] = True,
|
546 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
547 |
+
all_hidden_states = () if output_hidden_states else None
|
548 |
+
all_self_attentions = () if output_attentions else None
|
549 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
550 |
+
|
551 |
+
if self.gradient_checkpointing and self.training:
|
552 |
+
if use_cache:
|
553 |
+
logger.warning_once(
|
554 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
555 |
+
)
|
556 |
+
use_cache = False
|
557 |
+
|
558 |
+
next_decoder_cache = () if use_cache else None
|
559 |
+
for i, layer_module in enumerate(self.layer):
|
560 |
+
if output_hidden_states:
|
561 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
562 |
+
|
563 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
564 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
565 |
+
|
566 |
+
if self.gradient_checkpointing and self.training:
|
567 |
+
layer_outputs = self._gradient_checkpointing_func(
|
568 |
+
layer_module.__call__,
|
569 |
+
hidden_states,
|
570 |
+
attention_mask,
|
571 |
+
layer_head_mask,
|
572 |
+
encoder_hidden_states,
|
573 |
+
encoder_attention_mask,
|
574 |
+
past_key_value,
|
575 |
+
output_attentions,
|
576 |
+
)
|
577 |
+
else:
|
578 |
+
layer_outputs = layer_module(
|
579 |
+
hidden_states,
|
580 |
+
attention_mask,
|
581 |
+
layer_head_mask,
|
582 |
+
encoder_hidden_states,
|
583 |
+
encoder_attention_mask,
|
584 |
+
past_key_value,
|
585 |
+
output_attentions,
|
586 |
+
)
|
587 |
+
|
588 |
+
hidden_states = layer_outputs[0]
|
589 |
+
if use_cache:
|
590 |
+
next_decoder_cache += (layer_outputs[-1],)
|
591 |
+
if output_attentions:
|
592 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
593 |
+
if self.config.add_cross_attention:
|
594 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
595 |
+
|
596 |
+
if output_hidden_states:
|
597 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
598 |
+
|
599 |
+
if not return_dict:
|
600 |
+
return tuple(
|
601 |
+
v
|
602 |
+
for v in [
|
603 |
+
hidden_states,
|
604 |
+
next_decoder_cache,
|
605 |
+
all_hidden_states,
|
606 |
+
all_self_attentions,
|
607 |
+
all_cross_attentions,
|
608 |
+
]
|
609 |
+
if v is not None
|
610 |
+
)
|
611 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
612 |
+
last_hidden_state=hidden_states,
|
613 |
+
past_key_values=next_decoder_cache,
|
614 |
+
hidden_states=all_hidden_states,
|
615 |
+
attentions=all_self_attentions,
|
616 |
+
cross_attentions=all_cross_attentions,
|
617 |
+
)
|
618 |
+
|
619 |
+
|
620 |
+
class ElectraDiscriminatorPredictions(nn.Module):
|
621 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
622 |
+
|
623 |
+
def __init__(self, config):
|
624 |
+
super().__init__()
|
625 |
+
|
626 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
627 |
+
self.activation = get_activation(config.hidden_act)
|
628 |
+
self.dense_prediction = nn.Linear(config.hidden_size, 1)
|
629 |
+
self.config = config
|
630 |
+
|
631 |
+
def forward(self, discriminator_hidden_states):
|
632 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
633 |
+
hidden_states = self.activation(hidden_states)
|
634 |
+
logits = self.dense_prediction(hidden_states).squeeze(-1)
|
635 |
+
|
636 |
+
return logits
|
637 |
+
|
638 |
+
|
639 |
+
class ElectraGeneratorPredictions(nn.Module):
|
640 |
+
"""Prediction module for the generator, made up of two dense layers."""
|
641 |
+
|
642 |
+
def __init__(self, config):
|
643 |
+
super().__init__()
|
644 |
+
|
645 |
+
self.activation = get_activation("gelu")
|
646 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
647 |
+
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
|
648 |
+
|
649 |
+
def forward(self, generator_hidden_states):
|
650 |
+
hidden_states = self.dense(generator_hidden_states)
|
651 |
+
hidden_states = self.activation(hidden_states)
|
652 |
+
hidden_states = self.LayerNorm(hidden_states)
|
653 |
+
|
654 |
+
return hidden_states
|
655 |
+
|
656 |
+
|
657 |
+
class ElectraPreTrainedModel(PreTrainedModel):
|
658 |
+
"""
|
659 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
660 |
+
models.
|
661 |
+
"""
|
662 |
+
|
663 |
+
config_class = ElectraConfig
|
664 |
+
load_tf_weights = load_tf_weights_in_electra
|
665 |
+
base_model_prefix = "electra"
|
666 |
+
supports_gradient_checkpointing = True
|
667 |
+
|
668 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
669 |
+
def _init_weights(self, module):
|
670 |
+
"""Initialize the weights"""
|
671 |
+
if isinstance(module, nn.Linear):
|
672 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
673 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
674 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
675 |
+
if module.bias is not None:
|
676 |
+
module.bias.data.zero_()
|
677 |
+
elif isinstance(module, nn.Embedding):
|
678 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
679 |
+
if module.padding_idx is not None:
|
680 |
+
module.weight.data[module.padding_idx].zero_()
|
681 |
+
elif isinstance(module, nn.LayerNorm):
|
682 |
+
module.bias.data.zero_()
|
683 |
+
module.weight.data.fill_(1.0)
|
684 |
+
|
685 |
+
|
686 |
+
@dataclass
|
687 |
+
class ElectraForPreTrainingOutput(ModelOutput):
|
688 |
+
"""
|
689 |
+
Output type of [`ElectraForPreTraining`].
|
690 |
+
|
691 |
+
Args:
|
692 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
693 |
+
Total loss of the ELECTRA objective.
|
694 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
695 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
696 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
697 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
698 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
699 |
+
|
700 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
701 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
702 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
703 |
+
sequence_length)`.
|
704 |
+
|
705 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
706 |
+
heads.
|
707 |
+
"""
|
708 |
+
|
709 |
+
loss: Optional[torch.FloatTensor] = None
|
710 |
+
logits: torch.FloatTensor = None
|
711 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
712 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
713 |
+
|
714 |
+
|
715 |
+
ELECTRA_START_DOCSTRING = r"""
|
716 |
+
|
717 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
718 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
719 |
+
etc.)
|
720 |
+
|
721 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
722 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
723 |
+
and behavior.
|
724 |
+
|
725 |
+
Parameters:
|
726 |
+
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
|
727 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
728 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
729 |
+
"""
|
730 |
+
|
731 |
+
ELECTRA_INPUTS_DOCSTRING = r"""
|
732 |
+
Args:
|
733 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
734 |
+
Indices of input sequence tokens in the vocabulary.
|
735 |
+
|
736 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
737 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
738 |
+
|
739 |
+
[What are input IDs?](../glossary#input-ids)
|
740 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
741 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
742 |
+
|
743 |
+
- 1 for tokens that are **not masked**,
|
744 |
+
- 0 for tokens that are **masked**.
|
745 |
+
|
746 |
+
[What are attention masks?](../glossary#attention-mask)
|
747 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
748 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
749 |
+
1]`:
|
750 |
+
|
751 |
+
- 0 corresponds to a *sentence A* token,
|
752 |
+
- 1 corresponds to a *sentence B* token.
|
753 |
+
|
754 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
755 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
756 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
757 |
+
config.max_position_embeddings - 1]`.
|
758 |
+
|
759 |
+
[What are position IDs?](../glossary#position-ids)
|
760 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
761 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
762 |
+
|
763 |
+
- 1 indicates the head is **not masked**,
|
764 |
+
- 0 indicates the head is **masked**.
|
765 |
+
|
766 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
767 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
768 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
769 |
+
model's internal embedding lookup matrix.
|
770 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
771 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
772 |
+
the model is configured as a decoder.
|
773 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
774 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
775 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
776 |
+
|
777 |
+
- 1 indicates the head is **not masked**,
|
778 |
+
- 0 indicates the head is **masked**.
|
779 |
+
|
780 |
+
output_attentions (`bool`, *optional*):
|
781 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
782 |
+
tensors for more detail.
|
783 |
+
output_hidden_states (`bool`, *optional*):
|
784 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
785 |
+
more detail.
|
786 |
+
return_dict (`bool`, *optional*):
|
787 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
788 |
+
"""
|
789 |
+
|
790 |
+
|
791 |
+
@add_start_docstrings(
|
792 |
+
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
|
793 |
+
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
|
794 |
+
"hidden size and embedding size are different. "
|
795 |
+
""
|
796 |
+
"Both the generator and discriminator checkpoints may be loaded into this model.",
|
797 |
+
ELECTRA_START_DOCSTRING,
|
798 |
+
)
|
799 |
+
class ElectraModel(ElectraPreTrainedModel):
|
800 |
+
def __init__(self, config):
|
801 |
+
super().__init__(config)
|
802 |
+
self.embeddings = ElectraEmbeddings(config)
|
803 |
+
|
804 |
+
if config.embedding_size != config.hidden_size:
|
805 |
+
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
|
806 |
+
|
807 |
+
self.encoder = ElectraEncoder(config)
|
808 |
+
self.config = config
|
809 |
+
# Initialize weights and apply final processing
|
810 |
+
self.post_init()
|
811 |
+
|
812 |
+
def get_input_embeddings(self):
|
813 |
+
return self.embeddings.word_embeddings
|
814 |
+
|
815 |
+
def set_input_embeddings(self, value):
|
816 |
+
self.embeddings.word_embeddings = value
|
817 |
+
|
818 |
+
def _prune_heads(self, heads_to_prune):
|
819 |
+
"""
|
820 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
821 |
+
class PreTrainedModel
|
822 |
+
"""
|
823 |
+
for layer, heads in heads_to_prune.items():
|
824 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
825 |
+
|
826 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
827 |
+
@add_code_sample_docstrings(
|
828 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
829 |
+
output_type=BaseModelOutputWithCrossAttentions,
|
830 |
+
config_class=_CONFIG_FOR_DOC,
|
831 |
+
)
|
832 |
+
def forward(
|
833 |
+
self,
|
834 |
+
input_ids: Optional[torch.Tensor] = None,
|
835 |
+
attention_mask: Optional[torch.Tensor] = None,
|
836 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
837 |
+
position_ids: Optional[torch.Tensor] = None,
|
838 |
+
head_mask: Optional[torch.Tensor] = None,
|
839 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
840 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
841 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
842 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
843 |
+
use_cache: Optional[bool] = None,
|
844 |
+
output_attentions: Optional[bool] = None,
|
845 |
+
output_hidden_states: Optional[bool] = None,
|
846 |
+
return_dict: Optional[bool] = None,
|
847 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithCrossAttentions]:
|
848 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
849 |
+
output_hidden_states = (
|
850 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
851 |
+
)
|
852 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
853 |
+
|
854 |
+
if input_ids is not None and inputs_embeds is not None:
|
855 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
856 |
+
elif input_ids is not None:
|
857 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
858 |
+
input_shape = input_ids.size()
|
859 |
+
elif inputs_embeds is not None:
|
860 |
+
input_shape = inputs_embeds.size()[:-1]
|
861 |
+
else:
|
862 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
863 |
+
|
864 |
+
batch_size, seq_length = input_shape
|
865 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
866 |
+
|
867 |
+
# past_key_values_length
|
868 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
869 |
+
|
870 |
+
if attention_mask is None:
|
871 |
+
attention_mask = torch.ones(input_shape, device=device)
|
872 |
+
if token_type_ids is None:
|
873 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
874 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
875 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
876 |
+
token_type_ids = buffered_token_type_ids_expanded
|
877 |
+
else:
|
878 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
879 |
+
|
880 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
881 |
+
|
882 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
883 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
884 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
885 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
886 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
887 |
+
if encoder_attention_mask is None:
|
888 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
889 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
890 |
+
else:
|
891 |
+
encoder_extended_attention_mask = None
|
892 |
+
|
893 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
894 |
+
|
895 |
+
hidden_states = self.embeddings(
|
896 |
+
input_ids=input_ids,
|
897 |
+
position_ids=position_ids,
|
898 |
+
token_type_ids=token_type_ids,
|
899 |
+
inputs_embeds=inputs_embeds,
|
900 |
+
past_key_values_length=past_key_values_length,
|
901 |
+
)
|
902 |
+
|
903 |
+
if hasattr(self, "embeddings_project"):
|
904 |
+
hidden_states = self.embeddings_project(hidden_states)
|
905 |
+
|
906 |
+
hidden_states = self.encoder(
|
907 |
+
hidden_states,
|
908 |
+
attention_mask=extended_attention_mask,
|
909 |
+
head_mask=head_mask,
|
910 |
+
encoder_hidden_states=encoder_hidden_states,
|
911 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
912 |
+
past_key_values=past_key_values,
|
913 |
+
use_cache=use_cache,
|
914 |
+
output_attentions=output_attentions,
|
915 |
+
output_hidden_states=output_hidden_states,
|
916 |
+
return_dict=return_dict,
|
917 |
+
)
|
918 |
+
|
919 |
+
return hidden_states
|
920 |
+
|
921 |
+
|
922 |
+
class ElectraClassificationHead(nn.Module):
|
923 |
+
"""Head for sentence-level classification tasks."""
|
924 |
+
|
925 |
+
def __init__(self, config):
|
926 |
+
super().__init__()
|
927 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
928 |
+
classifier_dropout = (
|
929 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
930 |
+
)
|
931 |
+
self.activation = get_activation("gelu")
|
932 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
933 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
934 |
+
|
935 |
+
def forward(self, features, **kwargs):
|
936 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
937 |
+
x = self.dropout(x)
|
938 |
+
x = self.dense(x)
|
939 |
+
x = self.activation(x) # although BERT uses tanh here, it seems Electra authors used gelu here
|
940 |
+
x = self.dropout(x)
|
941 |
+
x = self.out_proj(x)
|
942 |
+
return x
|
943 |
+
|
944 |
+
|
945 |
+
@add_start_docstrings(
|
946 |
+
"""
|
947 |
+
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
948 |
+
pooled output) e.g. for GLUE tasks.
|
949 |
+
""",
|
950 |
+
ELECTRA_START_DOCSTRING,
|
951 |
+
)
|
952 |
+
class ElectraForSequenceClassification(ElectraPreTrainedModel):
|
953 |
+
def __init__(self, config):
|
954 |
+
super().__init__(config)
|
955 |
+
self.num_labels = config.num_labels
|
956 |
+
self.config = config
|
957 |
+
self.electra = ElectraModel(config)
|
958 |
+
self.classifier = ElectraClassificationHead(config)
|
959 |
+
|
960 |
+
# Initialize weights and apply final processing
|
961 |
+
self.post_init()
|
962 |
+
|
963 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
964 |
+
@add_code_sample_docstrings(
|
965 |
+
checkpoint="bhadresh-savani/electra-base-emotion",
|
966 |
+
output_type=SequenceClassifierOutput,
|
967 |
+
config_class=_CONFIG_FOR_DOC,
|
968 |
+
expected_output="'joy'",
|
969 |
+
expected_loss=0.06,
|
970 |
+
)
|
971 |
+
def forward(
|
972 |
+
self,
|
973 |
+
input_ids: Optional[torch.Tensor] = None,
|
974 |
+
attention_mask: Optional[torch.Tensor] = None,
|
975 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
976 |
+
position_ids: Optional[torch.Tensor] = None,
|
977 |
+
head_mask: Optional[torch.Tensor] = None,
|
978 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
979 |
+
labels: Optional[torch.Tensor] = None,
|
980 |
+
output_attentions: Optional[bool] = None,
|
981 |
+
output_hidden_states: Optional[bool] = None,
|
982 |
+
return_dict: Optional[bool] = None,
|
983 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
984 |
+
r"""
|
985 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
986 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
987 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
988 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
989 |
+
"""
|
990 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
991 |
+
|
992 |
+
discriminator_hidden_states = self.electra(
|
993 |
+
input_ids,
|
994 |
+
attention_mask=attention_mask,
|
995 |
+
token_type_ids=token_type_ids,
|
996 |
+
position_ids=position_ids,
|
997 |
+
head_mask=head_mask,
|
998 |
+
inputs_embeds=inputs_embeds,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
output_hidden_states=output_hidden_states,
|
1001 |
+
return_dict=return_dict,
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
sequence_output = discriminator_hidden_states[0]
|
1005 |
+
logits = self.classifier(sequence_output)
|
1006 |
+
|
1007 |
+
loss = None
|
1008 |
+
if labels is not None:
|
1009 |
+
if self.config.problem_type is None:
|
1010 |
+
if self.num_labels == 1:
|
1011 |
+
self.config.problem_type = "regression"
|
1012 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1013 |
+
self.config.problem_type = "single_label_classification"
|
1014 |
+
else:
|
1015 |
+
self.config.problem_type = "multi_label_classification"
|
1016 |
+
|
1017 |
+
if self.config.problem_type == "regression":
|
1018 |
+
loss_fct = MSELoss()
|
1019 |
+
if self.num_labels == 1:
|
1020 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1021 |
+
else:
|
1022 |
+
loss = loss_fct(logits, labels)
|
1023 |
+
elif self.config.problem_type == "single_label_classification":
|
1024 |
+
loss_fct = CrossEntropyLoss()
|
1025 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1026 |
+
elif self.config.problem_type == "multi_label_classification":
|
1027 |
+
loss_fct = BCEWithLogitsLoss()
|
1028 |
+
loss = loss_fct(logits, labels)
|
1029 |
+
|
1030 |
+
if not return_dict:
|
1031 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1032 |
+
return ((loss,) + output) if loss is not None else output
|
1033 |
+
|
1034 |
+
return SequenceClassifierOutput(
|
1035 |
+
loss=loss,
|
1036 |
+
logits=logits,
|
1037 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1038 |
+
attentions=discriminator_hidden_states.attentions,
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
|
1042 |
+
@add_start_docstrings(
|
1043 |
+
"""
|
1044 |
+
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1045 |
+
|
1046 |
+
It is recommended to load the discriminator checkpoint into that model.
|
1047 |
+
""",
|
1048 |
+
ELECTRA_START_DOCSTRING,
|
1049 |
+
)
|
1050 |
+
class ElectraForPreTraining(ElectraPreTrainedModel):
|
1051 |
+
def __init__(self, config):
|
1052 |
+
super().__init__(config)
|
1053 |
+
|
1054 |
+
self.electra = ElectraModel(config)
|
1055 |
+
self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
|
1056 |
+
# Initialize weights and apply final processing
|
1057 |
+
self.post_init()
|
1058 |
+
|
1059 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1060 |
+
@replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1061 |
+
def forward(
|
1062 |
+
self,
|
1063 |
+
input_ids: Optional[torch.Tensor] = None,
|
1064 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1065 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1066 |
+
position_ids: Optional[torch.Tensor] = None,
|
1067 |
+
head_mask: Optional[torch.Tensor] = None,
|
1068 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1069 |
+
labels: Optional[torch.Tensor] = None,
|
1070 |
+
output_attentions: Optional[bool] = None,
|
1071 |
+
output_hidden_states: Optional[bool] = None,
|
1072 |
+
return_dict: Optional[bool] = None,
|
1073 |
+
) -> Union[Tuple[torch.Tensor], ElectraForPreTrainingOutput]:
|
1074 |
+
r"""
|
1075 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1076 |
+
Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
|
1077 |
+
Indices should be in `[0, 1]`:
|
1078 |
+
|
1079 |
+
- 0 indicates the token is an original token,
|
1080 |
+
- 1 indicates the token was replaced.
|
1081 |
+
|
1082 |
+
Returns:
|
1083 |
+
|
1084 |
+
Examples:
|
1085 |
+
|
1086 |
+
```python
|
1087 |
+
>>> from transformers import ElectraForPreTraining, AutoTokenizer
|
1088 |
+
>>> import torch
|
1089 |
+
|
1090 |
+
>>> discriminator = ElectraForPreTraining.from_pretrained("google/electra-base-discriminator")
|
1091 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminator")
|
1092 |
+
|
1093 |
+
>>> sentence = "The quick brown fox jumps over the lazy dog"
|
1094 |
+
>>> fake_sentence = "The quick brown fox fake over the lazy dog"
|
1095 |
+
|
1096 |
+
>>> fake_tokens = tokenizer.tokenize(fake_sentence, add_special_tokens=True)
|
1097 |
+
>>> fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
|
1098 |
+
>>> discriminator_outputs = discriminator(fake_inputs)
|
1099 |
+
>>> predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
|
1100 |
+
|
1101 |
+
>>> fake_tokens
|
1102 |
+
['[CLS]', 'the', 'quick', 'brown', 'fox', 'fake', 'over', 'the', 'lazy', 'dog', '[SEP]']
|
1103 |
+
|
1104 |
+
>>> predictions.squeeze().tolist()
|
1105 |
+
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
1106 |
+
```"""
|
1107 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1108 |
+
|
1109 |
+
discriminator_hidden_states = self.electra(
|
1110 |
+
input_ids,
|
1111 |
+
attention_mask=attention_mask,
|
1112 |
+
token_type_ids=token_type_ids,
|
1113 |
+
position_ids=position_ids,
|
1114 |
+
head_mask=head_mask,
|
1115 |
+
inputs_embeds=inputs_embeds,
|
1116 |
+
output_attentions=output_attentions,
|
1117 |
+
output_hidden_states=output_hidden_states,
|
1118 |
+
return_dict=return_dict,
|
1119 |
+
)
|
1120 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1121 |
+
|
1122 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1123 |
+
|
1124 |
+
loss = None
|
1125 |
+
if labels is not None:
|
1126 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1127 |
+
if attention_mask is not None:
|
1128 |
+
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
|
1129 |
+
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
|
1130 |
+
active_labels = labels[active_loss]
|
1131 |
+
loss = loss_fct(active_logits, active_labels.float())
|
1132 |
+
else:
|
1133 |
+
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
|
1134 |
+
|
1135 |
+
if not return_dict:
|
1136 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1137 |
+
return ((loss,) + output) if loss is not None else output
|
1138 |
+
|
1139 |
+
return ElectraForPreTrainingOutput(
|
1140 |
+
loss=loss,
|
1141 |
+
logits=logits,
|
1142 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1143 |
+
attentions=discriminator_hidden_states.attentions,
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
|
1147 |
+
@add_start_docstrings(
|
1148 |
+
"""
|
1149 |
+
Electra model with a language modeling head on top.
|
1150 |
+
|
1151 |
+
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
|
1152 |
+
the two to have been trained for the masked language modeling task.
|
1153 |
+
""",
|
1154 |
+
ELECTRA_START_DOCSTRING,
|
1155 |
+
)
|
1156 |
+
class ElectraForMaskedLM(ElectraPreTrainedModel):
|
1157 |
+
_tied_weights_keys = ["generator_lm_head.weight"]
|
1158 |
+
|
1159 |
+
def __init__(self, config):
|
1160 |
+
super().__init__(config)
|
1161 |
+
|
1162 |
+
self.electra = ElectraModel(config)
|
1163 |
+
self.generator_predictions = ElectraGeneratorPredictions(config)
|
1164 |
+
|
1165 |
+
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
|
1166 |
+
# Initialize weights and apply final processing
|
1167 |
+
self.post_init()
|
1168 |
+
|
1169 |
+
def get_output_embeddings(self):
|
1170 |
+
return self.generator_lm_head
|
1171 |
+
|
1172 |
+
def set_output_embeddings(self, word_embeddings):
|
1173 |
+
self.generator_lm_head = word_embeddings
|
1174 |
+
|
1175 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1176 |
+
@add_code_sample_docstrings(
|
1177 |
+
checkpoint="google/electra-small-generator",
|
1178 |
+
output_type=MaskedLMOutput,
|
1179 |
+
config_class=_CONFIG_FOR_DOC,
|
1180 |
+
mask="[MASK]",
|
1181 |
+
expected_output="'paris'",
|
1182 |
+
expected_loss=1.22,
|
1183 |
+
)
|
1184 |
+
def forward(
|
1185 |
+
self,
|
1186 |
+
input_ids: Optional[torch.Tensor] = None,
|
1187 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1188 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1189 |
+
position_ids: Optional[torch.Tensor] = None,
|
1190 |
+
head_mask: Optional[torch.Tensor] = None,
|
1191 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1192 |
+
labels: Optional[torch.Tensor] = None,
|
1193 |
+
output_attentions: Optional[bool] = None,
|
1194 |
+
output_hidden_states: Optional[bool] = None,
|
1195 |
+
return_dict: Optional[bool] = None,
|
1196 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1197 |
+
r"""
|
1198 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1199 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1200 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1201 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1202 |
+
"""
|
1203 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1204 |
+
|
1205 |
+
generator_hidden_states = self.electra(
|
1206 |
+
input_ids,
|
1207 |
+
attention_mask=attention_mask,
|
1208 |
+
token_type_ids=token_type_ids,
|
1209 |
+
position_ids=position_ids,
|
1210 |
+
head_mask=head_mask,
|
1211 |
+
inputs_embeds=inputs_embeds,
|
1212 |
+
output_attentions=output_attentions,
|
1213 |
+
output_hidden_states=output_hidden_states,
|
1214 |
+
return_dict=return_dict,
|
1215 |
+
)
|
1216 |
+
generator_sequence_output = generator_hidden_states[0]
|
1217 |
+
|
1218 |
+
prediction_scores = self.generator_predictions(generator_sequence_output)
|
1219 |
+
prediction_scores = self.generator_lm_head(prediction_scores)
|
1220 |
+
|
1221 |
+
loss = None
|
1222 |
+
# Masked language modeling softmax layer
|
1223 |
+
if labels is not None:
|
1224 |
+
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
|
1225 |
+
loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1226 |
+
|
1227 |
+
if not return_dict:
|
1228 |
+
output = (prediction_scores,) + generator_hidden_states[1:]
|
1229 |
+
return ((loss,) + output) if loss is not None else output
|
1230 |
+
|
1231 |
+
return MaskedLMOutput(
|
1232 |
+
loss=loss,
|
1233 |
+
logits=prediction_scores,
|
1234 |
+
hidden_states=generator_hidden_states.hidden_states,
|
1235 |
+
attentions=generator_hidden_states.attentions,
|
1236 |
+
)
|
1237 |
+
|
1238 |
+
|
1239 |
+
@add_start_docstrings(
|
1240 |
+
"""
|
1241 |
+
Electra model with a token classification head on top.
|
1242 |
+
|
1243 |
+
Both the discriminator and generator may be loaded into this model.
|
1244 |
+
""",
|
1245 |
+
ELECTRA_START_DOCSTRING,
|
1246 |
+
)
|
1247 |
+
class ElectraForTokenClassification(ElectraPreTrainedModel):
|
1248 |
+
def __init__(self, config):
|
1249 |
+
super().__init__(config)
|
1250 |
+
self.num_labels = config.num_labels
|
1251 |
+
|
1252 |
+
self.electra = ElectraModel(config)
|
1253 |
+
classifier_dropout = (
|
1254 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1255 |
+
)
|
1256 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1257 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1258 |
+
# Initialize weights and apply final processing
|
1259 |
+
self.post_init()
|
1260 |
+
|
1261 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1262 |
+
@add_code_sample_docstrings(
|
1263 |
+
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
|
1264 |
+
output_type=TokenClassifierOutput,
|
1265 |
+
config_class=_CONFIG_FOR_DOC,
|
1266 |
+
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
|
1267 |
+
expected_loss=0.11,
|
1268 |
+
)
|
1269 |
+
def forward(
|
1270 |
+
self,
|
1271 |
+
input_ids: Optional[torch.Tensor] = None,
|
1272 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1273 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1274 |
+
position_ids: Optional[torch.Tensor] = None,
|
1275 |
+
head_mask: Optional[torch.Tensor] = None,
|
1276 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1277 |
+
labels: Optional[torch.Tensor] = None,
|
1278 |
+
output_attentions: Optional[bool] = None,
|
1279 |
+
output_hidden_states: Optional[bool] = None,
|
1280 |
+
return_dict: Optional[bool] = None,
|
1281 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1282 |
+
r"""
|
1283 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1284 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1285 |
+
"""
|
1286 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1287 |
+
|
1288 |
+
discriminator_hidden_states = self.electra(
|
1289 |
+
input_ids,
|
1290 |
+
attention_mask=attention_mask,
|
1291 |
+
token_type_ids=token_type_ids,
|
1292 |
+
position_ids=position_ids,
|
1293 |
+
head_mask=head_mask,
|
1294 |
+
inputs_embeds=inputs_embeds,
|
1295 |
+
output_attentions=output_attentions,
|
1296 |
+
output_hidden_states=output_hidden_states,
|
1297 |
+
return_dict=return_dict,
|
1298 |
+
)
|
1299 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1300 |
+
|
1301 |
+
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
|
1302 |
+
logits = self.classifier(discriminator_sequence_output)
|
1303 |
+
|
1304 |
+
loss = None
|
1305 |
+
if labels is not None:
|
1306 |
+
loss_fct = CrossEntropyLoss()
|
1307 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1308 |
+
|
1309 |
+
if not return_dict:
|
1310 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1311 |
+
return ((loss,) + output) if loss is not None else output
|
1312 |
+
|
1313 |
+
return TokenClassifierOutput(
|
1314 |
+
loss=loss,
|
1315 |
+
logits=logits,
|
1316 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1317 |
+
attentions=discriminator_hidden_states.attentions,
|
1318 |
+
)
|
1319 |
+
|
1320 |
+
|
1321 |
+
@add_start_docstrings(
|
1322 |
+
"""
|
1323 |
+
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1324 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1325 |
+
""",
|
1326 |
+
ELECTRA_START_DOCSTRING,
|
1327 |
+
)
|
1328 |
+
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
|
1329 |
+
config_class = ElectraConfig
|
1330 |
+
base_model_prefix = "electra"
|
1331 |
+
|
1332 |
+
def __init__(self, config):
|
1333 |
+
super().__init__(config)
|
1334 |
+
self.num_labels = config.num_labels
|
1335 |
+
|
1336 |
+
self.electra = ElectraModel(config)
|
1337 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1338 |
+
|
1339 |
+
# Initialize weights and apply final processing
|
1340 |
+
self.post_init()
|
1341 |
+
|
1342 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1343 |
+
@add_code_sample_docstrings(
|
1344 |
+
checkpoint="bhadresh-savani/electra-base-squad2",
|
1345 |
+
output_type=QuestionAnsweringModelOutput,
|
1346 |
+
config_class=_CONFIG_FOR_DOC,
|
1347 |
+
qa_target_start_index=11,
|
1348 |
+
qa_target_end_index=12,
|
1349 |
+
expected_output="'a nice puppet'",
|
1350 |
+
expected_loss=2.64,
|
1351 |
+
)
|
1352 |
+
def forward(
|
1353 |
+
self,
|
1354 |
+
input_ids: Optional[torch.Tensor] = None,
|
1355 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1356 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1357 |
+
position_ids: Optional[torch.Tensor] = None,
|
1358 |
+
head_mask: Optional[torch.Tensor] = None,
|
1359 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1360 |
+
start_positions: Optional[torch.Tensor] = None,
|
1361 |
+
end_positions: Optional[torch.Tensor] = None,
|
1362 |
+
output_attentions: Optional[bool] = None,
|
1363 |
+
output_hidden_states: Optional[bool] = None,
|
1364 |
+
return_dict: Optional[bool] = None,
|
1365 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1366 |
+
r"""
|
1367 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1368 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1369 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1370 |
+
are not taken into account for computing the loss.
|
1371 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1372 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1373 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1374 |
+
are not taken into account for computing the loss.
|
1375 |
+
"""
|
1376 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1377 |
+
|
1378 |
+
discriminator_hidden_states = self.electra(
|
1379 |
+
input_ids,
|
1380 |
+
attention_mask=attention_mask,
|
1381 |
+
token_type_ids=token_type_ids,
|
1382 |
+
position_ids=position_ids,
|
1383 |
+
head_mask=head_mask,
|
1384 |
+
inputs_embeds=inputs_embeds,
|
1385 |
+
output_attentions=output_attentions,
|
1386 |
+
output_hidden_states=output_hidden_states,
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
sequence_output = discriminator_hidden_states[0]
|
1390 |
+
|
1391 |
+
logits = self.qa_outputs(sequence_output)
|
1392 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1393 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1394 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1395 |
+
|
1396 |
+
total_loss = None
|
1397 |
+
if start_positions is not None and end_positions is not None:
|
1398 |
+
# If we are on multi-GPU, split add a dimension
|
1399 |
+
if len(start_positions.size()) > 1:
|
1400 |
+
start_positions = start_positions.squeeze(-1)
|
1401 |
+
if len(end_positions.size()) > 1:
|
1402 |
+
end_positions = end_positions.squeeze(-1)
|
1403 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1404 |
+
ignored_index = start_logits.size(1)
|
1405 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1406 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1407 |
+
|
1408 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1409 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1410 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1411 |
+
total_loss = (start_loss + end_loss) / 2
|
1412 |
+
|
1413 |
+
if not return_dict:
|
1414 |
+
output = (
|
1415 |
+
start_logits,
|
1416 |
+
end_logits,
|
1417 |
+
) + discriminator_hidden_states[1:]
|
1418 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1419 |
+
|
1420 |
+
return QuestionAnsweringModelOutput(
|
1421 |
+
loss=total_loss,
|
1422 |
+
start_logits=start_logits,
|
1423 |
+
end_logits=end_logits,
|
1424 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1425 |
+
attentions=discriminator_hidden_states.attentions,
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
|
1429 |
+
@add_start_docstrings(
|
1430 |
+
"""
|
1431 |
+
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1432 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1433 |
+
""",
|
1434 |
+
ELECTRA_START_DOCSTRING,
|
1435 |
+
)
|
1436 |
+
class ElectraForMultipleChoice(ElectraPreTrainedModel):
|
1437 |
+
def __init__(self, config):
|
1438 |
+
super().__init__(config)
|
1439 |
+
|
1440 |
+
self.electra = ElectraModel(config)
|
1441 |
+
self.sequence_summary = SequenceSummary(config)
|
1442 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1443 |
+
|
1444 |
+
# Initialize weights and apply final processing
|
1445 |
+
self.post_init()
|
1446 |
+
|
1447 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1448 |
+
@add_code_sample_docstrings(
|
1449 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1450 |
+
output_type=MultipleChoiceModelOutput,
|
1451 |
+
config_class=_CONFIG_FOR_DOC,
|
1452 |
+
)
|
1453 |
+
def forward(
|
1454 |
+
self,
|
1455 |
+
input_ids: Optional[torch.Tensor] = None,
|
1456 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1457 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1458 |
+
position_ids: Optional[torch.Tensor] = None,
|
1459 |
+
head_mask: Optional[torch.Tensor] = None,
|
1460 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1461 |
+
labels: Optional[torch.Tensor] = None,
|
1462 |
+
output_attentions: Optional[bool] = None,
|
1463 |
+
output_hidden_states: Optional[bool] = None,
|
1464 |
+
return_dict: Optional[bool] = None,
|
1465 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1466 |
+
r"""
|
1467 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1468 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1469 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1470 |
+
`input_ids` above)
|
1471 |
+
"""
|
1472 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1473 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1474 |
+
|
1475 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1476 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1477 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1478 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1479 |
+
inputs_embeds = (
|
1480 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1481 |
+
if inputs_embeds is not None
|
1482 |
+
else None
|
1483 |
+
)
|
1484 |
+
|
1485 |
+
discriminator_hidden_states = self.electra(
|
1486 |
+
input_ids,
|
1487 |
+
attention_mask=attention_mask,
|
1488 |
+
token_type_ids=token_type_ids,
|
1489 |
+
position_ids=position_ids,
|
1490 |
+
head_mask=head_mask,
|
1491 |
+
inputs_embeds=inputs_embeds,
|
1492 |
+
output_attentions=output_attentions,
|
1493 |
+
output_hidden_states=output_hidden_states,
|
1494 |
+
return_dict=return_dict,
|
1495 |
+
)
|
1496 |
+
|
1497 |
+
sequence_output = discriminator_hidden_states[0]
|
1498 |
+
|
1499 |
+
pooled_output = self.sequence_summary(sequence_output)
|
1500 |
+
logits = self.classifier(pooled_output)
|
1501 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1502 |
+
|
1503 |
+
loss = None
|
1504 |
+
if labels is not None:
|
1505 |
+
loss_fct = CrossEntropyLoss()
|
1506 |
+
loss = loss_fct(reshaped_logits, labels)
|
1507 |
+
|
1508 |
+
if not return_dict:
|
1509 |
+
output = (reshaped_logits,) + discriminator_hidden_states[1:]
|
1510 |
+
return ((loss,) + output) if loss is not None else output
|
1511 |
+
|
1512 |
+
return MultipleChoiceModelOutput(
|
1513 |
+
loss=loss,
|
1514 |
+
logits=reshaped_logits,
|
1515 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1516 |
+
attentions=discriminator_hidden_states.attentions,
|
1517 |
+
)
|
1518 |
+
|
1519 |
+
|
1520 |
+
@add_start_docstrings(
|
1521 |
+
"""ELECTRA Model with a `language modeling` head on top for CLM fine-tuning.""", ELECTRA_START_DOCSTRING
|
1522 |
+
)
|
1523 |
+
class ElectraForCausalLM(ElectraPreTrainedModel):
|
1524 |
+
_tied_weights_keys = ["generator_lm_head.weight"]
|
1525 |
+
|
1526 |
+
def __init__(self, config):
|
1527 |
+
super().__init__(config)
|
1528 |
+
|
1529 |
+
if not config.is_decoder:
|
1530 |
+
logger.warning("If you want to use `ElectraForCausalLM` as a standalone, add `is_decoder=True.`")
|
1531 |
+
|
1532 |
+
self.electra = ElectraModel(config)
|
1533 |
+
self.generator_predictions = ElectraGeneratorPredictions(config)
|
1534 |
+
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
|
1535 |
+
|
1536 |
+
self.init_weights()
|
1537 |
+
|
1538 |
+
def get_output_embeddings(self):
|
1539 |
+
return self.generator_lm_head
|
1540 |
+
|
1541 |
+
def set_output_embeddings(self, new_embeddings):
|
1542 |
+
self.generator_lm_head = new_embeddings
|
1543 |
+
|
1544 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1545 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1546 |
+
def forward(
|
1547 |
+
self,
|
1548 |
+
input_ids: Optional[torch.Tensor] = None,
|
1549 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1550 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1551 |
+
position_ids: Optional[torch.Tensor] = None,
|
1552 |
+
head_mask: Optional[torch.Tensor] = None,
|
1553 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1554 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1555 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1556 |
+
labels: Optional[torch.Tensor] = None,
|
1557 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
1558 |
+
use_cache: Optional[bool] = None,
|
1559 |
+
output_attentions: Optional[bool] = None,
|
1560 |
+
output_hidden_states: Optional[bool] = None,
|
1561 |
+
return_dict: Optional[bool] = None,
|
1562 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1563 |
+
r"""
|
1564 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1565 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1566 |
+
the model is configured as a decoder.
|
1567 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1568 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1569 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1570 |
+
|
1571 |
+
- 1 for tokens that are **not masked**,
|
1572 |
+
- 0 for tokens that are **masked**.
|
1573 |
+
|
1574 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1575 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1576 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1577 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1578 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1579 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1580 |
+
|
1581 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1582 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1583 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1584 |
+
use_cache (`bool`, *optional*):
|
1585 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1586 |
+
`past_key_values`).
|
1587 |
+
|
1588 |
+
Returns:
|
1589 |
+
|
1590 |
+
Example:
|
1591 |
+
|
1592 |
+
```python
|
1593 |
+
>>> from transformers import AutoTokenizer, ElectraForCausalLM, ElectraConfig
|
1594 |
+
>>> import torch
|
1595 |
+
|
1596 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-generator")
|
1597 |
+
>>> config = ElectraConfig.from_pretrained("google/electra-base-generator")
|
1598 |
+
>>> config.is_decoder = True
|
1599 |
+
>>> model = ElectraForCausalLM.from_pretrained("google/electra-base-generator", config=config)
|
1600 |
+
|
1601 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1602 |
+
>>> outputs = model(**inputs)
|
1603 |
+
|
1604 |
+
>>> prediction_logits = outputs.logits
|
1605 |
+
```"""
|
1606 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1607 |
+
if labels is not None:
|
1608 |
+
use_cache = False
|
1609 |
+
|
1610 |
+
outputs = self.electra(
|
1611 |
+
input_ids,
|
1612 |
+
attention_mask=attention_mask,
|
1613 |
+
token_type_ids=token_type_ids,
|
1614 |
+
position_ids=position_ids,
|
1615 |
+
head_mask=head_mask,
|
1616 |
+
inputs_embeds=inputs_embeds,
|
1617 |
+
encoder_hidden_states=encoder_hidden_states,
|
1618 |
+
encoder_attention_mask=encoder_attention_mask,
|
1619 |
+
past_key_values=past_key_values,
|
1620 |
+
use_cache=use_cache,
|
1621 |
+
output_attentions=output_attentions,
|
1622 |
+
output_hidden_states=output_hidden_states,
|
1623 |
+
return_dict=return_dict,
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
sequence_output = outputs[0]
|
1627 |
+
prediction_scores = self.generator_lm_head(self.generator_predictions(sequence_output))
|
1628 |
+
|
1629 |
+
lm_loss = None
|
1630 |
+
if labels is not None:
|
1631 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1632 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1633 |
+
labels = labels[:, 1:].contiguous()
|
1634 |
+
loss_fct = CrossEntropyLoss()
|
1635 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1636 |
+
|
1637 |
+
if not return_dict:
|
1638 |
+
output = (prediction_scores,) + outputs[1:]
|
1639 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1640 |
+
|
1641 |
+
return CausalLMOutputWithCrossAttentions(
|
1642 |
+
loss=lm_loss,
|
1643 |
+
logits=prediction_scores,
|
1644 |
+
past_key_values=outputs.past_key_values,
|
1645 |
+
hidden_states=outputs.hidden_states,
|
1646 |
+
attentions=outputs.attentions,
|
1647 |
+
cross_attentions=outputs.cross_attentions,
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.prepare_inputs_for_generation
|
1651 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
1652 |
+
input_shape = input_ids.shape
|
1653 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1654 |
+
if attention_mask is None:
|
1655 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1656 |
+
|
1657 |
+
# cut decoder_input_ids if past_key_values is used
|
1658 |
+
if past_key_values is not None:
|
1659 |
+
past_length = past_key_values[0][0].shape[2]
|
1660 |
+
|
1661 |
+
# Some generation methods already pass only the last input ID
|
1662 |
+
if input_ids.shape[1] > past_length:
|
1663 |
+
remove_prefix_length = past_length
|
1664 |
+
else:
|
1665 |
+
# Default to old behavior: keep only final ID
|
1666 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1667 |
+
|
1668 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1669 |
+
|
1670 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1671 |
+
|
1672 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache
|
1673 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1674 |
+
reordered_past = ()
|
1675 |
+
for layer_past in past_key_values:
|
1676 |
+
reordered_past += (
|
1677 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1678 |
+
)
|
1679 |
+
return reordered_past
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py
ADDED
@@ -0,0 +1,1601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Callable, Optional, Tuple
|
17 |
+
|
18 |
+
import flax
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen import combine_masks, make_causal_mask
|
25 |
+
from flax.linen import partitioning as nn_partitioning
|
26 |
+
from flax.linen.attention import dot_product_attention_weights
|
27 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
28 |
+
from jax import lax
|
29 |
+
|
30 |
+
from ...modeling_flax_outputs import (
|
31 |
+
FlaxBaseModelOutput,
|
32 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
34 |
+
FlaxMaskedLMOutput,
|
35 |
+
FlaxMultipleChoiceModelOutput,
|
36 |
+
FlaxQuestionAnsweringModelOutput,
|
37 |
+
FlaxSequenceClassifierOutput,
|
38 |
+
FlaxTokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from ...modeling_flax_utils import (
|
41 |
+
ACT2FN,
|
42 |
+
FlaxPreTrainedModel,
|
43 |
+
append_call_sample_docstring,
|
44 |
+
append_replace_return_docstrings,
|
45 |
+
overwrite_call_docstring,
|
46 |
+
)
|
47 |
+
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
48 |
+
from .configuration_electra import ElectraConfig
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
|
54 |
+
_CONFIG_FOR_DOC = "ElectraConfig"
|
55 |
+
|
56 |
+
remat = nn_partitioning.remat
|
57 |
+
|
58 |
+
|
59 |
+
@flax.struct.dataclass
|
60 |
+
class FlaxElectraForPreTrainingOutput(ModelOutput):
|
61 |
+
"""
|
62 |
+
Output type of [`ElectraForPreTraining`].
|
63 |
+
|
64 |
+
Args:
|
65 |
+
logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
66 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
67 |
+
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
68 |
+
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
|
69 |
+
`(batch_size, sequence_length, hidden_size)`.
|
70 |
+
|
71 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
72 |
+
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
73 |
+
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
74 |
+
sequence_length)`.
|
75 |
+
|
76 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
77 |
+
heads.
|
78 |
+
"""
|
79 |
+
|
80 |
+
logits: jnp.ndarray = None
|
81 |
+
hidden_states: Optional[Tuple[jnp.ndarray]] = None
|
82 |
+
attentions: Optional[Tuple[jnp.ndarray]] = None
|
83 |
+
|
84 |
+
|
85 |
+
ELECTRA_START_DOCSTRING = r"""
|
86 |
+
|
87 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
88 |
+
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
|
89 |
+
|
90 |
+
This model is also a Flax Linen
|
91 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
92 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
93 |
+
|
94 |
+
Finally, this model supports inherent JAX features such as:
|
95 |
+
|
96 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
97 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
98 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
99 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
|
103 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
104 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
105 |
+
"""
|
106 |
+
|
107 |
+
ELECTRA_INPUTS_DOCSTRING = r"""
|
108 |
+
Args:
|
109 |
+
input_ids (`numpy.ndarray` of shape `({0})`):
|
110 |
+
Indices of input sequence tokens in the vocabulary.
|
111 |
+
|
112 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
113 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
114 |
+
|
115 |
+
[What are input IDs?](../glossary#input-ids)
|
116 |
+
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
|
117 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
118 |
+
|
119 |
+
- 1 for tokens that are **not masked**,
|
120 |
+
- 0 for tokens that are **masked**.
|
121 |
+
|
122 |
+
[What are attention masks?](../glossary#attention-mask)
|
123 |
+
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
124 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
125 |
+
1]`:
|
126 |
+
|
127 |
+
- 0 corresponds to a *sentence A* token,
|
128 |
+
- 1 corresponds to a *sentence B* token.
|
129 |
+
|
130 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
131 |
+
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
132 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
133 |
+
config.max_position_embeddings - 1]`.
|
134 |
+
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
|
135 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
136 |
+
|
137 |
+
- 1 indicates the head is **not masked**,
|
138 |
+
- 0 indicates the head is **masked**.
|
139 |
+
|
140 |
+
return_dict (`bool`, *optional*):
|
141 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
142 |
+
|
143 |
+
"""
|
144 |
+
|
145 |
+
|
146 |
+
class FlaxElectraEmbeddings(nn.Module):
|
147 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
148 |
+
|
149 |
+
config: ElectraConfig
|
150 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
151 |
+
|
152 |
+
def setup(self):
|
153 |
+
self.word_embeddings = nn.Embed(
|
154 |
+
self.config.vocab_size,
|
155 |
+
self.config.embedding_size,
|
156 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
157 |
+
)
|
158 |
+
self.position_embeddings = nn.Embed(
|
159 |
+
self.config.max_position_embeddings,
|
160 |
+
self.config.embedding_size,
|
161 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
162 |
+
)
|
163 |
+
self.token_type_embeddings = nn.Embed(
|
164 |
+
self.config.type_vocab_size,
|
165 |
+
self.config.embedding_size,
|
166 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
167 |
+
)
|
168 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
169 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
170 |
+
|
171 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__
|
172 |
+
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
|
173 |
+
# Embed
|
174 |
+
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
|
175 |
+
position_embeds = self.position_embeddings(position_ids.astype("i4"))
|
176 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
|
177 |
+
|
178 |
+
# Sum all embeddings
|
179 |
+
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
|
180 |
+
|
181 |
+
# Layer Norm
|
182 |
+
hidden_states = self.LayerNorm(hidden_states)
|
183 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
184 |
+
return hidden_states
|
185 |
+
|
186 |
+
|
187 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra
|
188 |
+
class FlaxElectraSelfAttention(nn.Module):
|
189 |
+
config: ElectraConfig
|
190 |
+
causal: bool = False
|
191 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
192 |
+
|
193 |
+
def setup(self):
|
194 |
+
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
|
195 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
196 |
+
raise ValueError(
|
197 |
+
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
198 |
+
" : {self.config.num_attention_heads}"
|
199 |
+
)
|
200 |
+
|
201 |
+
self.query = nn.Dense(
|
202 |
+
self.config.hidden_size,
|
203 |
+
dtype=self.dtype,
|
204 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
205 |
+
)
|
206 |
+
self.key = nn.Dense(
|
207 |
+
self.config.hidden_size,
|
208 |
+
dtype=self.dtype,
|
209 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
210 |
+
)
|
211 |
+
self.value = nn.Dense(
|
212 |
+
self.config.hidden_size,
|
213 |
+
dtype=self.dtype,
|
214 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
215 |
+
)
|
216 |
+
|
217 |
+
if self.causal:
|
218 |
+
self.causal_mask = make_causal_mask(
|
219 |
+
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
|
220 |
+
)
|
221 |
+
|
222 |
+
def _split_heads(self, hidden_states):
|
223 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
|
224 |
+
|
225 |
+
def _merge_heads(self, hidden_states):
|
226 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
|
227 |
+
|
228 |
+
@nn.compact
|
229 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
|
230 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
231 |
+
"""
|
232 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
233 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
234 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
235 |
+
"""
|
236 |
+
# detect if we're initializing by absence of existing cache data.
|
237 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
238 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
239 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
240 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
241 |
+
|
242 |
+
if is_initialized:
|
243 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
244 |
+
# update key, value caches with our new 1d spatial slices
|
245 |
+
cur_index = cache_index.value
|
246 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
247 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
248 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
249 |
+
cached_key.value = key
|
250 |
+
cached_value.value = value
|
251 |
+
num_updated_cache_vectors = query.shape[1]
|
252 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
253 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
254 |
+
pad_mask = jnp.broadcast_to(
|
255 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
256 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
257 |
+
)
|
258 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
259 |
+
return key, value, attention_mask
|
260 |
+
|
261 |
+
def __call__(
|
262 |
+
self,
|
263 |
+
hidden_states,
|
264 |
+
attention_mask,
|
265 |
+
layer_head_mask,
|
266 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
267 |
+
init_cache: bool = False,
|
268 |
+
deterministic=True,
|
269 |
+
output_attentions: bool = False,
|
270 |
+
):
|
271 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
272 |
+
# for the decoder
|
273 |
+
is_cross_attention = key_value_states is not None
|
274 |
+
batch_size = hidden_states.shape[0]
|
275 |
+
|
276 |
+
# get query proj
|
277 |
+
query_states = self.query(hidden_states)
|
278 |
+
# get key, value proj
|
279 |
+
if is_cross_attention:
|
280 |
+
# cross_attentions
|
281 |
+
key_states = self.key(key_value_states)
|
282 |
+
value_states = self.value(key_value_states)
|
283 |
+
else:
|
284 |
+
# self_attention
|
285 |
+
key_states = self.key(hidden_states)
|
286 |
+
value_states = self.value(hidden_states)
|
287 |
+
|
288 |
+
query_states = self._split_heads(query_states)
|
289 |
+
key_states = self._split_heads(key_states)
|
290 |
+
value_states = self._split_heads(value_states)
|
291 |
+
|
292 |
+
# handle cache prepare causal attention mask
|
293 |
+
if self.causal:
|
294 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
295 |
+
if self.has_variable("cache", "cached_key"):
|
296 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
297 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
298 |
+
causal_mask = lax.dynamic_slice(
|
299 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
303 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
304 |
+
|
305 |
+
# combine masks if needed
|
306 |
+
if attention_mask is not None and self.causal:
|
307 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
308 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
309 |
+
elif self.causal:
|
310 |
+
attention_mask = causal_mask
|
311 |
+
elif attention_mask is not None:
|
312 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
313 |
+
|
314 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
315 |
+
# and cache the keys and values step by step.
|
316 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
317 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
318 |
+
key_states, value_states, query_states, attention_mask
|
319 |
+
)
|
320 |
+
|
321 |
+
# Convert the boolean attention mask to an attention bias.
|
322 |
+
if attention_mask is not None:
|
323 |
+
# attention mask in the form of attention bias
|
324 |
+
attention_bias = lax.select(
|
325 |
+
attention_mask > 0,
|
326 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
327 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
attention_bias = None
|
331 |
+
|
332 |
+
dropout_rng = None
|
333 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
334 |
+
dropout_rng = self.make_rng("dropout")
|
335 |
+
|
336 |
+
attn_weights = dot_product_attention_weights(
|
337 |
+
query_states,
|
338 |
+
key_states,
|
339 |
+
bias=attention_bias,
|
340 |
+
dropout_rng=dropout_rng,
|
341 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
342 |
+
broadcast_dropout=True,
|
343 |
+
deterministic=deterministic,
|
344 |
+
dtype=self.dtype,
|
345 |
+
precision=None,
|
346 |
+
)
|
347 |
+
|
348 |
+
# Mask heads if we want to
|
349 |
+
if layer_head_mask is not None:
|
350 |
+
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
|
351 |
+
|
352 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
353 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
354 |
+
|
355 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
356 |
+
return outputs
|
357 |
+
|
358 |
+
|
359 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra
|
360 |
+
class FlaxElectraSelfOutput(nn.Module):
|
361 |
+
config: ElectraConfig
|
362 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
363 |
+
|
364 |
+
def setup(self):
|
365 |
+
self.dense = nn.Dense(
|
366 |
+
self.config.hidden_size,
|
367 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
368 |
+
dtype=self.dtype,
|
369 |
+
)
|
370 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
371 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
372 |
+
|
373 |
+
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
|
374 |
+
hidden_states = self.dense(hidden_states)
|
375 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
376 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
377 |
+
return hidden_states
|
378 |
+
|
379 |
+
|
380 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra
|
381 |
+
class FlaxElectraAttention(nn.Module):
|
382 |
+
config: ElectraConfig
|
383 |
+
causal: bool = False
|
384 |
+
dtype: jnp.dtype = jnp.float32
|
385 |
+
|
386 |
+
def setup(self):
|
387 |
+
self.self = FlaxElectraSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
|
388 |
+
self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype)
|
389 |
+
|
390 |
+
def __call__(
|
391 |
+
self,
|
392 |
+
hidden_states,
|
393 |
+
attention_mask,
|
394 |
+
layer_head_mask,
|
395 |
+
key_value_states=None,
|
396 |
+
init_cache=False,
|
397 |
+
deterministic=True,
|
398 |
+
output_attentions: bool = False,
|
399 |
+
):
|
400 |
+
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
|
401 |
+
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
|
402 |
+
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
|
403 |
+
attn_outputs = self.self(
|
404 |
+
hidden_states,
|
405 |
+
attention_mask,
|
406 |
+
layer_head_mask=layer_head_mask,
|
407 |
+
key_value_states=key_value_states,
|
408 |
+
init_cache=init_cache,
|
409 |
+
deterministic=deterministic,
|
410 |
+
output_attentions=output_attentions,
|
411 |
+
)
|
412 |
+
attn_output = attn_outputs[0]
|
413 |
+
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
|
414 |
+
|
415 |
+
outputs = (hidden_states,)
|
416 |
+
|
417 |
+
if output_attentions:
|
418 |
+
outputs += (attn_outputs[1],)
|
419 |
+
|
420 |
+
return outputs
|
421 |
+
|
422 |
+
|
423 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra
|
424 |
+
class FlaxElectraIntermediate(nn.Module):
|
425 |
+
config: ElectraConfig
|
426 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
427 |
+
|
428 |
+
def setup(self):
|
429 |
+
self.dense = nn.Dense(
|
430 |
+
self.config.intermediate_size,
|
431 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
432 |
+
dtype=self.dtype,
|
433 |
+
)
|
434 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
435 |
+
|
436 |
+
def __call__(self, hidden_states):
|
437 |
+
hidden_states = self.dense(hidden_states)
|
438 |
+
hidden_states = self.activation(hidden_states)
|
439 |
+
return hidden_states
|
440 |
+
|
441 |
+
|
442 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra
|
443 |
+
class FlaxElectraOutput(nn.Module):
|
444 |
+
config: ElectraConfig
|
445 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
446 |
+
|
447 |
+
def setup(self):
|
448 |
+
self.dense = nn.Dense(
|
449 |
+
self.config.hidden_size,
|
450 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
451 |
+
dtype=self.dtype,
|
452 |
+
)
|
453 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
454 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
455 |
+
|
456 |
+
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
|
457 |
+
hidden_states = self.dense(hidden_states)
|
458 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
459 |
+
hidden_states = self.LayerNorm(hidden_states + attention_output)
|
460 |
+
return hidden_states
|
461 |
+
|
462 |
+
|
463 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra
|
464 |
+
class FlaxElectraLayer(nn.Module):
|
465 |
+
config: ElectraConfig
|
466 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
467 |
+
|
468 |
+
def setup(self):
|
469 |
+
self.attention = FlaxElectraAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
|
470 |
+
self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype)
|
471 |
+
self.output = FlaxElectraOutput(self.config, dtype=self.dtype)
|
472 |
+
if self.config.add_cross_attention:
|
473 |
+
self.crossattention = FlaxElectraAttention(self.config, causal=False, dtype=self.dtype)
|
474 |
+
|
475 |
+
def __call__(
|
476 |
+
self,
|
477 |
+
hidden_states,
|
478 |
+
attention_mask,
|
479 |
+
layer_head_mask,
|
480 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
481 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
482 |
+
init_cache: bool = False,
|
483 |
+
deterministic: bool = True,
|
484 |
+
output_attentions: bool = False,
|
485 |
+
):
|
486 |
+
# Self Attention
|
487 |
+
attention_outputs = self.attention(
|
488 |
+
hidden_states,
|
489 |
+
attention_mask,
|
490 |
+
layer_head_mask=layer_head_mask,
|
491 |
+
init_cache=init_cache,
|
492 |
+
deterministic=deterministic,
|
493 |
+
output_attentions=output_attentions,
|
494 |
+
)
|
495 |
+
attention_output = attention_outputs[0]
|
496 |
+
|
497 |
+
# Cross-Attention Block
|
498 |
+
if encoder_hidden_states is not None:
|
499 |
+
cross_attention_outputs = self.crossattention(
|
500 |
+
attention_output,
|
501 |
+
attention_mask=encoder_attention_mask,
|
502 |
+
layer_head_mask=layer_head_mask,
|
503 |
+
key_value_states=encoder_hidden_states,
|
504 |
+
deterministic=deterministic,
|
505 |
+
output_attentions=output_attentions,
|
506 |
+
)
|
507 |
+
attention_output = cross_attention_outputs[0]
|
508 |
+
|
509 |
+
hidden_states = self.intermediate(attention_output)
|
510 |
+
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
|
511 |
+
|
512 |
+
outputs = (hidden_states,)
|
513 |
+
|
514 |
+
if output_attentions:
|
515 |
+
outputs += (attention_outputs[1],)
|
516 |
+
if encoder_hidden_states is not None:
|
517 |
+
outputs += (cross_attention_outputs[1],)
|
518 |
+
return outputs
|
519 |
+
|
520 |
+
|
521 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra
|
522 |
+
class FlaxElectraLayerCollection(nn.Module):
|
523 |
+
config: ElectraConfig
|
524 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
525 |
+
gradient_checkpointing: bool = False
|
526 |
+
|
527 |
+
def setup(self):
|
528 |
+
if self.gradient_checkpointing:
|
529 |
+
FlaxElectraCheckpointLayer = remat(FlaxElectraLayer, static_argnums=(5, 6, 7))
|
530 |
+
self.layers = [
|
531 |
+
FlaxElectraCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
|
532 |
+
for i in range(self.config.num_hidden_layers)
|
533 |
+
]
|
534 |
+
else:
|
535 |
+
self.layers = [
|
536 |
+
FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype)
|
537 |
+
for i in range(self.config.num_hidden_layers)
|
538 |
+
]
|
539 |
+
|
540 |
+
def __call__(
|
541 |
+
self,
|
542 |
+
hidden_states,
|
543 |
+
attention_mask,
|
544 |
+
head_mask,
|
545 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
546 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
547 |
+
init_cache: bool = False,
|
548 |
+
deterministic: bool = True,
|
549 |
+
output_attentions: bool = False,
|
550 |
+
output_hidden_states: bool = False,
|
551 |
+
return_dict: bool = True,
|
552 |
+
):
|
553 |
+
all_attentions = () if output_attentions else None
|
554 |
+
all_hidden_states = () if output_hidden_states else None
|
555 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
556 |
+
|
557 |
+
# Check if head_mask has a correct number of layers specified if desired
|
558 |
+
if head_mask is not None:
|
559 |
+
if head_mask.shape[0] != (len(self.layers)):
|
560 |
+
raise ValueError(
|
561 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
|
562 |
+
f" {head_mask.shape[0]}."
|
563 |
+
)
|
564 |
+
|
565 |
+
for i, layer in enumerate(self.layers):
|
566 |
+
if output_hidden_states:
|
567 |
+
all_hidden_states += (hidden_states,)
|
568 |
+
|
569 |
+
layer_outputs = layer(
|
570 |
+
hidden_states,
|
571 |
+
attention_mask,
|
572 |
+
head_mask[i] if head_mask is not None else None,
|
573 |
+
encoder_hidden_states,
|
574 |
+
encoder_attention_mask,
|
575 |
+
init_cache,
|
576 |
+
deterministic,
|
577 |
+
output_attentions,
|
578 |
+
)
|
579 |
+
|
580 |
+
hidden_states = layer_outputs[0]
|
581 |
+
|
582 |
+
if output_attentions:
|
583 |
+
all_attentions += (layer_outputs[1],)
|
584 |
+
|
585 |
+
if encoder_hidden_states is not None:
|
586 |
+
all_cross_attentions += (layer_outputs[2],)
|
587 |
+
|
588 |
+
if output_hidden_states:
|
589 |
+
all_hidden_states += (hidden_states,)
|
590 |
+
|
591 |
+
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
|
592 |
+
|
593 |
+
if not return_dict:
|
594 |
+
return tuple(v for v in outputs if v is not None)
|
595 |
+
|
596 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
597 |
+
last_hidden_state=hidden_states,
|
598 |
+
hidden_states=all_hidden_states,
|
599 |
+
attentions=all_attentions,
|
600 |
+
cross_attentions=all_cross_attentions,
|
601 |
+
)
|
602 |
+
|
603 |
+
|
604 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra
|
605 |
+
class FlaxElectraEncoder(nn.Module):
|
606 |
+
config: ElectraConfig
|
607 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
608 |
+
gradient_checkpointing: bool = False
|
609 |
+
|
610 |
+
def setup(self):
|
611 |
+
self.layer = FlaxElectraLayerCollection(
|
612 |
+
self.config,
|
613 |
+
dtype=self.dtype,
|
614 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
615 |
+
)
|
616 |
+
|
617 |
+
def __call__(
|
618 |
+
self,
|
619 |
+
hidden_states,
|
620 |
+
attention_mask,
|
621 |
+
head_mask,
|
622 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
623 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
624 |
+
init_cache: bool = False,
|
625 |
+
deterministic: bool = True,
|
626 |
+
output_attentions: bool = False,
|
627 |
+
output_hidden_states: bool = False,
|
628 |
+
return_dict: bool = True,
|
629 |
+
):
|
630 |
+
return self.layer(
|
631 |
+
hidden_states,
|
632 |
+
attention_mask,
|
633 |
+
head_mask=head_mask,
|
634 |
+
encoder_hidden_states=encoder_hidden_states,
|
635 |
+
encoder_attention_mask=encoder_attention_mask,
|
636 |
+
init_cache=init_cache,
|
637 |
+
deterministic=deterministic,
|
638 |
+
output_attentions=output_attentions,
|
639 |
+
output_hidden_states=output_hidden_states,
|
640 |
+
return_dict=return_dict,
|
641 |
+
)
|
642 |
+
|
643 |
+
|
644 |
+
class FlaxElectraGeneratorPredictions(nn.Module):
|
645 |
+
config: ElectraConfig
|
646 |
+
dtype: jnp.dtype = jnp.float32
|
647 |
+
|
648 |
+
def setup(self):
|
649 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
650 |
+
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
|
651 |
+
|
652 |
+
def __call__(self, hidden_states):
|
653 |
+
hidden_states = self.dense(hidden_states)
|
654 |
+
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
|
655 |
+
hidden_states = self.LayerNorm(hidden_states)
|
656 |
+
return hidden_states
|
657 |
+
|
658 |
+
|
659 |
+
class FlaxElectraDiscriminatorPredictions(nn.Module):
|
660 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
661 |
+
|
662 |
+
config: ElectraConfig
|
663 |
+
dtype: jnp.dtype = jnp.float32
|
664 |
+
|
665 |
+
def setup(self):
|
666 |
+
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
667 |
+
self.dense_prediction = nn.Dense(1, dtype=self.dtype)
|
668 |
+
|
669 |
+
def __call__(self, hidden_states):
|
670 |
+
hidden_states = self.dense(hidden_states)
|
671 |
+
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
|
672 |
+
hidden_states = self.dense_prediction(hidden_states).squeeze(-1)
|
673 |
+
return hidden_states
|
674 |
+
|
675 |
+
|
676 |
+
class FlaxElectraPreTrainedModel(FlaxPreTrainedModel):
|
677 |
+
"""
|
678 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
679 |
+
models.
|
680 |
+
"""
|
681 |
+
|
682 |
+
config_class = ElectraConfig
|
683 |
+
base_model_prefix = "electra"
|
684 |
+
module_class: nn.Module = None
|
685 |
+
|
686 |
+
def __init__(
|
687 |
+
self,
|
688 |
+
config: ElectraConfig,
|
689 |
+
input_shape: Tuple = (1, 1),
|
690 |
+
seed: int = 0,
|
691 |
+
dtype: jnp.dtype = jnp.float32,
|
692 |
+
_do_init: bool = True,
|
693 |
+
gradient_checkpointing: bool = False,
|
694 |
+
**kwargs,
|
695 |
+
):
|
696 |
+
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
|
697 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
698 |
+
|
699 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
|
700 |
+
def enable_gradient_checkpointing(self):
|
701 |
+
self._module = self.module_class(
|
702 |
+
config=self.config,
|
703 |
+
dtype=self.dtype,
|
704 |
+
gradient_checkpointing=True,
|
705 |
+
)
|
706 |
+
|
707 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights
|
708 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
709 |
+
# init input tensors
|
710 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
711 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
712 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
713 |
+
attention_mask = jnp.ones_like(input_ids)
|
714 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
715 |
+
|
716 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
717 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
718 |
+
|
719 |
+
if self.config.add_cross_attention:
|
720 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
|
721 |
+
encoder_attention_mask = attention_mask
|
722 |
+
module_init_outputs = self.module.init(
|
723 |
+
rngs,
|
724 |
+
input_ids,
|
725 |
+
attention_mask,
|
726 |
+
token_type_ids,
|
727 |
+
position_ids,
|
728 |
+
head_mask,
|
729 |
+
encoder_hidden_states,
|
730 |
+
encoder_attention_mask,
|
731 |
+
return_dict=False,
|
732 |
+
)
|
733 |
+
else:
|
734 |
+
module_init_outputs = self.module.init(
|
735 |
+
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
|
736 |
+
)
|
737 |
+
|
738 |
+
random_params = module_init_outputs["params"]
|
739 |
+
|
740 |
+
if params is not None:
|
741 |
+
random_params = flatten_dict(unfreeze(random_params))
|
742 |
+
params = flatten_dict(unfreeze(params))
|
743 |
+
for missing_key in self._missing_keys:
|
744 |
+
params[missing_key] = random_params[missing_key]
|
745 |
+
self._missing_keys = set()
|
746 |
+
return freeze(unflatten_dict(params))
|
747 |
+
else:
|
748 |
+
return random_params
|
749 |
+
|
750 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
|
751 |
+
def init_cache(self, batch_size, max_length):
|
752 |
+
r"""
|
753 |
+
Args:
|
754 |
+
batch_size (`int`):
|
755 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
756 |
+
max_length (`int`):
|
757 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
758 |
+
cache.
|
759 |
+
"""
|
760 |
+
# init input variables to retrieve cache
|
761 |
+
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
762 |
+
attention_mask = jnp.ones_like(input_ids, dtype="i4")
|
763 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
764 |
+
|
765 |
+
init_variables = self.module.init(
|
766 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
767 |
+
)
|
768 |
+
return unfreeze(init_variables["cache"])
|
769 |
+
|
770 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
771 |
+
def __call__(
|
772 |
+
self,
|
773 |
+
input_ids,
|
774 |
+
attention_mask=None,
|
775 |
+
token_type_ids=None,
|
776 |
+
position_ids=None,
|
777 |
+
head_mask=None,
|
778 |
+
encoder_hidden_states=None,
|
779 |
+
encoder_attention_mask=None,
|
780 |
+
params: dict = None,
|
781 |
+
dropout_rng: jax.random.PRNGKey = None,
|
782 |
+
train: bool = False,
|
783 |
+
output_attentions: Optional[bool] = None,
|
784 |
+
output_hidden_states: Optional[bool] = None,
|
785 |
+
return_dict: Optional[bool] = None,
|
786 |
+
past_key_values: dict = None,
|
787 |
+
):
|
788 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
789 |
+
output_hidden_states = (
|
790 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
791 |
+
)
|
792 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
793 |
+
|
794 |
+
# init input tensors if not passed
|
795 |
+
if token_type_ids is None:
|
796 |
+
token_type_ids = jnp.ones_like(input_ids)
|
797 |
+
|
798 |
+
if position_ids is None:
|
799 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
800 |
+
|
801 |
+
if attention_mask is None:
|
802 |
+
attention_mask = jnp.ones_like(input_ids)
|
803 |
+
|
804 |
+
if head_mask is None:
|
805 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
806 |
+
|
807 |
+
# Handle any PRNG if needed
|
808 |
+
rngs = {}
|
809 |
+
if dropout_rng is not None:
|
810 |
+
rngs["dropout"] = dropout_rng
|
811 |
+
|
812 |
+
inputs = {"params": params or self.params}
|
813 |
+
|
814 |
+
if self.config.add_cross_attention:
|
815 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
|
816 |
+
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
|
817 |
+
# changed by FlaxElectraAttention module
|
818 |
+
if past_key_values:
|
819 |
+
inputs["cache"] = past_key_values
|
820 |
+
mutable = ["cache"]
|
821 |
+
else:
|
822 |
+
mutable = False
|
823 |
+
|
824 |
+
outputs = self.module.apply(
|
825 |
+
inputs,
|
826 |
+
jnp.array(input_ids, dtype="i4"),
|
827 |
+
jnp.array(attention_mask, dtype="i4"),
|
828 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
829 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
830 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
831 |
+
encoder_hidden_states=encoder_hidden_states,
|
832 |
+
encoder_attention_mask=encoder_attention_mask,
|
833 |
+
deterministic=not train,
|
834 |
+
output_attentions=output_attentions,
|
835 |
+
output_hidden_states=output_hidden_states,
|
836 |
+
return_dict=return_dict,
|
837 |
+
rngs=rngs,
|
838 |
+
mutable=mutable,
|
839 |
+
)
|
840 |
+
|
841 |
+
# add updated cache to model output
|
842 |
+
if past_key_values is not None and return_dict:
|
843 |
+
outputs, past_key_values = outputs
|
844 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
845 |
+
return outputs
|
846 |
+
elif past_key_values is not None and not return_dict:
|
847 |
+
outputs, past_key_values = outputs
|
848 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
849 |
+
|
850 |
+
else:
|
851 |
+
outputs = self.module.apply(
|
852 |
+
inputs,
|
853 |
+
jnp.array(input_ids, dtype="i4"),
|
854 |
+
jnp.array(attention_mask, dtype="i4"),
|
855 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
856 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
857 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
858 |
+
deterministic=not train,
|
859 |
+
output_attentions=output_attentions,
|
860 |
+
output_hidden_states=output_hidden_states,
|
861 |
+
return_dict=return_dict,
|
862 |
+
rngs=rngs,
|
863 |
+
)
|
864 |
+
|
865 |
+
return outputs
|
866 |
+
|
867 |
+
|
868 |
+
class FlaxElectraModule(nn.Module):
|
869 |
+
config: ElectraConfig
|
870 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
871 |
+
gradient_checkpointing: bool = False
|
872 |
+
|
873 |
+
def setup(self):
|
874 |
+
self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype)
|
875 |
+
if self.config.embedding_size != self.config.hidden_size:
|
876 |
+
self.embeddings_project = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
877 |
+
self.encoder = FlaxElectraEncoder(
|
878 |
+
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
879 |
+
)
|
880 |
+
|
881 |
+
def __call__(
|
882 |
+
self,
|
883 |
+
input_ids,
|
884 |
+
attention_mask,
|
885 |
+
token_type_ids,
|
886 |
+
position_ids,
|
887 |
+
head_mask: Optional[np.ndarray] = None,
|
888 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
889 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
890 |
+
init_cache: bool = False,
|
891 |
+
deterministic: bool = True,
|
892 |
+
output_attentions: bool = False,
|
893 |
+
output_hidden_states: bool = False,
|
894 |
+
return_dict: bool = True,
|
895 |
+
):
|
896 |
+
embeddings = self.embeddings(
|
897 |
+
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
|
898 |
+
)
|
899 |
+
if hasattr(self, "embeddings_project"):
|
900 |
+
embeddings = self.embeddings_project(embeddings)
|
901 |
+
|
902 |
+
return self.encoder(
|
903 |
+
embeddings,
|
904 |
+
attention_mask,
|
905 |
+
head_mask=head_mask,
|
906 |
+
deterministic=deterministic,
|
907 |
+
encoder_hidden_states=encoder_hidden_states,
|
908 |
+
encoder_attention_mask=encoder_attention_mask,
|
909 |
+
init_cache=init_cache,
|
910 |
+
output_attentions=output_attentions,
|
911 |
+
output_hidden_states=output_hidden_states,
|
912 |
+
return_dict=return_dict,
|
913 |
+
)
|
914 |
+
|
915 |
+
|
916 |
+
@add_start_docstrings(
|
917 |
+
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top.",
|
918 |
+
ELECTRA_START_DOCSTRING,
|
919 |
+
)
|
920 |
+
class FlaxElectraModel(FlaxElectraPreTrainedModel):
|
921 |
+
module_class = FlaxElectraModule
|
922 |
+
|
923 |
+
|
924 |
+
append_call_sample_docstring(FlaxElectraModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
|
925 |
+
|
926 |
+
|
927 |
+
class FlaxElectraTiedDense(nn.Module):
|
928 |
+
embedding_size: int
|
929 |
+
dtype: jnp.dtype = jnp.float32
|
930 |
+
precision = None
|
931 |
+
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
|
932 |
+
|
933 |
+
def setup(self):
|
934 |
+
self.bias = self.param("bias", self.bias_init, (self.embedding_size,))
|
935 |
+
|
936 |
+
def __call__(self, x, kernel):
|
937 |
+
x = jnp.asarray(x, self.dtype)
|
938 |
+
kernel = jnp.asarray(kernel, self.dtype)
|
939 |
+
y = lax.dot_general(
|
940 |
+
x,
|
941 |
+
kernel,
|
942 |
+
(((x.ndim - 1,), (0,)), ((), ())),
|
943 |
+
precision=self.precision,
|
944 |
+
)
|
945 |
+
bias = jnp.asarray(self.bias, self.dtype)
|
946 |
+
return y + bias
|
947 |
+
|
948 |
+
|
949 |
+
class FlaxElectraForMaskedLMModule(nn.Module):
|
950 |
+
config: ElectraConfig
|
951 |
+
dtype: jnp.dtype = jnp.float32
|
952 |
+
gradient_checkpointing: bool = False
|
953 |
+
|
954 |
+
def setup(self):
|
955 |
+
self.electra = FlaxElectraModule(
|
956 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
957 |
+
)
|
958 |
+
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
|
959 |
+
if self.config.tie_word_embeddings:
|
960 |
+
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
|
961 |
+
else:
|
962 |
+
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
|
963 |
+
|
964 |
+
def __call__(
|
965 |
+
self,
|
966 |
+
input_ids,
|
967 |
+
attention_mask=None,
|
968 |
+
token_type_ids=None,
|
969 |
+
position_ids=None,
|
970 |
+
head_mask=None,
|
971 |
+
deterministic: bool = True,
|
972 |
+
output_attentions: bool = False,
|
973 |
+
output_hidden_states: bool = False,
|
974 |
+
return_dict: bool = True,
|
975 |
+
):
|
976 |
+
outputs = self.electra(
|
977 |
+
input_ids,
|
978 |
+
attention_mask,
|
979 |
+
token_type_ids,
|
980 |
+
position_ids,
|
981 |
+
head_mask,
|
982 |
+
deterministic=deterministic,
|
983 |
+
output_attentions=output_attentions,
|
984 |
+
output_hidden_states=output_hidden_states,
|
985 |
+
return_dict=return_dict,
|
986 |
+
)
|
987 |
+
hidden_states = outputs[0]
|
988 |
+
prediction_scores = self.generator_predictions(hidden_states)
|
989 |
+
|
990 |
+
if self.config.tie_word_embeddings:
|
991 |
+
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
992 |
+
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
|
993 |
+
else:
|
994 |
+
prediction_scores = self.generator_lm_head(prediction_scores)
|
995 |
+
|
996 |
+
if not return_dict:
|
997 |
+
return (prediction_scores,) + outputs[1:]
|
998 |
+
|
999 |
+
return FlaxMaskedLMOutput(
|
1000 |
+
logits=prediction_scores,
|
1001 |
+
hidden_states=outputs.hidden_states,
|
1002 |
+
attentions=outputs.attentions,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
|
1006 |
+
@add_start_docstrings("""Electra Model with a `language modeling` head on top.""", ELECTRA_START_DOCSTRING)
|
1007 |
+
class FlaxElectraForMaskedLM(FlaxElectraPreTrainedModel):
|
1008 |
+
module_class = FlaxElectraForMaskedLMModule
|
1009 |
+
|
1010 |
+
|
1011 |
+
append_call_sample_docstring(FlaxElectraForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
|
1012 |
+
|
1013 |
+
|
1014 |
+
class FlaxElectraForPreTrainingModule(nn.Module):
|
1015 |
+
config: ElectraConfig
|
1016 |
+
dtype: jnp.dtype = jnp.float32
|
1017 |
+
gradient_checkpointing: bool = False
|
1018 |
+
|
1019 |
+
def setup(self):
|
1020 |
+
self.electra = FlaxElectraModule(
|
1021 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1022 |
+
)
|
1023 |
+
self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype)
|
1024 |
+
|
1025 |
+
def __call__(
|
1026 |
+
self,
|
1027 |
+
input_ids,
|
1028 |
+
attention_mask=None,
|
1029 |
+
token_type_ids=None,
|
1030 |
+
position_ids=None,
|
1031 |
+
head_mask=None,
|
1032 |
+
deterministic: bool = True,
|
1033 |
+
output_attentions: bool = False,
|
1034 |
+
output_hidden_states: bool = False,
|
1035 |
+
return_dict: bool = True,
|
1036 |
+
):
|
1037 |
+
# Model
|
1038 |
+
outputs = self.electra(
|
1039 |
+
input_ids,
|
1040 |
+
attention_mask,
|
1041 |
+
token_type_ids,
|
1042 |
+
position_ids,
|
1043 |
+
head_mask,
|
1044 |
+
deterministic=deterministic,
|
1045 |
+
output_attentions=output_attentions,
|
1046 |
+
output_hidden_states=output_hidden_states,
|
1047 |
+
return_dict=return_dict,
|
1048 |
+
)
|
1049 |
+
hidden_states = outputs[0]
|
1050 |
+
|
1051 |
+
logits = self.discriminator_predictions(hidden_states)
|
1052 |
+
|
1053 |
+
if not return_dict:
|
1054 |
+
return (logits,) + outputs[1:]
|
1055 |
+
|
1056 |
+
return FlaxElectraForPreTrainingOutput(
|
1057 |
+
logits=logits,
|
1058 |
+
hidden_states=outputs.hidden_states,
|
1059 |
+
attentions=outputs.attentions,
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
|
1063 |
+
@add_start_docstrings(
|
1064 |
+
"""
|
1065 |
+
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1066 |
+
|
1067 |
+
It is recommended to load the discriminator checkpoint into that model.
|
1068 |
+
""",
|
1069 |
+
ELECTRA_START_DOCSTRING,
|
1070 |
+
)
|
1071 |
+
class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel):
|
1072 |
+
module_class = FlaxElectraForPreTrainingModule
|
1073 |
+
|
1074 |
+
|
1075 |
+
FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """
|
1076 |
+
Returns:
|
1077 |
+
|
1078 |
+
Example:
|
1079 |
+
|
1080 |
+
```python
|
1081 |
+
>>> from transformers import AutoTokenizer, FlaxElectraForPreTraining
|
1082 |
+
|
1083 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
|
1084 |
+
>>> model = FlaxElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
|
1085 |
+
|
1086 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
|
1087 |
+
>>> outputs = model(**inputs)
|
1088 |
+
|
1089 |
+
>>> prediction_logits = outputs.logits
|
1090 |
+
```
|
1091 |
+
"""
|
1092 |
+
|
1093 |
+
overwrite_call_docstring(
|
1094 |
+
FlaxElectraForPreTraining,
|
1095 |
+
ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING,
|
1096 |
+
)
|
1097 |
+
append_replace_return_docstrings(
|
1098 |
+
FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
|
1102 |
+
class FlaxElectraForTokenClassificationModule(nn.Module):
|
1103 |
+
config: ElectraConfig
|
1104 |
+
dtype: jnp.dtype = jnp.float32
|
1105 |
+
gradient_checkpointing: bool = False
|
1106 |
+
|
1107 |
+
def setup(self):
|
1108 |
+
self.electra = FlaxElectraModule(
|
1109 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1110 |
+
)
|
1111 |
+
classifier_dropout = (
|
1112 |
+
self.config.classifier_dropout
|
1113 |
+
if self.config.classifier_dropout is not None
|
1114 |
+
else self.config.hidden_dropout_prob
|
1115 |
+
)
|
1116 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1117 |
+
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1118 |
+
|
1119 |
+
def __call__(
|
1120 |
+
self,
|
1121 |
+
input_ids,
|
1122 |
+
attention_mask=None,
|
1123 |
+
token_type_ids=None,
|
1124 |
+
position_ids=None,
|
1125 |
+
head_mask=None,
|
1126 |
+
deterministic: bool = True,
|
1127 |
+
output_attentions: bool = False,
|
1128 |
+
output_hidden_states: bool = False,
|
1129 |
+
return_dict: bool = True,
|
1130 |
+
):
|
1131 |
+
# Model
|
1132 |
+
outputs = self.electra(
|
1133 |
+
input_ids,
|
1134 |
+
attention_mask,
|
1135 |
+
token_type_ids,
|
1136 |
+
position_ids,
|
1137 |
+
head_mask,
|
1138 |
+
deterministic=deterministic,
|
1139 |
+
output_attentions=output_attentions,
|
1140 |
+
output_hidden_states=output_hidden_states,
|
1141 |
+
return_dict=return_dict,
|
1142 |
+
)
|
1143 |
+
hidden_states = outputs[0]
|
1144 |
+
|
1145 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
1146 |
+
logits = self.classifier(hidden_states)
|
1147 |
+
|
1148 |
+
if not return_dict:
|
1149 |
+
return (logits,) + outputs[1:]
|
1150 |
+
|
1151 |
+
return FlaxTokenClassifierOutput(
|
1152 |
+
logits=logits,
|
1153 |
+
hidden_states=outputs.hidden_states,
|
1154 |
+
attentions=outputs.attentions,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
|
1158 |
+
@add_start_docstrings(
|
1159 |
+
"""
|
1160 |
+
Electra model with a token classification head on top.
|
1161 |
+
|
1162 |
+
Both the discriminator and generator may be loaded into this model.
|
1163 |
+
""",
|
1164 |
+
ELECTRA_START_DOCSTRING,
|
1165 |
+
)
|
1166 |
+
class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel):
|
1167 |
+
module_class = FlaxElectraForTokenClassificationModule
|
1168 |
+
|
1169 |
+
|
1170 |
+
append_call_sample_docstring(
|
1171 |
+
FlaxElectraForTokenClassification,
|
1172 |
+
_CHECKPOINT_FOR_DOC,
|
1173 |
+
FlaxTokenClassifierOutput,
|
1174 |
+
_CONFIG_FOR_DOC,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
|
1178 |
+
def identity(x, **kwargs):
|
1179 |
+
return x
|
1180 |
+
|
1181 |
+
|
1182 |
+
class FlaxElectraSequenceSummary(nn.Module):
|
1183 |
+
r"""
|
1184 |
+
Compute a single vector summary of a sequence hidden states.
|
1185 |
+
|
1186 |
+
Args:
|
1187 |
+
config ([`PretrainedConfig`]):
|
1188 |
+
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
|
1189 |
+
config class of your model for the default values it uses):
|
1190 |
+
|
1191 |
+
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
|
1192 |
+
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
|
1193 |
+
(otherwise to `config.hidden_size`).
|
1194 |
+
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
|
1195 |
+
another string or `None` will add no activation.
|
1196 |
+
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
|
1197 |
+
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
|
1198 |
+
"""
|
1199 |
+
|
1200 |
+
config: ElectraConfig
|
1201 |
+
dtype: jnp.dtype = jnp.float32
|
1202 |
+
|
1203 |
+
def setup(self):
|
1204 |
+
self.summary = identity
|
1205 |
+
if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj:
|
1206 |
+
if (
|
1207 |
+
hasattr(self.config, "summary_proj_to_labels")
|
1208 |
+
and self.config.summary_proj_to_labels
|
1209 |
+
and self.config.num_labels > 0
|
1210 |
+
):
|
1211 |
+
num_classes = self.config.num_labels
|
1212 |
+
else:
|
1213 |
+
num_classes = self.config.hidden_size
|
1214 |
+
self.summary = nn.Dense(num_classes, dtype=self.dtype)
|
1215 |
+
|
1216 |
+
activation_string = getattr(self.config, "summary_activation", None)
|
1217 |
+
self.activation = ACT2FN[activation_string] if activation_string else lambda x: x # noqa F407
|
1218 |
+
|
1219 |
+
self.first_dropout = identity
|
1220 |
+
if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0:
|
1221 |
+
self.first_dropout = nn.Dropout(self.config.summary_first_dropout)
|
1222 |
+
|
1223 |
+
self.last_dropout = identity
|
1224 |
+
if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0:
|
1225 |
+
self.last_dropout = nn.Dropout(self.config.summary_last_dropout)
|
1226 |
+
|
1227 |
+
def __call__(self, hidden_states, cls_index=None, deterministic: bool = True):
|
1228 |
+
"""
|
1229 |
+
Compute a single vector summary of a sequence hidden states.
|
1230 |
+
|
1231 |
+
Args:
|
1232 |
+
hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`):
|
1233 |
+
The hidden states of the last layer.
|
1234 |
+
cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
|
1235 |
+
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
|
1236 |
+
|
1237 |
+
Returns:
|
1238 |
+
`jnp.ndarray`: The summary of the sequence hidden states.
|
1239 |
+
"""
|
1240 |
+
# NOTE: this doest "first" type summary always
|
1241 |
+
output = hidden_states[:, 0]
|
1242 |
+
output = self.first_dropout(output, deterministic=deterministic)
|
1243 |
+
output = self.summary(output)
|
1244 |
+
output = self.activation(output)
|
1245 |
+
output = self.last_dropout(output, deterministic=deterministic)
|
1246 |
+
return output
|
1247 |
+
|
1248 |
+
|
1249 |
+
class FlaxElectraForMultipleChoiceModule(nn.Module):
|
1250 |
+
config: ElectraConfig
|
1251 |
+
dtype: jnp.dtype = jnp.float32
|
1252 |
+
gradient_checkpointing: bool = False
|
1253 |
+
|
1254 |
+
def setup(self):
|
1255 |
+
self.electra = FlaxElectraModule(
|
1256 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1257 |
+
)
|
1258 |
+
self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype)
|
1259 |
+
self.classifier = nn.Dense(1, dtype=self.dtype)
|
1260 |
+
|
1261 |
+
def __call__(
|
1262 |
+
self,
|
1263 |
+
input_ids,
|
1264 |
+
attention_mask=None,
|
1265 |
+
token_type_ids=None,
|
1266 |
+
position_ids=None,
|
1267 |
+
head_mask=None,
|
1268 |
+
deterministic: bool = True,
|
1269 |
+
output_attentions: bool = False,
|
1270 |
+
output_hidden_states: bool = False,
|
1271 |
+
return_dict: bool = True,
|
1272 |
+
):
|
1273 |
+
num_choices = input_ids.shape[1]
|
1274 |
+
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
|
1275 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
|
1276 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
|
1277 |
+
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
|
1278 |
+
|
1279 |
+
# Model
|
1280 |
+
outputs = self.electra(
|
1281 |
+
input_ids,
|
1282 |
+
attention_mask,
|
1283 |
+
token_type_ids,
|
1284 |
+
position_ids,
|
1285 |
+
head_mask,
|
1286 |
+
deterministic=deterministic,
|
1287 |
+
output_attentions=output_attentions,
|
1288 |
+
output_hidden_states=output_hidden_states,
|
1289 |
+
return_dict=return_dict,
|
1290 |
+
)
|
1291 |
+
hidden_states = outputs[0]
|
1292 |
+
pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic)
|
1293 |
+
logits = self.classifier(pooled_output)
|
1294 |
+
|
1295 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
1296 |
+
|
1297 |
+
if not return_dict:
|
1298 |
+
return (reshaped_logits,) + outputs[1:]
|
1299 |
+
|
1300 |
+
return FlaxMultipleChoiceModelOutput(
|
1301 |
+
logits=reshaped_logits,
|
1302 |
+
hidden_states=outputs.hidden_states,
|
1303 |
+
attentions=outputs.attentions,
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
|
1307 |
+
@add_start_docstrings(
|
1308 |
+
"""
|
1309 |
+
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1310 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1311 |
+
""",
|
1312 |
+
ELECTRA_START_DOCSTRING,
|
1313 |
+
)
|
1314 |
+
class FlaxElectraForMultipleChoice(FlaxElectraPreTrainedModel):
|
1315 |
+
module_class = FlaxElectraForMultipleChoiceModule
|
1316 |
+
|
1317 |
+
|
1318 |
+
# adapt docstring slightly for FlaxElectraForMultipleChoice
|
1319 |
+
overwrite_call_docstring(
|
1320 |
+
FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1321 |
+
)
|
1322 |
+
append_call_sample_docstring(
|
1323 |
+
FlaxElectraForMultipleChoice,
|
1324 |
+
_CHECKPOINT_FOR_DOC,
|
1325 |
+
FlaxMultipleChoiceModelOutput,
|
1326 |
+
_CONFIG_FOR_DOC,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
|
1330 |
+
class FlaxElectraForQuestionAnsweringModule(nn.Module):
|
1331 |
+
config: ElectraConfig
|
1332 |
+
dtype: jnp.dtype = jnp.float32
|
1333 |
+
gradient_checkpointing: bool = False
|
1334 |
+
|
1335 |
+
def setup(self):
|
1336 |
+
self.electra = FlaxElectraModule(
|
1337 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1338 |
+
)
|
1339 |
+
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1340 |
+
|
1341 |
+
def __call__(
|
1342 |
+
self,
|
1343 |
+
input_ids,
|
1344 |
+
attention_mask=None,
|
1345 |
+
token_type_ids=None,
|
1346 |
+
position_ids=None,
|
1347 |
+
head_mask=None,
|
1348 |
+
deterministic: bool = True,
|
1349 |
+
output_attentions: bool = False,
|
1350 |
+
output_hidden_states: bool = False,
|
1351 |
+
return_dict: bool = True,
|
1352 |
+
):
|
1353 |
+
# Model
|
1354 |
+
outputs = self.electra(
|
1355 |
+
input_ids,
|
1356 |
+
attention_mask,
|
1357 |
+
token_type_ids,
|
1358 |
+
position_ids,
|
1359 |
+
head_mask,
|
1360 |
+
deterministic=deterministic,
|
1361 |
+
output_attentions=output_attentions,
|
1362 |
+
output_hidden_states=output_hidden_states,
|
1363 |
+
return_dict=return_dict,
|
1364 |
+
)
|
1365 |
+
hidden_states = outputs[0]
|
1366 |
+
logits = self.qa_outputs(hidden_states)
|
1367 |
+
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
|
1368 |
+
start_logits = start_logits.squeeze(-1)
|
1369 |
+
end_logits = end_logits.squeeze(-1)
|
1370 |
+
|
1371 |
+
if not return_dict:
|
1372 |
+
return (start_logits, end_logits) + outputs[1:]
|
1373 |
+
|
1374 |
+
return FlaxQuestionAnsweringModelOutput(
|
1375 |
+
start_logits=start_logits,
|
1376 |
+
end_logits=end_logits,
|
1377 |
+
hidden_states=outputs.hidden_states,
|
1378 |
+
attentions=outputs.attentions,
|
1379 |
+
)
|
1380 |
+
|
1381 |
+
|
1382 |
+
@add_start_docstrings(
|
1383 |
+
"""
|
1384 |
+
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1385 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1386 |
+
""",
|
1387 |
+
ELECTRA_START_DOCSTRING,
|
1388 |
+
)
|
1389 |
+
class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel):
|
1390 |
+
module_class = FlaxElectraForQuestionAnsweringModule
|
1391 |
+
|
1392 |
+
|
1393 |
+
append_call_sample_docstring(
|
1394 |
+
FlaxElectraForQuestionAnswering,
|
1395 |
+
_CHECKPOINT_FOR_DOC,
|
1396 |
+
FlaxQuestionAnsweringModelOutput,
|
1397 |
+
_CONFIG_FOR_DOC,
|
1398 |
+
)
|
1399 |
+
|
1400 |
+
|
1401 |
+
class FlaxElectraClassificationHead(nn.Module):
|
1402 |
+
"""Head for sentence-level classification tasks."""
|
1403 |
+
|
1404 |
+
config: ElectraConfig
|
1405 |
+
dtype: jnp.dtype = jnp.float32
|
1406 |
+
|
1407 |
+
def setup(self):
|
1408 |
+
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
1409 |
+
classifier_dropout = (
|
1410 |
+
self.config.classifier_dropout
|
1411 |
+
if self.config.classifier_dropout is not None
|
1412 |
+
else self.config.hidden_dropout_prob
|
1413 |
+
)
|
1414 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1415 |
+
self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1416 |
+
|
1417 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
1418 |
+
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
|
1419 |
+
x = self.dropout(x, deterministic=deterministic)
|
1420 |
+
x = self.dense(x)
|
1421 |
+
x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu
|
1422 |
+
x = self.dropout(x, deterministic=deterministic)
|
1423 |
+
x = self.out_proj(x)
|
1424 |
+
return x
|
1425 |
+
|
1426 |
+
|
1427 |
+
class FlaxElectraForSequenceClassificationModule(nn.Module):
|
1428 |
+
config: ElectraConfig
|
1429 |
+
dtype: jnp.dtype = jnp.float32
|
1430 |
+
gradient_checkpointing: bool = False
|
1431 |
+
|
1432 |
+
def setup(self):
|
1433 |
+
self.electra = FlaxElectraModule(
|
1434 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1435 |
+
)
|
1436 |
+
self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype)
|
1437 |
+
|
1438 |
+
def __call__(
|
1439 |
+
self,
|
1440 |
+
input_ids,
|
1441 |
+
attention_mask=None,
|
1442 |
+
token_type_ids=None,
|
1443 |
+
position_ids=None,
|
1444 |
+
head_mask=None,
|
1445 |
+
deterministic: bool = True,
|
1446 |
+
output_attentions: bool = False,
|
1447 |
+
output_hidden_states: bool = False,
|
1448 |
+
return_dict: bool = True,
|
1449 |
+
):
|
1450 |
+
# Model
|
1451 |
+
outputs = self.electra(
|
1452 |
+
input_ids,
|
1453 |
+
attention_mask,
|
1454 |
+
token_type_ids,
|
1455 |
+
position_ids,
|
1456 |
+
head_mask,
|
1457 |
+
deterministic=deterministic,
|
1458 |
+
output_attentions=output_attentions,
|
1459 |
+
output_hidden_states=output_hidden_states,
|
1460 |
+
return_dict=return_dict,
|
1461 |
+
)
|
1462 |
+
hidden_states = outputs[0]
|
1463 |
+
logits = self.classifier(hidden_states, deterministic=deterministic)
|
1464 |
+
|
1465 |
+
if not return_dict:
|
1466 |
+
return (logits,) + outputs[1:]
|
1467 |
+
|
1468 |
+
return FlaxSequenceClassifierOutput(
|
1469 |
+
logits=logits,
|
1470 |
+
hidden_states=outputs.hidden_states,
|
1471 |
+
attentions=outputs.attentions,
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
|
1475 |
+
@add_start_docstrings(
|
1476 |
+
"""
|
1477 |
+
Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1478 |
+
pooled output) e.g. for GLUE tasks.
|
1479 |
+
""",
|
1480 |
+
ELECTRA_START_DOCSTRING,
|
1481 |
+
)
|
1482 |
+
class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel):
|
1483 |
+
module_class = FlaxElectraForSequenceClassificationModule
|
1484 |
+
|
1485 |
+
|
1486 |
+
append_call_sample_docstring(
|
1487 |
+
FlaxElectraForSequenceClassification,
|
1488 |
+
_CHECKPOINT_FOR_DOC,
|
1489 |
+
FlaxSequenceClassifierOutput,
|
1490 |
+
_CONFIG_FOR_DOC,
|
1491 |
+
)
|
1492 |
+
|
1493 |
+
|
1494 |
+
class FlaxElectraForCausalLMModule(nn.Module):
|
1495 |
+
config: ElectraConfig
|
1496 |
+
dtype: jnp.dtype = jnp.float32
|
1497 |
+
gradient_checkpointing: bool = False
|
1498 |
+
|
1499 |
+
def setup(self):
|
1500 |
+
self.electra = FlaxElectraModule(
|
1501 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1502 |
+
)
|
1503 |
+
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
|
1504 |
+
if self.config.tie_word_embeddings:
|
1505 |
+
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
|
1506 |
+
else:
|
1507 |
+
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
|
1508 |
+
|
1509 |
+
def __call__(
|
1510 |
+
self,
|
1511 |
+
input_ids,
|
1512 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1513 |
+
token_type_ids: Optional[jnp.ndarray] = None,
|
1514 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1515 |
+
head_mask: Optional[jnp.ndarray] = None,
|
1516 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
1517 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1518 |
+
init_cache: bool = False,
|
1519 |
+
deterministic: bool = True,
|
1520 |
+
output_attentions: bool = False,
|
1521 |
+
output_hidden_states: bool = False,
|
1522 |
+
return_dict: bool = True,
|
1523 |
+
):
|
1524 |
+
outputs = self.electra(
|
1525 |
+
input_ids,
|
1526 |
+
attention_mask,
|
1527 |
+
token_type_ids,
|
1528 |
+
position_ids,
|
1529 |
+
head_mask,
|
1530 |
+
encoder_hidden_states=encoder_hidden_states,
|
1531 |
+
encoder_attention_mask=encoder_attention_mask,
|
1532 |
+
init_cache=init_cache,
|
1533 |
+
deterministic=deterministic,
|
1534 |
+
output_attentions=output_attentions,
|
1535 |
+
output_hidden_states=output_hidden_states,
|
1536 |
+
return_dict=return_dict,
|
1537 |
+
)
|
1538 |
+
hidden_states = outputs[0]
|
1539 |
+
prediction_scores = self.generator_predictions(hidden_states)
|
1540 |
+
|
1541 |
+
if self.config.tie_word_embeddings:
|
1542 |
+
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1543 |
+
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
|
1544 |
+
else:
|
1545 |
+
prediction_scores = self.generator_lm_head(prediction_scores)
|
1546 |
+
|
1547 |
+
if not return_dict:
|
1548 |
+
return (prediction_scores,) + outputs[1:]
|
1549 |
+
|
1550 |
+
return FlaxCausalLMOutputWithCrossAttentions(
|
1551 |
+
logits=prediction_scores,
|
1552 |
+
hidden_states=outputs.hidden_states,
|
1553 |
+
attentions=outputs.attentions,
|
1554 |
+
cross_attentions=outputs.cross_attentions,
|
1555 |
+
)
|
1556 |
+
|
1557 |
+
|
1558 |
+
@add_start_docstrings(
|
1559 |
+
"""
|
1560 |
+
Electra Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
|
1561 |
+
autoregressive tasks.
|
1562 |
+
""",
|
1563 |
+
ELECTRA_START_DOCSTRING,
|
1564 |
+
)
|
1565 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->Electra
|
1566 |
+
class FlaxElectraForCausalLM(FlaxElectraPreTrainedModel):
|
1567 |
+
module_class = FlaxElectraForCausalLMModule
|
1568 |
+
|
1569 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
1570 |
+
# initializing the cache
|
1571 |
+
batch_size, seq_length = input_ids.shape
|
1572 |
+
|
1573 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
1574 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1575 |
+
# But since the decoder uses a causal mask, those positions are masked anyway.
|
1576 |
+
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
|
1577 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1578 |
+
if attention_mask is not None:
|
1579 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
1580 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
1581 |
+
else:
|
1582 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1583 |
+
|
1584 |
+
return {
|
1585 |
+
"past_key_values": past_key_values,
|
1586 |
+
"attention_mask": extended_attention_mask,
|
1587 |
+
"position_ids": position_ids,
|
1588 |
+
}
|
1589 |
+
|
1590 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1591 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1592 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
1593 |
+
return model_kwargs
|
1594 |
+
|
1595 |
+
|
1596 |
+
append_call_sample_docstring(
|
1597 |
+
FlaxElectraForCausalLM,
|
1598 |
+
_CHECKPOINT_FOR_DOC,
|
1599 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
1600 |
+
_CONFIG_FOR_DOC,
|
1601 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py
ADDED
@@ -0,0 +1,1768 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF Electra model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import math
|
21 |
+
import warnings
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...activations_tf import get_tf_activation
|
29 |
+
from ...modeling_tf_outputs import (
|
30 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
TFMaskedLMOutput,
|
32 |
+
TFMultipleChoiceModelOutput,
|
33 |
+
TFQuestionAnsweringModelOutput,
|
34 |
+
TFSequenceClassifierOutput,
|
35 |
+
TFTokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from ...modeling_tf_utils import (
|
38 |
+
TFMaskedLanguageModelingLoss,
|
39 |
+
TFModelInputType,
|
40 |
+
TFMultipleChoiceLoss,
|
41 |
+
TFPreTrainedModel,
|
42 |
+
TFQuestionAnsweringLoss,
|
43 |
+
TFSequenceClassificationLoss,
|
44 |
+
TFSequenceSummary,
|
45 |
+
TFTokenClassificationLoss,
|
46 |
+
get_initializer,
|
47 |
+
keras,
|
48 |
+
keras_serializable,
|
49 |
+
unpack_inputs,
|
50 |
+
)
|
51 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
52 |
+
from ...utils import (
|
53 |
+
ModelOutput,
|
54 |
+
add_code_sample_docstrings,
|
55 |
+
add_start_docstrings,
|
56 |
+
add_start_docstrings_to_model_forward,
|
57 |
+
logging,
|
58 |
+
replace_return_docstrings,
|
59 |
+
)
|
60 |
+
from .configuration_electra import ElectraConfig
|
61 |
+
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__)
|
64 |
+
|
65 |
+
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
|
66 |
+
_CONFIG_FOR_DOC = "ElectraConfig"
|
67 |
+
|
68 |
+
|
69 |
+
from ..deprecated._archive_maps import TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra
|
73 |
+
class TFElectraSelfAttention(keras.layers.Layer):
|
74 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
75 |
+
super().__init__(**kwargs)
|
76 |
+
|
77 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
78 |
+
raise ValueError(
|
79 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
|
80 |
+
f"of attention heads ({config.num_attention_heads})"
|
81 |
+
)
|
82 |
+
|
83 |
+
self.num_attention_heads = config.num_attention_heads
|
84 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
85 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
86 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
87 |
+
|
88 |
+
self.query = keras.layers.Dense(
|
89 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
90 |
+
)
|
91 |
+
self.key = keras.layers.Dense(
|
92 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
93 |
+
)
|
94 |
+
self.value = keras.layers.Dense(
|
95 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
96 |
+
)
|
97 |
+
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
|
98 |
+
|
99 |
+
self.is_decoder = config.is_decoder
|
100 |
+
self.config = config
|
101 |
+
|
102 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
103 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
104 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
105 |
+
|
106 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
107 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
108 |
+
|
109 |
+
def call(
|
110 |
+
self,
|
111 |
+
hidden_states: tf.Tensor,
|
112 |
+
attention_mask: tf.Tensor,
|
113 |
+
head_mask: tf.Tensor,
|
114 |
+
encoder_hidden_states: tf.Tensor,
|
115 |
+
encoder_attention_mask: tf.Tensor,
|
116 |
+
past_key_value: Tuple[tf.Tensor],
|
117 |
+
output_attentions: bool,
|
118 |
+
training: bool = False,
|
119 |
+
) -> Tuple[tf.Tensor]:
|
120 |
+
batch_size = shape_list(hidden_states)[0]
|
121 |
+
mixed_query_layer = self.query(inputs=hidden_states)
|
122 |
+
|
123 |
+
# If this is instantiated as a cross-attention module, the keys
|
124 |
+
# and values come from an encoder; the attention mask needs to be
|
125 |
+
# such that the encoder's padding tokens are not attended to.
|
126 |
+
is_cross_attention = encoder_hidden_states is not None
|
127 |
+
|
128 |
+
if is_cross_attention and past_key_value is not None:
|
129 |
+
# reuse k,v, cross_attentions
|
130 |
+
key_layer = past_key_value[0]
|
131 |
+
value_layer = past_key_value[1]
|
132 |
+
attention_mask = encoder_attention_mask
|
133 |
+
elif is_cross_attention:
|
134 |
+
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
|
135 |
+
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
|
136 |
+
attention_mask = encoder_attention_mask
|
137 |
+
elif past_key_value is not None:
|
138 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
139 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
140 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
141 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
142 |
+
else:
|
143 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
144 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
145 |
+
|
146 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
147 |
+
|
148 |
+
if self.is_decoder:
|
149 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
150 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
151 |
+
# key/value_states (first "if" case)
|
152 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
153 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
154 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
155 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
156 |
+
past_key_value = (key_layer, value_layer)
|
157 |
+
|
158 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
159 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
160 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
161 |
+
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
|
162 |
+
attention_scores = tf.divide(attention_scores, dk)
|
163 |
+
|
164 |
+
if attention_mask is not None:
|
165 |
+
# Apply the attention mask is (precomputed for all layers in TFElectraModel call() function)
|
166 |
+
attention_scores = tf.add(attention_scores, attention_mask)
|
167 |
+
|
168 |
+
# Normalize the attention scores to probabilities.
|
169 |
+
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
170 |
+
|
171 |
+
# This is actually dropping out entire tokens to attend to, which might
|
172 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
173 |
+
attention_probs = self.dropout(inputs=attention_probs, training=training)
|
174 |
+
|
175 |
+
# Mask heads if we want to
|
176 |
+
if head_mask is not None:
|
177 |
+
attention_probs = tf.multiply(attention_probs, head_mask)
|
178 |
+
|
179 |
+
attention_output = tf.matmul(attention_probs, value_layer)
|
180 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
181 |
+
|
182 |
+
# (batch_size, seq_len_q, all_head_size)
|
183 |
+
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
|
184 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
185 |
+
|
186 |
+
if self.is_decoder:
|
187 |
+
outputs = outputs + (past_key_value,)
|
188 |
+
return outputs
|
189 |
+
|
190 |
+
def build(self, input_shape=None):
|
191 |
+
if self.built:
|
192 |
+
return
|
193 |
+
self.built = True
|
194 |
+
if getattr(self, "query", None) is not None:
|
195 |
+
with tf.name_scope(self.query.name):
|
196 |
+
self.query.build([None, None, self.config.hidden_size])
|
197 |
+
if getattr(self, "key", None) is not None:
|
198 |
+
with tf.name_scope(self.key.name):
|
199 |
+
self.key.build([None, None, self.config.hidden_size])
|
200 |
+
if getattr(self, "value", None) is not None:
|
201 |
+
with tf.name_scope(self.value.name):
|
202 |
+
self.value.build([None, None, self.config.hidden_size])
|
203 |
+
|
204 |
+
|
205 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra
|
206 |
+
class TFElectraSelfOutput(keras.layers.Layer):
|
207 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
208 |
+
super().__init__(**kwargs)
|
209 |
+
|
210 |
+
self.dense = keras.layers.Dense(
|
211 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
212 |
+
)
|
213 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
214 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
215 |
+
self.config = config
|
216 |
+
|
217 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
218 |
+
hidden_states = self.dense(inputs=hidden_states)
|
219 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
220 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
221 |
+
|
222 |
+
return hidden_states
|
223 |
+
|
224 |
+
def build(self, input_shape=None):
|
225 |
+
if self.built:
|
226 |
+
return
|
227 |
+
self.built = True
|
228 |
+
if getattr(self, "dense", None) is not None:
|
229 |
+
with tf.name_scope(self.dense.name):
|
230 |
+
self.dense.build([None, None, self.config.hidden_size])
|
231 |
+
if getattr(self, "LayerNorm", None) is not None:
|
232 |
+
with tf.name_scope(self.LayerNorm.name):
|
233 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
234 |
+
|
235 |
+
|
236 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
|
237 |
+
class TFElectraAttention(keras.layers.Layer):
|
238 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
239 |
+
super().__init__(**kwargs)
|
240 |
+
|
241 |
+
self.self_attention = TFElectraSelfAttention(config, name="self")
|
242 |
+
self.dense_output = TFElectraSelfOutput(config, name="output")
|
243 |
+
|
244 |
+
def prune_heads(self, heads):
|
245 |
+
raise NotImplementedError
|
246 |
+
|
247 |
+
def call(
|
248 |
+
self,
|
249 |
+
input_tensor: tf.Tensor,
|
250 |
+
attention_mask: tf.Tensor,
|
251 |
+
head_mask: tf.Tensor,
|
252 |
+
encoder_hidden_states: tf.Tensor,
|
253 |
+
encoder_attention_mask: tf.Tensor,
|
254 |
+
past_key_value: Tuple[tf.Tensor],
|
255 |
+
output_attentions: bool,
|
256 |
+
training: bool = False,
|
257 |
+
) -> Tuple[tf.Tensor]:
|
258 |
+
self_outputs = self.self_attention(
|
259 |
+
hidden_states=input_tensor,
|
260 |
+
attention_mask=attention_mask,
|
261 |
+
head_mask=head_mask,
|
262 |
+
encoder_hidden_states=encoder_hidden_states,
|
263 |
+
encoder_attention_mask=encoder_attention_mask,
|
264 |
+
past_key_value=past_key_value,
|
265 |
+
output_attentions=output_attentions,
|
266 |
+
training=training,
|
267 |
+
)
|
268 |
+
attention_output = self.dense_output(
|
269 |
+
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
|
270 |
+
)
|
271 |
+
# add attentions (possibly with past_key_value) if we output them
|
272 |
+
outputs = (attention_output,) + self_outputs[1:]
|
273 |
+
|
274 |
+
return outputs
|
275 |
+
|
276 |
+
def build(self, input_shape=None):
|
277 |
+
if self.built:
|
278 |
+
return
|
279 |
+
self.built = True
|
280 |
+
if getattr(self, "self_attention", None) is not None:
|
281 |
+
with tf.name_scope(self.self_attention.name):
|
282 |
+
self.self_attention.build(None)
|
283 |
+
if getattr(self, "dense_output", None) is not None:
|
284 |
+
with tf.name_scope(self.dense_output.name):
|
285 |
+
self.dense_output.build(None)
|
286 |
+
|
287 |
+
|
288 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra
|
289 |
+
class TFElectraIntermediate(keras.layers.Layer):
|
290 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
291 |
+
super().__init__(**kwargs)
|
292 |
+
|
293 |
+
self.dense = keras.layers.Dense(
|
294 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
295 |
+
)
|
296 |
+
|
297 |
+
if isinstance(config.hidden_act, str):
|
298 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
299 |
+
else:
|
300 |
+
self.intermediate_act_fn = config.hidden_act
|
301 |
+
self.config = config
|
302 |
+
|
303 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
304 |
+
hidden_states = self.dense(inputs=hidden_states)
|
305 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
306 |
+
|
307 |
+
return hidden_states
|
308 |
+
|
309 |
+
def build(self, input_shape=None):
|
310 |
+
if self.built:
|
311 |
+
return
|
312 |
+
self.built = True
|
313 |
+
if getattr(self, "dense", None) is not None:
|
314 |
+
with tf.name_scope(self.dense.name):
|
315 |
+
self.dense.build([None, None, self.config.hidden_size])
|
316 |
+
|
317 |
+
|
318 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra
|
319 |
+
class TFElectraOutput(keras.layers.Layer):
|
320 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
321 |
+
super().__init__(**kwargs)
|
322 |
+
|
323 |
+
self.dense = keras.layers.Dense(
|
324 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
325 |
+
)
|
326 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
327 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
328 |
+
self.config = config
|
329 |
+
|
330 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
331 |
+
hidden_states = self.dense(inputs=hidden_states)
|
332 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
333 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
334 |
+
|
335 |
+
return hidden_states
|
336 |
+
|
337 |
+
def build(self, input_shape=None):
|
338 |
+
if self.built:
|
339 |
+
return
|
340 |
+
self.built = True
|
341 |
+
if getattr(self, "dense", None) is not None:
|
342 |
+
with tf.name_scope(self.dense.name):
|
343 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
344 |
+
if getattr(self, "LayerNorm", None) is not None:
|
345 |
+
with tf.name_scope(self.LayerNorm.name):
|
346 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
347 |
+
|
348 |
+
|
349 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
|
350 |
+
class TFElectraLayer(keras.layers.Layer):
|
351 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
352 |
+
super().__init__(**kwargs)
|
353 |
+
|
354 |
+
self.attention = TFElectraAttention(config, name="attention")
|
355 |
+
self.is_decoder = config.is_decoder
|
356 |
+
self.add_cross_attention = config.add_cross_attention
|
357 |
+
if self.add_cross_attention:
|
358 |
+
if not self.is_decoder:
|
359 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
360 |
+
self.crossattention = TFElectraAttention(config, name="crossattention")
|
361 |
+
self.intermediate = TFElectraIntermediate(config, name="intermediate")
|
362 |
+
self.bert_output = TFElectraOutput(config, name="output")
|
363 |
+
|
364 |
+
def call(
|
365 |
+
self,
|
366 |
+
hidden_states: tf.Tensor,
|
367 |
+
attention_mask: tf.Tensor,
|
368 |
+
head_mask: tf.Tensor,
|
369 |
+
encoder_hidden_states: tf.Tensor | None,
|
370 |
+
encoder_attention_mask: tf.Tensor | None,
|
371 |
+
past_key_value: Tuple[tf.Tensor] | None,
|
372 |
+
output_attentions: bool,
|
373 |
+
training: bool = False,
|
374 |
+
) -> Tuple[tf.Tensor]:
|
375 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
376 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
377 |
+
self_attention_outputs = self.attention(
|
378 |
+
input_tensor=hidden_states,
|
379 |
+
attention_mask=attention_mask,
|
380 |
+
head_mask=head_mask,
|
381 |
+
encoder_hidden_states=None,
|
382 |
+
encoder_attention_mask=None,
|
383 |
+
past_key_value=self_attn_past_key_value,
|
384 |
+
output_attentions=output_attentions,
|
385 |
+
training=training,
|
386 |
+
)
|
387 |
+
attention_output = self_attention_outputs[0]
|
388 |
+
|
389 |
+
# if decoder, the last output is tuple of self-attn cache
|
390 |
+
if self.is_decoder:
|
391 |
+
outputs = self_attention_outputs[1:-1]
|
392 |
+
present_key_value = self_attention_outputs[-1]
|
393 |
+
else:
|
394 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
395 |
+
|
396 |
+
cross_attn_present_key_value = None
|
397 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
398 |
+
if not hasattr(self, "crossattention"):
|
399 |
+
raise ValueError(
|
400 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
401 |
+
" by setting `config.add_cross_attention=True`"
|
402 |
+
)
|
403 |
+
|
404 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
405 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
406 |
+
cross_attention_outputs = self.crossattention(
|
407 |
+
input_tensor=attention_output,
|
408 |
+
attention_mask=attention_mask,
|
409 |
+
head_mask=head_mask,
|
410 |
+
encoder_hidden_states=encoder_hidden_states,
|
411 |
+
encoder_attention_mask=encoder_attention_mask,
|
412 |
+
past_key_value=cross_attn_past_key_value,
|
413 |
+
output_attentions=output_attentions,
|
414 |
+
training=training,
|
415 |
+
)
|
416 |
+
attention_output = cross_attention_outputs[0]
|
417 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
418 |
+
|
419 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
420 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
421 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
422 |
+
|
423 |
+
intermediate_output = self.intermediate(hidden_states=attention_output)
|
424 |
+
layer_output = self.bert_output(
|
425 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
426 |
+
)
|
427 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
428 |
+
|
429 |
+
# if decoder, return the attn key/values as the last output
|
430 |
+
if self.is_decoder:
|
431 |
+
outputs = outputs + (present_key_value,)
|
432 |
+
|
433 |
+
return outputs
|
434 |
+
|
435 |
+
def build(self, input_shape=None):
|
436 |
+
if self.built:
|
437 |
+
return
|
438 |
+
self.built = True
|
439 |
+
if getattr(self, "attention", None) is not None:
|
440 |
+
with tf.name_scope(self.attention.name):
|
441 |
+
self.attention.build(None)
|
442 |
+
if getattr(self, "intermediate", None) is not None:
|
443 |
+
with tf.name_scope(self.intermediate.name):
|
444 |
+
self.intermediate.build(None)
|
445 |
+
if getattr(self, "bert_output", None) is not None:
|
446 |
+
with tf.name_scope(self.bert_output.name):
|
447 |
+
self.bert_output.build(None)
|
448 |
+
if getattr(self, "crossattention", None) is not None:
|
449 |
+
with tf.name_scope(self.crossattention.name):
|
450 |
+
self.crossattention.build(None)
|
451 |
+
|
452 |
+
|
453 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
|
454 |
+
class TFElectraEncoder(keras.layers.Layer):
|
455 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
456 |
+
super().__init__(**kwargs)
|
457 |
+
self.config = config
|
458 |
+
self.layer = [TFElectraLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
459 |
+
|
460 |
+
def call(
|
461 |
+
self,
|
462 |
+
hidden_states: tf.Tensor,
|
463 |
+
attention_mask: tf.Tensor,
|
464 |
+
head_mask: tf.Tensor,
|
465 |
+
encoder_hidden_states: tf.Tensor | None,
|
466 |
+
encoder_attention_mask: tf.Tensor | None,
|
467 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
|
468 |
+
use_cache: Optional[bool],
|
469 |
+
output_attentions: bool,
|
470 |
+
output_hidden_states: bool,
|
471 |
+
return_dict: bool,
|
472 |
+
training: bool = False,
|
473 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
474 |
+
all_hidden_states = () if output_hidden_states else None
|
475 |
+
all_attentions = () if output_attentions else None
|
476 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
477 |
+
|
478 |
+
next_decoder_cache = () if use_cache else None
|
479 |
+
for i, layer_module in enumerate(self.layer):
|
480 |
+
if output_hidden_states:
|
481 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
482 |
+
|
483 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
484 |
+
|
485 |
+
layer_outputs = layer_module(
|
486 |
+
hidden_states=hidden_states,
|
487 |
+
attention_mask=attention_mask,
|
488 |
+
head_mask=head_mask[i],
|
489 |
+
encoder_hidden_states=encoder_hidden_states,
|
490 |
+
encoder_attention_mask=encoder_attention_mask,
|
491 |
+
past_key_value=past_key_value,
|
492 |
+
output_attentions=output_attentions,
|
493 |
+
training=training,
|
494 |
+
)
|
495 |
+
hidden_states = layer_outputs[0]
|
496 |
+
|
497 |
+
if use_cache:
|
498 |
+
next_decoder_cache += (layer_outputs[-1],)
|
499 |
+
|
500 |
+
if output_attentions:
|
501 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
502 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
503 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
504 |
+
|
505 |
+
# Add last layer
|
506 |
+
if output_hidden_states:
|
507 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
508 |
+
|
509 |
+
if not return_dict:
|
510 |
+
return tuple(
|
511 |
+
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
|
512 |
+
)
|
513 |
+
|
514 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
515 |
+
last_hidden_state=hidden_states,
|
516 |
+
past_key_values=next_decoder_cache,
|
517 |
+
hidden_states=all_hidden_states,
|
518 |
+
attentions=all_attentions,
|
519 |
+
cross_attentions=all_cross_attentions,
|
520 |
+
)
|
521 |
+
|
522 |
+
def build(self, input_shape=None):
|
523 |
+
if self.built:
|
524 |
+
return
|
525 |
+
self.built = True
|
526 |
+
if getattr(self, "layer", None) is not None:
|
527 |
+
for layer in self.layer:
|
528 |
+
with tf.name_scope(layer.name):
|
529 |
+
layer.build(None)
|
530 |
+
|
531 |
+
|
532 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra
|
533 |
+
class TFElectraPooler(keras.layers.Layer):
|
534 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
535 |
+
super().__init__(**kwargs)
|
536 |
+
|
537 |
+
self.dense = keras.layers.Dense(
|
538 |
+
units=config.hidden_size,
|
539 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
540 |
+
activation="tanh",
|
541 |
+
name="dense",
|
542 |
+
)
|
543 |
+
self.config = config
|
544 |
+
|
545 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
546 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
547 |
+
# to the first token.
|
548 |
+
first_token_tensor = hidden_states[:, 0]
|
549 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
550 |
+
|
551 |
+
return pooled_output
|
552 |
+
|
553 |
+
def build(self, input_shape=None):
|
554 |
+
if self.built:
|
555 |
+
return
|
556 |
+
self.built = True
|
557 |
+
if getattr(self, "dense", None) is not None:
|
558 |
+
with tf.name_scope(self.dense.name):
|
559 |
+
self.dense.build([None, None, self.config.hidden_size])
|
560 |
+
|
561 |
+
|
562 |
+
# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra
|
563 |
+
class TFElectraEmbeddings(keras.layers.Layer):
|
564 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
565 |
+
|
566 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
567 |
+
super().__init__(**kwargs)
|
568 |
+
|
569 |
+
self.config = config
|
570 |
+
self.embedding_size = config.embedding_size
|
571 |
+
self.max_position_embeddings = config.max_position_embeddings
|
572 |
+
self.initializer_range = config.initializer_range
|
573 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
574 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
575 |
+
|
576 |
+
def build(self, input_shape=None):
|
577 |
+
with tf.name_scope("word_embeddings"):
|
578 |
+
self.weight = self.add_weight(
|
579 |
+
name="weight",
|
580 |
+
shape=[self.config.vocab_size, self.embedding_size],
|
581 |
+
initializer=get_initializer(self.initializer_range),
|
582 |
+
)
|
583 |
+
|
584 |
+
with tf.name_scope("token_type_embeddings"):
|
585 |
+
self.token_type_embeddings = self.add_weight(
|
586 |
+
name="embeddings",
|
587 |
+
shape=[self.config.type_vocab_size, self.embedding_size],
|
588 |
+
initializer=get_initializer(self.initializer_range),
|
589 |
+
)
|
590 |
+
|
591 |
+
with tf.name_scope("position_embeddings"):
|
592 |
+
self.position_embeddings = self.add_weight(
|
593 |
+
name="embeddings",
|
594 |
+
shape=[self.max_position_embeddings, self.embedding_size],
|
595 |
+
initializer=get_initializer(self.initializer_range),
|
596 |
+
)
|
597 |
+
|
598 |
+
if self.built:
|
599 |
+
return
|
600 |
+
self.built = True
|
601 |
+
if getattr(self, "LayerNorm", None) is not None:
|
602 |
+
with tf.name_scope(self.LayerNorm.name):
|
603 |
+
self.LayerNorm.build([None, None, self.config.embedding_size])
|
604 |
+
|
605 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
|
606 |
+
def call(
|
607 |
+
self,
|
608 |
+
input_ids: tf.Tensor = None,
|
609 |
+
position_ids: tf.Tensor = None,
|
610 |
+
token_type_ids: tf.Tensor = None,
|
611 |
+
inputs_embeds: tf.Tensor = None,
|
612 |
+
past_key_values_length=0,
|
613 |
+
training: bool = False,
|
614 |
+
) -> tf.Tensor:
|
615 |
+
"""
|
616 |
+
Applies embedding based on inputs tensor.
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
620 |
+
"""
|
621 |
+
if input_ids is None and inputs_embeds is None:
|
622 |
+
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
|
623 |
+
|
624 |
+
if input_ids is not None:
|
625 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
626 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
627 |
+
|
628 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
629 |
+
|
630 |
+
if token_type_ids is None:
|
631 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
632 |
+
|
633 |
+
if position_ids is None:
|
634 |
+
position_ids = tf.expand_dims(
|
635 |
+
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
|
636 |
+
)
|
637 |
+
|
638 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
639 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
640 |
+
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
|
641 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
642 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
643 |
+
|
644 |
+
return final_embeddings
|
645 |
+
|
646 |
+
|
647 |
+
class TFElectraDiscriminatorPredictions(keras.layers.Layer):
|
648 |
+
def __init__(self, config, **kwargs):
|
649 |
+
super().__init__(**kwargs)
|
650 |
+
|
651 |
+
self.dense = keras.layers.Dense(config.hidden_size, name="dense")
|
652 |
+
self.dense_prediction = keras.layers.Dense(1, name="dense_prediction")
|
653 |
+
self.config = config
|
654 |
+
|
655 |
+
def call(self, discriminator_hidden_states, training=False):
|
656 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
657 |
+
hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states)
|
658 |
+
logits = tf.squeeze(self.dense_prediction(hidden_states), -1)
|
659 |
+
|
660 |
+
return logits
|
661 |
+
|
662 |
+
def build(self, input_shape=None):
|
663 |
+
if self.built:
|
664 |
+
return
|
665 |
+
self.built = True
|
666 |
+
if getattr(self, "dense", None) is not None:
|
667 |
+
with tf.name_scope(self.dense.name):
|
668 |
+
self.dense.build([None, None, self.config.hidden_size])
|
669 |
+
if getattr(self, "dense_prediction", None) is not None:
|
670 |
+
with tf.name_scope(self.dense_prediction.name):
|
671 |
+
self.dense_prediction.build([None, None, self.config.hidden_size])
|
672 |
+
|
673 |
+
|
674 |
+
class TFElectraGeneratorPredictions(keras.layers.Layer):
|
675 |
+
def __init__(self, config, **kwargs):
|
676 |
+
super().__init__(**kwargs)
|
677 |
+
|
678 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
679 |
+
self.dense = keras.layers.Dense(config.embedding_size, name="dense")
|
680 |
+
self.config = config
|
681 |
+
|
682 |
+
def call(self, generator_hidden_states, training=False):
|
683 |
+
hidden_states = self.dense(generator_hidden_states)
|
684 |
+
hidden_states = get_tf_activation("gelu")(hidden_states)
|
685 |
+
hidden_states = self.LayerNorm(hidden_states)
|
686 |
+
|
687 |
+
return hidden_states
|
688 |
+
|
689 |
+
def build(self, input_shape=None):
|
690 |
+
if self.built:
|
691 |
+
return
|
692 |
+
self.built = True
|
693 |
+
if getattr(self, "LayerNorm", None) is not None:
|
694 |
+
with tf.name_scope(self.LayerNorm.name):
|
695 |
+
self.LayerNorm.build([None, None, self.config.embedding_size])
|
696 |
+
if getattr(self, "dense", None) is not None:
|
697 |
+
with tf.name_scope(self.dense.name):
|
698 |
+
self.dense.build([None, None, self.config.hidden_size])
|
699 |
+
|
700 |
+
|
701 |
+
class TFElectraPreTrainedModel(TFPreTrainedModel):
|
702 |
+
"""
|
703 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
704 |
+
models.
|
705 |
+
"""
|
706 |
+
|
707 |
+
config_class = ElectraConfig
|
708 |
+
base_model_prefix = "electra"
|
709 |
+
# When the model is loaded from a PT model
|
710 |
+
_keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"]
|
711 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
712 |
+
|
713 |
+
|
714 |
+
@keras_serializable
|
715 |
+
class TFElectraMainLayer(keras.layers.Layer):
|
716 |
+
config_class = ElectraConfig
|
717 |
+
|
718 |
+
def __init__(self, config, **kwargs):
|
719 |
+
super().__init__(**kwargs)
|
720 |
+
|
721 |
+
self.config = config
|
722 |
+
self.is_decoder = config.is_decoder
|
723 |
+
|
724 |
+
self.embeddings = TFElectraEmbeddings(config, name="embeddings")
|
725 |
+
|
726 |
+
if config.embedding_size != config.hidden_size:
|
727 |
+
self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project")
|
728 |
+
|
729 |
+
self.encoder = TFElectraEncoder(config, name="encoder")
|
730 |
+
|
731 |
+
def get_input_embeddings(self):
|
732 |
+
return self.embeddings
|
733 |
+
|
734 |
+
def set_input_embeddings(self, value):
|
735 |
+
self.embeddings.weight = value
|
736 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
737 |
+
|
738 |
+
def _prune_heads(self, heads_to_prune):
|
739 |
+
"""
|
740 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
741 |
+
class PreTrainedModel
|
742 |
+
"""
|
743 |
+
raise NotImplementedError
|
744 |
+
|
745 |
+
def get_extended_attention_mask(self, attention_mask, input_shape, dtype, past_key_values_length=0):
|
746 |
+
batch_size, seq_length = input_shape
|
747 |
+
|
748 |
+
if attention_mask is None:
|
749 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
750 |
+
|
751 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
752 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
753 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
754 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
755 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
756 |
+
attention_mask_shape = shape_list(attention_mask)
|
757 |
+
|
758 |
+
mask_seq_length = seq_length + past_key_values_length
|
759 |
+
# Copied from `modeling_tf_t5.py`
|
760 |
+
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
|
761 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
762 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
763 |
+
if self.is_decoder:
|
764 |
+
seq_ids = tf.range(mask_seq_length)
|
765 |
+
causal_mask = tf.less_equal(
|
766 |
+
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
|
767 |
+
seq_ids[None, :, None],
|
768 |
+
)
|
769 |
+
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
|
770 |
+
extended_attention_mask = causal_mask * attention_mask[:, None, :]
|
771 |
+
attention_mask_shape = shape_list(extended_attention_mask)
|
772 |
+
extended_attention_mask = tf.reshape(
|
773 |
+
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
|
774 |
+
)
|
775 |
+
if past_key_values_length > 0:
|
776 |
+
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
|
777 |
+
else:
|
778 |
+
extended_attention_mask = tf.reshape(
|
779 |
+
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
|
780 |
+
)
|
781 |
+
|
782 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
783 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
784 |
+
# positions we want to attend and -10000.0 for masked positions.
|
785 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
786 |
+
# effectively the same as removing these entirely.
|
787 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=dtype)
|
788 |
+
one_cst = tf.constant(1.0, dtype=dtype)
|
789 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=dtype)
|
790 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
791 |
+
|
792 |
+
return extended_attention_mask
|
793 |
+
|
794 |
+
def get_head_mask(self, head_mask):
|
795 |
+
if head_mask is not None:
|
796 |
+
raise NotImplementedError
|
797 |
+
else:
|
798 |
+
head_mask = [None] * self.config.num_hidden_layers
|
799 |
+
|
800 |
+
return head_mask
|
801 |
+
|
802 |
+
@unpack_inputs
|
803 |
+
def call(
|
804 |
+
self,
|
805 |
+
input_ids: TFModelInputType | None = None,
|
806 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
807 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
808 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
809 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
810 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
811 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
812 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
813 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
814 |
+
use_cache: Optional[bool] = None,
|
815 |
+
output_attentions: Optional[bool] = None,
|
816 |
+
output_hidden_states: Optional[bool] = None,
|
817 |
+
return_dict: Optional[bool] = None,
|
818 |
+
training: Optional[bool] = False,
|
819 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
820 |
+
if not self.config.is_decoder:
|
821 |
+
use_cache = False
|
822 |
+
|
823 |
+
if input_ids is not None and inputs_embeds is not None:
|
824 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
825 |
+
elif input_ids is not None:
|
826 |
+
input_shape = shape_list(input_ids)
|
827 |
+
elif inputs_embeds is not None:
|
828 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
829 |
+
else:
|
830 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
831 |
+
|
832 |
+
batch_size, seq_length = input_shape
|
833 |
+
|
834 |
+
if past_key_values is None:
|
835 |
+
past_key_values_length = 0
|
836 |
+
past_key_values = [None] * len(self.encoder.layer)
|
837 |
+
else:
|
838 |
+
past_key_values_length = shape_list(past_key_values[0][0])[-2]
|
839 |
+
|
840 |
+
if attention_mask is None:
|
841 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
842 |
+
|
843 |
+
if token_type_ids is None:
|
844 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
845 |
+
|
846 |
+
hidden_states = self.embeddings(
|
847 |
+
input_ids=input_ids,
|
848 |
+
position_ids=position_ids,
|
849 |
+
token_type_ids=token_type_ids,
|
850 |
+
inputs_embeds=inputs_embeds,
|
851 |
+
past_key_values_length=past_key_values_length,
|
852 |
+
training=training,
|
853 |
+
)
|
854 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
855 |
+
attention_mask, input_shape, hidden_states.dtype, past_key_values_length
|
856 |
+
)
|
857 |
+
|
858 |
+
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
|
859 |
+
if self.is_decoder and encoder_attention_mask is not None:
|
860 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
861 |
+
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
862 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
863 |
+
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
|
864 |
+
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
|
865 |
+
if num_dims_encoder_attention_mask == 3:
|
866 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
867 |
+
if num_dims_encoder_attention_mask == 2:
|
868 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
869 |
+
|
870 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
871 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
|
872 |
+
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
|
873 |
+
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
|
874 |
+
|
875 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
|
876 |
+
else:
|
877 |
+
encoder_extended_attention_mask = None
|
878 |
+
|
879 |
+
head_mask = self.get_head_mask(head_mask)
|
880 |
+
|
881 |
+
if hasattr(self, "embeddings_project"):
|
882 |
+
hidden_states = self.embeddings_project(hidden_states, training=training)
|
883 |
+
|
884 |
+
hidden_states = self.encoder(
|
885 |
+
hidden_states=hidden_states,
|
886 |
+
attention_mask=extended_attention_mask,
|
887 |
+
head_mask=head_mask,
|
888 |
+
encoder_hidden_states=encoder_hidden_states,
|
889 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
890 |
+
past_key_values=past_key_values,
|
891 |
+
use_cache=use_cache,
|
892 |
+
output_attentions=output_attentions,
|
893 |
+
output_hidden_states=output_hidden_states,
|
894 |
+
return_dict=return_dict,
|
895 |
+
training=training,
|
896 |
+
)
|
897 |
+
|
898 |
+
return hidden_states
|
899 |
+
|
900 |
+
def build(self, input_shape=None):
|
901 |
+
if self.built:
|
902 |
+
return
|
903 |
+
self.built = True
|
904 |
+
if getattr(self, "embeddings", None) is not None:
|
905 |
+
with tf.name_scope(self.embeddings.name):
|
906 |
+
self.embeddings.build(None)
|
907 |
+
if getattr(self, "encoder", None) is not None:
|
908 |
+
with tf.name_scope(self.encoder.name):
|
909 |
+
self.encoder.build(None)
|
910 |
+
if getattr(self, "embeddings_project", None) is not None:
|
911 |
+
with tf.name_scope(self.embeddings_project.name):
|
912 |
+
self.embeddings_project.build([None, None, self.config.embedding_size])
|
913 |
+
|
914 |
+
|
915 |
+
@dataclass
|
916 |
+
class TFElectraForPreTrainingOutput(ModelOutput):
|
917 |
+
"""
|
918 |
+
Output type of [`TFElectraForPreTraining`].
|
919 |
+
|
920 |
+
Args:
|
921 |
+
loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
|
922 |
+
Total loss of the ELECTRA objective.
|
923 |
+
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
924 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
925 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
926 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
927 |
+
`(batch_size, sequence_length, hidden_size)`.
|
928 |
+
|
929 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
930 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
931 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
932 |
+
sequence_length)`.
|
933 |
+
|
934 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
935 |
+
heads.
|
936 |
+
"""
|
937 |
+
|
938 |
+
logits: tf.Tensor = None
|
939 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
940 |
+
attentions: Tuple[tf.Tensor] | None = None
|
941 |
+
|
942 |
+
|
943 |
+
ELECTRA_START_DOCSTRING = r"""
|
944 |
+
|
945 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
946 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
947 |
+
etc.)
|
948 |
+
|
949 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
950 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
951 |
+
behavior.
|
952 |
+
|
953 |
+
<Tip>
|
954 |
+
|
955 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
956 |
+
|
957 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
958 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
959 |
+
|
960 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
961 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
962 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
963 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
964 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
965 |
+
positional argument:
|
966 |
+
|
967 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
968 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
969 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
970 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
971 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
972 |
+
|
973 |
+
Note that when creating models and layers with
|
974 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
975 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
976 |
+
|
977 |
+
</Tip>
|
978 |
+
|
979 |
+
Parameters:
|
980 |
+
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
|
981 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
982 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
983 |
+
"""
|
984 |
+
|
985 |
+
ELECTRA_INPUTS_DOCSTRING = r"""
|
986 |
+
Args:
|
987 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
988 |
+
Indices of input sequence tokens in the vocabulary.
|
989 |
+
|
990 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
991 |
+
[`PreTrainedTokenizer.encode`] for details.
|
992 |
+
|
993 |
+
[What are input IDs?](../glossary#input-ids)
|
994 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
995 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
996 |
+
|
997 |
+
- 1 for tokens that are **not masked**,
|
998 |
+
- 0 for tokens that are **masked**.
|
999 |
+
|
1000 |
+
[What are attention masks?](../glossary#attention-mask)
|
1001 |
+
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1002 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1003 |
+
config.max_position_embeddings - 1]`.
|
1004 |
+
|
1005 |
+
[What are position IDs?](../glossary#position-ids)
|
1006 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1007 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1008 |
+
|
1009 |
+
- 1 indicates the head is **not masked**,
|
1010 |
+
- 0 indicates the head is **masked**.
|
1011 |
+
|
1012 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1013 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1014 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1015 |
+
model's internal embedding lookup matrix.
|
1016 |
+
output_attentions (`bool`, *optional*):
|
1017 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1018 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1019 |
+
config will be used instead.
|
1020 |
+
output_hidden_states (`bool`, *optional*):
|
1021 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1022 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1023 |
+
used instead.
|
1024 |
+
return_dict (`bool`, *optional*):
|
1025 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1026 |
+
eager mode, in graph mode the value will always be set to True.
|
1027 |
+
training (`bool`, *optional*, defaults to `False`):
|
1028 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1029 |
+
behaviors between training and evaluation).
|
1030 |
+
"""
|
1031 |
+
|
1032 |
+
|
1033 |
+
@add_start_docstrings(
|
1034 |
+
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
|
1035 |
+
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
|
1036 |
+
"hidden size and embedding size are different. "
|
1037 |
+
""
|
1038 |
+
"Both the generator and discriminator checkpoints may be loaded into this model.",
|
1039 |
+
ELECTRA_START_DOCSTRING,
|
1040 |
+
)
|
1041 |
+
class TFElectraModel(TFElectraPreTrainedModel):
|
1042 |
+
def __init__(self, config, *inputs, **kwargs):
|
1043 |
+
super().__init__(config, *inputs, **kwargs)
|
1044 |
+
|
1045 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1046 |
+
|
1047 |
+
@unpack_inputs
|
1048 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1049 |
+
@add_code_sample_docstrings(
|
1050 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1051 |
+
output_type=TFBaseModelOutputWithPastAndCrossAttentions,
|
1052 |
+
config_class=_CONFIG_FOR_DOC,
|
1053 |
+
)
|
1054 |
+
def call(
|
1055 |
+
self,
|
1056 |
+
input_ids: TFModelInputType | None = None,
|
1057 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1058 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1059 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1060 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1061 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1062 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1063 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1064 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1065 |
+
use_cache: Optional[bool] = None,
|
1066 |
+
output_attentions: Optional[bool] = None,
|
1067 |
+
output_hidden_states: Optional[bool] = None,
|
1068 |
+
return_dict: Optional[bool] = None,
|
1069 |
+
training: Optional[bool] = False,
|
1070 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
1071 |
+
r"""
|
1072 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1073 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1074 |
+
the model is configured as a decoder.
|
1075 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1076 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1077 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1078 |
+
|
1079 |
+
- 1 for tokens that are **not masked**,
|
1080 |
+
- 0 for tokens that are **masked**.
|
1081 |
+
|
1082 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1083 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1084 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1085 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1086 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1087 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1088 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1089 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1090 |
+
"""
|
1091 |
+
outputs = self.electra(
|
1092 |
+
input_ids=input_ids,
|
1093 |
+
attention_mask=attention_mask,
|
1094 |
+
token_type_ids=token_type_ids,
|
1095 |
+
position_ids=position_ids,
|
1096 |
+
head_mask=head_mask,
|
1097 |
+
encoder_hidden_states=encoder_hidden_states,
|
1098 |
+
encoder_attention_mask=encoder_attention_mask,
|
1099 |
+
past_key_values=past_key_values,
|
1100 |
+
use_cache=use_cache,
|
1101 |
+
inputs_embeds=inputs_embeds,
|
1102 |
+
output_attentions=output_attentions,
|
1103 |
+
output_hidden_states=output_hidden_states,
|
1104 |
+
return_dict=return_dict,
|
1105 |
+
training=training,
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
return outputs
|
1109 |
+
|
1110 |
+
def build(self, input_shape=None):
|
1111 |
+
if self.built:
|
1112 |
+
return
|
1113 |
+
self.built = True
|
1114 |
+
if getattr(self, "electra", None) is not None:
|
1115 |
+
with tf.name_scope(self.electra.name):
|
1116 |
+
self.electra.build(None)
|
1117 |
+
|
1118 |
+
|
1119 |
+
@add_start_docstrings(
|
1120 |
+
"""
|
1121 |
+
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1122 |
+
|
1123 |
+
Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model
|
1124 |
+
of the two to have the correct classification head to be used for this model.
|
1125 |
+
""",
|
1126 |
+
ELECTRA_START_DOCSTRING,
|
1127 |
+
)
|
1128 |
+
class TFElectraForPreTraining(TFElectraPreTrainedModel):
|
1129 |
+
def __init__(self, config, **kwargs):
|
1130 |
+
super().__init__(config, **kwargs)
|
1131 |
+
|
1132 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1133 |
+
self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions")
|
1134 |
+
|
1135 |
+
@unpack_inputs
|
1136 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1137 |
+
@replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1138 |
+
def call(
|
1139 |
+
self,
|
1140 |
+
input_ids: TFModelInputType | None = None,
|
1141 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1142 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1143 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1144 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1145 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1146 |
+
output_attentions: Optional[bool] = None,
|
1147 |
+
output_hidden_states: Optional[bool] = None,
|
1148 |
+
return_dict: Optional[bool] = None,
|
1149 |
+
training: Optional[bool] = False,
|
1150 |
+
) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]:
|
1151 |
+
r"""
|
1152 |
+
Returns:
|
1153 |
+
|
1154 |
+
Examples:
|
1155 |
+
|
1156 |
+
```python
|
1157 |
+
>>> import tensorflow as tf
|
1158 |
+
>>> from transformers import AutoTokenizer, TFElectraForPreTraining
|
1159 |
+
|
1160 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
|
1161 |
+
>>> model = TFElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
|
1162 |
+
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
1163 |
+
>>> outputs = model(input_ids)
|
1164 |
+
>>> scores = outputs[0]
|
1165 |
+
```"""
|
1166 |
+
discriminator_hidden_states = self.electra(
|
1167 |
+
input_ids=input_ids,
|
1168 |
+
attention_mask=attention_mask,
|
1169 |
+
token_type_ids=token_type_ids,
|
1170 |
+
position_ids=position_ids,
|
1171 |
+
head_mask=head_mask,
|
1172 |
+
inputs_embeds=inputs_embeds,
|
1173 |
+
output_attentions=output_attentions,
|
1174 |
+
output_hidden_states=output_hidden_states,
|
1175 |
+
return_dict=return_dict,
|
1176 |
+
training=training,
|
1177 |
+
)
|
1178 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1179 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1180 |
+
|
1181 |
+
if not return_dict:
|
1182 |
+
return (logits,) + discriminator_hidden_states[1:]
|
1183 |
+
|
1184 |
+
return TFElectraForPreTrainingOutput(
|
1185 |
+
logits=logits,
|
1186 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1187 |
+
attentions=discriminator_hidden_states.attentions,
|
1188 |
+
)
|
1189 |
+
|
1190 |
+
def build(self, input_shape=None):
|
1191 |
+
if self.built:
|
1192 |
+
return
|
1193 |
+
self.built = True
|
1194 |
+
if getattr(self, "electra", None) is not None:
|
1195 |
+
with tf.name_scope(self.electra.name):
|
1196 |
+
self.electra.build(None)
|
1197 |
+
if getattr(self, "discriminator_predictions", None) is not None:
|
1198 |
+
with tf.name_scope(self.discriminator_predictions.name):
|
1199 |
+
self.discriminator_predictions.build(None)
|
1200 |
+
|
1201 |
+
|
1202 |
+
class TFElectraMaskedLMHead(keras.layers.Layer):
|
1203 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
1204 |
+
super().__init__(**kwargs)
|
1205 |
+
|
1206 |
+
self.config = config
|
1207 |
+
self.embedding_size = config.embedding_size
|
1208 |
+
self.input_embeddings = input_embeddings
|
1209 |
+
|
1210 |
+
def build(self, input_shape):
|
1211 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
1212 |
+
|
1213 |
+
super().build(input_shape)
|
1214 |
+
|
1215 |
+
def get_output_embeddings(self):
|
1216 |
+
return self.input_embeddings
|
1217 |
+
|
1218 |
+
def set_output_embeddings(self, value):
|
1219 |
+
self.input_embeddings.weight = value
|
1220 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
1221 |
+
|
1222 |
+
def get_bias(self):
|
1223 |
+
return {"bias": self.bias}
|
1224 |
+
|
1225 |
+
def set_bias(self, value):
|
1226 |
+
self.bias = value["bias"]
|
1227 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
1228 |
+
|
1229 |
+
def call(self, hidden_states):
|
1230 |
+
seq_length = shape_list(tensor=hidden_states)[1]
|
1231 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
|
1232 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
1233 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
1234 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
1235 |
+
|
1236 |
+
return hidden_states
|
1237 |
+
|
1238 |
+
|
1239 |
+
@add_start_docstrings(
|
1240 |
+
"""
|
1241 |
+
Electra model with a language modeling head on top.
|
1242 |
+
|
1243 |
+
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
|
1244 |
+
the two to have been trained for the masked language modeling task.
|
1245 |
+
""",
|
1246 |
+
ELECTRA_START_DOCSTRING,
|
1247 |
+
)
|
1248 |
+
class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1249 |
+
def __init__(self, config, **kwargs):
|
1250 |
+
super().__init__(config, **kwargs)
|
1251 |
+
|
1252 |
+
self.config = config
|
1253 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1254 |
+
self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions")
|
1255 |
+
|
1256 |
+
if isinstance(config.hidden_act, str):
|
1257 |
+
self.activation = get_tf_activation(config.hidden_act)
|
1258 |
+
else:
|
1259 |
+
self.activation = config.hidden_act
|
1260 |
+
|
1261 |
+
self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head")
|
1262 |
+
|
1263 |
+
def get_lm_head(self):
|
1264 |
+
return self.generator_lm_head
|
1265 |
+
|
1266 |
+
def get_prefix_bias_name(self):
|
1267 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1268 |
+
return self.name + "/" + self.generator_lm_head.name
|
1269 |
+
|
1270 |
+
@unpack_inputs
|
1271 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1272 |
+
@add_code_sample_docstrings(
|
1273 |
+
checkpoint="google/electra-small-generator",
|
1274 |
+
output_type=TFMaskedLMOutput,
|
1275 |
+
config_class=_CONFIG_FOR_DOC,
|
1276 |
+
mask="[MASK]",
|
1277 |
+
expected_output="'paris'",
|
1278 |
+
expected_loss=1.22,
|
1279 |
+
)
|
1280 |
+
def call(
|
1281 |
+
self,
|
1282 |
+
input_ids: TFModelInputType | None = None,
|
1283 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1284 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1285 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1286 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1287 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1288 |
+
output_attentions: Optional[bool] = None,
|
1289 |
+
output_hidden_states: Optional[bool] = None,
|
1290 |
+
return_dict: Optional[bool] = None,
|
1291 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1292 |
+
training: Optional[bool] = False,
|
1293 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1294 |
+
r"""
|
1295 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1296 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1297 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1298 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1299 |
+
"""
|
1300 |
+
generator_hidden_states = self.electra(
|
1301 |
+
input_ids=input_ids,
|
1302 |
+
attention_mask=attention_mask,
|
1303 |
+
token_type_ids=token_type_ids,
|
1304 |
+
position_ids=position_ids,
|
1305 |
+
head_mask=head_mask,
|
1306 |
+
inputs_embeds=inputs_embeds,
|
1307 |
+
output_attentions=output_attentions,
|
1308 |
+
output_hidden_states=output_hidden_states,
|
1309 |
+
return_dict=return_dict,
|
1310 |
+
training=training,
|
1311 |
+
)
|
1312 |
+
generator_sequence_output = generator_hidden_states[0]
|
1313 |
+
prediction_scores = self.generator_predictions(generator_sequence_output, training=training)
|
1314 |
+
prediction_scores = self.generator_lm_head(prediction_scores, training=training)
|
1315 |
+
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
|
1316 |
+
|
1317 |
+
if not return_dict:
|
1318 |
+
output = (prediction_scores,) + generator_hidden_states[1:]
|
1319 |
+
|
1320 |
+
return ((loss,) + output) if loss is not None else output
|
1321 |
+
|
1322 |
+
return TFMaskedLMOutput(
|
1323 |
+
loss=loss,
|
1324 |
+
logits=prediction_scores,
|
1325 |
+
hidden_states=generator_hidden_states.hidden_states,
|
1326 |
+
attentions=generator_hidden_states.attentions,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
def build(self, input_shape=None):
|
1330 |
+
if self.built:
|
1331 |
+
return
|
1332 |
+
self.built = True
|
1333 |
+
if getattr(self, "electra", None) is not None:
|
1334 |
+
with tf.name_scope(self.electra.name):
|
1335 |
+
self.electra.build(None)
|
1336 |
+
if getattr(self, "generator_predictions", None) is not None:
|
1337 |
+
with tf.name_scope(self.generator_predictions.name):
|
1338 |
+
self.generator_predictions.build(None)
|
1339 |
+
if getattr(self, "generator_lm_head", None) is not None:
|
1340 |
+
with tf.name_scope(self.generator_lm_head.name):
|
1341 |
+
self.generator_lm_head.build(None)
|
1342 |
+
|
1343 |
+
|
1344 |
+
class TFElectraClassificationHead(keras.layers.Layer):
|
1345 |
+
"""Head for sentence-level classification tasks."""
|
1346 |
+
|
1347 |
+
def __init__(self, config, **kwargs):
|
1348 |
+
super().__init__(**kwargs)
|
1349 |
+
|
1350 |
+
self.dense = keras.layers.Dense(
|
1351 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
1352 |
+
)
|
1353 |
+
classifier_dropout = (
|
1354 |
+
config.classifhidden_dropout_probier_dropout
|
1355 |
+
if config.classifier_dropout is not None
|
1356 |
+
else config.hidden_dropout_prob
|
1357 |
+
)
|
1358 |
+
self.dropout = keras.layers.Dropout(classifier_dropout)
|
1359 |
+
self.out_proj = keras.layers.Dense(
|
1360 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
|
1361 |
+
)
|
1362 |
+
self.config = config
|
1363 |
+
|
1364 |
+
def call(self, inputs, **kwargs):
|
1365 |
+
x = inputs[:, 0, :] # take <s> token (equiv. to [CLS])
|
1366 |
+
x = self.dropout(x)
|
1367 |
+
x = self.dense(x)
|
1368 |
+
x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here
|
1369 |
+
x = self.dropout(x)
|
1370 |
+
x = self.out_proj(x)
|
1371 |
+
|
1372 |
+
return x
|
1373 |
+
|
1374 |
+
def build(self, input_shape=None):
|
1375 |
+
if self.built:
|
1376 |
+
return
|
1377 |
+
self.built = True
|
1378 |
+
if getattr(self, "dense", None) is not None:
|
1379 |
+
with tf.name_scope(self.dense.name):
|
1380 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1381 |
+
if getattr(self, "out_proj", None) is not None:
|
1382 |
+
with tf.name_scope(self.out_proj.name):
|
1383 |
+
self.out_proj.build([None, None, self.config.hidden_size])
|
1384 |
+
|
1385 |
+
|
1386 |
+
@add_start_docstrings(
|
1387 |
+
"""
|
1388 |
+
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1389 |
+
pooled output) e.g. for GLUE tasks.
|
1390 |
+
""",
|
1391 |
+
ELECTRA_START_DOCSTRING,
|
1392 |
+
)
|
1393 |
+
class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss):
|
1394 |
+
def __init__(self, config, *inputs, **kwargs):
|
1395 |
+
super().__init__(config, *inputs, **kwargs)
|
1396 |
+
self.num_labels = config.num_labels
|
1397 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1398 |
+
self.classifier = TFElectraClassificationHead(config, name="classifier")
|
1399 |
+
|
1400 |
+
@unpack_inputs
|
1401 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1402 |
+
@add_code_sample_docstrings(
|
1403 |
+
checkpoint="bhadresh-savani/electra-base-emotion",
|
1404 |
+
output_type=TFSequenceClassifierOutput,
|
1405 |
+
config_class=_CONFIG_FOR_DOC,
|
1406 |
+
expected_output="'joy'",
|
1407 |
+
expected_loss=0.06,
|
1408 |
+
)
|
1409 |
+
def call(
|
1410 |
+
self,
|
1411 |
+
input_ids: TFModelInputType | None = None,
|
1412 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1413 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1414 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1415 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1416 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1417 |
+
output_attentions: Optional[bool] = None,
|
1418 |
+
output_hidden_states: Optional[bool] = None,
|
1419 |
+
return_dict: Optional[bool] = None,
|
1420 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1421 |
+
training: Optional[bool] = False,
|
1422 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1423 |
+
r"""
|
1424 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1425 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1426 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1427 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1428 |
+
"""
|
1429 |
+
outputs = self.electra(
|
1430 |
+
input_ids=input_ids,
|
1431 |
+
attention_mask=attention_mask,
|
1432 |
+
token_type_ids=token_type_ids,
|
1433 |
+
position_ids=position_ids,
|
1434 |
+
head_mask=head_mask,
|
1435 |
+
inputs_embeds=inputs_embeds,
|
1436 |
+
output_attentions=output_attentions,
|
1437 |
+
output_hidden_states=output_hidden_states,
|
1438 |
+
return_dict=return_dict,
|
1439 |
+
training=training,
|
1440 |
+
)
|
1441 |
+
logits = self.classifier(outputs[0])
|
1442 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1443 |
+
|
1444 |
+
if not return_dict:
|
1445 |
+
output = (logits,) + outputs[1:]
|
1446 |
+
|
1447 |
+
return ((loss,) + output) if loss is not None else output
|
1448 |
+
|
1449 |
+
return TFSequenceClassifierOutput(
|
1450 |
+
loss=loss,
|
1451 |
+
logits=logits,
|
1452 |
+
hidden_states=outputs.hidden_states,
|
1453 |
+
attentions=outputs.attentions,
|
1454 |
+
)
|
1455 |
+
|
1456 |
+
def build(self, input_shape=None):
|
1457 |
+
if self.built:
|
1458 |
+
return
|
1459 |
+
self.built = True
|
1460 |
+
if getattr(self, "electra", None) is not None:
|
1461 |
+
with tf.name_scope(self.electra.name):
|
1462 |
+
self.electra.build(None)
|
1463 |
+
if getattr(self, "classifier", None) is not None:
|
1464 |
+
with tf.name_scope(self.classifier.name):
|
1465 |
+
self.classifier.build(None)
|
1466 |
+
|
1467 |
+
|
1468 |
+
@add_start_docstrings(
|
1469 |
+
"""
|
1470 |
+
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1471 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1472 |
+
""",
|
1473 |
+
ELECTRA_START_DOCSTRING,
|
1474 |
+
)
|
1475 |
+
class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss):
|
1476 |
+
def __init__(self, config, *inputs, **kwargs):
|
1477 |
+
super().__init__(config, *inputs, **kwargs)
|
1478 |
+
|
1479 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1480 |
+
self.sequence_summary = TFSequenceSummary(
|
1481 |
+
config, initializer_range=config.initializer_range, name="sequence_summary"
|
1482 |
+
)
|
1483 |
+
self.classifier = keras.layers.Dense(
|
1484 |
+
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1485 |
+
)
|
1486 |
+
self.config = config
|
1487 |
+
|
1488 |
+
@unpack_inputs
|
1489 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1490 |
+
@add_code_sample_docstrings(
|
1491 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1492 |
+
output_type=TFMultipleChoiceModelOutput,
|
1493 |
+
config_class=_CONFIG_FOR_DOC,
|
1494 |
+
)
|
1495 |
+
def call(
|
1496 |
+
self,
|
1497 |
+
input_ids: TFModelInputType | None = None,
|
1498 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1499 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1500 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1501 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1502 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1503 |
+
output_attentions: Optional[bool] = None,
|
1504 |
+
output_hidden_states: Optional[bool] = None,
|
1505 |
+
return_dict: Optional[bool] = None,
|
1506 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1507 |
+
training: Optional[bool] = False,
|
1508 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1509 |
+
r"""
|
1510 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1511 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1512 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1513 |
+
"""
|
1514 |
+
|
1515 |
+
if input_ids is not None:
|
1516 |
+
num_choices = shape_list(input_ids)[1]
|
1517 |
+
seq_length = shape_list(input_ids)[2]
|
1518 |
+
else:
|
1519 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1520 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1521 |
+
|
1522 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1523 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1524 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
1525 |
+
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
1526 |
+
flat_inputs_embeds = (
|
1527 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
1528 |
+
if inputs_embeds is not None
|
1529 |
+
else None
|
1530 |
+
)
|
1531 |
+
outputs = self.electra(
|
1532 |
+
input_ids=flat_input_ids,
|
1533 |
+
attention_mask=flat_attention_mask,
|
1534 |
+
token_type_ids=flat_token_type_ids,
|
1535 |
+
position_ids=flat_position_ids,
|
1536 |
+
head_mask=head_mask,
|
1537 |
+
inputs_embeds=flat_inputs_embeds,
|
1538 |
+
output_attentions=output_attentions,
|
1539 |
+
output_hidden_states=output_hidden_states,
|
1540 |
+
return_dict=return_dict,
|
1541 |
+
training=training,
|
1542 |
+
)
|
1543 |
+
logits = self.sequence_summary(outputs[0])
|
1544 |
+
logits = self.classifier(logits)
|
1545 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1546 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1547 |
+
|
1548 |
+
if not return_dict:
|
1549 |
+
output = (reshaped_logits,) + outputs[1:]
|
1550 |
+
|
1551 |
+
return ((loss,) + output) if loss is not None else output
|
1552 |
+
|
1553 |
+
return TFMultipleChoiceModelOutput(
|
1554 |
+
loss=loss,
|
1555 |
+
logits=reshaped_logits,
|
1556 |
+
hidden_states=outputs.hidden_states,
|
1557 |
+
attentions=outputs.attentions,
|
1558 |
+
)
|
1559 |
+
|
1560 |
+
def build(self, input_shape=None):
|
1561 |
+
if self.built:
|
1562 |
+
return
|
1563 |
+
self.built = True
|
1564 |
+
if getattr(self, "electra", None) is not None:
|
1565 |
+
with tf.name_scope(self.electra.name):
|
1566 |
+
self.electra.build(None)
|
1567 |
+
if getattr(self, "sequence_summary", None) is not None:
|
1568 |
+
with tf.name_scope(self.sequence_summary.name):
|
1569 |
+
self.sequence_summary.build(None)
|
1570 |
+
if getattr(self, "classifier", None) is not None:
|
1571 |
+
with tf.name_scope(self.classifier.name):
|
1572 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1573 |
+
|
1574 |
+
|
1575 |
+
@add_start_docstrings(
|
1576 |
+
"""
|
1577 |
+
Electra model with a token classification head on top.
|
1578 |
+
|
1579 |
+
Both the discriminator and generator may be loaded into this model.
|
1580 |
+
""",
|
1581 |
+
ELECTRA_START_DOCSTRING,
|
1582 |
+
)
|
1583 |
+
class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss):
|
1584 |
+
def __init__(self, config, **kwargs):
|
1585 |
+
super().__init__(config, **kwargs)
|
1586 |
+
|
1587 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1588 |
+
classifier_dropout = (
|
1589 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1590 |
+
)
|
1591 |
+
self.dropout = keras.layers.Dropout(classifier_dropout)
|
1592 |
+
self.classifier = keras.layers.Dense(
|
1593 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1594 |
+
)
|
1595 |
+
self.config = config
|
1596 |
+
|
1597 |
+
@unpack_inputs
|
1598 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1599 |
+
@add_code_sample_docstrings(
|
1600 |
+
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
|
1601 |
+
output_type=TFTokenClassifierOutput,
|
1602 |
+
config_class=_CONFIG_FOR_DOC,
|
1603 |
+
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
|
1604 |
+
expected_loss=0.11,
|
1605 |
+
)
|
1606 |
+
def call(
|
1607 |
+
self,
|
1608 |
+
input_ids: TFModelInputType | None = None,
|
1609 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1610 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1611 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1612 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1613 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1614 |
+
output_attentions: Optional[bool] = None,
|
1615 |
+
output_hidden_states: Optional[bool] = None,
|
1616 |
+
return_dict: Optional[bool] = None,
|
1617 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1618 |
+
training: Optional[bool] = False,
|
1619 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1620 |
+
r"""
|
1621 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1622 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1623 |
+
"""
|
1624 |
+
discriminator_hidden_states = self.electra(
|
1625 |
+
input_ids=input_ids,
|
1626 |
+
attention_mask=attention_mask,
|
1627 |
+
token_type_ids=token_type_ids,
|
1628 |
+
position_ids=position_ids,
|
1629 |
+
head_mask=head_mask,
|
1630 |
+
inputs_embeds=inputs_embeds,
|
1631 |
+
output_attentions=output_attentions,
|
1632 |
+
output_hidden_states=output_hidden_states,
|
1633 |
+
return_dict=return_dict,
|
1634 |
+
training=training,
|
1635 |
+
)
|
1636 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1637 |
+
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
|
1638 |
+
logits = self.classifier(discriminator_sequence_output)
|
1639 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1640 |
+
|
1641 |
+
if not return_dict:
|
1642 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1643 |
+
|
1644 |
+
return ((loss,) + output) if loss is not None else output
|
1645 |
+
|
1646 |
+
return TFTokenClassifierOutput(
|
1647 |
+
loss=loss,
|
1648 |
+
logits=logits,
|
1649 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1650 |
+
attentions=discriminator_hidden_states.attentions,
|
1651 |
+
)
|
1652 |
+
|
1653 |
+
def build(self, input_shape=None):
|
1654 |
+
if self.built:
|
1655 |
+
return
|
1656 |
+
self.built = True
|
1657 |
+
if getattr(self, "electra", None) is not None:
|
1658 |
+
with tf.name_scope(self.electra.name):
|
1659 |
+
self.electra.build(None)
|
1660 |
+
if getattr(self, "classifier", None) is not None:
|
1661 |
+
with tf.name_scope(self.classifier.name):
|
1662 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1663 |
+
|
1664 |
+
|
1665 |
+
@add_start_docstrings(
|
1666 |
+
"""
|
1667 |
+
Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1668 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1669 |
+
""",
|
1670 |
+
ELECTRA_START_DOCSTRING,
|
1671 |
+
)
|
1672 |
+
class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss):
|
1673 |
+
def __init__(self, config, *inputs, **kwargs):
|
1674 |
+
super().__init__(config, *inputs, **kwargs)
|
1675 |
+
|
1676 |
+
self.num_labels = config.num_labels
|
1677 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1678 |
+
self.qa_outputs = keras.layers.Dense(
|
1679 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1680 |
+
)
|
1681 |
+
self.config = config
|
1682 |
+
|
1683 |
+
@unpack_inputs
|
1684 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1685 |
+
@add_code_sample_docstrings(
|
1686 |
+
checkpoint="bhadresh-savani/electra-base-squad2",
|
1687 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1688 |
+
config_class=_CONFIG_FOR_DOC,
|
1689 |
+
qa_target_start_index=11,
|
1690 |
+
qa_target_end_index=12,
|
1691 |
+
expected_output="'a nice puppet'",
|
1692 |
+
expected_loss=2.64,
|
1693 |
+
)
|
1694 |
+
def call(
|
1695 |
+
self,
|
1696 |
+
input_ids: TFModelInputType | None = None,
|
1697 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1698 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1699 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1700 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1701 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1702 |
+
output_attentions: Optional[bool] = None,
|
1703 |
+
output_hidden_states: Optional[bool] = None,
|
1704 |
+
return_dict: Optional[bool] = None,
|
1705 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1706 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1707 |
+
training: Optional[bool] = False,
|
1708 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1709 |
+
r"""
|
1710 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1711 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1712 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1713 |
+
are not taken into account for computing the loss.
|
1714 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1715 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1716 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1717 |
+
are not taken into account for computing the loss.
|
1718 |
+
"""
|
1719 |
+
discriminator_hidden_states = self.electra(
|
1720 |
+
input_ids=input_ids,
|
1721 |
+
attention_mask=attention_mask,
|
1722 |
+
token_type_ids=token_type_ids,
|
1723 |
+
position_ids=position_ids,
|
1724 |
+
head_mask=head_mask,
|
1725 |
+
inputs_embeds=inputs_embeds,
|
1726 |
+
output_attentions=output_attentions,
|
1727 |
+
output_hidden_states=output_hidden_states,
|
1728 |
+
return_dict=return_dict,
|
1729 |
+
training=training,
|
1730 |
+
)
|
1731 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1732 |
+
logits = self.qa_outputs(discriminator_sequence_output)
|
1733 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1734 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1735 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1736 |
+
loss = None
|
1737 |
+
|
1738 |
+
if start_positions is not None and end_positions is not None:
|
1739 |
+
labels = {"start_position": start_positions}
|
1740 |
+
labels["end_position"] = end_positions
|
1741 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1742 |
+
|
1743 |
+
if not return_dict:
|
1744 |
+
output = (
|
1745 |
+
start_logits,
|
1746 |
+
end_logits,
|
1747 |
+
) + discriminator_hidden_states[1:]
|
1748 |
+
|
1749 |
+
return ((loss,) + output) if loss is not None else output
|
1750 |
+
|
1751 |
+
return TFQuestionAnsweringModelOutput(
|
1752 |
+
loss=loss,
|
1753 |
+
start_logits=start_logits,
|
1754 |
+
end_logits=end_logits,
|
1755 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1756 |
+
attentions=discriminator_hidden_states.attentions,
|
1757 |
+
)
|
1758 |
+
|
1759 |
+
def build(self, input_shape=None):
|
1760 |
+
if self.built:
|
1761 |
+
return
|
1762 |
+
self.built = True
|
1763 |
+
if getattr(self, "electra", None) is not None:
|
1764 |
+
with tf.name_scope(self.electra.name):
|
1765 |
+
self.electra.build(None)
|
1766 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1767 |
+
with tf.name_scope(self.qa_outputs.name):
|
1768 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import collections
|
17 |
+
import os
|
18 |
+
import unicodedata
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
28 |
+
|
29 |
+
|
30 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
31 |
+
def load_vocab(vocab_file):
|
32 |
+
"""Loads a vocabulary file into a dictionary."""
|
33 |
+
vocab = collections.OrderedDict()
|
34 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
35 |
+
tokens = reader.readlines()
|
36 |
+
for index, token in enumerate(tokens):
|
37 |
+
token = token.rstrip("\n")
|
38 |
+
vocab[token] = index
|
39 |
+
return vocab
|
40 |
+
|
41 |
+
|
42 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
43 |
+
def whitespace_tokenize(text):
|
44 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
45 |
+
text = text.strip()
|
46 |
+
if not text:
|
47 |
+
return []
|
48 |
+
tokens = text.split()
|
49 |
+
return tokens
|
50 |
+
|
51 |
+
|
52 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->Electra,BERT->Electra
|
53 |
+
class ElectraTokenizer(PreTrainedTokenizer):
|
54 |
+
r"""
|
55 |
+
Construct a Electra tokenizer. Based on WordPiece.
|
56 |
+
|
57 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
58 |
+
this superclass for more information regarding those methods.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
vocab_file (`str`):
|
62 |
+
File containing the vocabulary.
|
63 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether or not to lowercase the input when tokenizing.
|
65 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not to do basic tokenization before WordPiece.
|
67 |
+
never_split (`Iterable`, *optional*):
|
68 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
69 |
+
`do_basic_tokenize=True`
|
70 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
71 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
72 |
+
token instead.
|
73 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
74 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
75 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
76 |
+
token of a sequence built with special tokens.
|
77 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
78 |
+
The token used for padding, for example when batching sequences of different lengths.
|
79 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
80 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
81 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
82 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
83 |
+
The token used for masking values. This is the token used when training this model with masked language
|
84 |
+
modeling. This is the token which the model will try to predict.
|
85 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
86 |
+
Whether or not to tokenize Chinese characters.
|
87 |
+
|
88 |
+
This should likely be deactivated for Japanese (see this
|
89 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
90 |
+
strip_accents (`bool`, *optional*):
|
91 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
92 |
+
value for `lowercase` (as in the original Electra).
|
93 |
+
"""
|
94 |
+
|
95 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_file,
|
100 |
+
do_lower_case=True,
|
101 |
+
do_basic_tokenize=True,
|
102 |
+
never_split=None,
|
103 |
+
unk_token="[UNK]",
|
104 |
+
sep_token="[SEP]",
|
105 |
+
pad_token="[PAD]",
|
106 |
+
cls_token="[CLS]",
|
107 |
+
mask_token="[MASK]",
|
108 |
+
tokenize_chinese_chars=True,
|
109 |
+
strip_accents=None,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
if not os.path.isfile(vocab_file):
|
113 |
+
raise ValueError(
|
114 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
115 |
+
" model use `tokenizer = ElectraTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
116 |
+
)
|
117 |
+
self.vocab = load_vocab(vocab_file)
|
118 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
119 |
+
self.do_basic_tokenize = do_basic_tokenize
|
120 |
+
if do_basic_tokenize:
|
121 |
+
self.basic_tokenizer = BasicTokenizer(
|
122 |
+
do_lower_case=do_lower_case,
|
123 |
+
never_split=never_split,
|
124 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
125 |
+
strip_accents=strip_accents,
|
126 |
+
)
|
127 |
+
|
128 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
129 |
+
|
130 |
+
super().__init__(
|
131 |
+
do_lower_case=do_lower_case,
|
132 |
+
do_basic_tokenize=do_basic_tokenize,
|
133 |
+
never_split=never_split,
|
134 |
+
unk_token=unk_token,
|
135 |
+
sep_token=sep_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
cls_token=cls_token,
|
138 |
+
mask_token=mask_token,
|
139 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
140 |
+
strip_accents=strip_accents,
|
141 |
+
**kwargs,
|
142 |
+
)
|
143 |
+
|
144 |
+
@property
|
145 |
+
def do_lower_case(self):
|
146 |
+
return self.basic_tokenizer.do_lower_case
|
147 |
+
|
148 |
+
@property
|
149 |
+
def vocab_size(self):
|
150 |
+
return len(self.vocab)
|
151 |
+
|
152 |
+
def get_vocab(self):
|
153 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
154 |
+
|
155 |
+
def _tokenize(self, text, split_special_tokens=False):
|
156 |
+
split_tokens = []
|
157 |
+
if self.do_basic_tokenize:
|
158 |
+
for token in self.basic_tokenizer.tokenize(
|
159 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
160 |
+
):
|
161 |
+
# If the token is part of the never_split set
|
162 |
+
if token in self.basic_tokenizer.never_split:
|
163 |
+
split_tokens.append(token)
|
164 |
+
else:
|
165 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
166 |
+
else:
|
167 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
168 |
+
return split_tokens
|
169 |
+
|
170 |
+
def _convert_token_to_id(self, token):
|
171 |
+
"""Converts a token (str) in an id using the vocab."""
|
172 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
173 |
+
|
174 |
+
def _convert_id_to_token(self, index):
|
175 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
176 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
177 |
+
|
178 |
+
def convert_tokens_to_string(self, tokens):
|
179 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
180 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
181 |
+
return out_string
|
182 |
+
|
183 |
+
def build_inputs_with_special_tokens(
|
184 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
185 |
+
) -> List[int]:
|
186 |
+
"""
|
187 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
188 |
+
adding special tokens. A Electra sequence has the following format:
|
189 |
+
|
190 |
+
- single sequence: `[CLS] X [SEP]`
|
191 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
192 |
+
|
193 |
+
Args:
|
194 |
+
token_ids_0 (`List[int]`):
|
195 |
+
List of IDs to which the special tokens will be added.
|
196 |
+
token_ids_1 (`List[int]`, *optional*):
|
197 |
+
Optional second list of IDs for sequence pairs.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
201 |
+
"""
|
202 |
+
if token_ids_1 is None:
|
203 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
204 |
+
cls = [self.cls_token_id]
|
205 |
+
sep = [self.sep_token_id]
|
206 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
207 |
+
|
208 |
+
def get_special_tokens_mask(
|
209 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
210 |
+
) -> List[int]:
|
211 |
+
"""
|
212 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
213 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
token_ids_0 (`List[int]`):
|
217 |
+
List of IDs.
|
218 |
+
token_ids_1 (`List[int]`, *optional*):
|
219 |
+
Optional second list of IDs for sequence pairs.
|
220 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
221 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
225 |
+
"""
|
226 |
+
|
227 |
+
if already_has_special_tokens:
|
228 |
+
return super().get_special_tokens_mask(
|
229 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
230 |
+
)
|
231 |
+
|
232 |
+
if token_ids_1 is not None:
|
233 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
234 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
235 |
+
|
236 |
+
def create_token_type_ids_from_sequences(
|
237 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
238 |
+
) -> List[int]:
|
239 |
+
"""
|
240 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Electra sequence
|
241 |
+
pair mask has the following format:
|
242 |
+
|
243 |
+
```
|
244 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
245 |
+
| first sequence | second sequence |
|
246 |
+
```
|
247 |
+
|
248 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
249 |
+
|
250 |
+
Args:
|
251 |
+
token_ids_0 (`List[int]`):
|
252 |
+
List of IDs.
|
253 |
+
token_ids_1 (`List[int]`, *optional*):
|
254 |
+
Optional second list of IDs for sequence pairs.
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
258 |
+
"""
|
259 |
+
sep = [self.sep_token_id]
|
260 |
+
cls = [self.cls_token_id]
|
261 |
+
if token_ids_1 is None:
|
262 |
+
return len(cls + token_ids_0 + sep) * [0]
|
263 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
264 |
+
|
265 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
266 |
+
index = 0
|
267 |
+
if os.path.isdir(save_directory):
|
268 |
+
vocab_file = os.path.join(
|
269 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
273 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
274 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
275 |
+
if index != token_index:
|
276 |
+
logger.warning(
|
277 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
278 |
+
" Please check that the vocabulary is not corrupted!"
|
279 |
+
)
|
280 |
+
index = token_index
|
281 |
+
writer.write(token + "\n")
|
282 |
+
index += 1
|
283 |
+
return (vocab_file,)
|
284 |
+
|
285 |
+
|
286 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
287 |
+
class BasicTokenizer(object):
|
288 |
+
"""
|
289 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
290 |
+
|
291 |
+
Args:
|
292 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
293 |
+
Whether or not to lowercase the input when tokenizing.
|
294 |
+
never_split (`Iterable`, *optional*):
|
295 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
296 |
+
`do_basic_tokenize=True`
|
297 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
298 |
+
Whether or not to tokenize Chinese characters.
|
299 |
+
|
300 |
+
This should likely be deactivated for Japanese (see this
|
301 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
302 |
+
strip_accents (`bool`, *optional*):
|
303 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
304 |
+
value for `lowercase` (as in the original BERT).
|
305 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
306 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
307 |
+
the full context of the words, such as contractions.
|
308 |
+
"""
|
309 |
+
|
310 |
+
def __init__(
|
311 |
+
self,
|
312 |
+
do_lower_case=True,
|
313 |
+
never_split=None,
|
314 |
+
tokenize_chinese_chars=True,
|
315 |
+
strip_accents=None,
|
316 |
+
do_split_on_punc=True,
|
317 |
+
):
|
318 |
+
if never_split is None:
|
319 |
+
never_split = []
|
320 |
+
self.do_lower_case = do_lower_case
|
321 |
+
self.never_split = set(never_split)
|
322 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
323 |
+
self.strip_accents = strip_accents
|
324 |
+
self.do_split_on_punc = do_split_on_punc
|
325 |
+
|
326 |
+
def tokenize(self, text, never_split=None):
|
327 |
+
"""
|
328 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
never_split (`List[str]`, *optional*)
|
332 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
333 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
334 |
+
"""
|
335 |
+
# union() returns a new set by concatenating the two sets.
|
336 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
337 |
+
text = self._clean_text(text)
|
338 |
+
|
339 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
340 |
+
# models. This is also applied to the English models now, but it doesn't
|
341 |
+
# matter since the English models were not trained on any Chinese data
|
342 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
343 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
344 |
+
# words in the English Wikipedia.).
|
345 |
+
if self.tokenize_chinese_chars:
|
346 |
+
text = self._tokenize_chinese_chars(text)
|
347 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
348 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
349 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
350 |
+
split_tokens = []
|
351 |
+
for token in orig_tokens:
|
352 |
+
if token not in never_split:
|
353 |
+
if self.do_lower_case:
|
354 |
+
token = token.lower()
|
355 |
+
if self.strip_accents is not False:
|
356 |
+
token = self._run_strip_accents(token)
|
357 |
+
elif self.strip_accents:
|
358 |
+
token = self._run_strip_accents(token)
|
359 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
360 |
+
|
361 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
362 |
+
return output_tokens
|
363 |
+
|
364 |
+
def _run_strip_accents(self, text):
|
365 |
+
"""Strips accents from a piece of text."""
|
366 |
+
text = unicodedata.normalize("NFD", text)
|
367 |
+
output = []
|
368 |
+
for char in text:
|
369 |
+
cat = unicodedata.category(char)
|
370 |
+
if cat == "Mn":
|
371 |
+
continue
|
372 |
+
output.append(char)
|
373 |
+
return "".join(output)
|
374 |
+
|
375 |
+
def _run_split_on_punc(self, text, never_split=None):
|
376 |
+
"""Splits punctuation on a piece of text."""
|
377 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
378 |
+
return [text]
|
379 |
+
chars = list(text)
|
380 |
+
i = 0
|
381 |
+
start_new_word = True
|
382 |
+
output = []
|
383 |
+
while i < len(chars):
|
384 |
+
char = chars[i]
|
385 |
+
if _is_punctuation(char):
|
386 |
+
output.append([char])
|
387 |
+
start_new_word = True
|
388 |
+
else:
|
389 |
+
if start_new_word:
|
390 |
+
output.append([])
|
391 |
+
start_new_word = False
|
392 |
+
output[-1].append(char)
|
393 |
+
i += 1
|
394 |
+
|
395 |
+
return ["".join(x) for x in output]
|
396 |
+
|
397 |
+
def _tokenize_chinese_chars(self, text):
|
398 |
+
"""Adds whitespace around any CJK character."""
|
399 |
+
output = []
|
400 |
+
for char in text:
|
401 |
+
cp = ord(char)
|
402 |
+
if self._is_chinese_char(cp):
|
403 |
+
output.append(" ")
|
404 |
+
output.append(char)
|
405 |
+
output.append(" ")
|
406 |
+
else:
|
407 |
+
output.append(char)
|
408 |
+
return "".join(output)
|
409 |
+
|
410 |
+
def _is_chinese_char(self, cp):
|
411 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
412 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
413 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
414 |
+
#
|
415 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
416 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
417 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
418 |
+
# space-separated words, so they are not treated specially and handled
|
419 |
+
# like the all of the other languages.
|
420 |
+
if (
|
421 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
422 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
423 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
424 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
425 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
426 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
427 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
428 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
429 |
+
): #
|
430 |
+
return True
|
431 |
+
|
432 |
+
return False
|
433 |
+
|
434 |
+
def _clean_text(self, text):
|
435 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
436 |
+
output = []
|
437 |
+
for char in text:
|
438 |
+
cp = ord(char)
|
439 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
440 |
+
continue
|
441 |
+
if _is_whitespace(char):
|
442 |
+
output.append(" ")
|
443 |
+
else:
|
444 |
+
output.append(char)
|
445 |
+
return "".join(output)
|
446 |
+
|
447 |
+
|
448 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
449 |
+
class WordpieceTokenizer(object):
|
450 |
+
"""Runs WordPiece tokenization."""
|
451 |
+
|
452 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
453 |
+
self.vocab = vocab
|
454 |
+
self.unk_token = unk_token
|
455 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
456 |
+
|
457 |
+
def tokenize(self, text):
|
458 |
+
"""
|
459 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
460 |
+
tokenization using the given vocabulary.
|
461 |
+
|
462 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
463 |
+
|
464 |
+
Args:
|
465 |
+
text: A single token or whitespace separated tokens. This should have
|
466 |
+
already been passed through *BasicTokenizer*.
|
467 |
+
|
468 |
+
Returns:
|
469 |
+
A list of wordpiece tokens.
|
470 |
+
"""
|
471 |
+
|
472 |
+
output_tokens = []
|
473 |
+
for token in whitespace_tokenize(text):
|
474 |
+
chars = list(token)
|
475 |
+
if len(chars) > self.max_input_chars_per_word:
|
476 |
+
output_tokens.append(self.unk_token)
|
477 |
+
continue
|
478 |
+
|
479 |
+
is_bad = False
|
480 |
+
start = 0
|
481 |
+
sub_tokens = []
|
482 |
+
while start < len(chars):
|
483 |
+
end = len(chars)
|
484 |
+
cur_substr = None
|
485 |
+
while start < end:
|
486 |
+
substr = "".join(chars[start:end])
|
487 |
+
if start > 0:
|
488 |
+
substr = "##" + substr
|
489 |
+
if substr in self.vocab:
|
490 |
+
cur_substr = substr
|
491 |
+
break
|
492 |
+
end -= 1
|
493 |
+
if cur_substr is None:
|
494 |
+
is_bad = True
|
495 |
+
break
|
496 |
+
sub_tokens.append(cur_substr)
|
497 |
+
start = end
|
498 |
+
|
499 |
+
if is_bad:
|
500 |
+
output_tokens.append(self.unk_token)
|
501 |
+
else:
|
502 |
+
output_tokens.extend(sub_tokens)
|
503 |
+
return output_tokens
|
llmeval-env/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import normalizers
|
20 |
+
|
21 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
22 |
+
from .tokenization_electra import ElectraTokenizer
|
23 |
+
|
24 |
+
|
25 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
26 |
+
|
27 |
+
|
28 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->Electra , BERT->ELECTRA
|
29 |
+
class ElectraTokenizerFast(PreTrainedTokenizerFast):
|
30 |
+
r"""
|
31 |
+
Construct a "fast" ELECTRA tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
32 |
+
|
33 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
34 |
+
refer to this superclass for more information regarding those methods.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_file (`str`):
|
38 |
+
File containing the vocabulary.
|
39 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether or not to lowercase the input when tokenizing.
|
41 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
42 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
43 |
+
token instead.
|
44 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
45 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
46 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
47 |
+
token of a sequence built with special tokens.
|
48 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
49 |
+
The token used for padding, for example when batching sequences of different lengths.
|
50 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
51 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
52 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
53 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
54 |
+
The token used for masking values. This is the token used when training this model with masked language
|
55 |
+
modeling. This is the token which the model will try to predict.
|
56 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
58 |
+
whitespaces by the classic one.
|
59 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
61 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
62 |
+
strip_accents (`bool`, *optional*):
|
63 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
64 |
+
value for `lowercase` (as in the original ELECTRA).
|
65 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
66 |
+
The prefix for subwords.
|
67 |
+
"""
|
68 |
+
|
69 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
70 |
+
slow_tokenizer_class = ElectraTokenizer
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
vocab_file=None,
|
75 |
+
tokenizer_file=None,
|
76 |
+
do_lower_case=True,
|
77 |
+
unk_token="[UNK]",
|
78 |
+
sep_token="[SEP]",
|
79 |
+
pad_token="[PAD]",
|
80 |
+
cls_token="[CLS]",
|
81 |
+
mask_token="[MASK]",
|
82 |
+
tokenize_chinese_chars=True,
|
83 |
+
strip_accents=None,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(
|
87 |
+
vocab_file,
|
88 |
+
tokenizer_file=tokenizer_file,
|
89 |
+
do_lower_case=do_lower_case,
|
90 |
+
unk_token=unk_token,
|
91 |
+
sep_token=sep_token,
|
92 |
+
pad_token=pad_token,
|
93 |
+
cls_token=cls_token,
|
94 |
+
mask_token=mask_token,
|
95 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
96 |
+
strip_accents=strip_accents,
|
97 |
+
**kwargs,
|
98 |
+
)
|
99 |
+
|
100 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
101 |
+
if (
|
102 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
103 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
104 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
105 |
+
):
|
106 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
107 |
+
normalizer_state["lowercase"] = do_lower_case
|
108 |
+
normalizer_state["strip_accents"] = strip_accents
|
109 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
110 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
111 |
+
|
112 |
+
self.do_lower_case = do_lower_case
|
113 |
+
|
114 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
115 |
+
"""
|
116 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
117 |
+
adding special tokens. A ELECTRA sequence has the following format:
|
118 |
+
|
119 |
+
- single sequence: `[CLS] X [SEP]`
|
120 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
121 |
+
|
122 |
+
Args:
|
123 |
+
token_ids_0 (`List[int]`):
|
124 |
+
List of IDs to which the special tokens will be added.
|
125 |
+
token_ids_1 (`List[int]`, *optional*):
|
126 |
+
Optional second list of IDs for sequence pairs.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
130 |
+
"""
|
131 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
132 |
+
|
133 |
+
if token_ids_1 is not None:
|
134 |
+
output += token_ids_1 + [self.sep_token_id]
|
135 |
+
|
136 |
+
return output
|
137 |
+
|
138 |
+
def create_token_type_ids_from_sequences(
|
139 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
140 |
+
) -> List[int]:
|
141 |
+
"""
|
142 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ELECTRA sequence
|
143 |
+
pair mask has the following format:
|
144 |
+
|
145 |
+
```
|
146 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
147 |
+
| first sequence | second sequence |
|
148 |
+
```
|
149 |
+
|
150 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
151 |
+
|
152 |
+
Args:
|
153 |
+
token_ids_0 (`List[int]`):
|
154 |
+
List of IDs.
|
155 |
+
token_ids_1 (`List[int]`, *optional*):
|
156 |
+
Optional second list of IDs for sequence pairs.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
160 |
+
"""
|
161 |
+
sep = [self.sep_token_id]
|
162 |
+
cls = [self.cls_token_id]
|
163 |
+
if token_ids_1 is None:
|
164 |
+
return len(cls + token_ids_0 + sep) * [0]
|
165 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
166 |
+
|
167 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
168 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
169 |
+
return tuple(files)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extractor class for Musicgen Melody
|
17 |
+
"""
|
18 |
+
import copy
|
19 |
+
from typing import Any, Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ...audio_utils import chroma_filter_bank
|
24 |
+
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
|
25 |
+
from ...feature_extraction_utils import BatchFeature
|
26 |
+
from ...utils import TensorType, is_torch_available, is_torchaudio_available, logging
|
27 |
+
|
28 |
+
|
29 |
+
if is_torch_available():
|
30 |
+
import torch
|
31 |
+
|
32 |
+
if is_torchaudio_available():
|
33 |
+
import torchaudio
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
class MusicgenMelodyFeatureExtractor(SequenceFeatureExtractor):
|
39 |
+
r"""
|
40 |
+
Constructs a MusicgenMelody feature extractor.
|
41 |
+
|
42 |
+
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
|
43 |
+
most of the main methods. Users should refer to this superclass for more information regarding those methods.
|
44 |
+
|
45 |
+
This class extracts chroma features from audio processed by [Demucs](https://github.com/adefossez/demucs/tree/main) or
|
46 |
+
directly from raw audio waveform.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
feature_size (`int`, *optional*, defaults to 12):
|
50 |
+
The feature dimension of the extracted features.
|
51 |
+
sampling_rate (`int`, *optional*, defaults to 32000):
|
52 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
53 |
+
hop_length (`int`, *optional*, defaults to 4096):
|
54 |
+
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
|
55 |
+
chunk_length (`int`, *optional*, defaults to 30):
|
56 |
+
The maximum number of chunks of `sampling_rate` samples used to trim and pad longer or shorter audio
|
57 |
+
sequences.
|
58 |
+
n_fft (`int`, *optional*, defaults to 16384):
|
59 |
+
Size of the Fourier transform.
|
60 |
+
num_chroma (`int`, *optional*, defaults to 12):
|
61 |
+
Number of chroma bins to use.
|
62 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
63 |
+
Padding value used to pad the audio.
|
64 |
+
return_attention_mask (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether to return the attention mask. Can be overwritten when calling the feature extractor.
|
66 |
+
|
67 |
+
[What are attention masks?](../glossary#attention-mask)
|
68 |
+
|
69 |
+
<Tip>
|
70 |
+
|
71 |
+
For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle
|
72 |
+
bugs.
|
73 |
+
|
74 |
+
</Tip>
|
75 |
+
stem_indices (`List[int]`, *optional*, defaults to `[3, 2]`):
|
76 |
+
Stem channels to extract if demucs outputs are passed.
|
77 |
+
"""
|
78 |
+
|
79 |
+
model_input_names = ["input_features"]
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
feature_size=12,
|
84 |
+
sampling_rate=32000,
|
85 |
+
hop_length=4096,
|
86 |
+
chunk_length=30,
|
87 |
+
n_fft=16384,
|
88 |
+
num_chroma=12,
|
89 |
+
padding_value=0.0,
|
90 |
+
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
|
91 |
+
stem_indices=[3, 2],
|
92 |
+
**kwargs,
|
93 |
+
):
|
94 |
+
super().__init__(
|
95 |
+
feature_size=feature_size,
|
96 |
+
sampling_rate=sampling_rate,
|
97 |
+
padding_value=padding_value,
|
98 |
+
return_attention_mask=return_attention_mask,
|
99 |
+
**kwargs,
|
100 |
+
)
|
101 |
+
self.n_fft = n_fft
|
102 |
+
self.hop_length = hop_length
|
103 |
+
self.chunk_length = chunk_length
|
104 |
+
self.n_samples = chunk_length * sampling_rate
|
105 |
+
self.sampling_rate = sampling_rate
|
106 |
+
self.chroma_filters = torch.from_numpy(
|
107 |
+
chroma_filter_bank(sampling_rate=sampling_rate, num_frequency_bins=n_fft, tuning=0, num_chroma=num_chroma)
|
108 |
+
).float()
|
109 |
+
self.spectrogram = torchaudio.transforms.Spectrogram(
|
110 |
+
n_fft=n_fft, win_length=n_fft, hop_length=hop_length, power=2, center=True, pad=0, normalized=True
|
111 |
+
)
|
112 |
+
self.stem_indices = stem_indices
|
113 |
+
|
114 |
+
def _torch_extract_fbank_features(self, waveform: torch.Tensor) -> torch.Tensor:
|
115 |
+
"""
|
116 |
+
Compute the chroma spectrogram of the provided audio using the torchaudio spectrogram implementation and the librosa chroma features.
|
117 |
+
"""
|
118 |
+
|
119 |
+
# if wav length is not long enough, pad it
|
120 |
+
wav_length = waveform.shape[-1]
|
121 |
+
if wav_length < self.n_fft:
|
122 |
+
pad = self.n_fft - wav_length
|
123 |
+
rest = 0 if pad % 2 == 0 else 1
|
124 |
+
waveform = torch.nn.functional.pad(waveform, (pad // 2, pad // 2 + rest), "constant", 0)
|
125 |
+
|
126 |
+
# squeeze alongside channel dimension
|
127 |
+
spec = self.spectrogram(waveform).squeeze(1)
|
128 |
+
|
129 |
+
# sum along the frequency dimension
|
130 |
+
raw_chroma = torch.einsum("cf, ...ft->...ct", self.chroma_filters, spec)
|
131 |
+
|
132 |
+
# normalise with max value
|
133 |
+
norm_chroma = torch.nn.functional.normalize(raw_chroma, p=float("inf"), dim=-2, eps=1e-6)
|
134 |
+
|
135 |
+
# transpose time and chroma dimension -> (batch, time, chroma)
|
136 |
+
norm_chroma = norm_chroma.transpose(1, 2)
|
137 |
+
|
138 |
+
# replace max value alongside chroma dimension with 1 and replace the rest with 0
|
139 |
+
idx = norm_chroma.argmax(-1, keepdim=True)
|
140 |
+
norm_chroma[:] = 0
|
141 |
+
norm_chroma.scatter_(dim=-1, index=idx, value=1)
|
142 |
+
|
143 |
+
return norm_chroma
|
144 |
+
|
145 |
+
def _extract_stem_indices(self, audio, sampling_rate=None):
|
146 |
+
"""
|
147 |
+
Extracts stems from the output of the [Demucs](https://github.com/adefossez/demucs/tree/main) audio separation model,
|
148 |
+
then converts to mono-channel and resample to the feature extractor sampling rate.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
audio (`torch.Tensor` of shape `(batch_size, num_stems, channel_size, audio_length)`):
|
152 |
+
The output of the Demucs model to be processed.
|
153 |
+
sampling_rate (`int`, *optional*):
|
154 |
+
Demucs sampling rate. If not specified, defaults to `44000`.
|
155 |
+
"""
|
156 |
+
sampling_rate = 44000 if sampling_rate is None else sampling_rate
|
157 |
+
|
158 |
+
# extract "vocals" and "others" sources from audio encoder (demucs) output
|
159 |
+
# [batch_size, num_stems, channel_size, audio_length]
|
160 |
+
wav = audio[:, torch.tensor(self.stem_indices)]
|
161 |
+
|
162 |
+
# merge extracted stems to single waveform
|
163 |
+
wav = wav.sum(1)
|
164 |
+
|
165 |
+
# convert to mono-channel waveform
|
166 |
+
wav = wav.mean(dim=1, keepdim=True)
|
167 |
+
|
168 |
+
# resample to model sampling rate
|
169 |
+
# not equivalent to julius.resample
|
170 |
+
if sampling_rate != self.sampling_rate:
|
171 |
+
wav = torchaudio.functional.resample(
|
172 |
+
wav, sampling_rate, self.sampling_rate, rolloff=0.945, lowpass_filter_width=24
|
173 |
+
)
|
174 |
+
|
175 |
+
# [batch_size, 1, audio_length] -> [batch_size, audio_length]
|
176 |
+
wav = wav.squeeze(1)
|
177 |
+
|
178 |
+
return wav
|
179 |
+
|
180 |
+
def __call__(
|
181 |
+
self,
|
182 |
+
audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
183 |
+
truncation: bool = True,
|
184 |
+
pad_to_multiple_of: Optional[int] = None,
|
185 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
186 |
+
return_attention_mask: Optional[bool] = None,
|
187 |
+
padding: Optional[str] = True,
|
188 |
+
max_length: Optional[int] = None,
|
189 |
+
sampling_rate: Optional[int] = None,
|
190 |
+
**kwargs,
|
191 |
+
) -> BatchFeature:
|
192 |
+
"""
|
193 |
+
Main method to featurize and prepare for the model one or several sequence(s).
|
194 |
+
|
195 |
+
Args:
|
196 |
+
audio (`torch.Tensor`, `np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[float]]`):
|
197 |
+
The sequence or batch of sequences to be padded. Each sequence can be a torch tensor, a numpy array, a list of float
|
198 |
+
values, a list of numpy arrays, a list of torch tensors, or a list of list of float values.
|
199 |
+
If `audio` is the output of Demucs, it has to be a torch tensor of shape `(batch_size, num_stems, channel_size, audio_length)`.
|
200 |
+
Otherwise, it must be mono or stereo channel audio.
|
201 |
+
truncation (`bool`, *optional*, default to `True`):
|
202 |
+
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
|
203 |
+
pad_to_multiple_of (`int`, *optional*, defaults to None):
|
204 |
+
If set will pad the sequence to a multiple of the provided value.
|
205 |
+
|
206 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
207 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
208 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
209 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
210 |
+
|
211 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
212 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
213 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
214 |
+
return_attention_mask (`bool`, *optional*):
|
215 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
216 |
+
to the specific feature_extractor's default.
|
217 |
+
|
218 |
+
[What are attention masks?](../glossary#attention-mask)
|
219 |
+
|
220 |
+
<Tip>
|
221 |
+
For Musicgen Melody models, audio `attention_mask` is not necessary.
|
222 |
+
</Tip>
|
223 |
+
|
224 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
225 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
226 |
+
index) among:
|
227 |
+
|
228 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
229 |
+
sequence if provided).
|
230 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
231 |
+
acceptable input length for the model if that argument is not provided.
|
232 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
233 |
+
lengths).
|
234 |
+
max_length (`int`, *optional*):
|
235 |
+
Maximum length of the returned list and optionally padding length (see above).
|
236 |
+
sampling_rate (`int`, *optional*):
|
237 |
+
The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
|
238 |
+
`sampling_rate` at the forward call to prevent silent errors.
|
239 |
+
Note that if `audio` is the output of Demucs, `sampling_rate` must be the sampling rate at which Demucs operates.
|
240 |
+
"""
|
241 |
+
|
242 |
+
if sampling_rate is None:
|
243 |
+
logger.warning_once(
|
244 |
+
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
|
245 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
246 |
+
)
|
247 |
+
|
248 |
+
if isinstance(audio, torch.Tensor) and len(audio.shape) == 4:
|
249 |
+
logger.warning_once(
|
250 |
+
"`audio` is a 4-dimensional torch tensor and has thus been recognized as the output of `Demucs`. "
|
251 |
+
"If this is not the case, make sure to read Musicgen Melody docstrings and "
|
252 |
+
"to correct `audio` to get the right behaviour."
|
253 |
+
"Link to the docstrings: https://huggingface.co/docs/transformers/main/en/model_doc/musicgen_melody"
|
254 |
+
)
|
255 |
+
audio = self._extract_stem_indices(audio, sampling_rate=sampling_rate)
|
256 |
+
elif sampling_rate is not None and sampling_rate != self.sampling_rate:
|
257 |
+
audio = torchaudio.functional.resample(
|
258 |
+
audio, sampling_rate, self.sampling_rate, rolloff=0.945, lowpass_filter_width=24
|
259 |
+
)
|
260 |
+
|
261 |
+
is_batched = isinstance(audio, (np.ndarray, torch.Tensor)) and len(audio.shape) > 1
|
262 |
+
is_batched = is_batched or (
|
263 |
+
isinstance(audio, (list, tuple)) and (isinstance(audio[0], (torch.Tensor, np.ndarray, tuple, list)))
|
264 |
+
)
|
265 |
+
|
266 |
+
if is_batched and not isinstance(audio[0], torch.Tensor):
|
267 |
+
audio = [torch.tensor(speech, dtype=torch.float32).unsqueeze(-1) for speech in audio]
|
268 |
+
elif is_batched:
|
269 |
+
audio = [speech.unsqueeze(-1) for speech in audio]
|
270 |
+
elif not is_batched and not isinstance(audio, torch.Tensor):
|
271 |
+
audio = torch.tensor(audio, dtype=torch.float32).unsqueeze(-1)
|
272 |
+
|
273 |
+
if isinstance(audio[0], torch.Tensor) and audio[0].dtype is torch.float64:
|
274 |
+
audio = [speech.to(torch.float32) for speech in audio]
|
275 |
+
|
276 |
+
# always return batch
|
277 |
+
if not is_batched:
|
278 |
+
audio = [audio]
|
279 |
+
|
280 |
+
if len(audio[0].shape) == 3:
|
281 |
+
logger.warning_once(
|
282 |
+
"`audio` has been detected as a batch of stereo signals. Will be convert to mono signals. "
|
283 |
+
"If this is an undesired behaviour, make sure to read Musicgen Melody docstrings and "
|
284 |
+
"to correct `audio` to get the right behaviour."
|
285 |
+
"Link to the docstrings: https://huggingface.co/docs/transformers/main/en/model_doc/musicgen_melody"
|
286 |
+
)
|
287 |
+
# convert to mono-channel waveform
|
288 |
+
audio = [stereo.mean(dim=0) for stereo in audio]
|
289 |
+
|
290 |
+
batched_speech = BatchFeature({"input_features": audio})
|
291 |
+
|
292 |
+
padded_inputs = self.pad(
|
293 |
+
batched_speech,
|
294 |
+
padding=padding,
|
295 |
+
max_length=max_length if max_length else self.n_samples,
|
296 |
+
truncation=truncation,
|
297 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
298 |
+
return_attention_mask=return_attention_mask,
|
299 |
+
return_tensors="pt",
|
300 |
+
)
|
301 |
+
|
302 |
+
input_features = self._torch_extract_fbank_features(padded_inputs["input_features"].squeeze(-1))
|
303 |
+
|
304 |
+
padded_inputs["input_features"] = input_features
|
305 |
+
|
306 |
+
if return_attention_mask:
|
307 |
+
# rescale from raw audio length to spectrogram length
|
308 |
+
padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]
|
309 |
+
|
310 |
+
if return_tensors is not None:
|
311 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
312 |
+
|
313 |
+
return padded_inputs
|
314 |
+
|
315 |
+
def to_dict(self) -> Dict[str, Any]:
|
316 |
+
"""
|
317 |
+
Serializes this instance to a Python dictionary. Returns:
|
318 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
319 |
+
"""
|
320 |
+
output = copy.deepcopy(self.__dict__)
|
321 |
+
output["feature_extractor_type"] = self.__class__.__name__
|
322 |
+
if "mel_filters" in output:
|
323 |
+
del output["mel_filters"]
|
324 |
+
if "window" in output:
|
325 |
+
del output["window"]
|
326 |
+
if "chroma_filters" in output:
|
327 |
+
del output["chroma_filters"]
|
328 |
+
if "spectrogram" in output:
|
329 |
+
del output["spectrogram"]
|
330 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_wav2vec2_bert": [
|
21 |
+
"WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"Wav2Vec2BertConfig",
|
23 |
+
],
|
24 |
+
"processing_wav2vec2_bert": ["Wav2Vec2BertProcessor"],
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_wav2vec2_bert"] = [
|
35 |
+
"WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
36 |
+
"Wav2Vec2BertForAudioFrameClassification",
|
37 |
+
"Wav2Vec2BertForCTC",
|
38 |
+
"Wav2Vec2BertForSequenceClassification",
|
39 |
+
"Wav2Vec2BertForXVector",
|
40 |
+
"Wav2Vec2BertModel",
|
41 |
+
"Wav2Vec2BertPreTrainedModel",
|
42 |
+
]
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_wav2vec2_bert import (
|
46 |
+
WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
47 |
+
Wav2Vec2BertConfig,
|
48 |
+
)
|
49 |
+
from .processing_wav2vec2_bert import Wav2Vec2BertProcessor
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_torch_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
from .modeling_wav2vec2_bert import (
|
58 |
+
WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
59 |
+
Wav2Vec2BertForAudioFrameClassification,
|
60 |
+
Wav2Vec2BertForCTC,
|
61 |
+
Wav2Vec2BertForSequenceClassification,
|
62 |
+
Wav2Vec2BertForXVector,
|
63 |
+
Wav2Vec2BertModel,
|
64 |
+
Wav2Vec2BertPreTrainedModel,
|
65 |
+
)
|
66 |
+
|
67 |
+
else:
|
68 |
+
import sys
|
69 |
+
|
70 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.19 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/configuration_wav2vec2_bert.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/convert_wav2vec2_seamless_checkpoint.cpython-310.pyc
ADDED
Binary file (5.82 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/modeling_wav2vec2_bert.cpython-310.pyc
ADDED
Binary file (43.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/processing_wav2vec2_bert.cpython-310.pyc
ADDED
Binary file (6.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Wav2Vec2Bert model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class Wav2Vec2BertConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`Wav2Vec2BertModel`]. It is used to
|
31 |
+
instantiate an Wav2Vec2Bert model according to the specified arguments, defining the model architecture.
|
32 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Bert
|
33 |
+
[facebook/wav2vec2-bert-rel-pos-large](https://huggingface.co/facebook/wav2vec2-bert-rel-pos-large)
|
34 |
+
architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*):
|
42 |
+
Vocabulary size of the Wav2Vec2Bert model. Defines the number of different tokens that can be
|
43 |
+
represented by the `inputs_ids` passed when calling [`Wav2Vec2BertModel`]. Vocabulary size of the
|
44 |
+
model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
|
45 |
+
method of [`Wav2Vec2BertModel`].
|
46 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
47 |
+
Dimensionality of the encoder layers and the pooler layer.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
intermediate_size (`int`, *optional*, defaults to 4096):
|
53 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
54 |
+
feature_projection_input_dim (`int`, *optional*, defaults to 160):
|
55 |
+
Input dimension of this model, i.e the dimension after processing input audios with [`SeamlessM4TFeatureExtractor`] or [`Wav2Vec2BertProcessor`].
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
|
57 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
+
`"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
|
59 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
61 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for activations inside the fully connected layer.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the attention probabilities.
|
65 |
+
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout probability for the feature projection.
|
67 |
+
final_dropout (`float`, *optional*, defaults to 0.1):
|
68 |
+
The dropout probability for the final projection layer of [`Wav2Vec2BertForCTC`].
|
69 |
+
layerdrop (`float`, *optional*, defaults to 0.1):
|
70 |
+
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
|
71 |
+
details.
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
75 |
+
The epsilon used by the layer normalization layers.
|
76 |
+
apply_spec_augment (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
|
78 |
+
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
|
79 |
+
Recognition](https://arxiv.org/abs/1904.08779).
|
80 |
+
mask_time_prob (`float`, *optional*, defaults to 0.05):
|
81 |
+
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
|
82 |
+
procecure generates `mask_time_prob*len(time_axis)/mask_time_length ``independent masks over the axis. If
|
83 |
+
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
|
84 |
+
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
|
85 |
+
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
|
86 |
+
mask_time_length (`int`, *optional*, defaults to 10):
|
87 |
+
Length of vector span along the time axis.
|
88 |
+
mask_time_min_masks (`int`, *optional*, defaults to 2):
|
89 |
+
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
|
90 |
+
irrespectively of `mask_feature_prob`. Only relevant if `mask_time_prob*len(time_axis)/mask_time_length <
|
91 |
+
mask_time_min_masks`.
|
92 |
+
mask_feature_prob (`float`, *optional*, defaults to 0.0):
|
93 |
+
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
|
94 |
+
masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
|
95 |
+
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
|
96 |
+
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
|
97 |
+
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
|
98 |
+
True`.
|
99 |
+
mask_feature_length (`int`, *optional*, defaults to 10):
|
100 |
+
Length of vector span along the feature axis.
|
101 |
+
mask_feature_min_masks (`int`, *optional*, defaults to 0):
|
102 |
+
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
|
103 |
+
step, irrespectively of `mask_feature_prob`. Only relevant if
|
104 |
+
`mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
|
105 |
+
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
|
106 |
+
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
|
107 |
+
instance of [`Wav2Vec2BertForCTC`].
|
108 |
+
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
|
110 |
+
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
|
111 |
+
of [`Wav2Vec2BertForCTC`].
|
112 |
+
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
|
113 |
+
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
|
114 |
+
instance of [`Wav2Vec2BertForSequenceClassification`].
|
115 |
+
classifier_proj_size (`int`, *optional*, defaults to 768):
|
116 |
+
Dimensionality of the projection before token mean-pooling for classification.
|
117 |
+
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
|
118 |
+
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
|
119 |
+
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
|
120 |
+
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
|
121 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
|
122 |
+
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
|
123 |
+
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
|
124 |
+
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
|
125 |
+
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
|
126 |
+
xvector_output_dim (`int`, *optional*, defaults to 512):
|
127 |
+
Dimensionality of the *XVector* embedding vectors.
|
128 |
+
pad_token_id (`int`, *optional*, defaults to 0): The id of the _beginning-of-stream_ token.
|
129 |
+
bos_token_id (`int`, *optional*, defaults to 1): The id of the _padding_ token.
|
130 |
+
eos_token_id (`int`, *optional*, defaults to 2): The id of the _end-of-stream_ token.
|
131 |
+
add_adapter (`bool`, *optional*, defaults to `False`):
|
132 |
+
Whether a convolutional attention network should be stacked on top of the Wav2Vec2Bert Encoder. Can be very
|
133 |
+
useful for warm-starting Wav2Vec2Bert for SpeechEncoderDecoder models.
|
134 |
+
adapter_kernel_size (`int`, *optional*, defaults to 3):
|
135 |
+
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
136 |
+
adapter_stride (`int`, *optional*, defaults to 2):
|
137 |
+
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
138 |
+
num_adapter_layers (`int`, *optional*, defaults to 1):
|
139 |
+
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
|
140 |
+
True`.
|
141 |
+
adapter_act (`str` or `function`, *optional*, defaults to `"relu"`):
|
142 |
+
The non-linear activation function (function or string) in the adapter layers. If string, `"gelu"`,
|
143 |
+
`"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
|
144 |
+
use_intermediate_ffn_before_adapter (`bool`, *optional*, defaults to `False`):
|
145 |
+
Whether an intermediate feed-forward block should be stacked on top of the Wav2Vec2Bert Encoder and before the adapter network.
|
146 |
+
Only relevant if `add_adapter is True`.
|
147 |
+
output_hidden_size (`int`, *optional*):
|
148 |
+
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
|
149 |
+
if `add_adapter is True`.
|
150 |
+
position_embeddings_type (`str`, *optional*, defaults to `"relative_key"`):
|
151 |
+
Can be specified to :
|
152 |
+
- `rotary`, for rotary position embeddings.
|
153 |
+
- `relative`, for relative position embeddings.
|
154 |
+
- `relative_key`, for relative position embeddings as defined by Shaw in [Self-Attention
|
155 |
+
with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
156 |
+
If left to `None`, no relative position embeddings is applied.
|
157 |
+
rotary_embedding_base (`int`, *optional*, defaults to 10000):
|
158 |
+
If `"rotary"` position embeddings are used, defines the size of the embedding base.
|
159 |
+
max_source_positions (`int`, *optional*, defaults to 5000):
|
160 |
+
if `"relative"` position embeddings are used, defines the maximum source input positions.
|
161 |
+
left_max_position_embeddings (`int`, *optional*, defaults to 64):
|
162 |
+
If `"relative_key"` (aka Shaw) position embeddings are used, defines the left clipping value for relative positions.
|
163 |
+
right_max_position_embeddings (`int`, *optional*, defaults to 8):
|
164 |
+
If `"relative_key"` (aka Shaw) position embeddings are used, defines the right clipping value for relative positions.
|
165 |
+
conv_depthwise_kernel_size (`int`, *optional*, defaults to 31):
|
166 |
+
Kernel size of convolutional depthwise 1D layer in Conformer blocks.
|
167 |
+
conformer_conv_dropout (`float`, *optional*, defaults to 0.1):
|
168 |
+
The dropout probability for all convolutional layers in Conformer blocks.
|
169 |
+
Example:
|
170 |
+
|
171 |
+
```python
|
172 |
+
>>> from transformers import Wav2Vec2BertConfig, Wav2Vec2BertModel
|
173 |
+
|
174 |
+
>>> # Initializing a Wav2Vec2Bert facebook/wav2vec2-bert-rel-pos-large style configuration
|
175 |
+
>>> configuration = Wav2Vec2BertConfig()
|
176 |
+
|
177 |
+
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-bert-rel-pos-large style configuration
|
178 |
+
>>> model = Wav2Vec2BertModel(configuration)
|
179 |
+
|
180 |
+
>>> # Accessing the model configuration
|
181 |
+
>>> configuration = model.config
|
182 |
+
```"""
|
183 |
+
|
184 |
+
model_type = "wav2vec2-bert"
|
185 |
+
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
vocab_size=None,
|
189 |
+
hidden_size=1024,
|
190 |
+
num_hidden_layers=24,
|
191 |
+
num_attention_heads=16,
|
192 |
+
intermediate_size=4096,
|
193 |
+
feature_projection_input_dim=160,
|
194 |
+
hidden_act="swish",
|
195 |
+
hidden_dropout=0.0,
|
196 |
+
activation_dropout=0.0,
|
197 |
+
attention_dropout=0.0,
|
198 |
+
feat_proj_dropout=0.0,
|
199 |
+
final_dropout=0.1,
|
200 |
+
layerdrop=0.1,
|
201 |
+
initializer_range=0.02,
|
202 |
+
layer_norm_eps=1e-5,
|
203 |
+
apply_spec_augment=True,
|
204 |
+
mask_time_prob=0.05,
|
205 |
+
mask_time_length=10,
|
206 |
+
mask_time_min_masks=2,
|
207 |
+
mask_feature_prob=0.0,
|
208 |
+
mask_feature_length=10,
|
209 |
+
mask_feature_min_masks=0,
|
210 |
+
ctc_loss_reduction="sum",
|
211 |
+
ctc_zero_infinity=False,
|
212 |
+
use_weighted_layer_sum=False,
|
213 |
+
classifier_proj_size=768,
|
214 |
+
tdnn_dim=(512, 512, 512, 512, 1500),
|
215 |
+
tdnn_kernel=(5, 3, 3, 1, 1),
|
216 |
+
tdnn_dilation=(1, 2, 3, 1, 1),
|
217 |
+
xvector_output_dim=512,
|
218 |
+
pad_token_id=0,
|
219 |
+
bos_token_id=1,
|
220 |
+
eos_token_id=2,
|
221 |
+
add_adapter=False,
|
222 |
+
adapter_kernel_size=3,
|
223 |
+
adapter_stride=2,
|
224 |
+
num_adapter_layers=1,
|
225 |
+
adapter_act="relu",
|
226 |
+
use_intermediate_ffn_before_adapter=False,
|
227 |
+
output_hidden_size=None,
|
228 |
+
position_embeddings_type="relative_key",
|
229 |
+
rotary_embedding_base=10000,
|
230 |
+
max_source_positions=5000,
|
231 |
+
left_max_position_embeddings=64,
|
232 |
+
right_max_position_embeddings=8,
|
233 |
+
conv_depthwise_kernel_size=31,
|
234 |
+
conformer_conv_dropout=0.1,
|
235 |
+
**kwargs,
|
236 |
+
):
|
237 |
+
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
|
238 |
+
self.hidden_size = hidden_size
|
239 |
+
self.num_hidden_layers = num_hidden_layers
|
240 |
+
self.intermediate_size = intermediate_size
|
241 |
+
self.hidden_act = hidden_act
|
242 |
+
self.num_attention_heads = num_attention_heads
|
243 |
+
self.feature_projection_input_dim = feature_projection_input_dim
|
244 |
+
self.hidden_dropout = hidden_dropout
|
245 |
+
self.attention_dropout = attention_dropout
|
246 |
+
self.activation_dropout = activation_dropout
|
247 |
+
self.feat_proj_dropout = feat_proj_dropout
|
248 |
+
self.final_dropout = final_dropout
|
249 |
+
self.layerdrop = layerdrop
|
250 |
+
self.layer_norm_eps = layer_norm_eps
|
251 |
+
self.initializer_range = initializer_range
|
252 |
+
self.vocab_size = vocab_size
|
253 |
+
self.use_weighted_layer_sum = use_weighted_layer_sum
|
254 |
+
self.max_source_positions = max_source_positions
|
255 |
+
|
256 |
+
if position_embeddings_type is not None and position_embeddings_type not in [
|
257 |
+
"rotary",
|
258 |
+
"relative",
|
259 |
+
"relative_key",
|
260 |
+
]:
|
261 |
+
raise ValueError(
|
262 |
+
"""
|
263 |
+
`position_embeddings_type` is not valid. It must be one of the following values:
|
264 |
+
`["rotary", "relative", "relative_key"]` or left as `None`.
|
265 |
+
"""
|
266 |
+
)
|
267 |
+
self.position_embeddings_type = position_embeddings_type
|
268 |
+
self.rotary_embedding_base = rotary_embedding_base
|
269 |
+
self.left_max_position_embeddings = left_max_position_embeddings
|
270 |
+
self.right_max_position_embeddings = right_max_position_embeddings
|
271 |
+
|
272 |
+
# Conformer-block related
|
273 |
+
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
|
274 |
+
self.conformer_conv_dropout = conformer_conv_dropout
|
275 |
+
|
276 |
+
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
277 |
+
self.apply_spec_augment = apply_spec_augment
|
278 |
+
self.mask_time_prob = mask_time_prob
|
279 |
+
self.mask_time_length = mask_time_length
|
280 |
+
self.mask_time_min_masks = mask_time_min_masks
|
281 |
+
self.mask_feature_prob = mask_feature_prob
|
282 |
+
self.mask_feature_length = mask_feature_length
|
283 |
+
self.mask_feature_min_masks = mask_feature_min_masks
|
284 |
+
|
285 |
+
# ctc loss
|
286 |
+
self.ctc_loss_reduction = ctc_loss_reduction
|
287 |
+
self.ctc_zero_infinity = ctc_zero_infinity
|
288 |
+
|
289 |
+
# adapter
|
290 |
+
self.add_adapter = add_adapter
|
291 |
+
self.adapter_kernel_size = adapter_kernel_size
|
292 |
+
self.adapter_stride = adapter_stride
|
293 |
+
self.num_adapter_layers = num_adapter_layers
|
294 |
+
self.adapter_act = adapter_act
|
295 |
+
self.output_hidden_size = output_hidden_size if output_hidden_size is not None else hidden_size
|
296 |
+
if use_intermediate_ffn_before_adapter and not add_adapter:
|
297 |
+
raise ValueError("`use_intermediate_ffn_before_adapter` is `True` but `add_adapter` is `False`.")
|
298 |
+
self.use_intermediate_ffn_before_adapter = use_intermediate_ffn_before_adapter
|
299 |
+
|
300 |
+
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
|
301 |
+
self.classifier_proj_size = classifier_proj_size
|
302 |
+
|
303 |
+
# XVector-specific parameters. Feel free to ignore for other classes.
|
304 |
+
self.tdnn_dim = list(tdnn_dim)
|
305 |
+
self.tdnn_kernel = list(tdnn_kernel)
|
306 |
+
self.tdnn_dilation = list(tdnn_dilation)
|
307 |
+
self.xvector_output_dim = xvector_output_dim
|
308 |
+
|
309 |
+
@property
|
310 |
+
def inputs_to_logits_ratio(self):
|
311 |
+
ratio = self.feature_projection_input_dim * 2
|
312 |
+
if self.add_adapter:
|
313 |
+
ratio = ratio * (self.adapter_stride**self.num_adapter_layers)
|
314 |
+
return ratio
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Wav2Vec2Bert BERT checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torchaudio
|
22 |
+
from fairseq2.data import Collater
|
23 |
+
from fairseq2.data.audio import WaveformToFbankConverter
|
24 |
+
from fairseq2.nn.padding import get_seqs_and_padding_mask
|
25 |
+
from seamless_communication.models.conformer_shaw import load_conformer_shaw_model
|
26 |
+
|
27 |
+
from transformers import (
|
28 |
+
SeamlessM4TFeatureExtractor,
|
29 |
+
Wav2Vec2BertConfig,
|
30 |
+
Wav2Vec2BertModel,
|
31 |
+
logging,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
logging.set_verbosity_info()
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
wav2vec_convert_list = [
|
40 |
+
("encoder_frontend.model_dim_proj", "feature_projection.projection"),
|
41 |
+
("encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
|
42 |
+
("encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
|
43 |
+
("encoder.inner.layers", "encoder.layers"),
|
44 |
+
("encoder.inner_layer_norm", "encoder.layer_norm"),
|
45 |
+
("encoder.adaptor_layers", "adapter.layers"),
|
46 |
+
("inner_proj", "intermediate_dense"),
|
47 |
+
("self_attn.output_proj", "self_attn.linear_out"),
|
48 |
+
("output_proj", "output_dense"),
|
49 |
+
("self_attn.k_proj", "self_attn.linear_k"),
|
50 |
+
("self_attn.v_proj", "self_attn.linear_v"),
|
51 |
+
("self_attn.q_proj", "self_attn.linear_q"),
|
52 |
+
("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
|
53 |
+
("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
|
54 |
+
("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"),
|
55 |
+
("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
|
56 |
+
("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
|
57 |
+
("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
|
58 |
+
("conv.depthwise_conv", "conv_module.depthwise_conv"),
|
59 |
+
("conv.layer_norm", "conv_module.depthwise_layer_norm"),
|
60 |
+
("conv_layer_norm", "conv_module.layer_norm"),
|
61 |
+
("encoder.proj1", "intermediate_ffn.intermediate_dense"),
|
62 |
+
("encoder.proj2", "intermediate_ffn.output_dense"),
|
63 |
+
("encoder.layer_norm", "inner_layer_norm"),
|
64 |
+
("masker.temporal_mask_embed", "masked_spec_embed"),
|
65 |
+
]
|
66 |
+
|
67 |
+
keys_to_remove = {
|
68 |
+
"quantizer.entry_proj",
|
69 |
+
"final_proj",
|
70 |
+
"final_target_proj",
|
71 |
+
"quantizer.entries",
|
72 |
+
"quantizer.num_updates",
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
def param_count(model):
|
77 |
+
return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
|
78 |
+
|
79 |
+
|
80 |
+
def _convert_model(
|
81 |
+
original_model,
|
82 |
+
hf_model,
|
83 |
+
convert_list,
|
84 |
+
):
|
85 |
+
state_dict = original_model.state_dict()
|
86 |
+
|
87 |
+
for k, v in list(state_dict.items()):
|
88 |
+
new_key = k
|
89 |
+
for old_layer_name, new_layer_name in convert_list:
|
90 |
+
if old_layer_name in new_key:
|
91 |
+
new_key = new_key.replace(old_layer_name, new_layer_name)
|
92 |
+
|
93 |
+
# must do it by hand
|
94 |
+
if ".layer_norm" in new_key and new_key.split(".layer_norm")[0][-1].isnumeric():
|
95 |
+
new_key = new_key.replace("layer_norm", "final_layer_norm")
|
96 |
+
|
97 |
+
add_key = True
|
98 |
+
for key in keys_to_remove:
|
99 |
+
if key in new_key:
|
100 |
+
state_dict.pop(k)
|
101 |
+
add_key = False
|
102 |
+
break
|
103 |
+
|
104 |
+
if add_key:
|
105 |
+
state_dict[new_key] = state_dict.pop(k)
|
106 |
+
|
107 |
+
extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
|
108 |
+
extra_keys = set({k for k in extra_keys if "num_updates" not in k}) # filter unecessary param
|
109 |
+
missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
|
110 |
+
if len(extra_keys) != 0:
|
111 |
+
raise ValueError(f"extra keys found: {extra_keys}")
|
112 |
+
if len(missing_keys) != 0:
|
113 |
+
raise ValueError(f"missing keys: {missing_keys}")
|
114 |
+
hf_model.load_state_dict(state_dict, strict=True)
|
115 |
+
n_params = param_count(hf_model)
|
116 |
+
|
117 |
+
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
|
118 |
+
|
119 |
+
hf_model.eval()
|
120 |
+
del state_dict
|
121 |
+
|
122 |
+
return hf_model
|
123 |
+
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def convert_wav2vec2_bert_checkpoint(
|
127 |
+
checkpoint_path,
|
128 |
+
pytorch_dump_folder_path,
|
129 |
+
config_path=None,
|
130 |
+
repo_id=None,
|
131 |
+
):
|
132 |
+
"""
|
133 |
+
Copy/paste/tweak model's weights to transformers design.
|
134 |
+
"""
|
135 |
+
if config_path is not None:
|
136 |
+
config = Wav2Vec2BertConfig.from_pretrained(config_path, hidden_act="swish")
|
137 |
+
else:
|
138 |
+
config = Wav2Vec2BertConfig(apply_spec_augment=False)
|
139 |
+
|
140 |
+
hf_wav2vec = Wav2Vec2BertModel(config)
|
141 |
+
|
142 |
+
model = load_conformer_shaw_model(checkpoint_path, dtype=torch.float32)
|
143 |
+
model.eval()
|
144 |
+
|
145 |
+
hf_wav2vec = _convert_model(model, hf_wav2vec, wav2vec_convert_list)
|
146 |
+
|
147 |
+
hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
|
148 |
+
|
149 |
+
if repo_id:
|
150 |
+
hf_wav2vec.push_to_hub(repo_id, create_pr=True)
|
151 |
+
|
152 |
+
# save feature extractor
|
153 |
+
fe = SeamlessM4TFeatureExtractor(padding_value=1)
|
154 |
+
fe._set_processor_class("Wav2Vec2BertProcessor")
|
155 |
+
fe.save_pretrained(pytorch_dump_folder_path)
|
156 |
+
|
157 |
+
if repo_id:
|
158 |
+
fe.push_to_hub(repo_id, create_pr=True)
|
159 |
+
|
160 |
+
if args.audio_path:
|
161 |
+
waveform, sample_rate = torchaudio.load(args.audio_path)
|
162 |
+
waveform = torchaudio.functional.resample(waveform, sample_rate, fe.sampling_rate)
|
163 |
+
|
164 |
+
fbank_converter = WaveformToFbankConverter(
|
165 |
+
num_mel_bins=80,
|
166 |
+
waveform_scale=2**15,
|
167 |
+
channel_last=True,
|
168 |
+
standardize=True,
|
169 |
+
dtype=torch.float32,
|
170 |
+
)
|
171 |
+
collater = Collater(pad_value=1)
|
172 |
+
|
173 |
+
decoded_audio = {"waveform": waveform.T, "sample_rate": fe.sampling_rate, "format": -1}
|
174 |
+
src = collater(fbank_converter(decoded_audio))["fbank"]
|
175 |
+
seqs, padding_mask = get_seqs_and_padding_mask(src)
|
176 |
+
|
177 |
+
with torch.inference_mode():
|
178 |
+
seqs, padding_mask = model.encoder_frontend(seqs, padding_mask)
|
179 |
+
original_output, padding_mask = model.encoder(seqs, padding_mask)
|
180 |
+
|
181 |
+
hf_wav2vec.eval()
|
182 |
+
|
183 |
+
inputs = fe(waveform, return_tensors="pt", padding=True)
|
184 |
+
with torch.no_grad():
|
185 |
+
outputs = hf_wav2vec(**inputs)
|
186 |
+
|
187 |
+
torch.testing.assert_close(original_output, outputs.last_hidden_state, atol=5e-3, rtol=5e-3)
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
parser = argparse.ArgumentParser()
|
192 |
+
parser.add_argument(
|
193 |
+
"--pytorch_dump_folder_path",
|
194 |
+
default=None,
|
195 |
+
type=str,
|
196 |
+
help="Path to the output PyTorch model.",
|
197 |
+
)
|
198 |
+
parser.add_argument(
|
199 |
+
"--checkpoint_path", default="conformer_shaw", type=str, help="Path to seamless communication checkpoint"
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--config_path",
|
203 |
+
default=None,
|
204 |
+
type=str,
|
205 |
+
help="Path to hf config.json of model to convert",
|
206 |
+
)
|
207 |
+
parser.add_argument("--repo_id", default=None, type=str, help="Push to this repo id if precised.")
|
208 |
+
parser.add_argument(
|
209 |
+
"--audio_path",
|
210 |
+
default=None,
|
211 |
+
type=str,
|
212 |
+
help="If specified, check that the original model and the converted model produce the same outputs.",
|
213 |
+
)
|
214 |
+
|
215 |
+
args = parser.parse_args()
|
216 |
+
convert_wav2vec2_bert_checkpoint(
|
217 |
+
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.repo_id
|
218 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py
ADDED
@@ -0,0 +1,1671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Seamless Authors and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Wav2Vec2-BERT model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
|
29 |
+
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
|
30 |
+
from ...modeling_outputs import (
|
31 |
+
BaseModelOutput,
|
32 |
+
CausalLMOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
Wav2Vec2BaseModelOutput,
|
36 |
+
XVectorOutput,
|
37 |
+
)
|
38 |
+
from ...modeling_utils import PreTrainedModel
|
39 |
+
from ...utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
is_peft_available,
|
44 |
+
logging,
|
45 |
+
)
|
46 |
+
from .configuration_wav2vec2_bert import Wav2Vec2BertConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
_HIDDEN_STATES_START_POSITION = 2
|
53 |
+
|
54 |
+
# General docstring
|
55 |
+
_CONFIG_FOR_DOC = "Wav2Vec2BertConfig"
|
56 |
+
|
57 |
+
# Base docstring
|
58 |
+
_BASE_CHECKPOINT_FOR_DOC = "facebook/w2v-bert-2.0"
|
59 |
+
_PRETRAINED_CHECKPOINT_FOR_DOC = "hf-audio/wav2vec2-bert-CV16-en"
|
60 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 146, 1024]
|
61 |
+
|
62 |
+
# CTC docstring
|
63 |
+
_CTC_EXPECTED_OUTPUT = "'mr quilter is the apostle of the middle classes and we are glad to welcome his gospel'"
|
64 |
+
_CTC_EXPECTED_LOSS = 17.04
|
65 |
+
|
66 |
+
|
67 |
+
from ..deprecated._archive_maps import WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2._compute_new_attention_mask
|
71 |
+
def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor):
|
72 |
+
"""
|
73 |
+
Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that
|
74 |
+
stops at the corresponding element in `seq_lens`.
|
75 |
+
Args:
|
76 |
+
hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`):
|
77 |
+
The sequences to mask, where `*` is any number of sequence-specific dimensions including none.
|
78 |
+
seq_lens (`torch.Tensor` of shape `(batch)`:
|
79 |
+
Each element represents the length of the sequence at the same index in `hidden_states`
|
80 |
+
Returns:
|
81 |
+
`torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)`
|
82 |
+
"""
|
83 |
+
batch_size, mask_seq_len = hidden_states.shape[:2]
|
84 |
+
|
85 |
+
indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1)
|
86 |
+
|
87 |
+
bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len)
|
88 |
+
|
89 |
+
mask = hidden_states.new_ones((batch_size, mask_seq_len))
|
90 |
+
|
91 |
+
mask = mask.masked_fill(bool_mask, 0)
|
92 |
+
|
93 |
+
return mask
|
94 |
+
|
95 |
+
|
96 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
|
97 |
+
def _compute_mask_indices(
|
98 |
+
shape: Tuple[int, int],
|
99 |
+
mask_prob: float,
|
100 |
+
mask_length: int,
|
101 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
102 |
+
min_masks: int = 0,
|
103 |
+
) -> np.ndarray:
|
104 |
+
"""
|
105 |
+
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
|
106 |
+
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
|
107 |
+
CPU as part of the preprocessing during training.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
|
111 |
+
the first element is the batch size and the second element is the length of the axis to span.
|
112 |
+
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
|
113 |
+
independently generated mask spans of length `mask_length` is computed by
|
114 |
+
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
|
115 |
+
actual percentage will be smaller.
|
116 |
+
mask_length: size of the mask
|
117 |
+
min_masks: minimum number of masked spans
|
118 |
+
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
|
119 |
+
each batch dimension.
|
120 |
+
"""
|
121 |
+
batch_size, sequence_length = shape
|
122 |
+
|
123 |
+
if mask_length < 1:
|
124 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
125 |
+
|
126 |
+
if mask_length > sequence_length:
|
127 |
+
raise ValueError(
|
128 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
|
129 |
+
f" and `sequence_length`: {sequence_length}`"
|
130 |
+
)
|
131 |
+
|
132 |
+
# epsilon is used for probabilistic rounding
|
133 |
+
epsilon = np.random.rand(1).item()
|
134 |
+
|
135 |
+
def compute_num_masked_span(input_length):
|
136 |
+
"""Given input length, compute how many spans should be masked"""
|
137 |
+
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
|
138 |
+
num_masked_span = max(num_masked_span, min_masks)
|
139 |
+
|
140 |
+
# make sure num masked span <= sequence_length
|
141 |
+
if num_masked_span * mask_length > sequence_length:
|
142 |
+
num_masked_span = sequence_length // mask_length
|
143 |
+
|
144 |
+
# make sure num_masked span is also <= input_length - (mask_length - 1)
|
145 |
+
if input_length - (mask_length - 1) < num_masked_span:
|
146 |
+
num_masked_span = max(input_length - (mask_length - 1), 0)
|
147 |
+
|
148 |
+
return num_masked_span
|
149 |
+
|
150 |
+
# compute number of masked spans in batch
|
151 |
+
input_lengths = (
|
152 |
+
attention_mask.sum(-1).detach().tolist()
|
153 |
+
if attention_mask is not None
|
154 |
+
else [sequence_length for _ in range(batch_size)]
|
155 |
+
)
|
156 |
+
|
157 |
+
# SpecAugment mask to fill
|
158 |
+
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
|
159 |
+
spec_aug_mask_idxs = []
|
160 |
+
|
161 |
+
max_num_masked_span = compute_num_masked_span(sequence_length)
|
162 |
+
|
163 |
+
if max_num_masked_span == 0:
|
164 |
+
return spec_aug_mask
|
165 |
+
|
166 |
+
for input_length in input_lengths:
|
167 |
+
# compute num of masked spans for this input
|
168 |
+
num_masked_span = compute_num_masked_span(input_length)
|
169 |
+
|
170 |
+
# get random indices to mask
|
171 |
+
spec_aug_mask_idx = np.random.choice(
|
172 |
+
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
|
173 |
+
)
|
174 |
+
|
175 |
+
# pick first sampled index that will serve as a dummy index to pad vector
|
176 |
+
# to ensure same dimension for all batches due to probabilistic rounding
|
177 |
+
# Picking first sample just pads those vectors twice.
|
178 |
+
if len(spec_aug_mask_idx) == 0:
|
179 |
+
# this case can only happen if `input_length` is strictly smaller then
|
180 |
+
# `sequence_length` in which case the last token has to be a padding
|
181 |
+
# token which we can use as a dummy mask id
|
182 |
+
dummy_mask_idx = sequence_length - 1
|
183 |
+
else:
|
184 |
+
dummy_mask_idx = spec_aug_mask_idx[0]
|
185 |
+
|
186 |
+
spec_aug_mask_idx = np.concatenate(
|
187 |
+
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
|
188 |
+
)
|
189 |
+
spec_aug_mask_idxs.append(spec_aug_mask_idx)
|
190 |
+
|
191 |
+
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
|
192 |
+
|
193 |
+
# expand masked indices to masked spans
|
194 |
+
spec_aug_mask_idxs = np.broadcast_to(
|
195 |
+
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
|
196 |
+
)
|
197 |
+
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
|
198 |
+
|
199 |
+
# add offset to the starting indexes so that indexes now create a span
|
200 |
+
offsets = np.arange(mask_length)[None, None, :]
|
201 |
+
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
|
202 |
+
batch_size, max_num_masked_span * mask_length
|
203 |
+
)
|
204 |
+
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
|
205 |
+
|
206 |
+
# ensure that we cannot have indices larger than sequence_length
|
207 |
+
if spec_aug_mask_idxs.max() > sequence_length - 1:
|
208 |
+
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
|
209 |
+
|
210 |
+
# scatter indices to mask
|
211 |
+
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
|
212 |
+
|
213 |
+
return spec_aug_mask
|
214 |
+
|
215 |
+
|
216 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices
|
217 |
+
def _sample_negative_indices(
|
218 |
+
features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None
|
219 |
+
):
|
220 |
+
"""
|
221 |
+
Sample `num_negatives` vectors from feature vectors.
|
222 |
+
"""
|
223 |
+
batch_size, sequence_length = features_shape
|
224 |
+
|
225 |
+
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
|
226 |
+
sequence_length_range = np.arange(sequence_length)
|
227 |
+
|
228 |
+
# get `num_negatives` random vector indices from the same utterance
|
229 |
+
sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
|
230 |
+
|
231 |
+
mask_time_indices = (
|
232 |
+
mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool)
|
233 |
+
)
|
234 |
+
|
235 |
+
for batch_idx in range(batch_size):
|
236 |
+
high = mask_time_indices[batch_idx].sum() - 1
|
237 |
+
mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]]
|
238 |
+
|
239 |
+
feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives))
|
240 |
+
sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives))
|
241 |
+
# avoid sampling the same positive vector, but keep the distribution uniform
|
242 |
+
sampled_indices[sampled_indices >= feature_indices] += 1
|
243 |
+
|
244 |
+
# remap to actual indices
|
245 |
+
sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices]
|
246 |
+
|
247 |
+
# correct for batch size
|
248 |
+
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
|
249 |
+
|
250 |
+
return sampled_negative_indices
|
251 |
+
|
252 |
+
|
253 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert
|
254 |
+
class Wav2Vec2BertRotaryPositionalEmbedding(nn.Module):
|
255 |
+
"""Rotary positional embedding
|
256 |
+
Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
|
257 |
+
"""
|
258 |
+
|
259 |
+
def __init__(self, config):
|
260 |
+
super().__init__()
|
261 |
+
dim = config.hidden_size // config.num_attention_heads
|
262 |
+
base = config.rotary_embedding_base
|
263 |
+
|
264 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
|
265 |
+
# Ignore copy
|
266 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
267 |
+
self.cached_sequence_length = None
|
268 |
+
self.cached_rotary_positional_embedding = None
|
269 |
+
|
270 |
+
def forward(self, hidden_states):
|
271 |
+
sequence_length = hidden_states.shape[1]
|
272 |
+
|
273 |
+
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
|
274 |
+
return self.cached_rotary_positional_embedding
|
275 |
+
|
276 |
+
self.cached_sequence_length = sequence_length
|
277 |
+
# Embeddings are computed in the dtype of the inv_freq constant
|
278 |
+
time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
|
279 |
+
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
|
280 |
+
embeddings = torch.cat((freqs, freqs), dim=-1)
|
281 |
+
|
282 |
+
cos_embeddings = embeddings.cos()[:, None, None, :]
|
283 |
+
sin_embeddings = embeddings.sin()[:, None, None, :]
|
284 |
+
# Computed embeddings are cast to the dtype of the hidden state inputs
|
285 |
+
self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
|
286 |
+
return self.cached_rotary_positional_embedding
|
287 |
+
|
288 |
+
|
289 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert
|
290 |
+
class Wav2Vec2BertRelPositionalEmbedding(nn.Module):
|
291 |
+
"""Relative positional encoding module."""
|
292 |
+
|
293 |
+
def __init__(self, config):
|
294 |
+
super().__init__()
|
295 |
+
self.max_len = config.max_source_positions
|
296 |
+
self.d_model = config.hidden_size
|
297 |
+
self.pe = None
|
298 |
+
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
|
299 |
+
|
300 |
+
def extend_pe(self, x):
|
301 |
+
# Reset the positional encodings
|
302 |
+
if self.pe is not None:
|
303 |
+
# self.pe contains both positive and negative parts
|
304 |
+
# the length of self.pe is 2 * input_len - 1
|
305 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
306 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
307 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
308 |
+
return
|
309 |
+
# Suppose `i` is the position of query vector and `j` is the
|
310 |
+
# position of key vector. We use positive relative positions when keys
|
311 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
312 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
313 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
314 |
+
position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1)
|
315 |
+
div_term = torch.exp(
|
316 |
+
torch.arange(0, self.d_model, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.d_model)
|
317 |
+
)
|
318 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
319 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
320 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
321 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
322 |
+
|
323 |
+
# Reverse the order of positive indices and concat both positive and
|
324 |
+
# negative indices. This is used to support the shifting trick
|
325 |
+
# as in https://arxiv.org/abs/1901.02860
|
326 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
327 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
328 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
329 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
330 |
+
|
331 |
+
def forward(self, hidden_states: torch.Tensor):
|
332 |
+
self.extend_pe(hidden_states)
|
333 |
+
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
|
334 |
+
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
|
335 |
+
relative_position_embeddings = self.pe[:, start_idx:end_idx]
|
336 |
+
|
337 |
+
return relative_position_embeddings
|
338 |
+
|
339 |
+
|
340 |
+
class Wav2Vec2BertFeatureProjection(nn.Module):
|
341 |
+
def __init__(self, config):
|
342 |
+
super().__init__()
|
343 |
+
self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps)
|
344 |
+
self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size)
|
345 |
+
self.dropout = nn.Dropout(config.feat_proj_dropout)
|
346 |
+
|
347 |
+
def forward(self, hidden_states):
|
348 |
+
# non-projected hidden states are needed for quantization
|
349 |
+
norm_hidden_states = self.layer_norm(hidden_states)
|
350 |
+
hidden_states = self.projection(norm_hidden_states)
|
351 |
+
hidden_states = self.dropout(hidden_states)
|
352 |
+
return hidden_states, norm_hidden_states
|
353 |
+
|
354 |
+
|
355 |
+
class Wav2Vec2BertFeedForward(nn.Module):
|
356 |
+
def __init__(self, config, act_fn=None, hidden_size=None):
|
357 |
+
super().__init__()
|
358 |
+
act_fn = act_fn if act_fn is not None else config.hidden_act
|
359 |
+
hidden_size = hidden_size if hidden_size is not None else config.hidden_size
|
360 |
+
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
361 |
+
|
362 |
+
self.intermediate_dense = nn.Linear(hidden_size, config.intermediate_size)
|
363 |
+
self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn
|
364 |
+
|
365 |
+
self.output_dense = nn.Linear(config.intermediate_size, hidden_size)
|
366 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
367 |
+
|
368 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward.forward
|
369 |
+
def forward(self, hidden_states):
|
370 |
+
hidden_states = self.intermediate_dense(hidden_states)
|
371 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
372 |
+
hidden_states = self.intermediate_dropout(hidden_states)
|
373 |
+
|
374 |
+
hidden_states = self.output_dense(hidden_states)
|
375 |
+
hidden_states = self.output_dropout(hidden_states)
|
376 |
+
return hidden_states
|
377 |
+
|
378 |
+
|
379 |
+
class Wav2Vec2BertConvolutionModule(nn.Module):
|
380 |
+
"""Convolution block used in the conformer block"""
|
381 |
+
|
382 |
+
def __init__(self, config):
|
383 |
+
super().__init__()
|
384 |
+
if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
|
385 |
+
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
|
386 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
387 |
+
self.pointwise_conv1 = nn.Conv1d(
|
388 |
+
config.hidden_size,
|
389 |
+
2 * config.hidden_size,
|
390 |
+
kernel_size=1,
|
391 |
+
stride=1,
|
392 |
+
padding=0,
|
393 |
+
bias=False,
|
394 |
+
)
|
395 |
+
self.glu = nn.GLU(dim=1)
|
396 |
+
self.depthwise_conv = nn.Conv1d(
|
397 |
+
config.hidden_size,
|
398 |
+
config.hidden_size,
|
399 |
+
config.conv_depthwise_kernel_size,
|
400 |
+
stride=1,
|
401 |
+
padding=0,
|
402 |
+
groups=config.hidden_size,
|
403 |
+
bias=False,
|
404 |
+
)
|
405 |
+
|
406 |
+
self.depthwise_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
407 |
+
self.activation = ACT2FN[config.hidden_act]
|
408 |
+
self.pointwise_conv2 = nn.Conv1d(
|
409 |
+
config.hidden_size,
|
410 |
+
config.hidden_size,
|
411 |
+
kernel_size=1,
|
412 |
+
stride=1,
|
413 |
+
padding=0,
|
414 |
+
bias=False,
|
415 |
+
)
|
416 |
+
self.dropout = nn.Dropout(config.conformer_conv_dropout)
|
417 |
+
|
418 |
+
def forward(self, hidden_states, attention_mask=None):
|
419 |
+
hidden_states = self.layer_norm(hidden_states)
|
420 |
+
|
421 |
+
# Ensure that we do not leak padded positions in depthwise convolution if attention mask is passed.
|
422 |
+
# Put 0 where necessary
|
423 |
+
if attention_mask is not None:
|
424 |
+
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
|
425 |
+
|
426 |
+
# exchange the temporal dimension and the feature dimension
|
427 |
+
hidden_states = hidden_states.transpose(1, 2)
|
428 |
+
|
429 |
+
# GLU mechanism
|
430 |
+
# => (batch, 2*channel, dim)
|
431 |
+
hidden_states = self.pointwise_conv1(hidden_states)
|
432 |
+
# => (batch, channel, dim)
|
433 |
+
hidden_states = self.glu(hidden_states)
|
434 |
+
|
435 |
+
# Pad the sequence entirely on the left because of causal convolution.
|
436 |
+
hidden_states = torch.nn.functional.pad(hidden_states, (self.depthwise_conv.kernel_size[0] - 1, 0))
|
437 |
+
|
438 |
+
# 1D Depthwise Conv
|
439 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
440 |
+
|
441 |
+
hidden_states = self.depthwise_layer_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
442 |
+
|
443 |
+
hidden_states = self.activation(hidden_states)
|
444 |
+
|
445 |
+
hidden_states = self.pointwise_conv2(hidden_states)
|
446 |
+
hidden_states = self.dropout(hidden_states)
|
447 |
+
hidden_states = hidden_states.transpose(1, 2)
|
448 |
+
return hidden_states
|
449 |
+
|
450 |
+
|
451 |
+
class Wav2Vec2BertSelfAttention(nn.Module):
|
452 |
+
"""Construct an Wav2Vec2BertSelfAttention object.
|
453 |
+
Can be enhanced with rotary or relative position embeddings.
|
454 |
+
"""
|
455 |
+
|
456 |
+
def __init__(self, config, is_adapter_attention=False):
|
457 |
+
super().__init__()
|
458 |
+
hidden_size = config.hidden_size if not is_adapter_attention else config.output_hidden_size
|
459 |
+
|
460 |
+
self.head_size = hidden_size // config.num_attention_heads
|
461 |
+
self.num_heads = config.num_attention_heads
|
462 |
+
self.position_embeddings_type = config.position_embeddings_type if not is_adapter_attention else None
|
463 |
+
|
464 |
+
self.linear_q = nn.Linear(hidden_size, hidden_size)
|
465 |
+
self.linear_k = nn.Linear(hidden_size, hidden_size)
|
466 |
+
self.linear_v = nn.Linear(hidden_size, hidden_size)
|
467 |
+
self.linear_out = nn.Linear(hidden_size, hidden_size)
|
468 |
+
|
469 |
+
self.dropout = nn.Dropout(p=config.attention_dropout)
|
470 |
+
|
471 |
+
if self.position_embeddings_type == "relative":
|
472 |
+
# linear transformation for positional encoding
|
473 |
+
self.linear_pos = nn.Linear(hidden_size, hidden_size, bias=False)
|
474 |
+
# these two learnable bias are used in matrix c and matrix d
|
475 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
476 |
+
self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
|
477 |
+
self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
|
478 |
+
|
479 |
+
if self.position_embeddings_type == "relative_key":
|
480 |
+
self.left_max_position_embeddings = config.left_max_position_embeddings
|
481 |
+
self.right_max_position_embeddings = config.right_max_position_embeddings
|
482 |
+
num_positions = self.left_max_position_embeddings + self.right_max_position_embeddings + 1
|
483 |
+
self.distance_embedding = nn.Embedding(num_positions, self.head_size)
|
484 |
+
|
485 |
+
def forward(
|
486 |
+
self,
|
487 |
+
hidden_states: torch.Tensor,
|
488 |
+
attention_mask: Optional[torch.Tensor] = None,
|
489 |
+
relative_position_embeddings: Optional[torch.Tensor] = None,
|
490 |
+
output_attentions: bool = False,
|
491 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
492 |
+
# self-attention mechanism
|
493 |
+
batch_size, sequence_length, hidden_size = hidden_states.size()
|
494 |
+
|
495 |
+
# make sure query/key states can be != value states
|
496 |
+
query_key_states = hidden_states
|
497 |
+
value_states = hidden_states
|
498 |
+
|
499 |
+
if self.position_embeddings_type == "rotary":
|
500 |
+
if relative_position_embeddings is None:
|
501 |
+
raise ValueError(
|
502 |
+
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
|
503 |
+
)
|
504 |
+
query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
|
505 |
+
|
506 |
+
# project query_key_states and value_states
|
507 |
+
query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
|
508 |
+
key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
|
509 |
+
value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
|
510 |
+
|
511 |
+
# => (batch, head, time1, d_k)
|
512 |
+
query = query.transpose(1, 2)
|
513 |
+
key = key.transpose(1, 2)
|
514 |
+
value = value.transpose(1, 2)
|
515 |
+
|
516 |
+
if self.position_embeddings_type == "relative":
|
517 |
+
if relative_position_embeddings is None:
|
518 |
+
raise ValueError(
|
519 |
+
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
|
520 |
+
" 'relative'"
|
521 |
+
)
|
522 |
+
# apply relative_position_embeddings to qk scores
|
523 |
+
# as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
|
524 |
+
scores = self._apply_relative_embeddings(
|
525 |
+
query=query, key=key, relative_position_embeddings=relative_position_embeddings
|
526 |
+
)
|
527 |
+
else:
|
528 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
|
529 |
+
|
530 |
+
if self.position_embeddings_type == "relative_key":
|
531 |
+
query_length, key_length = query.shape[2], key.shape[2]
|
532 |
+
|
533 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
534 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
535 |
+
distance = position_ids_r - position_ids_l
|
536 |
+
distance = torch.clamp(distance, -self.left_max_position_embeddings, self.right_max_position_embeddings)
|
537 |
+
|
538 |
+
positional_embedding = self.distance_embedding(distance + self.left_max_position_embeddings)
|
539 |
+
positional_embedding = positional_embedding.to(dtype=query.dtype) # fp16 compatibility
|
540 |
+
|
541 |
+
relative_position_attn_weights = torch.einsum("bhld,lrd->bhlr", query, positional_embedding)
|
542 |
+
scores = scores + (relative_position_attn_weights / math.sqrt(self.head_size))
|
543 |
+
|
544 |
+
# apply attention_mask if necessary
|
545 |
+
if attention_mask is not None:
|
546 |
+
scores = scores + attention_mask
|
547 |
+
|
548 |
+
# => (batch, head, time1, time2)
|
549 |
+
probs = torch.softmax(scores, dim=-1)
|
550 |
+
probs = self.dropout(probs)
|
551 |
+
|
552 |
+
# => (batch, head, time1, d_k)
|
553 |
+
hidden_states = torch.matmul(probs, value)
|
554 |
+
|
555 |
+
# => (batch, time1, hidden_size)
|
556 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
|
557 |
+
hidden_states = self.linear_out(hidden_states)
|
558 |
+
|
559 |
+
return hidden_states, probs
|
560 |
+
|
561 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding
|
562 |
+
def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
|
563 |
+
batch_size, sequence_length, hidden_size = hidden_states.size()
|
564 |
+
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
|
565 |
+
|
566 |
+
cos = relative_position_embeddings[0, :sequence_length, ...]
|
567 |
+
sin = relative_position_embeddings[1, :sequence_length, ...]
|
568 |
+
|
569 |
+
# rotate hidden_states with rotary embeddings
|
570 |
+
hidden_states = hidden_states.transpose(0, 1)
|
571 |
+
rotated_states_begin = hidden_states[..., : self.head_size // 2]
|
572 |
+
rotated_states_end = hidden_states[..., self.head_size // 2 :]
|
573 |
+
rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
|
574 |
+
hidden_states = (hidden_states * cos) + (rotated_states * sin)
|
575 |
+
hidden_states = hidden_states.transpose(0, 1)
|
576 |
+
|
577 |
+
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
|
578 |
+
|
579 |
+
return hidden_states
|
580 |
+
|
581 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings
|
582 |
+
def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
|
583 |
+
# 1. project positional embeddings
|
584 |
+
# => (batch, head, 2*time1-1, d_k)
|
585 |
+
proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
|
586 |
+
proj_relative_position_embeddings = proj_relative_position_embeddings.view(
|
587 |
+
relative_position_embeddings.size(0), -1, self.num_heads, self.head_size
|
588 |
+
)
|
589 |
+
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
|
590 |
+
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
|
591 |
+
|
592 |
+
# 2. Add bias to query
|
593 |
+
# => (batch, head, time1, d_k)
|
594 |
+
query = query.transpose(1, 2)
|
595 |
+
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
|
596 |
+
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
|
597 |
+
|
598 |
+
# 3. attention score: first compute matrix a and matrix c
|
599 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
600 |
+
# => (batch, head, time1, time2)
|
601 |
+
scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
|
602 |
+
|
603 |
+
# 4. then compute matrix b and matrix d
|
604 |
+
# => (batch, head, time1, 2*time1-1)
|
605 |
+
scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
|
606 |
+
|
607 |
+
# 5. shift matrix b and matrix d
|
608 |
+
zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
|
609 |
+
scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
|
610 |
+
scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
|
611 |
+
scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
|
612 |
+
scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
|
613 |
+
scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1]
|
614 |
+
|
615 |
+
# 6. sum matrices
|
616 |
+
# => (batch, head, time1, time2)
|
617 |
+
scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
|
618 |
+
|
619 |
+
return scores
|
620 |
+
|
621 |
+
|
622 |
+
class Wav2Vec2BertEncoderLayer(nn.Module):
|
623 |
+
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
|
624 |
+
|
625 |
+
def __init__(self, config):
|
626 |
+
super().__init__()
|
627 |
+
embed_dim = config.hidden_size
|
628 |
+
dropout = config.attention_dropout
|
629 |
+
|
630 |
+
# Feed-forward 1
|
631 |
+
self.ffn1_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
632 |
+
self.ffn1 = Wav2Vec2BertFeedForward(config)
|
633 |
+
|
634 |
+
# Self-Attention
|
635 |
+
self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
636 |
+
self.self_attn_dropout = nn.Dropout(dropout)
|
637 |
+
self.self_attn = Wav2Vec2BertSelfAttention(config)
|
638 |
+
|
639 |
+
# Conformer Convolution
|
640 |
+
self.conv_module = Wav2Vec2BertConvolutionModule(config)
|
641 |
+
|
642 |
+
# Feed-forward 2
|
643 |
+
self.ffn2_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
644 |
+
self.ffn2 = Wav2Vec2BertFeedForward(config)
|
645 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
646 |
+
|
647 |
+
def forward(
|
648 |
+
self,
|
649 |
+
hidden_states,
|
650 |
+
attention_mask: Optional[torch.Tensor] = None,
|
651 |
+
relative_position_embeddings: Optional[torch.Tensor] = None,
|
652 |
+
output_attentions: bool = False,
|
653 |
+
conv_attention_mask: Optional[torch.Tensor] = None,
|
654 |
+
):
|
655 |
+
hidden_states = hidden_states
|
656 |
+
|
657 |
+
# 1. Feed-Forward 1 layer
|
658 |
+
residual = hidden_states
|
659 |
+
hidden_states = self.ffn1_layer_norm(hidden_states)
|
660 |
+
hidden_states = self.ffn1(hidden_states)
|
661 |
+
hidden_states = hidden_states * 0.5 + residual
|
662 |
+
residual = hidden_states
|
663 |
+
|
664 |
+
# 2. Self-Attention layer
|
665 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
666 |
+
hidden_states, attn_weigts = self.self_attn(
|
667 |
+
hidden_states=hidden_states,
|
668 |
+
attention_mask=attention_mask,
|
669 |
+
relative_position_embeddings=relative_position_embeddings,
|
670 |
+
output_attentions=output_attentions,
|
671 |
+
)
|
672 |
+
hidden_states = self.self_attn_dropout(hidden_states)
|
673 |
+
hidden_states = hidden_states + residual
|
674 |
+
|
675 |
+
# 3. Convolutional Layer
|
676 |
+
residual = hidden_states
|
677 |
+
hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask)
|
678 |
+
hidden_states = residual + hidden_states
|
679 |
+
|
680 |
+
# 4. Feed-Forward 2 Layer
|
681 |
+
residual = hidden_states
|
682 |
+
hidden_states = self.ffn2_layer_norm(hidden_states)
|
683 |
+
hidden_states = self.ffn2(hidden_states)
|
684 |
+
hidden_states = hidden_states * 0.5 + residual
|
685 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
686 |
+
|
687 |
+
return hidden_states, attn_weigts
|
688 |
+
|
689 |
+
|
690 |
+
class Wav2Vec2BertEncoder(nn.Module):
|
691 |
+
def __init__(self, config):
|
692 |
+
super().__init__()
|
693 |
+
self.config = config
|
694 |
+
|
695 |
+
if config.position_embeddings_type == "relative":
|
696 |
+
self.embed_positions = Wav2Vec2BertRelPositionalEmbedding(config)
|
697 |
+
elif config.position_embeddings_type == "rotary":
|
698 |
+
self.embed_positions = Wav2Vec2BertRotaryPositionalEmbedding(config)
|
699 |
+
else:
|
700 |
+
self.embed_positions = None
|
701 |
+
|
702 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
703 |
+
self.layers = nn.ModuleList([Wav2Vec2BertEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
704 |
+
self.gradient_checkpointing = False
|
705 |
+
|
706 |
+
def forward(
|
707 |
+
self,
|
708 |
+
hidden_states,
|
709 |
+
attention_mask=None,
|
710 |
+
output_attentions=False,
|
711 |
+
output_hidden_states=False,
|
712 |
+
return_dict=True,
|
713 |
+
):
|
714 |
+
all_hidden_states = () if output_hidden_states else None
|
715 |
+
all_self_attentions = () if output_attentions else None
|
716 |
+
|
717 |
+
conv_attention_mask = attention_mask
|
718 |
+
if attention_mask is not None:
|
719 |
+
# make sure padded tokens output 0
|
720 |
+
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
|
721 |
+
|
722 |
+
# extend attention_mask
|
723 |
+
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
724 |
+
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
725 |
+
attention_mask = attention_mask.expand(
|
726 |
+
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
727 |
+
)
|
728 |
+
|
729 |
+
hidden_states = self.dropout(hidden_states)
|
730 |
+
|
731 |
+
if self.embed_positions is not None:
|
732 |
+
relative_position_embeddings = self.embed_positions(hidden_states)
|
733 |
+
else:
|
734 |
+
relative_position_embeddings = None
|
735 |
+
|
736 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
737 |
+
|
738 |
+
for i, layer in enumerate(self.layers):
|
739 |
+
if output_hidden_states:
|
740 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
741 |
+
|
742 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
743 |
+
dropout_probability = torch.rand([])
|
744 |
+
|
745 |
+
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
746 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
747 |
+
# under deepspeed zero3 all gpus must run in sync
|
748 |
+
if self.gradient_checkpointing and self.training:
|
749 |
+
layer_outputs = self._gradient_checkpointing_func(
|
750 |
+
layer.__call__,
|
751 |
+
hidden_states,
|
752 |
+
attention_mask,
|
753 |
+
relative_position_embeddings,
|
754 |
+
output_attentions,
|
755 |
+
conv_attention_mask,
|
756 |
+
)
|
757 |
+
else:
|
758 |
+
layer_outputs = layer(
|
759 |
+
hidden_states,
|
760 |
+
attention_mask=attention_mask,
|
761 |
+
relative_position_embeddings=relative_position_embeddings,
|
762 |
+
output_attentions=output_attentions,
|
763 |
+
conv_attention_mask=conv_attention_mask,
|
764 |
+
)
|
765 |
+
hidden_states = layer_outputs[0]
|
766 |
+
|
767 |
+
if skip_the_layer:
|
768 |
+
layer_outputs = (None, None)
|
769 |
+
|
770 |
+
if output_attentions:
|
771 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
772 |
+
|
773 |
+
if output_hidden_states:
|
774 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
775 |
+
|
776 |
+
if not return_dict:
|
777 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
778 |
+
return BaseModelOutput(
|
779 |
+
last_hidden_state=hidden_states,
|
780 |
+
hidden_states=all_hidden_states,
|
781 |
+
attentions=all_self_attentions,
|
782 |
+
)
|
783 |
+
|
784 |
+
|
785 |
+
class Wav2Vec2BertAdapter(nn.Module):
|
786 |
+
def __init__(self, config):
|
787 |
+
super().__init__()
|
788 |
+
# feature dim might need to be down-projected
|
789 |
+
if config.output_hidden_size != config.hidden_size:
|
790 |
+
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
|
791 |
+
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size, eps=config.layer_norm_eps)
|
792 |
+
else:
|
793 |
+
self.proj = self.proj_layer_norm = None
|
794 |
+
self.layers = nn.ModuleList(Wav2Vec2BertAdapterLayer(config) for _ in range(config.num_adapter_layers))
|
795 |
+
self.layerdrop = config.layerdrop
|
796 |
+
|
797 |
+
self.kernel_size = config.adapter_kernel_size
|
798 |
+
self.stride = config.adapter_stride
|
799 |
+
|
800 |
+
def _compute_sub_sample_lengths_from_attention_mask(self, seq_lens):
|
801 |
+
if seq_lens is None:
|
802 |
+
return seq_lens
|
803 |
+
pad = self.kernel_size // 2
|
804 |
+
seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1
|
805 |
+
return seq_lens.floor()
|
806 |
+
|
807 |
+
def forward(self, hidden_states, attention_mask=None):
|
808 |
+
# down project hidden_states if necessary
|
809 |
+
if self.proj is not None and self.proj_layer_norm is not None:
|
810 |
+
hidden_states = self.proj(hidden_states)
|
811 |
+
hidden_states = self.proj_layer_norm(hidden_states)
|
812 |
+
|
813 |
+
sub_sampled_lengths = None
|
814 |
+
if attention_mask is not None:
|
815 |
+
sub_sampled_lengths = (attention_mask.size(1) - (1 - attention_mask.int()).sum(1)).to(hidden_states.device)
|
816 |
+
|
817 |
+
for layer in self.layers:
|
818 |
+
layerdrop_prob = torch.rand([])
|
819 |
+
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(sub_sampled_lengths)
|
820 |
+
if not self.training or (layerdrop_prob > self.layerdrop):
|
821 |
+
hidden_states = layer(
|
822 |
+
hidden_states, attention_mask=attention_mask, sub_sampled_lengths=sub_sampled_lengths
|
823 |
+
)
|
824 |
+
|
825 |
+
return hidden_states
|
826 |
+
|
827 |
+
|
828 |
+
class Wav2Vec2BertAdapterLayer(nn.Module):
|
829 |
+
def __init__(self, config):
|
830 |
+
super().__init__()
|
831 |
+
embed_dim = config.output_hidden_size
|
832 |
+
dropout = config.conformer_conv_dropout
|
833 |
+
|
834 |
+
self.kernel_size = config.adapter_kernel_size
|
835 |
+
self.stride = config.adapter_stride
|
836 |
+
|
837 |
+
# 1. residual convolution
|
838 |
+
self.residual_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
839 |
+
self.residual_conv = nn.Conv1d(
|
840 |
+
embed_dim,
|
841 |
+
2 * embed_dim,
|
842 |
+
self.kernel_size,
|
843 |
+
stride=self.stride,
|
844 |
+
padding=self.stride // 2,
|
845 |
+
)
|
846 |
+
self.activation = nn.GLU(dim=1)
|
847 |
+
|
848 |
+
# Self-Attention
|
849 |
+
self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
850 |
+
self.self_attn_conv = nn.Conv1d(
|
851 |
+
embed_dim,
|
852 |
+
2 * embed_dim,
|
853 |
+
self.kernel_size,
|
854 |
+
stride=self.stride,
|
855 |
+
padding=self.stride // 2,
|
856 |
+
)
|
857 |
+
self.self_attn = Wav2Vec2BertSelfAttention(config, is_adapter_attention=True)
|
858 |
+
self.self_attn_dropout = nn.Dropout(dropout)
|
859 |
+
|
860 |
+
# Feed-forward
|
861 |
+
self.ffn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
862 |
+
self.ffn = Wav2Vec2BertFeedForward(config, act_fn=config.adapter_act, hidden_size=embed_dim)
|
863 |
+
|
864 |
+
def forward(
|
865 |
+
self,
|
866 |
+
hidden_states,
|
867 |
+
attention_mask: Optional[torch.Tensor] = None,
|
868 |
+
output_attentions: bool = False,
|
869 |
+
sub_sampled_lengths: Optional[torch.Tensor] = None,
|
870 |
+
):
|
871 |
+
residual = self.residual_layer_norm(hidden_states)
|
872 |
+
|
873 |
+
# Apply pooling to the residual to match the sequence length of the
|
874 |
+
# multi-head attention output.
|
875 |
+
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
|
876 |
+
residual = residual.transpose(1, 2)
|
877 |
+
residual = self.residual_conv(residual)
|
878 |
+
residual = self.activation(residual)
|
879 |
+
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
|
880 |
+
residual = residual.transpose(1, 2)
|
881 |
+
|
882 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
883 |
+
# Apply pooling before feeding to the multihead-attention layer.
|
884 |
+
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
|
885 |
+
hidden_states = hidden_states.transpose(1, 2)
|
886 |
+
hidden_states = self.self_attn_conv(hidden_states)
|
887 |
+
hidden_states = self.activation(hidden_states)
|
888 |
+
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
|
889 |
+
hidden_states = hidden_states.transpose(1, 2)
|
890 |
+
|
891 |
+
if attention_mask is not None:
|
892 |
+
attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths)
|
893 |
+
attention_mask = _prepare_4d_attention_mask(
|
894 |
+
attention_mask,
|
895 |
+
hidden_states.dtype,
|
896 |
+
)
|
897 |
+
|
898 |
+
# The rest of the computation is identical to a vanilla Transformer
|
899 |
+
# encoder layer.
|
900 |
+
hidden_states, attn_weigths = self.self_attn(
|
901 |
+
hidden_states,
|
902 |
+
attention_mask=attention_mask,
|
903 |
+
output_attentions=output_attentions,
|
904 |
+
)
|
905 |
+
hidden_states = self.self_attn_dropout(hidden_states)
|
906 |
+
hidden_states = hidden_states + residual
|
907 |
+
|
908 |
+
residual = hidden_states
|
909 |
+
|
910 |
+
hidden_states = self.ffn_layer_norm(hidden_states)
|
911 |
+
hidden_states = self.ffn(hidden_states) + residual
|
912 |
+
|
913 |
+
return hidden_states
|
914 |
+
|
915 |
+
|
916 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerPreTrainedModel with Wav2Vec2Conformer->Wav2Vec2Bert,wav2vec2_conformer->wav2vec2_bert, input_values->input_features
|
917 |
+
class Wav2Vec2BertPreTrainedModel(PreTrainedModel):
|
918 |
+
"""
|
919 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
920 |
+
models.
|
921 |
+
"""
|
922 |
+
|
923 |
+
config_class = Wav2Vec2BertConfig
|
924 |
+
base_model_prefix = "wav2vec2_bert"
|
925 |
+
main_input_name = "input_features"
|
926 |
+
supports_gradient_checkpointing = True
|
927 |
+
|
928 |
+
# Ignore copy
|
929 |
+
def _init_weights(self, module):
|
930 |
+
"""Initialize the weights"""
|
931 |
+
if isinstance(module, Wav2Vec2BertSelfAttention):
|
932 |
+
if hasattr(module, "pos_bias_u"):
|
933 |
+
nn.init.xavier_uniform_(module.pos_bias_u)
|
934 |
+
if hasattr(module, "pos_bias_v"):
|
935 |
+
nn.init.xavier_uniform_(module.pos_bias_v)
|
936 |
+
elif isinstance(module, Wav2Vec2BertFeatureProjection):
|
937 |
+
k = math.sqrt(1 / module.projection.in_features)
|
938 |
+
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
939 |
+
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
940 |
+
elif isinstance(module, nn.Linear):
|
941 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
942 |
+
|
943 |
+
if module.bias is not None:
|
944 |
+
module.bias.data.zero_()
|
945 |
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
946 |
+
module.bias.data.zero_()
|
947 |
+
module.weight.data.fill_(1.0)
|
948 |
+
elif isinstance(module, nn.Conv1d):
|
949 |
+
nn.init.kaiming_normal_(module.weight)
|
950 |
+
|
951 |
+
if module.bias is not None:
|
952 |
+
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
953 |
+
nn.init.uniform_(module.bias, a=-k, b=k)
|
954 |
+
|
955 |
+
# Ignore copy
|
956 |
+
def _get_feat_extract_output_lengths(
|
957 |
+
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
|
958 |
+
):
|
959 |
+
"""
|
960 |
+
Computes the output length of the convolutional layers
|
961 |
+
"""
|
962 |
+
|
963 |
+
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
|
964 |
+
|
965 |
+
def _conv_out_length(input_length, kernel_size, stride, padding):
|
966 |
+
# 1D convolutional layer output length formula taken
|
967 |
+
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
968 |
+
return torch.div(input_length + 2 * padding - kernel_size, stride, rounding_mode="floor") + 1
|
969 |
+
|
970 |
+
if add_adapter:
|
971 |
+
padding = self.config.adapter_kernel_size // 2
|
972 |
+
for _ in range(self.config.num_adapter_layers):
|
973 |
+
input_lengths = _conv_out_length(
|
974 |
+
input_lengths, self.config.adapter_kernel_size, self.config.adapter_stride, padding
|
975 |
+
)
|
976 |
+
|
977 |
+
return input_lengths
|
978 |
+
|
979 |
+
def _get_feature_vector_attention_mask(
|
980 |
+
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
|
981 |
+
):
|
982 |
+
# Effectively attention_mask.sum(-1), but not inplace to be able to run
|
983 |
+
# on inference mode.
|
984 |
+
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
|
985 |
+
|
986 |
+
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
|
987 |
+
output_lengths = output_lengths.to(torch.long)
|
988 |
+
|
989 |
+
batch_size = attention_mask.shape[0]
|
990 |
+
|
991 |
+
attention_mask = torch.zeros(
|
992 |
+
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
|
993 |
+
)
|
994 |
+
# these two operations makes sure that all values before the output lengths idxs are attended to
|
995 |
+
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
|
996 |
+
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
|
997 |
+
return attention_mask
|
998 |
+
|
999 |
+
|
1000 |
+
WAV2VEC2_BERT_START_DOCSTRING = r"""
|
1001 |
+
Wav2Vec2Bert was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
|
1002 |
+
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
|
1003 |
+
Auli.
|
1004 |
+
|
1005 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1006 |
+
library implements for all its model (such as downloading or saving etc.).
|
1007 |
+
|
1008 |
+
This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a
|
1009 |
+
regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
|
1010 |
+
|
1011 |
+
Parameters:
|
1012 |
+
config ([`Wav2Vec2BertConfig`]): Model configuration class with all the parameters of the model.
|
1013 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1014 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1015 |
+
"""
|
1016 |
+
|
1017 |
+
|
1018 |
+
WAV2VEC2_BERT_INPUTS_DOCSTRING = r"""
|
1019 |
+
Args:
|
1020 |
+
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
1021 |
+
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
1022 |
+
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
1023 |
+
soundfile`). To prepare the array into `input_features`, the [`AutoProcessor`] should be used for padding and
|
1024 |
+
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2BertProcessor.__call__`] for details.
|
1025 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1026 |
+
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
|
1027 |
+
1]`:
|
1028 |
+
|
1029 |
+
- 1 for tokens that are **not masked**,
|
1030 |
+
- 0 for tokens that are **masked**.
|
1031 |
+
|
1032 |
+
[What are attention masks?](../glossary#attention-mask)
|
1033 |
+
output_attentions (`bool`, *optional*):
|
1034 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1035 |
+
tensors for more detail.
|
1036 |
+
output_hidden_states (`bool`, *optional*):
|
1037 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1038 |
+
more detail.
|
1039 |
+
return_dict (`bool`, *optional*):
|
1040 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1041 |
+
"""
|
1042 |
+
|
1043 |
+
|
1044 |
+
@add_start_docstrings(
|
1045 |
+
"The bare Wav2Vec2Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
1046 |
+
WAV2VEC2_BERT_START_DOCSTRING,
|
1047 |
+
)
|
1048 |
+
class Wav2Vec2BertModel(Wav2Vec2BertPreTrainedModel):
|
1049 |
+
def __init__(self, config: Wav2Vec2BertConfig):
|
1050 |
+
super().__init__(config)
|
1051 |
+
self.config = config
|
1052 |
+
self.feature_projection = Wav2Vec2BertFeatureProjection(config)
|
1053 |
+
|
1054 |
+
# model only needs masking vector if mask prob is > 0.0
|
1055 |
+
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
1056 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
1057 |
+
|
1058 |
+
self.encoder = Wav2Vec2BertEncoder(config)
|
1059 |
+
|
1060 |
+
self.adapter = Wav2Vec2BertAdapter(config) if config.add_adapter else None
|
1061 |
+
|
1062 |
+
self.intermediate_ffn = None
|
1063 |
+
if config.use_intermediate_ffn_before_adapter:
|
1064 |
+
self.intermediate_ffn = Wav2Vec2BertFeedForward(config, act_fn="relu")
|
1065 |
+
|
1066 |
+
# Initialize weights and apply final processing
|
1067 |
+
self.post_init()
|
1068 |
+
|
1069 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
|
1070 |
+
def _mask_hidden_states(
|
1071 |
+
self,
|
1072 |
+
hidden_states: torch.FloatTensor,
|
1073 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
1074 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1075 |
+
):
|
1076 |
+
"""
|
1077 |
+
Masks extracted features along time axis and/or along feature axis according to
|
1078 |
+
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
1079 |
+
"""
|
1080 |
+
|
1081 |
+
# `config.apply_spec_augment` can set masking to False
|
1082 |
+
if not getattr(self.config, "apply_spec_augment", True):
|
1083 |
+
return hidden_states
|
1084 |
+
|
1085 |
+
# generate indices & apply SpecAugment along time axis
|
1086 |
+
batch_size, sequence_length, hidden_size = hidden_states.size()
|
1087 |
+
|
1088 |
+
if mask_time_indices is not None:
|
1089 |
+
# apply SpecAugment along time axis with given mask_time_indices
|
1090 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
1091 |
+
elif self.config.mask_time_prob > 0 and self.training:
|
1092 |
+
mask_time_indices = _compute_mask_indices(
|
1093 |
+
(batch_size, sequence_length),
|
1094 |
+
mask_prob=self.config.mask_time_prob,
|
1095 |
+
mask_length=self.config.mask_time_length,
|
1096 |
+
attention_mask=attention_mask,
|
1097 |
+
min_masks=self.config.mask_time_min_masks,
|
1098 |
+
)
|
1099 |
+
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
1100 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
1101 |
+
|
1102 |
+
if self.config.mask_feature_prob > 0 and self.training:
|
1103 |
+
# generate indices & apply SpecAugment along feature axis
|
1104 |
+
mask_feature_indices = _compute_mask_indices(
|
1105 |
+
(batch_size, hidden_size),
|
1106 |
+
mask_prob=self.config.mask_feature_prob,
|
1107 |
+
mask_length=self.config.mask_feature_length,
|
1108 |
+
min_masks=self.config.mask_feature_min_masks,
|
1109 |
+
)
|
1110 |
+
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
1111 |
+
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
1112 |
+
hidden_states[mask_feature_indices] = 0
|
1113 |
+
|
1114 |
+
return hidden_states
|
1115 |
+
|
1116 |
+
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
|
1117 |
+
@add_code_sample_docstrings(
|
1118 |
+
checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC,
|
1119 |
+
output_type=Wav2Vec2BaseModelOutput,
|
1120 |
+
config_class=_CONFIG_FOR_DOC,
|
1121 |
+
modality="audio",
|
1122 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
1123 |
+
)
|
1124 |
+
def forward(
|
1125 |
+
self,
|
1126 |
+
input_features: Optional[torch.Tensor],
|
1127 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1128 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
1129 |
+
output_attentions: Optional[bool] = None,
|
1130 |
+
output_hidden_states: Optional[bool] = None,
|
1131 |
+
return_dict: Optional[bool] = None,
|
1132 |
+
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
|
1133 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1134 |
+
output_hidden_states = (
|
1135 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1136 |
+
)
|
1137 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1138 |
+
|
1139 |
+
hidden_states, extract_features = self.feature_projection(input_features)
|
1140 |
+
hidden_states = self._mask_hidden_states(
|
1141 |
+
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
1142 |
+
)
|
1143 |
+
|
1144 |
+
encoder_outputs = self.encoder(
|
1145 |
+
hidden_states,
|
1146 |
+
attention_mask=attention_mask,
|
1147 |
+
output_attentions=output_attentions,
|
1148 |
+
output_hidden_states=output_hidden_states,
|
1149 |
+
return_dict=return_dict,
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
hidden_states = encoder_outputs[0]
|
1153 |
+
|
1154 |
+
if self.intermediate_ffn:
|
1155 |
+
expanded_hidden_states = self.intermediate_ffn(hidden_states)
|
1156 |
+
hidden_states = hidden_states + 0.5 * expanded_hidden_states
|
1157 |
+
|
1158 |
+
if self.adapter is not None:
|
1159 |
+
hidden_states = self.adapter(hidden_states, attention_mask=attention_mask)
|
1160 |
+
|
1161 |
+
if not return_dict:
|
1162 |
+
return (hidden_states, extract_features) + encoder_outputs[1:]
|
1163 |
+
|
1164 |
+
return Wav2Vec2BaseModelOutput(
|
1165 |
+
last_hidden_state=hidden_states,
|
1166 |
+
extract_features=extract_features,
|
1167 |
+
hidden_states=encoder_outputs.hidden_states,
|
1168 |
+
attentions=encoder_outputs.attentions,
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
|
1172 |
+
@add_start_docstrings(
|
1173 |
+
"""Wav2Vec2Bert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
|
1174 |
+
WAV2VEC2_BERT_START_DOCSTRING,
|
1175 |
+
)
|
1176 |
+
class Wav2Vec2BertForCTC(Wav2Vec2BertPreTrainedModel):
|
1177 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
|
1178 |
+
def __init__(self, config, target_lang: Optional[str] = None):
|
1179 |
+
super().__init__(config)
|
1180 |
+
|
1181 |
+
self.wav2vec2_bert = Wav2Vec2BertModel(config)
|
1182 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
1183 |
+
|
1184 |
+
self.target_lang = target_lang
|
1185 |
+
|
1186 |
+
if config.vocab_size is None:
|
1187 |
+
raise ValueError(
|
1188 |
+
f"You are trying to instantiate {self.__class__} with a configuration that "
|
1189 |
+
"does not define the vocabulary size of the language model head. Please "
|
1190 |
+
"instantiate the model as follows: `Wav2Vec2BertForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
|
1191 |
+
"or define `vocab_size` of your model's configuration."
|
1192 |
+
)
|
1193 |
+
output_hidden_size = (
|
1194 |
+
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
|
1195 |
+
)
|
1196 |
+
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
|
1197 |
+
|
1198 |
+
# Initialize weights and apply final processing
|
1199 |
+
self.post_init()
|
1200 |
+
|
1201 |
+
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
|
1202 |
+
@add_code_sample_docstrings(
|
1203 |
+
checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC,
|
1204 |
+
output_type=CausalLMOutput,
|
1205 |
+
config_class=_CONFIG_FOR_DOC,
|
1206 |
+
expected_output=_CTC_EXPECTED_OUTPUT,
|
1207 |
+
expected_loss=_CTC_EXPECTED_LOSS,
|
1208 |
+
)
|
1209 |
+
def forward(
|
1210 |
+
self,
|
1211 |
+
input_features: Optional[torch.Tensor],
|
1212 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1213 |
+
output_attentions: Optional[bool] = None,
|
1214 |
+
output_hidden_states: Optional[bool] = None,
|
1215 |
+
return_dict: Optional[bool] = None,
|
1216 |
+
labels: Optional[torch.Tensor] = None,
|
1217 |
+
) -> Union[Tuple, CausalLMOutput]:
|
1218 |
+
r"""
|
1219 |
+
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
1220 |
+
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
1221 |
+
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
|
1222 |
+
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
|
1223 |
+
config.vocab_size - 1]`.
|
1224 |
+
"""
|
1225 |
+
|
1226 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1227 |
+
|
1228 |
+
outputs = self.wav2vec2_bert(
|
1229 |
+
input_features,
|
1230 |
+
attention_mask=attention_mask,
|
1231 |
+
output_attentions=output_attentions,
|
1232 |
+
output_hidden_states=output_hidden_states,
|
1233 |
+
return_dict=return_dict,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
hidden_states = outputs[0]
|
1237 |
+
hidden_states = self.dropout(hidden_states)
|
1238 |
+
|
1239 |
+
logits = self.lm_head(hidden_states)
|
1240 |
+
|
1241 |
+
loss = None
|
1242 |
+
if labels is not None:
|
1243 |
+
if labels.max() >= self.config.vocab_size:
|
1244 |
+
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
|
1245 |
+
|
1246 |
+
# retrieve loss input_lengths from attention_mask
|
1247 |
+
attention_mask = (
|
1248 |
+
attention_mask
|
1249 |
+
if attention_mask is not None
|
1250 |
+
else torch.ones(input_features.shape[:2], device=input_features.device, dtype=torch.long)
|
1251 |
+
)
|
1252 |
+
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum([-1])).to(torch.long)
|
1253 |
+
|
1254 |
+
# assuming that padded tokens are filled with -100
|
1255 |
+
# when not being attended to
|
1256 |
+
labels_mask = labels >= 0
|
1257 |
+
target_lengths = labels_mask.sum(-1)
|
1258 |
+
flattened_targets = labels.masked_select(labels_mask)
|
1259 |
+
|
1260 |
+
# ctc_loss doesn't support fp16
|
1261 |
+
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
|
1262 |
+
|
1263 |
+
with torch.backends.cudnn.flags(enabled=False):
|
1264 |
+
loss = nn.functional.ctc_loss(
|
1265 |
+
log_probs,
|
1266 |
+
flattened_targets,
|
1267 |
+
input_lengths,
|
1268 |
+
target_lengths,
|
1269 |
+
blank=self.config.pad_token_id,
|
1270 |
+
reduction=self.config.ctc_loss_reduction,
|
1271 |
+
zero_infinity=self.config.ctc_zero_infinity,
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
if not return_dict:
|
1275 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1276 |
+
return ((loss,) + output) if loss is not None else output
|
1277 |
+
|
1278 |
+
return CausalLMOutput(
|
1279 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1280 |
+
)
|
1281 |
+
|
1282 |
+
|
1283 |
+
@add_start_docstrings(
|
1284 |
+
"""
|
1285 |
+
Wav2Vec2Bert Model with a sequence classification head on top (a linear layer over the pooled output) for
|
1286 |
+
tasks like SUPERB Keyword Spotting.
|
1287 |
+
""",
|
1288 |
+
WAV2VEC2_BERT_START_DOCSTRING,
|
1289 |
+
)
|
1290 |
+
class Wav2Vec2BertForSequenceClassification(Wav2Vec2BertPreTrainedModel):
|
1291 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert
|
1292 |
+
def __init__(self, config):
|
1293 |
+
super().__init__(config)
|
1294 |
+
|
1295 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
1296 |
+
raise ValueError(
|
1297 |
+
"Sequence classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)"
|
1298 |
+
)
|
1299 |
+
self.wav2vec2_bert = Wav2Vec2BertModel(config)
|
1300 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
1301 |
+
if config.use_weighted_layer_sum:
|
1302 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
1303 |
+
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
1304 |
+
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
1305 |
+
|
1306 |
+
# Initialize weights and apply final processing
|
1307 |
+
self.post_init()
|
1308 |
+
|
1309 |
+
def freeze_base_model(self):
|
1310 |
+
"""
|
1311 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
1312 |
+
be updated during training. Only the classification head will be updated.
|
1313 |
+
"""
|
1314 |
+
for param in self.wav2vec2_bert.parameters():
|
1315 |
+
param.requires_grad = False
|
1316 |
+
|
1317 |
+
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
|
1318 |
+
@add_code_sample_docstrings(
|
1319 |
+
checkpoint=_BASE_CHECKPOINT_FOR_DOC,
|
1320 |
+
output_type=SequenceClassifierOutput,
|
1321 |
+
config_class=_CONFIG_FOR_DOC,
|
1322 |
+
modality="audio",
|
1323 |
+
)
|
1324 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert,WAV_2_VEC_2->WAV2VEC2_BERT, input_values->input_features
|
1325 |
+
def forward(
|
1326 |
+
self,
|
1327 |
+
input_features: Optional[torch.Tensor],
|
1328 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1329 |
+
output_attentions: Optional[bool] = None,
|
1330 |
+
output_hidden_states: Optional[bool] = None,
|
1331 |
+
return_dict: Optional[bool] = None,
|
1332 |
+
labels: Optional[torch.Tensor] = None,
|
1333 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1334 |
+
r"""
|
1335 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1336 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1337 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1338 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1339 |
+
"""
|
1340 |
+
|
1341 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1342 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
1343 |
+
|
1344 |
+
outputs = self.wav2vec2_bert(
|
1345 |
+
input_features,
|
1346 |
+
attention_mask=attention_mask,
|
1347 |
+
output_attentions=output_attentions,
|
1348 |
+
output_hidden_states=output_hidden_states,
|
1349 |
+
return_dict=return_dict,
|
1350 |
+
)
|
1351 |
+
|
1352 |
+
if self.config.use_weighted_layer_sum:
|
1353 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
1354 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
1355 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
1356 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
1357 |
+
else:
|
1358 |
+
hidden_states = outputs[0]
|
1359 |
+
|
1360 |
+
hidden_states = self.projector(hidden_states)
|
1361 |
+
if attention_mask is None:
|
1362 |
+
pooled_output = hidden_states.mean(dim=1)
|
1363 |
+
else:
|
1364 |
+
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
1365 |
+
hidden_states[~padding_mask] = 0.0
|
1366 |
+
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
1367 |
+
|
1368 |
+
logits = self.classifier(pooled_output)
|
1369 |
+
|
1370 |
+
loss = None
|
1371 |
+
if labels is not None:
|
1372 |
+
loss_fct = CrossEntropyLoss()
|
1373 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
1374 |
+
|
1375 |
+
if not return_dict:
|
1376 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1377 |
+
return ((loss,) + output) if loss is not None else output
|
1378 |
+
|
1379 |
+
return SequenceClassifierOutput(
|
1380 |
+
loss=loss,
|
1381 |
+
logits=logits,
|
1382 |
+
hidden_states=outputs.hidden_states,
|
1383 |
+
attentions=outputs.attentions,
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
|
1387 |
+
@add_start_docstrings(
|
1388 |
+
"""
|
1389 |
+
Wav2Vec2Bert Model with a frame classification head on top for tasks like Speaker Diarization.
|
1390 |
+
""",
|
1391 |
+
WAV2VEC2_BERT_START_DOCSTRING,
|
1392 |
+
)
|
1393 |
+
class Wav2Vec2BertForAudioFrameClassification(Wav2Vec2BertPreTrainedModel):
|
1394 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
|
1395 |
+
def __init__(self, config):
|
1396 |
+
super().__init__(config)
|
1397 |
+
|
1398 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
1399 |
+
raise ValueError(
|
1400 |
+
"Audio frame classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)"
|
1401 |
+
)
|
1402 |
+
self.wav2vec2_bert = Wav2Vec2BertModel(config)
|
1403 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
1404 |
+
if config.use_weighted_layer_sum:
|
1405 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
1406 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1407 |
+
self.num_labels = config.num_labels
|
1408 |
+
|
1409 |
+
self.init_weights()
|
1410 |
+
|
1411 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_base_model with wav2vec2_conformer->wav2vec2_bert
|
1412 |
+
def freeze_base_model(self):
|
1413 |
+
"""
|
1414 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
1415 |
+
be updated during training. Only the classification head will be updated.
|
1416 |
+
"""
|
1417 |
+
for param in self.wav2vec2_bert.parameters():
|
1418 |
+
param.requires_grad = False
|
1419 |
+
|
1420 |
+
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
|
1421 |
+
@add_code_sample_docstrings(
|
1422 |
+
checkpoint=_BASE_CHECKPOINT_FOR_DOC,
|
1423 |
+
output_type=TokenClassifierOutput,
|
1424 |
+
config_class=_CONFIG_FOR_DOC,
|
1425 |
+
modality="audio",
|
1426 |
+
)
|
1427 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features
|
1428 |
+
def forward(
|
1429 |
+
self,
|
1430 |
+
input_features: Optional[torch.Tensor],
|
1431 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1432 |
+
labels: Optional[torch.Tensor] = None,
|
1433 |
+
output_attentions: Optional[bool] = None,
|
1434 |
+
output_hidden_states: Optional[bool] = None,
|
1435 |
+
return_dict: Optional[bool] = None,
|
1436 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1437 |
+
r"""
|
1438 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1439 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1440 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1441 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1442 |
+
"""
|
1443 |
+
|
1444 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1445 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
1446 |
+
|
1447 |
+
outputs = self.wav2vec2_bert(
|
1448 |
+
input_features,
|
1449 |
+
attention_mask=attention_mask,
|
1450 |
+
output_attentions=output_attentions,
|
1451 |
+
output_hidden_states=output_hidden_states,
|
1452 |
+
return_dict=return_dict,
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
if self.config.use_weighted_layer_sum:
|
1456 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
1457 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
1458 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
1459 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
1460 |
+
else:
|
1461 |
+
hidden_states = outputs[0]
|
1462 |
+
|
1463 |
+
logits = self.classifier(hidden_states)
|
1464 |
+
|
1465 |
+
loss = None
|
1466 |
+
if labels is not None:
|
1467 |
+
loss_fct = CrossEntropyLoss()
|
1468 |
+
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
|
1469 |
+
|
1470 |
+
if not return_dict:
|
1471 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1472 |
+
return output
|
1473 |
+
|
1474 |
+
return TokenClassifierOutput(
|
1475 |
+
loss=loss,
|
1476 |
+
logits=logits,
|
1477 |
+
hidden_states=outputs.hidden_states,
|
1478 |
+
attentions=outputs.attentions,
|
1479 |
+
)
|
1480 |
+
|
1481 |
+
|
1482 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
|
1483 |
+
class AMSoftmaxLoss(nn.Module):
|
1484 |
+
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
|
1485 |
+
super(AMSoftmaxLoss, self).__init__()
|
1486 |
+
self.scale = scale
|
1487 |
+
self.margin = margin
|
1488 |
+
self.num_labels = num_labels
|
1489 |
+
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
|
1490 |
+
self.loss = nn.CrossEntropyLoss()
|
1491 |
+
|
1492 |
+
def forward(self, hidden_states, labels):
|
1493 |
+
labels = labels.flatten()
|
1494 |
+
weight = nn.functional.normalize(self.weight, dim=0)
|
1495 |
+
hidden_states = nn.functional.normalize(hidden_states, dim=1)
|
1496 |
+
cos_theta = torch.mm(hidden_states, weight)
|
1497 |
+
psi = cos_theta - self.margin
|
1498 |
+
|
1499 |
+
onehot = nn.functional.one_hot(labels, self.num_labels)
|
1500 |
+
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
|
1501 |
+
loss = self.loss(logits, labels)
|
1502 |
+
|
1503 |
+
return loss
|
1504 |
+
|
1505 |
+
|
1506 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
|
1507 |
+
class TDNNLayer(nn.Module):
|
1508 |
+
def __init__(self, config, layer_id=0):
|
1509 |
+
super().__init__()
|
1510 |
+
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
|
1511 |
+
self.out_conv_dim = config.tdnn_dim[layer_id]
|
1512 |
+
self.kernel_size = config.tdnn_kernel[layer_id]
|
1513 |
+
self.dilation = config.tdnn_dilation[layer_id]
|
1514 |
+
|
1515 |
+
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
|
1516 |
+
self.activation = nn.ReLU()
|
1517 |
+
|
1518 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1519 |
+
if is_peft_available():
|
1520 |
+
from peft.tuners.lora import LoraLayer
|
1521 |
+
|
1522 |
+
if isinstance(self.kernel, LoraLayer):
|
1523 |
+
warnings.warn(
|
1524 |
+
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
|
1525 |
+
"You should exclude TDNNLayer from LoRA's target modules.",
|
1526 |
+
)
|
1527 |
+
|
1528 |
+
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
|
1529 |
+
hidden_states = hidden_states.transpose(1, 2)
|
1530 |
+
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
|
1531 |
+
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
|
1532 |
+
hidden_states = hidden_states.transpose(1, 2)
|
1533 |
+
|
1534 |
+
hidden_states = self.activation(hidden_states)
|
1535 |
+
return hidden_states
|
1536 |
+
|
1537 |
+
|
1538 |
+
@add_start_docstrings(
|
1539 |
+
"""
|
1540 |
+
Wav2Vec2Bert Model with an XVector feature extraction head on top for tasks like Speaker Verification.
|
1541 |
+
""",
|
1542 |
+
WAV2VEC2_BERT_START_DOCSTRING,
|
1543 |
+
)
|
1544 |
+
class Wav2Vec2BertForXVector(Wav2Vec2BertPreTrainedModel):
|
1545 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
|
1546 |
+
def __init__(self, config):
|
1547 |
+
super().__init__(config)
|
1548 |
+
|
1549 |
+
self.wav2vec2_bert = Wav2Vec2BertModel(config)
|
1550 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
1551 |
+
if config.use_weighted_layer_sum:
|
1552 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
1553 |
+
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
|
1554 |
+
|
1555 |
+
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
|
1556 |
+
self.tdnn = nn.ModuleList(tdnn_layers)
|
1557 |
+
|
1558 |
+
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
|
1559 |
+
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
|
1560 |
+
|
1561 |
+
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
|
1562 |
+
|
1563 |
+
self.init_weights()
|
1564 |
+
|
1565 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_base_model with wav2vec2_conformer->wav2vec2_bert
|
1566 |
+
def freeze_base_model(self):
|
1567 |
+
"""
|
1568 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
1569 |
+
be updated during training. Only the classification head will be updated.
|
1570 |
+
"""
|
1571 |
+
for param in self.wav2vec2_bert.parameters():
|
1572 |
+
param.requires_grad = False
|
1573 |
+
|
1574 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector._get_tdnn_output_lengths
|
1575 |
+
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
|
1576 |
+
"""
|
1577 |
+
Computes the output length of the TDNN layers
|
1578 |
+
"""
|
1579 |
+
|
1580 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
1581 |
+
# 1D convolutional layer output length formula taken
|
1582 |
+
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
1583 |
+
return (input_length - kernel_size) // stride + 1
|
1584 |
+
|
1585 |
+
for kernel_size in self.config.tdnn_kernel:
|
1586 |
+
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
|
1587 |
+
|
1588 |
+
return input_lengths
|
1589 |
+
|
1590 |
+
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
|
1591 |
+
@add_code_sample_docstrings(
|
1592 |
+
checkpoint=_BASE_CHECKPOINT_FOR_DOC,
|
1593 |
+
output_type=XVectorOutput,
|
1594 |
+
config_class=_CONFIG_FOR_DOC,
|
1595 |
+
modality="audio",
|
1596 |
+
)
|
1597 |
+
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features
|
1598 |
+
def forward(
|
1599 |
+
self,
|
1600 |
+
input_features: Optional[torch.Tensor],
|
1601 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1602 |
+
output_attentions: Optional[bool] = None,
|
1603 |
+
output_hidden_states: Optional[bool] = None,
|
1604 |
+
return_dict: Optional[bool] = None,
|
1605 |
+
labels: Optional[torch.Tensor] = None,
|
1606 |
+
) -> Union[Tuple, XVectorOutput]:
|
1607 |
+
r"""
|
1608 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1609 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1610 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1611 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1612 |
+
"""
|
1613 |
+
|
1614 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1615 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
1616 |
+
|
1617 |
+
outputs = self.wav2vec2_bert(
|
1618 |
+
input_features,
|
1619 |
+
attention_mask=attention_mask,
|
1620 |
+
output_attentions=output_attentions,
|
1621 |
+
output_hidden_states=output_hidden_states,
|
1622 |
+
return_dict=return_dict,
|
1623 |
+
)
|
1624 |
+
|
1625 |
+
if self.config.use_weighted_layer_sum:
|
1626 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
1627 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
1628 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
1629 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
1630 |
+
else:
|
1631 |
+
hidden_states = outputs[0]
|
1632 |
+
|
1633 |
+
hidden_states = self.projector(hidden_states)
|
1634 |
+
|
1635 |
+
for tdnn_layer in self.tdnn:
|
1636 |
+
hidden_states = tdnn_layer(hidden_states)
|
1637 |
+
|
1638 |
+
# Statistic Pooling
|
1639 |
+
if attention_mask is None:
|
1640 |
+
mean_features = hidden_states.mean(dim=1)
|
1641 |
+
std_features = hidden_states.std(dim=1)
|
1642 |
+
else:
|
1643 |
+
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
|
1644 |
+
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
|
1645 |
+
mean_features = []
|
1646 |
+
std_features = []
|
1647 |
+
for i, length in enumerate(tdnn_output_lengths):
|
1648 |
+
mean_features.append(hidden_states[i, :length].mean(dim=0))
|
1649 |
+
std_features.append(hidden_states[i, :length].std(dim=0))
|
1650 |
+
mean_features = torch.stack(mean_features)
|
1651 |
+
std_features = torch.stack(std_features)
|
1652 |
+
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
|
1653 |
+
|
1654 |
+
output_embeddings = self.feature_extractor(statistic_pooling)
|
1655 |
+
logits = self.classifier(output_embeddings)
|
1656 |
+
|
1657 |
+
loss = None
|
1658 |
+
if labels is not None:
|
1659 |
+
loss = self.objective(logits, labels)
|
1660 |
+
|
1661 |
+
if not return_dict:
|
1662 |
+
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1663 |
+
return ((loss,) + output) if loss is not None else output
|
1664 |
+
|
1665 |
+
return XVectorOutput(
|
1666 |
+
loss=loss,
|
1667 |
+
logits=logits,
|
1668 |
+
embeddings=output_embeddings,
|
1669 |
+
hidden_states=outputs.hidden_states,
|
1670 |
+
attentions=outputs.attentions,
|
1671 |
+
)
|