applied-ai-018 commited on
Commit
6015cf9
·
verified ·
1 Parent(s): 2839303

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__init__.py +142 -0
  2. llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/configuration_camembert.py +155 -0
  3. llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_camembert.py +1571 -0
  4. llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_tf_camembert.py +1793 -0
  5. llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert.py +319 -0
  6. llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert_fast.py +199 -0
  7. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__init__.py +183 -0
  8. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/__init__.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/configuration_clip.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/convert_clip_original_pytorch_to_hf.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/feature_extraction_clip.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/image_processing_clip.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_clip.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_flax_clip.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_tf_clip.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/processing_clip.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip_fast.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/configuration_clip.py +456 -0
  20. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/convert_clip_original_pytorch_to_hf.py +148 -0
  21. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/feature_extraction_clip.py +33 -0
  22. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/image_processing_clip.py +346 -0
  23. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_clip.py +1416 -0
  24. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_flax_clip.py +1295 -0
  25. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_tf_clip.py +1461 -0
  26. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/processing_clip.py +153 -0
  27. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip.py +516 -0
  28. llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip_fast.py +159 -0
  29. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__init__.py +127 -0
  30. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/__init__.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/configuration_deberta_v2.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_deberta_v2.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_tf_deberta_v2.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2_fast.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/configuration_deberta_v2.py +192 -0
  37. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_deberta_v2.py +1629 -0
  38. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_tf_deberta_v2.py +1874 -0
  39. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2.py +521 -0
  40. llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2_fast.py +220 -0
  41. llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/configuration_persimmon.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/convert_persimmon_weights_to_hf.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/modeling_persimmon.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__init__.py +122 -0
  45. llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/__init__.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/configuration_pop2piano.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/convert_pop2piano_weights_to_hf.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/feature_extraction_pop2piano.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/modeling_pop2piano.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/processing_pop2piano.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/__init__.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import (
18
+ OptionalDependencyNotAvailable,
19
+ _LazyModule,
20
+ is_sentencepiece_available,
21
+ is_tf_available,
22
+ is_tokenizers_available,
23
+ is_torch_available,
24
+ )
25
+
26
+
27
+ _import_structure = {
28
+ "configuration_camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig", "CamembertOnnxConfig"],
29
+ }
30
+
31
+ try:
32
+ if not is_sentencepiece_available():
33
+ raise OptionalDependencyNotAvailable()
34
+ except OptionalDependencyNotAvailable:
35
+ pass
36
+ else:
37
+ _import_structure["tokenization_camembert"] = ["CamembertTokenizer"]
38
+
39
+ try:
40
+ if not is_tokenizers_available():
41
+ raise OptionalDependencyNotAvailable()
42
+ except OptionalDependencyNotAvailable:
43
+ pass
44
+ else:
45
+ _import_structure["tokenization_camembert_fast"] = ["CamembertTokenizerFast"]
46
+
47
+ try:
48
+ if not is_torch_available():
49
+ raise OptionalDependencyNotAvailable()
50
+ except OptionalDependencyNotAvailable:
51
+ pass
52
+ else:
53
+ _import_structure["modeling_camembert"] = [
54
+ "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
55
+ "CamembertForCausalLM",
56
+ "CamembertForMaskedLM",
57
+ "CamembertForMultipleChoice",
58
+ "CamembertForQuestionAnswering",
59
+ "CamembertForSequenceClassification",
60
+ "CamembertForTokenClassification",
61
+ "CamembertModel",
62
+ "CamembertPreTrainedModel",
63
+ ]
64
+
65
+ try:
66
+ if not is_tf_available():
67
+ raise OptionalDependencyNotAvailable()
68
+ except OptionalDependencyNotAvailable:
69
+ pass
70
+ else:
71
+ _import_structure["modeling_tf_camembert"] = [
72
+ "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
73
+ "TFCamembertForCausalLM",
74
+ "TFCamembertForMaskedLM",
75
+ "TFCamembertForMultipleChoice",
76
+ "TFCamembertForQuestionAnswering",
77
+ "TFCamembertForSequenceClassification",
78
+ "TFCamembertForTokenClassification",
79
+ "TFCamembertModel",
80
+ "TFCamembertPreTrainedModel",
81
+ ]
82
+
83
+
84
+ if TYPE_CHECKING:
85
+ from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig, CamembertOnnxConfig
86
+
87
+ try:
88
+ if not is_sentencepiece_available():
89
+ raise OptionalDependencyNotAvailable()
90
+ except OptionalDependencyNotAvailable:
91
+ pass
92
+ else:
93
+ from .tokenization_camembert import CamembertTokenizer
94
+
95
+ try:
96
+ if not is_tokenizers_available():
97
+ raise OptionalDependencyNotAvailable()
98
+ except OptionalDependencyNotAvailable:
99
+ pass
100
+ else:
101
+ from .tokenization_camembert_fast import CamembertTokenizerFast
102
+
103
+ try:
104
+ if not is_torch_available():
105
+ raise OptionalDependencyNotAvailable()
106
+ except OptionalDependencyNotAvailable:
107
+ pass
108
+ else:
109
+ from .modeling_camembert import (
110
+ CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
111
+ CamembertForCausalLM,
112
+ CamembertForMaskedLM,
113
+ CamembertForMultipleChoice,
114
+ CamembertForQuestionAnswering,
115
+ CamembertForSequenceClassification,
116
+ CamembertForTokenClassification,
117
+ CamembertModel,
118
+ CamembertPreTrainedModel,
119
+ )
120
+
121
+ try:
122
+ if not is_tf_available():
123
+ raise OptionalDependencyNotAvailable()
124
+ except OptionalDependencyNotAvailable:
125
+ pass
126
+ else:
127
+ from .modeling_tf_camembert import (
128
+ TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
129
+ TFCamembertForCausalLM,
130
+ TFCamembertForMaskedLM,
131
+ TFCamembertForMultipleChoice,
132
+ TFCamembertForQuestionAnswering,
133
+ TFCamembertForSequenceClassification,
134
+ TFCamembertForTokenClassification,
135
+ TFCamembertModel,
136
+ TFCamembertPreTrainedModel,
137
+ )
138
+
139
+ else:
140
+ import sys
141
+
142
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/configuration_camembert.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ CamemBERT configuration"""
17
+
18
+ from collections import OrderedDict
19
+ from typing import Mapping
20
+
21
+ from ...configuration_utils import PretrainedConfig
22
+ from ...onnx import OnnxConfig
23
+ from ...utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ from ..deprecated._archive_maps import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
30
+
31
+
32
+ class CamembertConfig(PretrainedConfig):
33
+ """
34
+ This is the configuration class to store the configuration of a [`CamembertModel`] or a [`TFCamembertModel`]. It is
35
+ used to instantiate a Camembert model according to the specified arguments, defining the model architecture.
36
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the Camembert
37
+ [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) architecture.
38
+
39
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
40
+ documentation from [`PretrainedConfig`] for more information.
41
+
42
+
43
+ Args:
44
+ vocab_size (`int`, *optional*, defaults to 30522):
45
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
46
+ `inputs_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`].
47
+ hidden_size (`int`, *optional*, defaults to 768):
48
+ Dimensionality of the encoder layers and the pooler layer.
49
+ num_hidden_layers (`int`, *optional*, defaults to 12):
50
+ Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 12):
52
+ Number of attention heads for each attention layer in the Transformer encoder.
53
+ intermediate_size (`int`, *optional*, defaults to 3072):
54
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
55
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
56
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
57
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
58
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
59
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
60
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
61
+ The dropout ratio for the attention probabilities.
62
+ max_position_embeddings (`int`, *optional*, defaults to 512):
63
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
64
+ just in case (e.g., 512 or 1024 or 2048).
65
+ type_vocab_size (`int`, *optional*, defaults to 2):
66
+ The vocabulary size of the `token_type_ids` passed when calling [`CamembertModel`] or [`TFCamembertModel`].
67
+ initializer_range (`float`, *optional*, defaults to 0.02):
68
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
69
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
70
+ The epsilon used by the layer normalization layers.
71
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
72
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
73
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
74
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
75
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
76
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
77
+ is_decoder (`bool`, *optional*, defaults to `False`):
78
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
79
+ use_cache (`bool`, *optional*, defaults to `True`):
80
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
81
+ relevant if `config.is_decoder=True`.
82
+ classifier_dropout (`float`, *optional*):
83
+ The dropout ratio for the classification head.
84
+
85
+ Example:
86
+
87
+ ```python
88
+ >>> from transformers import CamembertConfig, CamembertModel
89
+
90
+ >>> # Initializing a Camembert almanach/camembert-base style configuration
91
+ >>> configuration = CamembertConfig()
92
+
93
+ >>> # Initializing a model (with random weights) from the almanach/camembert-base style configuration
94
+ >>> model = CamembertModel(configuration)
95
+
96
+ >>> # Accessing the model configuration
97
+ >>> configuration = model.config
98
+ ```"""
99
+
100
+ model_type = "camembert"
101
+
102
+ def __init__(
103
+ self,
104
+ vocab_size=30522,
105
+ hidden_size=768,
106
+ num_hidden_layers=12,
107
+ num_attention_heads=12,
108
+ intermediate_size=3072,
109
+ hidden_act="gelu",
110
+ hidden_dropout_prob=0.1,
111
+ attention_probs_dropout_prob=0.1,
112
+ max_position_embeddings=512,
113
+ type_vocab_size=2,
114
+ initializer_range=0.02,
115
+ layer_norm_eps=1e-12,
116
+ pad_token_id=1,
117
+ bos_token_id=0,
118
+ eos_token_id=2,
119
+ position_embedding_type="absolute",
120
+ use_cache=True,
121
+ classifier_dropout=None,
122
+ **kwargs,
123
+ ):
124
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
125
+
126
+ self.vocab_size = vocab_size
127
+ self.hidden_size = hidden_size
128
+ self.num_hidden_layers = num_hidden_layers
129
+ self.num_attention_heads = num_attention_heads
130
+ self.hidden_act = hidden_act
131
+ self.intermediate_size = intermediate_size
132
+ self.hidden_dropout_prob = hidden_dropout_prob
133
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
134
+ self.max_position_embeddings = max_position_embeddings
135
+ self.type_vocab_size = type_vocab_size
136
+ self.initializer_range = initializer_range
137
+ self.layer_norm_eps = layer_norm_eps
138
+ self.position_embedding_type = position_embedding_type
139
+ self.use_cache = use_cache
140
+ self.classifier_dropout = classifier_dropout
141
+
142
+
143
+ class CamembertOnnxConfig(OnnxConfig):
144
+ @property
145
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
146
+ if self.task == "multiple-choice":
147
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
148
+ else:
149
+ dynamic_axis = {0: "batch", 1: "sequence"}
150
+ return OrderedDict(
151
+ [
152
+ ("input_ids", dynamic_axis),
153
+ ("attention_mask", dynamic_axis),
154
+ ]
155
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_camembert.py ADDED
@@ -0,0 +1,1571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2019 Inria, Facebook AI Research and the HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch CamemBERT model."""
17
+
18
+ import math
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
25
+
26
+ from ...activations import ACT2FN, gelu
27
+ from ...modeling_outputs import (
28
+ BaseModelOutputWithPastAndCrossAttentions,
29
+ BaseModelOutputWithPoolingAndCrossAttentions,
30
+ CausalLMOutputWithCrossAttentions,
31
+ MaskedLMOutput,
32
+ MultipleChoiceModelOutput,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutput,
35
+ TokenClassifierOutput,
36
+ )
37
+ from ...modeling_utils import PreTrainedModel
38
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
39
+ from ...utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ logging,
44
+ replace_return_docstrings,
45
+ )
46
+ from .configuration_camembert import CamembertConfig
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "almanach/camembert-base"
52
+ _CONFIG_FOR_DOC = "CamembertConfig"
53
+
54
+
55
+ from ..deprecated._archive_maps import CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
56
+
57
+
58
+ CAMEMBERT_START_DOCSTRING = r"""
59
+
60
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
61
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
62
+ etc.)
63
+
64
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
65
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
66
+ and behavior.
67
+
68
+ Parameters:
69
+ config ([`CamembertConfig`]): Model configuration class with all the parameters of the
70
+ model. Initializing with a config file does not load the weights associated with the model, only the
71
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
72
+ """
73
+
74
+
75
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Camembert
76
+ class CamembertEmbeddings(nn.Module):
77
+ """
78
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
79
+ """
80
+
81
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
82
+ def __init__(self, config):
83
+ super().__init__()
84
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
85
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
86
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
87
+
88
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
89
+ # any TensorFlow checkpoint file
90
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
91
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
92
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
93
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
94
+ self.register_buffer(
95
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
96
+ )
97
+ self.register_buffer(
98
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
99
+ )
100
+
101
+ # End copy
102
+ self.padding_idx = config.pad_token_id
103
+ self.position_embeddings = nn.Embedding(
104
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
105
+ )
106
+
107
+ def forward(
108
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
109
+ ):
110
+ if position_ids is None:
111
+ if input_ids is not None:
112
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
113
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
114
+ else:
115
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
116
+
117
+ if input_ids is not None:
118
+ input_shape = input_ids.size()
119
+ else:
120
+ input_shape = inputs_embeds.size()[:-1]
121
+
122
+ seq_length = input_shape[1]
123
+
124
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
125
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
126
+ # issue #5664
127
+ if token_type_ids is None:
128
+ if hasattr(self, "token_type_ids"):
129
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
130
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
131
+ token_type_ids = buffered_token_type_ids_expanded
132
+ else:
133
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
134
+
135
+ if inputs_embeds is None:
136
+ inputs_embeds = self.word_embeddings(input_ids)
137
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
138
+
139
+ embeddings = inputs_embeds + token_type_embeddings
140
+ if self.position_embedding_type == "absolute":
141
+ position_embeddings = self.position_embeddings(position_ids)
142
+ embeddings += position_embeddings
143
+ embeddings = self.LayerNorm(embeddings)
144
+ embeddings = self.dropout(embeddings)
145
+ return embeddings
146
+
147
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
148
+ """
149
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
150
+
151
+ Args:
152
+ inputs_embeds: torch.Tensor
153
+
154
+ Returns: torch.Tensor
155
+ """
156
+ input_shape = inputs_embeds.size()[:-1]
157
+ sequence_length = input_shape[1]
158
+
159
+ position_ids = torch.arange(
160
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
161
+ )
162
+ return position_ids.unsqueeze(0).expand(input_shape)
163
+
164
+
165
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Camembert
166
+ class CamembertSelfAttention(nn.Module):
167
+ def __init__(self, config, position_embedding_type=None):
168
+ super().__init__()
169
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
170
+ raise ValueError(
171
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
172
+ f"heads ({config.num_attention_heads})"
173
+ )
174
+
175
+ self.num_attention_heads = config.num_attention_heads
176
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
177
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
178
+
179
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
180
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
181
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
182
+
183
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
184
+ self.position_embedding_type = position_embedding_type or getattr(
185
+ config, "position_embedding_type", "absolute"
186
+ )
187
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
188
+ self.max_position_embeddings = config.max_position_embeddings
189
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
190
+
191
+ self.is_decoder = config.is_decoder
192
+
193
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
194
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
195
+ x = x.view(new_x_shape)
196
+ return x.permute(0, 2, 1, 3)
197
+
198
+ def forward(
199
+ self,
200
+ hidden_states: torch.Tensor,
201
+ attention_mask: Optional[torch.FloatTensor] = None,
202
+ head_mask: Optional[torch.FloatTensor] = None,
203
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
204
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
205
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
206
+ output_attentions: Optional[bool] = False,
207
+ ) -> Tuple[torch.Tensor]:
208
+ mixed_query_layer = self.query(hidden_states)
209
+
210
+ # If this is instantiated as a cross-attention module, the keys
211
+ # and values come from an encoder; the attention mask needs to be
212
+ # such that the encoder's padding tokens are not attended to.
213
+ is_cross_attention = encoder_hidden_states is not None
214
+
215
+ if is_cross_attention and past_key_value is not None:
216
+ # reuse k,v, cross_attentions
217
+ key_layer = past_key_value[0]
218
+ value_layer = past_key_value[1]
219
+ attention_mask = encoder_attention_mask
220
+ elif is_cross_attention:
221
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
222
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
223
+ attention_mask = encoder_attention_mask
224
+ elif past_key_value is not None:
225
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
226
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
227
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
228
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
229
+ else:
230
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
231
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
232
+
233
+ query_layer = self.transpose_for_scores(mixed_query_layer)
234
+
235
+ use_cache = past_key_value is not None
236
+ if self.is_decoder:
237
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
238
+ # Further calls to cross_attention layer can then reuse all cross-attention
239
+ # key/value_states (first "if" case)
240
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
241
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
242
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
243
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
244
+ past_key_value = (key_layer, value_layer)
245
+
246
+ # Take the dot product between "query" and "key" to get the raw attention scores.
247
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
248
+
249
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
250
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
251
+ if use_cache:
252
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
253
+ -1, 1
254
+ )
255
+ else:
256
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
257
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
258
+ distance = position_ids_l - position_ids_r
259
+
260
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
261
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
262
+
263
+ if self.position_embedding_type == "relative_key":
264
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
265
+ attention_scores = attention_scores + relative_position_scores
266
+ elif self.position_embedding_type == "relative_key_query":
267
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
268
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
269
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
270
+
271
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
272
+ if attention_mask is not None:
273
+ # Apply the attention mask is (precomputed for all layers in CamembertModel forward() function)
274
+ attention_scores = attention_scores + attention_mask
275
+
276
+ # Normalize the attention scores to probabilities.
277
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
278
+
279
+ # This is actually dropping out entire tokens to attend to, which might
280
+ # seem a bit unusual, but is taken from the original Transformer paper.
281
+ attention_probs = self.dropout(attention_probs)
282
+
283
+ # Mask heads if we want to
284
+ if head_mask is not None:
285
+ attention_probs = attention_probs * head_mask
286
+
287
+ context_layer = torch.matmul(attention_probs, value_layer)
288
+
289
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
290
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
291
+ context_layer = context_layer.view(new_context_layer_shape)
292
+
293
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
294
+
295
+ if self.is_decoder:
296
+ outputs = outputs + (past_key_value,)
297
+ return outputs
298
+
299
+
300
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput with Roberta->Camembert
301
+ class CamembertSelfOutput(nn.Module):
302
+ def __init__(self, config):
303
+ super().__init__()
304
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
305
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
306
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
307
+
308
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
309
+ hidden_states = self.dense(hidden_states)
310
+ hidden_states = self.dropout(hidden_states)
311
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
312
+ return hidden_states
313
+
314
+
315
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->Camembert
316
+ class CamembertAttention(nn.Module):
317
+ def __init__(self, config, position_embedding_type=None):
318
+ super().__init__()
319
+ self.self = CamembertSelfAttention(config, position_embedding_type=position_embedding_type)
320
+ self.output = CamembertSelfOutput(config)
321
+ self.pruned_heads = set()
322
+
323
+ def prune_heads(self, heads):
324
+ if len(heads) == 0:
325
+ return
326
+ heads, index = find_pruneable_heads_and_indices(
327
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
328
+ )
329
+
330
+ # Prune linear layers
331
+ self.self.query = prune_linear_layer(self.self.query, index)
332
+ self.self.key = prune_linear_layer(self.self.key, index)
333
+ self.self.value = prune_linear_layer(self.self.value, index)
334
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
335
+
336
+ # Update hyper params and store pruned heads
337
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
338
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
339
+ self.pruned_heads = self.pruned_heads.union(heads)
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.FloatTensor] = None,
345
+ head_mask: Optional[torch.FloatTensor] = None,
346
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
347
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
348
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
349
+ output_attentions: Optional[bool] = False,
350
+ ) -> Tuple[torch.Tensor]:
351
+ self_outputs = self.self(
352
+ hidden_states,
353
+ attention_mask,
354
+ head_mask,
355
+ encoder_hidden_states,
356
+ encoder_attention_mask,
357
+ past_key_value,
358
+ output_attentions,
359
+ )
360
+ attention_output = self.output(self_outputs[0], hidden_states)
361
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
362
+ return outputs
363
+
364
+
365
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Roberta->Camembert
366
+ class CamembertIntermediate(nn.Module):
367
+ def __init__(self, config):
368
+ super().__init__()
369
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
370
+ if isinstance(config.hidden_act, str):
371
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
372
+ else:
373
+ self.intermediate_act_fn = config.hidden_act
374
+
375
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
376
+ hidden_states = self.dense(hidden_states)
377
+ hidden_states = self.intermediate_act_fn(hidden_states)
378
+ return hidden_states
379
+
380
+
381
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Roberta->Camembert
382
+ class CamembertOutput(nn.Module):
383
+ def __init__(self, config):
384
+ super().__init__()
385
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
386
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
387
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
388
+
389
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
390
+ hidden_states = self.dense(hidden_states)
391
+ hidden_states = self.dropout(hidden_states)
392
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
393
+ return hidden_states
394
+
395
+
396
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->Camembert
397
+ class CamembertLayer(nn.Module):
398
+ def __init__(self, config):
399
+ super().__init__()
400
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
401
+ self.seq_len_dim = 1
402
+ self.attention = CamembertAttention(config)
403
+ self.is_decoder = config.is_decoder
404
+ self.add_cross_attention = config.add_cross_attention
405
+ if self.add_cross_attention:
406
+ if not self.is_decoder:
407
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
408
+ self.crossattention = CamembertAttention(config, position_embedding_type="absolute")
409
+ self.intermediate = CamembertIntermediate(config)
410
+ self.output = CamembertOutput(config)
411
+
412
+ def forward(
413
+ self,
414
+ hidden_states: torch.Tensor,
415
+ attention_mask: Optional[torch.FloatTensor] = None,
416
+ head_mask: Optional[torch.FloatTensor] = None,
417
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
418
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
419
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
420
+ output_attentions: Optional[bool] = False,
421
+ ) -> Tuple[torch.Tensor]:
422
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
423
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
424
+ self_attention_outputs = self.attention(
425
+ hidden_states,
426
+ attention_mask,
427
+ head_mask,
428
+ output_attentions=output_attentions,
429
+ past_key_value=self_attn_past_key_value,
430
+ )
431
+ attention_output = self_attention_outputs[0]
432
+
433
+ # if decoder, the last output is tuple of self-attn cache
434
+ if self.is_decoder:
435
+ outputs = self_attention_outputs[1:-1]
436
+ present_key_value = self_attention_outputs[-1]
437
+ else:
438
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
439
+
440
+ cross_attn_present_key_value = None
441
+ if self.is_decoder and encoder_hidden_states is not None:
442
+ if not hasattr(self, "crossattention"):
443
+ raise ValueError(
444
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
445
+ " by setting `config.add_cross_attention=True`"
446
+ )
447
+
448
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
449
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
450
+ cross_attention_outputs = self.crossattention(
451
+ attention_output,
452
+ attention_mask,
453
+ head_mask,
454
+ encoder_hidden_states,
455
+ encoder_attention_mask,
456
+ cross_attn_past_key_value,
457
+ output_attentions,
458
+ )
459
+ attention_output = cross_attention_outputs[0]
460
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
461
+
462
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
463
+ cross_attn_present_key_value = cross_attention_outputs[-1]
464
+ present_key_value = present_key_value + cross_attn_present_key_value
465
+
466
+ layer_output = apply_chunking_to_forward(
467
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
468
+ )
469
+ outputs = (layer_output,) + outputs
470
+
471
+ # if decoder, return the attn key/values as the last output
472
+ if self.is_decoder:
473
+ outputs = outputs + (present_key_value,)
474
+
475
+ return outputs
476
+
477
+ def feed_forward_chunk(self, attention_output):
478
+ intermediate_output = self.intermediate(attention_output)
479
+ layer_output = self.output(intermediate_output, attention_output)
480
+ return layer_output
481
+
482
+
483
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->Camembert
484
+ class CamembertEncoder(nn.Module):
485
+ def __init__(self, config):
486
+ super().__init__()
487
+ self.config = config
488
+ self.layer = nn.ModuleList([CamembertLayer(config) for _ in range(config.num_hidden_layers)])
489
+ self.gradient_checkpointing = False
490
+
491
+ def forward(
492
+ self,
493
+ hidden_states: torch.Tensor,
494
+ attention_mask: Optional[torch.FloatTensor] = None,
495
+ head_mask: Optional[torch.FloatTensor] = None,
496
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
497
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
498
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
499
+ use_cache: Optional[bool] = None,
500
+ output_attentions: Optional[bool] = False,
501
+ output_hidden_states: Optional[bool] = False,
502
+ return_dict: Optional[bool] = True,
503
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
504
+ all_hidden_states = () if output_hidden_states else None
505
+ all_self_attentions = () if output_attentions else None
506
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
507
+
508
+ if self.gradient_checkpointing and self.training:
509
+ if use_cache:
510
+ logger.warning_once(
511
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
512
+ )
513
+ use_cache = False
514
+
515
+ next_decoder_cache = () if use_cache else None
516
+ for i, layer_module in enumerate(self.layer):
517
+ if output_hidden_states:
518
+ all_hidden_states = all_hidden_states + (hidden_states,)
519
+
520
+ layer_head_mask = head_mask[i] if head_mask is not None else None
521
+ past_key_value = past_key_values[i] if past_key_values is not None else None
522
+
523
+ if self.gradient_checkpointing and self.training:
524
+ layer_outputs = self._gradient_checkpointing_func(
525
+ layer_module.__call__,
526
+ hidden_states,
527
+ attention_mask,
528
+ layer_head_mask,
529
+ encoder_hidden_states,
530
+ encoder_attention_mask,
531
+ past_key_value,
532
+ output_attentions,
533
+ )
534
+ else:
535
+ layer_outputs = layer_module(
536
+ hidden_states,
537
+ attention_mask,
538
+ layer_head_mask,
539
+ encoder_hidden_states,
540
+ encoder_attention_mask,
541
+ past_key_value,
542
+ output_attentions,
543
+ )
544
+
545
+ hidden_states = layer_outputs[0]
546
+ if use_cache:
547
+ next_decoder_cache += (layer_outputs[-1],)
548
+ if output_attentions:
549
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
550
+ if self.config.add_cross_attention:
551
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
552
+
553
+ if output_hidden_states:
554
+ all_hidden_states = all_hidden_states + (hidden_states,)
555
+
556
+ if not return_dict:
557
+ return tuple(
558
+ v
559
+ for v in [
560
+ hidden_states,
561
+ next_decoder_cache,
562
+ all_hidden_states,
563
+ all_self_attentions,
564
+ all_cross_attentions,
565
+ ]
566
+ if v is not None
567
+ )
568
+ return BaseModelOutputWithPastAndCrossAttentions(
569
+ last_hidden_state=hidden_states,
570
+ past_key_values=next_decoder_cache,
571
+ hidden_states=all_hidden_states,
572
+ attentions=all_self_attentions,
573
+ cross_attentions=all_cross_attentions,
574
+ )
575
+
576
+
577
+ # Copied from transformers.models.bert.modeling_bert.BertPooler
578
+ class CamembertPooler(nn.Module):
579
+ def __init__(self, config):
580
+ super().__init__()
581
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
582
+ self.activation = nn.Tanh()
583
+
584
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
585
+ # We "pool" the model by simply taking the hidden state corresponding
586
+ # to the first token.
587
+ first_token_tensor = hidden_states[:, 0]
588
+ pooled_output = self.dense(first_token_tensor)
589
+ pooled_output = self.activation(pooled_output)
590
+ return pooled_output
591
+
592
+
593
+ class CamembertPreTrainedModel(PreTrainedModel):
594
+ """
595
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
596
+ models.
597
+ """
598
+
599
+ config_class = CamembertConfig
600
+ base_model_prefix = "roberta"
601
+ supports_gradient_checkpointing = True
602
+
603
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
604
+ def _init_weights(self, module):
605
+ """Initialize the weights"""
606
+ if isinstance(module, nn.Linear):
607
+ # Slightly different from the TF version which uses truncated_normal for initialization
608
+ # cf https://github.com/pytorch/pytorch/pull/5617
609
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
610
+ if module.bias is not None:
611
+ module.bias.data.zero_()
612
+ elif isinstance(module, nn.Embedding):
613
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
614
+ if module.padding_idx is not None:
615
+ module.weight.data[module.padding_idx].zero_()
616
+ elif isinstance(module, nn.LayerNorm):
617
+ module.bias.data.zero_()
618
+ module.weight.data.fill_(1.0)
619
+
620
+
621
+ CAMEMBERT_INPUTS_DOCSTRING = r"""
622
+ Args:
623
+ input_ids (`torch.LongTensor` of shape `({0})`):
624
+ Indices of input sequence tokens in the vocabulary.
625
+
626
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
627
+ [`PreTrainedTokenizer.__call__`] for details.
628
+
629
+ [What are input IDs?](../glossary#input-ids)
630
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
631
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
632
+
633
+ - 1 for tokens that are **not masked**,
634
+ - 0 for tokens that are **masked**.
635
+
636
+ [What are attention masks?](../glossary#attention-mask)
637
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
638
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
639
+ 1]`:
640
+
641
+ - 0 corresponds to a *sentence A* token,
642
+ - 1 corresponds to a *sentence B* token.
643
+
644
+ [What are token type IDs?](../glossary#token-type-ids)
645
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
646
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
647
+ config.max_position_embeddings - 1]`.
648
+
649
+ [What are position IDs?](../glossary#position-ids)
650
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
651
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
652
+
653
+ - 1 indicates the head is **not masked**,
654
+ - 0 indicates the head is **masked**.
655
+
656
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
657
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
658
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
659
+ model's internal embedding lookup matrix.
660
+ output_attentions (`bool`, *optional*):
661
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
662
+ tensors for more detail.
663
+ output_hidden_states (`bool`, *optional*):
664
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
665
+ more detail.
666
+ return_dict (`bool`, *optional*):
667
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
668
+ """
669
+
670
+
671
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Camembert
672
+ class CamembertClassificationHead(nn.Module):
673
+ """Head for sentence-level classification tasks."""
674
+
675
+ def __init__(self, config):
676
+ super().__init__()
677
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
678
+ classifier_dropout = (
679
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
680
+ )
681
+ self.dropout = nn.Dropout(classifier_dropout)
682
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
683
+
684
+ def forward(self, features, **kwargs):
685
+ x = features[:, 0, :] # take <s> token (equiv. to [CLS])
686
+ x = self.dropout(x)
687
+ x = self.dense(x)
688
+ x = torch.tanh(x)
689
+ x = self.dropout(x)
690
+ x = self.out_proj(x)
691
+ return x
692
+
693
+
694
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Camembert
695
+ class CamembertLMHead(nn.Module):
696
+ """Camembert Head for masked language modeling."""
697
+
698
+ def __init__(self, config):
699
+ super().__init__()
700
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
701
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
702
+
703
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
704
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
705
+ self.decoder.bias = self.bias
706
+
707
+ def forward(self, features, **kwargs):
708
+ x = self.dense(features)
709
+ x = gelu(x)
710
+ x = self.layer_norm(x)
711
+
712
+ # project back to size of vocabulary with bias
713
+ x = self.decoder(x)
714
+
715
+ return x
716
+
717
+ def _tie_weights(self):
718
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
719
+ # For accelerate compatibility and to not break backward compatibility
720
+ if self.decoder.bias.device.type == "meta":
721
+ self.decoder.bias = self.bias
722
+ else:
723
+ self.bias = self.decoder.bias
724
+
725
+
726
+ @add_start_docstrings(
727
+ "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.",
728
+ CAMEMBERT_START_DOCSTRING,
729
+ )
730
+ class CamembertModel(CamembertPreTrainedModel):
731
+ """
732
+
733
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
734
+ cross-attention is added between the self-attention layers, following the architecture described in *Attention is
735
+ all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
736
+ Kaiser and Illia Polosukhin.
737
+
738
+ To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to
739
+ `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
740
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
741
+
742
+ .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
743
+
744
+ """
745
+
746
+ _no_split_modules = []
747
+
748
+ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Camembert
749
+ def __init__(self, config, add_pooling_layer=True):
750
+ super().__init__(config)
751
+ self.config = config
752
+
753
+ self.embeddings = CamembertEmbeddings(config)
754
+ self.encoder = CamembertEncoder(config)
755
+
756
+ self.pooler = CamembertPooler(config) if add_pooling_layer else None
757
+
758
+ # Initialize weights and apply final processing
759
+ self.post_init()
760
+
761
+ def get_input_embeddings(self):
762
+ return self.embeddings.word_embeddings
763
+
764
+ def set_input_embeddings(self, value):
765
+ self.embeddings.word_embeddings = value
766
+
767
+ def _prune_heads(self, heads_to_prune):
768
+ """
769
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
770
+ class PreTrainedModel
771
+ """
772
+ for layer, heads in heads_to_prune.items():
773
+ self.encoder.layer[layer].attention.prune_heads(heads)
774
+
775
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
776
+ @add_code_sample_docstrings(
777
+ checkpoint=_CHECKPOINT_FOR_DOC,
778
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
779
+ config_class=_CONFIG_FOR_DOC,
780
+ )
781
+ # Copied from transformers.models.bert.modeling_bert.BertModel.forward
782
+ def forward(
783
+ self,
784
+ input_ids: Optional[torch.Tensor] = None,
785
+ attention_mask: Optional[torch.Tensor] = None,
786
+ token_type_ids: Optional[torch.Tensor] = None,
787
+ position_ids: Optional[torch.Tensor] = None,
788
+ head_mask: Optional[torch.Tensor] = None,
789
+ inputs_embeds: Optional[torch.Tensor] = None,
790
+ encoder_hidden_states: Optional[torch.Tensor] = None,
791
+ encoder_attention_mask: Optional[torch.Tensor] = None,
792
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
793
+ use_cache: Optional[bool] = None,
794
+ output_attentions: Optional[bool] = None,
795
+ output_hidden_states: Optional[bool] = None,
796
+ return_dict: Optional[bool] = None,
797
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
798
+ r"""
799
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
800
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
801
+ the model is configured as a decoder.
802
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
803
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
804
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
805
+
806
+ - 1 for tokens that are **not masked**,
807
+ - 0 for tokens that are **masked**.
808
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
809
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
810
+
811
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
812
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
813
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
814
+ use_cache (`bool`, *optional*):
815
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
816
+ `past_key_values`).
817
+ """
818
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
819
+ output_hidden_states = (
820
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
821
+ )
822
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
823
+
824
+ if self.config.is_decoder:
825
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
826
+ else:
827
+ use_cache = False
828
+
829
+ if input_ids is not None and inputs_embeds is not None:
830
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
831
+ elif input_ids is not None:
832
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
833
+ input_shape = input_ids.size()
834
+ elif inputs_embeds is not None:
835
+ input_shape = inputs_embeds.size()[:-1]
836
+ else:
837
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
838
+
839
+ batch_size, seq_length = input_shape
840
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
841
+
842
+ # past_key_values_length
843
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
844
+
845
+ if attention_mask is None:
846
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
847
+
848
+ if token_type_ids is None:
849
+ if hasattr(self.embeddings, "token_type_ids"):
850
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
851
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
852
+ token_type_ids = buffered_token_type_ids_expanded
853
+ else:
854
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
855
+
856
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
857
+ # ourselves in which case we just need to make it broadcastable to all heads.
858
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
859
+
860
+ # If a 2D or 3D attention mask is provided for the cross-attention
861
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
862
+ if self.config.is_decoder and encoder_hidden_states is not None:
863
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
864
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
865
+ if encoder_attention_mask is None:
866
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
867
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
868
+ else:
869
+ encoder_extended_attention_mask = None
870
+
871
+ # Prepare head mask if needed
872
+ # 1.0 in head_mask indicate we keep the head
873
+ # attention_probs has shape bsz x n_heads x N x N
874
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
875
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
876
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
877
+
878
+ embedding_output = self.embeddings(
879
+ input_ids=input_ids,
880
+ position_ids=position_ids,
881
+ token_type_ids=token_type_ids,
882
+ inputs_embeds=inputs_embeds,
883
+ past_key_values_length=past_key_values_length,
884
+ )
885
+ encoder_outputs = self.encoder(
886
+ embedding_output,
887
+ attention_mask=extended_attention_mask,
888
+ head_mask=head_mask,
889
+ encoder_hidden_states=encoder_hidden_states,
890
+ encoder_attention_mask=encoder_extended_attention_mask,
891
+ past_key_values=past_key_values,
892
+ use_cache=use_cache,
893
+ output_attentions=output_attentions,
894
+ output_hidden_states=output_hidden_states,
895
+ return_dict=return_dict,
896
+ )
897
+ sequence_output = encoder_outputs[0]
898
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
899
+
900
+ if not return_dict:
901
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
902
+
903
+ return BaseModelOutputWithPoolingAndCrossAttentions(
904
+ last_hidden_state=sequence_output,
905
+ pooler_output=pooled_output,
906
+ past_key_values=encoder_outputs.past_key_values,
907
+ hidden_states=encoder_outputs.hidden_states,
908
+ attentions=encoder_outputs.attentions,
909
+ cross_attentions=encoder_outputs.cross_attentions,
910
+ )
911
+
912
+
913
+ @add_start_docstrings(
914
+ """CamemBERT Model with a `language modeling` head on top.""",
915
+ CAMEMBERT_START_DOCSTRING,
916
+ )
917
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT
918
+ class CamembertForMaskedLM(CamembertPreTrainedModel):
919
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
920
+
921
+ def __init__(self, config):
922
+ super().__init__(config)
923
+
924
+ if config.is_decoder:
925
+ logger.warning(
926
+ "If you want to use `CamembertForMaskedLM` make sure `config.is_decoder=False` for "
927
+ "bi-directional self-attention."
928
+ )
929
+
930
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
931
+ self.lm_head = CamembertLMHead(config)
932
+
933
+ # Initialize weights and apply final processing
934
+ self.post_init()
935
+
936
+ def get_output_embeddings(self):
937
+ return self.lm_head.decoder
938
+
939
+ def set_output_embeddings(self, new_embeddings):
940
+ self.lm_head.decoder = new_embeddings
941
+
942
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
943
+ @add_code_sample_docstrings(
944
+ checkpoint=_CHECKPOINT_FOR_DOC,
945
+ output_type=MaskedLMOutput,
946
+ config_class=_CONFIG_FOR_DOC,
947
+ mask="<mask>",
948
+ expected_output="' Paris'",
949
+ expected_loss=0.1,
950
+ )
951
+ def forward(
952
+ self,
953
+ input_ids: Optional[torch.LongTensor] = None,
954
+ attention_mask: Optional[torch.FloatTensor] = None,
955
+ token_type_ids: Optional[torch.LongTensor] = None,
956
+ position_ids: Optional[torch.LongTensor] = None,
957
+ head_mask: Optional[torch.FloatTensor] = None,
958
+ inputs_embeds: Optional[torch.FloatTensor] = None,
959
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
960
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
961
+ labels: Optional[torch.LongTensor] = None,
962
+ output_attentions: Optional[bool] = None,
963
+ output_hidden_states: Optional[bool] = None,
964
+ return_dict: Optional[bool] = None,
965
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
966
+ r"""
967
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
968
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
969
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
970
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
971
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
972
+ Used to hide legacy arguments that have been deprecated.
973
+ """
974
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
975
+
976
+ outputs = self.roberta(
977
+ input_ids,
978
+ attention_mask=attention_mask,
979
+ token_type_ids=token_type_ids,
980
+ position_ids=position_ids,
981
+ head_mask=head_mask,
982
+ inputs_embeds=inputs_embeds,
983
+ encoder_hidden_states=encoder_hidden_states,
984
+ encoder_attention_mask=encoder_attention_mask,
985
+ output_attentions=output_attentions,
986
+ output_hidden_states=output_hidden_states,
987
+ return_dict=return_dict,
988
+ )
989
+ sequence_output = outputs[0]
990
+ prediction_scores = self.lm_head(sequence_output)
991
+
992
+ masked_lm_loss = None
993
+ if labels is not None:
994
+ # move labels to correct device to enable model parallelism
995
+ labels = labels.to(prediction_scores.device)
996
+ loss_fct = CrossEntropyLoss()
997
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
998
+
999
+ if not return_dict:
1000
+ output = (prediction_scores,) + outputs[2:]
1001
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1002
+
1003
+ return MaskedLMOutput(
1004
+ loss=masked_lm_loss,
1005
+ logits=prediction_scores,
1006
+ hidden_states=outputs.hidden_states,
1007
+ attentions=outputs.attentions,
1008
+ )
1009
+
1010
+
1011
+ @add_start_docstrings(
1012
+ """
1013
+ CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
1014
+ pooled output) e.g. for GLUE tasks.
1015
+ """,
1016
+ CAMEMBERT_START_DOCSTRING,
1017
+ )
1018
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
1019
+ class CamembertForSequenceClassification(CamembertPreTrainedModel):
1020
+ def __init__(self, config):
1021
+ super().__init__(config)
1022
+ self.num_labels = config.num_labels
1023
+ self.config = config
1024
+
1025
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
1026
+ self.classifier = CamembertClassificationHead(config)
1027
+
1028
+ # Initialize weights and apply final processing
1029
+ self.post_init()
1030
+
1031
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1032
+ @add_code_sample_docstrings(
1033
+ checkpoint="cardiffnlp/twitter-roberta-base-emotion",
1034
+ output_type=SequenceClassifierOutput,
1035
+ config_class=_CONFIG_FOR_DOC,
1036
+ expected_output="'optimism'",
1037
+ expected_loss=0.08,
1038
+ )
1039
+ def forward(
1040
+ self,
1041
+ input_ids: Optional[torch.LongTensor] = None,
1042
+ attention_mask: Optional[torch.FloatTensor] = None,
1043
+ token_type_ids: Optional[torch.LongTensor] = None,
1044
+ position_ids: Optional[torch.LongTensor] = None,
1045
+ head_mask: Optional[torch.FloatTensor] = None,
1046
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1047
+ labels: Optional[torch.LongTensor] = None,
1048
+ output_attentions: Optional[bool] = None,
1049
+ output_hidden_states: Optional[bool] = None,
1050
+ return_dict: Optional[bool] = None,
1051
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1052
+ r"""
1053
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1054
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1055
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1056
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1057
+ """
1058
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1059
+
1060
+ outputs = self.roberta(
1061
+ input_ids,
1062
+ attention_mask=attention_mask,
1063
+ token_type_ids=token_type_ids,
1064
+ position_ids=position_ids,
1065
+ head_mask=head_mask,
1066
+ inputs_embeds=inputs_embeds,
1067
+ output_attentions=output_attentions,
1068
+ output_hidden_states=output_hidden_states,
1069
+ return_dict=return_dict,
1070
+ )
1071
+ sequence_output = outputs[0]
1072
+ logits = self.classifier(sequence_output)
1073
+
1074
+ loss = None
1075
+ if labels is not None:
1076
+ # move labels to correct device to enable model parallelism
1077
+ labels = labels.to(logits.device)
1078
+ if self.config.problem_type is None:
1079
+ if self.num_labels == 1:
1080
+ self.config.problem_type = "regression"
1081
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1082
+ self.config.problem_type = "single_label_classification"
1083
+ else:
1084
+ self.config.problem_type = "multi_label_classification"
1085
+
1086
+ if self.config.problem_type == "regression":
1087
+ loss_fct = MSELoss()
1088
+ if self.num_labels == 1:
1089
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1090
+ else:
1091
+ loss = loss_fct(logits, labels)
1092
+ elif self.config.problem_type == "single_label_classification":
1093
+ loss_fct = CrossEntropyLoss()
1094
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1095
+ elif self.config.problem_type == "multi_label_classification":
1096
+ loss_fct = BCEWithLogitsLoss()
1097
+ loss = loss_fct(logits, labels)
1098
+
1099
+ if not return_dict:
1100
+ output = (logits,) + outputs[2:]
1101
+ return ((loss,) + output) if loss is not None else output
1102
+
1103
+ return SequenceClassifierOutput(
1104
+ loss=loss,
1105
+ logits=logits,
1106
+ hidden_states=outputs.hidden_states,
1107
+ attentions=outputs.attentions,
1108
+ )
1109
+
1110
+
1111
+ @add_start_docstrings(
1112
+ """
1113
+ CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
1114
+ softmax) e.g. for RocStories/SWAG tasks.
1115
+ """,
1116
+ CAMEMBERT_START_DOCSTRING,
1117
+ )
1118
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->Camembert, ROBERTA->CAMEMBERT
1119
+ class CamembertForMultipleChoice(CamembertPreTrainedModel):
1120
+ def __init__(self, config):
1121
+ super().__init__(config)
1122
+
1123
+ self.roberta = CamembertModel(config)
1124
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1125
+ self.classifier = nn.Linear(config.hidden_size, 1)
1126
+
1127
+ # Initialize weights and apply final processing
1128
+ self.post_init()
1129
+
1130
+ @add_start_docstrings_to_model_forward(
1131
+ CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
1132
+ )
1133
+ @add_code_sample_docstrings(
1134
+ checkpoint=_CHECKPOINT_FOR_DOC,
1135
+ output_type=MultipleChoiceModelOutput,
1136
+ config_class=_CONFIG_FOR_DOC,
1137
+ )
1138
+ def forward(
1139
+ self,
1140
+ input_ids: Optional[torch.LongTensor] = None,
1141
+ token_type_ids: Optional[torch.LongTensor] = None,
1142
+ attention_mask: Optional[torch.FloatTensor] = None,
1143
+ labels: Optional[torch.LongTensor] = None,
1144
+ position_ids: Optional[torch.LongTensor] = None,
1145
+ head_mask: Optional[torch.FloatTensor] = None,
1146
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1147
+ output_attentions: Optional[bool] = None,
1148
+ output_hidden_states: Optional[bool] = None,
1149
+ return_dict: Optional[bool] = None,
1150
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
1151
+ r"""
1152
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1153
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1154
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1155
+ `input_ids` above)
1156
+ """
1157
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1158
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1159
+
1160
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1161
+ flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1162
+ flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1163
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1164
+ flat_inputs_embeds = (
1165
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1166
+ if inputs_embeds is not None
1167
+ else None
1168
+ )
1169
+
1170
+ outputs = self.roberta(
1171
+ flat_input_ids,
1172
+ position_ids=flat_position_ids,
1173
+ token_type_ids=flat_token_type_ids,
1174
+ attention_mask=flat_attention_mask,
1175
+ head_mask=head_mask,
1176
+ inputs_embeds=flat_inputs_embeds,
1177
+ output_attentions=output_attentions,
1178
+ output_hidden_states=output_hidden_states,
1179
+ return_dict=return_dict,
1180
+ )
1181
+ pooled_output = outputs[1]
1182
+
1183
+ pooled_output = self.dropout(pooled_output)
1184
+ logits = self.classifier(pooled_output)
1185
+ reshaped_logits = logits.view(-1, num_choices)
1186
+
1187
+ loss = None
1188
+ if labels is not None:
1189
+ # move labels to correct device to enable model parallelism
1190
+ labels = labels.to(reshaped_logits.device)
1191
+ loss_fct = CrossEntropyLoss()
1192
+ loss = loss_fct(reshaped_logits, labels)
1193
+
1194
+ if not return_dict:
1195
+ output = (reshaped_logits,) + outputs[2:]
1196
+ return ((loss,) + output) if loss is not None else output
1197
+
1198
+ return MultipleChoiceModelOutput(
1199
+ loss=loss,
1200
+ logits=reshaped_logits,
1201
+ hidden_states=outputs.hidden_states,
1202
+ attentions=outputs.attentions,
1203
+ )
1204
+
1205
+
1206
+ @add_start_docstrings(
1207
+ """
1208
+ CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
1209
+ for Named-Entity-Recognition (NER) tasks.
1210
+ """,
1211
+ CAMEMBERT_START_DOCSTRING,
1212
+ )
1213
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
1214
+ class CamembertForTokenClassification(CamembertPreTrainedModel):
1215
+ def __init__(self, config):
1216
+ super().__init__(config)
1217
+ self.num_labels = config.num_labels
1218
+
1219
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
1220
+ classifier_dropout = (
1221
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1222
+ )
1223
+ self.dropout = nn.Dropout(classifier_dropout)
1224
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1225
+
1226
+ # Initialize weights and apply final processing
1227
+ self.post_init()
1228
+
1229
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1230
+ @add_code_sample_docstrings(
1231
+ checkpoint="Jean-Baptiste/roberta-large-ner-english",
1232
+ output_type=TokenClassifierOutput,
1233
+ config_class=_CONFIG_FOR_DOC,
1234
+ expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
1235
+ expected_loss=0.01,
1236
+ )
1237
+ def forward(
1238
+ self,
1239
+ input_ids: Optional[torch.LongTensor] = None,
1240
+ attention_mask: Optional[torch.FloatTensor] = None,
1241
+ token_type_ids: Optional[torch.LongTensor] = None,
1242
+ position_ids: Optional[torch.LongTensor] = None,
1243
+ head_mask: Optional[torch.FloatTensor] = None,
1244
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1245
+ labels: Optional[torch.LongTensor] = None,
1246
+ output_attentions: Optional[bool] = None,
1247
+ output_hidden_states: Optional[bool] = None,
1248
+ return_dict: Optional[bool] = None,
1249
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1250
+ r"""
1251
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1252
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1253
+ """
1254
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1255
+
1256
+ outputs = self.roberta(
1257
+ input_ids,
1258
+ attention_mask=attention_mask,
1259
+ token_type_ids=token_type_ids,
1260
+ position_ids=position_ids,
1261
+ head_mask=head_mask,
1262
+ inputs_embeds=inputs_embeds,
1263
+ output_attentions=output_attentions,
1264
+ output_hidden_states=output_hidden_states,
1265
+ return_dict=return_dict,
1266
+ )
1267
+
1268
+ sequence_output = outputs[0]
1269
+
1270
+ sequence_output = self.dropout(sequence_output)
1271
+ logits = self.classifier(sequence_output)
1272
+
1273
+ loss = None
1274
+ if labels is not None:
1275
+ # move labels to correct device to enable model parallelism
1276
+ labels = labels.to(logits.device)
1277
+ loss_fct = CrossEntropyLoss()
1278
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1279
+
1280
+ if not return_dict:
1281
+ output = (logits,) + outputs[2:]
1282
+ return ((loss,) + output) if loss is not None else output
1283
+
1284
+ return TokenClassifierOutput(
1285
+ loss=loss,
1286
+ logits=logits,
1287
+ hidden_states=outputs.hidden_states,
1288
+ attentions=outputs.attentions,
1289
+ )
1290
+
1291
+
1292
+ @add_start_docstrings(
1293
+ """
1294
+ CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
1295
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`
1296
+ """,
1297
+ CAMEMBERT_START_DOCSTRING,
1298
+ )
1299
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->Camembert, ROBERTA->CAMEMBERT
1300
+ class CamembertForQuestionAnswering(CamembertPreTrainedModel):
1301
+ def __init__(self, config):
1302
+ super().__init__(config)
1303
+ self.num_labels = config.num_labels
1304
+
1305
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
1306
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1307
+
1308
+ # Initialize weights and apply final processing
1309
+ self.post_init()
1310
+
1311
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1312
+ @add_code_sample_docstrings(
1313
+ checkpoint="deepset/roberta-base-squad2",
1314
+ output_type=QuestionAnsweringModelOutput,
1315
+ config_class=_CONFIG_FOR_DOC,
1316
+ expected_output="' puppet'",
1317
+ expected_loss=0.86,
1318
+ )
1319
+ def forward(
1320
+ self,
1321
+ input_ids: Optional[torch.LongTensor] = None,
1322
+ attention_mask: Optional[torch.FloatTensor] = None,
1323
+ token_type_ids: Optional[torch.LongTensor] = None,
1324
+ position_ids: Optional[torch.LongTensor] = None,
1325
+ head_mask: Optional[torch.FloatTensor] = None,
1326
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1327
+ start_positions: Optional[torch.LongTensor] = None,
1328
+ end_positions: Optional[torch.LongTensor] = None,
1329
+ output_attentions: Optional[bool] = None,
1330
+ output_hidden_states: Optional[bool] = None,
1331
+ return_dict: Optional[bool] = None,
1332
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1333
+ r"""
1334
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1335
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1336
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1337
+ are not taken into account for computing the loss.
1338
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1339
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1340
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1341
+ are not taken into account for computing the loss.
1342
+ """
1343
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1344
+
1345
+ outputs = self.roberta(
1346
+ input_ids,
1347
+ attention_mask=attention_mask,
1348
+ token_type_ids=token_type_ids,
1349
+ position_ids=position_ids,
1350
+ head_mask=head_mask,
1351
+ inputs_embeds=inputs_embeds,
1352
+ output_attentions=output_attentions,
1353
+ output_hidden_states=output_hidden_states,
1354
+ return_dict=return_dict,
1355
+ )
1356
+
1357
+ sequence_output = outputs[0]
1358
+
1359
+ logits = self.qa_outputs(sequence_output)
1360
+ start_logits, end_logits = logits.split(1, dim=-1)
1361
+ start_logits = start_logits.squeeze(-1).contiguous()
1362
+ end_logits = end_logits.squeeze(-1).contiguous()
1363
+
1364
+ total_loss = None
1365
+ if start_positions is not None and end_positions is not None:
1366
+ # If we are on multi-GPU, split add a dimension
1367
+ if len(start_positions.size()) > 1:
1368
+ start_positions = start_positions.squeeze(-1)
1369
+ if len(end_positions.size()) > 1:
1370
+ end_positions = end_positions.squeeze(-1)
1371
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1372
+ ignored_index = start_logits.size(1)
1373
+ start_positions = start_positions.clamp(0, ignored_index)
1374
+ end_positions = end_positions.clamp(0, ignored_index)
1375
+
1376
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1377
+ start_loss = loss_fct(start_logits, start_positions)
1378
+ end_loss = loss_fct(end_logits, end_positions)
1379
+ total_loss = (start_loss + end_loss) / 2
1380
+
1381
+ if not return_dict:
1382
+ output = (start_logits, end_logits) + outputs[2:]
1383
+ return ((total_loss,) + output) if total_loss is not None else output
1384
+
1385
+ return QuestionAnsweringModelOutput(
1386
+ loss=total_loss,
1387
+ start_logits=start_logits,
1388
+ end_logits=end_logits,
1389
+ hidden_states=outputs.hidden_states,
1390
+ attentions=outputs.attentions,
1391
+ )
1392
+
1393
+
1394
+ @add_start_docstrings(
1395
+ """CamemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", CAMEMBERT_START_DOCSTRING
1396
+ )
1397
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with Roberta->Camembert, ROBERTA->CAMEMBERT, FacebookAI/roberta-base->almanach/camembert-base
1398
+ class CamembertForCausalLM(CamembertPreTrainedModel):
1399
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
1400
+
1401
+ def __init__(self, config):
1402
+ super().__init__(config)
1403
+
1404
+ if not config.is_decoder:
1405
+ logger.warning("If you want to use `CamembertLMHeadModel` as a standalone, add `is_decoder=True.`")
1406
+
1407
+ self.roberta = CamembertModel(config, add_pooling_layer=False)
1408
+ self.lm_head = CamembertLMHead(config)
1409
+
1410
+ # Initialize weights and apply final processing
1411
+ self.post_init()
1412
+
1413
+ def get_output_embeddings(self):
1414
+ return self.lm_head.decoder
1415
+
1416
+ def set_output_embeddings(self, new_embeddings):
1417
+ self.lm_head.decoder = new_embeddings
1418
+
1419
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1420
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
1421
+ def forward(
1422
+ self,
1423
+ input_ids: Optional[torch.LongTensor] = None,
1424
+ attention_mask: Optional[torch.FloatTensor] = None,
1425
+ token_type_ids: Optional[torch.LongTensor] = None,
1426
+ position_ids: Optional[torch.LongTensor] = None,
1427
+ head_mask: Optional[torch.FloatTensor] = None,
1428
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1429
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1430
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1431
+ labels: Optional[torch.LongTensor] = None,
1432
+ past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
1433
+ use_cache: Optional[bool] = None,
1434
+ output_attentions: Optional[bool] = None,
1435
+ output_hidden_states: Optional[bool] = None,
1436
+ return_dict: Optional[bool] = None,
1437
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
1438
+ r"""
1439
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1440
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1441
+ the model is configured as a decoder.
1442
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1443
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1444
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1445
+
1446
+ - 1 for tokens that are **not masked**,
1447
+ - 0 for tokens that are **masked**.
1448
+
1449
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1450
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1451
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
1452
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1453
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1454
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1455
+
1456
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1457
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1458
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1459
+ use_cache (`bool`, *optional*):
1460
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1461
+ `past_key_values`).
1462
+
1463
+ Returns:
1464
+
1465
+ Example:
1466
+
1467
+ ```python
1468
+ >>> from transformers import AutoTokenizer, CamembertForCausalLM, AutoConfig
1469
+ >>> import torch
1470
+
1471
+ >>> tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
1472
+ >>> config = AutoConfig.from_pretrained("almanach/camembert-base")
1473
+ >>> config.is_decoder = True
1474
+ >>> model = CamembertForCausalLM.from_pretrained("almanach/camembert-base", config=config)
1475
+
1476
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1477
+ >>> outputs = model(**inputs)
1478
+
1479
+ >>> prediction_logits = outputs.logits
1480
+ ```"""
1481
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1482
+ if labels is not None:
1483
+ use_cache = False
1484
+
1485
+ outputs = self.roberta(
1486
+ input_ids,
1487
+ attention_mask=attention_mask,
1488
+ token_type_ids=token_type_ids,
1489
+ position_ids=position_ids,
1490
+ head_mask=head_mask,
1491
+ inputs_embeds=inputs_embeds,
1492
+ encoder_hidden_states=encoder_hidden_states,
1493
+ encoder_attention_mask=encoder_attention_mask,
1494
+ past_key_values=past_key_values,
1495
+ use_cache=use_cache,
1496
+ output_attentions=output_attentions,
1497
+ output_hidden_states=output_hidden_states,
1498
+ return_dict=return_dict,
1499
+ )
1500
+
1501
+ sequence_output = outputs[0]
1502
+ prediction_scores = self.lm_head(sequence_output)
1503
+
1504
+ lm_loss = None
1505
+ if labels is not None:
1506
+ # move labels to correct device to enable model parallelism
1507
+ labels = labels.to(prediction_scores.device)
1508
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1509
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1510
+ labels = labels[:, 1:].contiguous()
1511
+ loss_fct = CrossEntropyLoss()
1512
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1513
+
1514
+ if not return_dict:
1515
+ output = (prediction_scores,) + outputs[2:]
1516
+ return ((lm_loss,) + output) if lm_loss is not None else output
1517
+
1518
+ return CausalLMOutputWithCrossAttentions(
1519
+ loss=lm_loss,
1520
+ logits=prediction_scores,
1521
+ past_key_values=outputs.past_key_values,
1522
+ hidden_states=outputs.hidden_states,
1523
+ attentions=outputs.attentions,
1524
+ cross_attentions=outputs.cross_attentions,
1525
+ )
1526
+
1527
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
1528
+ input_shape = input_ids.shape
1529
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1530
+ if attention_mask is None:
1531
+ attention_mask = input_ids.new_ones(input_shape)
1532
+
1533
+ # cut decoder_input_ids if past_key_values is used
1534
+ if past_key_values is not None:
1535
+ past_length = past_key_values[0][0].shape[2]
1536
+
1537
+ # Some generation methods already pass only the last input ID
1538
+ if input_ids.shape[1] > past_length:
1539
+ remove_prefix_length = past_length
1540
+ else:
1541
+ # Default to old behavior: keep only final ID
1542
+ remove_prefix_length = input_ids.shape[1] - 1
1543
+
1544
+ input_ids = input_ids[:, remove_prefix_length:]
1545
+
1546
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
1547
+
1548
+ def _reorder_cache(self, past_key_values, beam_idx):
1549
+ reordered_past = ()
1550
+ for layer_past in past_key_values:
1551
+ reordered_past += (
1552
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1553
+ )
1554
+ return reordered_past
1555
+
1556
+
1557
+ # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
1558
+ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
1559
+ """
1560
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
1561
+ are ignored. This is modified from fairseq's `utils.make_positions`.
1562
+
1563
+ Args:
1564
+ x: torch.Tensor x:
1565
+
1566
+ Returns: torch.Tensor
1567
+ """
1568
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
1569
+ mask = input_ids.ne(padding_idx).int()
1570
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
1571
+ return incremental_indices.long() + padding_idx
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/modeling_tf_camembert.py ADDED
@@ -0,0 +1,1793 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ TF 2.0 CamemBERT model."""
17
+
18
+
19
+ from __future__ import annotations
20
+
21
+ import math
22
+ import warnings
23
+ from typing import Optional, Tuple, Union
24
+
25
+ import numpy as np
26
+ import tensorflow as tf
27
+
28
+ from ...activations_tf import get_tf_activation
29
+ from ...modeling_tf_outputs import (
30
+ TFBaseModelOutputWithPastAndCrossAttentions,
31
+ TFBaseModelOutputWithPoolingAndCrossAttentions,
32
+ TFCausalLMOutputWithCrossAttentions,
33
+ TFMaskedLMOutput,
34
+ TFMultipleChoiceModelOutput,
35
+ TFQuestionAnsweringModelOutput,
36
+ TFSequenceClassifierOutput,
37
+ TFTokenClassifierOutput,
38
+ )
39
+ from ...modeling_tf_utils import (
40
+ TFCausalLanguageModelingLoss,
41
+ TFMaskedLanguageModelingLoss,
42
+ TFModelInputType,
43
+ TFMultipleChoiceLoss,
44
+ TFPreTrainedModel,
45
+ TFQuestionAnsweringLoss,
46
+ TFSequenceClassificationLoss,
47
+ TFTokenClassificationLoss,
48
+ get_initializer,
49
+ keras,
50
+ keras_serializable,
51
+ unpack_inputs,
52
+ )
53
+ from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
54
+ from ...utils import (
55
+ add_code_sample_docstrings,
56
+ add_start_docstrings,
57
+ add_start_docstrings_to_model_forward,
58
+ logging,
59
+ )
60
+ from .configuration_camembert import CamembertConfig
61
+
62
+
63
+ logger = logging.get_logger(__name__)
64
+
65
+ _CHECKPOINT_FOR_DOC = "almanach/camembert-base"
66
+ _CONFIG_FOR_DOC = "CamembertConfig"
67
+
68
+
69
+ from ..deprecated._archive_maps import TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
70
+
71
+
72
+ CAMEMBERT_START_DOCSTRING = r"""
73
+
74
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
75
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
76
+ etc.)
77
+
78
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
79
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
80
+ behavior.
81
+
82
+ <Tip>
83
+
84
+ TensorFlow models and layers in `transformers` accept two formats as input:
85
+
86
+ - having all inputs as keyword arguments (like PyTorch models), or
87
+ - having all inputs as a list, tuple or dict in the first positional argument.
88
+
89
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
90
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
91
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
92
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
93
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
94
+ positional argument:
95
+
96
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
97
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
98
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
99
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
100
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
101
+
102
+ Note that when creating models and layers with
103
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
104
+ about any of this, as you can just pass inputs like you would to any other Python function!
105
+
106
+ </Tip>
107
+
108
+ Parameters:
109
+ config ([`CamembertConfig`]): Model configuration class with all the parameters of the
110
+ model. Initializing with a config file does not load the weights associated with the model, only the
111
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
112
+ """
113
+
114
+ CAMEMBERT_INPUTS_DOCSTRING = r"""
115
+ Args:
116
+ input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
117
+ Indices of input sequence tokens in the vocabulary.
118
+
119
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
120
+ [`PreTrainedTokenizer.encode`] for details.
121
+
122
+ [What are input IDs?](../glossary#input-ids)
123
+ attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
124
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
125
+
126
+ - 1 for tokens that are **not masked**,
127
+ - 0 for tokens that are **masked**.
128
+
129
+ [What are attention masks?](../glossary#attention-mask)
130
+ token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
131
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
132
+ 1]`:
133
+
134
+ - 0 corresponds to a *sentence A* token,
135
+ - 1 corresponds to a *sentence B* token.
136
+
137
+ [What are token type IDs?](../glossary#token-type-ids)
138
+ position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
139
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
140
+ config.max_position_embeddings - 1]`.
141
+
142
+ [What are position IDs?](../glossary#position-ids)
143
+ head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
144
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
145
+
146
+ - 1 indicates the head is **not masked**,
147
+ - 0 indicates the head is **masked**.
148
+
149
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
150
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
151
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
152
+ model's internal embedding lookup matrix.
153
+ output_attentions (`bool`, *optional*):
154
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
155
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
156
+ config will be used instead.
157
+ output_hidden_states (`bool`, *optional*):
158
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
159
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
160
+ used instead.
161
+ return_dict (`bool`, *optional*):
162
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
163
+ eager mode, in graph mode the value will always be set to True.
164
+ training (`bool`, *optional*, defaults to `False`):
165
+ Whether or not to use the model in training mode (some modules like dropout modules have different
166
+ behaviors between training and evaluation).
167
+ """
168
+
169
+
170
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings
171
+ class TFCamembertEmbeddings(keras.layers.Layer):
172
+ """
173
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
174
+ """
175
+
176
+ def __init__(self, config, **kwargs):
177
+ super().__init__(**kwargs)
178
+
179
+ self.padding_idx = 1
180
+ self.config = config
181
+ self.hidden_size = config.hidden_size
182
+ self.max_position_embeddings = config.max_position_embeddings
183
+ self.initializer_range = config.initializer_range
184
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
185
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
186
+
187
+ def build(self, input_shape=None):
188
+ with tf.name_scope("word_embeddings"):
189
+ self.weight = self.add_weight(
190
+ name="weight",
191
+ shape=[self.config.vocab_size, self.hidden_size],
192
+ initializer=get_initializer(self.initializer_range),
193
+ )
194
+
195
+ with tf.name_scope("token_type_embeddings"):
196
+ self.token_type_embeddings = self.add_weight(
197
+ name="embeddings",
198
+ shape=[self.config.type_vocab_size, self.hidden_size],
199
+ initializer=get_initializer(self.initializer_range),
200
+ )
201
+
202
+ with tf.name_scope("position_embeddings"):
203
+ self.position_embeddings = self.add_weight(
204
+ name="embeddings",
205
+ shape=[self.max_position_embeddings, self.hidden_size],
206
+ initializer=get_initializer(self.initializer_range),
207
+ )
208
+
209
+ if self.built:
210
+ return
211
+ self.built = True
212
+ if getattr(self, "LayerNorm", None) is not None:
213
+ with tf.name_scope(self.LayerNorm.name):
214
+ self.LayerNorm.build([None, None, self.config.hidden_size])
215
+
216
+ def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0):
217
+ """
218
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
219
+ symbols are ignored. This is modified from fairseq's `utils.make_positions`.
220
+
221
+ Args:
222
+ input_ids: tf.Tensor
223
+ Returns: tf.Tensor
224
+ """
225
+ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
226
+ incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
227
+
228
+ return incremental_indices + self.padding_idx
229
+
230
+ def call(
231
+ self,
232
+ input_ids=None,
233
+ position_ids=None,
234
+ token_type_ids=None,
235
+ inputs_embeds=None,
236
+ past_key_values_length=0,
237
+ training=False,
238
+ ):
239
+ """
240
+ Applies embedding based on inputs tensor.
241
+
242
+ Returns:
243
+ final_embeddings (`tf.Tensor`): output embedding tensor.
244
+ """
245
+ assert not (input_ids is None and inputs_embeds is None)
246
+
247
+ if input_ids is not None:
248
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
249
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
250
+
251
+ input_shape = shape_list(inputs_embeds)[:-1]
252
+
253
+ if token_type_ids is None:
254
+ token_type_ids = tf.fill(dims=input_shape, value=0)
255
+
256
+ if position_ids is None:
257
+ if input_ids is not None:
258
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
259
+ position_ids = self.create_position_ids_from_input_ids(
260
+ input_ids=input_ids, past_key_values_length=past_key_values_length
261
+ )
262
+ else:
263
+ position_ids = tf.expand_dims(
264
+ tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
265
+ )
266
+
267
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
268
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
269
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
270
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
271
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
272
+
273
+ return final_embeddings
274
+
275
+
276
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Camembert
277
+ class TFCamembertPooler(keras.layers.Layer):
278
+ def __init__(self, config: CamembertConfig, **kwargs):
279
+ super().__init__(**kwargs)
280
+
281
+ self.dense = keras.layers.Dense(
282
+ units=config.hidden_size,
283
+ kernel_initializer=get_initializer(config.initializer_range),
284
+ activation="tanh",
285
+ name="dense",
286
+ )
287
+ self.config = config
288
+
289
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
290
+ # We "pool" the model by simply taking the hidden state corresponding
291
+ # to the first token.
292
+ first_token_tensor = hidden_states[:, 0]
293
+ pooled_output = self.dense(inputs=first_token_tensor)
294
+
295
+ return pooled_output
296
+
297
+ def build(self, input_shape=None):
298
+ if self.built:
299
+ return
300
+ self.built = True
301
+ if getattr(self, "dense", None) is not None:
302
+ with tf.name_scope(self.dense.name):
303
+ self.dense.build([None, None, self.config.hidden_size])
304
+
305
+
306
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Camembert
307
+ class TFCamembertSelfAttention(keras.layers.Layer):
308
+ def __init__(self, config: CamembertConfig, **kwargs):
309
+ super().__init__(**kwargs)
310
+
311
+ if config.hidden_size % config.num_attention_heads != 0:
312
+ raise ValueError(
313
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
314
+ f"of attention heads ({config.num_attention_heads})"
315
+ )
316
+
317
+ self.num_attention_heads = config.num_attention_heads
318
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
319
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
320
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
321
+
322
+ self.query = keras.layers.Dense(
323
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
324
+ )
325
+ self.key = keras.layers.Dense(
326
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
327
+ )
328
+ self.value = keras.layers.Dense(
329
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
330
+ )
331
+ self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
332
+
333
+ self.is_decoder = config.is_decoder
334
+ self.config = config
335
+
336
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
337
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
338
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
339
+
340
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
341
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
342
+
343
+ def call(
344
+ self,
345
+ hidden_states: tf.Tensor,
346
+ attention_mask: tf.Tensor,
347
+ head_mask: tf.Tensor,
348
+ encoder_hidden_states: tf.Tensor,
349
+ encoder_attention_mask: tf.Tensor,
350
+ past_key_value: Tuple[tf.Tensor],
351
+ output_attentions: bool,
352
+ training: bool = False,
353
+ ) -> Tuple[tf.Tensor]:
354
+ batch_size = shape_list(hidden_states)[0]
355
+ mixed_query_layer = self.query(inputs=hidden_states)
356
+
357
+ # If this is instantiated as a cross-attention module, the keys
358
+ # and values come from an encoder; the attention mask needs to be
359
+ # such that the encoder's padding tokens are not attended to.
360
+ is_cross_attention = encoder_hidden_states is not None
361
+
362
+ if is_cross_attention and past_key_value is not None:
363
+ # reuse k,v, cross_attentions
364
+ key_layer = past_key_value[0]
365
+ value_layer = past_key_value[1]
366
+ attention_mask = encoder_attention_mask
367
+ elif is_cross_attention:
368
+ key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
369
+ value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
370
+ attention_mask = encoder_attention_mask
371
+ elif past_key_value is not None:
372
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
373
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
374
+ key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
375
+ value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
376
+ else:
377
+ key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
378
+ value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
379
+
380
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
381
+
382
+ if self.is_decoder:
383
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
384
+ # Further calls to cross_attention layer can then reuse all cross-attention
385
+ # key/value_states (first "if" case)
386
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
387
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
388
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
389
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
390
+ past_key_value = (key_layer, value_layer)
391
+
392
+ # Take the dot product between "query" and "key" to get the raw attention scores.
393
+ # (batch size, num_heads, seq_len_q, seq_len_k)
394
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
395
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
396
+ attention_scores = tf.divide(attention_scores, dk)
397
+
398
+ if attention_mask is not None:
399
+ # Apply the attention mask is (precomputed for all layers in TFCamembertModel call() function)
400
+ attention_scores = tf.add(attention_scores, attention_mask)
401
+
402
+ # Normalize the attention scores to probabilities.
403
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
404
+
405
+ # This is actually dropping out entire tokens to attend to, which might
406
+ # seem a bit unusual, but is taken from the original Transformer paper.
407
+ attention_probs = self.dropout(inputs=attention_probs, training=training)
408
+
409
+ # Mask heads if we want to
410
+ if head_mask is not None:
411
+ attention_probs = tf.multiply(attention_probs, head_mask)
412
+
413
+ attention_output = tf.matmul(attention_probs, value_layer)
414
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
415
+
416
+ # (batch_size, seq_len_q, all_head_size)
417
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
418
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
419
+
420
+ if self.is_decoder:
421
+ outputs = outputs + (past_key_value,)
422
+ return outputs
423
+
424
+ def build(self, input_shape=None):
425
+ if self.built:
426
+ return
427
+ self.built = True
428
+ if getattr(self, "query", None) is not None:
429
+ with tf.name_scope(self.query.name):
430
+ self.query.build([None, None, self.config.hidden_size])
431
+ if getattr(self, "key", None) is not None:
432
+ with tf.name_scope(self.key.name):
433
+ self.key.build([None, None, self.config.hidden_size])
434
+ if getattr(self, "value", None) is not None:
435
+ with tf.name_scope(self.value.name):
436
+ self.value.build([None, None, self.config.hidden_size])
437
+
438
+
439
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Camembert
440
+ class TFCamembertSelfOutput(keras.layers.Layer):
441
+ def __init__(self, config: CamembertConfig, **kwargs):
442
+ super().__init__(**kwargs)
443
+
444
+ self.dense = keras.layers.Dense(
445
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
446
+ )
447
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
448
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
449
+ self.config = config
450
+
451
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
452
+ hidden_states = self.dense(inputs=hidden_states)
453
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
454
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
455
+
456
+ return hidden_states
457
+
458
+ def build(self, input_shape=None):
459
+ if self.built:
460
+ return
461
+ self.built = True
462
+ if getattr(self, "dense", None) is not None:
463
+ with tf.name_scope(self.dense.name):
464
+ self.dense.build([None, None, self.config.hidden_size])
465
+ if getattr(self, "LayerNorm", None) is not None:
466
+ with tf.name_scope(self.LayerNorm.name):
467
+ self.LayerNorm.build([None, None, self.config.hidden_size])
468
+
469
+
470
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Camembert
471
+ class TFCamembertAttention(keras.layers.Layer):
472
+ def __init__(self, config: CamembertConfig, **kwargs):
473
+ super().__init__(**kwargs)
474
+
475
+ self.self_attention = TFCamembertSelfAttention(config, name="self")
476
+ self.dense_output = TFCamembertSelfOutput(config, name="output")
477
+
478
+ def prune_heads(self, heads):
479
+ raise NotImplementedError
480
+
481
+ def call(
482
+ self,
483
+ input_tensor: tf.Tensor,
484
+ attention_mask: tf.Tensor,
485
+ head_mask: tf.Tensor,
486
+ encoder_hidden_states: tf.Tensor,
487
+ encoder_attention_mask: tf.Tensor,
488
+ past_key_value: Tuple[tf.Tensor],
489
+ output_attentions: bool,
490
+ training: bool = False,
491
+ ) -> Tuple[tf.Tensor]:
492
+ self_outputs = self.self_attention(
493
+ hidden_states=input_tensor,
494
+ attention_mask=attention_mask,
495
+ head_mask=head_mask,
496
+ encoder_hidden_states=encoder_hidden_states,
497
+ encoder_attention_mask=encoder_attention_mask,
498
+ past_key_value=past_key_value,
499
+ output_attentions=output_attentions,
500
+ training=training,
501
+ )
502
+ attention_output = self.dense_output(
503
+ hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
504
+ )
505
+ # add attentions (possibly with past_key_value) if we output them
506
+ outputs = (attention_output,) + self_outputs[1:]
507
+
508
+ return outputs
509
+
510
+ def build(self, input_shape=None):
511
+ if self.built:
512
+ return
513
+ self.built = True
514
+ if getattr(self, "self_attention", None) is not None:
515
+ with tf.name_scope(self.self_attention.name):
516
+ self.self_attention.build(None)
517
+ if getattr(self, "dense_output", None) is not None:
518
+ with tf.name_scope(self.dense_output.name):
519
+ self.dense_output.build(None)
520
+
521
+
522
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Camembert
523
+ class TFCamembertIntermediate(keras.layers.Layer):
524
+ def __init__(self, config: CamembertConfig, **kwargs):
525
+ super().__init__(**kwargs)
526
+
527
+ self.dense = keras.layers.Dense(
528
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
529
+ )
530
+
531
+ if isinstance(config.hidden_act, str):
532
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
533
+ else:
534
+ self.intermediate_act_fn = config.hidden_act
535
+ self.config = config
536
+
537
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
538
+ hidden_states = self.dense(inputs=hidden_states)
539
+ hidden_states = self.intermediate_act_fn(hidden_states)
540
+
541
+ return hidden_states
542
+
543
+ def build(self, input_shape=None):
544
+ if self.built:
545
+ return
546
+ self.built = True
547
+ if getattr(self, "dense", None) is not None:
548
+ with tf.name_scope(self.dense.name):
549
+ self.dense.build([None, None, self.config.hidden_size])
550
+
551
+
552
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Camembert
553
+ class TFCamembertOutput(keras.layers.Layer):
554
+ def __init__(self, config: CamembertConfig, **kwargs):
555
+ super().__init__(**kwargs)
556
+
557
+ self.dense = keras.layers.Dense(
558
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
559
+ )
560
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
561
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
562
+ self.config = config
563
+
564
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
565
+ hidden_states = self.dense(inputs=hidden_states)
566
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
567
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
568
+
569
+ return hidden_states
570
+
571
+ def build(self, input_shape=None):
572
+ if self.built:
573
+ return
574
+ self.built = True
575
+ if getattr(self, "dense", None) is not None:
576
+ with tf.name_scope(self.dense.name):
577
+ self.dense.build([None, None, self.config.intermediate_size])
578
+ if getattr(self, "LayerNorm", None) is not None:
579
+ with tf.name_scope(self.LayerNorm.name):
580
+ self.LayerNorm.build([None, None, self.config.hidden_size])
581
+
582
+
583
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Camembert
584
+ class TFCamembertLayer(keras.layers.Layer):
585
+ def __init__(self, config: CamembertConfig, **kwargs):
586
+ super().__init__(**kwargs)
587
+
588
+ self.attention = TFCamembertAttention(config, name="attention")
589
+ self.is_decoder = config.is_decoder
590
+ self.add_cross_attention = config.add_cross_attention
591
+ if self.add_cross_attention:
592
+ if not self.is_decoder:
593
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
594
+ self.crossattention = TFCamembertAttention(config, name="crossattention")
595
+ self.intermediate = TFCamembertIntermediate(config, name="intermediate")
596
+ self.bert_output = TFCamembertOutput(config, name="output")
597
+
598
+ def call(
599
+ self,
600
+ hidden_states: tf.Tensor,
601
+ attention_mask: tf.Tensor,
602
+ head_mask: tf.Tensor,
603
+ encoder_hidden_states: tf.Tensor | None,
604
+ encoder_attention_mask: tf.Tensor | None,
605
+ past_key_value: Tuple[tf.Tensor] | None,
606
+ output_attentions: bool,
607
+ training: bool = False,
608
+ ) -> Tuple[tf.Tensor]:
609
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
610
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
611
+ self_attention_outputs = self.attention(
612
+ input_tensor=hidden_states,
613
+ attention_mask=attention_mask,
614
+ head_mask=head_mask,
615
+ encoder_hidden_states=None,
616
+ encoder_attention_mask=None,
617
+ past_key_value=self_attn_past_key_value,
618
+ output_attentions=output_attentions,
619
+ training=training,
620
+ )
621
+ attention_output = self_attention_outputs[0]
622
+
623
+ # if decoder, the last output is tuple of self-attn cache
624
+ if self.is_decoder:
625
+ outputs = self_attention_outputs[1:-1]
626
+ present_key_value = self_attention_outputs[-1]
627
+ else:
628
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
629
+
630
+ cross_attn_present_key_value = None
631
+ if self.is_decoder and encoder_hidden_states is not None:
632
+ if not hasattr(self, "crossattention"):
633
+ raise ValueError(
634
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
635
+ " by setting `config.add_cross_attention=True`"
636
+ )
637
+
638
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
639
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
640
+ cross_attention_outputs = self.crossattention(
641
+ input_tensor=attention_output,
642
+ attention_mask=attention_mask,
643
+ head_mask=head_mask,
644
+ encoder_hidden_states=encoder_hidden_states,
645
+ encoder_attention_mask=encoder_attention_mask,
646
+ past_key_value=cross_attn_past_key_value,
647
+ output_attentions=output_attentions,
648
+ training=training,
649
+ )
650
+ attention_output = cross_attention_outputs[0]
651
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
652
+
653
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
654
+ cross_attn_present_key_value = cross_attention_outputs[-1]
655
+ present_key_value = present_key_value + cross_attn_present_key_value
656
+
657
+ intermediate_output = self.intermediate(hidden_states=attention_output)
658
+ layer_output = self.bert_output(
659
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
660
+ )
661
+ outputs = (layer_output,) + outputs # add attentions if we output them
662
+
663
+ # if decoder, return the attn key/values as the last output
664
+ if self.is_decoder:
665
+ outputs = outputs + (present_key_value,)
666
+
667
+ return outputs
668
+
669
+ def build(self, input_shape=None):
670
+ if self.built:
671
+ return
672
+ self.built = True
673
+ if getattr(self, "attention", None) is not None:
674
+ with tf.name_scope(self.attention.name):
675
+ self.attention.build(None)
676
+ if getattr(self, "intermediate", None) is not None:
677
+ with tf.name_scope(self.intermediate.name):
678
+ self.intermediate.build(None)
679
+ if getattr(self, "bert_output", None) is not None:
680
+ with tf.name_scope(self.bert_output.name):
681
+ self.bert_output.build(None)
682
+ if getattr(self, "crossattention", None) is not None:
683
+ with tf.name_scope(self.crossattention.name):
684
+ self.crossattention.build(None)
685
+
686
+
687
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Camembert
688
+ class TFCamembertEncoder(keras.layers.Layer):
689
+ def __init__(self, config: CamembertConfig, **kwargs):
690
+ super().__init__(**kwargs)
691
+ self.config = config
692
+ self.layer = [TFCamembertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
693
+
694
+ def call(
695
+ self,
696
+ hidden_states: tf.Tensor,
697
+ attention_mask: tf.Tensor,
698
+ head_mask: tf.Tensor,
699
+ encoder_hidden_states: tf.Tensor | None,
700
+ encoder_attention_mask: tf.Tensor | None,
701
+ past_key_values: Tuple[Tuple[tf.Tensor]] | None,
702
+ use_cache: Optional[bool],
703
+ output_attentions: bool,
704
+ output_hidden_states: bool,
705
+ return_dict: bool,
706
+ training: bool = False,
707
+ ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
708
+ all_hidden_states = () if output_hidden_states else None
709
+ all_attentions = () if output_attentions else None
710
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
711
+
712
+ next_decoder_cache = () if use_cache else None
713
+ for i, layer_module in enumerate(self.layer):
714
+ if output_hidden_states:
715
+ all_hidden_states = all_hidden_states + (hidden_states,)
716
+
717
+ past_key_value = past_key_values[i] if past_key_values is not None else None
718
+
719
+ layer_outputs = layer_module(
720
+ hidden_states=hidden_states,
721
+ attention_mask=attention_mask,
722
+ head_mask=head_mask[i],
723
+ encoder_hidden_states=encoder_hidden_states,
724
+ encoder_attention_mask=encoder_attention_mask,
725
+ past_key_value=past_key_value,
726
+ output_attentions=output_attentions,
727
+ training=training,
728
+ )
729
+ hidden_states = layer_outputs[0]
730
+
731
+ if use_cache:
732
+ next_decoder_cache += (layer_outputs[-1],)
733
+
734
+ if output_attentions:
735
+ all_attentions = all_attentions + (layer_outputs[1],)
736
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
737
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
738
+
739
+ # Add last layer
740
+ if output_hidden_states:
741
+ all_hidden_states = all_hidden_states + (hidden_states,)
742
+
743
+ if not return_dict:
744
+ return tuple(
745
+ v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
746
+ )
747
+
748
+ return TFBaseModelOutputWithPastAndCrossAttentions(
749
+ last_hidden_state=hidden_states,
750
+ past_key_values=next_decoder_cache,
751
+ hidden_states=all_hidden_states,
752
+ attentions=all_attentions,
753
+ cross_attentions=all_cross_attentions,
754
+ )
755
+
756
+ def build(self, input_shape=None):
757
+ if self.built:
758
+ return
759
+ self.built = True
760
+ if getattr(self, "layer", None) is not None:
761
+ for layer in self.layer:
762
+ with tf.name_scope(layer.name):
763
+ layer.build(None)
764
+
765
+
766
+ @keras_serializable
767
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaMainLayer with Roberta->Camembert
768
+ class TFCamembertMainLayer(keras.layers.Layer):
769
+ config_class = CamembertConfig
770
+
771
+ def __init__(self, config, add_pooling_layer=True, **kwargs):
772
+ super().__init__(**kwargs)
773
+
774
+ self.config = config
775
+ self.is_decoder = config.is_decoder
776
+
777
+ self.num_hidden_layers = config.num_hidden_layers
778
+ self.initializer_range = config.initializer_range
779
+ self.output_attentions = config.output_attentions
780
+ self.output_hidden_states = config.output_hidden_states
781
+ self.return_dict = config.use_return_dict
782
+ self.encoder = TFCamembertEncoder(config, name="encoder")
783
+ self.pooler = TFCamembertPooler(config, name="pooler") if add_pooling_layer else None
784
+ # The embeddings must be the last declaration in order to follow the weights order
785
+ self.embeddings = TFCamembertEmbeddings(config, name="embeddings")
786
+
787
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
788
+ def get_input_embeddings(self) -> keras.layers.Layer:
789
+ return self.embeddings
790
+
791
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
792
+ def set_input_embeddings(self, value: tf.Variable):
793
+ self.embeddings.weight = value
794
+ self.embeddings.vocab_size = shape_list(value)[0]
795
+
796
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
797
+ def _prune_heads(self, heads_to_prune):
798
+ """
799
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
800
+ class PreTrainedModel
801
+ """
802
+ raise NotImplementedError
803
+
804
+ @unpack_inputs
805
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call
806
+ def call(
807
+ self,
808
+ input_ids: TFModelInputType | None = None,
809
+ attention_mask: np.ndarray | tf.Tensor | None = None,
810
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
811
+ position_ids: np.ndarray | tf.Tensor | None = None,
812
+ head_mask: np.ndarray | tf.Tensor | None = None,
813
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
814
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
815
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
816
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
817
+ use_cache: Optional[bool] = None,
818
+ output_attentions: Optional[bool] = None,
819
+ output_hidden_states: Optional[bool] = None,
820
+ return_dict: Optional[bool] = None,
821
+ training: bool = False,
822
+ ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
823
+ if not self.config.is_decoder:
824
+ use_cache = False
825
+
826
+ if input_ids is not None and inputs_embeds is not None:
827
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
828
+ elif input_ids is not None:
829
+ input_shape = shape_list(input_ids)
830
+ elif inputs_embeds is not None:
831
+ input_shape = shape_list(inputs_embeds)[:-1]
832
+ else:
833
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
834
+
835
+ batch_size, seq_length = input_shape
836
+
837
+ if past_key_values is None:
838
+ past_key_values_length = 0
839
+ past_key_values = [None] * len(self.encoder.layer)
840
+ else:
841
+ past_key_values_length = shape_list(past_key_values[0][0])[-2]
842
+
843
+ if attention_mask is None:
844
+ attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
845
+
846
+ if token_type_ids is None:
847
+ token_type_ids = tf.fill(dims=input_shape, value=0)
848
+
849
+ embedding_output = self.embeddings(
850
+ input_ids=input_ids,
851
+ position_ids=position_ids,
852
+ token_type_ids=token_type_ids,
853
+ inputs_embeds=inputs_embeds,
854
+ past_key_values_length=past_key_values_length,
855
+ training=training,
856
+ )
857
+
858
+ # We create a 3D attention mask from a 2D tensor mask.
859
+ # Sizes are [batch_size, 1, 1, to_seq_length]
860
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
861
+ # this attention mask is more simple than the triangular masking of causal attention
862
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
863
+ attention_mask_shape = shape_list(attention_mask)
864
+
865
+ mask_seq_length = seq_length + past_key_values_length
866
+ # Copied from `modeling_tf_t5.py`
867
+ # Provided a padding mask of dimensions [batch_size, mask_seq_length]
868
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
869
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
870
+ if self.is_decoder:
871
+ seq_ids = tf.range(mask_seq_length)
872
+ causal_mask = tf.less_equal(
873
+ tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
874
+ seq_ids[None, :, None],
875
+ )
876
+ causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
877
+ extended_attention_mask = causal_mask * attention_mask[:, None, :]
878
+ attention_mask_shape = shape_list(extended_attention_mask)
879
+ extended_attention_mask = tf.reshape(
880
+ extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
881
+ )
882
+ if past_key_values[0] is not None:
883
+ # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
884
+ extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
885
+ else:
886
+ extended_attention_mask = tf.reshape(
887
+ attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
888
+ )
889
+
890
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
891
+ # masked positions, this operation will create a tensor which is 0.0 for
892
+ # positions we want to attend and -10000.0 for masked positions.
893
+ # Since we are adding it to the raw scores before the softmax, this is
894
+ # effectively the same as removing these entirely.
895
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
896
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
897
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
898
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
899
+
900
+ # Copied from `modeling_tf_t5.py` with -1e9 -> -10000
901
+ if self.is_decoder and encoder_attention_mask is not None:
902
+ # If a 2D ou 3D attention mask is provided for the cross-attention
903
+ # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
904
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
905
+ encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
906
+ num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
907
+ if num_dims_encoder_attention_mask == 3:
908
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
909
+ if num_dims_encoder_attention_mask == 2:
910
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
911
+
912
+ # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
913
+ # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
914
+ # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
915
+ # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
916
+
917
+ encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
918
+ else:
919
+ encoder_extended_attention_mask = None
920
+
921
+ # Prepare head mask if needed
922
+ # 1.0 in head_mask indicate we keep the head
923
+ # attention_probs has shape bsz x n_heads x N x N
924
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
925
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
926
+ if head_mask is not None:
927
+ raise NotImplementedError
928
+ else:
929
+ head_mask = [None] * self.config.num_hidden_layers
930
+
931
+ encoder_outputs = self.encoder(
932
+ hidden_states=embedding_output,
933
+ attention_mask=extended_attention_mask,
934
+ head_mask=head_mask,
935
+ encoder_hidden_states=encoder_hidden_states,
936
+ encoder_attention_mask=encoder_extended_attention_mask,
937
+ past_key_values=past_key_values,
938
+ use_cache=use_cache,
939
+ output_attentions=output_attentions,
940
+ output_hidden_states=output_hidden_states,
941
+ return_dict=return_dict,
942
+ training=training,
943
+ )
944
+
945
+ sequence_output = encoder_outputs[0]
946
+ pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
947
+
948
+ if not return_dict:
949
+ return (
950
+ sequence_output,
951
+ pooled_output,
952
+ ) + encoder_outputs[1:]
953
+
954
+ return TFBaseModelOutputWithPoolingAndCrossAttentions(
955
+ last_hidden_state=sequence_output,
956
+ pooler_output=pooled_output,
957
+ past_key_values=encoder_outputs.past_key_values,
958
+ hidden_states=encoder_outputs.hidden_states,
959
+ attentions=encoder_outputs.attentions,
960
+ cross_attentions=encoder_outputs.cross_attentions,
961
+ )
962
+
963
+ def build(self, input_shape=None):
964
+ if self.built:
965
+ return
966
+ self.built = True
967
+ if getattr(self, "encoder", None) is not None:
968
+ with tf.name_scope(self.encoder.name):
969
+ self.encoder.build(None)
970
+ if getattr(self, "pooler", None) is not None:
971
+ with tf.name_scope(self.pooler.name):
972
+ self.pooler.build(None)
973
+ if getattr(self, "embeddings", None) is not None:
974
+ with tf.name_scope(self.embeddings.name):
975
+ self.embeddings.build(None)
976
+
977
+
978
+ class TFCamembertPreTrainedModel(TFPreTrainedModel):
979
+ """
980
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
981
+ models.
982
+ """
983
+
984
+ config_class = CamembertConfig
985
+ base_model_prefix = "roberta"
986
+
987
+
988
+ @add_start_docstrings(
989
+ "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.",
990
+ CAMEMBERT_START_DOCSTRING,
991
+ )
992
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with Roberta->Camembert, ROBERTA->CAMEMBERT
993
+ class TFCamembertModel(TFCamembertPreTrainedModel):
994
+ def __init__(self, config, *inputs, **kwargs):
995
+ super().__init__(config, *inputs, **kwargs)
996
+ self.roberta = TFCamembertMainLayer(config, name="roberta")
997
+
998
+ @unpack_inputs
999
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1000
+ @add_code_sample_docstrings(
1001
+ checkpoint=_CHECKPOINT_FOR_DOC,
1002
+ output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
1003
+ config_class=_CONFIG_FOR_DOC,
1004
+ )
1005
+ def call(
1006
+ self,
1007
+ input_ids: TFModelInputType | None = None,
1008
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1009
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1010
+ position_ids: np.ndarray | tf.Tensor | None = None,
1011
+ head_mask: np.ndarray | tf.Tensor | None = None,
1012
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1013
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
1014
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
1015
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
1016
+ use_cache: Optional[bool] = None,
1017
+ output_attentions: Optional[bool] = None,
1018
+ output_hidden_states: Optional[bool] = None,
1019
+ return_dict: Optional[bool] = None,
1020
+ training: Optional[bool] = False,
1021
+ ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
1022
+ r"""
1023
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1024
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1025
+ the model is configured as a decoder.
1026
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1027
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1028
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1029
+
1030
+ - 1 for tokens that are **not masked**,
1031
+ - 0 for tokens that are **masked**.
1032
+
1033
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
1034
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1035
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1036
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1037
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1038
+ use_cache (`bool`, *optional*, defaults to `True`):
1039
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1040
+ `past_key_values`). Set to `False` during training, `True` during generation
1041
+ """
1042
+ outputs = self.roberta(
1043
+ input_ids=input_ids,
1044
+ attention_mask=attention_mask,
1045
+ token_type_ids=token_type_ids,
1046
+ position_ids=position_ids,
1047
+ head_mask=head_mask,
1048
+ inputs_embeds=inputs_embeds,
1049
+ encoder_hidden_states=encoder_hidden_states,
1050
+ encoder_attention_mask=encoder_attention_mask,
1051
+ past_key_values=past_key_values,
1052
+ use_cache=use_cache,
1053
+ output_attentions=output_attentions,
1054
+ output_hidden_states=output_hidden_states,
1055
+ return_dict=return_dict,
1056
+ training=training,
1057
+ )
1058
+
1059
+ return outputs
1060
+
1061
+ def build(self, input_shape=None):
1062
+ if self.built:
1063
+ return
1064
+ self.built = True
1065
+ if getattr(self, "roberta", None) is not None:
1066
+ with tf.name_scope(self.roberta.name):
1067
+ self.roberta.build(None)
1068
+
1069
+
1070
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Camembert
1071
+ class TFCamembertLMHead(keras.layers.Layer):
1072
+ """Camembert Head for masked language modeling."""
1073
+
1074
+ def __init__(self, config, input_embeddings, **kwargs):
1075
+ super().__init__(**kwargs)
1076
+
1077
+ self.config = config
1078
+ self.hidden_size = config.hidden_size
1079
+ self.dense = keras.layers.Dense(
1080
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
1081
+ )
1082
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
1083
+ self.act = get_tf_activation("gelu")
1084
+
1085
+ # The output weights are the same as the input embeddings, but there is
1086
+ # an output-only bias for each token.
1087
+ self.decoder = input_embeddings
1088
+
1089
+ def build(self, input_shape=None):
1090
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
1091
+
1092
+ if self.built:
1093
+ return
1094
+ self.built = True
1095
+ if getattr(self, "dense", None) is not None:
1096
+ with tf.name_scope(self.dense.name):
1097
+ self.dense.build([None, None, self.config.hidden_size])
1098
+ if getattr(self, "layer_norm", None) is not None:
1099
+ with tf.name_scope(self.layer_norm.name):
1100
+ self.layer_norm.build([None, None, self.config.hidden_size])
1101
+
1102
+ def get_output_embeddings(self):
1103
+ return self.decoder
1104
+
1105
+ def set_output_embeddings(self, value):
1106
+ self.decoder.weight = value
1107
+ self.decoder.vocab_size = shape_list(value)[0]
1108
+
1109
+ def get_bias(self):
1110
+ return {"bias": self.bias}
1111
+
1112
+ def set_bias(self, value):
1113
+ self.bias = value["bias"]
1114
+ self.config.vocab_size = shape_list(value["bias"])[0]
1115
+
1116
+ def call(self, hidden_states):
1117
+ hidden_states = self.dense(hidden_states)
1118
+ hidden_states = self.act(hidden_states)
1119
+ hidden_states = self.layer_norm(hidden_states)
1120
+
1121
+ # project back to size of vocabulary with bias
1122
+ seq_length = shape_list(tensor=hidden_states)[1]
1123
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
1124
+ hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
1125
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
1126
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
1127
+
1128
+ return hidden_states
1129
+
1130
+
1131
+ @add_start_docstrings(
1132
+ """CamemBERT Model with a `language modeling` head on top.""",
1133
+ CAMEMBERT_START_DOCSTRING,
1134
+ )
1135
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT
1136
+ class TFCamembertForMaskedLM(TFCamembertPreTrainedModel, TFMaskedLanguageModelingLoss):
1137
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
1138
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
1139
+
1140
+ def __init__(self, config, *inputs, **kwargs):
1141
+ super().__init__(config, *inputs, **kwargs)
1142
+
1143
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
1144
+ self.lm_head = TFCamembertLMHead(config, self.roberta.embeddings, name="lm_head")
1145
+
1146
+ def get_lm_head(self):
1147
+ return self.lm_head
1148
+
1149
+ def get_prefix_bias_name(self):
1150
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
1151
+ return self.name + "/" + self.lm_head.name
1152
+
1153
+ @unpack_inputs
1154
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1155
+ @add_code_sample_docstrings(
1156
+ checkpoint=_CHECKPOINT_FOR_DOC,
1157
+ output_type=TFMaskedLMOutput,
1158
+ config_class=_CONFIG_FOR_DOC,
1159
+ mask="<mask>",
1160
+ expected_output="' Paris'",
1161
+ expected_loss=0.1,
1162
+ )
1163
+ def call(
1164
+ self,
1165
+ input_ids: TFModelInputType | None = None,
1166
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1167
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1168
+ position_ids: np.ndarray | tf.Tensor | None = None,
1169
+ head_mask: np.ndarray | tf.Tensor | None = None,
1170
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1171
+ output_attentions: Optional[bool] = None,
1172
+ output_hidden_states: Optional[bool] = None,
1173
+ return_dict: Optional[bool] = None,
1174
+ labels: np.ndarray | tf.Tensor | None = None,
1175
+ training: Optional[bool] = False,
1176
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
1177
+ r"""
1178
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1179
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1180
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1181
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1182
+ """
1183
+ outputs = self.roberta(
1184
+ input_ids,
1185
+ attention_mask=attention_mask,
1186
+ token_type_ids=token_type_ids,
1187
+ position_ids=position_ids,
1188
+ head_mask=head_mask,
1189
+ inputs_embeds=inputs_embeds,
1190
+ output_attentions=output_attentions,
1191
+ output_hidden_states=output_hidden_states,
1192
+ return_dict=return_dict,
1193
+ training=training,
1194
+ )
1195
+
1196
+ sequence_output = outputs[0]
1197
+ prediction_scores = self.lm_head(sequence_output)
1198
+
1199
+ loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
1200
+
1201
+ if not return_dict:
1202
+ output = (prediction_scores,) + outputs[2:]
1203
+ return ((loss,) + output) if loss is not None else output
1204
+
1205
+ return TFMaskedLMOutput(
1206
+ loss=loss,
1207
+ logits=prediction_scores,
1208
+ hidden_states=outputs.hidden_states,
1209
+ attentions=outputs.attentions,
1210
+ )
1211
+
1212
+ def build(self, input_shape=None):
1213
+ if self.built:
1214
+ return
1215
+ self.built = True
1216
+ if getattr(self, "roberta", None) is not None:
1217
+ with tf.name_scope(self.roberta.name):
1218
+ self.roberta.build(None)
1219
+ if getattr(self, "lm_head", None) is not None:
1220
+ with tf.name_scope(self.lm_head.name):
1221
+ self.lm_head.build(None)
1222
+
1223
+
1224
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead
1225
+ class TFCamembertClassificationHead(keras.layers.Layer):
1226
+ """Head for sentence-level classification tasks."""
1227
+
1228
+ def __init__(self, config, **kwargs):
1229
+ super().__init__(**kwargs)
1230
+ self.dense = keras.layers.Dense(
1231
+ config.hidden_size,
1232
+ kernel_initializer=get_initializer(config.initializer_range),
1233
+ activation="tanh",
1234
+ name="dense",
1235
+ )
1236
+ classifier_dropout = (
1237
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1238
+ )
1239
+ self.dropout = keras.layers.Dropout(classifier_dropout)
1240
+ self.out_proj = keras.layers.Dense(
1241
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
1242
+ )
1243
+ self.config = config
1244
+
1245
+ def call(self, features, training=False):
1246
+ x = features[:, 0, :] # take <s> token (equiv. to [CLS])
1247
+ x = self.dropout(x, training=training)
1248
+ x = self.dense(x)
1249
+ x = self.dropout(x, training=training)
1250
+ x = self.out_proj(x)
1251
+ return x
1252
+
1253
+ def build(self, input_shape=None):
1254
+ if self.built:
1255
+ return
1256
+ self.built = True
1257
+ if getattr(self, "dense", None) is not None:
1258
+ with tf.name_scope(self.dense.name):
1259
+ self.dense.build([None, None, self.config.hidden_size])
1260
+ if getattr(self, "out_proj", None) is not None:
1261
+ with tf.name_scope(self.out_proj.name):
1262
+ self.out_proj.build([None, None, self.config.hidden_size])
1263
+
1264
+
1265
+ @add_start_docstrings(
1266
+ """
1267
+ CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
1268
+ pooled output) e.g. for GLUE tasks.
1269
+ """,
1270
+ CAMEMBERT_START_DOCSTRING,
1271
+ )
1272
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
1273
+ class TFCamembertForSequenceClassification(TFCamembertPreTrainedModel, TFSequenceClassificationLoss):
1274
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
1275
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
1276
+
1277
+ def __init__(self, config, *inputs, **kwargs):
1278
+ super().__init__(config, *inputs, **kwargs)
1279
+ self.num_labels = config.num_labels
1280
+
1281
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
1282
+ self.classifier = TFCamembertClassificationHead(config, name="classifier")
1283
+
1284
+ @unpack_inputs
1285
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1286
+ @add_code_sample_docstrings(
1287
+ checkpoint="cardiffnlp/twitter-roberta-base-emotion",
1288
+ output_type=TFSequenceClassifierOutput,
1289
+ config_class=_CONFIG_FOR_DOC,
1290
+ expected_output="'optimism'",
1291
+ expected_loss=0.08,
1292
+ )
1293
+ def call(
1294
+ self,
1295
+ input_ids: TFModelInputType | None = None,
1296
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1297
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1298
+ position_ids: np.ndarray | tf.Tensor | None = None,
1299
+ head_mask: np.ndarray | tf.Tensor | None = None,
1300
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1301
+ output_attentions: Optional[bool] = None,
1302
+ output_hidden_states: Optional[bool] = None,
1303
+ return_dict: Optional[bool] = None,
1304
+ labels: np.ndarray | tf.Tensor | None = None,
1305
+ training: Optional[bool] = False,
1306
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
1307
+ r"""
1308
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
1309
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1310
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1311
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1312
+ """
1313
+ outputs = self.roberta(
1314
+ input_ids,
1315
+ attention_mask=attention_mask,
1316
+ token_type_ids=token_type_ids,
1317
+ position_ids=position_ids,
1318
+ head_mask=head_mask,
1319
+ inputs_embeds=inputs_embeds,
1320
+ output_attentions=output_attentions,
1321
+ output_hidden_states=output_hidden_states,
1322
+ return_dict=return_dict,
1323
+ training=training,
1324
+ )
1325
+ sequence_output = outputs[0]
1326
+ logits = self.classifier(sequence_output, training=training)
1327
+
1328
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
1329
+
1330
+ if not return_dict:
1331
+ output = (logits,) + outputs[2:]
1332
+ return ((loss,) + output) if loss is not None else output
1333
+
1334
+ return TFSequenceClassifierOutput(
1335
+ loss=loss,
1336
+ logits=logits,
1337
+ hidden_states=outputs.hidden_states,
1338
+ attentions=outputs.attentions,
1339
+ )
1340
+
1341
+ def build(self, input_shape=None):
1342
+ if self.built:
1343
+ return
1344
+ self.built = True
1345
+ if getattr(self, "roberta", None) is not None:
1346
+ with tf.name_scope(self.roberta.name):
1347
+ self.roberta.build(None)
1348
+ if getattr(self, "classifier", None) is not None:
1349
+ with tf.name_scope(self.classifier.name):
1350
+ self.classifier.build(None)
1351
+
1352
+
1353
+ @add_start_docstrings(
1354
+ """
1355
+ CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
1356
+ for Named-Entity-Recognition (NER) tasks.
1357
+ """,
1358
+ CAMEMBERT_START_DOCSTRING,
1359
+ )
1360
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification with Roberta->Camembert, ROBERTA->CAMEMBERT
1361
+ class TFCamembertForTokenClassification(TFCamembertPreTrainedModel, TFTokenClassificationLoss):
1362
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
1363
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
1364
+ _keys_to_ignore_on_load_missing = [r"dropout"]
1365
+
1366
+ def __init__(self, config, *inputs, **kwargs):
1367
+ super().__init__(config, *inputs, **kwargs)
1368
+ self.num_labels = config.num_labels
1369
+
1370
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
1371
+ classifier_dropout = (
1372
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1373
+ )
1374
+ self.dropout = keras.layers.Dropout(classifier_dropout)
1375
+ self.classifier = keras.layers.Dense(
1376
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
1377
+ )
1378
+ self.config = config
1379
+
1380
+ @unpack_inputs
1381
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1382
+ @add_code_sample_docstrings(
1383
+ checkpoint="ydshieh/roberta-large-ner-english",
1384
+ output_type=TFTokenClassifierOutput,
1385
+ config_class=_CONFIG_FOR_DOC,
1386
+ expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
1387
+ expected_loss=0.01,
1388
+ )
1389
+ def call(
1390
+ self,
1391
+ input_ids: TFModelInputType | None = None,
1392
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1393
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1394
+ position_ids: np.ndarray | tf.Tensor | None = None,
1395
+ head_mask: np.ndarray | tf.Tensor | None = None,
1396
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1397
+ output_attentions: Optional[bool] = None,
1398
+ output_hidden_states: Optional[bool] = None,
1399
+ return_dict: Optional[bool] = None,
1400
+ labels: np.ndarray | tf.Tensor | None = None,
1401
+ training: Optional[bool] = False,
1402
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
1403
+ r"""
1404
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1405
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1406
+ """
1407
+ outputs = self.roberta(
1408
+ input_ids,
1409
+ attention_mask=attention_mask,
1410
+ token_type_ids=token_type_ids,
1411
+ position_ids=position_ids,
1412
+ head_mask=head_mask,
1413
+ inputs_embeds=inputs_embeds,
1414
+ output_attentions=output_attentions,
1415
+ output_hidden_states=output_hidden_states,
1416
+ return_dict=return_dict,
1417
+ training=training,
1418
+ )
1419
+ sequence_output = outputs[0]
1420
+
1421
+ sequence_output = self.dropout(sequence_output, training=training)
1422
+ logits = self.classifier(sequence_output)
1423
+
1424
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
1425
+
1426
+ if not return_dict:
1427
+ output = (logits,) + outputs[2:]
1428
+ return ((loss,) + output) if loss is not None else output
1429
+
1430
+ return TFTokenClassifierOutput(
1431
+ loss=loss,
1432
+ logits=logits,
1433
+ hidden_states=outputs.hidden_states,
1434
+ attentions=outputs.attentions,
1435
+ )
1436
+
1437
+ def build(self, input_shape=None):
1438
+ if self.built:
1439
+ return
1440
+ self.built = True
1441
+ if getattr(self, "roberta", None) is not None:
1442
+ with tf.name_scope(self.roberta.name):
1443
+ self.roberta.build(None)
1444
+ if getattr(self, "classifier", None) is not None:
1445
+ with tf.name_scope(self.classifier.name):
1446
+ self.classifier.build([None, None, self.config.hidden_size])
1447
+
1448
+
1449
+ @add_start_docstrings(
1450
+ """
1451
+ CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
1452
+ softmax) e.g. for RocStories/SWAG tasks.
1453
+ """,
1454
+ CAMEMBERT_START_DOCSTRING,
1455
+ )
1456
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with Roberta->Camembert, ROBERTA->CAMEMBERT
1457
+ class TFCamembertForMultipleChoice(TFCamembertPreTrainedModel, TFMultipleChoiceLoss):
1458
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
1459
+ _keys_to_ignore_on_load_unexpected = [r"lm_head"]
1460
+ _keys_to_ignore_on_load_missing = [r"dropout"]
1461
+
1462
+ def __init__(self, config, *inputs, **kwargs):
1463
+ super().__init__(config, *inputs, **kwargs)
1464
+
1465
+ self.roberta = TFCamembertMainLayer(config, name="roberta")
1466
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
1467
+ self.classifier = keras.layers.Dense(
1468
+ 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
1469
+ )
1470
+ self.config = config
1471
+
1472
+ @unpack_inputs
1473
+ @add_start_docstrings_to_model_forward(
1474
+ CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
1475
+ )
1476
+ @add_code_sample_docstrings(
1477
+ checkpoint=_CHECKPOINT_FOR_DOC,
1478
+ output_type=TFMultipleChoiceModelOutput,
1479
+ config_class=_CONFIG_FOR_DOC,
1480
+ )
1481
+ def call(
1482
+ self,
1483
+ input_ids: TFModelInputType | None = None,
1484
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1485
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1486
+ position_ids: np.ndarray | tf.Tensor | None = None,
1487
+ head_mask: np.ndarray | tf.Tensor | None = None,
1488
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1489
+ output_attentions: Optional[bool] = None,
1490
+ output_hidden_states: Optional[bool] = None,
1491
+ return_dict: Optional[bool] = None,
1492
+ labels: np.ndarray | tf.Tensor | None = None,
1493
+ training: Optional[bool] = False,
1494
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
1495
+ r"""
1496
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
1497
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
1498
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
1499
+ """
1500
+
1501
+ if input_ids is not None:
1502
+ num_choices = shape_list(input_ids)[1]
1503
+ seq_length = shape_list(input_ids)[2]
1504
+ else:
1505
+ num_choices = shape_list(inputs_embeds)[1]
1506
+ seq_length = shape_list(inputs_embeds)[2]
1507
+
1508
+ flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
1509
+ flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
1510
+ flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
1511
+ flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
1512
+ outputs = self.roberta(
1513
+ flat_input_ids,
1514
+ flat_attention_mask,
1515
+ flat_token_type_ids,
1516
+ flat_position_ids,
1517
+ head_mask,
1518
+ inputs_embeds,
1519
+ output_attentions,
1520
+ output_hidden_states,
1521
+ return_dict=return_dict,
1522
+ training=training,
1523
+ )
1524
+ pooled_output = outputs[1]
1525
+ pooled_output = self.dropout(pooled_output, training=training)
1526
+ logits = self.classifier(pooled_output)
1527
+ reshaped_logits = tf.reshape(logits, (-1, num_choices))
1528
+
1529
+ loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
1530
+
1531
+ if not return_dict:
1532
+ output = (reshaped_logits,) + outputs[2:]
1533
+ return ((loss,) + output) if loss is not None else output
1534
+
1535
+ return TFMultipleChoiceModelOutput(
1536
+ loss=loss,
1537
+ logits=reshaped_logits,
1538
+ hidden_states=outputs.hidden_states,
1539
+ attentions=outputs.attentions,
1540
+ )
1541
+
1542
+ def build(self, input_shape=None):
1543
+ if self.built:
1544
+ return
1545
+ self.built = True
1546
+ if getattr(self, "roberta", None) is not None:
1547
+ with tf.name_scope(self.roberta.name):
1548
+ self.roberta.build(None)
1549
+ if getattr(self, "classifier", None) is not None:
1550
+ with tf.name_scope(self.classifier.name):
1551
+ self.classifier.build([None, None, self.config.hidden_size])
1552
+
1553
+
1554
+ @add_start_docstrings(
1555
+ """
1556
+ CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
1557
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1558
+ """,
1559
+ CAMEMBERT_START_DOCSTRING,
1560
+ )
1561
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering with Roberta->Camembert, ROBERTA->CAMEMBERT
1562
+ class TFCamembertForQuestionAnswering(TFCamembertPreTrainedModel, TFQuestionAnsweringLoss):
1563
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
1564
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
1565
+
1566
+ def __init__(self, config, *inputs, **kwargs):
1567
+ super().__init__(config, *inputs, **kwargs)
1568
+ self.num_labels = config.num_labels
1569
+
1570
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
1571
+ self.qa_outputs = keras.layers.Dense(
1572
+ config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
1573
+ )
1574
+ self.config = config
1575
+
1576
+ @unpack_inputs
1577
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1578
+ @add_code_sample_docstrings(
1579
+ checkpoint="ydshieh/roberta-base-squad2",
1580
+ output_type=TFQuestionAnsweringModelOutput,
1581
+ config_class=_CONFIG_FOR_DOC,
1582
+ expected_output="' puppet'",
1583
+ expected_loss=0.86,
1584
+ )
1585
+ def call(
1586
+ self,
1587
+ input_ids: TFModelInputType | None = None,
1588
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1589
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1590
+ position_ids: np.ndarray | tf.Tensor | None = None,
1591
+ head_mask: np.ndarray | tf.Tensor | None = None,
1592
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1593
+ output_attentions: Optional[bool] = None,
1594
+ output_hidden_states: Optional[bool] = None,
1595
+ return_dict: Optional[bool] = None,
1596
+ start_positions: np.ndarray | tf.Tensor | None = None,
1597
+ end_positions: np.ndarray | tf.Tensor | None = None,
1598
+ training: Optional[bool] = False,
1599
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
1600
+ r"""
1601
+ start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
1602
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1603
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1604
+ are not taken into account for computing the loss.
1605
+ end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
1606
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1607
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1608
+ are not taken into account for computing the loss.
1609
+ """
1610
+ outputs = self.roberta(
1611
+ input_ids,
1612
+ attention_mask=attention_mask,
1613
+ token_type_ids=token_type_ids,
1614
+ position_ids=position_ids,
1615
+ head_mask=head_mask,
1616
+ inputs_embeds=inputs_embeds,
1617
+ output_attentions=output_attentions,
1618
+ output_hidden_states=output_hidden_states,
1619
+ return_dict=return_dict,
1620
+ training=training,
1621
+ )
1622
+ sequence_output = outputs[0]
1623
+
1624
+ logits = self.qa_outputs(sequence_output)
1625
+ start_logits, end_logits = tf.split(logits, 2, axis=-1)
1626
+ start_logits = tf.squeeze(start_logits, axis=-1)
1627
+ end_logits = tf.squeeze(end_logits, axis=-1)
1628
+
1629
+ loss = None
1630
+ if start_positions is not None and end_positions is not None:
1631
+ labels = {"start_position": start_positions}
1632
+ labels["end_position"] = end_positions
1633
+ loss = self.hf_compute_loss(labels, (start_logits, end_logits))
1634
+
1635
+ if not return_dict:
1636
+ output = (start_logits, end_logits) + outputs[2:]
1637
+ return ((loss,) + output) if loss is not None else output
1638
+
1639
+ return TFQuestionAnsweringModelOutput(
1640
+ loss=loss,
1641
+ start_logits=start_logits,
1642
+ end_logits=end_logits,
1643
+ hidden_states=outputs.hidden_states,
1644
+ attentions=outputs.attentions,
1645
+ )
1646
+
1647
+ def build(self, input_shape=None):
1648
+ if self.built:
1649
+ return
1650
+ self.built = True
1651
+ if getattr(self, "roberta", None) is not None:
1652
+ with tf.name_scope(self.roberta.name):
1653
+ self.roberta.build(None)
1654
+ if getattr(self, "qa_outputs", None) is not None:
1655
+ with tf.name_scope(self.qa_outputs.name):
1656
+ self.qa_outputs.build([None, None, self.config.hidden_size])
1657
+
1658
+
1659
+ @add_start_docstrings(
1660
+ """CamemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", CAMEMBERT_START_DOCSTRING
1661
+ )
1662
+ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with Roberta->Camembert, ROBERTA->CAMEMBERT
1663
+ class TFCamembertForCausalLM(TFCamembertPreTrainedModel, TFCausalLanguageModelingLoss):
1664
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
1665
+ _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
1666
+
1667
+ def __init__(self, config: CamembertConfig, *inputs, **kwargs):
1668
+ super().__init__(config, *inputs, **kwargs)
1669
+
1670
+ if not config.is_decoder:
1671
+ logger.warning("If you want to use `TFCamembertLMHeadModel` as a standalone, add `is_decoder=True.`")
1672
+
1673
+ self.roberta = TFCamembertMainLayer(config, add_pooling_layer=False, name="roberta")
1674
+ self.lm_head = TFCamembertLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head")
1675
+
1676
+ def get_lm_head(self):
1677
+ return self.lm_head
1678
+
1679
+ def get_prefix_bias_name(self):
1680
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
1681
+ return self.name + "/" + self.lm_head.name
1682
+
1683
+ # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation
1684
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
1685
+ input_shape = input_ids.shape
1686
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1687
+ if attention_mask is None:
1688
+ attention_mask = tf.ones(input_shape)
1689
+
1690
+ # cut decoder_input_ids if past is used
1691
+ if past_key_values is not None:
1692
+ input_ids = input_ids[:, -1:]
1693
+
1694
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
1695
+
1696
+ @unpack_inputs
1697
+ @add_start_docstrings_to_model_forward(CAMEMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1698
+ @add_code_sample_docstrings(
1699
+ checkpoint=_CHECKPOINT_FOR_DOC,
1700
+ output_type=TFCausalLMOutputWithCrossAttentions,
1701
+ config_class=_CONFIG_FOR_DOC,
1702
+ )
1703
+ def call(
1704
+ self,
1705
+ input_ids: TFModelInputType | None = None,
1706
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1707
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1708
+ position_ids: np.ndarray | tf.Tensor | None = None,
1709
+ head_mask: np.ndarray | tf.Tensor | None = None,
1710
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1711
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
1712
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
1713
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
1714
+ use_cache: Optional[bool] = None,
1715
+ output_attentions: Optional[bool] = None,
1716
+ output_hidden_states: Optional[bool] = None,
1717
+ return_dict: Optional[bool] = None,
1718
+ labels: np.ndarray | tf.Tensor | None = None,
1719
+ training: Optional[bool] = False,
1720
+ ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
1721
+ r"""
1722
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1723
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1724
+ the model is configured as a decoder.
1725
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1726
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1727
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1728
+
1729
+ - 1 for tokens that are **not masked**,
1730
+ - 0 for tokens that are **masked**.
1731
+
1732
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
1733
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1734
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1735
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1736
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1737
+ use_cache (`bool`, *optional*, defaults to `True`):
1738
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1739
+ `past_key_values`). Set to `False` during training, `True` during generation
1740
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
1741
+ Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
1742
+ config.vocab_size - 1]`.
1743
+ """
1744
+ outputs = self.roberta(
1745
+ input_ids=input_ids,
1746
+ attention_mask=attention_mask,
1747
+ token_type_ids=token_type_ids,
1748
+ position_ids=position_ids,
1749
+ head_mask=head_mask,
1750
+ inputs_embeds=inputs_embeds,
1751
+ encoder_hidden_states=encoder_hidden_states,
1752
+ encoder_attention_mask=encoder_attention_mask,
1753
+ past_key_values=past_key_values,
1754
+ use_cache=use_cache,
1755
+ output_attentions=output_attentions,
1756
+ output_hidden_states=output_hidden_states,
1757
+ return_dict=return_dict,
1758
+ training=training,
1759
+ )
1760
+
1761
+ sequence_output = outputs[0]
1762
+ logits = self.lm_head(hidden_states=sequence_output, training=training)
1763
+ loss = None
1764
+
1765
+ if labels is not None:
1766
+ # shift labels to the left and cut last logit token
1767
+ shifted_logits = logits[:, :-1]
1768
+ labels = labels[:, 1:]
1769
+ loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
1770
+
1771
+ if not return_dict:
1772
+ output = (logits,) + outputs[2:]
1773
+ return ((loss,) + output) if loss is not None else output
1774
+
1775
+ return TFCausalLMOutputWithCrossAttentions(
1776
+ loss=loss,
1777
+ logits=logits,
1778
+ past_key_values=outputs.past_key_values,
1779
+ hidden_states=outputs.hidden_states,
1780
+ attentions=outputs.attentions,
1781
+ cross_attentions=outputs.cross_attentions,
1782
+ )
1783
+
1784
+ def build(self, input_shape=None):
1785
+ if self.built:
1786
+ return
1787
+ self.built = True
1788
+ if getattr(self, "roberta", None) is not None:
1789
+ with tf.name_scope(self.roberta.name):
1790
+ self.roberta.build(None)
1791
+ if getattr(self, "lm_head", None) is not None:
1792
+ with tf.name_scope(self.lm_head.name):
1793
+ self.lm_head.build(None)
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License
15
+ """ Tokenization classes for Camembert model."""
16
+
17
+
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+
24
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
31
+
32
+
33
+ SPIECE_UNDERLINE = "▁"
34
+
35
+
36
+ class CamembertTokenizer(PreTrainedTokenizer):
37
+ """
38
+ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Construct a CamemBERT tokenizer. Based on
39
+ [SentencePiece](https://github.com/google/sentencepiece).
40
+
41
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
42
+ this superclass for more information regarding those methods.
43
+
44
+ Args:
45
+ vocab_file (`str`):
46
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
47
+ contains the vocabulary necessary to instantiate a tokenizer.
48
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
49
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
50
+
51
+ <Tip>
52
+
53
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
54
+ sequence. The token used is the `cls_token`.
55
+
56
+ </Tip>
57
+
58
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
59
+ The end of sequence token.
60
+
61
+ <Tip>
62
+
63
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
64
+ The token used is the `sep_token`.
65
+
66
+ </Tip>
67
+
68
+ sep_token (`str`, *optional*, defaults to `"</s>"`):
69
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
70
+ sequence classification or for a text and a question for question answering. It is also used as the last
71
+ token of a sequence built with special tokens.
72
+ cls_token (`str`, *optional*, defaults to `"<s>"`):
73
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
74
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
75
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
76
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
77
+ token instead.
78
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
79
+ The token used for padding, for example when batching sequences of different lengths.
80
+ mask_token (`str`, *optional*, defaults to `"<mask>"`):
81
+ The token used for masking values. This is the token used when training this model with masked language
82
+ modeling. This is the token which the model will try to predict.
83
+ additional_special_tokens (`List[str]`, *optional*, defaults to `['<s>NOTUSED', '</s>NOTUSED', '<unk>NOTUSED']`):
84
+ Additional special tokens used by the tokenizer.
85
+ sp_model_kwargs (`dict`, *optional*):
86
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
87
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
88
+ to set:
89
+
90
+ - `enable_sampling`: Enable subword regularization.
91
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
92
+
93
+ - `nbest_size = {0,1}`: No sampling is performed.
94
+ - `nbest_size > 1`: samples from the nbest_size results.
95
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
96
+ using forward-filtering-and-backward-sampling algorithm.
97
+
98
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
99
+ BPE-dropout.
100
+
101
+ Attributes:
102
+ sp_model (`SentencePieceProcessor`):
103
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
104
+ """
105
+
106
+ vocab_files_names = VOCAB_FILES_NAMES
107
+ model_input_names = ["input_ids", "attention_mask"]
108
+
109
+ def __init__(
110
+ self,
111
+ vocab_file,
112
+ bos_token="<s>",
113
+ eos_token="</s>",
114
+ sep_token="</s>",
115
+ cls_token="<s>",
116
+ unk_token="<unk>",
117
+ pad_token="<pad>",
118
+ mask_token="<mask>",
119
+ additional_special_tokens=["<s>NOTUSED", "</s>NOTUSED", "<unk>NOTUSED"],
120
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
121
+ **kwargs,
122
+ ) -> None:
123
+ # Mask token behave like a normal word, i.e. include the space before it
124
+ mask_token = (
125
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False, special=True)
126
+ if isinstance(mask_token, str)
127
+ else mask_token
128
+ )
129
+
130
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
131
+
132
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
133
+ self.sp_model.Load(str(vocab_file))
134
+ self.vocab_file = vocab_file
135
+
136
+ # HACK: These tokens were added by the author for an obscure reason as they were already part of the
137
+ # sentencepiece vocabulary (this is the case for <s> and </s> and <unk>).
138
+ # In this case it is recommended to properly set the tokens by hand.
139
+ self._added_tokens_decoder = {
140
+ 0: AddedToken("<s>NOTUSED", special=True),
141
+ 1: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token,
142
+ 2: AddedToken("</s>NOTUSED", special=True),
143
+ 3: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token,
144
+ 4: AddedToken("<unk>NOTUSED", special=True),
145
+ }
146
+
147
+ self.fairseq_offset = 4 # 3 tokens are newly added, but the offset starts from 4
148
+
149
+ # legacy: camemebert is a particular case were we have to make sure `"<unk>NOTUSED"` is here
150
+ if "added_tokens_decoder" in kwargs:
151
+ # this is the only class that requires this unfortunately.....
152
+ # the reason is that the fast version has a whole.
153
+ kwargs["added_tokens_decoder"].update(self._added_tokens_decoder)
154
+
155
+ super().__init__(
156
+ bos_token=bos_token,
157
+ eos_token=eos_token,
158
+ unk_token=unk_token,
159
+ sep_token=sep_token,
160
+ cls_token=cls_token,
161
+ pad_token=pad_token,
162
+ mask_token=mask_token,
163
+ additional_special_tokens=additional_special_tokens,
164
+ sp_model_kwargs=self.sp_model_kwargs,
165
+ **kwargs,
166
+ )
167
+
168
+ @property
169
+ def vocab_size(self):
170
+ # The length of the vocabulary without added tokens is len(self.sp_model) but the added tokens are added at the beginning.
171
+ return len(self.sp_model)
172
+
173
+ def get_vocab(self):
174
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.fairseq_offset)}
175
+ vocab.update(self.added_tokens_encoder)
176
+ return vocab
177
+
178
+ def _tokenize(self, text: str) -> List[str]:
179
+ return self.sp_model.encode(text, out_type=str)
180
+
181
+ def _convert_token_to_id(self, token):
182
+ """Converts a token (str) in an id using the vocab."""
183
+ # specifi to camembert, both 3 and 4 point to the unk token.
184
+ if self.sp_model.PieceToId(token) == 0:
185
+ # Convert sentence piece unk token to fairseq unk token index
186
+ return self.unk_token_id
187
+ return self.fairseq_offset + self.sp_model.PieceToId(token)
188
+
189
+ def _convert_id_to_token(self, index):
190
+ """Converts an index (integer) in a token (str) using the vocab."""
191
+ return self.sp_model.IdToPiece(index - self.fairseq_offset)
192
+
193
+ def convert_tokens_to_string(self, tokens):
194
+ """Converts a sequence of tokens (string) in a single string."""
195
+ # TODO decode outputs do not match between fast and slow
196
+ current_sub_tokens = []
197
+ out_string = ""
198
+ prev_is_special = False
199
+ for token in tokens:
200
+ # make sure that special tokens are not decoded using sentencepiece model
201
+ if token in self.all_special_tokens:
202
+ if not prev_is_special:
203
+ out_string += " "
204
+ out_string += self.sp_model.decode(current_sub_tokens) + token
205
+ prev_is_special = True
206
+ current_sub_tokens = []
207
+ else:
208
+ current_sub_tokens.append(token)
209
+ prev_is_special = False
210
+ out_string += self.sp_model.decode(current_sub_tokens)
211
+ return out_string.strip()
212
+
213
+ def __getstate__(self):
214
+ state = self.__dict__.copy()
215
+ state["sp_model"] = None
216
+ return state
217
+
218
+ def __setstate__(self, d):
219
+ self.__dict__ = d
220
+
221
+ # for backward compatibility
222
+ if not hasattr(self, "sp_model_kwargs"):
223
+ self.sp_model_kwargs = {}
224
+
225
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
226
+ self.sp_model.Load(self.vocab_file)
227
+
228
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
229
+ if not os.path.isdir(save_directory):
230
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
231
+ return
232
+ out_vocab_file = os.path.join(
233
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
234
+ )
235
+
236
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
237
+ copyfile(self.vocab_file, out_vocab_file)
238
+ elif not os.path.isfile(self.vocab_file):
239
+ with open(out_vocab_file, "wb") as fi:
240
+ content_spiece_model = self.sp_model.serialized_model_proto()
241
+ fi.write(content_spiece_model)
242
+
243
+ return (out_vocab_file,)
244
+
245
+ def build_inputs_with_special_tokens(
246
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
247
+ ) -> List[int]:
248
+ """
249
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
250
+ adding special tokens. An CamemBERT sequence has the following format:
251
+
252
+ - single sequence: `<s> X </s>`
253
+ - pair of sequences: `<s> A </s></s> B </s>`
254
+
255
+ Args:
256
+ token_ids_0 (`List[int]`):
257
+ List of IDs to which the special tokens will be added.
258
+ token_ids_1 (`List[int]`, *optional*):
259
+ Optional second list of IDs for sequence pairs.
260
+
261
+ Returns:
262
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
263
+ """
264
+
265
+ if token_ids_1 is None:
266
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
267
+ cls = [self.cls_token_id]
268
+ sep = [self.sep_token_id]
269
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
270
+
271
+ def get_special_tokens_mask(
272
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
273
+ ) -> List[int]:
274
+ """
275
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
276
+ special tokens using the tokenizer `prepare_for_model` method.
277
+
278
+ Args:
279
+ token_ids_0 (`List[int]`):
280
+ List of IDs.
281
+ token_ids_1 (`List[int]`, *optional*):
282
+ Optional second list of IDs for sequence pairs.
283
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
284
+ Whether or not the token list is already formatted with special tokens for the model.
285
+
286
+ Returns:
287
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
288
+ """
289
+ if already_has_special_tokens:
290
+ return super().get_special_tokens_mask(
291
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
292
+ )
293
+
294
+ if token_ids_1 is None:
295
+ return [1] + ([0] * len(token_ids_0)) + [1]
296
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
297
+
298
+ def create_token_type_ids_from_sequences(
299
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
300
+ ) -> List[int]:
301
+ """
302
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like
303
+ RoBERTa, does not make use of token type ids, therefore a list of zeros is returned.
304
+
305
+ Args:
306
+ token_ids_0 (`List[int]`):
307
+ List of IDs.
308
+ token_ids_1 (`List[int]`, *optional*):
309
+ Optional second list of IDs for sequence pairs.
310
+
311
+ Returns:
312
+ `List[int]`: List of zeros.
313
+ """
314
+ sep = [self.sep_token_id]
315
+ cls = [self.cls_token_id]
316
+
317
+ if token_ids_1 is None:
318
+ return len(cls + token_ids_0 + sep) * [0]
319
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
llmeval-env/lib/python3.10/site-packages/transformers/models/camembert/tokenization_camembert_fast.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License
15
+ """ Fast tokenization classes for Camembert model."""
16
+
17
+
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import List, Optional, Tuple
21
+
22
+ from ...tokenization_utils import AddedToken
23
+ from ...tokenization_utils_fast import PreTrainedTokenizerFast
24
+ from ...utils import is_sentencepiece_available, logging
25
+
26
+
27
+ if is_sentencepiece_available():
28
+ from .tokenization_camembert import CamembertTokenizer
29
+ else:
30
+ CamembertTokenizer = None
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+ VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
36
+
37
+
38
+ SPIECE_UNDERLINE = "▁"
39
+
40
+
41
+ class CamembertTokenizerFast(PreTrainedTokenizerFast):
42
+ """
43
+ Construct a "fast" CamemBERT tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
44
+ [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
45
+ [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
46
+
47
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
48
+ refer to this superclass for more information regarding those methods.
49
+
50
+ Args:
51
+ vocab_file (`str`):
52
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
53
+ contains the vocabulary necessary to instantiate a tokenizer.
54
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
55
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
56
+
57
+ <Tip>
58
+
59
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
60
+ sequence. The token used is the `cls_token`.
61
+
62
+ </Tip>
63
+
64
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
65
+ The end of sequence token.
66
+
67
+ <Tip>
68
+
69
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
70
+ The token used is the `sep_token`.
71
+
72
+ </Tip>
73
+
74
+ sep_token (`str`, *optional*, defaults to `"</s>"`):
75
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
76
+ sequence classification or for a text and a question for question answering. It is also used as the last
77
+ token of a sequence built with special tokens.
78
+ cls_token (`str`, *optional*, defaults to `"<s>"`):
79
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
80
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
81
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
82
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
83
+ token instead.
84
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
85
+ The token used for padding, for example when batching sequences of different lengths.
86
+ mask_token (`str`, *optional*, defaults to `"<mask>"`):
87
+ The token used for masking values. This is the token used when training this model with masked language
88
+ modeling. This is the token which the model will try to predict.
89
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
90
+ Additional special tokens used by the tokenizer.
91
+ """
92
+
93
+ vocab_files_names = VOCAB_FILES_NAMES
94
+ model_input_names = ["input_ids", "attention_mask"]
95
+ slow_tokenizer_class = CamembertTokenizer
96
+
97
+ def __init__(
98
+ self,
99
+ vocab_file=None,
100
+ tokenizer_file=None,
101
+ bos_token="<s>",
102
+ eos_token="</s>",
103
+ sep_token="</s>",
104
+ cls_token="<s>",
105
+ unk_token="<unk>",
106
+ pad_token="<pad>",
107
+ mask_token="<mask>",
108
+ additional_special_tokens=["<s>NOTUSED", "</s>NOTUSED", "<unk>NOTUSED"],
109
+ **kwargs,
110
+ ):
111
+ # Mask token behave like a normal word, i.e. include the space before it. Will have normalized = False
112
+ mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
113
+ super().__init__(
114
+ vocab_file,
115
+ tokenizer_file=tokenizer_file,
116
+ bos_token=bos_token,
117
+ eos_token=eos_token,
118
+ sep_token=sep_token,
119
+ cls_token=cls_token,
120
+ unk_token=unk_token,
121
+ pad_token=pad_token,
122
+ mask_token=mask_token,
123
+ additional_special_tokens=additional_special_tokens,
124
+ **kwargs,
125
+ )
126
+
127
+ self.vocab_file = vocab_file
128
+
129
+ @property
130
+ def can_save_slow_tokenizer(self) -> bool:
131
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
132
+
133
+ def build_inputs_with_special_tokens(
134
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
135
+ ) -> List[int]:
136
+ """
137
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
138
+ adding special tokens. An CamemBERT sequence has the following format:
139
+
140
+ - single sequence: `<s> X </s>`
141
+ - pair of sequences: `<s> A </s></s> B </s>`
142
+
143
+ Args:
144
+ token_ids_0 (`List[int]`):
145
+ List of IDs to which the special tokens will be added.
146
+ token_ids_1 (`List[int]`, *optional*):
147
+ Optional second list of IDs for sequence pairs.
148
+
149
+ Returns:
150
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
151
+ """
152
+
153
+ if token_ids_1 is None:
154
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
155
+ cls = [self.cls_token_id]
156
+ sep = [self.sep_token_id]
157
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
158
+
159
+ def create_token_type_ids_from_sequences(
160
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
161
+ ) -> List[int]:
162
+ """
163
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like
164
+ RoBERTa, does not make use of token type ids, therefore a list of zeros is returned.
165
+
166
+ Args:
167
+ token_ids_0 (`List[int]`):
168
+ List of IDs.
169
+ token_ids_1 (`List[int]`, *optional*):
170
+ Optional second list of IDs for sequence pairs.
171
+
172
+ Returns:
173
+ `List[int]`: List of zeros.
174
+ """
175
+ sep = [self.sep_token_id]
176
+ cls = [self.cls_token_id]
177
+
178
+ if token_ids_1 is None:
179
+ return len(cls + token_ids_0 + sep) * [0]
180
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
181
+
182
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
183
+ if not self.can_save_slow_tokenizer:
184
+ raise ValueError(
185
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
186
+ "tokenizer."
187
+ )
188
+
189
+ if not os.path.isdir(save_directory):
190
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
191
+ return
192
+ out_vocab_file = os.path.join(
193
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
194
+ )
195
+
196
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
197
+ copyfile(self.vocab_file, out_vocab_file)
198
+
199
+ return (out_vocab_file,)
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__init__.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_flax_available,
20
+ is_tf_available,
21
+ is_tokenizers_available,
22
+ is_torch_available,
23
+ is_vision_available,
24
+ )
25
+
26
+
27
+ _import_structure = {
28
+ "configuration_clip": [
29
+ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
30
+ "CLIPConfig",
31
+ "CLIPOnnxConfig",
32
+ "CLIPTextConfig",
33
+ "CLIPVisionConfig",
34
+ ],
35
+ "processing_clip": ["CLIPProcessor"],
36
+ "tokenization_clip": ["CLIPTokenizer"],
37
+ }
38
+
39
+ try:
40
+ if not is_tokenizers_available():
41
+ raise OptionalDependencyNotAvailable()
42
+ except OptionalDependencyNotAvailable:
43
+ pass
44
+ else:
45
+ _import_structure["tokenization_clip_fast"] = ["CLIPTokenizerFast"]
46
+
47
+ try:
48
+ if not is_vision_available():
49
+ raise OptionalDependencyNotAvailable()
50
+ except OptionalDependencyNotAvailable:
51
+ pass
52
+ else:
53
+ _import_structure["feature_extraction_clip"] = ["CLIPFeatureExtractor"]
54
+ _import_structure["image_processing_clip"] = ["CLIPImageProcessor"]
55
+
56
+ try:
57
+ if not is_torch_available():
58
+ raise OptionalDependencyNotAvailable()
59
+ except OptionalDependencyNotAvailable:
60
+ pass
61
+ else:
62
+ _import_structure["modeling_clip"] = [
63
+ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
64
+ "CLIPModel",
65
+ "CLIPPreTrainedModel",
66
+ "CLIPTextModel",
67
+ "CLIPTextModelWithProjection",
68
+ "CLIPVisionModel",
69
+ "CLIPVisionModelWithProjection",
70
+ "CLIPForImageClassification",
71
+ ]
72
+
73
+ try:
74
+ if not is_tf_available():
75
+ raise OptionalDependencyNotAvailable()
76
+ except OptionalDependencyNotAvailable:
77
+ pass
78
+ else:
79
+ _import_structure["modeling_tf_clip"] = [
80
+ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
81
+ "TFCLIPModel",
82
+ "TFCLIPPreTrainedModel",
83
+ "TFCLIPTextModel",
84
+ "TFCLIPVisionModel",
85
+ ]
86
+
87
+ try:
88
+ if not is_flax_available():
89
+ raise OptionalDependencyNotAvailable()
90
+ except OptionalDependencyNotAvailable:
91
+ pass
92
+ else:
93
+ _import_structure["modeling_flax_clip"] = [
94
+ "FlaxCLIPModel",
95
+ "FlaxCLIPPreTrainedModel",
96
+ "FlaxCLIPTextModel",
97
+ "FlaxCLIPTextPreTrainedModel",
98
+ "FlaxCLIPTextModelWithProjection",
99
+ "FlaxCLIPVisionModel",
100
+ "FlaxCLIPVisionPreTrainedModel",
101
+ ]
102
+
103
+
104
+ if TYPE_CHECKING:
105
+ from .configuration_clip import (
106
+ CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
107
+ CLIPConfig,
108
+ CLIPOnnxConfig,
109
+ CLIPTextConfig,
110
+ CLIPVisionConfig,
111
+ )
112
+ from .processing_clip import CLIPProcessor
113
+ from .tokenization_clip import CLIPTokenizer
114
+
115
+ try:
116
+ if not is_tokenizers_available():
117
+ raise OptionalDependencyNotAvailable()
118
+ except OptionalDependencyNotAvailable:
119
+ pass
120
+ else:
121
+ from .tokenization_clip_fast import CLIPTokenizerFast
122
+
123
+ try:
124
+ if not is_vision_available():
125
+ raise OptionalDependencyNotAvailable()
126
+ except OptionalDependencyNotAvailable:
127
+ pass
128
+ else:
129
+ from .feature_extraction_clip import CLIPFeatureExtractor
130
+ from .image_processing_clip import CLIPImageProcessor
131
+
132
+ try:
133
+ if not is_torch_available():
134
+ raise OptionalDependencyNotAvailable()
135
+ except OptionalDependencyNotAvailable:
136
+ pass
137
+ else:
138
+ from .modeling_clip import (
139
+ CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
140
+ CLIPForImageClassification,
141
+ CLIPModel,
142
+ CLIPPreTrainedModel,
143
+ CLIPTextModel,
144
+ CLIPTextModelWithProjection,
145
+ CLIPVisionModel,
146
+ CLIPVisionModelWithProjection,
147
+ )
148
+
149
+ try:
150
+ if not is_tf_available():
151
+ raise OptionalDependencyNotAvailable()
152
+ except OptionalDependencyNotAvailable:
153
+ pass
154
+ else:
155
+ from .modeling_tf_clip import (
156
+ TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
157
+ TFCLIPModel,
158
+ TFCLIPPreTrainedModel,
159
+ TFCLIPTextModel,
160
+ TFCLIPVisionModel,
161
+ )
162
+
163
+ try:
164
+ if not is_flax_available():
165
+ raise OptionalDependencyNotAvailable()
166
+ except OptionalDependencyNotAvailable:
167
+ pass
168
+ else:
169
+ from .modeling_flax_clip import (
170
+ FlaxCLIPModel,
171
+ FlaxCLIPPreTrainedModel,
172
+ FlaxCLIPTextModel,
173
+ FlaxCLIPTextModelWithProjection,
174
+ FlaxCLIPTextPreTrainedModel,
175
+ FlaxCLIPVisionModel,
176
+ FlaxCLIPVisionPreTrainedModel,
177
+ )
178
+
179
+
180
+ else:
181
+ import sys
182
+
183
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.61 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/configuration_clip.cpython-310.pyc ADDED
Binary file (16.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/convert_clip_original_pytorch_to_hf.cpython-310.pyc ADDED
Binary file (3.99 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/feature_extraction_clip.cpython-310.pyc ADDED
Binary file (1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/image_processing_clip.cpython-310.pyc ADDED
Binary file (13.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_clip.cpython-310.pyc ADDED
Binary file (44 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_flax_clip.cpython-310.pyc ADDED
Binary file (38.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/modeling_tf_clip.cpython-310.pyc ADDED
Binary file (44.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/processing_clip.cpython-310.pyc ADDED
Binary file (6.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip.cpython-310.pyc ADDED
Binary file (17.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/__pycache__/tokenization_clip_fast.cpython-310.pyc ADDED
Binary file (5.91 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/configuration_clip.py ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ CLIP model configuration"""
16
+
17
+ import os
18
+ from collections import OrderedDict
19
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
20
+
21
+
22
+ if TYPE_CHECKING:
23
+ from ...processing_utils import ProcessorMixin
24
+ from ...utils import TensorType
25
+
26
+ from ...configuration_utils import PretrainedConfig
27
+ from ...onnx import OnnxConfig
28
+ from ...utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ from ..deprecated._archive_maps import CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
35
+
36
+
37
+ class CLIPTextConfig(PretrainedConfig):
38
+ r"""
39
+ This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
40
+ text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
41
+ with the defaults will yield a similar configuration to that of the text encoder of the CLIP
42
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
43
+
44
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
45
+ documentation from [`PretrainedConfig`] for more information.
46
+
47
+ Args:
48
+ vocab_size (`int`, *optional*, defaults to 49408):
49
+ Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
50
+ the `inputs_ids` passed when calling [`CLIPModel`].
51
+ hidden_size (`int`, *optional*, defaults to 512):
52
+ Dimensionality of the encoder layers and the pooler layer.
53
+ intermediate_size (`int`, *optional*, defaults to 2048):
54
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
55
+ projection_dim (`int`, *optional*, defaults to 512):
56
+ Dimentionality of text and vision projection layers.
57
+ num_hidden_layers (`int`, *optional*, defaults to 12):
58
+ Number of hidden layers in the Transformer encoder.
59
+ num_attention_heads (`int`, *optional*, defaults to 8):
60
+ Number of attention heads for each attention layer in the Transformer encoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 77):
62
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
63
+ just in case (e.g., 512 or 1024 or 2048).
64
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
65
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
66
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
67
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
68
+ The epsilon used by the layer normalization layers.
69
+ attention_dropout (`float`, *optional*, defaults to 0.0):
70
+ The dropout ratio for the attention probabilities.
71
+ initializer_range (`float`, *optional*, defaults to 0.02):
72
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
73
+ initializer_factor (`float`, *optional*, defaults to 1.0):
74
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
75
+ testing).
76
+ pad_token_id (`int`, *optional*, defaults to 1):
77
+ Padding token id.
78
+ bos_token_id (`int`, *optional*, defaults to 49406):
79
+ Beginning of stream token id.
80
+ eos_token_id (`int`, *optional*, defaults to 49407):
81
+ End of stream token id.
82
+
83
+ Example:
84
+
85
+ ```python
86
+ >>> from transformers import CLIPTextConfig, CLIPTextModel
87
+
88
+ >>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
89
+ >>> configuration = CLIPTextConfig()
90
+
91
+ >>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
92
+ >>> model = CLIPTextModel(configuration)
93
+
94
+ >>> # Accessing the model configuration
95
+ >>> configuration = model.config
96
+ ```"""
97
+
98
+ model_type = "clip_text_model"
99
+
100
+ def __init__(
101
+ self,
102
+ vocab_size=49408,
103
+ hidden_size=512,
104
+ intermediate_size=2048,
105
+ projection_dim=512,
106
+ num_hidden_layers=12,
107
+ num_attention_heads=8,
108
+ max_position_embeddings=77,
109
+ hidden_act="quick_gelu",
110
+ layer_norm_eps=1e-5,
111
+ attention_dropout=0.0,
112
+ initializer_range=0.02,
113
+ initializer_factor=1.0,
114
+ # This differs from `CLIPTokenizer`'s default and from openai/clip
115
+ # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
116
+ pad_token_id=1,
117
+ bos_token_id=49406,
118
+ eos_token_id=49407,
119
+ **kwargs,
120
+ ):
121
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
122
+
123
+ self.vocab_size = vocab_size
124
+ self.hidden_size = hidden_size
125
+ self.intermediate_size = intermediate_size
126
+ self.projection_dim = projection_dim
127
+ self.num_hidden_layers = num_hidden_layers
128
+ self.num_attention_heads = num_attention_heads
129
+ self.max_position_embeddings = max_position_embeddings
130
+ self.layer_norm_eps = layer_norm_eps
131
+ self.hidden_act = hidden_act
132
+ self.initializer_range = initializer_range
133
+ self.initializer_factor = initializer_factor
134
+ self.attention_dropout = attention_dropout
135
+
136
+ @classmethod
137
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
138
+ cls._set_token_in_kwargs(kwargs)
139
+
140
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
141
+
142
+ # get the text config dict if we are loading from CLIPConfig
143
+ if config_dict.get("model_type") == "clip":
144
+ config_dict = config_dict["text_config"]
145
+
146
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
147
+ logger.warning(
148
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
149
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
150
+ )
151
+
152
+ return cls.from_dict(config_dict, **kwargs)
153
+
154
+
155
+ class CLIPVisionConfig(PretrainedConfig):
156
+ r"""
157
+ This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
158
+ CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
159
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
160
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
161
+
162
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
163
+ documentation from [`PretrainedConfig`] for more information.
164
+
165
+ Args:
166
+ hidden_size (`int`, *optional*, defaults to 768):
167
+ Dimensionality of the encoder layers and the pooler layer.
168
+ intermediate_size (`int`, *optional*, defaults to 3072):
169
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
170
+ projection_dim (`int`, *optional*, defaults to 512):
171
+ Dimentionality of text and vision projection layers.
172
+ num_hidden_layers (`int`, *optional*, defaults to 12):
173
+ Number of hidden layers in the Transformer encoder.
174
+ num_attention_heads (`int`, *optional*, defaults to 12):
175
+ Number of attention heads for each attention layer in the Transformer encoder.
176
+ num_channels (`int`, *optional*, defaults to 3):
177
+ The number of input channels.
178
+ image_size (`int`, *optional*, defaults to 224):
179
+ The size (resolution) of each image.
180
+ patch_size (`int`, *optional*, defaults to 32):
181
+ The size (resolution) of each patch.
182
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
183
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
184
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
185
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
186
+ The epsilon used by the layer normalization layers.
187
+ attention_dropout (`float`, *optional*, defaults to 0.0):
188
+ The dropout ratio for the attention probabilities.
189
+ initializer_range (`float`, *optional*, defaults to 0.02):
190
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
191
+ initializer_factor (`float`, *optional*, defaults to 1.0):
192
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
193
+ testing).
194
+
195
+ Example:
196
+
197
+ ```python
198
+ >>> from transformers import CLIPVisionConfig, CLIPVisionModel
199
+
200
+ >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
201
+ >>> configuration = CLIPVisionConfig()
202
+
203
+ >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
204
+ >>> model = CLIPVisionModel(configuration)
205
+
206
+ >>> # Accessing the model configuration
207
+ >>> configuration = model.config
208
+ ```"""
209
+
210
+ model_type = "clip_vision_model"
211
+
212
+ def __init__(
213
+ self,
214
+ hidden_size=768,
215
+ intermediate_size=3072,
216
+ projection_dim=512,
217
+ num_hidden_layers=12,
218
+ num_attention_heads=12,
219
+ num_channels=3,
220
+ image_size=224,
221
+ patch_size=32,
222
+ hidden_act="quick_gelu",
223
+ layer_norm_eps=1e-5,
224
+ attention_dropout=0.0,
225
+ initializer_range=0.02,
226
+ initializer_factor=1.0,
227
+ **kwargs,
228
+ ):
229
+ super().__init__(**kwargs)
230
+
231
+ self.hidden_size = hidden_size
232
+ self.intermediate_size = intermediate_size
233
+ self.projection_dim = projection_dim
234
+ self.num_hidden_layers = num_hidden_layers
235
+ self.num_attention_heads = num_attention_heads
236
+ self.num_channels = num_channels
237
+ self.patch_size = patch_size
238
+ self.image_size = image_size
239
+ self.initializer_range = initializer_range
240
+ self.initializer_factor = initializer_factor
241
+ self.attention_dropout = attention_dropout
242
+ self.layer_norm_eps = layer_norm_eps
243
+ self.hidden_act = hidden_act
244
+
245
+ @classmethod
246
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
247
+ cls._set_token_in_kwargs(kwargs)
248
+
249
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
250
+
251
+ # get the vision config dict if we are loading from CLIPConfig
252
+ if config_dict.get("model_type") == "clip":
253
+ config_dict = config_dict["vision_config"]
254
+
255
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
256
+ logger.warning(
257
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
258
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
259
+ )
260
+
261
+ return cls.from_dict(config_dict, **kwargs)
262
+
263
+
264
+ class CLIPConfig(PretrainedConfig):
265
+ r"""
266
+ [`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
267
+ a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
268
+ a configuration with the defaults will yield a similar configuration to that of the CLIP
269
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
270
+
271
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
272
+ documentation from [`PretrainedConfig`] for more information.
273
+
274
+ Args:
275
+ text_config (`dict`, *optional*):
276
+ Dictionary of configuration options used to initialize [`CLIPTextConfig`].
277
+ vision_config (`dict`, *optional*):
278
+ Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
279
+ projection_dim (`int`, *optional*, defaults to 512):
280
+ Dimentionality of text and vision projection layers.
281
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
282
+ The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
283
+ kwargs (*optional*):
284
+ Dictionary of keyword arguments.
285
+
286
+ Example:
287
+
288
+ ```python
289
+ >>> from transformers import CLIPConfig, CLIPModel
290
+
291
+ >>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
292
+ >>> configuration = CLIPConfig()
293
+
294
+ >>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
295
+ >>> model = CLIPModel(configuration)
296
+
297
+ >>> # Accessing the model configuration
298
+ >>> configuration = model.config
299
+
300
+ >>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
301
+ >>> from transformers import CLIPTextConfig, CLIPVisionConfig
302
+
303
+ >>> # Initializing a CLIPText and CLIPVision configuration
304
+ >>> config_text = CLIPTextConfig()
305
+ >>> config_vision = CLIPVisionConfig()
306
+
307
+ >>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
308
+ ```"""
309
+
310
+ model_type = "clip"
311
+
312
+ def __init__(
313
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
314
+ ):
315
+ # If `_config_dict` exist, we use them for the backward compatibility.
316
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
317
+ # of confusion!).
318
+ text_config_dict = kwargs.pop("text_config_dict", None)
319
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
320
+
321
+ super().__init__(**kwargs)
322
+
323
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
324
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
325
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
326
+ if text_config_dict is not None:
327
+ if text_config is None:
328
+ text_config = {}
329
+
330
+ # This is the complete result when using `text_config_dict`.
331
+ _text_config_dict = CLIPTextConfig(**text_config_dict).to_dict()
332
+
333
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
334
+ for key, value in _text_config_dict.items():
335
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
336
+ # If specified in `text_config_dict`
337
+ if key in text_config_dict:
338
+ message = (
339
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
340
+ f'The value `text_config_dict["{key}"]` will be used instead.'
341
+ )
342
+ # If inferred from default argument values (just to be super careful)
343
+ else:
344
+ message = (
345
+ f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
346
+ f'value `text_config["{key}"]` will be overriden.'
347
+ )
348
+ logger.info(message)
349
+
350
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
351
+ text_config.update(_text_config_dict)
352
+
353
+ if vision_config_dict is not None:
354
+ if vision_config is None:
355
+ vision_config = {}
356
+
357
+ # This is the complete result when using `vision_config_dict`.
358
+ _vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict()
359
+ # convert keys to string instead of integer
360
+ if "id2label" in _vision_config_dict:
361
+ _vision_config_dict["id2label"] = {
362
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
363
+ }
364
+
365
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
366
+ for key, value in _vision_config_dict.items():
367
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
368
+ # If specified in `vision_config_dict`
369
+ if key in vision_config_dict:
370
+ message = (
371
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
372
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
373
+ )
374
+ # If inferred from default argument values (just to be super careful)
375
+ else:
376
+ message = (
377
+ f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
378
+ f'The value `vision_config["{key}"]` will be overriden.'
379
+ )
380
+ logger.info(message)
381
+
382
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
383
+ vision_config.update(_vision_config_dict)
384
+
385
+ if text_config is None:
386
+ text_config = {}
387
+ logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
388
+
389
+ if vision_config is None:
390
+ vision_config = {}
391
+ logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
392
+
393
+ self.text_config = CLIPTextConfig(**text_config)
394
+ self.vision_config = CLIPVisionConfig(**vision_config)
395
+
396
+ self.projection_dim = projection_dim
397
+ self.logit_scale_init_value = logit_scale_init_value
398
+ self.initializer_factor = 1.0
399
+
400
+ @classmethod
401
+ def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
402
+ r"""
403
+ Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
404
+ configuration.
405
+
406
+ Returns:
407
+ [`CLIPConfig`]: An instance of a configuration object
408
+ """
409
+
410
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
411
+
412
+
413
+ class CLIPOnnxConfig(OnnxConfig):
414
+ @property
415
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
416
+ return OrderedDict(
417
+ [
418
+ ("input_ids", {0: "batch", 1: "sequence"}),
419
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
420
+ ("attention_mask", {0: "batch", 1: "sequence"}),
421
+ ]
422
+ )
423
+
424
+ @property
425
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
426
+ return OrderedDict(
427
+ [
428
+ ("logits_per_image", {0: "batch"}),
429
+ ("logits_per_text", {0: "batch"}),
430
+ ("text_embeds", {0: "batch"}),
431
+ ("image_embeds", {0: "batch"}),
432
+ ]
433
+ )
434
+
435
+ @property
436
+ def atol_for_validation(self) -> float:
437
+ return 1e-4
438
+
439
+ def generate_dummy_inputs(
440
+ self,
441
+ processor: "ProcessorMixin",
442
+ batch_size: int = -1,
443
+ seq_length: int = -1,
444
+ framework: Optional["TensorType"] = None,
445
+ ) -> Mapping[str, Any]:
446
+ text_input_dict = super().generate_dummy_inputs(
447
+ processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
448
+ )
449
+ image_input_dict = super().generate_dummy_inputs(
450
+ processor.image_processor, batch_size=batch_size, framework=framework
451
+ )
452
+ return {**text_input_dict, **image_input_dict}
453
+
454
+ @property
455
+ def default_onnx_opset(self) -> int:
456
+ return 14
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/convert_clip_original_pytorch_to_hf.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import argparse
17
+
18
+ import torch
19
+ from clip import load
20
+
21
+ from transformers import CLIPConfig, CLIPModel
22
+
23
+
24
+ def copy_attn_layer(hf_attn_layer, pt_attn_layer):
25
+ q_proj, k_proj, v_proj = pt_attn_layer.in_proj_weight.chunk(3, dim=0)
26
+ q_proj_bias, k_proj_bias, v_proj_bias = pt_attn_layer.in_proj_bias.chunk(3, dim=0)
27
+
28
+ out_proj_weights = pt_attn_layer.out_proj.weight
29
+ out_proj_bias = pt_attn_layer.out_proj.bias
30
+
31
+ hf_attn_layer.q_proj.weight.data = q_proj
32
+ hf_attn_layer.q_proj.bias.data = q_proj_bias
33
+
34
+ hf_attn_layer.k_proj.weight.data = k_proj
35
+ hf_attn_layer.k_proj.bias.data = k_proj_bias
36
+
37
+ hf_attn_layer.v_proj.weight.data = v_proj
38
+ hf_attn_layer.v_proj.bias.data = v_proj_bias
39
+
40
+ hf_attn_layer.out_proj.weight = out_proj_weights
41
+ hf_attn_layer.out_proj.bias = out_proj_bias
42
+
43
+
44
+ def copy_mlp(hf_mlp, pt_mlp):
45
+ copy_linear(hf_mlp.fc1, pt_mlp.c_fc)
46
+ copy_linear(hf_mlp.fc2, pt_mlp.c_proj)
47
+
48
+
49
+ def copy_linear(hf_linear, pt_linear):
50
+ hf_linear.weight = pt_linear.weight
51
+ hf_linear.bias = pt_linear.bias
52
+
53
+
54
+ def copy_layer(hf_layer, pt_layer):
55
+ # copy layer norms
56
+ copy_linear(hf_layer.layer_norm1, pt_layer.ln_1)
57
+ copy_linear(hf_layer.layer_norm2, pt_layer.ln_2)
58
+
59
+ # copy MLP
60
+ copy_mlp(hf_layer.mlp, pt_layer.mlp)
61
+
62
+ # copy attn
63
+ copy_attn_layer(hf_layer.self_attn, pt_layer.attn)
64
+
65
+
66
+ def copy_layers(hf_layers, pt_layers):
67
+ for hf_layer, pt_layer in zip(hf_layers, pt_layers):
68
+ copy_layer(hf_layer, pt_layer)
69
+
70
+
71
+ def copy_encoder(hf_encoder, pt_model):
72
+ # copy embeds
73
+ hf_encoder.embeddings.token_embedding.weight = pt_model.token_embedding.weight
74
+ hf_encoder.embeddings.position_embedding.weight.data = pt_model.positional_embedding
75
+
76
+ # copy layer norm
77
+ copy_linear(hf_encoder.final_layer_norm, pt_model.ln_final)
78
+
79
+ # copy hidden layers
80
+ copy_layers(hf_encoder.encoder.layers, pt_model.transformer.resblocks)
81
+
82
+
83
+ def copy_text_model_and_projection(hf_model, pt_model):
84
+ # copy projection
85
+ hf_model.text_projection.weight.data = pt_model.text_projection.data.T
86
+
87
+ # copy text encoder
88
+ copy_encoder(hf_model.text_model, pt_model)
89
+
90
+
91
+ def copy_vison_model_and_projection(hf_model, pt_model):
92
+ # copy projection
93
+ hf_model.visual_projection.weight.data = pt_model.visual.proj.data.T
94
+
95
+ # copy layer norms
96
+ copy_linear(hf_model.vision_model.pre_layrnorm, pt_model.visual.ln_pre)
97
+ copy_linear(hf_model.vision_model.post_layernorm, pt_model.visual.ln_post)
98
+
99
+ # copy embeds
100
+ hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_model.visual.conv1.weight.data
101
+ hf_model.vision_model.embeddings.class_embedding = pt_model.visual.class_embedding
102
+ hf_model.vision_model.embeddings.position_embedding.weight.data = pt_model.visual.positional_embedding.data
103
+
104
+ # copy encoder
105
+ copy_layers(hf_model.vision_model.encoder.layers, pt_model.visual.transformer.resblocks)
106
+
107
+
108
+ @torch.no_grad()
109
+ def convert_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
110
+ """
111
+ Copy/paste/tweak model's weights to transformers design.
112
+ """
113
+ if config_path is not None:
114
+ config = CLIPConfig.from_pretrained(config_path)
115
+ else:
116
+ config = CLIPConfig(projection_dim=512, text_config={}, vision_config={})
117
+
118
+ hf_model = CLIPModel(config).eval()
119
+
120
+ pt_model, _ = load(checkpoint_path, device="cpu", jit=False)
121
+ pt_model = pt_model.eval()
122
+
123
+ copy_text_model_and_projection(hf_model, pt_model)
124
+ copy_vison_model_and_projection(hf_model, pt_model)
125
+ hf_model.logit_scale = pt_model.logit_scale
126
+
127
+ input_ids = torch.arange(0, 77).unsqueeze(0)
128
+ pixel_values = torch.randn(1, 3, 224, 224)
129
+
130
+ hf_outputs = hf_model(input_ids=input_ids, pixel_values=pixel_values, return_dict=True)
131
+ hf_logits_per_image = hf_outputs.logits_per_image
132
+ hf_logits_per_text = hf_outputs.logits_per_text
133
+ pt_logits_per_image, pt_logits_per_text = pt_model(pixel_values, input_ids)
134
+
135
+ assert torch.allclose(hf_logits_per_image, pt_logits_per_image, atol=1e-3)
136
+ assert torch.allclose(hf_logits_per_text, pt_logits_per_text, atol=1e-3)
137
+
138
+ hf_model.save_pretrained(pytorch_dump_folder_path)
139
+
140
+
141
+ if __name__ == "__main__":
142
+ parser = argparse.ArgumentParser()
143
+ parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
144
+ parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
145
+ parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
146
+ args = parser.parse_args()
147
+
148
+ convert_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/feature_extraction_clip.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Feature extractor class for CLIP."""
16
+
17
+ import warnings
18
+
19
+ from ...utils import logging
20
+ from .image_processing_clip import CLIPImageProcessor
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class CLIPFeatureExtractor(CLIPImageProcessor):
27
+ def __init__(self, *args, **kwargs) -> None:
28
+ warnings.warn(
29
+ "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
30
+ " use CLIPImageProcessor instead.",
31
+ FutureWarning,
32
+ )
33
+ super().__init__(*args, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/image_processing_clip.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for CLIP."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import (
23
+ convert_to_rgb,
24
+ get_resize_output_image_size,
25
+ resize,
26
+ to_channel_dimension_format,
27
+ )
28
+ from ...image_utils import (
29
+ OPENAI_CLIP_MEAN,
30
+ OPENAI_CLIP_STD,
31
+ ChannelDimension,
32
+ ImageInput,
33
+ PILImageResampling,
34
+ infer_channel_dimension_format,
35
+ is_scaled_image,
36
+ make_list_of_images,
37
+ to_numpy_array,
38
+ valid_images,
39
+ validate_kwargs,
40
+ validate_preprocess_arguments,
41
+ )
42
+ from ...utils import TensorType, is_vision_available, logging
43
+
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+
48
+ if is_vision_available():
49
+ import PIL
50
+
51
+
52
+ class CLIPImageProcessor(BaseImageProcessor):
53
+ r"""
54
+ Constructs a CLIP image processor.
55
+
56
+ Args:
57
+ do_resize (`bool`, *optional*, defaults to `True`):
58
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
59
+ `do_resize` in the `preprocess` method.
60
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
61
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
62
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
63
+ method.
64
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
65
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
66
+ do_center_crop (`bool`, *optional*, defaults to `True`):
67
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
68
+ `preprocess` method.
69
+ crop_size (`Dict[str, int]` *optional*, defaults to 224):
70
+ Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
71
+ method.
72
+ do_rescale (`bool`, *optional*, defaults to `True`):
73
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
74
+ the `preprocess` method.
75
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
76
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
77
+ method.
78
+ do_normalize (`bool`, *optional*, defaults to `True`):
79
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
80
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
81
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
82
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
83
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
84
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
85
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
86
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
87
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
88
+ Whether to convert the image to RGB.
89
+ """
90
+
91
+ model_input_names = ["pixel_values"]
92
+
93
+ def __init__(
94
+ self,
95
+ do_resize: bool = True,
96
+ size: Dict[str, int] = None,
97
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
98
+ do_center_crop: bool = True,
99
+ crop_size: Dict[str, int] = None,
100
+ do_rescale: bool = True,
101
+ rescale_factor: Union[int, float] = 1 / 255,
102
+ do_normalize: bool = True,
103
+ image_mean: Optional[Union[float, List[float]]] = None,
104
+ image_std: Optional[Union[float, List[float]]] = None,
105
+ do_convert_rgb: bool = True,
106
+ **kwargs,
107
+ ) -> None:
108
+ super().__init__(**kwargs)
109
+ size = size if size is not None else {"shortest_edge": 224}
110
+ size = get_size_dict(size, default_to_square=False)
111
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
112
+ crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
113
+
114
+ self.do_resize = do_resize
115
+ self.size = size
116
+ self.resample = resample
117
+ self.do_center_crop = do_center_crop
118
+ self.crop_size = crop_size
119
+ self.do_rescale = do_rescale
120
+ self.rescale_factor = rescale_factor
121
+ self.do_normalize = do_normalize
122
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
123
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
124
+ self.do_convert_rgb = do_convert_rgb
125
+ self._valid_processor_keys = [
126
+ "images",
127
+ "do_resize",
128
+ "size",
129
+ "resample",
130
+ "do_center_crop",
131
+ "crop_size",
132
+ "do_rescale",
133
+ "rescale_factor",
134
+ "do_normalize",
135
+ "image_mean",
136
+ "image_std",
137
+ "do_convert_rgb",
138
+ "return_tensors",
139
+ "data_format",
140
+ "input_data_format",
141
+ ]
142
+
143
+ # for backwards compatibility of KOSMOS-2
144
+ if "use_square_size" in kwargs:
145
+ self.size = {"height": size["shortest_edge"], "width": size["shortest_edge"]}
146
+
147
+ def resize(
148
+ self,
149
+ image: np.ndarray,
150
+ size: Dict[str, int],
151
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
152
+ data_format: Optional[Union[str, ChannelDimension]] = None,
153
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
154
+ **kwargs,
155
+ ) -> np.ndarray:
156
+ """
157
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
158
+ resized to keep the input aspect ratio.
159
+
160
+ Args:
161
+ image (`np.ndarray`):
162
+ Image to resize.
163
+ size (`Dict[str, int]`):
164
+ Size of the output image.
165
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
166
+ Resampling filter to use when resiizing the image.
167
+ data_format (`str` or `ChannelDimension`, *optional*):
168
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
169
+ input_data_format (`ChannelDimension` or `str`, *optional*):
170
+ The channel dimension format of the input image. If not provided, it will be inferred.
171
+ """
172
+ default_to_square = True
173
+ if "shortest_edge" in size:
174
+ size = size["shortest_edge"]
175
+ default_to_square = False
176
+ elif "height" in size and "width" in size:
177
+ size = (size["height"], size["width"])
178
+ else:
179
+ raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
180
+
181
+ output_size = get_resize_output_image_size(
182
+ image,
183
+ size=size,
184
+ default_to_square=default_to_square,
185
+ input_data_format=input_data_format,
186
+ )
187
+ return resize(
188
+ image,
189
+ size=output_size,
190
+ resample=resample,
191
+ data_format=data_format,
192
+ input_data_format=input_data_format,
193
+ **kwargs,
194
+ )
195
+
196
+ def preprocess(
197
+ self,
198
+ images: ImageInput,
199
+ do_resize: bool = None,
200
+ size: Dict[str, int] = None,
201
+ resample: PILImageResampling = None,
202
+ do_center_crop: bool = None,
203
+ crop_size: int = None,
204
+ do_rescale: bool = None,
205
+ rescale_factor: float = None,
206
+ do_normalize: bool = None,
207
+ image_mean: Optional[Union[float, List[float]]] = None,
208
+ image_std: Optional[Union[float, List[float]]] = None,
209
+ do_convert_rgb: bool = None,
210
+ return_tensors: Optional[Union[str, TensorType]] = None,
211
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
212
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
213
+ **kwargs,
214
+ ) -> PIL.Image.Image:
215
+ """
216
+ Preprocess an image or batch of images.
217
+
218
+ Args:
219
+ images (`ImageInput`):
220
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
221
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
222
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
223
+ Whether to resize the image.
224
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
225
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
226
+ the longest edge resized to keep the input aspect ratio.
227
+ resample (`int`, *optional*, defaults to `self.resample`):
228
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
229
+ has an effect if `do_resize` is set to `True`.
230
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
231
+ Whether to center crop the image.
232
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
233
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
234
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
235
+ Whether to rescale the image.
236
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
237
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
238
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
239
+ Whether to normalize the image.
240
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
241
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
242
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
243
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
244
+ `True`.
245
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
246
+ Whether to convert the image to RGB.
247
+ return_tensors (`str` or `TensorType`, *optional*):
248
+ The type of tensors to return. Can be one of:
249
+ - Unset: Return a list of `np.ndarray`.
250
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
251
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
252
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
253
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
254
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
255
+ The channel dimension format for the output image. Can be one of:
256
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
257
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
258
+ - Unset: Use the channel dimension format of the input image.
259
+ input_data_format (`ChannelDimension` or `str`, *optional*):
260
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
261
+ from the input image. Can be one of:
262
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
263
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
264
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
265
+ """
266
+ do_resize = do_resize if do_resize is not None else self.do_resize
267
+ size = size if size is not None else self.size
268
+ size = get_size_dict(size, param_name="size", default_to_square=False)
269
+ resample = resample if resample is not None else self.resample
270
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
271
+ crop_size = crop_size if crop_size is not None else self.crop_size
272
+ crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
273
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
274
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
275
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
276
+ image_mean = image_mean if image_mean is not None else self.image_mean
277
+ image_std = image_std if image_std is not None else self.image_std
278
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
279
+
280
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
281
+
282
+ images = make_list_of_images(images)
283
+
284
+ if not valid_images(images):
285
+ raise ValueError(
286
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
287
+ "torch.Tensor, tf.Tensor or jax.ndarray."
288
+ )
289
+ validate_preprocess_arguments(
290
+ do_rescale=do_rescale,
291
+ rescale_factor=rescale_factor,
292
+ do_normalize=do_normalize,
293
+ image_mean=image_mean,
294
+ image_std=image_std,
295
+ do_center_crop=do_center_crop,
296
+ crop_size=crop_size,
297
+ do_resize=do_resize,
298
+ size=size,
299
+ resample=resample,
300
+ )
301
+
302
+ if do_convert_rgb:
303
+ images = [convert_to_rgb(image) for image in images]
304
+
305
+ # All transformations expect numpy arrays.
306
+ images = [to_numpy_array(image) for image in images]
307
+
308
+ if is_scaled_image(images[0]) and do_rescale:
309
+ logger.warning_once(
310
+ "It looks like you are trying to rescale already rescaled images. If the input"
311
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
312
+ )
313
+
314
+ if input_data_format is None:
315
+ # We assume that all images have the same channel dimension format.
316
+ input_data_format = infer_channel_dimension_format(images[0])
317
+
318
+ if do_resize:
319
+ images = [
320
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
321
+ for image in images
322
+ ]
323
+
324
+ if do_center_crop:
325
+ images = [
326
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
327
+ ]
328
+
329
+ if do_rescale:
330
+ images = [
331
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
332
+ for image in images
333
+ ]
334
+
335
+ if do_normalize:
336
+ images = [
337
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
338
+ for image in images
339
+ ]
340
+
341
+ images = [
342
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
343
+ ]
344
+
345
+ data = {"pixel_values": images}
346
+ return BatchFeature(data=data, tensor_type=return_tensors)
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_clip.py ADDED
@@ -0,0 +1,1416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch CLIP model."""
16
+
17
+
18
+ from dataclasses import dataclass
19
+ from typing import Any, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
25
+
26
+ from ...activations import ACT2FN
27
+ from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
28
+ from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
29
+ from ...modeling_utils import PreTrainedModel
30
+ from ...utils import (
31
+ ModelOutput,
32
+ add_code_sample_docstrings,
33
+ add_start_docstrings,
34
+ add_start_docstrings_to_model_forward,
35
+ logging,
36
+ replace_return_docstrings,
37
+ )
38
+ from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
39
+
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ # General docstring
44
+ _CONFIG_FOR_DOC = "CLIPConfig"
45
+ _CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
46
+
47
+ # Image classification docstring
48
+ _IMAGE_CLASS_CHECKPOINT = "openai/clip-vit-base-patch32"
49
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_0"
50
+
51
+
52
+ from ..deprecated._archive_maps import CLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
53
+
54
+
55
+ # contrastive loss function, adapted from
56
+ # https://sachinruk.github.io/blog/2021-03-07-clip.html
57
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
58
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
59
+
60
+
61
+ def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
62
+ caption_loss = contrastive_loss(similarity)
63
+ image_loss = contrastive_loss(similarity.t())
64
+ return (caption_loss + image_loss) / 2.0
65
+
66
+
67
+ @dataclass
68
+ class CLIPVisionModelOutput(ModelOutput):
69
+ """
70
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
71
+
72
+ Args:
73
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
74
+ The image embeddings obtained by applying the projection layer to the pooler_output.
75
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
76
+ Sequence of hidden-states at the output of the last layer of the model.
77
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
78
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
79
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
80
+
81
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
82
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
83
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
84
+ sequence_length)`.
85
+
86
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
87
+ heads.
88
+ """
89
+
90
+ image_embeds: Optional[torch.FloatTensor] = None
91
+ last_hidden_state: torch.FloatTensor = None
92
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
93
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
94
+
95
+
96
+ @dataclass
97
+ class CLIPTextModelOutput(ModelOutput):
98
+ """
99
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
100
+
101
+ Args:
102
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
103
+ The text embeddings obtained by applying the projection layer to the pooler_output.
104
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
105
+ Sequence of hidden-states at the output of the last layer of the model.
106
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
107
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
108
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
109
+
110
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
111
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
112
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
113
+ sequence_length)`.
114
+
115
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
116
+ heads.
117
+ """
118
+
119
+ text_embeds: Optional[torch.FloatTensor] = None
120
+ last_hidden_state: torch.FloatTensor = None
121
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
122
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
123
+
124
+
125
+ @dataclass
126
+ class CLIPOutput(ModelOutput):
127
+ """
128
+ Args:
129
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
130
+ Contrastive loss for image-text similarity.
131
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
132
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
133
+ similarity scores.
134
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
135
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
136
+ similarity scores.
137
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
138
+ The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
139
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
140
+ The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
141
+ text_model_output(`BaseModelOutputWithPooling`):
142
+ The output of the [`CLIPTextModel`].
143
+ vision_model_output(`BaseModelOutputWithPooling`):
144
+ The output of the [`CLIPVisionModel`].
145
+ """
146
+
147
+ loss: Optional[torch.FloatTensor] = None
148
+ logits_per_image: torch.FloatTensor = None
149
+ logits_per_text: torch.FloatTensor = None
150
+ text_embeds: torch.FloatTensor = None
151
+ image_embeds: torch.FloatTensor = None
152
+ text_model_output: BaseModelOutputWithPooling = None
153
+ vision_model_output: BaseModelOutputWithPooling = None
154
+
155
+ def to_tuple(self) -> Tuple[Any]:
156
+ return tuple(
157
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
158
+ for k in self.keys()
159
+ )
160
+
161
+
162
+ class CLIPVisionEmbeddings(nn.Module):
163
+ def __init__(self, config: CLIPVisionConfig):
164
+ super().__init__()
165
+ self.config = config
166
+ self.embed_dim = config.hidden_size
167
+ self.image_size = config.image_size
168
+ self.patch_size = config.patch_size
169
+
170
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
171
+
172
+ self.patch_embedding = nn.Conv2d(
173
+ in_channels=config.num_channels,
174
+ out_channels=self.embed_dim,
175
+ kernel_size=self.patch_size,
176
+ stride=self.patch_size,
177
+ bias=False,
178
+ )
179
+
180
+ self.num_patches = (self.image_size // self.patch_size) ** 2
181
+ self.num_positions = self.num_patches + 1
182
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
183
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
184
+
185
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
186
+ batch_size = pixel_values.shape[0]
187
+ target_dtype = self.patch_embedding.weight.dtype
188
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
189
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
190
+
191
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
192
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
193
+ embeddings = embeddings + self.position_embedding(self.position_ids)
194
+ return embeddings
195
+
196
+
197
+ class CLIPTextEmbeddings(nn.Module):
198
+ def __init__(self, config: CLIPTextConfig):
199
+ super().__init__()
200
+ embed_dim = config.hidden_size
201
+
202
+ self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
203
+ self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
204
+
205
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
206
+ self.register_buffer(
207
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
208
+ )
209
+
210
+ def forward(
211
+ self,
212
+ input_ids: Optional[torch.LongTensor] = None,
213
+ position_ids: Optional[torch.LongTensor] = None,
214
+ inputs_embeds: Optional[torch.FloatTensor] = None,
215
+ ) -> torch.Tensor:
216
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
217
+
218
+ if position_ids is None:
219
+ position_ids = self.position_ids[:, :seq_length]
220
+
221
+ if inputs_embeds is None:
222
+ inputs_embeds = self.token_embedding(input_ids)
223
+
224
+ position_embeddings = self.position_embedding(position_ids)
225
+ embeddings = inputs_embeds + position_embeddings
226
+
227
+ return embeddings
228
+
229
+
230
+ class CLIPAttention(nn.Module):
231
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
232
+
233
+ def __init__(self, config):
234
+ super().__init__()
235
+ self.config = config
236
+ self.embed_dim = config.hidden_size
237
+ self.num_heads = config.num_attention_heads
238
+ self.head_dim = self.embed_dim // self.num_heads
239
+ if self.head_dim * self.num_heads != self.embed_dim:
240
+ raise ValueError(
241
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
242
+ f" {self.num_heads})."
243
+ )
244
+ self.scale = self.head_dim**-0.5
245
+ self.dropout = config.attention_dropout
246
+
247
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
248
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
249
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
250
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
251
+
252
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
253
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
254
+
255
+ def forward(
256
+ self,
257
+ hidden_states: torch.Tensor,
258
+ attention_mask: Optional[torch.Tensor] = None,
259
+ causal_attention_mask: Optional[torch.Tensor] = None,
260
+ output_attentions: Optional[bool] = False,
261
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
262
+ """Input shape: Batch x Time x Channel"""
263
+
264
+ bsz, tgt_len, embed_dim = hidden_states.size()
265
+
266
+ # get query proj
267
+ query_states = self.q_proj(hidden_states) * self.scale
268
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
269
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
270
+
271
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
272
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
273
+ key_states = key_states.view(*proj_shape)
274
+ value_states = value_states.view(*proj_shape)
275
+
276
+ src_len = key_states.size(1)
277
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
278
+
279
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
280
+ raise ValueError(
281
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
282
+ f" {attn_weights.size()}"
283
+ )
284
+
285
+ # apply the causal_attention_mask first
286
+ if causal_attention_mask is not None:
287
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
288
+ raise ValueError(
289
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
290
+ f" {causal_attention_mask.size()}"
291
+ )
292
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
293
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
294
+
295
+ if attention_mask is not None:
296
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
297
+ raise ValueError(
298
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
299
+ )
300
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
301
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
302
+
303
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
304
+
305
+ if output_attentions:
306
+ # this operation is a bit akward, but it's required to
307
+ # make sure that attn_weights keeps its gradient.
308
+ # In order to do so, attn_weights have to reshaped
309
+ # twice and have to be reused in the following
310
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
311
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
312
+ else:
313
+ attn_weights_reshaped = None
314
+
315
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
316
+
317
+ attn_output = torch.bmm(attn_probs, value_states)
318
+
319
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
320
+ raise ValueError(
321
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
322
+ f" {attn_output.size()}"
323
+ )
324
+
325
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
326
+ attn_output = attn_output.transpose(1, 2)
327
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
328
+
329
+ attn_output = self.out_proj(attn_output)
330
+
331
+ return attn_output, attn_weights_reshaped
332
+
333
+
334
+ class CLIPMLP(nn.Module):
335
+ def __init__(self, config):
336
+ super().__init__()
337
+ self.config = config
338
+ self.activation_fn = ACT2FN[config.hidden_act]
339
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
340
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
341
+
342
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
343
+ hidden_states = self.fc1(hidden_states)
344
+ hidden_states = self.activation_fn(hidden_states)
345
+ hidden_states = self.fc2(hidden_states)
346
+ return hidden_states
347
+
348
+
349
+ class CLIPEncoderLayer(nn.Module):
350
+ def __init__(self, config: CLIPConfig):
351
+ super().__init__()
352
+ self.embed_dim = config.hidden_size
353
+ self.self_attn = CLIPAttention(config)
354
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
355
+ self.mlp = CLIPMLP(config)
356
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
357
+
358
+ def forward(
359
+ self,
360
+ hidden_states: torch.Tensor,
361
+ attention_mask: torch.Tensor,
362
+ causal_attention_mask: torch.Tensor,
363
+ output_attentions: Optional[bool] = False,
364
+ ) -> Tuple[torch.FloatTensor]:
365
+ """
366
+ Args:
367
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
368
+ attention_mask (`torch.FloatTensor`): attention mask of size
369
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
370
+ `(config.encoder_attention_heads,)`.
371
+ output_attentions (`bool`, *optional*):
372
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
373
+ returned tensors for more detail.
374
+ """
375
+ residual = hidden_states
376
+
377
+ hidden_states = self.layer_norm1(hidden_states)
378
+ hidden_states, attn_weights = self.self_attn(
379
+ hidden_states=hidden_states,
380
+ attention_mask=attention_mask,
381
+ causal_attention_mask=causal_attention_mask,
382
+ output_attentions=output_attentions,
383
+ )
384
+ hidden_states = residual + hidden_states
385
+
386
+ residual = hidden_states
387
+ hidden_states = self.layer_norm2(hidden_states)
388
+ hidden_states = self.mlp(hidden_states)
389
+ hidden_states = residual + hidden_states
390
+
391
+ outputs = (hidden_states,)
392
+
393
+ if output_attentions:
394
+ outputs += (attn_weights,)
395
+
396
+ return outputs
397
+
398
+
399
+ class CLIPPreTrainedModel(PreTrainedModel):
400
+ """
401
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
402
+ models.
403
+ """
404
+
405
+ config_class = CLIPConfig
406
+ base_model_prefix = "clip"
407
+ supports_gradient_checkpointing = True
408
+
409
+ def _init_weights(self, module):
410
+ """Initialize the weights"""
411
+ factor = self.config.initializer_factor
412
+ if isinstance(module, CLIPTextEmbeddings):
413
+ module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
414
+ module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
415
+ elif isinstance(module, CLIPVisionEmbeddings):
416
+ factor = self.config.initializer_factor
417
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
418
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
419
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
420
+ elif isinstance(module, CLIPAttention):
421
+ factor = self.config.initializer_factor
422
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
423
+ out_proj_std = (module.embed_dim**-0.5) * factor
424
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
425
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
426
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
427
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
428
+ elif isinstance(module, CLIPMLP):
429
+ factor = self.config.initializer_factor
430
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
431
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
432
+ nn.init.normal_(module.fc1.weight, std=fc_std)
433
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
434
+ elif isinstance(module, CLIPModel):
435
+ nn.init.normal_(
436
+ module.text_projection.weight,
437
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
438
+ )
439
+ nn.init.normal_(
440
+ module.visual_projection.weight,
441
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
442
+ )
443
+ elif isinstance(module, CLIPVisionModelWithProjection):
444
+ nn.init.normal_(
445
+ module.visual_projection.weight,
446
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
447
+ )
448
+ elif isinstance(module, CLIPTextModelWithProjection):
449
+ nn.init.normal_(
450
+ module.text_projection.weight,
451
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
452
+ )
453
+
454
+ if isinstance(module, nn.LayerNorm):
455
+ module.bias.data.zero_()
456
+ module.weight.data.fill_(1.0)
457
+ if isinstance(module, nn.Linear) and module.bias is not None:
458
+ module.bias.data.zero_()
459
+
460
+
461
+ CLIP_START_DOCSTRING = r"""
462
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
463
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
464
+ etc.)
465
+
466
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
467
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
468
+ and behavior.
469
+
470
+ Parameters:
471
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
472
+ Initializing with a config file does not load the weights associated with the model, only the
473
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
474
+ """
475
+
476
+ CLIP_TEXT_INPUTS_DOCSTRING = r"""
477
+ Args:
478
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
479
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
480
+ it.
481
+
482
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
483
+ [`PreTrainedTokenizer.__call__`] for details.
484
+
485
+ [What are input IDs?](../glossary#input-ids)
486
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
487
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
488
+
489
+ - 1 for tokens that are **not masked**,
490
+ - 0 for tokens that are **masked**.
491
+
492
+ [What are attention masks?](../glossary#attention-mask)
493
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
494
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
495
+ config.max_position_embeddings - 1]`.
496
+
497
+ [What are position IDs?](../glossary#position-ids)
498
+ output_attentions (`bool`, *optional*):
499
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
500
+ tensors for more detail.
501
+ output_hidden_states (`bool`, *optional*):
502
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
503
+ more detail.
504
+ return_dict (`bool`, *optional*):
505
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
506
+ """
507
+
508
+ CLIP_VISION_INPUTS_DOCSTRING = r"""
509
+ Args:
510
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
511
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
512
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
513
+ output_attentions (`bool`, *optional*):
514
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
515
+ tensors for more detail.
516
+ output_hidden_states (`bool`, *optional*):
517
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
518
+ more detail.
519
+ return_dict (`bool`, *optional*):
520
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
521
+ """
522
+
523
+ CLIP_INPUTS_DOCSTRING = r"""
524
+ Args:
525
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
526
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
527
+ it.
528
+
529
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
530
+ [`PreTrainedTokenizer.__call__`] for details.
531
+
532
+ [What are input IDs?](../glossary#input-ids)
533
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
534
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
535
+
536
+ - 1 for tokens that are **not masked**,
537
+ - 0 for tokens that are **masked**.
538
+
539
+ [What are attention masks?](../glossary#attention-mask)
540
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
541
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
542
+ config.max_position_embeddings - 1]`.
543
+
544
+ [What are position IDs?](../glossary#position-ids)
545
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
546
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
547
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
548
+ return_loss (`bool`, *optional*):
549
+ Whether or not to return the contrastive loss.
550
+ output_attentions (`bool`, *optional*):
551
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
552
+ tensors for more detail.
553
+ output_hidden_states (`bool`, *optional*):
554
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
555
+ more detail.
556
+ return_dict (`bool`, *optional*):
557
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
558
+ """
559
+
560
+
561
+ class CLIPEncoder(nn.Module):
562
+ """
563
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
564
+ [`CLIPEncoderLayer`].
565
+
566
+ Args:
567
+ config: CLIPConfig
568
+ """
569
+
570
+ def __init__(self, config: CLIPConfig):
571
+ super().__init__()
572
+ self.config = config
573
+ self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
574
+ self.gradient_checkpointing = False
575
+
576
+ def forward(
577
+ self,
578
+ inputs_embeds,
579
+ attention_mask: Optional[torch.Tensor] = None,
580
+ causal_attention_mask: Optional[torch.Tensor] = None,
581
+ output_attentions: Optional[bool] = None,
582
+ output_hidden_states: Optional[bool] = None,
583
+ return_dict: Optional[bool] = None,
584
+ ) -> Union[Tuple, BaseModelOutput]:
585
+ r"""
586
+ Args:
587
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
588
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
589
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
590
+ than the model's internal embedding lookup matrix.
591
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
592
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
593
+
594
+ - 1 for tokens that are **not masked**,
595
+ - 0 for tokens that are **masked**.
596
+
597
+ [What are attention masks?](../glossary#attention-mask)
598
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
599
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
600
+
601
+ - 1 for tokens that are **not masked**,
602
+ - 0 for tokens that are **masked**.
603
+
604
+ [What are attention masks?](../glossary#attention-mask)
605
+ output_attentions (`bool`, *optional*):
606
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
607
+ returned tensors for more detail.
608
+ output_hidden_states (`bool`, *optional*):
609
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
610
+ for more detail.
611
+ return_dict (`bool`, *optional*):
612
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
613
+ """
614
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
615
+ output_hidden_states = (
616
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
617
+ )
618
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
619
+
620
+ encoder_states = () if output_hidden_states else None
621
+ all_attentions = () if output_attentions else None
622
+
623
+ hidden_states = inputs_embeds
624
+ for idx, encoder_layer in enumerate(self.layers):
625
+ if output_hidden_states:
626
+ encoder_states = encoder_states + (hidden_states,)
627
+ if self.gradient_checkpointing and self.training:
628
+ layer_outputs = self._gradient_checkpointing_func(
629
+ encoder_layer.__call__,
630
+ hidden_states,
631
+ attention_mask,
632
+ causal_attention_mask,
633
+ output_attentions,
634
+ )
635
+ else:
636
+ layer_outputs = encoder_layer(
637
+ hidden_states,
638
+ attention_mask,
639
+ causal_attention_mask,
640
+ output_attentions=output_attentions,
641
+ )
642
+
643
+ hidden_states = layer_outputs[0]
644
+
645
+ if output_attentions:
646
+ all_attentions = all_attentions + (layer_outputs[1],)
647
+
648
+ if output_hidden_states:
649
+ encoder_states = encoder_states + (hidden_states,)
650
+
651
+ if not return_dict:
652
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
653
+ return BaseModelOutput(
654
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
655
+ )
656
+
657
+
658
+ class CLIPTextTransformer(nn.Module):
659
+ def __init__(self, config: CLIPTextConfig):
660
+ super().__init__()
661
+ self.config = config
662
+ embed_dim = config.hidden_size
663
+ self.embeddings = CLIPTextEmbeddings(config)
664
+ self.encoder = CLIPEncoder(config)
665
+ self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
666
+
667
+ # For `pooled_output` computation
668
+ self.eos_token_id = config.eos_token_id
669
+
670
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
671
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
672
+ def forward(
673
+ self,
674
+ input_ids: Optional[torch.Tensor] = None,
675
+ attention_mask: Optional[torch.Tensor] = None,
676
+ position_ids: Optional[torch.Tensor] = None,
677
+ output_attentions: Optional[bool] = None,
678
+ output_hidden_states: Optional[bool] = None,
679
+ return_dict: Optional[bool] = None,
680
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
681
+ r"""
682
+ Returns:
683
+
684
+ """
685
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
686
+ output_hidden_states = (
687
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
688
+ )
689
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
690
+
691
+ if input_ids is None:
692
+ raise ValueError("You have to specify input_ids")
693
+
694
+ input_shape = input_ids.size()
695
+ input_ids = input_ids.view(-1, input_shape[-1])
696
+
697
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
698
+
699
+ # CLIP's text model uses causal mask, prepare it here.
700
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
701
+ causal_attention_mask = _create_4d_causal_attention_mask(
702
+ input_shape, hidden_states.dtype, device=hidden_states.device
703
+ )
704
+ # expand attention_mask
705
+ if attention_mask is not None:
706
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
707
+ attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
708
+
709
+ encoder_outputs = self.encoder(
710
+ inputs_embeds=hidden_states,
711
+ attention_mask=attention_mask,
712
+ causal_attention_mask=causal_attention_mask,
713
+ output_attentions=output_attentions,
714
+ output_hidden_states=output_hidden_states,
715
+ return_dict=return_dict,
716
+ )
717
+
718
+ last_hidden_state = encoder_outputs[0]
719
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
720
+
721
+ if self.eos_token_id == 2:
722
+ # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
723
+ # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
724
+ # ------------------------------------------------------------
725
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
726
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
727
+ # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
728
+ pooled_output = last_hidden_state[
729
+ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
730
+ input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
731
+ ]
732
+ else:
733
+ # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
734
+ pooled_output = last_hidden_state[
735
+ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
736
+ # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
737
+ (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
738
+ .int()
739
+ .argmax(dim=-1),
740
+ ]
741
+
742
+ if not return_dict:
743
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
744
+
745
+ return BaseModelOutputWithPooling(
746
+ last_hidden_state=last_hidden_state,
747
+ pooler_output=pooled_output,
748
+ hidden_states=encoder_outputs.hidden_states,
749
+ attentions=encoder_outputs.attentions,
750
+ )
751
+
752
+
753
+ @add_start_docstrings(
754
+ """The text model from CLIP without any head or projection on top.""",
755
+ CLIP_START_DOCSTRING,
756
+ )
757
+ class CLIPTextModel(CLIPPreTrainedModel):
758
+ config_class = CLIPTextConfig
759
+
760
+ _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
761
+
762
+ def __init__(self, config: CLIPTextConfig):
763
+ super().__init__(config)
764
+ self.text_model = CLIPTextTransformer(config)
765
+ # Initialize weights and apply final processing
766
+ self.post_init()
767
+
768
+ def get_input_embeddings(self) -> nn.Module:
769
+ return self.text_model.embeddings.token_embedding
770
+
771
+ def set_input_embeddings(self, value):
772
+ self.text_model.embeddings.token_embedding = value
773
+
774
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
775
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
776
+ def forward(
777
+ self,
778
+ input_ids: Optional[torch.Tensor] = None,
779
+ attention_mask: Optional[torch.Tensor] = None,
780
+ position_ids: Optional[torch.Tensor] = None,
781
+ output_attentions: Optional[bool] = None,
782
+ output_hidden_states: Optional[bool] = None,
783
+ return_dict: Optional[bool] = None,
784
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
785
+ r"""
786
+ Returns:
787
+
788
+ Examples:
789
+
790
+ ```python
791
+ >>> from transformers import AutoTokenizer, CLIPTextModel
792
+
793
+ >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
794
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
795
+
796
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
797
+
798
+ >>> outputs = model(**inputs)
799
+ >>> last_hidden_state = outputs.last_hidden_state
800
+ >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
801
+ ```"""
802
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
803
+
804
+ return self.text_model(
805
+ input_ids=input_ids,
806
+ attention_mask=attention_mask,
807
+ position_ids=position_ids,
808
+ output_attentions=output_attentions,
809
+ output_hidden_states=output_hidden_states,
810
+ return_dict=return_dict,
811
+ )
812
+
813
+
814
+ class CLIPVisionTransformer(nn.Module):
815
+ def __init__(self, config: CLIPVisionConfig):
816
+ super().__init__()
817
+ self.config = config
818
+ embed_dim = config.hidden_size
819
+
820
+ self.embeddings = CLIPVisionEmbeddings(config)
821
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
822
+ self.encoder = CLIPEncoder(config)
823
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
824
+
825
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
826
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
827
+ def forward(
828
+ self,
829
+ pixel_values: Optional[torch.FloatTensor] = None,
830
+ output_attentions: Optional[bool] = None,
831
+ output_hidden_states: Optional[bool] = None,
832
+ return_dict: Optional[bool] = None,
833
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
834
+ r"""
835
+ Returns:
836
+
837
+ """
838
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
839
+ output_hidden_states = (
840
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
841
+ )
842
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
843
+
844
+ if pixel_values is None:
845
+ raise ValueError("You have to specify pixel_values")
846
+
847
+ hidden_states = self.embeddings(pixel_values)
848
+ hidden_states = self.pre_layrnorm(hidden_states)
849
+
850
+ encoder_outputs = self.encoder(
851
+ inputs_embeds=hidden_states,
852
+ output_attentions=output_attentions,
853
+ output_hidden_states=output_hidden_states,
854
+ return_dict=return_dict,
855
+ )
856
+
857
+ last_hidden_state = encoder_outputs[0]
858
+ pooled_output = last_hidden_state[:, 0, :]
859
+ pooled_output = self.post_layernorm(pooled_output)
860
+
861
+ if not return_dict:
862
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
863
+
864
+ return BaseModelOutputWithPooling(
865
+ last_hidden_state=last_hidden_state,
866
+ pooler_output=pooled_output,
867
+ hidden_states=encoder_outputs.hidden_states,
868
+ attentions=encoder_outputs.attentions,
869
+ )
870
+
871
+
872
+ @add_start_docstrings(
873
+ """The vision model from CLIP without any head or projection on top.""",
874
+ CLIP_START_DOCSTRING,
875
+ )
876
+ class CLIPVisionModel(CLIPPreTrainedModel):
877
+ config_class = CLIPVisionConfig
878
+ main_input_name = "pixel_values"
879
+ _no_split_modules = ["CLIPEncoderLayer"]
880
+
881
+ def __init__(self, config: CLIPVisionConfig):
882
+ super().__init__(config)
883
+ self.vision_model = CLIPVisionTransformer(config)
884
+ # Initialize weights and apply final processing
885
+ self.post_init()
886
+
887
+ def get_input_embeddings(self) -> nn.Module:
888
+ return self.vision_model.embeddings.patch_embedding
889
+
890
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
891
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
892
+ def forward(
893
+ self,
894
+ pixel_values: Optional[torch.FloatTensor] = None,
895
+ output_attentions: Optional[bool] = None,
896
+ output_hidden_states: Optional[bool] = None,
897
+ return_dict: Optional[bool] = None,
898
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
899
+ r"""
900
+ Returns:
901
+
902
+ Examples:
903
+
904
+ ```python
905
+ >>> from PIL import Image
906
+ >>> import requests
907
+ >>> from transformers import AutoProcessor, CLIPVisionModel
908
+
909
+ >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
910
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
911
+
912
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
913
+ >>> image = Image.open(requests.get(url, stream=True).raw)
914
+
915
+ >>> inputs = processor(images=image, return_tensors="pt")
916
+
917
+ >>> outputs = model(**inputs)
918
+ >>> last_hidden_state = outputs.last_hidden_state
919
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
920
+ ```"""
921
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
922
+
923
+ return self.vision_model(
924
+ pixel_values=pixel_values,
925
+ output_attentions=output_attentions,
926
+ output_hidden_states=output_hidden_states,
927
+ return_dict=return_dict,
928
+ )
929
+
930
+
931
+ @add_start_docstrings(CLIP_START_DOCSTRING)
932
+ class CLIPModel(CLIPPreTrainedModel):
933
+ config_class = CLIPConfig
934
+ _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
935
+
936
+ def __init__(self, config: CLIPConfig):
937
+ super().__init__(config)
938
+
939
+ if not isinstance(config.text_config, CLIPTextConfig):
940
+ raise ValueError(
941
+ "config.text_config is expected to be of type CLIPTextConfig but is of type"
942
+ f" {type(config.text_config)}."
943
+ )
944
+
945
+ if not isinstance(config.vision_config, CLIPVisionConfig):
946
+ raise ValueError(
947
+ "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
948
+ f" {type(config.vision_config)}."
949
+ )
950
+
951
+ text_config = config.text_config
952
+ vision_config = config.vision_config
953
+
954
+ self.projection_dim = config.projection_dim
955
+ self.text_embed_dim = text_config.hidden_size
956
+ self.vision_embed_dim = vision_config.hidden_size
957
+
958
+ self.text_model = CLIPTextTransformer(text_config)
959
+ self.vision_model = CLIPVisionTransformer(vision_config)
960
+
961
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
962
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
963
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
964
+
965
+ # Initialize weights and apply final processing
966
+ self.post_init()
967
+
968
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
969
+ def get_text_features(
970
+ self,
971
+ input_ids: Optional[torch.Tensor] = None,
972
+ attention_mask: Optional[torch.Tensor] = None,
973
+ position_ids: Optional[torch.Tensor] = None,
974
+ output_attentions: Optional[bool] = None,
975
+ output_hidden_states: Optional[bool] = None,
976
+ return_dict: Optional[bool] = None,
977
+ ) -> torch.FloatTensor:
978
+ r"""
979
+ Returns:
980
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
981
+ applying the projection layer to the pooled output of [`CLIPTextModel`].
982
+
983
+ Examples:
984
+
985
+ ```python
986
+ >>> from transformers import AutoTokenizer, CLIPModel
987
+
988
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
989
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
990
+
991
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
992
+ >>> text_features = model.get_text_features(**inputs)
993
+ ```"""
994
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
995
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
996
+ output_hidden_states = (
997
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
998
+ )
999
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1000
+
1001
+ text_outputs = self.text_model(
1002
+ input_ids=input_ids,
1003
+ attention_mask=attention_mask,
1004
+ position_ids=position_ids,
1005
+ output_attentions=output_attentions,
1006
+ output_hidden_states=output_hidden_states,
1007
+ return_dict=return_dict,
1008
+ )
1009
+
1010
+ pooled_output = text_outputs[1]
1011
+ text_features = self.text_projection(pooled_output)
1012
+
1013
+ return text_features
1014
+
1015
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
1016
+ def get_image_features(
1017
+ self,
1018
+ pixel_values: Optional[torch.FloatTensor] = None,
1019
+ output_attentions: Optional[bool] = None,
1020
+ output_hidden_states: Optional[bool] = None,
1021
+ return_dict: Optional[bool] = None,
1022
+ ) -> torch.FloatTensor:
1023
+ r"""
1024
+ Returns:
1025
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
1026
+ applying the projection layer to the pooled output of [`CLIPVisionModel`].
1027
+
1028
+ Examples:
1029
+
1030
+ ```python
1031
+ >>> from PIL import Image
1032
+ >>> import requests
1033
+ >>> from transformers import AutoProcessor, CLIPModel
1034
+
1035
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1036
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1037
+
1038
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1039
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1040
+
1041
+ >>> inputs = processor(images=image, return_tensors="pt")
1042
+
1043
+ >>> image_features = model.get_image_features(**inputs)
1044
+ ```"""
1045
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
1046
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1047
+ output_hidden_states = (
1048
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1049
+ )
1050
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1051
+
1052
+ vision_outputs = self.vision_model(
1053
+ pixel_values=pixel_values,
1054
+ output_attentions=output_attentions,
1055
+ output_hidden_states=output_hidden_states,
1056
+ return_dict=return_dict,
1057
+ )
1058
+
1059
+ pooled_output = vision_outputs[1] # pooled_output
1060
+ image_features = self.visual_projection(pooled_output)
1061
+
1062
+ return image_features
1063
+
1064
+ @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
1065
+ @replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig)
1066
+ def forward(
1067
+ self,
1068
+ input_ids: Optional[torch.LongTensor] = None,
1069
+ pixel_values: Optional[torch.FloatTensor] = None,
1070
+ attention_mask: Optional[torch.Tensor] = None,
1071
+ position_ids: Optional[torch.LongTensor] = None,
1072
+ return_loss: Optional[bool] = None,
1073
+ output_attentions: Optional[bool] = None,
1074
+ output_hidden_states: Optional[bool] = None,
1075
+ return_dict: Optional[bool] = None,
1076
+ ) -> Union[Tuple, CLIPOutput]:
1077
+ r"""
1078
+ Returns:
1079
+
1080
+ Examples:
1081
+
1082
+ ```python
1083
+ >>> from PIL import Image
1084
+ >>> import requests
1085
+ >>> from transformers import AutoProcessor, CLIPModel
1086
+
1087
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1088
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1089
+
1090
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1091
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1092
+
1093
+ >>> inputs = processor(
1094
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
1095
+ ... )
1096
+
1097
+ >>> outputs = model(**inputs)
1098
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
1099
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
1100
+ ```"""
1101
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
1102
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1103
+ output_hidden_states = (
1104
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1105
+ )
1106
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1107
+
1108
+ vision_outputs = self.vision_model(
1109
+ pixel_values=pixel_values,
1110
+ output_attentions=output_attentions,
1111
+ output_hidden_states=output_hidden_states,
1112
+ return_dict=return_dict,
1113
+ )
1114
+
1115
+ text_outputs = self.text_model(
1116
+ input_ids=input_ids,
1117
+ attention_mask=attention_mask,
1118
+ position_ids=position_ids,
1119
+ output_attentions=output_attentions,
1120
+ output_hidden_states=output_hidden_states,
1121
+ return_dict=return_dict,
1122
+ )
1123
+
1124
+ image_embeds = vision_outputs[1]
1125
+ image_embeds = self.visual_projection(image_embeds)
1126
+
1127
+ text_embeds = text_outputs[1]
1128
+ text_embeds = self.text_projection(text_embeds)
1129
+
1130
+ # normalized features
1131
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
1132
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1133
+
1134
+ # cosine similarity as logits
1135
+ logit_scale = self.logit_scale.exp()
1136
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
1137
+ logits_per_image = logits_per_text.t()
1138
+
1139
+ loss = None
1140
+ if return_loss:
1141
+ loss = clip_loss(logits_per_text)
1142
+
1143
+ if not return_dict:
1144
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
1145
+ return ((loss,) + output) if loss is not None else output
1146
+
1147
+ return CLIPOutput(
1148
+ loss=loss,
1149
+ logits_per_image=logits_per_image,
1150
+ logits_per_text=logits_per_text,
1151
+ text_embeds=text_embeds,
1152
+ image_embeds=image_embeds,
1153
+ text_model_output=text_outputs,
1154
+ vision_model_output=vision_outputs,
1155
+ )
1156
+
1157
+
1158
+ @add_start_docstrings(
1159
+ """
1160
+ CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
1161
+ """,
1162
+ CLIP_START_DOCSTRING,
1163
+ )
1164
+ class CLIPTextModelWithProjection(CLIPPreTrainedModel):
1165
+ config_class = CLIPTextConfig
1166
+
1167
+ _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
1168
+
1169
+ def __init__(self, config: CLIPTextConfig):
1170
+ super().__init__(config)
1171
+
1172
+ self.text_model = CLIPTextTransformer(config)
1173
+
1174
+ self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
1175
+
1176
+ # Initialize weights and apply final processing
1177
+ self.post_init()
1178
+
1179
+ def get_input_embeddings(self) -> nn.Module:
1180
+ return self.text_model.embeddings.token_embedding
1181
+
1182
+ def set_input_embeddings(self, value):
1183
+ self.text_model.embeddings.token_embedding = value
1184
+
1185
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
1186
+ @replace_return_docstrings(output_type=CLIPTextModelOutput, config_class=CLIPTextConfig)
1187
+ def forward(
1188
+ self,
1189
+ input_ids: Optional[torch.Tensor] = None,
1190
+ attention_mask: Optional[torch.Tensor] = None,
1191
+ position_ids: Optional[torch.Tensor] = None,
1192
+ output_attentions: Optional[bool] = None,
1193
+ output_hidden_states: Optional[bool] = None,
1194
+ return_dict: Optional[bool] = None,
1195
+ ) -> Union[Tuple, CLIPTextModelOutput]:
1196
+ r"""
1197
+ Returns:
1198
+
1199
+ Examples:
1200
+
1201
+ ```python
1202
+ >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
1203
+
1204
+ >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
1205
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1206
+
1207
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
1208
+
1209
+ >>> outputs = model(**inputs)
1210
+ >>> text_embeds = outputs.text_embeds
1211
+ ```"""
1212
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1213
+
1214
+ text_outputs = self.text_model(
1215
+ input_ids=input_ids,
1216
+ attention_mask=attention_mask,
1217
+ position_ids=position_ids,
1218
+ output_attentions=output_attentions,
1219
+ output_hidden_states=output_hidden_states,
1220
+ return_dict=return_dict,
1221
+ )
1222
+
1223
+ pooled_output = text_outputs[1]
1224
+
1225
+ text_embeds = self.text_projection(pooled_output)
1226
+
1227
+ if not return_dict:
1228
+ outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
1229
+ return tuple(output for output in outputs if output is not None)
1230
+
1231
+ return CLIPTextModelOutput(
1232
+ text_embeds=text_embeds,
1233
+ last_hidden_state=text_outputs.last_hidden_state,
1234
+ hidden_states=text_outputs.hidden_states,
1235
+ attentions=text_outputs.attentions,
1236
+ )
1237
+
1238
+
1239
+ @add_start_docstrings(
1240
+ """
1241
+ CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
1242
+ """,
1243
+ CLIP_START_DOCSTRING,
1244
+ )
1245
+ class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
1246
+ config_class = CLIPVisionConfig
1247
+ main_input_name = "pixel_values"
1248
+
1249
+ def __init__(self, config: CLIPVisionConfig):
1250
+ super().__init__(config)
1251
+
1252
+ self.vision_model = CLIPVisionTransformer(config)
1253
+
1254
+ self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
1255
+
1256
+ # Initialize weights and apply final processing
1257
+ self.post_init()
1258
+
1259
+ def get_input_embeddings(self) -> nn.Module:
1260
+ return self.vision_model.embeddings.patch_embedding
1261
+
1262
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
1263
+ @replace_return_docstrings(output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig)
1264
+ def forward(
1265
+ self,
1266
+ pixel_values: Optional[torch.FloatTensor] = None,
1267
+ output_attentions: Optional[bool] = None,
1268
+ output_hidden_states: Optional[bool] = None,
1269
+ return_dict: Optional[bool] = None,
1270
+ ) -> Union[Tuple, CLIPVisionModelOutput]:
1271
+ r"""
1272
+ Returns:
1273
+
1274
+ Examples:
1275
+
1276
+ ```python
1277
+ >>> from PIL import Image
1278
+ >>> import requests
1279
+ >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
1280
+
1281
+ >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
1282
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1283
+
1284
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1285
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1286
+
1287
+ >>> inputs = processor(images=image, return_tensors="pt")
1288
+
1289
+ >>> outputs = model(**inputs)
1290
+ >>> image_embeds = outputs.image_embeds
1291
+ ```"""
1292
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1293
+
1294
+ vision_outputs = self.vision_model(
1295
+ pixel_values=pixel_values,
1296
+ output_attentions=output_attentions,
1297
+ output_hidden_states=output_hidden_states,
1298
+ return_dict=return_dict,
1299
+ )
1300
+
1301
+ pooled_output = vision_outputs[1] # pooled_output
1302
+
1303
+ image_embeds = self.visual_projection(pooled_output)
1304
+
1305
+ if not return_dict:
1306
+ outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
1307
+ return tuple(output for output in outputs if output is not None)
1308
+
1309
+ return CLIPVisionModelOutput(
1310
+ image_embeds=image_embeds,
1311
+ last_hidden_state=vision_outputs.last_hidden_state,
1312
+ hidden_states=vision_outputs.hidden_states,
1313
+ attentions=vision_outputs.attentions,
1314
+ )
1315
+
1316
+
1317
+ @add_start_docstrings(
1318
+ """
1319
+ CLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
1320
+ the patch tokens) e.g. for ImageNet.
1321
+ """,
1322
+ CLIP_START_DOCSTRING,
1323
+ )
1324
+ class CLIPForImageClassification(CLIPPreTrainedModel):
1325
+ main_input_name = "pixel_values"
1326
+
1327
+ def __init__(self, config: CLIPConfig) -> None:
1328
+ super().__init__(config)
1329
+
1330
+ self.num_labels = config.num_labels
1331
+ self.vision_model = CLIPVisionTransformer(config.vision_config)
1332
+
1333
+ # Classifier head
1334
+ self.classifier = (
1335
+ nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
1336
+ )
1337
+
1338
+ # Initialize weights and apply final processing
1339
+ self.post_init()
1340
+
1341
+ @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
1342
+ @add_code_sample_docstrings(
1343
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
1344
+ output_type=ImageClassifierOutput,
1345
+ config_class=_CONFIG_FOR_DOC,
1346
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
1347
+ )
1348
+ def forward(
1349
+ self,
1350
+ pixel_values: Optional[torch.Tensor] = None,
1351
+ labels: Optional[torch.Tensor] = None,
1352
+ output_attentions: Optional[bool] = None,
1353
+ output_hidden_states: Optional[bool] = None,
1354
+ return_dict: Optional[bool] = None,
1355
+ ) -> Union[tuple, ImageClassifierOutput]:
1356
+ r"""
1357
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1358
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
1359
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1360
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1361
+ """
1362
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1363
+ output_hidden_states = (
1364
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1365
+ )
1366
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1367
+
1368
+ outputs = self.vision_model(
1369
+ pixel_values,
1370
+ output_attentions=output_attentions,
1371
+ output_hidden_states=output_hidden_states,
1372
+ return_dict=return_dict,
1373
+ )
1374
+
1375
+ sequence_output = outputs[0]
1376
+
1377
+ # average pool the patch tokens
1378
+ sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
1379
+ # apply classifier
1380
+ logits = self.classifier(sequence_output)
1381
+
1382
+ loss = None
1383
+ if labels is not None:
1384
+ # move labels to correct device to enable model parallelism
1385
+ labels = labels.to(logits.device)
1386
+ if self.config.problem_type is None:
1387
+ if self.num_labels == 1:
1388
+ self.config.problem_type = "regression"
1389
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1390
+ self.config.problem_type = "single_label_classification"
1391
+ else:
1392
+ self.config.problem_type = "multi_label_classification"
1393
+
1394
+ if self.config.problem_type == "regression":
1395
+ loss_fct = MSELoss()
1396
+ if self.num_labels == 1:
1397
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1398
+ else:
1399
+ loss = loss_fct(logits, labels)
1400
+ elif self.config.problem_type == "single_label_classification":
1401
+ loss_fct = CrossEntropyLoss()
1402
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1403
+ elif self.config.problem_type == "multi_label_classification":
1404
+ loss_fct = BCEWithLogitsLoss()
1405
+ loss = loss_fct(logits, labels)
1406
+
1407
+ if not return_dict:
1408
+ output = (logits,) + outputs[2:]
1409
+ return ((loss,) + output) if loss is not None else output
1410
+
1411
+ return ImageClassifierOutput(
1412
+ loss=loss,
1413
+ logits=logits,
1414
+ hidden_states=outputs.hidden_states,
1415
+ attentions=outputs.attentions,
1416
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_flax_clip.py ADDED
@@ -0,0 +1,1295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The OpenAI Team Authors, The Google Flax Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Any, Optional, Tuple, Union
17
+
18
+ import flax
19
+ import flax.linen as nn
20
+ import jax
21
+ import jax.numpy as jnp
22
+ from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
23
+ from flax.linen import combine_masks, make_causal_mask
24
+ from flax.linen.attention import dot_product_attention_weights
25
+ from flax.traverse_util import flatten_dict, unflatten_dict
26
+ from jax import lax
27
+
28
+ from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling
29
+ from ...modeling_flax_utils import (
30
+ ACT2FN,
31
+ FlaxPreTrainedModel,
32
+ append_replace_return_docstrings,
33
+ overwrite_call_docstring,
34
+ )
35
+ from ...utils import ModelOutput, add_start_docstrings, logging
36
+ from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ CLIP_START_DOCSTRING = r"""
42
+
43
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
44
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
45
+
46
+ This model is also a
47
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
48
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
49
+ behavior.
50
+
51
+ Finally, this model supports inherent JAX features such as:
52
+
53
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
54
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
55
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
56
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
57
+
58
+ Parameters:
59
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
60
+ Initializing with a config file does not load the weights associated with the model, only the
61
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
62
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
63
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
64
+ `jax.numpy.bfloat16` (on TPUs).
65
+
66
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
67
+ specified all the computation will be performed with the given `dtype`.
68
+
69
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
70
+ parameters.**
71
+
72
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
73
+ [`~FlaxPreTrainedModel.to_bf16`].
74
+ """
75
+
76
+ CLIP_TEXT_INPUTS_DOCSTRING = r"""
77
+ Args:
78
+ input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
79
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
80
+ it.
81
+
82
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
83
+ [`PreTrainedTokenizer.__call__`] for details.
84
+
85
+ [What are input IDs?](../glossary#input-ids)
86
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
87
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
88
+
89
+ - 1 for tokens that are **not masked**,
90
+ - 0 for tokens that are **masked**.
91
+
92
+ [What are attention masks?](../glossary#attention-mask)
93
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
94
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
95
+ config.max_position_embeddings - 1]`.
96
+
97
+ [What are position IDs?](../glossary#position-ids)
98
+ output_attentions (`bool`, *optional*):
99
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
100
+ tensors for more detail.
101
+ output_hidden_states (`bool`, *optional*):
102
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
103
+ more detail.
104
+ return_dict (`bool`, *optional*):
105
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
106
+ """
107
+
108
+ CLIP_VISION_INPUTS_DOCSTRING = r"""
109
+ Args:
110
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
111
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
112
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
113
+ output_attentions (`bool`, *optional*):
114
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
115
+ tensors for more detail.
116
+ output_hidden_states (`bool`, *optional*):
117
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
118
+ more detail.
119
+ return_dict (`bool`, *optional*):
120
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
121
+ """
122
+
123
+ CLIP_INPUTS_DOCSTRING = r"""
124
+ Args:
125
+ input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
126
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
127
+ it.
128
+
129
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
130
+ [`PreTrainedTokenizer.__call__`] for details.
131
+
132
+ [What are input IDs?](../glossary#input-ids)
133
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
134
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
135
+
136
+ - 1 for tokens that are **not masked**,
137
+ - 0 for tokens that are **masked**.
138
+
139
+ [What are attention masks?](../glossary#attention-mask)
140
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
141
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
142
+ config.max_position_embeddings - 1]`.
143
+
144
+ [What are position IDs?](../glossary#position-ids)
145
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
146
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
147
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
148
+ output_attentions (`bool`, *optional*):
149
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
150
+ tensors for more detail.
151
+ output_hidden_states (`bool`, *optional*):
152
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
153
+ more detail.
154
+ return_dict (`bool`, *optional*):
155
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
156
+ """
157
+
158
+
159
+ @flax.struct.dataclass
160
+ class FlaxCLIPTextModelOutput(ModelOutput):
161
+ """
162
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
163
+
164
+ Args:
165
+ text_embeds (`jnp.ndarray` of shape `(batch_size, output_dim`):
166
+ The text embeddings obtained by applying the projection layer to the pooled output of
167
+ [`FlaxCLIPTextModel`].
168
+ last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
169
+ Sequence of hidden-states at the output of the last layer of the model.
170
+ hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
171
+ Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
172
+ `(batch_size, sequence_length, hidden_size)`.
173
+
174
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
175
+ attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
176
+ Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
177
+ sequence_length)`.
178
+
179
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
180
+ heads.
181
+ """
182
+
183
+ text_embeds: jnp.ndarray = None
184
+ last_hidden_state: jnp.ndarray = None
185
+ hidden_states: Optional[Tuple[jnp.ndarray, ...]] = None
186
+ attentions: Optional[Tuple[jnp.ndarray, ...]] = None
187
+
188
+
189
+ @flax.struct.dataclass
190
+ class FlaxCLIPOutput(ModelOutput):
191
+ """
192
+ Args:
193
+ logits_per_image:(`jnp.ndarray` of shape `(image_batch_size, text_batch_size)`):
194
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
195
+ similarity scores.
196
+ logits_per_text:(`jnp.ndarray` of shape `(text_batch_size, image_batch_size)`):
197
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
198
+ similarity scores.
199
+ text_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`):
200
+ The text embeddings obtained by applying the projection layer to the pooled output of
201
+ [`FlaxCLIPTextModel`].
202
+ image_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`):
203
+ The image embeddings obtained by applying the projection layer to the pooled output of
204
+ [`FlaxCLIPVisionModel`].
205
+ text_model_output(`FlaxBaseModelOutputWithPooling`):
206
+ The output of the [`FlaxCLIPTextModel`].
207
+ vision_model_output(`FlaxBaseModelOutputWithPooling`):
208
+ The output of the [`FlaxCLIPVisionModel`].
209
+ """
210
+
211
+ logits_per_image: jnp.ndarray = None
212
+ logits_per_text: jnp.ndarray = None
213
+ text_embeds: jnp.ndarray = None
214
+ image_embeds: jnp.ndarray = None
215
+ text_model_output: FlaxBaseModelOutputWithPooling = None
216
+ vision_model_output: FlaxBaseModelOutputWithPooling = None
217
+
218
+ def to_tuple(self) -> Tuple[Any]:
219
+ return tuple(
220
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
221
+ for k in self.keys()
222
+ )
223
+
224
+
225
+ class FlaxCLIPVisionEmbeddings(nn.Module):
226
+ config: CLIPVisionConfig
227
+ dtype: jnp.dtype = jnp.float32
228
+
229
+ def setup(self):
230
+ embed_dim = self.config.hidden_size
231
+ image_size = self.config.image_size
232
+ patch_size = self.config.patch_size
233
+
234
+ self.class_embedding = self.param("class_embedding", jax.nn.initializers.normal(stddev=0.02), (embed_dim,))
235
+
236
+ self.patch_embedding = nn.Conv(
237
+ embed_dim,
238
+ kernel_size=(patch_size, patch_size),
239
+ strides=(patch_size, patch_size),
240
+ padding="VALID",
241
+ use_bias=False,
242
+ dtype=self.dtype,
243
+ kernel_init=jax.nn.initializers.normal(),
244
+ )
245
+
246
+ self.num_patches = (image_size // patch_size) ** 2
247
+ num_positions = self.num_patches + 1
248
+ self.position_embedding = nn.Embed(num_positions, embed_dim, embedding_init=jax.nn.initializers.normal())
249
+ self.position_ids = jnp.expand_dims(jnp.arange(0, num_positions, dtype="i4"), axis=0)
250
+
251
+ def __call__(self, pixel_values):
252
+ patch_embeds = self.patch_embedding(pixel_values)
253
+ batch_size, height, width, channels = patch_embeds.shape
254
+ patch_embeds = jnp.reshape(patch_embeds, (batch_size, height * width, channels))
255
+
256
+ class_embeds = jnp.expand_dims(self.class_embedding, axis=(0, 1))
257
+ class_embeds = jnp.tile(class_embeds, (batch_size, 1, 1))
258
+ embeddings = jnp.concatenate([class_embeds, patch_embeds], axis=1)
259
+ embeddings = embeddings + self.position_embedding(self.position_ids)
260
+ return embeddings
261
+
262
+
263
+ class FlaxCLIPTextEmbeddings(nn.Module):
264
+ config: CLIPTextConfig
265
+ dtype: jnp.dtype = jnp.float32
266
+
267
+ def setup(self):
268
+ embed_dim = self.config.hidden_size
269
+
270
+ self.token_embedding = nn.Embed(self.config.vocab_size, embed_dim, embedding_init=jax.nn.initializers.normal())
271
+ self.position_embedding = nn.Embed(
272
+ self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal()
273
+ )
274
+ self.position_ids = jnp.expand_dims(
275
+ jnp.arange(0, self.config.max_position_embeddings, dtype="i4"), axis=(0, 1)
276
+ )
277
+
278
+ def __call__(self, input_ids, position_ids):
279
+ input_embeds = self.token_embedding(input_ids.astype("i4"))
280
+ position_embeds = self.position_embedding(position_ids.astype("i4"))
281
+
282
+ embeddings = input_embeds + position_embeds
283
+ return embeddings
284
+
285
+
286
+ class FlaxCLIPAttention(nn.Module):
287
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
288
+ dtype: jnp.dtype = jnp.float32
289
+
290
+ def setup(self):
291
+ self.embed_dim = self.config.hidden_size
292
+ self.num_heads = self.config.num_attention_heads
293
+ self.head_dim = self.embed_dim // self.num_heads
294
+ if self.head_dim * self.num_heads != self.embed_dim:
295
+ raise ValueError(
296
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
297
+ f" {self.num_heads})."
298
+ )
299
+ self.scale = self.head_dim**-0.5
300
+ self.dropout = self.config.attention_dropout
301
+
302
+ self.k_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
303
+ self.v_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
304
+ self.q_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
305
+ self.out_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
306
+
307
+ self.causal = isinstance(self.config, CLIPTextConfig)
308
+ if self.causal:
309
+ self.causal_mask = make_causal_mask(jnp.ones((1, self.config.max_position_embeddings), dtype="i4"))
310
+
311
+ def _split_heads(self, hidden_states):
312
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
313
+
314
+ def _merge_heads(self, hidden_states):
315
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
316
+
317
+ def __call__(
318
+ self,
319
+ hidden_states,
320
+ attention_mask=None,
321
+ deterministic: bool = True,
322
+ output_attentions: bool = False,
323
+ ):
324
+ query = self.q_proj(hidden_states)
325
+ key = self.k_proj(hidden_states)
326
+ value = self.v_proj(hidden_states)
327
+
328
+ query = self._split_heads(query)
329
+ key = self._split_heads(key)
330
+ value = self._split_heads(value)
331
+
332
+ causal_attention_mask = None
333
+ if self.causal:
334
+ query_length, key_length = query.shape[1], key.shape[1]
335
+ causal_attention_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
336
+
337
+ if attention_mask is not None and causal_attention_mask is not None:
338
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
339
+ attention_mask = combine_masks(attention_mask, causal_attention_mask, dtype="i4")
340
+ elif causal_attention_mask is not None:
341
+ attention_mask = causal_attention_mask
342
+ elif attention_mask is not None:
343
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
344
+
345
+ if attention_mask is not None:
346
+ attention_bias = lax.select(
347
+ attention_mask > 0,
348
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
349
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
350
+ )
351
+ else:
352
+ attention_bias = None
353
+
354
+ dropout_rng = None
355
+ if not deterministic and self.dropout > 0.0:
356
+ dropout_rng = self.make_rng("dropout")
357
+
358
+ attn_weights = dot_product_attention_weights(
359
+ query,
360
+ key,
361
+ bias=attention_bias,
362
+ dropout_rng=dropout_rng,
363
+ dropout_rate=self.dropout,
364
+ deterministic=deterministic,
365
+ dtype=self.dtype,
366
+ precision=None,
367
+ )
368
+
369
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
370
+ attn_output = self._merge_heads(attn_output)
371
+ attn_output = self.out_proj(attn_output)
372
+
373
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
374
+ return outputs
375
+
376
+
377
+ class FlaxCLIPMLP(nn.Module):
378
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
379
+ dtype: jnp.dtype = jnp.float32
380
+
381
+ def setup(self):
382
+ self.activation_fn = ACT2FN[self.config.hidden_act]
383
+ self.fc1 = nn.Dense(
384
+ self.config.intermediate_size,
385
+ dtype=self.dtype,
386
+ kernel_init=jax.nn.initializers.normal(0.01),
387
+ )
388
+ self.fc2 = nn.Dense(self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
389
+
390
+ def __call__(self, hidden_states):
391
+ hidden_states = self.fc1(hidden_states)
392
+ hidden_states = self.activation_fn(hidden_states)
393
+ hidden_states = self.fc2(hidden_states)
394
+ return hidden_states
395
+
396
+
397
+ class FlaxCLIPEncoderLayer(nn.Module):
398
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
399
+ dtype: jnp.dtype = jnp.float32
400
+
401
+ def setup(self):
402
+ self.self_attn = FlaxCLIPAttention(self.config, dtype=self.dtype)
403
+ self.layer_norm1 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
404
+ self.mlp = FlaxCLIPMLP(self.config, dtype=self.dtype)
405
+ self.layer_norm2 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
406
+
407
+ def __call__(
408
+ self,
409
+ hidden_states,
410
+ attention_mask,
411
+ deterministic: bool = True,
412
+ output_attentions: bool = False,
413
+ ):
414
+ residual = hidden_states
415
+
416
+ hidden_states = self.layer_norm1(hidden_states)
417
+ attn_outputs = self.self_attn(
418
+ hidden_states=hidden_states,
419
+ attention_mask=attention_mask,
420
+ deterministic=deterministic,
421
+ output_attentions=output_attentions,
422
+ )
423
+ hidden_states = attn_outputs[0]
424
+ hidden_states = residual + hidden_states
425
+
426
+ residual = hidden_states
427
+ hidden_states = self.layer_norm2(hidden_states)
428
+ hidden_states = self.mlp(hidden_states)
429
+ hidden_states = residual + hidden_states
430
+
431
+ outputs = (hidden_states,)
432
+
433
+ if output_attentions:
434
+ outputs += attn_outputs[1:]
435
+
436
+ return outputs
437
+
438
+
439
+ class FlaxCLIPLayerCollection(nn.Module):
440
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
441
+ dtype: jnp.dtype = jnp.float32
442
+
443
+ def setup(self):
444
+ self.layers = [
445
+ FlaxCLIPEncoderLayer(self.config, name=str(i), dtype=self.dtype)
446
+ for i in range(self.config.num_hidden_layers)
447
+ ]
448
+
449
+ def __call__(
450
+ self,
451
+ hidden_states,
452
+ attention_mask=None,
453
+ deterministic: bool = True,
454
+ output_attentions: bool = False,
455
+ output_hidden_states: bool = False,
456
+ return_dict: bool = True,
457
+ ):
458
+ all_attentions = () if output_attentions else None
459
+ all_hidden_states = () if output_hidden_states else None
460
+
461
+ for layer in self.layers:
462
+ if output_hidden_states:
463
+ all_hidden_states += (hidden_states,)
464
+
465
+ layer_outputs = layer(
466
+ hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
467
+ )
468
+ hidden_states = layer_outputs[0]
469
+
470
+ if output_attentions:
471
+ all_attentions += (layer_outputs[1],)
472
+
473
+ if output_hidden_states:
474
+ all_hidden_states += (hidden_states,)
475
+
476
+ outputs = (hidden_states,)
477
+
478
+ if not return_dict:
479
+ return tuple(v for v in outputs if v is not None)
480
+
481
+ return FlaxBaseModelOutput(
482
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
483
+ )
484
+
485
+
486
+ class FlaxCLIPEncoder(nn.Module):
487
+ config: Union[CLIPTextConfig, CLIPVisionConfig]
488
+ dtype: jnp.dtype = jnp.float32
489
+
490
+ def setup(self):
491
+ self.layers = FlaxCLIPLayerCollection(self.config, dtype=self.dtype)
492
+
493
+ def __call__(
494
+ self,
495
+ inputs_embeds,
496
+ attention_mask=None,
497
+ deterministic: bool = True,
498
+ output_attentions: bool = False,
499
+ output_hidden_states: bool = False,
500
+ return_dict: bool = True,
501
+ ):
502
+ return self.layers(
503
+ hidden_states=inputs_embeds,
504
+ attention_mask=attention_mask,
505
+ deterministic=deterministic,
506
+ output_attentions=output_attentions,
507
+ output_hidden_states=output_hidden_states,
508
+ return_dict=return_dict,
509
+ )
510
+
511
+
512
+ class FlaxCLIPTextTransformer(nn.Module):
513
+ config: CLIPTextConfig
514
+ dtype: jnp.dtype = jnp.float32
515
+
516
+ def setup(self):
517
+ self.embeddings = FlaxCLIPTextEmbeddings(self.config, dtype=self.dtype)
518
+ self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype)
519
+ self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
520
+
521
+ # For `pooled_output` computation
522
+ self.eos_token_id = self.config.eos_token_id
523
+
524
+ def __call__(
525
+ self,
526
+ input_ids,
527
+ attention_mask,
528
+ position_ids,
529
+ deterministic: bool = True,
530
+ output_attentions: bool = False,
531
+ output_hidden_states: bool = False,
532
+ return_dict: bool = True,
533
+ ):
534
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
535
+ output_hidden_states = (
536
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
537
+ )
538
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
539
+
540
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
541
+
542
+ encoder_outputs = self.encoder(
543
+ inputs_embeds=hidden_states,
544
+ attention_mask=attention_mask,
545
+ deterministic=deterministic,
546
+ output_attentions=output_attentions,
547
+ output_hidden_states=output_hidden_states,
548
+ return_dict=return_dict,
549
+ )
550
+
551
+ last_hidden_state = encoder_outputs[0]
552
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
553
+
554
+ if self.eos_token_id == 2:
555
+ # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
556
+ # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
557
+ # ------------------------------------------------------------
558
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
559
+ # take features from the EOS embedding (eos_token_id is the highest number in each sequence)
560
+ pooled_output = last_hidden_state[jnp.arange(last_hidden_state.shape[0]), input_ids.argmax(axis=-1)]
561
+ else:
562
+ # (no need to cast from bool to int after comparing to `eos_token_id`)
563
+ pooled_output = last_hidden_state[
564
+ jnp.arange(last_hidden_state.shape[0]), (input_ids == self.eos_token_id).argmax(axis=-1)
565
+ ]
566
+
567
+ if not return_dict:
568
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
569
+
570
+ return FlaxBaseModelOutputWithPooling(
571
+ last_hidden_state=last_hidden_state,
572
+ pooler_output=pooled_output,
573
+ hidden_states=encoder_outputs.hidden_states,
574
+ attentions=encoder_outputs.attentions,
575
+ )
576
+
577
+
578
+ class FlaxCLIPVisionTransformer(nn.Module):
579
+ config: CLIPVisionConfig
580
+ dtype: jnp.dtype = jnp.float32
581
+
582
+ def setup(self):
583
+ self.embeddings = FlaxCLIPVisionEmbeddings(self.config, dtype=self.dtype)
584
+ self.pre_layrnorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
585
+ self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype)
586
+ self.post_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
587
+
588
+ def __call__(
589
+ self,
590
+ pixel_values=None,
591
+ deterministic: bool = True,
592
+ output_attentions=None,
593
+ output_hidden_states=None,
594
+ return_dict: bool = True,
595
+ ):
596
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
597
+ output_hidden_states = (
598
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
599
+ )
600
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
601
+
602
+ hidden_states = self.embeddings(pixel_values)
603
+ hidden_states = self.pre_layrnorm(hidden_states)
604
+
605
+ encoder_outputs = self.encoder(
606
+ inputs_embeds=hidden_states,
607
+ deterministic=deterministic,
608
+ output_attentions=output_attentions,
609
+ output_hidden_states=output_hidden_states,
610
+ return_dict=return_dict,
611
+ )
612
+
613
+ last_hidden_state = encoder_outputs[0]
614
+ pooled_output = last_hidden_state[:, 0, :]
615
+ pooled_output = self.post_layernorm(pooled_output)
616
+
617
+ if not return_dict:
618
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
619
+
620
+ return FlaxBaseModelOutputWithPooling(
621
+ last_hidden_state=last_hidden_state,
622
+ pooler_output=pooled_output,
623
+ hidden_states=encoder_outputs.hidden_states,
624
+ attentions=encoder_outputs.attentions,
625
+ )
626
+
627
+
628
+ class FlaxCLIPTextPreTrainedModel(FlaxPreTrainedModel):
629
+ config_class = CLIPTextConfig
630
+ module_class: nn.Module = None
631
+
632
+ def __init__(
633
+ self,
634
+ config: CLIPTextConfig,
635
+ input_shape=(1, 1),
636
+ seed: int = 0,
637
+ dtype: jnp.dtype = jnp.float32,
638
+ _do_init: bool = True,
639
+ **kwargs,
640
+ ):
641
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
642
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
643
+
644
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
645
+ # init input tensor
646
+ input_ids = jnp.zeros(input_shape, dtype="i4")
647
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
648
+ attention_mask = jnp.ones_like(input_ids)
649
+
650
+ params_rng, dropout_rng = jax.random.split(rng)
651
+ rngs = {"params": params_rng, "dropout": dropout_rng}
652
+
653
+ random_params = self.module.init(rngs, input_ids, attention_mask, position_ids)["params"]
654
+
655
+ if params is not None:
656
+ random_params = flatten_dict(unfreeze(random_params))
657
+ params = flatten_dict(unfreeze(params))
658
+ for missing_key in self._missing_keys:
659
+ params[missing_key] = random_params[missing_key]
660
+ self._missing_keys = set()
661
+ return freeze(unflatten_dict(params))
662
+ else:
663
+ return random_params
664
+
665
+ def __call__(
666
+ self,
667
+ input_ids,
668
+ attention_mask=None,
669
+ position_ids=None,
670
+ params: dict = None,
671
+ dropout_rng: jax.random.PRNGKey = None,
672
+ train: bool = False,
673
+ output_attentions: Optional[bool] = None,
674
+ output_hidden_states: Optional[bool] = None,
675
+ return_dict: Optional[bool] = None,
676
+ ):
677
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
678
+ output_hidden_states = (
679
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
680
+ )
681
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
682
+
683
+ if position_ids is None:
684
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
685
+
686
+ if attention_mask is None:
687
+ attention_mask = jnp.ones_like(input_ids)
688
+
689
+ # Handle any PRNG if needed
690
+ rngs = {}
691
+ if dropout_rng is not None:
692
+ rngs["dropout"] = dropout_rng
693
+
694
+ return self.module.apply(
695
+ {"params": params or self.params},
696
+ jnp.array(input_ids, dtype="i4"),
697
+ jnp.array(attention_mask, dtype="i4"),
698
+ jnp.array(position_ids, dtype="i4"),
699
+ not train,
700
+ output_attentions,
701
+ output_hidden_states,
702
+ return_dict,
703
+ rngs=rngs,
704
+ )
705
+
706
+
707
+ class FlaxCLIPVisionPreTrainedModel(FlaxPreTrainedModel):
708
+ config_class = CLIPVisionConfig
709
+ main_input_name = "pixel_values"
710
+ module_class: nn.Module = None
711
+
712
+ def __init__(
713
+ self,
714
+ config: CLIPVisionConfig,
715
+ input_shape: Optional[Tuple] = None,
716
+ seed: int = 0,
717
+ dtype: jnp.dtype = jnp.float32,
718
+ _do_init: bool = True,
719
+ **kwargs,
720
+ ):
721
+ if input_shape is None:
722
+ input_shape = (1, config.image_size, config.image_size, 3)
723
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
724
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
725
+
726
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
727
+ # init input tensor
728
+ pixel_values = jax.random.normal(rng, input_shape)
729
+
730
+ params_rng, dropout_rng = jax.random.split(rng)
731
+ rngs = {"params": params_rng, "dropout": dropout_rng}
732
+
733
+ random_params = self.module.init(rngs, pixel_values)["params"]
734
+
735
+ if params is not None:
736
+ random_params = flatten_dict(unfreeze(random_params))
737
+ params = flatten_dict(unfreeze(params))
738
+ for missing_key in self._missing_keys:
739
+ params[missing_key] = random_params[missing_key]
740
+ self._missing_keys = set()
741
+ return freeze(unflatten_dict(params))
742
+ else:
743
+ return random_params
744
+
745
+ def __call__(
746
+ self,
747
+ pixel_values,
748
+ params: dict = None,
749
+ dropout_rng: jax.random.PRNGKey = None,
750
+ train: bool = False,
751
+ output_attentions: Optional[bool] = None,
752
+ output_hidden_states: Optional[bool] = None,
753
+ return_dict: Optional[bool] = None,
754
+ ):
755
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
756
+ output_hidden_states = (
757
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
758
+ )
759
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
760
+
761
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
762
+
763
+ # Handle any PRNG if needed
764
+ rngs = {}
765
+ if dropout_rng is not None:
766
+ rngs["dropout"] = dropout_rng
767
+
768
+ return self.module.apply(
769
+ {"params": params or self.params},
770
+ jnp.array(pixel_values, dtype=jnp.float32),
771
+ not train,
772
+ output_attentions,
773
+ output_hidden_states,
774
+ return_dict,
775
+ rngs=rngs,
776
+ )
777
+
778
+
779
+ class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel):
780
+ config_class = CLIPConfig
781
+ module_class: nn.Module = None
782
+
783
+ def __init__(
784
+ self,
785
+ config: CLIPConfig,
786
+ input_shape: Optional[Tuple] = None,
787
+ seed: int = 0,
788
+ dtype: jnp.dtype = jnp.float32,
789
+ _do_init: bool = True,
790
+ **kwargs,
791
+ ):
792
+ if input_shape is None:
793
+ input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
794
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
795
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
796
+
797
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
798
+ # init input tensor
799
+ input_ids = jnp.zeros(input_shape[0], dtype="i4")
800
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
801
+ attention_mask = jnp.ones_like(input_ids)
802
+
803
+ pixel_values = jax.random.normal(rng, input_shape[1])
804
+
805
+ params_rng, dropout_rng = jax.random.split(rng)
806
+ rngs = {"params": params_rng, "dropout": dropout_rng}
807
+
808
+ random_params = self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids)["params"]
809
+
810
+ if params is not None:
811
+ random_params = flatten_dict(unfreeze(random_params))
812
+ params = flatten_dict(unfreeze(params))
813
+ for missing_key in self._missing_keys:
814
+ params[missing_key] = random_params[missing_key]
815
+ self._missing_keys = set()
816
+ return freeze(unflatten_dict(params))
817
+ else:
818
+ return random_params
819
+
820
+ def __call__(
821
+ self,
822
+ input_ids,
823
+ pixel_values,
824
+ attention_mask=None,
825
+ position_ids=None,
826
+ params: dict = None,
827
+ dropout_rng: jax.random.PRNGKey = None,
828
+ train: bool = False,
829
+ output_attentions: Optional[bool] = None,
830
+ output_hidden_states: Optional[bool] = None,
831
+ return_dict: Optional[bool] = None,
832
+ ):
833
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
834
+ output_hidden_states = (
835
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
836
+ )
837
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
838
+
839
+ if position_ids is None:
840
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
841
+
842
+ if attention_mask is None:
843
+ attention_mask = jnp.ones_like(input_ids)
844
+
845
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
846
+
847
+ # Handle any PRNG if needed
848
+ rngs = {}
849
+ if dropout_rng is not None:
850
+ rngs["dropout"] = dropout_rng
851
+
852
+ return self.module.apply(
853
+ {"params": params or self.params},
854
+ jnp.array(input_ids, dtype="i4"),
855
+ jnp.array(pixel_values, dtype=jnp.float32),
856
+ jnp.array(attention_mask, dtype="i4"),
857
+ jnp.array(position_ids, dtype="i4"),
858
+ not train,
859
+ output_attentions,
860
+ output_hidden_states,
861
+ return_dict,
862
+ rngs=rngs,
863
+ )
864
+
865
+ def get_text_features(
866
+ self,
867
+ input_ids,
868
+ attention_mask=None,
869
+ position_ids=None,
870
+ params: dict = None,
871
+ dropout_rng: jax.random.PRNGKey = None,
872
+ train=False,
873
+ ):
874
+ r"""
875
+ Args:
876
+ input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
877
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
878
+ provide it.
879
+
880
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
881
+ [`PreTrainedTokenizer.__call__`] for details.
882
+
883
+ [What are input IDs?](../glossary#input-ids)
884
+
885
+ Returns:
886
+ text_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
887
+ the projection layer to the pooled output of [`FlaxCLIPTextModel`].
888
+
889
+ Examples:
890
+
891
+ ```python
892
+ >>> from transformers import AutoTokenizer, FlaxCLIPModel
893
+
894
+ >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
895
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
896
+
897
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
898
+ >>> text_features = model.get_text_features(**inputs)
899
+ ```"""
900
+ if position_ids is None:
901
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
902
+
903
+ if attention_mask is None:
904
+ attention_mask = jnp.ones_like(input_ids)
905
+
906
+ # Handle any PRNG if needed
907
+ rngs = {}
908
+ if dropout_rng is not None:
909
+ rngs["dropout"] = dropout_rng
910
+
911
+ def _get_features(module, input_ids, attention_mask, position_ids, deterministic):
912
+ text_outputs = module.text_model(
913
+ input_ids=input_ids,
914
+ attention_mask=attention_mask,
915
+ position_ids=position_ids,
916
+ deterministic=deterministic,
917
+ )
918
+ pooled_output = text_outputs[1]
919
+ text_features = module.text_projection(pooled_output)
920
+ return text_features
921
+
922
+ return self.module.apply(
923
+ {"params": params or self.params},
924
+ jnp.array(input_ids, dtype="i4"),
925
+ jnp.array(attention_mask, dtype="i4"),
926
+ jnp.array(position_ids, dtype="i4"),
927
+ not train,
928
+ method=_get_features,
929
+ rngs=rngs,
930
+ )
931
+
932
+ def get_image_features(
933
+ self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False
934
+ ):
935
+ r"""
936
+ Args:
937
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
938
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
939
+ using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
940
+
941
+ Returns:
942
+ image_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by
943
+ applying the projection layer to the pooled output of [`FlaxCLIPVisionModel`]
944
+
945
+ Examples:
946
+
947
+ ```python
948
+ >>> from PIL import Image
949
+ >>> import requests
950
+ >>> from transformers import AutoProcessor, FlaxCLIPModel
951
+
952
+ >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
953
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
954
+
955
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
956
+ >>> image = Image.open(requests.get(url, stream=True).raw)
957
+
958
+ >>> inputs = processor(images=image, return_tensors="np")
959
+
960
+ >>> image_features = model.get_image_features(**inputs)
961
+ ```"""
962
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
963
+
964
+ # Handle any PRNG if needed
965
+ rngs = {}
966
+ if dropout_rng is not None:
967
+ rngs["dropout"] = dropout_rng
968
+
969
+ def _get_features(module, pixel_values, deterministic):
970
+ vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
971
+ pooled_output = vision_outputs[1] # pooled_output
972
+ image_features = module.visual_projection(pooled_output)
973
+ return image_features
974
+
975
+ return self.module.apply(
976
+ {"params": params or self.params},
977
+ jnp.array(pixel_values, dtype=jnp.float32),
978
+ not train,
979
+ method=_get_features,
980
+ rngs=rngs,
981
+ )
982
+
983
+
984
+ class FlaxCLIPTextModule(nn.Module):
985
+ config: CLIPTextConfig
986
+ dtype: jnp.dtype = jnp.float32
987
+
988
+ def setup(self):
989
+ self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype)
990
+
991
+ def __call__(
992
+ self,
993
+ input_ids,
994
+ attention_mask,
995
+ position_ids,
996
+ deterministic: bool = True,
997
+ output_attentions: bool = False,
998
+ output_hidden_states: bool = False,
999
+ return_dict: bool = True,
1000
+ ):
1001
+ return self.text_model(
1002
+ input_ids=input_ids,
1003
+ attention_mask=attention_mask,
1004
+ position_ids=position_ids,
1005
+ deterministic=deterministic,
1006
+ output_attentions=output_attentions,
1007
+ output_hidden_states=output_hidden_states,
1008
+ return_dict=return_dict,
1009
+ )
1010
+
1011
+
1012
+ class FlaxCLIPTextModel(FlaxCLIPTextPreTrainedModel):
1013
+ module_class = FlaxCLIPTextModule
1014
+
1015
+
1016
+ FLAX_CLIP_TEXT_MODEL_DOCSTRING = """
1017
+ Returns:
1018
+
1019
+ Example:
1020
+
1021
+ ```python
1022
+ >>> from transformers import AutoTokenizer, FlaxCLIPTextModel
1023
+
1024
+ >>> model = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
1025
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1026
+
1027
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
1028
+
1029
+ >>> outputs = model(**inputs)
1030
+ >>> last_hidden_state = outputs.last_hidden_state
1031
+ >>> pooler_output = outputs.pooler_output # pooled (EOS token) states
1032
+ ```
1033
+ """
1034
+
1035
+ overwrite_call_docstring(FlaxCLIPTextModel, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_DOCSTRING)
1036
+ append_replace_return_docstrings(
1037
+ FlaxCLIPTextModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPTextConfig
1038
+ )
1039
+
1040
+
1041
+ class FlaxCLIPTextModelWithProjectionModule(nn.Module):
1042
+ config: CLIPTextConfig
1043
+ dtype: jnp.dtype = jnp.float32
1044
+
1045
+ def setup(self):
1046
+ self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype)
1047
+ self.text_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype)
1048
+
1049
+ def __call__(
1050
+ self,
1051
+ input_ids,
1052
+ attention_mask,
1053
+ position_ids,
1054
+ deterministic: bool = True,
1055
+ output_attentions: bool = False,
1056
+ output_hidden_states: bool = False,
1057
+ return_dict: bool = True,
1058
+ ):
1059
+ text_outputs = self.text_model(
1060
+ input_ids=input_ids,
1061
+ attention_mask=attention_mask,
1062
+ position_ids=position_ids,
1063
+ deterministic=deterministic,
1064
+ output_attentions=output_attentions,
1065
+ output_hidden_states=output_hidden_states,
1066
+ return_dict=return_dict,
1067
+ )
1068
+
1069
+ pooled_output = text_outputs[1]
1070
+ text_embeds = self.text_projection(pooled_output)
1071
+
1072
+ if not return_dict:
1073
+ return (text_embeds, text_outputs[0]) + text_outputs[2:]
1074
+
1075
+ return FlaxCLIPTextModelOutput(
1076
+ text_embeds=text_embeds,
1077
+ last_hidden_state=text_outputs.last_hidden_state,
1078
+ hidden_states=text_outputs.hidden_states,
1079
+ attentions=text_outputs.attentions,
1080
+ )
1081
+
1082
+
1083
+ class FlaxCLIPTextModelWithProjection(FlaxCLIPTextPreTrainedModel):
1084
+ module_class = FlaxCLIPTextModelWithProjectionModule
1085
+
1086
+
1087
+ FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING = """
1088
+ Returns:
1089
+
1090
+ Example:
1091
+
1092
+ ```python
1093
+ >>> from transformers import AutoTokenizer, FlaxCLIPTextModelWithProjection
1094
+
1095
+ >>> model = FlaxCLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
1096
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1097
+
1098
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
1099
+
1100
+ >>> outputs = model(**inputs)
1101
+ >>> text_embeds = outputs.text_embeds
1102
+ ```
1103
+ """
1104
+
1105
+ overwrite_call_docstring(
1106
+ FlaxCLIPTextModelWithProjection, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING
1107
+ )
1108
+ append_replace_return_docstrings(
1109
+ FlaxCLIPTextModelWithProjection, output_type=FlaxCLIPTextModelOutput, config_class=CLIPTextConfig
1110
+ )
1111
+
1112
+
1113
+ class FlaxCLIPVisionModule(nn.Module):
1114
+ config: CLIPVisionConfig
1115
+ dtype: jnp.dtype = jnp.float32
1116
+
1117
+ def setup(self):
1118
+ self.vision_model = FlaxCLIPVisionTransformer(self.config, dtype=self.dtype)
1119
+
1120
+ def __call__(
1121
+ self,
1122
+ pixel_values,
1123
+ deterministic: bool = True,
1124
+ output_attentions: bool = False,
1125
+ output_hidden_states: bool = False,
1126
+ return_dict: bool = True,
1127
+ ):
1128
+ return self.vision_model(
1129
+ pixel_values=pixel_values,
1130
+ deterministic=deterministic,
1131
+ output_attentions=output_attentions,
1132
+ output_hidden_states=output_hidden_states,
1133
+ return_dict=return_dict,
1134
+ )
1135
+
1136
+
1137
+ class FlaxCLIPVisionModel(FlaxCLIPVisionPreTrainedModel):
1138
+ module_class = FlaxCLIPVisionModule
1139
+
1140
+
1141
+ FLAX_CLIP_VISION_MODEL_DOCSTRING = """
1142
+ Returns:
1143
+
1144
+ Example:
1145
+
1146
+ ```python
1147
+ >>> from PIL import Image
1148
+ >>> import requests
1149
+ >>> from transformers import AutoProcessor, FlaxCLIPVisionModel
1150
+
1151
+ >>> model = FlaxCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
1152
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1153
+
1154
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1155
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1156
+
1157
+ >>> inputs = processor(images=image, return_tensors="np")
1158
+
1159
+ >>> outputs = model(**inputs)
1160
+ >>> last_hidden_state = outputs.last_hidden_state
1161
+ >>> pooler_output = outputs.pooler_output # pooled CLS states
1162
+ ```
1163
+ """
1164
+
1165
+ overwrite_call_docstring(FlaxCLIPVisionModel, CLIP_VISION_INPUTS_DOCSTRING + FLAX_CLIP_VISION_MODEL_DOCSTRING)
1166
+ append_replace_return_docstrings(
1167
+ FlaxCLIPVisionModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPVisionConfig
1168
+ )
1169
+
1170
+
1171
+ class FlaxCLIPModule(nn.Module):
1172
+ config: CLIPConfig
1173
+ dtype: jnp.dtype = jnp.float32
1174
+
1175
+ def setup(self):
1176
+ text_config = self.config.text_config
1177
+ vision_config = self.config.vision_config
1178
+
1179
+ self.projection_dim = self.config.projection_dim
1180
+ self.text_embed_dim = text_config.hidden_size
1181
+ self.vision_embed_dim = vision_config.hidden_size
1182
+
1183
+ self.text_model = FlaxCLIPTextTransformer(text_config, dtype=self.dtype)
1184
+ self.vision_model = FlaxCLIPVisionTransformer(vision_config, dtype=self.dtype)
1185
+
1186
+ self.visual_projection = nn.Dense(
1187
+ self.projection_dim,
1188
+ dtype=self.dtype,
1189
+ kernel_init=jax.nn.initializers.normal(0.02),
1190
+ use_bias=False,
1191
+ )
1192
+ self.text_projection = nn.Dense(
1193
+ self.projection_dim,
1194
+ dtype=self.dtype,
1195
+ kernel_init=jax.nn.initializers.normal(0.02),
1196
+ use_bias=False,
1197
+ )
1198
+
1199
+ self.logit_scale = self.param(
1200
+ "logit_scale", lambda _, shape: jnp.ones(shape) * self.config.logit_scale_init_value, []
1201
+ )
1202
+
1203
+ def __call__(
1204
+ self,
1205
+ input_ids=None,
1206
+ pixel_values=None,
1207
+ attention_mask=None,
1208
+ position_ids=None,
1209
+ deterministic: bool = True,
1210
+ output_attentions=None,
1211
+ output_hidden_states=None,
1212
+ return_dict=None,
1213
+ ):
1214
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1215
+
1216
+ vision_outputs = self.vision_model(
1217
+ pixel_values=pixel_values,
1218
+ deterministic=deterministic,
1219
+ output_attentions=output_attentions,
1220
+ output_hidden_states=output_hidden_states,
1221
+ return_dict=return_dict,
1222
+ )
1223
+
1224
+ text_outputs = self.text_model(
1225
+ input_ids=input_ids,
1226
+ attention_mask=attention_mask,
1227
+ position_ids=position_ids,
1228
+ deterministic=deterministic,
1229
+ output_attentions=output_attentions,
1230
+ output_hidden_states=output_hidden_states,
1231
+ return_dict=return_dict,
1232
+ )
1233
+
1234
+ image_embeds = vision_outputs[1]
1235
+ image_embeds = self.visual_projection(image_embeds)
1236
+
1237
+ text_embeds = text_outputs[1]
1238
+ text_embeds = self.text_projection(text_embeds)
1239
+
1240
+ # normalized features
1241
+ image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
1242
+ text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
1243
+
1244
+ # cosine similarity as logits
1245
+ logit_scale = jnp.exp(self.logit_scale)
1246
+ logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
1247
+ logits_per_image = logits_per_text.T
1248
+
1249
+ if not return_dict:
1250
+ return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
1251
+
1252
+ return FlaxCLIPOutput(
1253
+ logits_per_image=logits_per_image,
1254
+ logits_per_text=logits_per_text,
1255
+ text_embeds=text_embeds,
1256
+ image_embeds=image_embeds,
1257
+ text_model_output=text_outputs,
1258
+ vision_model_output=vision_outputs,
1259
+ )
1260
+
1261
+
1262
+ @add_start_docstrings(CLIP_START_DOCSTRING)
1263
+ class FlaxCLIPModel(FlaxCLIPPreTrainedModel):
1264
+ module_class = FlaxCLIPModule
1265
+
1266
+
1267
+ FLAX_CLIP_MODEL_DOCSTRING = """
1268
+ Returns:
1269
+
1270
+ Example:
1271
+
1272
+ ```python
1273
+ >>> import jax
1274
+ >>> from PIL import Image
1275
+ >>> import requests
1276
+ >>> from transformers import AutoProcessor, FlaxCLIPModel
1277
+
1278
+ >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1279
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1280
+
1281
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1282
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1283
+
1284
+ >>> inputs = processor(
1285
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="np", padding=True
1286
+ ... )
1287
+
1288
+ >>> outputs = model(**inputs)
1289
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
1290
+ >>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
1291
+ ```
1292
+ """
1293
+
1294
+ overwrite_call_docstring(FlaxCLIPModel, CLIP_INPUTS_DOCSTRING + FLAX_CLIP_MODEL_DOCSTRING)
1295
+ append_replace_return_docstrings(FlaxCLIPModel, output_type=FlaxCLIPOutput, config_class=CLIPConfig)
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/modeling_tf_clip.py ADDED
@@ -0,0 +1,1461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TF 2.0 CLIP model."""
16
+
17
+
18
+ from __future__ import annotations
19
+
20
+ import math
21
+ from dataclasses import dataclass
22
+ from typing import Any, Optional, Tuple, Union
23
+
24
+ import numpy as np
25
+ import tensorflow as tf
26
+
27
+ from ...activations_tf import get_tf_activation
28
+ from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
29
+
30
+ # Public API
31
+ from ...modeling_tf_utils import (
32
+ TFModelInputType,
33
+ TFPreTrainedModel,
34
+ get_initializer,
35
+ keras,
36
+ keras_serializable,
37
+ unpack_inputs,
38
+ )
39
+ from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
40
+ from ...utils import (
41
+ ModelOutput,
42
+ add_start_docstrings,
43
+ add_start_docstrings_to_model_forward,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+ from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
53
+
54
+
55
+ from ..deprecated._archive_maps import TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
56
+
57
+
58
+ LARGE_NEGATIVE = -1e8
59
+
60
+
61
+ # Copied from transformers.models.bart.modeling_tf_bart._expand_mask
62
+ def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
63
+ """
64
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
65
+ """
66
+ src_len = shape_list(mask)[1]
67
+ tgt_len = tgt_len if tgt_len is not None else src_len
68
+ one_cst = tf.constant(1.0)
69
+ mask = tf.cast(mask, dtype=one_cst.dtype)
70
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
71
+
72
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
73
+
74
+
75
+ # contrastive loss function, adapted from
76
+ # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
77
+ def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
78
+ return tf.math.reduce_mean(
79
+ keras.metrics.sparse_categorical_crossentropy(
80
+ y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
81
+ )
82
+ )
83
+
84
+
85
+ def clip_loss(similarity: tf.Tensor) -> tf.Tensor:
86
+ caption_loss = contrastive_loss(similarity)
87
+ image_loss = contrastive_loss(tf.transpose(similarity))
88
+ return (caption_loss + image_loss) / 2.0
89
+
90
+
91
+ @dataclass
92
+ class TFCLIPOutput(ModelOutput):
93
+ """
94
+ Args:
95
+ loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
96
+ Contrastive loss for image-text similarity.
97
+ logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
98
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
99
+ similarity scores.
100
+ logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
101
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
102
+ similarity scores.
103
+ text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
104
+ The text embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPTextModel`].
105
+ image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
106
+ The image embeddings obtained by applying the projection layer to the pooled output of
107
+ [`TFCLIPVisionModel`].
108
+ text_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
109
+ The output of the [`TFCLIPTextModel`].
110
+ vision_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
111
+ The output of the [`TFCLIPVisionModel`].
112
+ """
113
+
114
+ loss: tf.Tensor | None = None
115
+ logits_per_image: tf.Tensor = None
116
+ logits_per_text: tf.Tensor = None
117
+ text_embeds: tf.Tensor = None
118
+ image_embeds: tf.Tensor = None
119
+ text_model_output: TFBaseModelOutputWithPooling = None
120
+ vision_model_output: TFBaseModelOutputWithPooling = None
121
+
122
+ def to_tuple(self) -> Tuple[Any]:
123
+ return tuple(
124
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
125
+ for k in self.keys()
126
+ )
127
+
128
+
129
+ class TFCLIPVisionEmbeddings(keras.layers.Layer):
130
+ def __init__(self, config: CLIPVisionConfig, **kwargs):
131
+ super().__init__(**kwargs)
132
+
133
+ self.embed_dim = config.hidden_size
134
+ self.image_size = config.image_size
135
+ self.patch_size = config.patch_size
136
+
137
+ self.num_patches = (self.image_size // self.patch_size) ** 2
138
+ self.num_positions = self.num_patches + 1
139
+
140
+ self.config = config
141
+
142
+ self.patch_embedding = keras.layers.Conv2D(
143
+ filters=self.embed_dim,
144
+ kernel_size=self.patch_size,
145
+ strides=self.patch_size,
146
+ padding="valid",
147
+ data_format="channels_last",
148
+ use_bias=False,
149
+ kernel_initializer=get_initializer(self.config.initializer_range * self.config.initializer_factor),
150
+ name="patch_embedding",
151
+ )
152
+
153
+ def build(self, input_shape: tf.TensorShape = None):
154
+ factor = self.config.initializer_factor
155
+
156
+ self.class_embedding = self.add_weight(
157
+ shape=(self.embed_dim,),
158
+ initializer=get_initializer(self.embed_dim**-0.5 * factor),
159
+ trainable=True,
160
+ name="class_embedding",
161
+ )
162
+
163
+ with tf.name_scope("position_embedding"):
164
+ self.position_embedding = self.add_weight(
165
+ shape=(self.num_positions, self.embed_dim),
166
+ initializer=get_initializer(self.config.initializer_range * factor),
167
+ trainable=True,
168
+ name="embeddings",
169
+ )
170
+
171
+ if self.built:
172
+ return
173
+ self.built = True
174
+ if getattr(self, "patch_embedding", None) is not None:
175
+ with tf.name_scope(self.patch_embedding.name):
176
+ self.patch_embedding.build([None, None, None, self.config.num_channels])
177
+
178
+ def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
179
+ """`pixel_values` is expected to be of NCHW format."""
180
+
181
+ batch_size, num_channels, height, width = shape_list(pixel_values)
182
+
183
+ # When running on CPU, `tf.nn.conv2d` doesn't support `NCHW` format.
184
+ # So change the input format from `NCHW` to `NHWC`.
185
+ # shape = (batch_size, in_height, in_width, in_channels=num_channels)
186
+ pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
187
+
188
+ patch_embeds = self.patch_embedding(pixel_values)
189
+
190
+ # Change the 2D spatial dimensions to a single temporal dimension.
191
+ # shape = (batch_size, num_patches, out_channels=embed_dim)
192
+ patch_embeds = tf.reshape(tensor=patch_embeds, shape=(batch_size, self.num_patches, -1))
193
+
194
+ # add the [CLS] token to the embedded patch tokens
195
+ class_embeds = tf.broadcast_to(self.class_embedding, shape=(batch_size, 1, self.embed_dim))
196
+ embeddings = tf.concat((class_embeds, patch_embeds), axis=1)
197
+
198
+ embeddings = embeddings + self.position_embedding
199
+
200
+ return embeddings
201
+
202
+
203
+ class TFCLIPTextEmbeddings(keras.layers.Layer):
204
+ def __init__(self, config: CLIPTextConfig, **kwargs):
205
+ super().__init__(**kwargs)
206
+
207
+ self.embed_dim = config.hidden_size
208
+
209
+ self.config = config
210
+
211
+ def build(self, input_shape: tf.TensorShape = None):
212
+ with tf.name_scope("token_embedding"):
213
+ self.weight = self.add_weight(
214
+ shape=(self.config.vocab_size, self.embed_dim),
215
+ initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
216
+ trainable=True,
217
+ name="weight",
218
+ )
219
+
220
+ with tf.name_scope("position_embedding"):
221
+ self.position_embedding = self.add_weight(
222
+ shape=(self.config.max_position_embeddings, self.embed_dim),
223
+ initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
224
+ trainable=True,
225
+ name="embeddings",
226
+ )
227
+
228
+ super().build(input_shape)
229
+
230
+ def call(
231
+ self,
232
+ input_ids: tf.Tensor = None,
233
+ position_ids: tf.Tensor = None,
234
+ inputs_embeds: tf.Tensor = None,
235
+ ) -> tf.Tensor:
236
+ """
237
+ Applies embedding based on inputs tensor.
238
+
239
+ Returns:
240
+ final_embeddings (`tf.Tensor`): output embedding tensor.
241
+ """
242
+ if input_ids is None and inputs_embeds is None:
243
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
244
+
245
+ if inputs_embeds is None:
246
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
247
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
248
+
249
+ input_shape = shape_list(inputs_embeds)[:-1]
250
+
251
+ if position_ids is None:
252
+ position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
253
+
254
+ position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
255
+ position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
256
+ final_embeddings = inputs_embeds + position_embeds
257
+
258
+ return final_embeddings
259
+
260
+
261
+ class TFCLIPAttention(keras.layers.Layer):
262
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
263
+
264
+ def __init__(self, config: CLIPConfig, **kwargs):
265
+ super().__init__(**kwargs)
266
+
267
+ self.embed_dim = config.hidden_size
268
+ self.num_attention_heads = config.num_attention_heads
269
+ self.attention_head_size = self.embed_dim // self.num_attention_heads
270
+ if self.attention_head_size * self.num_attention_heads != self.embed_dim:
271
+ raise ValueError(
272
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
273
+ f" {self.num_attention_heads})."
274
+ )
275
+
276
+ factor = config.initializer_factor
277
+ in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
278
+ out_proj_std = (self.embed_dim**-0.5) * factor
279
+
280
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
281
+
282
+ self.q_proj = keras.layers.Dense(
283
+ units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj"
284
+ )
285
+ self.k_proj = keras.layers.Dense(
286
+ units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj"
287
+ )
288
+ self.v_proj = keras.layers.Dense(
289
+ units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj"
290
+ )
291
+
292
+ self.dropout = keras.layers.Dropout(rate=config.attention_dropout)
293
+
294
+ self.out_proj = keras.layers.Dense(
295
+ units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj"
296
+ )
297
+
298
+ # copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores
299
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
300
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
301
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
302
+
303
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
304
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
305
+
306
+ def call(
307
+ self,
308
+ hidden_states: tf.Tensor,
309
+ attention_mask: tf.Tensor,
310
+ causal_attention_mask: tf.Tensor,
311
+ output_attentions: bool,
312
+ training: bool = False,
313
+ ) -> Tuple[tf.Tensor]:
314
+ """Input shape: Batch x Time x Channel"""
315
+
316
+ batch_size = shape_list(hidden_states)[0]
317
+ mixed_query_layer = self.q_proj(inputs=hidden_states)
318
+ mixed_key_layer = self.k_proj(inputs=hidden_states)
319
+ mixed_value_layer = self.v_proj(inputs=hidden_states)
320
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
321
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
322
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
323
+
324
+ # Take the dot product between "query" and "key" to get the raw attention scores.
325
+ # (batch size, num_heads, seq_len_q, seq_len_k)
326
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
327
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
328
+ attention_scores = tf.divide(attention_scores, dk)
329
+
330
+ # apply the causal_attention_mask first
331
+ if causal_attention_mask is not None:
332
+ # Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function)
333
+ attention_scores = tf.add(attention_scores, causal_attention_mask)
334
+
335
+ if attention_mask is not None:
336
+ # Apply the attention mask (precomputed for all layers in TFCLIPModel call() function)
337
+ attention_scores = tf.add(attention_scores, attention_mask)
338
+
339
+ # Normalize the attention scores to probabilities.
340
+ _attention_probs = stable_softmax(logits=attention_scores, axis=-1)
341
+
342
+ # This is actually dropping out entire tokens to attend to, which might
343
+ # seem a bit unusual, but is taken from the original Transformer paper.
344
+ attention_probs = self.dropout(inputs=_attention_probs, training=training)
345
+
346
+ attention_output = tf.matmul(attention_probs, value_layer)
347
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
348
+
349
+ # (batch_size, seq_len_q, embed_dim)
350
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim))
351
+
352
+ attention_output = self.out_proj(attention_output, training=training)
353
+ # In TFBert, attention weights are returned after dropout.
354
+ # However, in CLIP, they are returned before dropout.
355
+ outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,)
356
+
357
+ return outputs
358
+
359
+ def build(self, input_shape=None):
360
+ if self.built:
361
+ return
362
+ self.built = True
363
+ if getattr(self, "q_proj", None) is not None:
364
+ with tf.name_scope(self.q_proj.name):
365
+ self.q_proj.build([None, None, self.embed_dim])
366
+ if getattr(self, "k_proj", None) is not None:
367
+ with tf.name_scope(self.k_proj.name):
368
+ self.k_proj.build([None, None, self.embed_dim])
369
+ if getattr(self, "v_proj", None) is not None:
370
+ with tf.name_scope(self.v_proj.name):
371
+ self.v_proj.build([None, None, self.embed_dim])
372
+ if getattr(self, "out_proj", None) is not None:
373
+ with tf.name_scope(self.out_proj.name):
374
+ self.out_proj.build([None, None, self.embed_dim])
375
+
376
+
377
+ class TFCLIPMLP(keras.layers.Layer):
378
+ def __init__(self, config: CLIPConfig, **kwargs):
379
+ super().__init__(**kwargs)
380
+
381
+ self.activation_fn = get_tf_activation(config.hidden_act)
382
+
383
+ factor = config.initializer_factor
384
+ in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
385
+ fc_std = (2 * config.hidden_size) ** -0.5 * factor
386
+
387
+ self.fc1 = keras.layers.Dense(
388
+ units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1"
389
+ )
390
+ self.fc2 = keras.layers.Dense(
391
+ units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2"
392
+ )
393
+ self.config = config
394
+
395
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
396
+ hidden_states = self.fc1(inputs=hidden_states)
397
+ hidden_states = self.activation_fn(hidden_states)
398
+ hidden_states = self.fc2(inputs=hidden_states)
399
+ return hidden_states
400
+
401
+ def build(self, input_shape=None):
402
+ if self.built:
403
+ return
404
+ self.built = True
405
+ if getattr(self, "fc1", None) is not None:
406
+ with tf.name_scope(self.fc1.name):
407
+ self.fc1.build([None, None, self.config.hidden_size])
408
+ if getattr(self, "fc2", None) is not None:
409
+ with tf.name_scope(self.fc2.name):
410
+ self.fc2.build([None, None, self.config.intermediate_size])
411
+
412
+
413
+ class TFCLIPEncoderLayer(keras.layers.Layer):
414
+ def __init__(self, config: CLIPConfig, **kwargs):
415
+ super().__init__(**kwargs)
416
+
417
+ self.embed_dim = config.hidden_size
418
+ self.self_attn = TFCLIPAttention(config, name="self_attn")
419
+ self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
420
+ self.mlp = TFCLIPMLP(config, name="mlp")
421
+ self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
422
+
423
+ def call(
424
+ self,
425
+ hidden_states: tf.Tensor,
426
+ attention_mask: tf.Tensor,
427
+ causal_attention_mask: tf.Tensor,
428
+ output_attentions: bool,
429
+ training: bool = False,
430
+ ) -> Tuple[tf.Tensor]:
431
+ """
432
+ Args:
433
+ hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
434
+ attention_mask (`tf.Tensor`): attention mask of size
435
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
436
+ causal_attention_mask (`tf.Tensor`): causal attention mask of size
437
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
438
+ output_attentions (`bool`):
439
+ Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned
440
+ tensors for more detail.
441
+ """
442
+ residual = hidden_states
443
+
444
+ hidden_states = self.layer_norm1(inputs=hidden_states)
445
+ attention_outputs = self.self_attn(
446
+ hidden_states=hidden_states,
447
+ attention_mask=attention_mask,
448
+ causal_attention_mask=causal_attention_mask,
449
+ output_attentions=output_attentions,
450
+ training=training,
451
+ )
452
+ hidden_states = attention_outputs[0]
453
+ hidden_states = residual + hidden_states
454
+
455
+ residual = hidden_states
456
+ hidden_states = self.layer_norm2(inputs=hidden_states)
457
+ hidden_states = self.mlp(hidden_states=hidden_states)
458
+ hidden_states = residual + hidden_states
459
+
460
+ outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them
461
+
462
+ return outputs
463
+
464
+ def build(self, input_shape=None):
465
+ if self.built:
466
+ return
467
+ self.built = True
468
+ if getattr(self, "self_attn", None) is not None:
469
+ with tf.name_scope(self.self_attn.name):
470
+ self.self_attn.build(None)
471
+ if getattr(self, "layer_norm1", None) is not None:
472
+ with tf.name_scope(self.layer_norm1.name):
473
+ self.layer_norm1.build([None, None, self.embed_dim])
474
+ if getattr(self, "mlp", None) is not None:
475
+ with tf.name_scope(self.mlp.name):
476
+ self.mlp.build(None)
477
+ if getattr(self, "layer_norm2", None) is not None:
478
+ with tf.name_scope(self.layer_norm2.name):
479
+ self.layer_norm2.build([None, None, self.embed_dim])
480
+
481
+
482
+ class TFCLIPEncoder(keras.layers.Layer):
483
+ """
484
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
485
+ [`TFCLIPEncoderLayer`].
486
+
487
+ Args:
488
+ config: CLIPConfig
489
+ """
490
+
491
+ def __init__(self, config: CLIPConfig, **kwargs):
492
+ super().__init__(**kwargs)
493
+
494
+ self.layers = [TFCLIPEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]
495
+
496
+ def call(
497
+ self,
498
+ hidden_states: tf.Tensor,
499
+ attention_mask: tf.Tensor,
500
+ causal_attention_mask: tf.Tensor,
501
+ output_attentions: bool,
502
+ output_hidden_states: bool,
503
+ return_dict: bool,
504
+ training: bool = False,
505
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
506
+ all_hidden_states = () if output_hidden_states else None
507
+ all_attentions = () if output_attentions else None
508
+
509
+ for i, layer_module in enumerate(self.layers):
510
+ if output_hidden_states:
511
+ all_hidden_states = all_hidden_states + (hidden_states,)
512
+
513
+ layer_outputs = layer_module(
514
+ hidden_states=hidden_states,
515
+ attention_mask=attention_mask,
516
+ causal_attention_mask=causal_attention_mask,
517
+ output_attentions=output_attentions,
518
+ training=training,
519
+ )
520
+ hidden_states = layer_outputs[0]
521
+
522
+ if output_attentions:
523
+ all_attentions = all_attentions + (layer_outputs[1],)
524
+
525
+ # Add last layer
526
+ if output_hidden_states:
527
+ all_hidden_states = all_hidden_states + (hidden_states,)
528
+
529
+ if not return_dict:
530
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
531
+
532
+ return TFBaseModelOutput(
533
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
534
+ )
535
+
536
+ def build(self, input_shape=None):
537
+ if self.built:
538
+ return
539
+ self.built = True
540
+ if getattr(self, "layers", None) is not None:
541
+ for layer in self.layers:
542
+ with tf.name_scope(layer.name):
543
+ layer.build(None)
544
+
545
+
546
+ class TFCLIPTextTransformer(keras.layers.Layer):
547
+ def __init__(self, config: CLIPTextConfig, **kwargs):
548
+ super().__init__(**kwargs)
549
+
550
+ self.embeddings = TFCLIPTextEmbeddings(config, name="embeddings")
551
+ self.encoder = TFCLIPEncoder(config, name="encoder")
552
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm")
553
+
554
+ # For `pooled_output` computation
555
+ self.eos_token_id = config.eos_token_id
556
+ self.embed_dim = config.hidden_size
557
+
558
+ def call(
559
+ self,
560
+ input_ids: TFModelInputType,
561
+ attention_mask: tf.Tensor,
562
+ position_ids: tf.Tensor,
563
+ output_attentions: bool,
564
+ output_hidden_states: bool,
565
+ return_dict: bool,
566
+ training: bool = False,
567
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
568
+ input_shape = shape_list(input_ids)
569
+
570
+ embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
571
+
572
+ batch_size, seq_length = input_shape
573
+ # CLIP's text model uses causal mask, prepare it here.
574
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
575
+ causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype)
576
+
577
+ # check attention mask and invert
578
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
579
+ attention_mask = _expand_mask(attention_mask)
580
+
581
+ encoder_outputs = self.encoder(
582
+ hidden_states=embedding_output,
583
+ attention_mask=attention_mask,
584
+ causal_attention_mask=causal_attention_mask,
585
+ output_attentions=output_attentions,
586
+ output_hidden_states=output_hidden_states,
587
+ return_dict=return_dict,
588
+ training=training,
589
+ )
590
+
591
+ sequence_output = encoder_outputs[0]
592
+ sequence_output = self.final_layer_norm(inputs=sequence_output)
593
+
594
+ if self.eos_token_id == 2:
595
+ # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
596
+ # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
597
+ # ------------------------------------------------------------
598
+ # text_embeds.shape = [batch_size, n_ctx, transformer.width]
599
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
600
+ pooled_output = tf.gather_nd(
601
+ params=sequence_output,
602
+ indices=tf.stack(
603
+ values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1
604
+ ),
605
+ )
606
+ else:
607
+ # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
608
+ pooled_output = tf.gather_nd(
609
+ params=sequence_output,
610
+ indices=tf.stack(
611
+ values=(
612
+ tf.range(input_shape[0], dtype=tf.int64),
613
+ tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1),
614
+ ),
615
+ axis=1,
616
+ ),
617
+ )
618
+
619
+ if not return_dict:
620
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
621
+
622
+ return TFBaseModelOutputWithPooling(
623
+ last_hidden_state=sequence_output,
624
+ pooler_output=pooled_output,
625
+ hidden_states=encoder_outputs.hidden_states,
626
+ attentions=encoder_outputs.attentions,
627
+ )
628
+
629
+ def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32):
630
+ # It is possible with an unspecified sequence length for seq_length to be
631
+ # a runtime value, which is unsupported by tf.constant. Per the TensorFlow
632
+ # docs, tf.fill can handle runtime dynamic shapes:
633
+ # https://www.tensorflow.org/api_docs/python/tf/fill
634
+ diag = tf.cast(tf.fill((seq_length,), 0.0), dtype)
635
+
636
+ # set an additive 2D attention mask with all places being masked
637
+ to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype)
638
+
639
+ # set diagonal & lower triangular parts to 0 (i.e. the places not to be masked)
640
+ # TIP: think the 2D matrix as the space of (query_seq, key_seq)
641
+ to_mask = tf.linalg.band_part(to_mask, 0, -1)
642
+ # to_mask = tf.linalg.band_part(to_mask, -1, 0)
643
+ to_mask = tf.linalg.set_diag(to_mask, diagonal=diag)
644
+
645
+ return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length))
646
+
647
+ def build(self, input_shape=None):
648
+ if self.built:
649
+ return
650
+ self.built = True
651
+ if getattr(self, "embeddings", None) is not None:
652
+ with tf.name_scope(self.embeddings.name):
653
+ self.embeddings.build(None)
654
+ if getattr(self, "encoder", None) is not None:
655
+ with tf.name_scope(self.encoder.name):
656
+ self.encoder.build(None)
657
+ if getattr(self, "final_layer_norm", None) is not None:
658
+ with tf.name_scope(self.final_layer_norm.name):
659
+ self.final_layer_norm.build([None, None, self.embed_dim])
660
+
661
+
662
+ @keras_serializable
663
+ class TFCLIPTextMainLayer(keras.layers.Layer):
664
+ config_class = CLIPTextConfig
665
+
666
+ def __init__(self, config: CLIPTextConfig, **kwargs):
667
+ super().__init__(**kwargs)
668
+ self.config = config
669
+ self.text_model = TFCLIPTextTransformer(config, name="text_model")
670
+
671
+ def get_input_embeddings(self) -> keras.layers.Layer:
672
+ return self.text_model.embeddings
673
+
674
+ def set_input_embeddings(self, value: tf.Variable):
675
+ self.text_model.embeddings.weight = value
676
+ self.text_model.embeddings.vocab_size = shape_list(value)[0]
677
+
678
+ @unpack_inputs
679
+ def call(
680
+ self,
681
+ input_ids: TFModelInputType | None = None,
682
+ attention_mask: np.ndarray | tf.Tensor | None = None,
683
+ position_ids: np.ndarray | tf.Tensor | None = None,
684
+ output_attentions: Optional[bool] = None,
685
+ output_hidden_states: Optional[bool] = None,
686
+ return_dict: Optional[bool] = None,
687
+ training: bool = False,
688
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
689
+ if input_ids is None:
690
+ raise ValueError("You have to specify input_ids")
691
+
692
+ input_shape = shape_list(input_ids)
693
+
694
+ if attention_mask is None:
695
+ attention_mask = tf.fill(dims=input_shape, value=1)
696
+
697
+ text_model_outputs = self.text_model(
698
+ input_ids=input_ids,
699
+ attention_mask=attention_mask,
700
+ position_ids=position_ids,
701
+ output_attentions=output_attentions,
702
+ output_hidden_states=output_hidden_states,
703
+ return_dict=return_dict,
704
+ training=training,
705
+ )
706
+
707
+ return text_model_outputs
708
+
709
+ def build(self, input_shape=None):
710
+ if self.built:
711
+ return
712
+ self.built = True
713
+ if getattr(self, "text_model", None) is not None:
714
+ with tf.name_scope(self.text_model.name):
715
+ self.text_model.build(None)
716
+
717
+
718
+ class TFCLIPVisionTransformer(keras.layers.Layer):
719
+ def __init__(self, config: CLIPVisionConfig, **kwargs):
720
+ super().__init__(**kwargs)
721
+
722
+ self.embeddings = TFCLIPVisionEmbeddings(config, name="embeddings")
723
+ self.pre_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
724
+ self.encoder = TFCLIPEncoder(config, name="encoder")
725
+ self.post_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")
726
+ self.embed_dim = config.hidden_size
727
+
728
+ def call(
729
+ self,
730
+ pixel_values: TFModelInputType,
731
+ output_attentions: bool,
732
+ output_hidden_states: bool,
733
+ return_dict: bool,
734
+ training: bool = False,
735
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
736
+ embedding_output = self.embeddings(pixel_values=pixel_values)
737
+ embedding_output = self.pre_layernorm(inputs=embedding_output)
738
+
739
+ encoder_outputs = self.encoder(
740
+ hidden_states=embedding_output,
741
+ attention_mask=None,
742
+ causal_attention_mask=None,
743
+ output_attentions=output_attentions,
744
+ output_hidden_states=output_hidden_states,
745
+ return_dict=return_dict,
746
+ training=training,
747
+ )
748
+
749
+ sequence_output = encoder_outputs[0]
750
+ pooled_output = sequence_output[:, 0, :]
751
+ pooled_output = self.post_layernorm(inputs=pooled_output)
752
+
753
+ if not return_dict:
754
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
755
+
756
+ return TFBaseModelOutputWithPooling(
757
+ last_hidden_state=sequence_output,
758
+ pooler_output=pooled_output,
759
+ hidden_states=encoder_outputs.hidden_states,
760
+ attentions=encoder_outputs.attentions,
761
+ )
762
+
763
+ def build(self, input_shape=None):
764
+ if self.built:
765
+ return
766
+ self.built = True
767
+ if getattr(self, "embeddings", None) is not None:
768
+ with tf.name_scope(self.embeddings.name):
769
+ self.embeddings.build(None)
770
+ if getattr(self, "pre_layernorm", None) is not None:
771
+ with tf.name_scope(self.pre_layernorm.name):
772
+ self.pre_layernorm.build([None, None, self.embed_dim])
773
+ if getattr(self, "encoder", None) is not None:
774
+ with tf.name_scope(self.encoder.name):
775
+ self.encoder.build(None)
776
+ if getattr(self, "post_layernorm", None) is not None:
777
+ with tf.name_scope(self.post_layernorm.name):
778
+ self.post_layernorm.build([None, self.embed_dim])
779
+
780
+
781
+ @keras_serializable
782
+ class TFCLIPVisionMainLayer(keras.layers.Layer):
783
+ config_class = CLIPVisionConfig
784
+
785
+ def __init__(self, config: CLIPVisionConfig, **kwargs):
786
+ super().__init__(**kwargs)
787
+ self.config = config
788
+ self.vision_model = TFCLIPVisionTransformer(config, name="vision_model")
789
+
790
+ def get_input_embeddings(self) -> keras.layers.Layer:
791
+ return self.vision_model.embeddings
792
+
793
+ @unpack_inputs
794
+ def call(
795
+ self,
796
+ pixel_values: TFModelInputType | None = None,
797
+ output_attentions: Optional[bool] = None,
798
+ output_hidden_states: Optional[bool] = None,
799
+ return_dict: Optional[bool] = None,
800
+ training: bool = False,
801
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
802
+ if pixel_values is None:
803
+ raise ValueError("You have to specify pixel_values")
804
+
805
+ vision_model_outputs = self.vision_model(
806
+ pixel_values=pixel_values,
807
+ output_attentions=output_attentions,
808
+ output_hidden_states=output_hidden_states,
809
+ return_dict=return_dict,
810
+ training=training,
811
+ )
812
+
813
+ return vision_model_outputs
814
+
815
+ def build(self, input_shape=None):
816
+ if self.built:
817
+ return
818
+ self.built = True
819
+ if getattr(self, "vision_model", None) is not None:
820
+ with tf.name_scope(self.vision_model.name):
821
+ self.vision_model.build(None)
822
+
823
+
824
+ @keras_serializable
825
+ class TFCLIPMainLayer(keras.layers.Layer):
826
+ config_class = CLIPConfig
827
+
828
+ def __init__(self, config: CLIPConfig, **kwargs):
829
+ super().__init__(**kwargs)
830
+
831
+ if not isinstance(config.text_config, CLIPTextConfig):
832
+ raise ValueError(
833
+ "config.text_config is expected to be of type CLIPTextConfig but is of type"
834
+ f" {type(config.text_config)}."
835
+ )
836
+
837
+ if not isinstance(config.vision_config, CLIPVisionConfig):
838
+ raise ValueError(
839
+ "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
840
+ f" {type(config.vision_config)}."
841
+ )
842
+
843
+ self.config = config
844
+
845
+ text_config = config.text_config
846
+ vision_config = config.vision_config
847
+
848
+ self.projection_dim = config.projection_dim
849
+
850
+ self.text_model = TFCLIPTextTransformer(text_config, name="text_model")
851
+ self.vision_model = TFCLIPVisionTransformer(vision_config, name="vision_model")
852
+
853
+ self.visual_projection = keras.layers.Dense(
854
+ units=self.projection_dim,
855
+ kernel_initializer=get_initializer(vision_config.hidden_size**-0.5 * self.config.initializer_factor),
856
+ use_bias=False,
857
+ name="visual_projection",
858
+ )
859
+
860
+ self.text_projection = keras.layers.Dense(
861
+ units=self.projection_dim,
862
+ kernel_initializer=get_initializer(text_config.hidden_size**-0.5 * self.config.initializer_factor),
863
+ use_bias=False,
864
+ name="text_projection",
865
+ )
866
+ self.text_embed_dim = text_config.hidden_size
867
+ self.vision_embed_dim = vision_config.hidden_size
868
+
869
+ def build(self, input_shape: tf.TensorShape = None):
870
+ self.logit_scale = self.add_weight(
871
+ shape=(1,),
872
+ initializer=keras.initializers.Constant(self.config.logit_scale_init_value),
873
+ trainable=True,
874
+ name="logit_scale",
875
+ )
876
+
877
+ if self.built:
878
+ return
879
+ self.built = True
880
+ if getattr(self, "text_model", None) is not None:
881
+ with tf.name_scope(self.text_model.name):
882
+ self.text_model.build(None)
883
+ if getattr(self, "vision_model", None) is not None:
884
+ with tf.name_scope(self.vision_model.name):
885
+ self.vision_model.build(None)
886
+ if getattr(self, "visual_projection", None) is not None:
887
+ with tf.name_scope(self.visual_projection.name):
888
+ self.visual_projection.build([None, None, self.vision_embed_dim])
889
+ if getattr(self, "text_projection", None) is not None:
890
+ with tf.name_scope(self.text_projection.name):
891
+ self.text_projection.build([None, None, self.text_embed_dim])
892
+
893
+ @unpack_inputs
894
+ def get_text_features(
895
+ self,
896
+ input_ids: TFModelInputType | None = None,
897
+ attention_mask: np.ndarray | tf.Tensor | None = None,
898
+ position_ids: np.ndarray | tf.Tensor | None = None,
899
+ output_attentions: Optional[bool] = None,
900
+ output_hidden_states: Optional[bool] = None,
901
+ return_dict: Optional[bool] = None,
902
+ training: bool = False,
903
+ ) -> tf.Tensor:
904
+ if input_ids is None:
905
+ raise ValueError("You have to specify either input_ids")
906
+
907
+ input_shape = shape_list(input_ids)
908
+
909
+ if attention_mask is None:
910
+ attention_mask = tf.fill(dims=input_shape, value=1)
911
+
912
+ text_outputs = self.text_model(
913
+ input_ids=input_ids,
914
+ attention_mask=attention_mask,
915
+ position_ids=position_ids,
916
+ output_attentions=output_attentions,
917
+ output_hidden_states=output_hidden_states,
918
+ return_dict=return_dict,
919
+ training=training,
920
+ )
921
+
922
+ pooled_output = text_outputs[1]
923
+ text_features = self.text_projection(inputs=pooled_output)
924
+
925
+ return text_features
926
+
927
+ @unpack_inputs
928
+ def get_image_features(
929
+ self,
930
+ pixel_values: TFModelInputType | None = None,
931
+ output_attentions: Optional[bool] = None,
932
+ output_hidden_states: Optional[bool] = None,
933
+ return_dict: Optional[bool] = None,
934
+ training: bool = False,
935
+ ) -> tf.Tensor:
936
+ if pixel_values is None:
937
+ raise ValueError("You have to specify pixel_values")
938
+
939
+ vision_outputs = self.vision_model(
940
+ pixel_values=pixel_values,
941
+ output_attentions=output_attentions,
942
+ output_hidden_states=output_hidden_states,
943
+ return_dict=return_dict,
944
+ training=training,
945
+ )
946
+
947
+ pooled_output = vision_outputs[1] # pooled_output
948
+ image_features = self.visual_projection(inputs=pooled_output)
949
+
950
+ return image_features
951
+
952
+ @unpack_inputs
953
+ def call(
954
+ self,
955
+ input_ids: TFModelInputType | None = None,
956
+ pixel_values: TFModelInputType | None = None,
957
+ attention_mask: np.ndarray | tf.Tensor | None = None,
958
+ position_ids: np.ndarray | tf.Tensor | None = None,
959
+ return_loss: Optional[bool] = None,
960
+ output_attentions: Optional[bool] = None,
961
+ output_hidden_states: Optional[bool] = None,
962
+ return_dict: Optional[bool] = None,
963
+ training: bool = False,
964
+ ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
965
+ if input_ids is None:
966
+ raise ValueError("You have to specify either input_ids")
967
+ if pixel_values is None:
968
+ raise ValueError("You have to specify pixel_values")
969
+
970
+ input_shape = shape_list(input_ids)
971
+
972
+ if attention_mask is None:
973
+ attention_mask = tf.fill(dims=input_shape, value=1)
974
+
975
+ vision_outputs = self.vision_model(
976
+ pixel_values=pixel_values,
977
+ output_attentions=output_attentions,
978
+ output_hidden_states=output_hidden_states,
979
+ return_dict=return_dict,
980
+ training=training,
981
+ )
982
+
983
+ text_outputs = self.text_model(
984
+ input_ids=input_ids,
985
+ attention_mask=attention_mask,
986
+ position_ids=position_ids,
987
+ output_attentions=output_attentions,
988
+ output_hidden_states=output_hidden_states,
989
+ return_dict=return_dict,
990
+ training=training,
991
+ )
992
+
993
+ image_embeds = vision_outputs[1]
994
+ image_embeds = self.visual_projection(inputs=image_embeds)
995
+
996
+ text_embeds = text_outputs[1]
997
+ text_embeds = self.text_projection(inputs=text_embeds)
998
+
999
+ # normalized features
1000
+ image_embeds = image_embeds / tf.norm(tensor=image_embeds, ord="euclidean", axis=-1, keepdims=True)
1001
+ text_embeds = text_embeds / tf.norm(tensor=text_embeds, ord="euclidean", axis=-1, keepdims=True)
1002
+
1003
+ # cosine similarity as logits
1004
+ logit_scale = tf.math.exp(self.logit_scale)
1005
+ logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
1006
+ logits_per_image = tf.transpose(logits_per_text)
1007
+
1008
+ loss = None
1009
+ if return_loss:
1010
+ loss = clip_loss(logits_per_text)
1011
+ loss = tf.reshape(loss, (1,))
1012
+
1013
+ if not return_dict:
1014
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
1015
+ return (loss,) + output if loss is not None else output
1016
+
1017
+ return TFCLIPOutput(
1018
+ loss=loss,
1019
+ logits_per_image=logits_per_image,
1020
+ logits_per_text=logits_per_text,
1021
+ text_embeds=text_embeds,
1022
+ image_embeds=image_embeds,
1023
+ text_model_output=text_outputs,
1024
+ vision_model_output=vision_outputs,
1025
+ )
1026
+
1027
+
1028
+ class TFCLIPPreTrainedModel(TFPreTrainedModel):
1029
+ """
1030
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1031
+ models.
1032
+ """
1033
+
1034
+ config_class = CLIPConfig
1035
+ base_model_prefix = "clip"
1036
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
1037
+ _keys_to_ignore_on_load_unexpected = [r"position_ids"]
1038
+
1039
+
1040
+ CLIP_START_DOCSTRING = r"""
1041
+
1042
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
1043
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1044
+ etc.)
1045
+
1046
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
1047
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
1048
+ behavior.
1049
+
1050
+ <Tip>
1051
+
1052
+ TensorFlow models and layers in `transformers` accept two formats as input:
1053
+
1054
+ - having all inputs as keyword arguments (like PyTorch models), or
1055
+ - having all inputs as a list, tuple or dict in the first positional argument.
1056
+
1057
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
1058
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
1059
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
1060
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
1061
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
1062
+ positional argument:
1063
+
1064
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
1065
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
1066
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
1067
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
1068
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
1069
+
1070
+ Note that when creating models and layers with
1071
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
1072
+ about any of this, as you can just pass inputs like you would to any other Python function!
1073
+
1074
+ </Tip>
1075
+
1076
+ Args:
1077
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
1078
+ Initializing with a config file does not load the weights associated with the model, only the
1079
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
1080
+ """
1081
+
1082
+ CLIP_TEXT_INPUTS_DOCSTRING = r"""
1083
+ Args:
1084
+ input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
1085
+ Indices of input sequence tokens in the vocabulary.
1086
+
1087
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
1088
+ [`PreTrainedTokenizer.encode`] for details.
1089
+
1090
+ [What are input IDs?](../glossary#input-ids)
1091
+ attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
1092
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1093
+
1094
+ - 1 for tokens that are **not masked**,
1095
+ - 0 for tokens that are **masked**.
1096
+
1097
+ [What are attention masks?](../glossary#attention-mask)
1098
+ position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
1099
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1100
+ config.max_position_embeddings - 1]`.
1101
+
1102
+ [What are position IDs?](../glossary#position-ids)
1103
+ output_attentions (`bool`, *optional*):
1104
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1105
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
1106
+ config will be used instead.
1107
+ output_hidden_states (`bool`, *optional*):
1108
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1109
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
1110
+ used instead.
1111
+ return_dict (`bool`, *optional*):
1112
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
1113
+ eager mode, in graph mode the value will always be set to True.
1114
+ training (`bool`, *optional*, defaults to `False``):
1115
+ Whether or not to use the model in training mode (some modules like dropout modules have different
1116
+ behaviors between training and evaluation).
1117
+ """
1118
+
1119
+ CLIP_VISION_INPUTS_DOCSTRING = r"""
1120
+ Args:
1121
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
1122
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
1123
+ [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to
1124
+ return the attentions tensors of all attention layers. See `attentions` under returned tensors for more
1125
+ detail. This argument can be used only in eager mode, in graph mode the value in the config will be used
1126
+ instead.
1127
+ output_hidden_states (`bool`, *optional*):
1128
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1129
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
1130
+ used instead.
1131
+ return_dict (`bool`, *optional*):
1132
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
1133
+ eager mode, in graph mode the value will always be set to True.
1134
+ training (`bool`, *optional*, defaults to `False``):
1135
+ Whether or not to use the model in training mode (some modules like dropout modules have different
1136
+ behaviors between training and evaluation).
1137
+ """
1138
+
1139
+ CLIP_INPUTS_DOCSTRING = r"""
1140
+ Args:
1141
+ input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
1142
+ Indices of input sequence tokens in the vocabulary.
1143
+
1144
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
1145
+ [`PreTrainedTokenizer.encode`] for details.
1146
+
1147
+ [What are input IDs?](../glossary#input-ids)
1148
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
1149
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
1150
+ [`CLIPImageProcessor.__call__`] for details.
1151
+ attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
1152
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1153
+
1154
+ - 1 for tokens that are **not masked**,
1155
+ - 0 for tokens that are **masked**.
1156
+
1157
+ [What are attention masks?](../glossary#attention-mask)
1158
+ position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
1159
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1160
+ config.max_position_embeddings - 1]`.
1161
+
1162
+ [What are position IDs?](../glossary#position-ids)
1163
+ return_loss (`bool`, *optional*):
1164
+ Whether or not to return the contrastive loss.
1165
+ output_attentions (`bool`, *optional*):
1166
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1167
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
1168
+ config will be used instead.
1169
+ output_hidden_states (`bool`, *optional*):
1170
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1171
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
1172
+ used instead.
1173
+ return_dict (`bool`, *optional*):
1174
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
1175
+ eager mode, in graph mode the value will always be set to True.
1176
+ training (`bool`, *optional*, defaults to `False``):
1177
+ Whether or not to use the model in training mode (some modules like dropout modules have different
1178
+ behaviors between training and evaluation).
1179
+ """
1180
+
1181
+
1182
+ class TFCLIPTextModel(TFCLIPPreTrainedModel):
1183
+ config_class = CLIPTextConfig
1184
+
1185
+ def __init__(self, config: CLIPTextConfig, *inputs, **kwargs):
1186
+ super().__init__(config, *inputs, **kwargs)
1187
+
1188
+ self.clip = TFCLIPTextMainLayer(config, name="clip")
1189
+
1190
+ @unpack_inputs
1191
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1192
+ @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPTextConfig)
1193
+ def call(
1194
+ self,
1195
+ input_ids: TFModelInputType | None = None,
1196
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1197
+ position_ids: np.ndarray | tf.Tensor | None = None,
1198
+ output_attentions: Optional[bool] = None,
1199
+ output_hidden_states: Optional[bool] = None,
1200
+ return_dict: Optional[bool] = None,
1201
+ training: Optional[bool] = False,
1202
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
1203
+ r"""
1204
+ Returns:
1205
+
1206
+ Examples:
1207
+
1208
+ ```python
1209
+ >>> from transformers import AutoTokenizer, TFCLIPTextModel
1210
+
1211
+ >>> model = TFCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
1212
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1213
+
1214
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
1215
+
1216
+ >>> outputs = model(**inputs)
1217
+ >>> last_hidden_state = outputs.last_hidden_state
1218
+ >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
1219
+ ```"""
1220
+
1221
+ outputs = self.clip(
1222
+ input_ids=input_ids,
1223
+ attention_mask=attention_mask,
1224
+ position_ids=position_ids,
1225
+ output_attentions=output_attentions,
1226
+ output_hidden_states=output_hidden_states,
1227
+ return_dict=return_dict,
1228
+ training=training,
1229
+ )
1230
+
1231
+ return outputs
1232
+
1233
+ def build(self, input_shape=None):
1234
+ if self.built:
1235
+ return
1236
+ self.built = True
1237
+ if getattr(self, "clip", None) is not None:
1238
+ with tf.name_scope(self.clip.name):
1239
+ self.clip.build(None)
1240
+
1241
+
1242
+ class TFCLIPVisionModel(TFCLIPPreTrainedModel):
1243
+ config_class = CLIPVisionConfig
1244
+ main_input_name = "pixel_values"
1245
+
1246
+ def __init__(self, config: CLIPVisionConfig, *inputs, **kwargs):
1247
+ super().__init__(config, *inputs, **kwargs)
1248
+
1249
+ self.clip = TFCLIPVisionMainLayer(config, name="clip")
1250
+
1251
+ @unpack_inputs
1252
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
1253
+ @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPVisionConfig)
1254
+ def call(
1255
+ self,
1256
+ pixel_values: TFModelInputType | None = None,
1257
+ output_attentions: Optional[bool] = None,
1258
+ output_hidden_states: Optional[bool] = None,
1259
+ return_dict: Optional[bool] = None,
1260
+ training: Optional[bool] = False,
1261
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
1262
+ r"""
1263
+ Returns:
1264
+
1265
+ Examples:
1266
+
1267
+ ```python
1268
+ >>> from PIL import Image
1269
+ >>> import requests
1270
+ >>> from transformers import AutoProcessor, TFCLIPVisionModel
1271
+
1272
+ >>> model = TFCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
1273
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1274
+
1275
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1276
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1277
+
1278
+ >>> inputs = processor(images=image, return_tensors="tf")
1279
+
1280
+ >>> outputs = model(**inputs)
1281
+ >>> last_hidden_state = outputs.last_hidden_state
1282
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
1283
+ ```"""
1284
+
1285
+ outputs = self.clip(
1286
+ pixel_values=pixel_values,
1287
+ output_attentions=output_attentions,
1288
+ output_hidden_states=output_hidden_states,
1289
+ return_dict=return_dict,
1290
+ training=training,
1291
+ )
1292
+
1293
+ return outputs
1294
+
1295
+ def build(self, input_shape=None):
1296
+ if self.built:
1297
+ return
1298
+ self.built = True
1299
+ if getattr(self, "clip", None) is not None:
1300
+ with tf.name_scope(self.clip.name):
1301
+ self.clip.build(None)
1302
+
1303
+
1304
+ @add_start_docstrings(CLIP_START_DOCSTRING)
1305
+ class TFCLIPModel(TFCLIPPreTrainedModel):
1306
+ config_class = CLIPConfig
1307
+
1308
+ def __init__(self, config: CLIPConfig, *inputs, **kwargs):
1309
+ super().__init__(config, *inputs, **kwargs)
1310
+
1311
+ self.clip = TFCLIPMainLayer(config, name="clip")
1312
+
1313
+ @unpack_inputs
1314
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1315
+ def get_text_features(
1316
+ self,
1317
+ input_ids: TFModelInputType | None = None,
1318
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1319
+ position_ids: np.ndarray | tf.Tensor | None = None,
1320
+ output_attentions: Optional[bool] = None,
1321
+ output_hidden_states: Optional[bool] = None,
1322
+ return_dict: Optional[bool] = None,
1323
+ training: bool = False,
1324
+ ) -> tf.Tensor:
1325
+ r"""
1326
+ Returns:
1327
+ text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
1328
+ the projection layer to the pooled output of [`TFCLIPTextModel`].
1329
+
1330
+ Examples:
1331
+
1332
+ ```python
1333
+ >>> from transformers import AutoTokenizer, TFCLIPModel
1334
+
1335
+ >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1336
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1337
+
1338
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
1339
+ >>> text_features = model.get_text_features(**inputs)
1340
+ ```"""
1341
+
1342
+ text_features = self.clip.get_text_features(
1343
+ input_ids=input_ids,
1344
+ attention_mask=attention_mask,
1345
+ position_ids=position_ids,
1346
+ output_attentions=output_attentions,
1347
+ output_hidden_states=output_hidden_states,
1348
+ return_dict=return_dict,
1349
+ )
1350
+
1351
+ return text_features
1352
+
1353
+ @unpack_inputs
1354
+ @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
1355
+ def get_image_features(
1356
+ self,
1357
+ pixel_values: TFModelInputType | None = None,
1358
+ output_attentions: Optional[bool] = None,
1359
+ output_hidden_states: Optional[bool] = None,
1360
+ return_dict: Optional[bool] = None,
1361
+ training: bool = False,
1362
+ ) -> tf.Tensor:
1363
+ r"""
1364
+ Returns:
1365
+ image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
1366
+ the projection layer to the pooled output of [`TFCLIPVisionModel`].
1367
+
1368
+ Examples:
1369
+
1370
+ ```python
1371
+ >>> from PIL import Image
1372
+ >>> import requests
1373
+ >>> from transformers import AutoProcessor, TFCLIPModel
1374
+
1375
+ >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1376
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1377
+
1378
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1379
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1380
+
1381
+ >>> inputs = processor(images=image, return_tensors="tf")
1382
+
1383
+ >>> image_features = model.get_image_features(**inputs)
1384
+ ```"""
1385
+
1386
+ image_features = self.clip.get_image_features(
1387
+ pixel_values=pixel_values,
1388
+ output_attentions=output_attentions,
1389
+ output_hidden_states=output_hidden_states,
1390
+ return_dict=return_dict,
1391
+ )
1392
+
1393
+ return image_features
1394
+
1395
+ @unpack_inputs
1396
+ @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1397
+ @replace_return_docstrings(output_type=TFCLIPOutput, config_class=CLIPConfig)
1398
+ def call(
1399
+ self,
1400
+ input_ids: TFModelInputType | None = None,
1401
+ pixel_values: TFModelInputType | None = None,
1402
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1403
+ position_ids: np.ndarray | tf.Tensor | None = None,
1404
+ return_loss: Optional[bool] = None,
1405
+ output_attentions: Optional[bool] = None,
1406
+ output_hidden_states: Optional[bool] = None,
1407
+ return_dict: Optional[bool] = None,
1408
+ training: bool = False,
1409
+ ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
1410
+ r"""
1411
+ Returns:
1412
+
1413
+ Examples:
1414
+
1415
+ ```python
1416
+ >>> import tensorflow as tf
1417
+ >>> from PIL import Image
1418
+ >>> import requests
1419
+ >>> from transformers import AutoProcessor, TFCLIPModel
1420
+
1421
+ >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1422
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1423
+
1424
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1425
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1426
+
1427
+ >>> inputs = processor(
1428
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
1429
+ ... )
1430
+
1431
+ >>> outputs = model(**inputs)
1432
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
1433
+ >>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
1434
+ ```"""
1435
+
1436
+ outputs = self.clip(
1437
+ input_ids=input_ids,
1438
+ pixel_values=pixel_values,
1439
+ attention_mask=attention_mask,
1440
+ position_ids=position_ids,
1441
+ return_loss=return_loss,
1442
+ output_attentions=output_attentions,
1443
+ output_hidden_states=output_hidden_states,
1444
+ return_dict=return_dict,
1445
+ )
1446
+
1447
+ return outputs
1448
+
1449
+ def serving_output(self, output: TFCLIPOutput) -> TFCLIPOutput:
1450
+ # TODO: As is this currently fails with saved_model=True, because
1451
+ # TensorFlow cannot trace through nested dataclasses. Reference:
1452
+ # https://github.com/huggingface/transformers/pull/16886
1453
+ return output
1454
+
1455
+ def build(self, input_shape=None):
1456
+ if self.built:
1457
+ return
1458
+ self.built = True
1459
+ if getattr(self, "clip", None) is not None:
1460
+ with tf.name_scope(self.clip.name):
1461
+ self.clip.build(None)
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/processing_clip.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Image/Text processor class for CLIP
17
+ """
18
+
19
+ import warnings
20
+
21
+ from ...processing_utils import ProcessorMixin
22
+ from ...tokenization_utils_base import BatchEncoding
23
+
24
+
25
+ class CLIPProcessor(ProcessorMixin):
26
+ r"""
27
+ Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor.
28
+
29
+ [`CLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`CLIPTokenizerFast`]. See the
30
+ [`~CLIPProcessor.__call__`] and [`~CLIPProcessor.decode`] for more information.
31
+
32
+ Args:
33
+ image_processor ([`CLIPImageProcessor`], *optional*):
34
+ The image processor is a required input.
35
+ tokenizer ([`CLIPTokenizerFast`], *optional*):
36
+ The tokenizer is a required input.
37
+ """
38
+
39
+ attributes = ["image_processor", "tokenizer"]
40
+ image_processor_class = "CLIPImageProcessor"
41
+ tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
42
+
43
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
44
+ feature_extractor = None
45
+ if "feature_extractor" in kwargs:
46
+ warnings.warn(
47
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
48
+ " instead.",
49
+ FutureWarning,
50
+ )
51
+ feature_extractor = kwargs.pop("feature_extractor")
52
+
53
+ image_processor = image_processor if image_processor is not None else feature_extractor
54
+ if image_processor is None:
55
+ raise ValueError("You need to specify an `image_processor`.")
56
+ if tokenizer is None:
57
+ raise ValueError("You need to specify a `tokenizer`.")
58
+
59
+ super().__init__(image_processor, tokenizer)
60
+
61
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
62
+ """
63
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
64
+ and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
65
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
66
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
67
+ of the above two methods for more information.
68
+
69
+ Args:
70
+ text (`str`, `List[str]`, `List[List[str]]`):
71
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
72
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
73
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
74
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
75
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
76
+ tensor. Both channels-first and channels-last formats are supported.
77
+
78
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
79
+ If set, will return tensors of a particular framework. Acceptable values are:
80
+
81
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
82
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
83
+ - `'np'`: Return NumPy `np.ndarray` objects.
84
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
85
+
86
+ Returns:
87
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
88
+
89
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
90
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
91
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
92
+ `None`).
93
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
94
+ """
95
+ tokenizer_kwargs, image_processor_kwargs = {}, {}
96
+ if kwargs:
97
+ tokenizer_kwargs = {k: v for k, v in kwargs.items() if k not in self.image_processor._valid_processor_keys}
98
+ image_processor_kwargs = {
99
+ k: v for k, v in kwargs.items() if k in self.image_processor._valid_processor_keys
100
+ }
101
+
102
+ if text is None and images is None:
103
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
104
+
105
+ if text is not None:
106
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **tokenizer_kwargs)
107
+
108
+ if images is not None:
109
+ image_features = self.image_processor(images, return_tensors=return_tensors, **image_processor_kwargs)
110
+
111
+ if text is not None and images is not None:
112
+ encoding["pixel_values"] = image_features.pixel_values
113
+ return encoding
114
+ elif text is not None:
115
+ return encoding
116
+ else:
117
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
118
+
119
+ def batch_decode(self, *args, **kwargs):
120
+ """
121
+ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
122
+ refer to the docstring of this method for more information.
123
+ """
124
+ return self.tokenizer.batch_decode(*args, **kwargs)
125
+
126
+ def decode(self, *args, **kwargs):
127
+ """
128
+ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
129
+ the docstring of this method for more information.
130
+ """
131
+ return self.tokenizer.decode(*args, **kwargs)
132
+
133
+ @property
134
+ def model_input_names(self):
135
+ tokenizer_input_names = self.tokenizer.model_input_names
136
+ image_processor_input_names = self.image_processor.model_input_names
137
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
138
+
139
+ @property
140
+ def feature_extractor_class(self):
141
+ warnings.warn(
142
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
143
+ FutureWarning,
144
+ )
145
+ return self.image_processor_class
146
+
147
+ @property
148
+ def feature_extractor(self):
149
+ warnings.warn(
150
+ "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
151
+ FutureWarning,
152
+ )
153
+ return self.image_processor
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip.py ADDED
@@ -0,0 +1,516 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for CLIP."""
16
+
17
+ import json
18
+ import os
19
+ import unicodedata
20
+ from functools import lru_cache
21
+ from typing import List, Optional, Tuple
22
+
23
+ import regex as re
24
+
25
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
26
+ from ...utils import logging
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ VOCAB_FILES_NAMES = {
32
+ "vocab_file": "vocab.json",
33
+ "merges_file": "merges.txt",
34
+ }
35
+
36
+
37
+ @lru_cache()
38
+ def bytes_to_unicode():
39
+ """
40
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
41
+ characters the bpe code barfs on.
42
+
43
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
44
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
45
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
46
+ tables between utf-8 bytes and unicode strings.
47
+ """
48
+ bs = (
49
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
50
+ )
51
+ cs = bs[:]
52
+ n = 0
53
+ for b in range(2**8):
54
+ if b not in bs:
55
+ bs.append(b)
56
+ cs.append(2**8 + n)
57
+ n += 1
58
+ cs = [chr(n) for n in cs]
59
+ return dict(zip(bs, cs))
60
+
61
+
62
+ def get_pairs(word):
63
+ """
64
+ Return set of symbol pairs in a word.
65
+
66
+ Word is represented as tuple of symbols (symbols being variable-length strings).
67
+ """
68
+ pairs = set()
69
+ prev_char = word[0]
70
+ for char in word[1:]:
71
+ pairs.add((prev_char, char))
72
+ prev_char = char
73
+ return pairs
74
+
75
+
76
+ def whitespace_clean(text):
77
+ text = re.sub(r"\s+", " ", text)
78
+ text = text.strip()
79
+ return text
80
+
81
+
82
+ # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
83
+ def whitespace_tokenize(text):
84
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
85
+ text = text.strip()
86
+ if not text:
87
+ return []
88
+ tokens = text.split()
89
+ return tokens
90
+
91
+
92
+ # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
93
+ class BasicTokenizer(object):
94
+ """
95
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
96
+
97
+ Args:
98
+ do_lower_case (`bool`, *optional*, defaults to `True`):
99
+ Whether or not to lowercase the input when tokenizing.
100
+ never_split (`Iterable`, *optional*):
101
+ Collection of tokens which will never be split during tokenization. Only has an effect when
102
+ `do_basic_tokenize=True`
103
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
104
+ Whether or not to tokenize Chinese characters.
105
+
106
+ This should likely be deactivated for Japanese (see this
107
+ [issue](https://github.com/huggingface/transformers/issues/328)).
108
+ strip_accents (`bool`, *optional*):
109
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
110
+ value for `lowercase` (as in the original BERT).
111
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
112
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
113
+ the full context of the words, such as contractions.
114
+ """
115
+
116
+ def __init__(
117
+ self,
118
+ do_lower_case=True,
119
+ never_split=None,
120
+ tokenize_chinese_chars=True,
121
+ strip_accents=None,
122
+ do_split_on_punc=True,
123
+ ):
124
+ if never_split is None:
125
+ never_split = []
126
+ self.do_lower_case = do_lower_case
127
+ self.never_split = set(never_split)
128
+ self.tokenize_chinese_chars = tokenize_chinese_chars
129
+ self.strip_accents = strip_accents
130
+ self.do_split_on_punc = do_split_on_punc
131
+
132
+ def tokenize(self, text, never_split=None):
133
+ """
134
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
135
+
136
+ Args:
137
+ never_split (`List[str]`, *optional*)
138
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
139
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
140
+ """
141
+ # union() returns a new set by concatenating the two sets.
142
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
143
+ text = self._clean_text(text)
144
+
145
+ # This was added on November 1st, 2018 for the multilingual and Chinese
146
+ # models. This is also applied to the English models now, but it doesn't
147
+ # matter since the English models were not trained on any Chinese data
148
+ # and generally don't have any Chinese data in them (there are Chinese
149
+ # characters in the vocabulary because Wikipedia does have some Chinese
150
+ # words in the English Wikipedia.).
151
+ if self.tokenize_chinese_chars:
152
+ text = self._tokenize_chinese_chars(text)
153
+ # prevents treating the same character with different unicode codepoints as different characters
154
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
155
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
156
+ split_tokens = []
157
+ for token in orig_tokens:
158
+ if token not in never_split:
159
+ if self.do_lower_case:
160
+ token = token.lower()
161
+ if self.strip_accents is not False:
162
+ token = self._run_strip_accents(token)
163
+ elif self.strip_accents:
164
+ token = self._run_strip_accents(token)
165
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
166
+
167
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
168
+ return output_tokens
169
+
170
+ def _run_strip_accents(self, text):
171
+ """Strips accents from a piece of text."""
172
+ text = unicodedata.normalize("NFD", text)
173
+ output = []
174
+ for char in text:
175
+ cat = unicodedata.category(char)
176
+ if cat == "Mn":
177
+ continue
178
+ output.append(char)
179
+ return "".join(output)
180
+
181
+ def _run_split_on_punc(self, text, never_split=None):
182
+ """Splits punctuation on a piece of text."""
183
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
184
+ return [text]
185
+ chars = list(text)
186
+ i = 0
187
+ start_new_word = True
188
+ output = []
189
+ while i < len(chars):
190
+ char = chars[i]
191
+ if _is_punctuation(char):
192
+ output.append([char])
193
+ start_new_word = True
194
+ else:
195
+ if start_new_word:
196
+ output.append([])
197
+ start_new_word = False
198
+ output[-1].append(char)
199
+ i += 1
200
+
201
+ return ["".join(x) for x in output]
202
+
203
+ def _tokenize_chinese_chars(self, text):
204
+ """Adds whitespace around any CJK character."""
205
+ output = []
206
+ for char in text:
207
+ cp = ord(char)
208
+ if self._is_chinese_char(cp):
209
+ output.append(" ")
210
+ output.append(char)
211
+ output.append(" ")
212
+ else:
213
+ output.append(char)
214
+ return "".join(output)
215
+
216
+ def _is_chinese_char(self, cp):
217
+ """Checks whether CP is the codepoint of a CJK character."""
218
+ # This defines a "chinese character" as anything in the CJK Unicode block:
219
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
220
+ #
221
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
222
+ # despite its name. The modern Korean Hangul alphabet is a different block,
223
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
224
+ # space-separated words, so they are not treated specially and handled
225
+ # like the all of the other languages.
226
+ if (
227
+ (cp >= 0x4E00 and cp <= 0x9FFF)
228
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
229
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
230
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
231
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
232
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
233
+ or (cp >= 0xF900 and cp <= 0xFAFF)
234
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
235
+ ): #
236
+ return True
237
+
238
+ return False
239
+
240
+ def _clean_text(self, text):
241
+ """Performs invalid character removal and whitespace cleanup on text."""
242
+ output = []
243
+ for char in text:
244
+ cp = ord(char)
245
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
246
+ continue
247
+ if _is_whitespace(char):
248
+ output.append(" ")
249
+ else:
250
+ output.append(char)
251
+ return "".join(output)
252
+
253
+
254
+ class CLIPTokenizer(PreTrainedTokenizer):
255
+ """
256
+ Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding.
257
+
258
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
259
+ this superclass for more information regarding those methods.
260
+
261
+ Args:
262
+ vocab_file (`str`):
263
+ Path to the vocabulary file.
264
+ merges_file (`str`):
265
+ Path to the merges file.
266
+ errors (`str`, *optional*, defaults to `"replace"`):
267
+ Paradigm to follow when decoding bytes to UTF-8. See
268
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
269
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
270
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
271
+ token instead.
272
+ bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
273
+ The beginning of sequence token.
274
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
275
+ The end of sequence token.
276
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
277
+ The token used for padding, for example when batching sequences of different lengths.
278
+ """
279
+
280
+ vocab_files_names = VOCAB_FILES_NAMES
281
+ model_input_names = ["input_ids", "attention_mask"]
282
+
283
+ def __init__(
284
+ self,
285
+ vocab_file,
286
+ merges_file,
287
+ errors="replace",
288
+ unk_token="<|endoftext|>",
289
+ bos_token="<|startoftext|>",
290
+ eos_token="<|endoftext|>",
291
+ pad_token="<|endoftext|>", # hack to enable padding
292
+ **kwargs,
293
+ ):
294
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
295
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
296
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
297
+ try:
298
+ import ftfy
299
+
300
+ self.fix_text = ftfy.fix_text
301
+ except ImportError:
302
+ logger.info("ftfy or spacy is not installed using custom BasicTokenizer instead of ftfy.")
303
+ self.nlp = BasicTokenizer(strip_accents=False, do_split_on_punc=False)
304
+ self.fix_text = None
305
+
306
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
307
+ self.encoder = json.load(vocab_handle)
308
+ self.decoder = {v: k for k, v in self.encoder.items()}
309
+ self.errors = errors # how to handle errors in decoding
310
+ self.byte_encoder = bytes_to_unicode()
311
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
312
+ with open(merges_file, encoding="utf-8") as merges_handle:
313
+ bpe_merges = merges_handle.read().strip().split("\n")[1 : 49152 - 256 - 2 + 1]
314
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
315
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
316
+ self.cache = {"<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>"}
317
+
318
+ self.pat = re.compile(
319
+ r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
320
+ re.IGNORECASE,
321
+ )
322
+
323
+ super().__init__(
324
+ errors=errors,
325
+ unk_token=unk_token,
326
+ bos_token=bos_token,
327
+ eos_token=eos_token,
328
+ pad_token=pad_token,
329
+ **kwargs,
330
+ )
331
+
332
+ @property
333
+ def vocab_size(self):
334
+ return len(self.encoder)
335
+
336
+ def get_vocab(self):
337
+ return dict(self.encoder, **self.added_tokens_encoder)
338
+
339
+ def build_inputs_with_special_tokens(
340
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
341
+ ) -> List[int]:
342
+ """
343
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
344
+ adding special tokens. A CLIP sequence has the following format:
345
+
346
+ - single sequence: `<|startoftext|> X <|endoftext|>`
347
+
348
+ Pairs of sequences are not the expected use case, but they will be handled without a separator.
349
+
350
+ Args:
351
+ token_ids_0 (`List[int]`):
352
+ List of IDs to which the special tokens will be added.
353
+ token_ids_1 (`List[int]`, *optional*):
354
+ Optional second list of IDs for sequence pairs.
355
+
356
+ Returns:
357
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
358
+ """
359
+ bos_token = [self.bos_token_id]
360
+ eos_token = [self.eos_token_id]
361
+
362
+ if token_ids_1 is None:
363
+ return bos_token + token_ids_0 + eos_token
364
+ return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token
365
+
366
+ def get_special_tokens_mask(
367
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
368
+ ) -> List[int]:
369
+ """
370
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
371
+ special tokens using the tokenizer `prepare_for_model` method.
372
+
373
+ Args:
374
+ token_ids_0 (`List[int]`):
375
+ List of IDs.
376
+ token_ids_1 (`List[int]`, *optional*):
377
+ Optional second list of IDs for sequence pairs.
378
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
379
+ Whether or not the token list is already formatted with special tokens for the model.
380
+
381
+ Returns:
382
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
383
+ """
384
+
385
+ if already_has_special_tokens:
386
+ return super().get_special_tokens_mask(
387
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
388
+ )
389
+
390
+ if token_ids_1 is None:
391
+ return [1] + ([0] * len(token_ids_0)) + [1]
392
+ return [1] + ([0] * len(token_ids_0)) + [1] + [1] + ([0] * len(token_ids_1)) + [1]
393
+
394
+ def create_token_type_ids_from_sequences(
395
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
396
+ ) -> List[int]:
397
+ """
398
+ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of
399
+ zeros is returned.
400
+
401
+ Args:
402
+ token_ids_0 (`List[int]`):
403
+ List of IDs.
404
+ token_ids_1 (`List[int]`, *optional*):
405
+ Optional second list of IDs for sequence pairs.
406
+
407
+ Returns:
408
+ `List[int]`: List of zeros.
409
+ """
410
+ bos_token = [self.bos_token_id]
411
+ eos_token = [self.eos_token_id]
412
+
413
+ if token_ids_1 is None:
414
+ return len(bos_token + token_ids_0 + eos_token) * [0]
415
+ return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0]
416
+
417
+ def bpe(self, token):
418
+ if token in self.cache:
419
+ return self.cache[token]
420
+ word = tuple(token[:-1]) + (token[-1] + "</w>",)
421
+ pairs = get_pairs(word)
422
+
423
+ if not pairs:
424
+ return token + "</w>"
425
+
426
+ while True:
427
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
428
+ if bigram not in self.bpe_ranks:
429
+ break
430
+ first, second = bigram
431
+ new_word = []
432
+ i = 0
433
+ while i < len(word):
434
+ try:
435
+ j = word.index(first, i)
436
+ except ValueError:
437
+ new_word.extend(word[i:])
438
+ break
439
+ else:
440
+ new_word.extend(word[i:j])
441
+ i = j
442
+
443
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
444
+ new_word.append(first + second)
445
+ i += 2
446
+ else:
447
+ new_word.append(word[i])
448
+ i += 1
449
+ new_word = tuple(new_word)
450
+ word = new_word
451
+ if len(word) == 1:
452
+ break
453
+ else:
454
+ pairs = get_pairs(word)
455
+ word = " ".join(word)
456
+ self.cache[token] = word
457
+ return word
458
+
459
+ def _tokenize(self, text):
460
+ """Tokenize a string."""
461
+ bpe_tokens = []
462
+ if self.fix_text is None:
463
+ text = " ".join(self.nlp.tokenize(text))
464
+ else:
465
+ text = whitespace_clean(self.fix_text(text)).lower()
466
+
467
+ for token in re.findall(self.pat, text):
468
+ token = "".join(
469
+ self.byte_encoder[b] for b in token.encode("utf-8")
470
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
471
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
472
+ return bpe_tokens
473
+
474
+ def _convert_token_to_id(self, token):
475
+ """Converts a token (str) in an id using the vocab."""
476
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
477
+
478
+ def _convert_id_to_token(self, index):
479
+ """Converts an index (integer) in a token (str) using the vocab."""
480
+ return self.decoder.get(index)
481
+
482
+ def convert_tokens_to_string(self, tokens):
483
+ """Converts a sequence of tokens (string) in a single string."""
484
+ text = "".join(tokens)
485
+ byte_array = bytearray([self.byte_decoder[c] for c in text])
486
+ text = byte_array.decode("utf-8", errors=self.errors).replace("</w>", " ").strip()
487
+ return text
488
+
489
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
490
+ if not os.path.isdir(save_directory):
491
+ logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
492
+ return
493
+ vocab_file = os.path.join(
494
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
495
+ )
496
+ merge_file = os.path.join(
497
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
498
+ )
499
+
500
+ with open(vocab_file, "w", encoding="utf-8") as f:
501
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
502
+
503
+ index = 0
504
+ with open(merge_file, "w", encoding="utf-8") as writer:
505
+ writer.write("#version: 0.2\n")
506
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
507
+ if index != token_index:
508
+ logger.warning(
509
+ "Saving vocabulary to {}: BPE merge indices are not consecutive."
510
+ " Please check that the tokenizer is not corrupted!".format(merge_file)
511
+ )
512
+ index = token_index
513
+ writer.write(" ".join(bpe_tokens) + "\n")
514
+ index += 1
515
+
516
+ return vocab_file, merge_file
llmeval-env/lib/python3.10/site-packages/transformers/models/clip/tokenization_clip_fast.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for OpenAI GPT."""
16
+
17
+
18
+ from typing import List, Optional, Tuple
19
+
20
+ from tokenizers import pre_tokenizers
21
+
22
+ from ...tokenization_utils_fast import PreTrainedTokenizerFast
23
+ from ...utils import logging
24
+ from .tokenization_clip import CLIPTokenizer
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
30
+
31
+
32
+ class CLIPTokenizerFast(PreTrainedTokenizerFast):
33
+ """
34
+ Construct a "fast" CLIP tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
35
+ Byte-Pair-Encoding.
36
+
37
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
38
+ refer to this superclass for more information regarding those methods.
39
+
40
+ Args:
41
+ vocab_file (`str`, *optional*):
42
+ Path to the vocabulary file.
43
+ merges_file (`str`, *optional*):
44
+ Path to the merges file.
45
+ tokenizer_file (`str`, *optional*):
46
+ The path to a tokenizer file to use instead of the vocab file.
47
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
48
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
49
+ token instead.
50
+ bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
51
+ The beginning of sequence token.
52
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
53
+ The end of sequence token.
54
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
55
+ The token used for padding, for example when batching sequences of different lengths.
56
+ """
57
+
58
+ vocab_files_names = VOCAB_FILES_NAMES
59
+ model_input_names = ["input_ids", "attention_mask"]
60
+ slow_tokenizer_class = CLIPTokenizer
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file=None,
65
+ merges_file=None,
66
+ tokenizer_file=None,
67
+ unk_token="<|endoftext|>",
68
+ bos_token="<|startoftext|>",
69
+ eos_token="<|endoftext|>",
70
+ pad_token="<|endoftext|>", # hack to enable padding
71
+ **kwargs,
72
+ ):
73
+ super().__init__(
74
+ vocab_file,
75
+ merges_file,
76
+ tokenizer_file=tokenizer_file,
77
+ unk_token=unk_token,
78
+ bos_token=bos_token,
79
+ eos_token=eos_token,
80
+ pad_token=pad_token,
81
+ **kwargs,
82
+ )
83
+
84
+ if not isinstance(self.backend_tokenizer.pre_tokenizer, pre_tokenizers.Sequence):
85
+ raise ValueError(
86
+ "The `backend_tokenizer` provided does not match the expected format. The CLIP tokenizer has been"
87
+ " heavily modified from transformers version 4.17.0. You need to convert the tokenizer you are using"
88
+ " to be compatible with this version.The easiest way to do so is"
89
+ ' `CLIPTokenizerFast.from_pretrained("path_to_local_folder_or_hub_repo, from_slow=True)`. If you want'
90
+ " to use your existing tokenizer, you will have to revert to a version prior to 4.17.0 of"
91
+ " transformers."
92
+ )
93
+
94
+ self._wrap_decode_method_backend_tokenizer()
95
+
96
+ # Very ugly hack to enable padding to have a correct decoding see https://github.com/huggingface/tokenizers/issues/872
97
+ def _wrap_decode_method_backend_tokenizer(self):
98
+ orig_decode_method = self.backend_tokenizer.decode
99
+
100
+ def new_decode_method(*args, **kwargs):
101
+ text = orig_decode_method(*args, **kwargs)
102
+ text = text.replace(self.backend_tokenizer.model.end_of_word_suffix, " ").strip()
103
+ return text
104
+
105
+ self.backend_tokenizer.decode = new_decode_method
106
+
107
+ def build_inputs_with_special_tokens(
108
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
109
+ ) -> List[int]:
110
+ """
111
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
112
+ adding special tokens. A CLIP sequence has the following format:
113
+
114
+ - single sequence: `<|startoftext|> X <|endoftext|>`
115
+
116
+ Pairs of sequences are not the expected use case, but they will be handled without a separator.
117
+
118
+ Args:
119
+ token_ids_0 (`List[int]`):
120
+ List of IDs to which the special tokens will be added.
121
+ token_ids_1 (`List[int]`, *optional*):
122
+ Optional second list of IDs for sequence pairs.
123
+
124
+ Returns:
125
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
126
+ """
127
+ bos_token = [self.bos_token_id]
128
+ eos_token = [self.eos_token_id]
129
+
130
+ if token_ids_1 is None:
131
+ return bos_token + token_ids_0 + eos_token
132
+ return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token
133
+
134
+ def create_token_type_ids_from_sequences(
135
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
136
+ ) -> List[int]:
137
+ """
138
+ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of
139
+ zeros is returned.
140
+
141
+ Args:
142
+ token_ids_0 (`List[int]`):
143
+ List of IDs.
144
+ token_ids_1 (`List[int]`, *optional*):
145
+ Optional second list of IDs for sequence pairs.
146
+
147
+ Returns:
148
+ `List[int]`: List of zeros.
149
+ """
150
+ bos_token = [self.bos_token_id]
151
+ eos_token = [self.eos_token_id]
152
+
153
+ if token_ids_1 is None:
154
+ return len(bos_token + token_ids_0 + eos_token) * [0]
155
+ return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0]
156
+
157
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
158
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
159
+ return tuple(files)
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__init__.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import (
18
+ OptionalDependencyNotAvailable,
19
+ _LazyModule,
20
+ is_tf_available,
21
+ is_tokenizers_available,
22
+ is_torch_available,
23
+ )
24
+
25
+
26
+ _import_structure = {
27
+ "configuration_deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config", "DebertaV2OnnxConfig"],
28
+ "tokenization_deberta_v2": ["DebertaV2Tokenizer"],
29
+ }
30
+
31
+ try:
32
+ if not is_tokenizers_available():
33
+ raise OptionalDependencyNotAvailable()
34
+ except OptionalDependencyNotAvailable:
35
+ pass
36
+ else:
37
+ _import_structure["tokenization_deberta_v2_fast"] = ["DebertaV2TokenizerFast"]
38
+
39
+ try:
40
+ if not is_tf_available():
41
+ raise OptionalDependencyNotAvailable()
42
+ except OptionalDependencyNotAvailable:
43
+ pass
44
+ else:
45
+ _import_structure["modeling_tf_deberta_v2"] = [
46
+ "TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
47
+ "TFDebertaV2ForMaskedLM",
48
+ "TFDebertaV2ForQuestionAnswering",
49
+ "TFDebertaV2ForMultipleChoice",
50
+ "TFDebertaV2ForSequenceClassification",
51
+ "TFDebertaV2ForTokenClassification",
52
+ "TFDebertaV2Model",
53
+ "TFDebertaV2PreTrainedModel",
54
+ ]
55
+
56
+ try:
57
+ if not is_torch_available():
58
+ raise OptionalDependencyNotAvailable()
59
+ except OptionalDependencyNotAvailable:
60
+ pass
61
+ else:
62
+ _import_structure["modeling_deberta_v2"] = [
63
+ "DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
64
+ "DebertaV2ForMaskedLM",
65
+ "DebertaV2ForMultipleChoice",
66
+ "DebertaV2ForQuestionAnswering",
67
+ "DebertaV2ForSequenceClassification",
68
+ "DebertaV2ForTokenClassification",
69
+ "DebertaV2Model",
70
+ "DebertaV2PreTrainedModel",
71
+ ]
72
+
73
+
74
+ if TYPE_CHECKING:
75
+ from .configuration_deberta_v2 import (
76
+ DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
77
+ DebertaV2Config,
78
+ DebertaV2OnnxConfig,
79
+ )
80
+ from .tokenization_deberta_v2 import DebertaV2Tokenizer
81
+
82
+ try:
83
+ if not is_tokenizers_available():
84
+ raise OptionalDependencyNotAvailable()
85
+ except OptionalDependencyNotAvailable:
86
+ pass
87
+ else:
88
+ from .tokenization_deberta_v2_fast import DebertaV2TokenizerFast
89
+
90
+ try:
91
+ if not is_tf_available():
92
+ raise OptionalDependencyNotAvailable()
93
+ except OptionalDependencyNotAvailable:
94
+ pass
95
+ else:
96
+ from .modeling_tf_deberta_v2 import (
97
+ TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
98
+ TFDebertaV2ForMaskedLM,
99
+ TFDebertaV2ForMultipleChoice,
100
+ TFDebertaV2ForQuestionAnswering,
101
+ TFDebertaV2ForSequenceClassification,
102
+ TFDebertaV2ForTokenClassification,
103
+ TFDebertaV2Model,
104
+ TFDebertaV2PreTrainedModel,
105
+ )
106
+
107
+ try:
108
+ if not is_torch_available():
109
+ raise OptionalDependencyNotAvailable()
110
+ except OptionalDependencyNotAvailable:
111
+ pass
112
+ else:
113
+ from .modeling_deberta_v2 import (
114
+ DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
115
+ DebertaV2ForMaskedLM,
116
+ DebertaV2ForMultipleChoice,
117
+ DebertaV2ForQuestionAnswering,
118
+ DebertaV2ForSequenceClassification,
119
+ DebertaV2ForTokenClassification,
120
+ DebertaV2Model,
121
+ DebertaV2PreTrainedModel,
122
+ )
123
+
124
+ else:
125
+ import sys
126
+
127
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.99 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/configuration_deberta_v2.cpython-310.pyc ADDED
Binary file (7.99 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_deberta_v2.cpython-310.pyc ADDED
Binary file (45.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/modeling_tf_deberta_v2.cpython-310.pyc ADDED
Binary file (56.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2.cpython-310.pyc ADDED
Binary file (19.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/__pycache__/tokenization_deberta_v2_fast.cpython-310.pyc ADDED
Binary file (8.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/configuration_deberta_v2.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020, Microsoft and the HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ DeBERTa-v2 model configuration"""
16
+ from collections import OrderedDict
17
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
18
+
19
+ from ...configuration_utils import PretrainedConfig
20
+ from ...onnx import OnnxConfig
21
+ from ...utils import logging
22
+
23
+
24
+ if TYPE_CHECKING:
25
+ from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ from ..deprecated._archive_maps import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
32
+
33
+
34
+ class DebertaV2Config(PretrainedConfig):
35
+ r"""
36
+ This is the configuration class to store the configuration of a [`DebertaV2Model`]. It is used to instantiate a
37
+ DeBERTa-v2 model according to the specified arguments, defining the model architecture. Instantiating a
38
+ configuration with the defaults will yield a similar configuration to that of the DeBERTa
39
+ [microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) architecture.
40
+
41
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
42
+ documentation from [`PretrainedConfig`] for more information.
43
+
44
+ Arguments:
45
+ vocab_size (`int`, *optional*, defaults to 128100):
46
+ Vocabulary size of the DeBERTa-v2 model. Defines the number of different tokens that can be represented by
47
+ the `inputs_ids` passed when calling [`DebertaV2Model`].
48
+ hidden_size (`int`, *optional*, defaults to 1536):
49
+ Dimensionality of the encoder layers and the pooler layer.
50
+ num_hidden_layers (`int`, *optional*, defaults to 24):
51
+ Number of hidden layers in the Transformer encoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 24):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ intermediate_size (`int`, *optional*, defaults to 6144):
55
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
56
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
57
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
58
+ `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
59
+ are supported.
60
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
61
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
62
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
63
+ The dropout ratio for the attention probabilities.
64
+ max_position_embeddings (`int`, *optional*, defaults to 512):
65
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
66
+ just in case (e.g., 512 or 1024 or 2048).
67
+ type_vocab_size (`int`, *optional*, defaults to 0):
68
+ The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
69
+ initializer_range (`float`, *optional*, defaults to 0.02):
70
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
71
+ layer_norm_eps (`float`, *optional*, defaults to 1e-7):
72
+ The epsilon used by the layer normalization layers.
73
+ relative_attention (`bool`, *optional*, defaults to `True`):
74
+ Whether use relative position encoding.
75
+ max_relative_positions (`int`, *optional*, defaults to -1):
76
+ The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
77
+ as `max_position_embeddings`.
78
+ pad_token_id (`int`, *optional*, defaults to 0):
79
+ The value used to pad input_ids.
80
+ position_biased_input (`bool`, *optional*, defaults to `True`):
81
+ Whether add absolute position embedding to content embedding.
82
+ pos_att_type (`List[str]`, *optional*):
83
+ The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
84
+ `["p2c", "c2p"]`, `["p2c", "c2p"]`.
85
+ layer_norm_eps (`float`, optional, defaults to 1e-12):
86
+ The epsilon used by the layer normalization layers.
87
+
88
+ Example:
89
+
90
+ ```python
91
+ >>> from transformers import DebertaV2Config, DebertaV2Model
92
+
93
+ >>> # Initializing a DeBERTa-v2 microsoft/deberta-v2-xlarge style configuration
94
+ >>> configuration = DebertaV2Config()
95
+
96
+ >>> # Initializing a model (with random weights) from the microsoft/deberta-v2-xlarge style configuration
97
+ >>> model = DebertaV2Model(configuration)
98
+
99
+ >>> # Accessing the model configuration
100
+ >>> configuration = model.config
101
+ ```"""
102
+
103
+ model_type = "deberta-v2"
104
+
105
+ def __init__(
106
+ self,
107
+ vocab_size=128100,
108
+ hidden_size=1536,
109
+ num_hidden_layers=24,
110
+ num_attention_heads=24,
111
+ intermediate_size=6144,
112
+ hidden_act="gelu",
113
+ hidden_dropout_prob=0.1,
114
+ attention_probs_dropout_prob=0.1,
115
+ max_position_embeddings=512,
116
+ type_vocab_size=0,
117
+ initializer_range=0.02,
118
+ layer_norm_eps=1e-7,
119
+ relative_attention=False,
120
+ max_relative_positions=-1,
121
+ pad_token_id=0,
122
+ position_biased_input=True,
123
+ pos_att_type=None,
124
+ pooler_dropout=0,
125
+ pooler_hidden_act="gelu",
126
+ **kwargs,
127
+ ):
128
+ super().__init__(**kwargs)
129
+
130
+ self.hidden_size = hidden_size
131
+ self.num_hidden_layers = num_hidden_layers
132
+ self.num_attention_heads = num_attention_heads
133
+ self.intermediate_size = intermediate_size
134
+ self.hidden_act = hidden_act
135
+ self.hidden_dropout_prob = hidden_dropout_prob
136
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
137
+ self.max_position_embeddings = max_position_embeddings
138
+ self.type_vocab_size = type_vocab_size
139
+ self.initializer_range = initializer_range
140
+ self.relative_attention = relative_attention
141
+ self.max_relative_positions = max_relative_positions
142
+ self.pad_token_id = pad_token_id
143
+ self.position_biased_input = position_biased_input
144
+
145
+ # Backwards compatibility
146
+ if isinstance(pos_att_type, str):
147
+ pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
148
+
149
+ self.pos_att_type = pos_att_type
150
+ self.vocab_size = vocab_size
151
+ self.layer_norm_eps = layer_norm_eps
152
+
153
+ self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
154
+ self.pooler_dropout = pooler_dropout
155
+ self.pooler_hidden_act = pooler_hidden_act
156
+
157
+
158
+ class DebertaV2OnnxConfig(OnnxConfig):
159
+ @property
160
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
161
+ if self.task == "multiple-choice":
162
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
163
+ else:
164
+ dynamic_axis = {0: "batch", 1: "sequence"}
165
+ if self._config.type_vocab_size > 0:
166
+ return OrderedDict(
167
+ [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]
168
+ )
169
+ else:
170
+ return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)])
171
+
172
+ @property
173
+ def default_onnx_opset(self) -> int:
174
+ return 12
175
+
176
+ def generate_dummy_inputs(
177
+ self,
178
+ preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
179
+ batch_size: int = -1,
180
+ seq_length: int = -1,
181
+ num_choices: int = -1,
182
+ is_pair: bool = False,
183
+ framework: Optional["TensorType"] = None,
184
+ num_channels: int = 3,
185
+ image_width: int = 40,
186
+ image_height: int = 40,
187
+ tokenizer: "PreTrainedTokenizerBase" = None,
188
+ ) -> Mapping[str, Any]:
189
+ dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework)
190
+ if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
191
+ del dummy_inputs["token_type_ids"]
192
+ return dummy_inputs
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_deberta_v2.py ADDED
@@ -0,0 +1,1629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 Microsoft and the Hugging Face Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch DeBERTa-v2 model."""
16
+
17
+ from collections.abc import Sequence
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.utils.checkpoint
22
+ from torch import nn
23
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
24
+
25
+ from ...activations import ACT2FN
26
+ from ...modeling_outputs import (
27
+ BaseModelOutput,
28
+ MaskedLMOutput,
29
+ MultipleChoiceModelOutput,
30
+ QuestionAnsweringModelOutput,
31
+ SequenceClassifierOutput,
32
+ TokenClassifierOutput,
33
+ )
34
+ from ...modeling_utils import PreTrainedModel
35
+ from ...pytorch_utils import softmax_backward_data
36
+ from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
37
+ from .configuration_deberta_v2 import DebertaV2Config
38
+
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _CONFIG_FOR_DOC = "DebertaV2Config"
43
+ _CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
44
+ _QA_TARGET_START_INDEX = 2
45
+ _QA_TARGET_END_INDEX = 9
46
+
47
+
48
+ from ..deprecated._archive_maps import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
49
+
50
+
51
+ # Copied from transformers.models.deberta.modeling_deberta.ContextPooler
52
+ class ContextPooler(nn.Module):
53
+ def __init__(self, config):
54
+ super().__init__()
55
+ self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
56
+ self.dropout = StableDropout(config.pooler_dropout)
57
+ self.config = config
58
+
59
+ def forward(self, hidden_states):
60
+ # We "pool" the model by simply taking the hidden state corresponding
61
+ # to the first token.
62
+
63
+ context_token = hidden_states[:, 0]
64
+ context_token = self.dropout(context_token)
65
+ pooled_output = self.dense(context_token)
66
+ pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
67
+ return pooled_output
68
+
69
+ @property
70
+ def output_dim(self):
71
+ return self.config.hidden_size
72
+
73
+
74
+ # Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
75
+ class XSoftmax(torch.autograd.Function):
76
+ """
77
+ Masked Softmax which is optimized for saving memory
78
+
79
+ Args:
80
+ input (`torch.tensor`): The input tensor that will apply softmax.
81
+ mask (`torch.IntTensor`):
82
+ The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
83
+ dim (int): The dimension that will apply softmax
84
+
85
+ Example:
86
+
87
+ ```python
88
+ >>> import torch
89
+ >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
90
+
91
+ >>> # Make a tensor
92
+ >>> x = torch.randn([4, 20, 100])
93
+
94
+ >>> # Create a mask
95
+ >>> mask = (x > 0).int()
96
+
97
+ >>> # Specify the dimension to apply softmax
98
+ >>> dim = -1
99
+
100
+ >>> y = XSoftmax.apply(x, mask, dim)
101
+ ```"""
102
+
103
+ @staticmethod
104
+ def forward(self, input, mask, dim):
105
+ self.dim = dim
106
+ rmask = ~(mask.to(torch.bool))
107
+
108
+ output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
109
+ output = torch.softmax(output, self.dim)
110
+ output.masked_fill_(rmask, 0)
111
+ self.save_for_backward(output)
112
+ return output
113
+
114
+ @staticmethod
115
+ def backward(self, grad_output):
116
+ (output,) = self.saved_tensors
117
+ inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
118
+ return inputGrad, None, None
119
+
120
+ @staticmethod
121
+ def symbolic(g, self, mask, dim):
122
+ import torch.onnx.symbolic_helper as sym_help
123
+ from torch.onnx.symbolic_opset9 import masked_fill, softmax
124
+
125
+ mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
126
+ r_mask = g.op(
127
+ "Cast",
128
+ g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
129
+ to_i=sym_help.cast_pytorch_to_onnx["Bool"],
130
+ )
131
+ output = masked_fill(
132
+ g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
133
+ )
134
+ output = softmax(g, output, dim)
135
+ return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
136
+
137
+
138
+ # Copied from transformers.models.deberta.modeling_deberta.DropoutContext
139
+ class DropoutContext(object):
140
+ def __init__(self):
141
+ self.dropout = 0
142
+ self.mask = None
143
+ self.scale = 1
144
+ self.reuse_mask = True
145
+
146
+
147
+ # Copied from transformers.models.deberta.modeling_deberta.get_mask
148
+ def get_mask(input, local_context):
149
+ if not isinstance(local_context, DropoutContext):
150
+ dropout = local_context
151
+ mask = None
152
+ else:
153
+ dropout = local_context.dropout
154
+ dropout *= local_context.scale
155
+ mask = local_context.mask if local_context.reuse_mask else None
156
+
157
+ if dropout > 0 and mask is None:
158
+ mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
159
+
160
+ if isinstance(local_context, DropoutContext):
161
+ if local_context.mask is None:
162
+ local_context.mask = mask
163
+
164
+ return mask, dropout
165
+
166
+
167
+ # Copied from transformers.models.deberta.modeling_deberta.XDropout
168
+ class XDropout(torch.autograd.Function):
169
+ """Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
170
+
171
+ @staticmethod
172
+ def forward(ctx, input, local_ctx):
173
+ mask, dropout = get_mask(input, local_ctx)
174
+ ctx.scale = 1.0 / (1 - dropout)
175
+ if dropout > 0:
176
+ ctx.save_for_backward(mask)
177
+ return input.masked_fill(mask, 0) * ctx.scale
178
+ else:
179
+ return input
180
+
181
+ @staticmethod
182
+ def backward(ctx, grad_output):
183
+ if ctx.scale > 1:
184
+ (mask,) = ctx.saved_tensors
185
+ return grad_output.masked_fill(mask, 0) * ctx.scale, None
186
+ else:
187
+ return grad_output, None
188
+
189
+ @staticmethod
190
+ def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
191
+ from torch.onnx import symbolic_opset12
192
+
193
+ dropout_p = local_ctx
194
+ if isinstance(local_ctx, DropoutContext):
195
+ dropout_p = local_ctx.dropout
196
+ # StableDropout only calls this function when training.
197
+ train = True
198
+ # TODO: We should check if the opset_version being used to export
199
+ # is > 12 here, but there's no good way to do that. As-is, if the
200
+ # opset_version < 12, export will fail with a CheckerError.
201
+ # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
202
+ # if opset_version < 12:
203
+ # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
204
+ return symbolic_opset12.dropout(g, input, dropout_p, train)
205
+
206
+
207
+ # Copied from transformers.models.deberta.modeling_deberta.StableDropout
208
+ class StableDropout(nn.Module):
209
+ """
210
+ Optimized dropout module for stabilizing the training
211
+
212
+ Args:
213
+ drop_prob (float): the dropout probabilities
214
+ """
215
+
216
+ def __init__(self, drop_prob):
217
+ super().__init__()
218
+ self.drop_prob = drop_prob
219
+ self.count = 0
220
+ self.context_stack = None
221
+
222
+ def forward(self, x):
223
+ """
224
+ Call the module
225
+
226
+ Args:
227
+ x (`torch.tensor`): The input tensor to apply dropout
228
+ """
229
+ if self.training and self.drop_prob > 0:
230
+ return XDropout.apply(x, self.get_context())
231
+ return x
232
+
233
+ def clear_context(self):
234
+ self.count = 0
235
+ self.context_stack = None
236
+
237
+ def init_context(self, reuse_mask=True, scale=1):
238
+ if self.context_stack is None:
239
+ self.context_stack = []
240
+ self.count = 0
241
+ for c in self.context_stack:
242
+ c.reuse_mask = reuse_mask
243
+ c.scale = scale
244
+
245
+ def get_context(self):
246
+ if self.context_stack is not None:
247
+ if self.count >= len(self.context_stack):
248
+ self.context_stack.append(DropoutContext())
249
+ ctx = self.context_stack[self.count]
250
+ ctx.dropout = self.drop_prob
251
+ self.count += 1
252
+ return ctx
253
+ else:
254
+ return self.drop_prob
255
+
256
+
257
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
258
+ class DebertaV2SelfOutput(nn.Module):
259
+ def __init__(self, config):
260
+ super().__init__()
261
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
262
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
263
+ self.dropout = StableDropout(config.hidden_dropout_prob)
264
+
265
+ def forward(self, hidden_states, input_tensor):
266
+ hidden_states = self.dense(hidden_states)
267
+ hidden_states = self.dropout(hidden_states)
268
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
269
+ return hidden_states
270
+
271
+
272
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
273
+ class DebertaV2Attention(nn.Module):
274
+ def __init__(self, config):
275
+ super().__init__()
276
+ self.self = DisentangledSelfAttention(config)
277
+ self.output = DebertaV2SelfOutput(config)
278
+ self.config = config
279
+
280
+ def forward(
281
+ self,
282
+ hidden_states,
283
+ attention_mask,
284
+ output_attentions=False,
285
+ query_states=None,
286
+ relative_pos=None,
287
+ rel_embeddings=None,
288
+ ):
289
+ self_output = self.self(
290
+ hidden_states,
291
+ attention_mask,
292
+ output_attentions,
293
+ query_states=query_states,
294
+ relative_pos=relative_pos,
295
+ rel_embeddings=rel_embeddings,
296
+ )
297
+ if output_attentions:
298
+ self_output, att_matrix = self_output
299
+ if query_states is None:
300
+ query_states = hidden_states
301
+ attention_output = self.output(self_output, query_states)
302
+
303
+ if output_attentions:
304
+ return (attention_output, att_matrix)
305
+ else:
306
+ return attention_output
307
+
308
+
309
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
310
+ class DebertaV2Intermediate(nn.Module):
311
+ def __init__(self, config):
312
+ super().__init__()
313
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
314
+ if isinstance(config.hidden_act, str):
315
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
316
+ else:
317
+ self.intermediate_act_fn = config.hidden_act
318
+
319
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
320
+ hidden_states = self.dense(hidden_states)
321
+ hidden_states = self.intermediate_act_fn(hidden_states)
322
+ return hidden_states
323
+
324
+
325
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
326
+ class DebertaV2Output(nn.Module):
327
+ def __init__(self, config):
328
+ super().__init__()
329
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
330
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
331
+ self.dropout = StableDropout(config.hidden_dropout_prob)
332
+ self.config = config
333
+
334
+ def forward(self, hidden_states, input_tensor):
335
+ hidden_states = self.dense(hidden_states)
336
+ hidden_states = self.dropout(hidden_states)
337
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
338
+ return hidden_states
339
+
340
+
341
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
342
+ class DebertaV2Layer(nn.Module):
343
+ def __init__(self, config):
344
+ super().__init__()
345
+ self.attention = DebertaV2Attention(config)
346
+ self.intermediate = DebertaV2Intermediate(config)
347
+ self.output = DebertaV2Output(config)
348
+
349
+ def forward(
350
+ self,
351
+ hidden_states,
352
+ attention_mask,
353
+ query_states=None,
354
+ relative_pos=None,
355
+ rel_embeddings=None,
356
+ output_attentions=False,
357
+ ):
358
+ attention_output = self.attention(
359
+ hidden_states,
360
+ attention_mask,
361
+ output_attentions=output_attentions,
362
+ query_states=query_states,
363
+ relative_pos=relative_pos,
364
+ rel_embeddings=rel_embeddings,
365
+ )
366
+ if output_attentions:
367
+ attention_output, att_matrix = attention_output
368
+ intermediate_output = self.intermediate(attention_output)
369
+ layer_output = self.output(intermediate_output, attention_output)
370
+ if output_attentions:
371
+ return (layer_output, att_matrix)
372
+ else:
373
+ return layer_output
374
+
375
+
376
+ class ConvLayer(nn.Module):
377
+ def __init__(self, config):
378
+ super().__init__()
379
+ kernel_size = getattr(config, "conv_kernel_size", 3)
380
+ groups = getattr(config, "conv_groups", 1)
381
+ self.conv_act = getattr(config, "conv_act", "tanh")
382
+ self.conv = nn.Conv1d(
383
+ config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
384
+ )
385
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
386
+ self.dropout = StableDropout(config.hidden_dropout_prob)
387
+ self.config = config
388
+
389
+ def forward(self, hidden_states, residual_states, input_mask):
390
+ out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
391
+ rmask = (1 - input_mask).bool()
392
+ out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
393
+ out = ACT2FN[self.conv_act](self.dropout(out))
394
+
395
+ layer_norm_input = residual_states + out
396
+ output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
397
+
398
+ if input_mask is None:
399
+ output_states = output
400
+ else:
401
+ if input_mask.dim() != layer_norm_input.dim():
402
+ if input_mask.dim() == 4:
403
+ input_mask = input_mask.squeeze(1).squeeze(1)
404
+ input_mask = input_mask.unsqueeze(2)
405
+
406
+ input_mask = input_mask.to(output.dtype)
407
+ output_states = output * input_mask
408
+
409
+ return output_states
410
+
411
+
412
+ class DebertaV2Encoder(nn.Module):
413
+ """Modified BertEncoder with relative position bias support"""
414
+
415
+ def __init__(self, config):
416
+ super().__init__()
417
+
418
+ self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
419
+ self.relative_attention = getattr(config, "relative_attention", False)
420
+
421
+ if self.relative_attention:
422
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
423
+ if self.max_relative_positions < 1:
424
+ self.max_relative_positions = config.max_position_embeddings
425
+
426
+ self.position_buckets = getattr(config, "position_buckets", -1)
427
+ pos_ebd_size = self.max_relative_positions * 2
428
+
429
+ if self.position_buckets > 0:
430
+ pos_ebd_size = self.position_buckets * 2
431
+
432
+ self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
433
+
434
+ self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
435
+
436
+ if "layer_norm" in self.norm_rel_ebd:
437
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
438
+
439
+ self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
440
+ self.gradient_checkpointing = False
441
+
442
+ def get_rel_embedding(self):
443
+ rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
444
+ if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
445
+ rel_embeddings = self.LayerNorm(rel_embeddings)
446
+ return rel_embeddings
447
+
448
+ def get_attention_mask(self, attention_mask):
449
+ if attention_mask.dim() <= 2:
450
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
451
+ attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
452
+ elif attention_mask.dim() == 3:
453
+ attention_mask = attention_mask.unsqueeze(1)
454
+
455
+ return attention_mask
456
+
457
+ def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
458
+ if self.relative_attention and relative_pos is None:
459
+ q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
460
+ relative_pos = build_relative_position(
461
+ q,
462
+ hidden_states.size(-2),
463
+ bucket_size=self.position_buckets,
464
+ max_position=self.max_relative_positions,
465
+ device=hidden_states.device,
466
+ )
467
+ return relative_pos
468
+
469
+ def forward(
470
+ self,
471
+ hidden_states,
472
+ attention_mask,
473
+ output_hidden_states=True,
474
+ output_attentions=False,
475
+ query_states=None,
476
+ relative_pos=None,
477
+ return_dict=True,
478
+ ):
479
+ if attention_mask.dim() <= 2:
480
+ input_mask = attention_mask
481
+ else:
482
+ input_mask = attention_mask.sum(-2) > 0
483
+ attention_mask = self.get_attention_mask(attention_mask)
484
+ relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
485
+
486
+ all_hidden_states = () if output_hidden_states else None
487
+ all_attentions = () if output_attentions else None
488
+
489
+ if isinstance(hidden_states, Sequence):
490
+ next_kv = hidden_states[0]
491
+ else:
492
+ next_kv = hidden_states
493
+ rel_embeddings = self.get_rel_embedding()
494
+ output_states = next_kv
495
+ for i, layer_module in enumerate(self.layer):
496
+ if output_hidden_states:
497
+ all_hidden_states = all_hidden_states + (output_states,)
498
+
499
+ if self.gradient_checkpointing and self.training:
500
+ output_states = self._gradient_checkpointing_func(
501
+ layer_module.__call__,
502
+ next_kv,
503
+ attention_mask,
504
+ query_states,
505
+ relative_pos,
506
+ rel_embeddings,
507
+ output_attentions,
508
+ )
509
+ else:
510
+ output_states = layer_module(
511
+ next_kv,
512
+ attention_mask,
513
+ query_states=query_states,
514
+ relative_pos=relative_pos,
515
+ rel_embeddings=rel_embeddings,
516
+ output_attentions=output_attentions,
517
+ )
518
+
519
+ if output_attentions:
520
+ output_states, att_m = output_states
521
+
522
+ if i == 0 and self.conv is not None:
523
+ output_states = self.conv(hidden_states, output_states, input_mask)
524
+
525
+ if query_states is not None:
526
+ query_states = output_states
527
+ if isinstance(hidden_states, Sequence):
528
+ next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
529
+ else:
530
+ next_kv = output_states
531
+
532
+ if output_attentions:
533
+ all_attentions = all_attentions + (att_m,)
534
+
535
+ if output_hidden_states:
536
+ all_hidden_states = all_hidden_states + (output_states,)
537
+
538
+ if not return_dict:
539
+ return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
540
+ return BaseModelOutput(
541
+ last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
542
+ )
543
+
544
+
545
+ def make_log_bucket_position(relative_pos, bucket_size, max_position):
546
+ sign = torch.sign(relative_pos)
547
+ mid = bucket_size // 2
548
+ abs_pos = torch.where(
549
+ (relative_pos < mid) & (relative_pos > -mid),
550
+ torch.tensor(mid - 1).type_as(relative_pos),
551
+ torch.abs(relative_pos),
552
+ )
553
+ log_pos = (
554
+ torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
555
+ )
556
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
557
+ return bucket_pos
558
+
559
+
560
+ def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
561
+ """
562
+ Build relative position according to the query and key
563
+
564
+ We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
565
+ \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
566
+ P_k\\)
567
+
568
+ Args:
569
+ query_size (int): the length of query
570
+ key_size (int): the length of key
571
+ bucket_size (int): the size of position bucket
572
+ max_position (int): the maximum allowed absolute position
573
+ device (`torch.device`): the device on which tensors will be created.
574
+
575
+ Return:
576
+ `torch.LongTensor`: A tensor with shape [1, query_size, key_size]
577
+ """
578
+
579
+ q_ids = torch.arange(0, query_size, device=device)
580
+ k_ids = torch.arange(0, key_size, device=device)
581
+ rel_pos_ids = q_ids[:, None] - k_ids[None, :]
582
+ if bucket_size > 0 and max_position > 0:
583
+ rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
584
+ rel_pos_ids = rel_pos_ids.to(torch.long)
585
+ rel_pos_ids = rel_pos_ids[:query_size, :]
586
+ rel_pos_ids = rel_pos_ids.unsqueeze(0)
587
+ return rel_pos_ids
588
+
589
+
590
+ @torch.jit.script
591
+ # Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
592
+ def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
593
+ return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
594
+
595
+
596
+ @torch.jit.script
597
+ # Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
598
+ def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
599
+ return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
600
+
601
+
602
+ @torch.jit.script
603
+ # Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
604
+ def pos_dynamic_expand(pos_index, p2c_att, key_layer):
605
+ return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
606
+
607
+
608
+ class DisentangledSelfAttention(nn.Module):
609
+ """
610
+ Disentangled self-attention module
611
+
612
+ Parameters:
613
+ config (`DebertaV2Config`):
614
+ A model config class instance with the configuration to build a new model. The schema is similar to
615
+ *BertConfig*, for more details, please refer [`DebertaV2Config`]
616
+
617
+ """
618
+
619
+ def __init__(self, config):
620
+ super().__init__()
621
+ if config.hidden_size % config.num_attention_heads != 0:
622
+ raise ValueError(
623
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
624
+ f"heads ({config.num_attention_heads})"
625
+ )
626
+ self.num_attention_heads = config.num_attention_heads
627
+ _attention_head_size = config.hidden_size // config.num_attention_heads
628
+ self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
629
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
630
+ self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
631
+ self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
632
+ self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
633
+
634
+ self.share_att_key = getattr(config, "share_att_key", False)
635
+ self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
636
+ self.relative_attention = getattr(config, "relative_attention", False)
637
+
638
+ if self.relative_attention:
639
+ self.position_buckets = getattr(config, "position_buckets", -1)
640
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
641
+ if self.max_relative_positions < 1:
642
+ self.max_relative_positions = config.max_position_embeddings
643
+ self.pos_ebd_size = self.max_relative_positions
644
+ if self.position_buckets > 0:
645
+ self.pos_ebd_size = self.position_buckets
646
+
647
+ self.pos_dropout = StableDropout(config.hidden_dropout_prob)
648
+
649
+ if not self.share_att_key:
650
+ if "c2p" in self.pos_att_type:
651
+ self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
652
+ if "p2c" in self.pos_att_type:
653
+ self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
654
+
655
+ self.dropout = StableDropout(config.attention_probs_dropout_prob)
656
+
657
+ def transpose_for_scores(self, x, attention_heads):
658
+ new_x_shape = x.size()[:-1] + (attention_heads, -1)
659
+ x = x.view(new_x_shape)
660
+ return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
661
+
662
+ def forward(
663
+ self,
664
+ hidden_states,
665
+ attention_mask,
666
+ output_attentions=False,
667
+ query_states=None,
668
+ relative_pos=None,
669
+ rel_embeddings=None,
670
+ ):
671
+ """
672
+ Call the module
673
+
674
+ Args:
675
+ hidden_states (`torch.FloatTensor`):
676
+ Input states to the module usually the output from previous layer, it will be the Q,K and V in
677
+ *Attention(Q,K,V)*
678
+
679
+ attention_mask (`torch.BoolTensor`):
680
+ An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
681
+ sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
682
+ th token.
683
+
684
+ output_attentions (`bool`, optional):
685
+ Whether return the attention matrix.
686
+
687
+ query_states (`torch.FloatTensor`, optional):
688
+ The *Q* state in *Attention(Q,K,V)*.
689
+
690
+ relative_pos (`torch.LongTensor`):
691
+ The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
692
+ values ranging in [*-max_relative_positions*, *max_relative_positions*].
693
+
694
+ rel_embeddings (`torch.FloatTensor`):
695
+ The embedding of relative distances. It's a tensor of shape [\\(2 \\times
696
+ \\text{max_relative_positions}\\), *hidden_size*].
697
+
698
+
699
+ """
700
+ if query_states is None:
701
+ query_states = hidden_states
702
+ query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
703
+ key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
704
+ value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
705
+
706
+ rel_att = None
707
+ # Take the dot product between "query" and "key" to get the raw attention scores.
708
+ scale_factor = 1
709
+ if "c2p" in self.pos_att_type:
710
+ scale_factor += 1
711
+ if "p2c" in self.pos_att_type:
712
+ scale_factor += 1
713
+ scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
714
+ attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype))
715
+ if self.relative_attention:
716
+ rel_embeddings = self.pos_dropout(rel_embeddings)
717
+ rel_att = self.disentangled_attention_bias(
718
+ query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
719
+ )
720
+
721
+ if rel_att is not None:
722
+ attention_scores = attention_scores + rel_att
723
+ attention_scores = attention_scores
724
+ attention_scores = attention_scores.view(
725
+ -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
726
+ )
727
+
728
+ # bsz x height x length x dimension
729
+ attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
730
+ attention_probs = self.dropout(attention_probs)
731
+ context_layer = torch.bmm(
732
+ attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
733
+ )
734
+ context_layer = (
735
+ context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
736
+ .permute(0, 2, 1, 3)
737
+ .contiguous()
738
+ )
739
+ new_context_layer_shape = context_layer.size()[:-2] + (-1,)
740
+ context_layer = context_layer.view(new_context_layer_shape)
741
+ if output_attentions:
742
+ return (context_layer, attention_probs)
743
+ else:
744
+ return context_layer
745
+
746
+ def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
747
+ if relative_pos is None:
748
+ q = query_layer.size(-2)
749
+ relative_pos = build_relative_position(
750
+ q,
751
+ key_layer.size(-2),
752
+ bucket_size=self.position_buckets,
753
+ max_position=self.max_relative_positions,
754
+ device=query_layer.device,
755
+ )
756
+ if relative_pos.dim() == 2:
757
+ relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
758
+ elif relative_pos.dim() == 3:
759
+ relative_pos = relative_pos.unsqueeze(1)
760
+ # bsz x height x query x key
761
+ elif relative_pos.dim() != 4:
762
+ raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
763
+
764
+ att_span = self.pos_ebd_size
765
+ relative_pos = relative_pos.long().to(query_layer.device)
766
+
767
+ rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
768
+ if self.share_att_key:
769
+ pos_query_layer = self.transpose_for_scores(
770
+ self.query_proj(rel_embeddings), self.num_attention_heads
771
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
772
+ pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
773
+ query_layer.size(0) // self.num_attention_heads, 1, 1
774
+ )
775
+ else:
776
+ if "c2p" in self.pos_att_type:
777
+ pos_key_layer = self.transpose_for_scores(
778
+ self.pos_key_proj(rel_embeddings), self.num_attention_heads
779
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
780
+ if "p2c" in self.pos_att_type:
781
+ pos_query_layer = self.transpose_for_scores(
782
+ self.pos_query_proj(rel_embeddings), self.num_attention_heads
783
+ ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
784
+
785
+ score = 0
786
+ # content->position
787
+ if "c2p" in self.pos_att_type:
788
+ scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
789
+ c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
790
+ c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
791
+ c2p_att = torch.gather(
792
+ c2p_att,
793
+ dim=-1,
794
+ index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
795
+ )
796
+ score += c2p_att / scale.to(dtype=c2p_att.dtype)
797
+
798
+ # position->content
799
+ if "p2c" in self.pos_att_type:
800
+ scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
801
+ if key_layer.size(-2) != query_layer.size(-2):
802
+ r_pos = build_relative_position(
803
+ key_layer.size(-2),
804
+ key_layer.size(-2),
805
+ bucket_size=self.position_buckets,
806
+ max_position=self.max_relative_positions,
807
+ device=query_layer.device,
808
+ )
809
+ r_pos = r_pos.unsqueeze(0)
810
+ else:
811
+ r_pos = relative_pos
812
+
813
+ p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
814
+ p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
815
+ p2c_att = torch.gather(
816
+ p2c_att,
817
+ dim=-1,
818
+ index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
819
+ ).transpose(-1, -2)
820
+ score += p2c_att / scale.to(dtype=p2c_att.dtype)
821
+
822
+ return score
823
+
824
+
825
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
826
+ class DebertaV2Embeddings(nn.Module):
827
+ """Construct the embeddings from word, position and token_type embeddings."""
828
+
829
+ def __init__(self, config):
830
+ super().__init__()
831
+ pad_token_id = getattr(config, "pad_token_id", 0)
832
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
833
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
834
+
835
+ self.position_biased_input = getattr(config, "position_biased_input", True)
836
+ if not self.position_biased_input:
837
+ self.position_embeddings = None
838
+ else:
839
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
840
+
841
+ if config.type_vocab_size > 0:
842
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
843
+
844
+ if self.embedding_size != config.hidden_size:
845
+ self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
846
+ self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
847
+ self.dropout = StableDropout(config.hidden_dropout_prob)
848
+ self.config = config
849
+
850
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
851
+ self.register_buffer(
852
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
853
+ )
854
+
855
+ def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
856
+ if input_ids is not None:
857
+ input_shape = input_ids.size()
858
+ else:
859
+ input_shape = inputs_embeds.size()[:-1]
860
+
861
+ seq_length = input_shape[1]
862
+
863
+ if position_ids is None:
864
+ position_ids = self.position_ids[:, :seq_length]
865
+
866
+ if token_type_ids is None:
867
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
868
+
869
+ if inputs_embeds is None:
870
+ inputs_embeds = self.word_embeddings(input_ids)
871
+
872
+ if self.position_embeddings is not None:
873
+ position_embeddings = self.position_embeddings(position_ids.long())
874
+ else:
875
+ position_embeddings = torch.zeros_like(inputs_embeds)
876
+
877
+ embeddings = inputs_embeds
878
+ if self.position_biased_input:
879
+ embeddings += position_embeddings
880
+ if self.config.type_vocab_size > 0:
881
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
882
+ embeddings += token_type_embeddings
883
+
884
+ if self.embedding_size != self.config.hidden_size:
885
+ embeddings = self.embed_proj(embeddings)
886
+
887
+ embeddings = self.LayerNorm(embeddings)
888
+
889
+ if mask is not None:
890
+ if mask.dim() != embeddings.dim():
891
+ if mask.dim() == 4:
892
+ mask = mask.squeeze(1).squeeze(1)
893
+ mask = mask.unsqueeze(2)
894
+ mask = mask.to(embeddings.dtype)
895
+
896
+ embeddings = embeddings * mask
897
+
898
+ embeddings = self.dropout(embeddings)
899
+ return embeddings
900
+
901
+
902
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
903
+ class DebertaV2PreTrainedModel(PreTrainedModel):
904
+ """
905
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
906
+ models.
907
+ """
908
+
909
+ config_class = DebertaV2Config
910
+ base_model_prefix = "deberta"
911
+ _keys_to_ignore_on_load_unexpected = ["position_embeddings"]
912
+ supports_gradient_checkpointing = True
913
+
914
+ def _init_weights(self, module):
915
+ """Initialize the weights."""
916
+ if isinstance(module, nn.Linear):
917
+ # Slightly different from the TF version which uses truncated_normal for initialization
918
+ # cf https://github.com/pytorch/pytorch/pull/5617
919
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
920
+ if module.bias is not None:
921
+ module.bias.data.zero_()
922
+ elif isinstance(module, nn.Embedding):
923
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
924
+ if module.padding_idx is not None:
925
+ module.weight.data[module.padding_idx].zero_()
926
+
927
+
928
+ DEBERTA_START_DOCSTRING = r"""
929
+ The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
930
+ Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
931
+ on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
932
+ improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
933
+
934
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
935
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
936
+ and behavior.
937
+
938
+
939
+ Parameters:
940
+ config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
941
+ Initializing with a config file does not load the weights associated with the model, only the
942
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
943
+ """
944
+
945
+ DEBERTA_INPUTS_DOCSTRING = r"""
946
+ Args:
947
+ input_ids (`torch.LongTensor` of shape `({0})`):
948
+ Indices of input sequence tokens in the vocabulary.
949
+
950
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
951
+ [`PreTrainedTokenizer.__call__`] for details.
952
+
953
+ [What are input IDs?](../glossary#input-ids)
954
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
955
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
956
+
957
+ - 1 for tokens that are **not masked**,
958
+ - 0 for tokens that are **masked**.
959
+
960
+ [What are attention masks?](../glossary#attention-mask)
961
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
962
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
963
+ 1]`:
964
+
965
+ - 0 corresponds to a *sentence A* token,
966
+ - 1 corresponds to a *sentence B* token.
967
+
968
+ [What are token type IDs?](../glossary#token-type-ids)
969
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
970
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
971
+ config.max_position_embeddings - 1]`.
972
+
973
+ [What are position IDs?](../glossary#position-ids)
974
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
975
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
976
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
977
+ model's internal embedding lookup matrix.
978
+ output_attentions (`bool`, *optional*):
979
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
980
+ tensors for more detail.
981
+ output_hidden_states (`bool`, *optional*):
982
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
983
+ more detail.
984
+ return_dict (`bool`, *optional*):
985
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
986
+ """
987
+
988
+
989
+ @add_start_docstrings(
990
+ "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
991
+ DEBERTA_START_DOCSTRING,
992
+ )
993
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
994
+ class DebertaV2Model(DebertaV2PreTrainedModel):
995
+ def __init__(self, config):
996
+ super().__init__(config)
997
+
998
+ self.embeddings = DebertaV2Embeddings(config)
999
+ self.encoder = DebertaV2Encoder(config)
1000
+ self.z_steps = 0
1001
+ self.config = config
1002
+ # Initialize weights and apply final processing
1003
+ self.post_init()
1004
+
1005
+ def get_input_embeddings(self):
1006
+ return self.embeddings.word_embeddings
1007
+
1008
+ def set_input_embeddings(self, new_embeddings):
1009
+ self.embeddings.word_embeddings = new_embeddings
1010
+
1011
+ def _prune_heads(self, heads_to_prune):
1012
+ """
1013
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1014
+ class PreTrainedModel
1015
+ """
1016
+ raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
1017
+
1018
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1019
+ @add_code_sample_docstrings(
1020
+ checkpoint=_CHECKPOINT_FOR_DOC,
1021
+ output_type=BaseModelOutput,
1022
+ config_class=_CONFIG_FOR_DOC,
1023
+ )
1024
+ def forward(
1025
+ self,
1026
+ input_ids: Optional[torch.Tensor] = None,
1027
+ attention_mask: Optional[torch.Tensor] = None,
1028
+ token_type_ids: Optional[torch.Tensor] = None,
1029
+ position_ids: Optional[torch.Tensor] = None,
1030
+ inputs_embeds: Optional[torch.Tensor] = None,
1031
+ output_attentions: Optional[bool] = None,
1032
+ output_hidden_states: Optional[bool] = None,
1033
+ return_dict: Optional[bool] = None,
1034
+ ) -> Union[Tuple, BaseModelOutput]:
1035
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1036
+ output_hidden_states = (
1037
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1038
+ )
1039
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1040
+
1041
+ if input_ids is not None and inputs_embeds is not None:
1042
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1043
+ elif input_ids is not None:
1044
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1045
+ input_shape = input_ids.size()
1046
+ elif inputs_embeds is not None:
1047
+ input_shape = inputs_embeds.size()[:-1]
1048
+ else:
1049
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1050
+
1051
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1052
+
1053
+ if attention_mask is None:
1054
+ attention_mask = torch.ones(input_shape, device=device)
1055
+ if token_type_ids is None:
1056
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1057
+
1058
+ embedding_output = self.embeddings(
1059
+ input_ids=input_ids,
1060
+ token_type_ids=token_type_ids,
1061
+ position_ids=position_ids,
1062
+ mask=attention_mask,
1063
+ inputs_embeds=inputs_embeds,
1064
+ )
1065
+
1066
+ encoder_outputs = self.encoder(
1067
+ embedding_output,
1068
+ attention_mask,
1069
+ output_hidden_states=True,
1070
+ output_attentions=output_attentions,
1071
+ return_dict=return_dict,
1072
+ )
1073
+ encoded_layers = encoder_outputs[1]
1074
+
1075
+ if self.z_steps > 1:
1076
+ hidden_states = encoded_layers[-2]
1077
+ layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
1078
+ query_states = encoded_layers[-1]
1079
+ rel_embeddings = self.encoder.get_rel_embedding()
1080
+ attention_mask = self.encoder.get_attention_mask(attention_mask)
1081
+ rel_pos = self.encoder.get_rel_pos(embedding_output)
1082
+ for layer in layers[1:]:
1083
+ query_states = layer(
1084
+ hidden_states,
1085
+ attention_mask,
1086
+ output_attentions=False,
1087
+ query_states=query_states,
1088
+ relative_pos=rel_pos,
1089
+ rel_embeddings=rel_embeddings,
1090
+ )
1091
+ encoded_layers.append(query_states)
1092
+
1093
+ sequence_output = encoded_layers[-1]
1094
+
1095
+ if not return_dict:
1096
+ return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
1097
+
1098
+ return BaseModelOutput(
1099
+ last_hidden_state=sequence_output,
1100
+ hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
1101
+ attentions=encoder_outputs.attentions,
1102
+ )
1103
+
1104
+
1105
+ @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
1106
+ class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
1107
+ _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
1108
+
1109
+ def __init__(self, config):
1110
+ super().__init__(config)
1111
+
1112
+ self.deberta = DebertaV2Model(config)
1113
+ self.cls = DebertaV2OnlyMLMHead(config)
1114
+
1115
+ # Initialize weights and apply final processing
1116
+ self.post_init()
1117
+
1118
+ def get_output_embeddings(self):
1119
+ return self.cls.predictions.decoder
1120
+
1121
+ def set_output_embeddings(self, new_embeddings):
1122
+ self.cls.predictions.decoder = new_embeddings
1123
+
1124
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1125
+ @add_code_sample_docstrings(
1126
+ checkpoint=_CHECKPOINT_FOR_DOC,
1127
+ output_type=MaskedLMOutput,
1128
+ config_class=_CONFIG_FOR_DOC,
1129
+ mask="[MASK]",
1130
+ )
1131
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.forward with Deberta->DebertaV2
1132
+ def forward(
1133
+ self,
1134
+ input_ids: Optional[torch.Tensor] = None,
1135
+ attention_mask: Optional[torch.Tensor] = None,
1136
+ token_type_ids: Optional[torch.Tensor] = None,
1137
+ position_ids: Optional[torch.Tensor] = None,
1138
+ inputs_embeds: Optional[torch.Tensor] = None,
1139
+ labels: Optional[torch.Tensor] = None,
1140
+ output_attentions: Optional[bool] = None,
1141
+ output_hidden_states: Optional[bool] = None,
1142
+ return_dict: Optional[bool] = None,
1143
+ ) -> Union[Tuple, MaskedLMOutput]:
1144
+ r"""
1145
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1146
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1147
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1148
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1149
+ """
1150
+
1151
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1152
+
1153
+ outputs = self.deberta(
1154
+ input_ids,
1155
+ attention_mask=attention_mask,
1156
+ token_type_ids=token_type_ids,
1157
+ position_ids=position_ids,
1158
+ inputs_embeds=inputs_embeds,
1159
+ output_attentions=output_attentions,
1160
+ output_hidden_states=output_hidden_states,
1161
+ return_dict=return_dict,
1162
+ )
1163
+
1164
+ sequence_output = outputs[0]
1165
+ prediction_scores = self.cls(sequence_output)
1166
+
1167
+ masked_lm_loss = None
1168
+ if labels is not None:
1169
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1170
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1171
+
1172
+ if not return_dict:
1173
+ output = (prediction_scores,) + outputs[1:]
1174
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1175
+
1176
+ return MaskedLMOutput(
1177
+ loss=masked_lm_loss,
1178
+ logits=prediction_scores,
1179
+ hidden_states=outputs.hidden_states,
1180
+ attentions=outputs.attentions,
1181
+ )
1182
+
1183
+
1184
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaPredictionHeadTransform with Deberta->DebertaV2
1185
+ class DebertaV2PredictionHeadTransform(nn.Module):
1186
+ def __init__(self, config):
1187
+ super().__init__()
1188
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
1189
+
1190
+ self.dense = nn.Linear(config.hidden_size, self.embedding_size)
1191
+ if isinstance(config.hidden_act, str):
1192
+ self.transform_act_fn = ACT2FN[config.hidden_act]
1193
+ else:
1194
+ self.transform_act_fn = config.hidden_act
1195
+ self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
1196
+
1197
+ def forward(self, hidden_states):
1198
+ hidden_states = self.dense(hidden_states)
1199
+ hidden_states = self.transform_act_fn(hidden_states)
1200
+ hidden_states = self.LayerNorm(hidden_states)
1201
+ return hidden_states
1202
+
1203
+
1204
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaLMPredictionHead with Deberta->DebertaV2
1205
+ class DebertaV2LMPredictionHead(nn.Module):
1206
+ def __init__(self, config):
1207
+ super().__init__()
1208
+ self.transform = DebertaV2PredictionHeadTransform(config)
1209
+
1210
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
1211
+ # The output weights are the same as the input embeddings, but there is
1212
+ # an output-only bias for each token.
1213
+ self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)
1214
+
1215
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
1216
+
1217
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
1218
+ self.decoder.bias = self.bias
1219
+
1220
+ def forward(self, hidden_states):
1221
+ hidden_states = self.transform(hidden_states)
1222
+ hidden_states = self.decoder(hidden_states)
1223
+ return hidden_states
1224
+
1225
+
1226
+ # copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
1227
+ class DebertaV2OnlyMLMHead(nn.Module):
1228
+ def __init__(self, config):
1229
+ super().__init__()
1230
+ self.predictions = DebertaV2LMPredictionHead(config)
1231
+
1232
+ def forward(self, sequence_output):
1233
+ prediction_scores = self.predictions(sequence_output)
1234
+ return prediction_scores
1235
+
1236
+
1237
+ @add_start_docstrings(
1238
+ """
1239
+ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
1240
+ pooled output) e.g. for GLUE tasks.
1241
+ """,
1242
+ DEBERTA_START_DOCSTRING,
1243
+ )
1244
+ class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
1245
+ def __init__(self, config):
1246
+ super().__init__(config)
1247
+
1248
+ num_labels = getattr(config, "num_labels", 2)
1249
+ self.num_labels = num_labels
1250
+
1251
+ self.deberta = DebertaV2Model(config)
1252
+ self.pooler = ContextPooler(config)
1253
+ output_dim = self.pooler.output_dim
1254
+
1255
+ self.classifier = nn.Linear(output_dim, num_labels)
1256
+ drop_out = getattr(config, "cls_dropout", None)
1257
+ drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
1258
+ self.dropout = StableDropout(drop_out)
1259
+
1260
+ # Initialize weights and apply final processing
1261
+ self.post_init()
1262
+
1263
+ def get_input_embeddings(self):
1264
+ return self.deberta.get_input_embeddings()
1265
+
1266
+ def set_input_embeddings(self, new_embeddings):
1267
+ self.deberta.set_input_embeddings(new_embeddings)
1268
+
1269
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1270
+ @add_code_sample_docstrings(
1271
+ checkpoint=_CHECKPOINT_FOR_DOC,
1272
+ output_type=SequenceClassifierOutput,
1273
+ config_class=_CONFIG_FOR_DOC,
1274
+ )
1275
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.forward with Deberta->DebertaV2
1276
+ def forward(
1277
+ self,
1278
+ input_ids: Optional[torch.Tensor] = None,
1279
+ attention_mask: Optional[torch.Tensor] = None,
1280
+ token_type_ids: Optional[torch.Tensor] = None,
1281
+ position_ids: Optional[torch.Tensor] = None,
1282
+ inputs_embeds: Optional[torch.Tensor] = None,
1283
+ labels: Optional[torch.Tensor] = None,
1284
+ output_attentions: Optional[bool] = None,
1285
+ output_hidden_states: Optional[bool] = None,
1286
+ return_dict: Optional[bool] = None,
1287
+ ) -> Union[Tuple, SequenceClassifierOutput]:
1288
+ r"""
1289
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1290
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1291
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1292
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1293
+ """
1294
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1295
+
1296
+ outputs = self.deberta(
1297
+ input_ids,
1298
+ token_type_ids=token_type_ids,
1299
+ attention_mask=attention_mask,
1300
+ position_ids=position_ids,
1301
+ inputs_embeds=inputs_embeds,
1302
+ output_attentions=output_attentions,
1303
+ output_hidden_states=output_hidden_states,
1304
+ return_dict=return_dict,
1305
+ )
1306
+
1307
+ encoder_layer = outputs[0]
1308
+ pooled_output = self.pooler(encoder_layer)
1309
+ pooled_output = self.dropout(pooled_output)
1310
+ logits = self.classifier(pooled_output)
1311
+
1312
+ loss = None
1313
+ if labels is not None:
1314
+ if self.config.problem_type is None:
1315
+ if self.num_labels == 1:
1316
+ # regression task
1317
+ loss_fn = nn.MSELoss()
1318
+ logits = logits.view(-1).to(labels.dtype)
1319
+ loss = loss_fn(logits, labels.view(-1))
1320
+ elif labels.dim() == 1 or labels.size(-1) == 1:
1321
+ label_index = (labels >= 0).nonzero()
1322
+ labels = labels.long()
1323
+ if label_index.size(0) > 0:
1324
+ labeled_logits = torch.gather(
1325
+ logits, 0, label_index.expand(label_index.size(0), logits.size(1))
1326
+ )
1327
+ labels = torch.gather(labels, 0, label_index.view(-1))
1328
+ loss_fct = CrossEntropyLoss()
1329
+ loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
1330
+ else:
1331
+ loss = torch.tensor(0).to(logits)
1332
+ else:
1333
+ log_softmax = nn.LogSoftmax(-1)
1334
+ loss = -((log_softmax(logits) * labels).sum(-1)).mean()
1335
+ elif self.config.problem_type == "regression":
1336
+ loss_fct = MSELoss()
1337
+ if self.num_labels == 1:
1338
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1339
+ else:
1340
+ loss = loss_fct(logits, labels)
1341
+ elif self.config.problem_type == "single_label_classification":
1342
+ loss_fct = CrossEntropyLoss()
1343
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1344
+ elif self.config.problem_type == "multi_label_classification":
1345
+ loss_fct = BCEWithLogitsLoss()
1346
+ loss = loss_fct(logits, labels)
1347
+ if not return_dict:
1348
+ output = (logits,) + outputs[1:]
1349
+ return ((loss,) + output) if loss is not None else output
1350
+
1351
+ return SequenceClassifierOutput(
1352
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
1353
+ )
1354
+
1355
+
1356
+ @add_start_docstrings(
1357
+ """
1358
+ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1359
+ Named-Entity-Recognition (NER) tasks.
1360
+ """,
1361
+ DEBERTA_START_DOCSTRING,
1362
+ )
1363
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
1364
+ class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
1365
+ def __init__(self, config):
1366
+ super().__init__(config)
1367
+ self.num_labels = config.num_labels
1368
+
1369
+ self.deberta = DebertaV2Model(config)
1370
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1371
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1372
+
1373
+ # Initialize weights and apply final processing
1374
+ self.post_init()
1375
+
1376
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1377
+ @add_code_sample_docstrings(
1378
+ checkpoint=_CHECKPOINT_FOR_DOC,
1379
+ output_type=TokenClassifierOutput,
1380
+ config_class=_CONFIG_FOR_DOC,
1381
+ )
1382
+ def forward(
1383
+ self,
1384
+ input_ids: Optional[torch.Tensor] = None,
1385
+ attention_mask: Optional[torch.Tensor] = None,
1386
+ token_type_ids: Optional[torch.Tensor] = None,
1387
+ position_ids: Optional[torch.Tensor] = None,
1388
+ inputs_embeds: Optional[torch.Tensor] = None,
1389
+ labels: Optional[torch.Tensor] = None,
1390
+ output_attentions: Optional[bool] = None,
1391
+ output_hidden_states: Optional[bool] = None,
1392
+ return_dict: Optional[bool] = None,
1393
+ ) -> Union[Tuple, TokenClassifierOutput]:
1394
+ r"""
1395
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1396
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1397
+ """
1398
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1399
+
1400
+ outputs = self.deberta(
1401
+ input_ids,
1402
+ attention_mask=attention_mask,
1403
+ token_type_ids=token_type_ids,
1404
+ position_ids=position_ids,
1405
+ inputs_embeds=inputs_embeds,
1406
+ output_attentions=output_attentions,
1407
+ output_hidden_states=output_hidden_states,
1408
+ return_dict=return_dict,
1409
+ )
1410
+
1411
+ sequence_output = outputs[0]
1412
+
1413
+ sequence_output = self.dropout(sequence_output)
1414
+ logits = self.classifier(sequence_output)
1415
+
1416
+ loss = None
1417
+ if labels is not None:
1418
+ loss_fct = CrossEntropyLoss()
1419
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1420
+
1421
+ if not return_dict:
1422
+ output = (logits,) + outputs[1:]
1423
+ return ((loss,) + output) if loss is not None else output
1424
+
1425
+ return TokenClassifierOutput(
1426
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
1427
+ )
1428
+
1429
+
1430
+ @add_start_docstrings(
1431
+ """
1432
+ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
1433
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1434
+ """,
1435
+ DEBERTA_START_DOCSTRING,
1436
+ )
1437
+ class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
1438
+ def __init__(self, config):
1439
+ super().__init__(config)
1440
+ self.num_labels = config.num_labels
1441
+
1442
+ self.deberta = DebertaV2Model(config)
1443
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1444
+
1445
+ # Initialize weights and apply final processing
1446
+ self.post_init()
1447
+
1448
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1449
+ @add_code_sample_docstrings(
1450
+ checkpoint=_CHECKPOINT_FOR_DOC,
1451
+ output_type=QuestionAnsweringModelOutput,
1452
+ config_class=_CONFIG_FOR_DOC,
1453
+ qa_target_start_index=_QA_TARGET_START_INDEX,
1454
+ qa_target_end_index=_QA_TARGET_END_INDEX,
1455
+ )
1456
+ # Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering.forward with Deberta->DebertaV2
1457
+ def forward(
1458
+ self,
1459
+ input_ids: Optional[torch.Tensor] = None,
1460
+ attention_mask: Optional[torch.Tensor] = None,
1461
+ token_type_ids: Optional[torch.Tensor] = None,
1462
+ position_ids: Optional[torch.Tensor] = None,
1463
+ inputs_embeds: Optional[torch.Tensor] = None,
1464
+ start_positions: Optional[torch.Tensor] = None,
1465
+ end_positions: Optional[torch.Tensor] = None,
1466
+ output_attentions: Optional[bool] = None,
1467
+ output_hidden_states: Optional[bool] = None,
1468
+ return_dict: Optional[bool] = None,
1469
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1470
+ r"""
1471
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1472
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1473
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1474
+ are not taken into account for computing the loss.
1475
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1476
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1477
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1478
+ are not taken into account for computing the loss.
1479
+ """
1480
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1481
+
1482
+ outputs = self.deberta(
1483
+ input_ids,
1484
+ attention_mask=attention_mask,
1485
+ token_type_ids=token_type_ids,
1486
+ position_ids=position_ids,
1487
+ inputs_embeds=inputs_embeds,
1488
+ output_attentions=output_attentions,
1489
+ output_hidden_states=output_hidden_states,
1490
+ return_dict=return_dict,
1491
+ )
1492
+
1493
+ sequence_output = outputs[0]
1494
+
1495
+ logits = self.qa_outputs(sequence_output)
1496
+ start_logits, end_logits = logits.split(1, dim=-1)
1497
+ start_logits = start_logits.squeeze(-1).contiguous()
1498
+ end_logits = end_logits.squeeze(-1).contiguous()
1499
+
1500
+ total_loss = None
1501
+ if start_positions is not None and end_positions is not None:
1502
+ # If we are on multi-GPU, split add a dimension
1503
+ if len(start_positions.size()) > 1:
1504
+ start_positions = start_positions.squeeze(-1)
1505
+ if len(end_positions.size()) > 1:
1506
+ end_positions = end_positions.squeeze(-1)
1507
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1508
+ ignored_index = start_logits.size(1)
1509
+ start_positions = start_positions.clamp(0, ignored_index)
1510
+ end_positions = end_positions.clamp(0, ignored_index)
1511
+
1512
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1513
+ start_loss = loss_fct(start_logits, start_positions)
1514
+ end_loss = loss_fct(end_logits, end_positions)
1515
+ total_loss = (start_loss + end_loss) / 2
1516
+
1517
+ if not return_dict:
1518
+ output = (start_logits, end_logits) + outputs[1:]
1519
+ return ((total_loss,) + output) if total_loss is not None else output
1520
+
1521
+ return QuestionAnsweringModelOutput(
1522
+ loss=total_loss,
1523
+ start_logits=start_logits,
1524
+ end_logits=end_logits,
1525
+ hidden_states=outputs.hidden_states,
1526
+ attentions=outputs.attentions,
1527
+ )
1528
+
1529
+
1530
+ @add_start_docstrings(
1531
+ """
1532
+ DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
1533
+ softmax) e.g. for RocStories/SWAG tasks.
1534
+ """,
1535
+ DEBERTA_START_DOCSTRING,
1536
+ )
1537
+ class DebertaV2ForMultipleChoice(DebertaV2PreTrainedModel):
1538
+ def __init__(self, config):
1539
+ super().__init__(config)
1540
+
1541
+ num_labels = getattr(config, "num_labels", 2)
1542
+ self.num_labels = num_labels
1543
+
1544
+ self.deberta = DebertaV2Model(config)
1545
+ self.pooler = ContextPooler(config)
1546
+ output_dim = self.pooler.output_dim
1547
+
1548
+ self.classifier = nn.Linear(output_dim, 1)
1549
+ drop_out = getattr(config, "cls_dropout", None)
1550
+ drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
1551
+ self.dropout = StableDropout(drop_out)
1552
+
1553
+ self.init_weights()
1554
+
1555
+ def get_input_embeddings(self):
1556
+ return self.deberta.get_input_embeddings()
1557
+
1558
+ def set_input_embeddings(self, new_embeddings):
1559
+ self.deberta.set_input_embeddings(new_embeddings)
1560
+
1561
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1562
+ @add_code_sample_docstrings(
1563
+ checkpoint=_CHECKPOINT_FOR_DOC,
1564
+ output_type=MultipleChoiceModelOutput,
1565
+ config_class=_CONFIG_FOR_DOC,
1566
+ )
1567
+ def forward(
1568
+ self,
1569
+ input_ids: Optional[torch.Tensor] = None,
1570
+ attention_mask: Optional[torch.Tensor] = None,
1571
+ token_type_ids: Optional[torch.Tensor] = None,
1572
+ position_ids: Optional[torch.Tensor] = None,
1573
+ inputs_embeds: Optional[torch.Tensor] = None,
1574
+ labels: Optional[torch.Tensor] = None,
1575
+ output_attentions: Optional[bool] = None,
1576
+ output_hidden_states: Optional[bool] = None,
1577
+ return_dict: Optional[bool] = None,
1578
+ ) -> Union[Tuple, MultipleChoiceModelOutput]:
1579
+ r"""
1580
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1581
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1582
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1583
+ `input_ids` above)
1584
+ """
1585
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1586
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1587
+
1588
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1589
+ flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1590
+ flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1591
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1592
+ flat_inputs_embeds = (
1593
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1594
+ if inputs_embeds is not None
1595
+ else None
1596
+ )
1597
+
1598
+ outputs = self.deberta(
1599
+ flat_input_ids,
1600
+ position_ids=flat_position_ids,
1601
+ token_type_ids=flat_token_type_ids,
1602
+ attention_mask=flat_attention_mask,
1603
+ inputs_embeds=flat_inputs_embeds,
1604
+ output_attentions=output_attentions,
1605
+ output_hidden_states=output_hidden_states,
1606
+ return_dict=return_dict,
1607
+ )
1608
+
1609
+ encoder_layer = outputs[0]
1610
+ pooled_output = self.pooler(encoder_layer)
1611
+ pooled_output = self.dropout(pooled_output)
1612
+ logits = self.classifier(pooled_output)
1613
+ reshaped_logits = logits.view(-1, num_choices)
1614
+
1615
+ loss = None
1616
+ if labels is not None:
1617
+ loss_fct = CrossEntropyLoss()
1618
+ loss = loss_fct(reshaped_logits, labels)
1619
+
1620
+ if not return_dict:
1621
+ output = (reshaped_logits,) + outputs[1:]
1622
+ return ((loss,) + output) if loss is not None else output
1623
+
1624
+ return MultipleChoiceModelOutput(
1625
+ loss=loss,
1626
+ logits=reshaped_logits,
1627
+ hidden_states=outputs.hidden_states,
1628
+ attentions=outputs.attentions,
1629
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/modeling_tf_deberta_v2.py ADDED
@@ -0,0 +1,1874 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TF 2.0 DeBERTa-v2 model."""
16
+
17
+ from __future__ import annotations
18
+
19
+ from typing import Dict, Optional, Tuple, Union
20
+
21
+ import numpy as np
22
+ import tensorflow as tf
23
+
24
+ from ...activations_tf import get_tf_activation
25
+ from ...modeling_tf_outputs import (
26
+ TFBaseModelOutput,
27
+ TFMaskedLMOutput,
28
+ TFMultipleChoiceModelOutput,
29
+ TFQuestionAnsweringModelOutput,
30
+ TFSequenceClassifierOutput,
31
+ TFTokenClassifierOutput,
32
+ )
33
+ from ...modeling_tf_utils import (
34
+ TFMaskedLanguageModelingLoss,
35
+ TFModelInputType,
36
+ TFMultipleChoiceLoss,
37
+ TFPreTrainedModel,
38
+ TFQuestionAnsweringLoss,
39
+ TFSequenceClassificationLoss,
40
+ TFTokenClassificationLoss,
41
+ get_initializer,
42
+ keras,
43
+ unpack_inputs,
44
+ )
45
+ from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
46
+ from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
47
+ from .configuration_deberta_v2 import DebertaV2Config
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CONFIG_FOR_DOC = "DebertaV2Config"
53
+ _CHECKPOINT_FOR_DOC = "kamalkraj/deberta-v2-xlarge"
54
+
55
+
56
+ from ..deprecated._archive_maps import TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
57
+
58
+
59
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaContextPooler with Deberta->DebertaV2
60
+ class TFDebertaV2ContextPooler(keras.layers.Layer):
61
+ def __init__(self, config: DebertaV2Config, **kwargs):
62
+ super().__init__(**kwargs)
63
+ self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense")
64
+ self.dropout = TFDebertaV2StableDropout(config.pooler_dropout, name="dropout")
65
+ self.config = config
66
+
67
+ def call(self, hidden_states, training: bool = False):
68
+ # We "pool" the model by simply taking the hidden state corresponding
69
+ # to the first token.
70
+ context_token = hidden_states[:, 0]
71
+ context_token = self.dropout(context_token, training=training)
72
+ pooled_output = self.dense(context_token)
73
+ pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output)
74
+ return pooled_output
75
+
76
+ @property
77
+ def output_dim(self) -> int:
78
+ return self.config.hidden_size
79
+
80
+ def build(self, input_shape=None):
81
+ if self.built:
82
+ return
83
+ self.built = True
84
+ if getattr(self, "dense", None) is not None:
85
+ with tf.name_scope(self.dense.name):
86
+ self.dense.build([None, None, self.config.pooler_hidden_size])
87
+ if getattr(self, "dropout", None) is not None:
88
+ with tf.name_scope(self.dropout.name):
89
+ self.dropout.build(None)
90
+
91
+
92
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaXSoftmax with Deberta->DebertaV2
93
+ class TFDebertaV2XSoftmax(keras.layers.Layer):
94
+ """
95
+ Masked Softmax which is optimized for saving memory
96
+
97
+ Args:
98
+ input (`tf.Tensor`): The input tensor that will apply softmax.
99
+ mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
100
+ dim (int): The dimension that will apply softmax
101
+ """
102
+
103
+ def __init__(self, axis=-1, **kwargs):
104
+ super().__init__(**kwargs)
105
+ self.axis = axis
106
+
107
+ def call(self, inputs: tf.Tensor, mask: tf.Tensor):
108
+ rmask = tf.logical_not(tf.cast(mask, tf.bool))
109
+ output = tf.where(rmask, float("-inf"), inputs)
110
+ output = stable_softmax(output, self.axis)
111
+ output = tf.where(rmask, 0.0, output)
112
+ return output
113
+
114
+
115
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaStableDropout with Deberta->DebertaV2
116
+ class TFDebertaV2StableDropout(keras.layers.Layer):
117
+ """
118
+ Optimized dropout module for stabilizing the training
119
+
120
+ Args:
121
+ drop_prob (float): the dropout probabilities
122
+ """
123
+
124
+ def __init__(self, drop_prob, **kwargs):
125
+ super().__init__(**kwargs)
126
+ self.drop_prob = drop_prob
127
+
128
+ @tf.custom_gradient
129
+ def xdropout(self, inputs):
130
+ """
131
+ Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob.
132
+ """
133
+ mask = tf.cast(
134
+ 1
135
+ - tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)),
136
+ tf.bool,
137
+ )
138
+ scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32)
139
+ if self.drop_prob > 0:
140
+ inputs = tf.where(mask, 0.0, inputs) * scale
141
+
142
+ def grad(upstream):
143
+ if self.drop_prob > 0:
144
+ return tf.where(mask, 0.0, upstream) * scale
145
+ else:
146
+ return upstream
147
+
148
+ return inputs, grad
149
+
150
+ def call(self, inputs: tf.Tensor, training: tf.Tensor = False):
151
+ if training:
152
+ return self.xdropout(inputs)
153
+ return inputs
154
+
155
+
156
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaSelfOutput with Deberta->DebertaV2
157
+ class TFDebertaV2SelfOutput(keras.layers.Layer):
158
+ def __init__(self, config: DebertaV2Config, **kwargs):
159
+ super().__init__(**kwargs)
160
+ self.dense = keras.layers.Dense(config.hidden_size, name="dense")
161
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
162
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
163
+ self.config = config
164
+
165
+ def call(self, hidden_states, input_tensor, training: bool = False):
166
+ hidden_states = self.dense(hidden_states)
167
+ hidden_states = self.dropout(hidden_states, training=training)
168
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
169
+ return hidden_states
170
+
171
+ def build(self, input_shape=None):
172
+ if self.built:
173
+ return
174
+ self.built = True
175
+ if getattr(self, "dense", None) is not None:
176
+ with tf.name_scope(self.dense.name):
177
+ self.dense.build([None, None, self.config.hidden_size])
178
+ if getattr(self, "LayerNorm", None) is not None:
179
+ with tf.name_scope(self.LayerNorm.name):
180
+ self.LayerNorm.build([None, None, self.config.hidden_size])
181
+ if getattr(self, "dropout", None) is not None:
182
+ with tf.name_scope(self.dropout.name):
183
+ self.dropout.build(None)
184
+
185
+
186
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaAttention with Deberta->DebertaV2
187
+ class TFDebertaV2Attention(keras.layers.Layer):
188
+ def __init__(self, config: DebertaV2Config, **kwargs):
189
+ super().__init__(**kwargs)
190
+ self.self = TFDebertaV2DisentangledSelfAttention(config, name="self")
191
+ self.dense_output = TFDebertaV2SelfOutput(config, name="output")
192
+ self.config = config
193
+
194
+ def call(
195
+ self,
196
+ input_tensor: tf.Tensor,
197
+ attention_mask: tf.Tensor,
198
+ query_states: tf.Tensor = None,
199
+ relative_pos: tf.Tensor = None,
200
+ rel_embeddings: tf.Tensor = None,
201
+ output_attentions: bool = False,
202
+ training: bool = False,
203
+ ) -> Tuple[tf.Tensor]:
204
+ self_outputs = self.self(
205
+ hidden_states=input_tensor,
206
+ attention_mask=attention_mask,
207
+ query_states=query_states,
208
+ relative_pos=relative_pos,
209
+ rel_embeddings=rel_embeddings,
210
+ output_attentions=output_attentions,
211
+ training=training,
212
+ )
213
+ if query_states is None:
214
+ query_states = input_tensor
215
+ attention_output = self.dense_output(
216
+ hidden_states=self_outputs[0], input_tensor=query_states, training=training
217
+ )
218
+
219
+ output = (attention_output,) + self_outputs[1:]
220
+
221
+ return output
222
+
223
+ def build(self, input_shape=None):
224
+ if self.built:
225
+ return
226
+ self.built = True
227
+ if getattr(self, "self", None) is not None:
228
+ with tf.name_scope(self.self.name):
229
+ self.self.build(None)
230
+ if getattr(self, "dense_output", None) is not None:
231
+ with tf.name_scope(self.dense_output.name):
232
+ self.dense_output.build(None)
233
+
234
+
235
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaIntermediate with Deberta->DebertaV2
236
+ class TFDebertaV2Intermediate(keras.layers.Layer):
237
+ def __init__(self, config: DebertaV2Config, **kwargs):
238
+ super().__init__(**kwargs)
239
+
240
+ self.dense = keras.layers.Dense(
241
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
242
+ )
243
+
244
+ if isinstance(config.hidden_act, str):
245
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
246
+ else:
247
+ self.intermediate_act_fn = config.hidden_act
248
+ self.config = config
249
+
250
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
251
+ hidden_states = self.dense(inputs=hidden_states)
252
+ hidden_states = self.intermediate_act_fn(hidden_states)
253
+
254
+ return hidden_states
255
+
256
+ def build(self, input_shape=None):
257
+ if self.built:
258
+ return
259
+ self.built = True
260
+ if getattr(self, "dense", None) is not None:
261
+ with tf.name_scope(self.dense.name):
262
+ self.dense.build([None, None, self.config.hidden_size])
263
+
264
+
265
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOutput with Deberta->DebertaV2
266
+ class TFDebertaV2Output(keras.layers.Layer):
267
+ def __init__(self, config: DebertaV2Config, **kwargs):
268
+ super().__init__(**kwargs)
269
+
270
+ self.dense = keras.layers.Dense(
271
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
272
+ )
273
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
274
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
275
+ self.config = config
276
+
277
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
278
+ hidden_states = self.dense(inputs=hidden_states)
279
+ hidden_states = self.dropout(hidden_states, training=training)
280
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
281
+
282
+ return hidden_states
283
+
284
+ def build(self, input_shape=None):
285
+ if self.built:
286
+ return
287
+ self.built = True
288
+ if getattr(self, "dense", None) is not None:
289
+ with tf.name_scope(self.dense.name):
290
+ self.dense.build([None, None, self.config.intermediate_size])
291
+ if getattr(self, "LayerNorm", None) is not None:
292
+ with tf.name_scope(self.LayerNorm.name):
293
+ self.LayerNorm.build([None, None, self.config.hidden_size])
294
+ if getattr(self, "dropout", None) is not None:
295
+ with tf.name_scope(self.dropout.name):
296
+ self.dropout.build(None)
297
+
298
+
299
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLayer with Deberta->DebertaV2
300
+ class TFDebertaV2Layer(keras.layers.Layer):
301
+ def __init__(self, config: DebertaV2Config, **kwargs):
302
+ super().__init__(**kwargs)
303
+
304
+ self.attention = TFDebertaV2Attention(config, name="attention")
305
+ self.intermediate = TFDebertaV2Intermediate(config, name="intermediate")
306
+ self.bert_output = TFDebertaV2Output(config, name="output")
307
+
308
+ def call(
309
+ self,
310
+ hidden_states: tf.Tensor,
311
+ attention_mask: tf.Tensor,
312
+ query_states: tf.Tensor = None,
313
+ relative_pos: tf.Tensor = None,
314
+ rel_embeddings: tf.Tensor = None,
315
+ output_attentions: bool = False,
316
+ training: bool = False,
317
+ ) -> Tuple[tf.Tensor]:
318
+ attention_outputs = self.attention(
319
+ input_tensor=hidden_states,
320
+ attention_mask=attention_mask,
321
+ query_states=query_states,
322
+ relative_pos=relative_pos,
323
+ rel_embeddings=rel_embeddings,
324
+ output_attentions=output_attentions,
325
+ training=training,
326
+ )
327
+ attention_output = attention_outputs[0]
328
+ intermediate_output = self.intermediate(hidden_states=attention_output)
329
+ layer_output = self.bert_output(
330
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
331
+ )
332
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
333
+
334
+ return outputs
335
+
336
+ def build(self, input_shape=None):
337
+ if self.built:
338
+ return
339
+ self.built = True
340
+ if getattr(self, "attention", None) is not None:
341
+ with tf.name_scope(self.attention.name):
342
+ self.attention.build(None)
343
+ if getattr(self, "intermediate", None) is not None:
344
+ with tf.name_scope(self.intermediate.name):
345
+ self.intermediate.build(None)
346
+ if getattr(self, "bert_output", None) is not None:
347
+ with tf.name_scope(self.bert_output.name):
348
+ self.bert_output.build(None)
349
+
350
+
351
+ class TFDebertaV2ConvLayer(keras.layers.Layer):
352
+ def __init__(self, config: DebertaV2Config, **kwargs):
353
+ super().__init__(**kwargs)
354
+
355
+ self.kernel_size = getattr(config, "conv_kernel_size", 3)
356
+ # groups = getattr(config, "conv_groups", 1)
357
+ self.conv_act = get_tf_activation(getattr(config, "conv_act", "tanh"))
358
+ self.padding = (self.kernel_size - 1) // 2
359
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
360
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
361
+ self.config = config
362
+
363
+ def build(self, input_shape=None):
364
+ if self.built:
365
+ return
366
+ self.built = True
367
+ with tf.name_scope("conv"):
368
+ self.conv_kernel = self.add_weight(
369
+ name="kernel",
370
+ shape=[self.kernel_size, self.config.hidden_size, self.config.hidden_size],
371
+ initializer=get_initializer(self.config.initializer_range),
372
+ )
373
+ self.conv_bias = self.add_weight(
374
+ name="bias", shape=[self.config.hidden_size], initializer=tf.zeros_initializer()
375
+ )
376
+ if getattr(self, "LayerNorm", None) is not None:
377
+ with tf.name_scope(self.LayerNorm.name):
378
+ self.LayerNorm.build([None, None, self.config.hidden_size])
379
+ if getattr(self, "dropout", None) is not None:
380
+ with tf.name_scope(self.dropout.name):
381
+ self.dropout.build(None)
382
+
383
+ def call(
384
+ self, hidden_states: tf.Tensor, residual_states: tf.Tensor, input_mask: tf.Tensor, training: bool = False
385
+ ) -> tf.Tensor:
386
+ out = tf.nn.conv2d(
387
+ tf.expand_dims(hidden_states, 1),
388
+ tf.expand_dims(self.conv_kernel, 0),
389
+ strides=1,
390
+ padding=[[0, 0], [0, 0], [self.padding, self.padding], [0, 0]],
391
+ )
392
+ out = tf.squeeze(tf.nn.bias_add(out, self.conv_bias), 1)
393
+ rmask = tf.cast(1 - input_mask, tf.bool)
394
+ out = tf.where(tf.broadcast_to(tf.expand_dims(rmask, -1), shape_list(out)), 0.0, out)
395
+ out = self.dropout(out, training=training)
396
+ out = self.conv_act(out)
397
+
398
+ layer_norm_input = residual_states + out
399
+ output = self.LayerNorm(layer_norm_input)
400
+
401
+ if input_mask is None:
402
+ output_states = output
403
+ else:
404
+ if len(shape_list(input_mask)) != len(shape_list(layer_norm_input)):
405
+ if len(shape_list(input_mask)) == 4:
406
+ input_mask = tf.squeeze(tf.squeeze(input_mask, axis=1), axis=1)
407
+ input_mask = tf.cast(tf.expand_dims(input_mask, axis=2), tf.float32)
408
+
409
+ output_states = output * input_mask
410
+
411
+ return output_states
412
+
413
+
414
+ class TFDebertaV2Encoder(keras.layers.Layer):
415
+ def __init__(self, config: DebertaV2Config, **kwargs):
416
+ super().__init__(**kwargs)
417
+
418
+ self.layer = [TFDebertaV2Layer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
419
+ self.relative_attention = getattr(config, "relative_attention", False)
420
+ self.config = config
421
+ if self.relative_attention:
422
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
423
+ if self.max_relative_positions < 1:
424
+ self.max_relative_positions = config.max_position_embeddings
425
+
426
+ self.position_buckets = getattr(config, "position_buckets", -1)
427
+ self.pos_ebd_size = self.max_relative_positions * 2
428
+
429
+ if self.position_buckets > 0:
430
+ self.pos_ebd_size = self.position_buckets * 2
431
+
432
+ self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
433
+
434
+ if "layer_norm" in self.norm_rel_ebd:
435
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
436
+
437
+ self.conv = TFDebertaV2ConvLayer(config, name="conv") if getattr(config, "conv_kernel_size", 0) > 0 else None
438
+
439
+ def build(self, input_shape=None):
440
+ if self.built:
441
+ return
442
+ self.built = True
443
+ if self.relative_attention:
444
+ self.rel_embeddings = self.add_weight(
445
+ name="rel_embeddings.weight",
446
+ shape=[self.pos_ebd_size, self.config.hidden_size],
447
+ initializer=get_initializer(self.config.initializer_range),
448
+ )
449
+ if getattr(self, "conv", None) is not None:
450
+ with tf.name_scope(self.conv.name):
451
+ self.conv.build(None)
452
+ if getattr(self, "LayerNorm", None) is not None:
453
+ with tf.name_scope(self.LayerNorm.name):
454
+ self.LayerNorm.build([None, self.config.hidden_size])
455
+ if getattr(self, "layer", None) is not None:
456
+ for layer in self.layer:
457
+ with tf.name_scope(layer.name):
458
+ layer.build(None)
459
+
460
+ def get_rel_embedding(self):
461
+ rel_embeddings = self.rel_embeddings if self.relative_attention else None
462
+ if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
463
+ rel_embeddings = self.LayerNorm(rel_embeddings)
464
+ return rel_embeddings
465
+
466
+ def get_attention_mask(self, attention_mask):
467
+ if len(shape_list(attention_mask)) <= 2:
468
+ extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2)
469
+ attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1)
470
+ attention_mask = tf.cast(attention_mask, tf.uint8)
471
+ elif len(shape_list(attention_mask)) == 3:
472
+ attention_mask = tf.expand_dims(attention_mask, 1)
473
+
474
+ return attention_mask
475
+
476
+ def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
477
+ if self.relative_attention and relative_pos is None:
478
+ q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2]
479
+ relative_pos = build_relative_position(
480
+ q,
481
+ shape_list(hidden_states)[-2],
482
+ bucket_size=self.position_buckets,
483
+ max_position=self.max_relative_positions,
484
+ )
485
+ return relative_pos
486
+
487
+ def call(
488
+ self,
489
+ hidden_states: tf.Tensor,
490
+ attention_mask: tf.Tensor,
491
+ query_states: tf.Tensor = None,
492
+ relative_pos: tf.Tensor = None,
493
+ output_attentions: bool = False,
494
+ output_hidden_states: bool = False,
495
+ return_dict: bool = True,
496
+ training: bool = False,
497
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
498
+ if len(shape_list(attention_mask)) <= 2:
499
+ input_mask = attention_mask
500
+ else:
501
+ input_mask = tf.cast(tf.math.reduce_sum(attention_mask, axis=-2) > 0, dtype=tf.uint8)
502
+
503
+ all_hidden_states = () if output_hidden_states else None
504
+ all_attentions = () if output_attentions else None
505
+
506
+ attention_mask = self.get_attention_mask(attention_mask)
507
+ relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
508
+
509
+ next_kv = hidden_states
510
+
511
+ rel_embeddings = self.get_rel_embedding()
512
+ output_states = next_kv
513
+ for i, layer_module in enumerate(self.layer):
514
+ if output_hidden_states:
515
+ all_hidden_states = all_hidden_states + (output_states,)
516
+
517
+ layer_outputs = layer_module(
518
+ hidden_states=next_kv,
519
+ attention_mask=attention_mask,
520
+ query_states=query_states,
521
+ relative_pos=relative_pos,
522
+ rel_embeddings=rel_embeddings,
523
+ output_attentions=output_attentions,
524
+ training=training,
525
+ )
526
+ output_states = layer_outputs[0]
527
+
528
+ if i == 0 and self.conv is not None:
529
+ output_states = self.conv(hidden_states, output_states, input_mask)
530
+
531
+ next_kv = output_states
532
+
533
+ if output_attentions:
534
+ all_attentions = all_attentions + (layer_outputs[1],)
535
+
536
+ # Add last layer
537
+ if output_hidden_states:
538
+ all_hidden_states = all_hidden_states + (output_states,)
539
+
540
+ if not return_dict:
541
+ return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
542
+
543
+ return TFBaseModelOutput(
544
+ last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
545
+ )
546
+
547
+
548
+ def make_log_bucket_position(relative_pos, bucket_size, max_position):
549
+ sign = tf.math.sign(relative_pos)
550
+ mid = bucket_size // 2
551
+ abs_pos = tf.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, tf.math.abs(relative_pos))
552
+ log_pos = (
553
+ tf.math.ceil(
554
+ tf.cast(tf.math.log(abs_pos / mid), tf.float32) / tf.math.log((max_position - 1) / mid) * (mid - 1)
555
+ )
556
+ + mid
557
+ )
558
+ bucket_pos = tf.cast(
559
+ tf.where(abs_pos <= mid, tf.cast(relative_pos, tf.float32), log_pos * tf.cast(sign, tf.float32)), tf.int32
560
+ )
561
+ return bucket_pos
562
+
563
+
564
+ def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
565
+ """
566
+ Build relative position according to the query and key
567
+
568
+ We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
569
+ \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
570
+ P_k\\)
571
+
572
+ Args:
573
+ query_size (int): the length of query
574
+ key_size (int): the length of key
575
+ bucket_size (int): the size of position bucket
576
+ max_position (int): the maximum allowed absolute position
577
+
578
+ Return:
579
+ `tf.Tensor`: A tensor with shape [1, query_size, key_size]
580
+
581
+ """
582
+ q_ids = tf.range(query_size, dtype=tf.int32)
583
+ k_ids = tf.range(key_size, dtype=tf.int32)
584
+ rel_pos_ids = q_ids[:, None] - tf.tile(tf.expand_dims(k_ids, axis=0), [shape_list(q_ids)[0], 1])
585
+ if bucket_size > 0 and max_position > 0:
586
+ rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
587
+ rel_pos_ids = rel_pos_ids[:query_size, :]
588
+ rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0)
589
+ return tf.cast(rel_pos_ids, tf.int64)
590
+
591
+
592
+ def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
593
+ shapes = [
594
+ shape_list(query_layer)[0],
595
+ shape_list(query_layer)[1],
596
+ shape_list(query_layer)[2],
597
+ shape_list(relative_pos)[-1],
598
+ ]
599
+ return tf.broadcast_to(c2p_pos, shapes)
600
+
601
+
602
+ def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
603
+ shapes = [
604
+ shape_list(query_layer)[0],
605
+ shape_list(query_layer)[1],
606
+ shape_list(key_layer)[-2],
607
+ shape_list(key_layer)[-2],
608
+ ]
609
+ return tf.broadcast_to(c2p_pos, shapes)
610
+
611
+
612
+ def pos_dynamic_expand(pos_index, p2c_att, key_layer):
613
+ shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]]
614
+ return tf.broadcast_to(pos_index, shapes)
615
+
616
+
617
+ def take_along_axis(x, indices):
618
+ # Only a valid port of np.take_along_axis when the gather axis is -1
619
+
620
+ # TPU + gathers and reshapes don't go along well -- see https://github.com/huggingface/transformers/issues/18239
621
+ if isinstance(tf.distribute.get_strategy(), tf.distribute.TPUStrategy):
622
+ # [B, S, P] -> [B, S, P, D]
623
+ one_hot_indices = tf.one_hot(indices, depth=x.shape[-1], dtype=x.dtype)
624
+
625
+ # if we ignore the first two dims, this is equivalent to multiplying a matrix (one hot) by a vector (x)
626
+ # grossly abusing notation: [B, S, P, D] . [B, S, D] = [B, S, P]
627
+ gathered = tf.einsum("ijkl,ijl->ijk", one_hot_indices, x)
628
+
629
+ # GPUs, on the other hand, prefer gathers instead of large one-hot+matmuls
630
+ else:
631
+ gathered = tf.gather(x, indices, batch_dims=2)
632
+
633
+ return gathered
634
+
635
+
636
+ class TFDebertaV2DisentangledSelfAttention(keras.layers.Layer):
637
+ """
638
+ Disentangled self-attention module
639
+
640
+ Parameters:
641
+ config (`DebertaV2Config`):
642
+ A model config class instance with the configuration to build a new model. The schema is similar to
643
+ *BertConfig*, for more details, please refer [`DebertaV2Config`]
644
+
645
+ """
646
+
647
+ def __init__(self, config: DebertaV2Config, **kwargs):
648
+ super().__init__(**kwargs)
649
+ if config.hidden_size % config.num_attention_heads != 0:
650
+ raise ValueError(
651
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
652
+ f"heads ({config.num_attention_heads})"
653
+ )
654
+ self.num_attention_heads = config.num_attention_heads
655
+ _attention_head_size = config.hidden_size // config.num_attention_heads
656
+ self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
657
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
658
+ self.query_proj = keras.layers.Dense(
659
+ self.all_head_size,
660
+ kernel_initializer=get_initializer(config.initializer_range),
661
+ name="query_proj",
662
+ use_bias=True,
663
+ )
664
+ self.key_proj = keras.layers.Dense(
665
+ self.all_head_size,
666
+ kernel_initializer=get_initializer(config.initializer_range),
667
+ name="key_proj",
668
+ use_bias=True,
669
+ )
670
+ self.value_proj = keras.layers.Dense(
671
+ self.all_head_size,
672
+ kernel_initializer=get_initializer(config.initializer_range),
673
+ name="value_proj",
674
+ use_bias=True,
675
+ )
676
+
677
+ self.share_att_key = getattr(config, "share_att_key", False)
678
+ self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
679
+ self.relative_attention = getattr(config, "relative_attention", False)
680
+
681
+ if self.relative_attention:
682
+ self.position_buckets = getattr(config, "position_buckets", -1)
683
+ self.max_relative_positions = getattr(config, "max_relative_positions", -1)
684
+ if self.max_relative_positions < 1:
685
+ self.max_relative_positions = config.max_position_embeddings
686
+ self.pos_ebd_size = self.max_relative_positions
687
+ if self.position_buckets > 0:
688
+ self.pos_ebd_size = self.position_buckets
689
+
690
+ self.pos_dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="pos_dropout")
691
+
692
+ if not self.share_att_key:
693
+ if "c2p" in self.pos_att_type:
694
+ self.pos_key_proj = keras.layers.Dense(
695
+ self.all_head_size,
696
+ kernel_initializer=get_initializer(config.initializer_range),
697
+ name="pos_proj",
698
+ use_bias=True,
699
+ )
700
+ if "p2c" in self.pos_att_type:
701
+ self.pos_query_proj = keras.layers.Dense(
702
+ self.all_head_size,
703
+ kernel_initializer=get_initializer(config.initializer_range),
704
+ name="pos_q_proj",
705
+ )
706
+ self.softmax = TFDebertaV2XSoftmax(axis=-1)
707
+ self.dropout = TFDebertaV2StableDropout(config.attention_probs_dropout_prob, name="dropout")
708
+ self.config = config
709
+
710
+ def transpose_for_scores(self, tensor: tf.Tensor, attention_heads: int) -> tf.Tensor:
711
+ tensor_shape = shape_list(tensor)
712
+ # In graph mode mode, we can't reshape with -1 as the final dimension if the first dimension (batch size) is None
713
+ shape = tensor_shape[:-1] + [attention_heads, tensor_shape[-1] // attention_heads]
714
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
715
+ tensor = tf.reshape(tensor=tensor, shape=shape)
716
+ tensor = tf.transpose(tensor, perm=[0, 2, 1, 3])
717
+ x_shape = shape_list(tensor)
718
+ tensor = tf.reshape(tensor, shape=[-1, x_shape[-2], x_shape[-1]])
719
+ return tensor
720
+
721
+ def call(
722
+ self,
723
+ hidden_states: tf.Tensor,
724
+ attention_mask: tf.Tensor,
725
+ query_states: tf.Tensor = None,
726
+ relative_pos: tf.Tensor = None,
727
+ rel_embeddings: tf.Tensor = None,
728
+ output_attentions: bool = False,
729
+ training: bool = False,
730
+ ) -> Tuple[tf.Tensor]:
731
+ """
732
+ Call the module
733
+
734
+ Args:
735
+ hidden_states (`tf.Tensor`):
736
+ Input states to the module usually the output from previous layer, it will be the Q,K and V in
737
+ *Attention(Q,K,V)*
738
+
739
+ attention_mask (`tf.Tensor`):
740
+ An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
741
+ sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
742
+ th token.
743
+
744
+ return_att (`bool`, optional):
745
+ Whether return the attention matrix.
746
+
747
+ query_states (`tf.Tensor`, optional):
748
+ The *Q* state in *Attention(Q,K,V)*.
749
+
750
+ relative_pos (`tf.Tensor`):
751
+ The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
752
+ values ranging in [*-max_relative_positions*, *max_relative_positions*].
753
+
754
+ rel_embeddings (`tf.Tensor`):
755
+ The embedding of relative distances. It's a tensor of shape [\\(2 \\times
756
+ \\text{max_relative_positions}\\), *hidden_size*].
757
+
758
+
759
+ """
760
+ if query_states is None:
761
+ query_states = hidden_states
762
+ query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
763
+ key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
764
+ value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
765
+
766
+ rel_att = None
767
+ # Take the dot product between "query" and "key" to get the raw attention scores.
768
+ scale_factor = 1
769
+ if "c2p" in self.pos_att_type:
770
+ scale_factor += 1
771
+ if "p2c" in self.pos_att_type:
772
+ scale_factor += 1
773
+ scale = tf.math.sqrt(tf.cast(shape_list(query_layer)[-1] * scale_factor, tf.float32))
774
+ attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 2, 1]) / scale)
775
+ if self.relative_attention:
776
+ rel_embeddings = self.pos_dropout(rel_embeddings)
777
+ rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
778
+
779
+ if rel_att is not None:
780
+ attention_scores = attention_scores + rel_att
781
+ attention_scores = tf.reshape(
782
+ attention_scores,
783
+ (-1, self.num_attention_heads, shape_list(attention_scores)[-2], shape_list(attention_scores)[-1]),
784
+ )
785
+
786
+ # bsz x height x length x dimension
787
+ attention_probs = self.softmax(attention_scores, attention_mask)
788
+ attention_probs = self.dropout(attention_probs, training=training)
789
+ context_layer = tf.matmul(
790
+ tf.reshape(attention_probs, [-1, shape_list(attention_probs)[-2], shape_list(attention_probs)[-1]]),
791
+ value_layer,
792
+ )
793
+ context_layer = tf.transpose(
794
+ tf.reshape(
795
+ context_layer,
796
+ [-1, self.num_attention_heads, shape_list(context_layer)[-2], shape_list(context_layer)[-1]],
797
+ ),
798
+ [0, 2, 1, 3],
799
+ )
800
+ # Set the final dimension here explicitly.
801
+ # Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing
802
+ # the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput
803
+ # requires final input dimension to be defined
804
+ context_layer_shape = shape_list(context_layer)
805
+ new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]]
806
+ context_layer = tf.reshape(context_layer, new_context_layer_shape)
807
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
808
+ return outputs
809
+
810
+ def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
811
+ if relative_pos is None:
812
+ q = shape_list(query_layer)[-2]
813
+ relative_pos = build_relative_position(
814
+ q,
815
+ shape_list(key_layer)[-2],
816
+ bucket_size=self.position_buckets,
817
+ max_position=self.max_relative_positions,
818
+ )
819
+ shape_list_pos = shape_list(relative_pos)
820
+ if len(shape_list_pos) == 2:
821
+ relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0)
822
+ elif len(shape_list_pos) == 3:
823
+ relative_pos = tf.expand_dims(relative_pos, 1)
824
+ # bsz x height x query x key
825
+ elif len(shape_list_pos) != 4:
826
+ raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}")
827
+
828
+ att_span = self.pos_ebd_size
829
+ rel_embeddings = tf.expand_dims(
830
+ rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :], 0
831
+ )
832
+ if self.share_att_key:
833
+ pos_query_layer = tf.tile(
834
+ self.transpose_for_scores(self.query_proj(rel_embeddings), self.num_attention_heads),
835
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
836
+ )
837
+ pos_key_layer = tf.tile(
838
+ self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads),
839
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
840
+ )
841
+ else:
842
+ if "c2p" in self.pos_att_type:
843
+ pos_key_layer = tf.tile(
844
+ self.transpose_for_scores(self.pos_key_proj(rel_embeddings), self.num_attention_heads),
845
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
846
+ ) # .split(self.all_head_size, dim=-1)
847
+ if "p2c" in self.pos_att_type:
848
+ pos_query_layer = tf.tile(
849
+ self.transpose_for_scores(self.pos_query_proj(rel_embeddings), self.num_attention_heads),
850
+ [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1],
851
+ ) # .split(self.all_head_size, dim=-1)
852
+
853
+ score = 0
854
+ # content->position
855
+ if "c2p" in self.pos_att_type:
856
+ scale = tf.math.sqrt(tf.cast(shape_list(pos_key_layer)[-1] * scale_factor, tf.float32))
857
+ c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 2, 1]))
858
+ c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1)
859
+ c2p_att = take_along_axis(
860
+ c2p_att,
861
+ tf.broadcast_to(
862
+ tf.squeeze(c2p_pos, 0),
863
+ [shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(relative_pos)[-1]],
864
+ ),
865
+ )
866
+ score += c2p_att / scale
867
+
868
+ # position->content
869
+ if "p2c" in self.pos_att_type:
870
+ scale = tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, tf.float32))
871
+ if shape_list(key_layer)[-2] != shape_list(query_layer)[-2]:
872
+ r_pos = build_relative_position(
873
+ shape_list(key_layer)[-2],
874
+ shape_list(key_layer)[-2],
875
+ bucket_size=self.position_buckets,
876
+ max_position=self.max_relative_positions,
877
+ )
878
+ r_pos = tf.expand_dims(r_pos, 0)
879
+ else:
880
+ r_pos = relative_pos
881
+
882
+ p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1)
883
+
884
+ p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 2, 1]))
885
+ p2c_att = tf.transpose(
886
+ take_along_axis(
887
+ p2c_att,
888
+ tf.broadcast_to(
889
+ tf.squeeze(p2c_pos, 0),
890
+ [shape_list(query_layer)[0], shape_list(key_layer)[-2], shape_list(key_layer)[-2]],
891
+ ),
892
+ ),
893
+ [0, 2, 1],
894
+ )
895
+ score += p2c_att / scale
896
+
897
+ return score
898
+
899
+ def build(self, input_shape=None):
900
+ if self.built:
901
+ return
902
+ self.built = True
903
+ if getattr(self, "query_proj", None) is not None:
904
+ with tf.name_scope(self.query_proj.name):
905
+ self.query_proj.build([None, None, self.config.hidden_size])
906
+ if getattr(self, "key_proj", None) is not None:
907
+ with tf.name_scope(self.key_proj.name):
908
+ self.key_proj.build([None, None, self.config.hidden_size])
909
+ if getattr(self, "value_proj", None) is not None:
910
+ with tf.name_scope(self.value_proj.name):
911
+ self.value_proj.build([None, None, self.config.hidden_size])
912
+ if getattr(self, "dropout", None) is not None:
913
+ with tf.name_scope(self.dropout.name):
914
+ self.dropout.build(None)
915
+ if getattr(self, "pos_dropout", None) is not None:
916
+ with tf.name_scope(self.pos_dropout.name):
917
+ self.pos_dropout.build(None)
918
+ if getattr(self, "pos_key_proj", None) is not None:
919
+ with tf.name_scope(self.pos_key_proj.name):
920
+ self.pos_key_proj.build([None, None, self.config.hidden_size])
921
+ if getattr(self, "pos_query_proj", None) is not None:
922
+ with tf.name_scope(self.pos_query_proj.name):
923
+ self.pos_query_proj.build([None, None, self.config.hidden_size])
924
+
925
+
926
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaEmbeddings Deberta->DebertaV2
927
+ class TFDebertaV2Embeddings(keras.layers.Layer):
928
+ """Construct the embeddings from word, position and token_type embeddings."""
929
+
930
+ def __init__(self, config, **kwargs):
931
+ super().__init__(**kwargs)
932
+
933
+ self.config = config
934
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
935
+ self.hidden_size = config.hidden_size
936
+ self.max_position_embeddings = config.max_position_embeddings
937
+ self.position_biased_input = getattr(config, "position_biased_input", True)
938
+ self.initializer_range = config.initializer_range
939
+ if self.embedding_size != config.hidden_size:
940
+ self.embed_proj = keras.layers.Dense(
941
+ config.hidden_size,
942
+ kernel_initializer=get_initializer(config.initializer_range),
943
+ name="embed_proj",
944
+ use_bias=False,
945
+ )
946
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
947
+ self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout")
948
+
949
+ def build(self, input_shape=None):
950
+ with tf.name_scope("word_embeddings"):
951
+ self.weight = self.add_weight(
952
+ name="weight",
953
+ shape=[self.config.vocab_size, self.embedding_size],
954
+ initializer=get_initializer(self.initializer_range),
955
+ )
956
+
957
+ with tf.name_scope("token_type_embeddings"):
958
+ if self.config.type_vocab_size > 0:
959
+ self.token_type_embeddings = self.add_weight(
960
+ name="embeddings",
961
+ shape=[self.config.type_vocab_size, self.embedding_size],
962
+ initializer=get_initializer(self.initializer_range),
963
+ )
964
+ else:
965
+ self.token_type_embeddings = None
966
+
967
+ with tf.name_scope("position_embeddings"):
968
+ if self.position_biased_input:
969
+ self.position_embeddings = self.add_weight(
970
+ name="embeddings",
971
+ shape=[self.max_position_embeddings, self.hidden_size],
972
+ initializer=get_initializer(self.initializer_range),
973
+ )
974
+ else:
975
+ self.position_embeddings = None
976
+
977
+ if self.built:
978
+ return
979
+ self.built = True
980
+ if getattr(self, "LayerNorm", None) is not None:
981
+ with tf.name_scope(self.LayerNorm.name):
982
+ self.LayerNorm.build([None, None, self.config.hidden_size])
983
+ if getattr(self, "dropout", None) is not None:
984
+ with tf.name_scope(self.dropout.name):
985
+ self.dropout.build(None)
986
+ if getattr(self, "embed_proj", None) is not None:
987
+ with tf.name_scope(self.embed_proj.name):
988
+ self.embed_proj.build([None, None, self.embedding_size])
989
+
990
+ def call(
991
+ self,
992
+ input_ids: tf.Tensor = None,
993
+ position_ids: tf.Tensor = None,
994
+ token_type_ids: tf.Tensor = None,
995
+ inputs_embeds: tf.Tensor = None,
996
+ mask: tf.Tensor = None,
997
+ training: bool = False,
998
+ ) -> tf.Tensor:
999
+ """
1000
+ Applies embedding based on inputs tensor.
1001
+
1002
+ Returns:
1003
+ final_embeddings (`tf.Tensor`): output embedding tensor.
1004
+ """
1005
+ if input_ids is None and inputs_embeds is None:
1006
+ raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
1007
+
1008
+ if input_ids is not None:
1009
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
1010
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
1011
+
1012
+ input_shape = shape_list(inputs_embeds)[:-1]
1013
+
1014
+ if token_type_ids is None:
1015
+ token_type_ids = tf.fill(dims=input_shape, value=0)
1016
+
1017
+ if position_ids is None:
1018
+ position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
1019
+
1020
+ final_embeddings = inputs_embeds
1021
+ if self.position_biased_input:
1022
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
1023
+ final_embeddings += position_embeds
1024
+ if self.config.type_vocab_size > 0:
1025
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
1026
+ final_embeddings += token_type_embeds
1027
+
1028
+ if self.embedding_size != self.hidden_size:
1029
+ final_embeddings = self.embed_proj(final_embeddings)
1030
+
1031
+ final_embeddings = self.LayerNorm(final_embeddings)
1032
+
1033
+ if mask is not None:
1034
+ if len(shape_list(mask)) != len(shape_list(final_embeddings)):
1035
+ if len(shape_list(mask)) == 4:
1036
+ mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1)
1037
+ mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32)
1038
+
1039
+ final_embeddings = final_embeddings * mask
1040
+
1041
+ final_embeddings = self.dropout(final_embeddings, training=training)
1042
+
1043
+ return final_embeddings
1044
+
1045
+
1046
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPredictionHeadTransform with Deberta->DebertaV2
1047
+ class TFDebertaV2PredictionHeadTransform(keras.layers.Layer):
1048
+ def __init__(self, config: DebertaV2Config, **kwargs):
1049
+ super().__init__(**kwargs)
1050
+
1051
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
1052
+
1053
+ self.dense = keras.layers.Dense(
1054
+ units=self.embedding_size,
1055
+ kernel_initializer=get_initializer(config.initializer_range),
1056
+ name="dense",
1057
+ )
1058
+
1059
+ if isinstance(config.hidden_act, str):
1060
+ self.transform_act_fn = get_tf_activation(config.hidden_act)
1061
+ else:
1062
+ self.transform_act_fn = config.hidden_act
1063
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
1064
+ self.config = config
1065
+
1066
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
1067
+ hidden_states = self.dense(inputs=hidden_states)
1068
+ hidden_states = self.transform_act_fn(hidden_states)
1069
+ hidden_states = self.LayerNorm(hidden_states)
1070
+
1071
+ return hidden_states
1072
+
1073
+ def build(self, input_shape=None):
1074
+ if self.built:
1075
+ return
1076
+ self.built = True
1077
+ if getattr(self, "dense", None) is not None:
1078
+ with tf.name_scope(self.dense.name):
1079
+ self.dense.build([None, None, self.config.hidden_size])
1080
+ if getattr(self, "LayerNorm", None) is not None:
1081
+ with tf.name_scope(self.LayerNorm.name):
1082
+ self.LayerNorm.build([None, None, self.embedding_size])
1083
+
1084
+
1085
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLMPredictionHead with Deberta->DebertaV2
1086
+ class TFDebertaV2LMPredictionHead(keras.layers.Layer):
1087
+ def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs):
1088
+ super().__init__(**kwargs)
1089
+
1090
+ self.config = config
1091
+ self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
1092
+
1093
+ self.transform = TFDebertaV2PredictionHeadTransform(config, name="transform")
1094
+
1095
+ # The output weights are the same as the input embeddings, but there is
1096
+ # an output-only bias for each token.
1097
+ self.input_embeddings = input_embeddings
1098
+
1099
+ def build(self, input_shape=None):
1100
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
1101
+
1102
+ if self.built:
1103
+ return
1104
+ self.built = True
1105
+ if getattr(self, "transform", None) is not None:
1106
+ with tf.name_scope(self.transform.name):
1107
+ self.transform.build(None)
1108
+
1109
+ def get_output_embeddings(self) -> keras.layers.Layer:
1110
+ return self.input_embeddings
1111
+
1112
+ def set_output_embeddings(self, value: tf.Variable):
1113
+ self.input_embeddings.weight = value
1114
+ self.input_embeddings.vocab_size = shape_list(value)[0]
1115
+
1116
+ def get_bias(self) -> Dict[str, tf.Variable]:
1117
+ return {"bias": self.bias}
1118
+
1119
+ def set_bias(self, value: tf.Variable):
1120
+ self.bias = value["bias"]
1121
+ self.config.vocab_size = shape_list(value["bias"])[0]
1122
+
1123
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
1124
+ hidden_states = self.transform(hidden_states=hidden_states)
1125
+ seq_length = shape_list(hidden_states)[1]
1126
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
1127
+ hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
1128
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
1129
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
1130
+
1131
+ return hidden_states
1132
+
1133
+
1134
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOnlyMLMHead with Deberta->DebertaV2
1135
+ class TFDebertaV2OnlyMLMHead(keras.layers.Layer):
1136
+ def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs):
1137
+ super().__init__(**kwargs)
1138
+ self.predictions = TFDebertaV2LMPredictionHead(config, input_embeddings, name="predictions")
1139
+
1140
+ def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
1141
+ prediction_scores = self.predictions(hidden_states=sequence_output)
1142
+
1143
+ return prediction_scores
1144
+
1145
+ def build(self, input_shape=None):
1146
+ if self.built:
1147
+ return
1148
+ self.built = True
1149
+ if getattr(self, "predictions", None) is not None:
1150
+ with tf.name_scope(self.predictions.name):
1151
+ self.predictions.build(None)
1152
+
1153
+
1154
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaMainLayer with Deberta->DebertaV2
1155
+ class TFDebertaV2MainLayer(keras.layers.Layer):
1156
+ config_class = DebertaV2Config
1157
+
1158
+ def __init__(self, config: DebertaV2Config, **kwargs):
1159
+ super().__init__(**kwargs)
1160
+
1161
+ self.config = config
1162
+
1163
+ self.embeddings = TFDebertaV2Embeddings(config, name="embeddings")
1164
+ self.encoder = TFDebertaV2Encoder(config, name="encoder")
1165
+
1166
+ def get_input_embeddings(self) -> keras.layers.Layer:
1167
+ return self.embeddings
1168
+
1169
+ def set_input_embeddings(self, value: tf.Variable):
1170
+ self.embeddings.weight = value
1171
+ self.embeddings.vocab_size = shape_list(value)[0]
1172
+
1173
+ def _prune_heads(self, heads_to_prune):
1174
+ """
1175
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1176
+ class PreTrainedModel
1177
+ """
1178
+ raise NotImplementedError
1179
+
1180
+ @unpack_inputs
1181
+ def call(
1182
+ self,
1183
+ input_ids: TFModelInputType | None = None,
1184
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1185
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1186
+ position_ids: np.ndarray | tf.Tensor | None = None,
1187
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1188
+ output_attentions: Optional[bool] = None,
1189
+ output_hidden_states: Optional[bool] = None,
1190
+ return_dict: Optional[bool] = None,
1191
+ training: bool = False,
1192
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
1193
+ if input_ids is not None and inputs_embeds is not None:
1194
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1195
+ elif input_ids is not None:
1196
+ input_shape = shape_list(input_ids)
1197
+ elif inputs_embeds is not None:
1198
+ input_shape = shape_list(inputs_embeds)[:-1]
1199
+ else:
1200
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1201
+
1202
+ if attention_mask is None:
1203
+ attention_mask = tf.fill(dims=input_shape, value=1)
1204
+
1205
+ if token_type_ids is None:
1206
+ token_type_ids = tf.fill(dims=input_shape, value=0)
1207
+
1208
+ embedding_output = self.embeddings(
1209
+ input_ids=input_ids,
1210
+ position_ids=position_ids,
1211
+ token_type_ids=token_type_ids,
1212
+ inputs_embeds=inputs_embeds,
1213
+ mask=attention_mask,
1214
+ training=training,
1215
+ )
1216
+
1217
+ encoder_outputs = self.encoder(
1218
+ hidden_states=embedding_output,
1219
+ attention_mask=attention_mask,
1220
+ output_attentions=output_attentions,
1221
+ output_hidden_states=output_hidden_states,
1222
+ return_dict=return_dict,
1223
+ training=training,
1224
+ )
1225
+
1226
+ sequence_output = encoder_outputs[0]
1227
+
1228
+ if not return_dict:
1229
+ return (sequence_output,) + encoder_outputs[1:]
1230
+
1231
+ return TFBaseModelOutput(
1232
+ last_hidden_state=sequence_output,
1233
+ hidden_states=encoder_outputs.hidden_states,
1234
+ attentions=encoder_outputs.attentions,
1235
+ )
1236
+
1237
+ def build(self, input_shape=None):
1238
+ if self.built:
1239
+ return
1240
+ self.built = True
1241
+ if getattr(self, "embeddings", None) is not None:
1242
+ with tf.name_scope(self.embeddings.name):
1243
+ self.embeddings.build(None)
1244
+ if getattr(self, "encoder", None) is not None:
1245
+ with tf.name_scope(self.encoder.name):
1246
+ self.encoder.build(None)
1247
+
1248
+
1249
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPreTrainedModel with Deberta->DebertaV2
1250
+ class TFDebertaV2PreTrainedModel(TFPreTrainedModel):
1251
+ """
1252
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1253
+ models.
1254
+ """
1255
+
1256
+ config_class = DebertaV2Config
1257
+ base_model_prefix = "deberta"
1258
+
1259
+
1260
+ DEBERTA_START_DOCSTRING = r"""
1261
+ The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
1262
+ Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
1263
+ on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
1264
+ improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
1265
+
1266
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
1267
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
1268
+ behavior.
1269
+
1270
+ <Tip>
1271
+
1272
+ TensorFlow models and layers in `transformers` accept two formats as input:
1273
+
1274
+ - having all inputs as keyword arguments (like PyTorch models), or
1275
+ - having all inputs as a list, tuple or dict in the first positional argument.
1276
+
1277
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
1278
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
1279
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
1280
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
1281
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
1282
+ positional argument:
1283
+
1284
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
1285
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
1286
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
1287
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
1288
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
1289
+
1290
+ Note that when creating models and layers with
1291
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
1292
+ about any of this, as you can just pass inputs like you would to any other Python function!
1293
+
1294
+ </Tip>
1295
+
1296
+ Parameters:
1297
+ config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
1298
+ Initializing with a config file does not load the weights associated with the model, only the
1299
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1300
+ """
1301
+
1302
+ DEBERTA_INPUTS_DOCSTRING = r"""
1303
+ Args:
1304
+ input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
1305
+ Indices of input sequence tokens in the vocabulary.
1306
+
1307
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1308
+ [`PreTrainedTokenizer.__call__`] for details.
1309
+
1310
+ [What are input IDs?](../glossary#input-ids)
1311
+ attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
1312
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1313
+
1314
+ - 1 for tokens that are **not masked**,
1315
+ - 0 for tokens that are **masked**.
1316
+
1317
+ [What are attention masks?](../glossary#attention-mask)
1318
+ token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
1319
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1320
+ 1]`:
1321
+
1322
+ - 0 corresponds to a *sentence A* token,
1323
+ - 1 corresponds to a *sentence B* token.
1324
+
1325
+ [What are token type IDs?](../glossary#token-type-ids)
1326
+ position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
1327
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1328
+ config.max_position_embeddings - 1]`.
1329
+
1330
+ [What are position IDs?](../glossary#position-ids)
1331
+ inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
1332
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1333
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
1334
+ model's internal embedding lookup matrix.
1335
+ output_attentions (`bool`, *optional*):
1336
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1337
+ tensors for more detail.
1338
+ output_hidden_states (`bool`, *optional*):
1339
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1340
+ more detail.
1341
+ return_dict (`bool`, *optional*):
1342
+ Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple.
1343
+ """
1344
+
1345
+
1346
+ @add_start_docstrings(
1347
+ "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
1348
+ DEBERTA_START_DOCSTRING,
1349
+ )
1350
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaModel with Deberta->DebertaV2
1351
+ class TFDebertaV2Model(TFDebertaV2PreTrainedModel):
1352
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
1353
+ super().__init__(config, *inputs, **kwargs)
1354
+
1355
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
1356
+
1357
+ @unpack_inputs
1358
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1359
+ @add_code_sample_docstrings(
1360
+ checkpoint=_CHECKPOINT_FOR_DOC,
1361
+ output_type=TFBaseModelOutput,
1362
+ config_class=_CONFIG_FOR_DOC,
1363
+ )
1364
+ def call(
1365
+ self,
1366
+ input_ids: TFModelInputType | None = None,
1367
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1368
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1369
+ position_ids: np.ndarray | tf.Tensor | None = None,
1370
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1371
+ output_attentions: Optional[bool] = None,
1372
+ output_hidden_states: Optional[bool] = None,
1373
+ return_dict: Optional[bool] = None,
1374
+ training: Optional[bool] = False,
1375
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
1376
+ outputs = self.deberta(
1377
+ input_ids=input_ids,
1378
+ attention_mask=attention_mask,
1379
+ token_type_ids=token_type_ids,
1380
+ position_ids=position_ids,
1381
+ inputs_embeds=inputs_embeds,
1382
+ output_attentions=output_attentions,
1383
+ output_hidden_states=output_hidden_states,
1384
+ return_dict=return_dict,
1385
+ training=training,
1386
+ )
1387
+
1388
+ return outputs
1389
+
1390
+ def build(self, input_shape=None):
1391
+ if self.built:
1392
+ return
1393
+ self.built = True
1394
+ if getattr(self, "deberta", None) is not None:
1395
+ with tf.name_scope(self.deberta.name):
1396
+ self.deberta.build(None)
1397
+
1398
+
1399
+ @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
1400
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForMaskedLM with Deberta->DebertaV2
1401
+ class TFDebertaV2ForMaskedLM(TFDebertaV2PreTrainedModel, TFMaskedLanguageModelingLoss):
1402
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
1403
+ super().__init__(config, *inputs, **kwargs)
1404
+
1405
+ if config.is_decoder:
1406
+ logger.warning(
1407
+ "If you want to use `TFDebertaV2ForMaskedLM` make sure `config.is_decoder=False` for "
1408
+ "bi-directional self-attention."
1409
+ )
1410
+
1411
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
1412
+ self.mlm = TFDebertaV2OnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls")
1413
+
1414
+ def get_lm_head(self) -> keras.layers.Layer:
1415
+ return self.mlm.predictions
1416
+
1417
+ @unpack_inputs
1418
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1419
+ @add_code_sample_docstrings(
1420
+ checkpoint=_CHECKPOINT_FOR_DOC,
1421
+ output_type=TFMaskedLMOutput,
1422
+ config_class=_CONFIG_FOR_DOC,
1423
+ )
1424
+ def call(
1425
+ self,
1426
+ input_ids: TFModelInputType | None = None,
1427
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1428
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1429
+ position_ids: np.ndarray | tf.Tensor | None = None,
1430
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1431
+ output_attentions: Optional[bool] = None,
1432
+ output_hidden_states: Optional[bool] = None,
1433
+ return_dict: Optional[bool] = None,
1434
+ labels: np.ndarray | tf.Tensor | None = None,
1435
+ training: Optional[bool] = False,
1436
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
1437
+ r"""
1438
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
1439
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1440
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1441
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1442
+ """
1443
+ outputs = self.deberta(
1444
+ input_ids=input_ids,
1445
+ attention_mask=attention_mask,
1446
+ token_type_ids=token_type_ids,
1447
+ position_ids=position_ids,
1448
+ inputs_embeds=inputs_embeds,
1449
+ output_attentions=output_attentions,
1450
+ output_hidden_states=output_hidden_states,
1451
+ return_dict=return_dict,
1452
+ training=training,
1453
+ )
1454
+ sequence_output = outputs[0]
1455
+ prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
1456
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
1457
+
1458
+ if not return_dict:
1459
+ output = (prediction_scores,) + outputs[2:]
1460
+ return ((loss,) + output) if loss is not None else output
1461
+
1462
+ return TFMaskedLMOutput(
1463
+ loss=loss,
1464
+ logits=prediction_scores,
1465
+ hidden_states=outputs.hidden_states,
1466
+ attentions=outputs.attentions,
1467
+ )
1468
+
1469
+ def build(self, input_shape=None):
1470
+ if self.built:
1471
+ return
1472
+ self.built = True
1473
+ if getattr(self, "deberta", None) is not None:
1474
+ with tf.name_scope(self.deberta.name):
1475
+ self.deberta.build(None)
1476
+ if getattr(self, "mlm", None) is not None:
1477
+ with tf.name_scope(self.mlm.name):
1478
+ self.mlm.build(None)
1479
+
1480
+
1481
+ @add_start_docstrings(
1482
+ """
1483
+ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
1484
+ pooled output) e.g. for GLUE tasks.
1485
+ """,
1486
+ DEBERTA_START_DOCSTRING,
1487
+ )
1488
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForSequenceClassification with Deberta->DebertaV2
1489
+ class TFDebertaV2ForSequenceClassification(TFDebertaV2PreTrainedModel, TFSequenceClassificationLoss):
1490
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
1491
+ super().__init__(config, *inputs, **kwargs)
1492
+
1493
+ self.num_labels = config.num_labels
1494
+
1495
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
1496
+ self.pooler = TFDebertaV2ContextPooler(config, name="pooler")
1497
+
1498
+ drop_out = getattr(config, "cls_dropout", None)
1499
+ drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
1500
+ self.dropout = TFDebertaV2StableDropout(drop_out, name="cls_dropout")
1501
+ self.classifier = keras.layers.Dense(
1502
+ units=config.num_labels,
1503
+ kernel_initializer=get_initializer(config.initializer_range),
1504
+ name="classifier",
1505
+ )
1506
+ self.output_dim = self.pooler.output_dim
1507
+
1508
+ @unpack_inputs
1509
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1510
+ @add_code_sample_docstrings(
1511
+ checkpoint=_CHECKPOINT_FOR_DOC,
1512
+ output_type=TFSequenceClassifierOutput,
1513
+ config_class=_CONFIG_FOR_DOC,
1514
+ )
1515
+ def call(
1516
+ self,
1517
+ input_ids: TFModelInputType | None = None,
1518
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1519
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1520
+ position_ids: np.ndarray | tf.Tensor | None = None,
1521
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1522
+ output_attentions: Optional[bool] = None,
1523
+ output_hidden_states: Optional[bool] = None,
1524
+ return_dict: Optional[bool] = None,
1525
+ labels: np.ndarray | tf.Tensor | None = None,
1526
+ training: Optional[bool] = False,
1527
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
1528
+ r"""
1529
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
1530
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1531
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1532
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1533
+ """
1534
+ outputs = self.deberta(
1535
+ input_ids=input_ids,
1536
+ attention_mask=attention_mask,
1537
+ token_type_ids=token_type_ids,
1538
+ position_ids=position_ids,
1539
+ inputs_embeds=inputs_embeds,
1540
+ output_attentions=output_attentions,
1541
+ output_hidden_states=output_hidden_states,
1542
+ return_dict=return_dict,
1543
+ training=training,
1544
+ )
1545
+ sequence_output = outputs[0]
1546
+ pooled_output = self.pooler(sequence_output, training=training)
1547
+ pooled_output = self.dropout(pooled_output, training=training)
1548
+ logits = self.classifier(pooled_output)
1549
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
1550
+
1551
+ if not return_dict:
1552
+ output = (logits,) + outputs[1:]
1553
+
1554
+ return ((loss,) + output) if loss is not None else output
1555
+
1556
+ return TFSequenceClassifierOutput(
1557
+ loss=loss,
1558
+ logits=logits,
1559
+ hidden_states=outputs.hidden_states,
1560
+ attentions=outputs.attentions,
1561
+ )
1562
+
1563
+ def build(self, input_shape=None):
1564
+ if self.built:
1565
+ return
1566
+ self.built = True
1567
+ if getattr(self, "deberta", None) is not None:
1568
+ with tf.name_scope(self.deberta.name):
1569
+ self.deberta.build(None)
1570
+ if getattr(self, "pooler", None) is not None:
1571
+ with tf.name_scope(self.pooler.name):
1572
+ self.pooler.build(None)
1573
+ if getattr(self, "dropout", None) is not None:
1574
+ with tf.name_scope(self.dropout.name):
1575
+ self.dropout.build(None)
1576
+ if getattr(self, "classifier", None) is not None:
1577
+ with tf.name_scope(self.classifier.name):
1578
+ self.classifier.build([None, None, self.output_dim])
1579
+
1580
+
1581
+ @add_start_docstrings(
1582
+ """
1583
+ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1584
+ Named-Entity-Recognition (NER) tasks.
1585
+ """,
1586
+ DEBERTA_START_DOCSTRING,
1587
+ )
1588
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForTokenClassification with Deberta->DebertaV2
1589
+ class TFDebertaV2ForTokenClassification(TFDebertaV2PreTrainedModel, TFTokenClassificationLoss):
1590
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
1591
+ super().__init__(config, *inputs, **kwargs)
1592
+
1593
+ self.num_labels = config.num_labels
1594
+
1595
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
1596
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
1597
+ self.classifier = keras.layers.Dense(
1598
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
1599
+ )
1600
+ self.config = config
1601
+
1602
+ @unpack_inputs
1603
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1604
+ @add_code_sample_docstrings(
1605
+ checkpoint=_CHECKPOINT_FOR_DOC,
1606
+ output_type=TFTokenClassifierOutput,
1607
+ config_class=_CONFIG_FOR_DOC,
1608
+ )
1609
+ def call(
1610
+ self,
1611
+ input_ids: TFModelInputType | None = None,
1612
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1613
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1614
+ position_ids: np.ndarray | tf.Tensor | None = None,
1615
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1616
+ output_attentions: Optional[bool] = None,
1617
+ output_hidden_states: Optional[bool] = None,
1618
+ return_dict: Optional[bool] = None,
1619
+ labels: np.ndarray | tf.Tensor | None = None,
1620
+ training: Optional[bool] = False,
1621
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
1622
+ r"""
1623
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
1624
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1625
+ """
1626
+ outputs = self.deberta(
1627
+ input_ids=input_ids,
1628
+ attention_mask=attention_mask,
1629
+ token_type_ids=token_type_ids,
1630
+ position_ids=position_ids,
1631
+ inputs_embeds=inputs_embeds,
1632
+ output_attentions=output_attentions,
1633
+ output_hidden_states=output_hidden_states,
1634
+ return_dict=return_dict,
1635
+ training=training,
1636
+ )
1637
+ sequence_output = outputs[0]
1638
+ sequence_output = self.dropout(sequence_output, training=training)
1639
+ logits = self.classifier(inputs=sequence_output)
1640
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
1641
+
1642
+ if not return_dict:
1643
+ output = (logits,) + outputs[1:]
1644
+ return ((loss,) + output) if loss is not None else output
1645
+
1646
+ return TFTokenClassifierOutput(
1647
+ loss=loss,
1648
+ logits=logits,
1649
+ hidden_states=outputs.hidden_states,
1650
+ attentions=outputs.attentions,
1651
+ )
1652
+
1653
+ def build(self, input_shape=None):
1654
+ if self.built:
1655
+ return
1656
+ self.built = True
1657
+ if getattr(self, "deberta", None) is not None:
1658
+ with tf.name_scope(self.deberta.name):
1659
+ self.deberta.build(None)
1660
+ if getattr(self, "classifier", None) is not None:
1661
+ with tf.name_scope(self.classifier.name):
1662
+ self.classifier.build([None, None, self.config.hidden_size])
1663
+
1664
+
1665
+ @add_start_docstrings(
1666
+ """
1667
+ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
1668
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1669
+ """,
1670
+ DEBERTA_START_DOCSTRING,
1671
+ )
1672
+ # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForQuestionAnswering with Deberta->DebertaV2
1673
+ class TFDebertaV2ForQuestionAnswering(TFDebertaV2PreTrainedModel, TFQuestionAnsweringLoss):
1674
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
1675
+ super().__init__(config, *inputs, **kwargs)
1676
+
1677
+ self.num_labels = config.num_labels
1678
+
1679
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
1680
+ self.qa_outputs = keras.layers.Dense(
1681
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
1682
+ )
1683
+ self.config = config
1684
+
1685
+ @unpack_inputs
1686
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1687
+ @add_code_sample_docstrings(
1688
+ checkpoint=_CHECKPOINT_FOR_DOC,
1689
+ output_type=TFQuestionAnsweringModelOutput,
1690
+ config_class=_CONFIG_FOR_DOC,
1691
+ )
1692
+ def call(
1693
+ self,
1694
+ input_ids: TFModelInputType | None = None,
1695
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1696
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1697
+ position_ids: np.ndarray | tf.Tensor | None = None,
1698
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1699
+ output_attentions: Optional[bool] = None,
1700
+ output_hidden_states: Optional[bool] = None,
1701
+ return_dict: Optional[bool] = None,
1702
+ start_positions: np.ndarray | tf.Tensor | None = None,
1703
+ end_positions: np.ndarray | tf.Tensor | None = None,
1704
+ training: Optional[bool] = False,
1705
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
1706
+ r"""
1707
+ start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
1708
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1709
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1710
+ are not taken into account for computing the loss.
1711
+ end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
1712
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1713
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1714
+ are not taken into account for computing the loss.
1715
+ """
1716
+ outputs = self.deberta(
1717
+ input_ids=input_ids,
1718
+ attention_mask=attention_mask,
1719
+ token_type_ids=token_type_ids,
1720
+ position_ids=position_ids,
1721
+ inputs_embeds=inputs_embeds,
1722
+ output_attentions=output_attentions,
1723
+ output_hidden_states=output_hidden_states,
1724
+ return_dict=return_dict,
1725
+ training=training,
1726
+ )
1727
+ sequence_output = outputs[0]
1728
+ logits = self.qa_outputs(inputs=sequence_output)
1729
+ start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
1730
+ start_logits = tf.squeeze(input=start_logits, axis=-1)
1731
+ end_logits = tf.squeeze(input=end_logits, axis=-1)
1732
+ loss = None
1733
+
1734
+ if start_positions is not None and end_positions is not None:
1735
+ labels = {"start_position": start_positions}
1736
+ labels["end_position"] = end_positions
1737
+ loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
1738
+
1739
+ if not return_dict:
1740
+ output = (start_logits, end_logits) + outputs[2:]
1741
+ return ((loss,) + output) if loss is not None else output
1742
+
1743
+ return TFQuestionAnsweringModelOutput(
1744
+ loss=loss,
1745
+ start_logits=start_logits,
1746
+ end_logits=end_logits,
1747
+ hidden_states=outputs.hidden_states,
1748
+ attentions=outputs.attentions,
1749
+ )
1750
+
1751
+ def build(self, input_shape=None):
1752
+ if self.built:
1753
+ return
1754
+ self.built = True
1755
+ if getattr(self, "deberta", None) is not None:
1756
+ with tf.name_scope(self.deberta.name):
1757
+ self.deberta.build(None)
1758
+ if getattr(self, "qa_outputs", None) is not None:
1759
+ with tf.name_scope(self.qa_outputs.name):
1760
+ self.qa_outputs.build([None, None, self.config.hidden_size])
1761
+
1762
+
1763
+ @add_start_docstrings(
1764
+ """
1765
+ DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
1766
+ softmax) e.g. for RocStories/SWAG tasks.
1767
+ """,
1768
+ DEBERTA_START_DOCSTRING,
1769
+ )
1770
+ class TFDebertaV2ForMultipleChoice(TFDebertaV2PreTrainedModel, TFMultipleChoiceLoss):
1771
+ # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
1772
+ # _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
1773
+ # _keys_to_ignore_on_load_missing = [r"dropout"]
1774
+
1775
+ def __init__(self, config: DebertaV2Config, *inputs, **kwargs):
1776
+ super().__init__(config, *inputs, **kwargs)
1777
+
1778
+ self.deberta = TFDebertaV2MainLayer(config, name="deberta")
1779
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
1780
+ self.pooler = TFDebertaV2ContextPooler(config, name="pooler")
1781
+ self.classifier = keras.layers.Dense(
1782
+ units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
1783
+ )
1784
+ self.output_dim = self.pooler.output_dim
1785
+
1786
+ @unpack_inputs
1787
+ @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
1788
+ @add_code_sample_docstrings(
1789
+ checkpoint=_CHECKPOINT_FOR_DOC,
1790
+ output_type=TFMultipleChoiceModelOutput,
1791
+ config_class=_CONFIG_FOR_DOC,
1792
+ )
1793
+ def call(
1794
+ self,
1795
+ input_ids: TFModelInputType | None = None,
1796
+ attention_mask: np.ndarray | tf.Tensor | None = None,
1797
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
1798
+ position_ids: np.ndarray | tf.Tensor | None = None,
1799
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1800
+ output_attentions: Optional[bool] = None,
1801
+ output_hidden_states: Optional[bool] = None,
1802
+ return_dict: Optional[bool] = None,
1803
+ labels: np.ndarray | tf.Tensor | None = None,
1804
+ training: Optional[bool] = False,
1805
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
1806
+ r"""
1807
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
1808
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
1809
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
1810
+ """
1811
+ if input_ids is not None:
1812
+ num_choices = shape_list(input_ids)[1]
1813
+ seq_length = shape_list(input_ids)[2]
1814
+ else:
1815
+ num_choices = shape_list(inputs_embeds)[1]
1816
+ seq_length = shape_list(inputs_embeds)[2]
1817
+
1818
+ flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None
1819
+ flat_attention_mask = (
1820
+ tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
1821
+ )
1822
+ flat_token_type_ids = (
1823
+ tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
1824
+ )
1825
+ flat_position_ids = (
1826
+ tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
1827
+ )
1828
+ flat_inputs_embeds = (
1829
+ tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
1830
+ if inputs_embeds is not None
1831
+ else None
1832
+ )
1833
+ outputs = self.deberta(
1834
+ input_ids=flat_input_ids,
1835
+ attention_mask=flat_attention_mask,
1836
+ token_type_ids=flat_token_type_ids,
1837
+ position_ids=flat_position_ids,
1838
+ inputs_embeds=flat_inputs_embeds,
1839
+ output_attentions=output_attentions,
1840
+ output_hidden_states=output_hidden_states,
1841
+ return_dict=return_dict,
1842
+ training=training,
1843
+ )
1844
+ sequence_output = outputs[0]
1845
+ pooled_output = self.pooler(sequence_output, training=training)
1846
+ pooled_output = self.dropout(pooled_output, training=training)
1847
+ logits = self.classifier(pooled_output)
1848
+ reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
1849
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
1850
+
1851
+ if not return_dict:
1852
+ output = (reshaped_logits,) + outputs[2:]
1853
+ return ((loss,) + output) if loss is not None else output
1854
+
1855
+ return TFMultipleChoiceModelOutput(
1856
+ loss=loss,
1857
+ logits=reshaped_logits,
1858
+ hidden_states=outputs.hidden_states,
1859
+ attentions=outputs.attentions,
1860
+ )
1861
+
1862
+ def build(self, input_shape=None):
1863
+ if self.built:
1864
+ return
1865
+ self.built = True
1866
+ if getattr(self, "deberta", None) is not None:
1867
+ with tf.name_scope(self.deberta.name):
1868
+ self.deberta.build(None)
1869
+ if getattr(self, "pooler", None) is not None:
1870
+ with tf.name_scope(self.pooler.name):
1871
+ self.pooler.build(None)
1872
+ if getattr(self, "classifier", None) is not None:
1873
+ with tf.name_scope(self.classifier.name):
1874
+ self.classifier.build([None, None, self.output_dim])
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2.py ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 Microsoft and the HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Tokenization class for model DeBERTa."""
16
+
17
+ import os
18
+ import unicodedata
19
+ from typing import Any, Dict, List, Optional, Tuple
20
+
21
+ import sentencepiece as sp
22
+
23
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
24
+ from ...utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ VOCAB_FILES_NAMES = {"vocab_file": "spm.model"}
31
+
32
+
33
+ class DebertaV2Tokenizer(PreTrainedTokenizer):
34
+ r"""
35
+ Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
36
+
37
+ Args:
38
+ vocab_file (`str`):
39
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
40
+ contains the vocabulary necessary to instantiate a tokenizer.
41
+ do_lower_case (`bool`, *optional*, defaults to `False`):
42
+ Whether or not to lowercase the input when tokenizing.
43
+ bos_token (`string`, *optional*, defaults to `"[CLS]"`):
44
+ The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
45
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
46
+ sequence. The token used is the `cls_token`.
47
+ eos_token (`string`, *optional*, defaults to `"[SEP]"`):
48
+ The end of sequence token. When building a sequence using special tokens, this is not the token that is
49
+ used for the end of sequence. The token used is the `sep_token`.
50
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
51
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
52
+ token instead.
53
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
54
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
55
+ sequence classification or for a text and a question for question answering. It is also used as the last
56
+ token of a sequence built with special tokens.
57
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
58
+ The token used for padding, for example when batching sequences of different lengths.
59
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
60
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
61
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
62
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
63
+ The token used for masking values. This is the token used when training this model with masked language
64
+ modeling. This is the token which the model will try to predict.
65
+ sp_model_kwargs (`dict`, *optional*):
66
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
67
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
68
+ to set:
69
+
70
+ - `enable_sampling`: Enable subword regularization.
71
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
72
+
73
+ - `nbest_size = {0,1}`: No sampling is performed.
74
+ - `nbest_size > 1`: samples from the nbest_size results.
75
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
76
+ using forward-filtering-and-backward-sampling algorithm.
77
+
78
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
79
+ BPE-dropout.
80
+ """
81
+
82
+ vocab_files_names = VOCAB_FILES_NAMES
83
+
84
+ def __init__(
85
+ self,
86
+ vocab_file,
87
+ do_lower_case=False,
88
+ split_by_punct=False,
89
+ bos_token="[CLS]",
90
+ eos_token="[SEP]",
91
+ unk_token="[UNK]",
92
+ sep_token="[SEP]",
93
+ pad_token="[PAD]",
94
+ cls_token="[CLS]",
95
+ mask_token="[MASK]",
96
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
97
+ **kwargs,
98
+ ) -> None:
99
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
100
+
101
+ if not os.path.isfile(vocab_file):
102
+ raise ValueError(
103
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
104
+ " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
105
+ )
106
+ self.do_lower_case = do_lower_case
107
+ self.split_by_punct = split_by_punct
108
+ self.vocab_file = vocab_file
109
+ self._tokenizer = SPMTokenizer(
110
+ vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs
111
+ )
112
+ unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token
113
+ super().__init__(
114
+ do_lower_case=do_lower_case,
115
+ bos_token=bos_token,
116
+ eos_token=eos_token,
117
+ unk_token=unk_token,
118
+ sep_token=sep_token,
119
+ pad_token=pad_token,
120
+ cls_token=cls_token,
121
+ mask_token=mask_token,
122
+ split_by_punct=split_by_punct,
123
+ sp_model_kwargs=self.sp_model_kwargs,
124
+ **kwargs,
125
+ )
126
+ self._tokenizer.special_tokens = self.all_special_tokens
127
+
128
+ @property
129
+ def vocab_size(self):
130
+ return len(self.vocab)
131
+
132
+ @property
133
+ def vocab(self):
134
+ return self._tokenizer.vocab
135
+
136
+ def get_vocab(self):
137
+ vocab = self.vocab.copy()
138
+ vocab.update(self.get_added_vocab())
139
+ return vocab
140
+
141
+ def _tokenize(self, text: str) -> List[str]:
142
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
143
+ if self.do_lower_case:
144
+ text = text.lower()
145
+ return self._tokenizer.tokenize(text)
146
+
147
+ def _convert_token_to_id(self, token):
148
+ """Converts a token (str) in an id using the vocab."""
149
+ return self._tokenizer.spm.PieceToId(token)
150
+
151
+ def _convert_id_to_token(self, index):
152
+ """Converts an index (integer) in a token (str) using the vocab."""
153
+ return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token
154
+
155
+ def convert_tokens_to_string(self, tokens):
156
+ """Converts a sequence of tokens (string) in a single string."""
157
+ return self._tokenizer.decode(tokens)
158
+
159
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
160
+ """
161
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
162
+ adding special tokens. A DeBERTa sequence has the following format:
163
+
164
+ - single sequence: [CLS] X [SEP]
165
+ - pair of sequences: [CLS] A [SEP] B [SEP]
166
+
167
+ Args:
168
+ token_ids_0 (`List[int]`):
169
+ List of IDs to which the special tokens will be added.
170
+ token_ids_1 (`List[int]`, *optional*):
171
+ Optional second list of IDs for sequence pairs.
172
+
173
+ Returns:
174
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
175
+ """
176
+
177
+ if token_ids_1 is None:
178
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
179
+ cls = [self.cls_token_id]
180
+ sep = [self.sep_token_id]
181
+ return cls + token_ids_0 + sep + token_ids_1 + sep
182
+
183
+ def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
184
+ """
185
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
186
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
187
+
188
+ Args:
189
+ token_ids_0 (`List[int]`):
190
+ List of IDs.
191
+ token_ids_1 (`List[int]`, *optional*):
192
+ Optional second list of IDs for sequence pairs.
193
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
194
+ Whether or not the token list is already formatted with special tokens for the model.
195
+
196
+ Returns:
197
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
198
+ """
199
+
200
+ if already_has_special_tokens:
201
+ return super().get_special_tokens_mask(
202
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
203
+ )
204
+
205
+ if token_ids_1 is not None:
206
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
207
+ return [1] + ([0] * len(token_ids_0)) + [1]
208
+
209
+ def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
210
+ """
211
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
212
+ sequence pair mask has the following format:
213
+
214
+ ```
215
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
216
+ | first sequence | second sequence |
217
+ ```
218
+
219
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
220
+
221
+ Args:
222
+ token_ids_0 (`List[int]`):
223
+ List of IDs.
224
+ token_ids_1 (`List[int]`, *optional*):
225
+ Optional second list of IDs for sequence pairs.
226
+
227
+ Returns:
228
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
229
+ """
230
+ sep = [self.sep_token_id]
231
+ cls = [self.cls_token_id]
232
+ if token_ids_1 is None:
233
+ return len(cls + token_ids_0 + sep) * [0]
234
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
235
+
236
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
237
+ add_prefix_space = kwargs.pop("add_prefix_space", False)
238
+ if is_split_into_words or add_prefix_space:
239
+ text = " " + text
240
+ return (text, kwargs)
241
+
242
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
243
+ return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix)
244
+
245
+
246
+ class SPMTokenizer:
247
+ r"""
248
+ Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece).
249
+
250
+ Args:
251
+ vocab_file (`str`):
252
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
253
+ contains the vocabulary necessary to instantiate a tokenizer.
254
+ sp_model_kwargs (`dict`, *optional*):
255
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
256
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
257
+ to set:
258
+
259
+ - `enable_sampling`: Enable subword regularization.
260
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
261
+
262
+ - `nbest_size = {0,1}`: No sampling is performed.
263
+ - `nbest_size > 1`: samples from the nbest_size results.
264
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
265
+ using forward-filtering-and-backward-sampling algorithm.
266
+
267
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
268
+ BPE-dropout.
269
+ """
270
+
271
+ def __init__(
272
+ self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None
273
+ ):
274
+ self.split_by_punct = split_by_punct
275
+ self.vocab_file = vocab_file
276
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
277
+ spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
278
+ if not os.path.exists(vocab_file):
279
+ raise FileNotFoundError(f"{vocab_file} does not exist!")
280
+ spm.load(vocab_file)
281
+ bpe_vocab_size = spm.GetPieceSize()
282
+ # Token map
283
+ # <unk> 0+1
284
+ # <s> 1+1
285
+ # </s> 2+1
286
+ self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)}
287
+ self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)]
288
+ # self.vocab['[PAD]'] = 0
289
+ # self.vocab['[CLS]'] = 1
290
+ # self.vocab['[SEP]'] = 2
291
+ # self.vocab['[UNK]'] = 3
292
+
293
+ self.spm = spm
294
+ self.special_tokens = special_tokens
295
+
296
+ def __getstate__(self):
297
+ state = self.__dict__.copy()
298
+ state["spm"] = None
299
+ return state
300
+
301
+ def __setstate__(self, d):
302
+ self.__dict__ = d
303
+
304
+ # for backward compatibility
305
+ if not hasattr(self, "sp_model_kwargs"):
306
+ self.sp_model_kwargs = {}
307
+
308
+ self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
309
+ self.spm.Load(self.vocab_file)
310
+
311
+ def tokenize(self, text):
312
+ return self._encode_as_pieces(text)
313
+
314
+ def convert_ids_to_tokens(self, ids):
315
+ tokens = []
316
+ for i in ids:
317
+ tokens.append(self.ids_to_tokens[i])
318
+ return tokens
319
+
320
+ def decode(self, tokens, start=-1, end=-1, raw_text=None):
321
+ if raw_text is None:
322
+ current_sub_tokens = []
323
+ out_string = ""
324
+ prev_is_special = False
325
+ for token in tokens:
326
+ # make sure that special tokens are not decoded using sentencepiece model
327
+ if token in self.special_tokens:
328
+ if not prev_is_special:
329
+ out_string += " "
330
+ out_string += self.spm.decode_pieces(current_sub_tokens) + token
331
+ prev_is_special = True
332
+ current_sub_tokens = []
333
+ else:
334
+ current_sub_tokens.append(token)
335
+ prev_is_special = False
336
+ out_string += self.spm.decode_pieces(current_sub_tokens)
337
+ return out_string.strip()
338
+ else:
339
+ words = self.split_to_words(raw_text)
340
+ word_tokens = [self.tokenize(w) for w in words]
341
+ token2words = [0] * len(tokens)
342
+ tid = 0
343
+ for i, w in enumerate(word_tokens):
344
+ for k, t in enumerate(w):
345
+ token2words[tid] = i
346
+ tid += 1
347
+ word_start = token2words[start]
348
+ word_end = token2words[end] if end < len(tokens) else len(words)
349
+ text = "".join(words[word_start:word_end])
350
+ return text
351
+
352
+ # TODO add a deprecation cycle as this can have different behaviour from our API
353
+ def add_special_token(self, token):
354
+ if token not in self.special_tokens:
355
+ self.special_tokens.append(token)
356
+ if token not in self.vocab:
357
+ self.vocab[token] = len(self.vocab) - 1
358
+ self.ids_to_tokens.append(token)
359
+ return self.id(token)
360
+
361
+ def part_of_whole_word(self, token, is_bos=False):
362
+ logger.warning_once(
363
+ "The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`"
364
+ )
365
+ if is_bos:
366
+ return True
367
+ if (
368
+ len(token) == 1
369
+ and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0]))
370
+ ) or token in self.special_tokens:
371
+ return False
372
+
373
+ word_start = b"\xe2\x96\x81".decode("utf-8")
374
+ return not token.startswith(word_start)
375
+
376
+ def pad(self):
377
+ return "[PAD]"
378
+
379
+ def bos(self):
380
+ return "[CLS]"
381
+
382
+ def eos(self):
383
+ return "[SEP]"
384
+
385
+ def unk(self):
386
+ return "[UNK]"
387
+
388
+ def mask(self):
389
+ return "[MASK]"
390
+
391
+ def sym(self, id):
392
+ return self.ids_to_tokens[id]
393
+
394
+ def id(self, sym):
395
+ logger.warning_once(
396
+ "The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`"
397
+ )
398
+ return self.vocab[sym] if sym in self.vocab else 1
399
+
400
+ def _encode_as_pieces(self, text):
401
+ text = convert_to_unicode(text)
402
+ if self.split_by_punct:
403
+ words = self._run_split_on_punc(text)
404
+ pieces = [self.spm.encode(w, out_type=str) for w in words]
405
+ return [p for w in pieces for p in w]
406
+ else:
407
+ return self.spm.encode(text, out_type=str)
408
+
409
+ def split_to_words(self, text):
410
+ pieces = self._encode_as_pieces(text)
411
+ word_start = b"\xe2\x96\x81".decode("utf-8")
412
+ words = []
413
+ offset = 0
414
+ prev_end = 0
415
+ for i, p in enumerate(pieces):
416
+ if p.startswith(word_start):
417
+ if offset > prev_end:
418
+ words.append(text[prev_end:offset])
419
+ prev_end = offset
420
+ w = p.replace(word_start, "")
421
+ else:
422
+ w = p
423
+ try:
424
+ s = text.index(w, offset)
425
+ pn = ""
426
+ k = i + 1
427
+ while k < len(pieces):
428
+ pn = pieces[k].replace(word_start, "")
429
+ if len(pn) > 0:
430
+ break
431
+ k += 1
432
+
433
+ if len(pn) > 0 and pn in text[offset:s]:
434
+ offset = offset + 1
435
+ else:
436
+ offset = s + len(w)
437
+ except Exception:
438
+ offset = offset + 1
439
+
440
+ if prev_end < offset:
441
+ words.append(text[prev_end:offset])
442
+
443
+ return words
444
+
445
+ def _run_split_on_punc(self, text):
446
+ """Splits punctuation on a piece of text."""
447
+ chars = list(text)
448
+ i = 0
449
+ start_new_word = True
450
+ output = []
451
+ while i < len(chars):
452
+ char = chars[i]
453
+ if _is_punctuation(char):
454
+ output.append([char])
455
+ start_new_word = True
456
+ else:
457
+ if start_new_word:
458
+ output.append([])
459
+ start_new_word = False
460
+ output[-1].append(char)
461
+ i += 1
462
+
463
+ return ["".join(x) for x in output]
464
+
465
+ def save_pretrained(self, path: str, filename_prefix: str = None):
466
+ filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]]
467
+ if filename_prefix is not None:
468
+ filename = filename_prefix + "-" + filename
469
+ full_path = os.path.join(path, filename)
470
+ with open(full_path, "wb") as fs:
471
+ fs.write(self.spm.serialized_model_proto())
472
+ return (full_path,)
473
+
474
+
475
+ def _is_whitespace(char):
476
+ """Checks whether `chars` is a whitespace character."""
477
+ # \t, \n, and \r are technically control characters but we treat them
478
+ # as whitespace since they are generally considered as such.
479
+ if char == " " or char == "\t" or char == "\n" or char == "\r":
480
+ return True
481
+ cat = unicodedata.category(char)
482
+ if cat == "Zs":
483
+ return True
484
+ return False
485
+
486
+
487
+ def _is_control(char):
488
+ """Checks whether `chars` is a control character."""
489
+ # These are technically control characters but we count them as whitespace
490
+ # characters.
491
+ if char == "\t" or char == "\n" or char == "\r":
492
+ return False
493
+ cat = unicodedata.category(char)
494
+ if cat.startswith("C"):
495
+ return True
496
+ return False
497
+
498
+
499
+ def _is_punctuation(char):
500
+ """Checks whether `chars` is a punctuation character."""
501
+ cp = ord(char)
502
+ # We treat all non-letter/number ASCII as punctuation.
503
+ # Characters such as "^", "$", and "`" are not in the Unicode
504
+ # Punctuation class but we treat them as punctuation anyways, for
505
+ # consistency.
506
+ if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
507
+ return True
508
+ cat = unicodedata.category(char)
509
+ if cat.startswith("P"):
510
+ return True
511
+ return False
512
+
513
+
514
+ def convert_to_unicode(text):
515
+ """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
516
+ if isinstance(text, str):
517
+ return text
518
+ elif isinstance(text, bytes):
519
+ return text.decode("utf-8", "ignore")
520
+ else:
521
+ raise ValueError(f"Unsupported string type: {type(text)}")
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta_v2/tokenization_deberta_v2_fast.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 Microsoft and the HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Fast Tokenization class for model DeBERTa."""
16
+
17
+ import os
18
+ from shutil import copyfile
19
+ from typing import Optional, Tuple
20
+
21
+ from ...file_utils import is_sentencepiece_available
22
+ from ...tokenization_utils_fast import PreTrainedTokenizerFast
23
+ from ...utils import logging
24
+
25
+
26
+ if is_sentencepiece_available():
27
+ from .tokenization_deberta_v2 import DebertaV2Tokenizer
28
+ else:
29
+ DebertaV2Tokenizer = None
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ VOCAB_FILES_NAMES = {"vocab_file": "spm.model", "tokenizer_file": "tokenizer.json"}
34
+
35
+
36
+ class DebertaV2TokenizerFast(PreTrainedTokenizerFast):
37
+ r"""
38
+ Constructs a DeBERTa-v2 fast tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
39
+
40
+ Args:
41
+ vocab_file (`str`):
42
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
43
+ contains the vocabulary necessary to instantiate a tokenizer.
44
+ do_lower_case (`bool`, *optional*, defaults to `False`):
45
+ Whether or not to lowercase the input when tokenizing.
46
+ bos_token (`string`, *optional*, defaults to `"[CLS]"`):
47
+ The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
48
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
49
+ sequence. The token used is the `cls_token`.
50
+ eos_token (`string`, *optional*, defaults to `"[SEP]"`):
51
+ The end of sequence token. When building a sequence using special tokens, this is not the token that is
52
+ used for the end of sequence. The token used is the `sep_token`.
53
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
54
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
55
+ token instead.
56
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
57
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
58
+ sequence classification or for a text and a question for question answering. It is also used as the last
59
+ token of a sequence built with special tokens.
60
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
61
+ The token used for padding, for example when batching sequences of different lengths.
62
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
63
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
64
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
65
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
66
+ The token used for masking values. This is the token used when training this model with masked language
67
+ modeling. This is the token which the model will try to predict.
68
+ sp_model_kwargs (`dict`, *optional*):
69
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
70
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
71
+ to set:
72
+
73
+ - `enable_sampling`: Enable subword regularization.
74
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
75
+
76
+ - `nbest_size = {0,1}`: No sampling is performed.
77
+ - `nbest_size > 1`: samples from the nbest_size results.
78
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
79
+ using forward-filtering-and-backward-sampling algorithm.
80
+
81
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
82
+ BPE-dropout.
83
+ """
84
+
85
+ vocab_files_names = VOCAB_FILES_NAMES
86
+ slow_tokenizer_class = DebertaV2Tokenizer
87
+
88
+ def __init__(
89
+ self,
90
+ vocab_file=None,
91
+ tokenizer_file=None,
92
+ do_lower_case=False,
93
+ split_by_punct=False,
94
+ bos_token="[CLS]",
95
+ eos_token="[SEP]",
96
+ unk_token="[UNK]",
97
+ sep_token="[SEP]",
98
+ pad_token="[PAD]",
99
+ cls_token="[CLS]",
100
+ mask_token="[MASK]",
101
+ **kwargs,
102
+ ) -> None:
103
+ super().__init__(
104
+ vocab_file,
105
+ tokenizer_file=tokenizer_file,
106
+ do_lower_case=do_lower_case,
107
+ bos_token=bos_token,
108
+ eos_token=eos_token,
109
+ unk_token=unk_token,
110
+ sep_token=sep_token,
111
+ pad_token=pad_token,
112
+ cls_token=cls_token,
113
+ mask_token=mask_token,
114
+ split_by_punct=split_by_punct,
115
+ **kwargs,
116
+ )
117
+
118
+ self.do_lower_case = do_lower_case
119
+ self.split_by_punct = split_by_punct
120
+ self.vocab_file = vocab_file
121
+
122
+ @property
123
+ def can_save_slow_tokenizer(self) -> bool:
124
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
125
+
126
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
127
+ """
128
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
129
+ adding special tokens. A DeBERTa sequence has the following format:
130
+
131
+ - single sequence: [CLS] X [SEP]
132
+ - pair of sequences: [CLS] A [SEP] B [SEP]
133
+
134
+ Args:
135
+ token_ids_0 (`List[int]`):
136
+ List of IDs to which the special tokens will be added.
137
+ token_ids_1 (`List[int]`, *optional*):
138
+ Optional second list of IDs for sequence pairs.
139
+
140
+ Returns:
141
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
142
+ """
143
+
144
+ if token_ids_1 is None:
145
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
146
+ cls = [self.cls_token_id]
147
+ sep = [self.sep_token_id]
148
+ return cls + token_ids_0 + sep + token_ids_1 + sep
149
+
150
+ def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
151
+ """
152
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
153
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
154
+
155
+ Args:
156
+ token_ids_0 (`List[int]`):
157
+ List of IDs.
158
+ token_ids_1 (`List[int]`, *optional*):
159
+ Optional second list of IDs for sequence pairs.
160
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
161
+ Whether or not the token list is already formatted with special tokens for the model.
162
+
163
+ Returns:
164
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
165
+ """
166
+
167
+ if already_has_special_tokens:
168
+ return super().get_special_tokens_mask(
169
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
170
+ )
171
+
172
+ if token_ids_1 is not None:
173
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
174
+ return [1] + ([0] * len(token_ids_0)) + [1]
175
+
176
+ def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
177
+ """
178
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
179
+ sequence pair mask has the following format:
180
+
181
+ ```
182
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
183
+ | first sequence | second sequence |
184
+ ```
185
+
186
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
187
+
188
+ Args:
189
+ token_ids_0 (`List[int]`):
190
+ List of IDs.
191
+ token_ids_1 (`List[int]`, *optional*):
192
+ Optional second list of IDs for sequence pairs.
193
+
194
+ Returns:
195
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
196
+ """
197
+ sep = [self.sep_token_id]
198
+ cls = [self.cls_token_id]
199
+ if token_ids_1 is None:
200
+ return len(cls + token_ids_0 + sep) * [0]
201
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
202
+
203
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
204
+ if not self.can_save_slow_tokenizer:
205
+ raise ValueError(
206
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
207
+ "tokenizer."
208
+ )
209
+
210
+ if not os.path.isdir(save_directory):
211
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
212
+ return
213
+ out_vocab_file = os.path.join(
214
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
215
+ )
216
+
217
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
218
+ copyfile(self.vocab_file, out_vocab_file)
219
+
220
+ return (out_vocab_file,)
llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/configuration_persimmon.cpython-310.pyc ADDED
Binary file (6.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/convert_persimmon_weights_to_hf.cpython-310.pyc ADDED
Binary file (2.76 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/modeling_persimmon.cpython-310.pyc ADDED
Binary file (32.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__init__.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_essentia_available,
20
+ is_librosa_available,
21
+ is_pretty_midi_available,
22
+ is_scipy_available,
23
+ is_torch_available,
24
+ )
25
+
26
+
27
+ _import_structure = {
28
+ "configuration_pop2piano": ["POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pop2PianoConfig"],
29
+ }
30
+
31
+ try:
32
+ if not is_torch_available():
33
+ raise OptionalDependencyNotAvailable()
34
+ except OptionalDependencyNotAvailable:
35
+ pass
36
+ else:
37
+ _import_structure["modeling_pop2piano"] = [
38
+ "POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST",
39
+ "Pop2PianoForConditionalGeneration",
40
+ "Pop2PianoPreTrainedModel",
41
+ ]
42
+
43
+ try:
44
+ if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()):
45
+ raise OptionalDependencyNotAvailable()
46
+ except OptionalDependencyNotAvailable:
47
+ pass
48
+ else:
49
+ _import_structure["feature_extraction_pop2piano"] = ["Pop2PianoFeatureExtractor"]
50
+
51
+ try:
52
+ if not (is_pretty_midi_available() and is_torch_available()):
53
+ raise OptionalDependencyNotAvailable()
54
+ except OptionalDependencyNotAvailable:
55
+ pass
56
+ else:
57
+ _import_structure["tokenization_pop2piano"] = ["Pop2PianoTokenizer"]
58
+
59
+ try:
60
+ if not (
61
+ is_pretty_midi_available()
62
+ and is_torch_available()
63
+ and is_librosa_available()
64
+ and is_essentia_available()
65
+ and is_scipy_available()
66
+ ):
67
+ raise OptionalDependencyNotAvailable()
68
+ except OptionalDependencyNotAvailable:
69
+ pass
70
+ else:
71
+ _import_structure["processing_pop2piano"] = ["Pop2PianoProcessor"]
72
+
73
+
74
+ if TYPE_CHECKING:
75
+ from .configuration_pop2piano import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP, Pop2PianoConfig
76
+
77
+ try:
78
+ if not is_torch_available():
79
+ raise OptionalDependencyNotAvailable()
80
+ except OptionalDependencyNotAvailable:
81
+ pass
82
+ else:
83
+ from .modeling_pop2piano import (
84
+ POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST,
85
+ Pop2PianoForConditionalGeneration,
86
+ Pop2PianoPreTrainedModel,
87
+ )
88
+
89
+ try:
90
+ if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()):
91
+ raise OptionalDependencyNotAvailable()
92
+ except OptionalDependencyNotAvailable:
93
+ pass
94
+ else:
95
+ from .feature_extraction_pop2piano import Pop2PianoFeatureExtractor
96
+
97
+ try:
98
+ if not (is_pretty_midi_available() and is_torch_available()):
99
+ raise OptionalDependencyNotAvailable()
100
+ except OptionalDependencyNotAvailable:
101
+ pass
102
+ else:
103
+ from .tokenization_pop2piano import Pop2PianoTokenizer
104
+
105
+ try:
106
+ if not (
107
+ is_pretty_midi_available()
108
+ and is_torch_available()
109
+ and is_librosa_available()
110
+ and is_essentia_available()
111
+ and is_scipy_available()
112
+ ):
113
+ raise OptionalDependencyNotAvailable()
114
+ except OptionalDependencyNotAvailable:
115
+ pass
116
+ else:
117
+ from .processing_pop2piano import Pop2PianoProcessor
118
+
119
+ else:
120
+ import sys
121
+
122
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.78 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/configuration_pop2piano.cpython-310.pyc ADDED
Binary file (5.14 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/convert_pop2piano_weights_to_hf.cpython-310.pyc ADDED
Binary file (4.23 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/feature_extraction_pop2piano.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/modeling_pop2piano.cpython-310.pyc ADDED
Binary file (40.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/processing_pop2piano.cpython-310.pyc ADDED
Binary file (4.59 kB). View file