Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/__init__.py +73 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/configuration_align.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/convert_align_tf_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/modeling_align.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/processing_align.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/configuration_align.py +383 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/convert_align_tf_to_hf.py +389 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/modeling_align.py +1633 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/align/processing_align.py +121 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__init__.py +74 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/configuration_donut_swin.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/configuration_donut_swin.py +135 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/convert_donut_to_pytorch.py +234 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/modeling_donut_swin.py +955 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/processing_donut.py +196 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__init__.py +65 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/configuration_encodec.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/convert_encodec_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/feature_extraction_encodec.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/modeling_encodec.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/configuration_encodec.py +193 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py +365 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/feature_extraction_encodec.py +206 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/modeling_encodec.py +810 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__init__.py +71 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/configuration_mobilevitv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/convert_mlcvnets_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/modeling_mobilevitv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/configuration_mobilevitv2.py +168 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/convert_mlcvnets_to_pytorch.py +326 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/modeling_mobilevitv2.py +1030 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__init__.py +100 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/configuration_owlvit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/convert_owlvit_original_flax_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/feature_extraction_owlvit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/image_processing_owlvit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/modeling_owlvit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/processing_owlvit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/configuration_owlvit.py +383 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/convert_owlvit_original_flax_to_hf.py +406 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/feature_extraction_owlvit.py +33 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/image_processing_owlvit.py +611 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/modeling_owlvit.py +1685 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/processing_owlvit.py +224 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py +62 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/__init__.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/align/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_align": [
|
25 |
+
"ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
26 |
+
"AlignConfig",
|
27 |
+
"AlignTextConfig",
|
28 |
+
"AlignVisionConfig",
|
29 |
+
],
|
30 |
+
"processing_align": ["AlignProcessor"],
|
31 |
+
}
|
32 |
+
|
33 |
+
try:
|
34 |
+
if not is_torch_available():
|
35 |
+
raise OptionalDependencyNotAvailable()
|
36 |
+
except OptionalDependencyNotAvailable:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
_import_structure["modeling_align"] = [
|
40 |
+
"ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
41 |
+
"AlignModel",
|
42 |
+
"AlignPreTrainedModel",
|
43 |
+
"AlignTextModel",
|
44 |
+
"AlignVisionModel",
|
45 |
+
]
|
46 |
+
|
47 |
+
if TYPE_CHECKING:
|
48 |
+
from .configuration_align import (
|
49 |
+
ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
50 |
+
AlignConfig,
|
51 |
+
AlignTextConfig,
|
52 |
+
AlignVisionConfig,
|
53 |
+
)
|
54 |
+
from .processing_align import AlignProcessor
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_torch_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .modeling_align import (
|
63 |
+
ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
64 |
+
AlignModel,
|
65 |
+
AlignPreTrainedModel,
|
66 |
+
AlignTextModel,
|
67 |
+
AlignVisionModel,
|
68 |
+
)
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/configuration_align.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/convert_align_tf_to_hf.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/modeling_align.cpython-310.pyc
ADDED
Binary file (50.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/__pycache__/processing_align.cpython-310.pyc
ADDED
Binary file (5.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/configuration_align.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ALIGN model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import TYPE_CHECKING, List, Union
|
19 |
+
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
pass
|
23 |
+
|
24 |
+
from ...configuration_utils import PretrainedConfig
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
from ..deprecated._archive_maps import ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
32 |
+
|
33 |
+
|
34 |
+
class AlignTextConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`AlignTextModel`]. It is used to instantiate a
|
37 |
+
ALIGN text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
38 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the ALIGN
|
39 |
+
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values here are
|
40 |
+
copied from BERT.
|
41 |
+
|
42 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
43 |
+
documentation from [`PretrainedConfig`] for more information.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
47 |
+
Vocabulary size of the Align Text model. Defines the number of different tokens that can be represented by
|
48 |
+
the `inputs_ids` passed when calling [`AlignTextModel`].
|
49 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
50 |
+
Dimensionality of the encoder layers and the pooler layer.
|
51 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
56 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
57 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
59 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
68 |
+
The vocabulary size of the `token_type_ids` passed when calling [`AlignTextModel`].
|
69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
72 |
+
The epsilon used by the layer normalization layers.
|
73 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
74 |
+
Padding token id.
|
75 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
76 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
77 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
78 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
79 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
80 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
81 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
83 |
+
relevant if `config.is_decoder=True`.
|
84 |
+
|
85 |
+
Example:
|
86 |
+
|
87 |
+
```python
|
88 |
+
>>> from transformers import AlignTextConfig, AlignTextModel
|
89 |
+
|
90 |
+
>>> # Initializing a AlignTextConfig with kakaobrain/align-base style configuration
|
91 |
+
>>> configuration = AlignTextConfig()
|
92 |
+
|
93 |
+
>>> # Initializing a AlignTextModel (with random weights) from the kakaobrain/align-base style configuration
|
94 |
+
>>> model = AlignTextModel(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration
|
97 |
+
>>> configuration = model.config
|
98 |
+
```"""
|
99 |
+
|
100 |
+
model_type = "align_text_model"
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
vocab_size=30522,
|
105 |
+
hidden_size=768,
|
106 |
+
num_hidden_layers=12,
|
107 |
+
num_attention_heads=12,
|
108 |
+
intermediate_size=3072,
|
109 |
+
hidden_act="gelu",
|
110 |
+
hidden_dropout_prob=0.1,
|
111 |
+
attention_probs_dropout_prob=0.1,
|
112 |
+
max_position_embeddings=512,
|
113 |
+
type_vocab_size=2,
|
114 |
+
initializer_range=0.02,
|
115 |
+
layer_norm_eps=1e-12,
|
116 |
+
pad_token_id=0,
|
117 |
+
position_embedding_type="absolute",
|
118 |
+
use_cache=True,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_eps = layer_norm_eps
|
135 |
+
self.position_embedding_type = position_embedding_type
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.pad_token_id = pad_token_id
|
138 |
+
|
139 |
+
@classmethod
|
140 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
141 |
+
cls._set_token_in_kwargs(kwargs)
|
142 |
+
|
143 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
144 |
+
|
145 |
+
# get the text config dict if we are loading from AlignConfig
|
146 |
+
if config_dict.get("model_type") == "align":
|
147 |
+
config_dict = config_dict["text_config"]
|
148 |
+
|
149 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
150 |
+
logger.warning(
|
151 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
152 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
153 |
+
)
|
154 |
+
|
155 |
+
return cls.from_dict(config_dict, **kwargs)
|
156 |
+
|
157 |
+
|
158 |
+
class AlignVisionConfig(PretrainedConfig):
|
159 |
+
r"""
|
160 |
+
This is the configuration class to store the configuration of a [`AlignVisionModel`]. It is used to instantiate a
|
161 |
+
ALIGN vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
162 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the ALIGN
|
163 |
+
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values are copied
|
164 |
+
from EfficientNet (efficientnet-b7)
|
165 |
+
|
166 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
167 |
+
documentation from [`PretrainedConfig`] for more information.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
num_channels (`int`, *optional*, defaults to 3):
|
171 |
+
The number of input channels.
|
172 |
+
image_size (`int`, *optional*, defaults to 600):
|
173 |
+
The input image size.
|
174 |
+
width_coefficient (`float`, *optional*, defaults to 2.0):
|
175 |
+
Scaling coefficient for network width at each stage.
|
176 |
+
depth_coefficient (`float`, *optional*, defaults to 3.1):
|
177 |
+
Scaling coefficient for network depth at each stage.
|
178 |
+
depth_divisor `int`, *optional*, defaults to 8):
|
179 |
+
A unit of network width.
|
180 |
+
kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
|
181 |
+
List of kernel sizes to be used in each block.
|
182 |
+
in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
|
183 |
+
List of input channel sizes to be used in each block for convolutional layers.
|
184 |
+
out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
|
185 |
+
List of output channel sizes to be used in each block for convolutional layers.
|
186 |
+
depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
|
187 |
+
List of block indices with square padding.
|
188 |
+
strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
|
189 |
+
List of stride sizes to be used in each block for convolutional layers.
|
190 |
+
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
|
191 |
+
List of the number of times each block is to repeated.
|
192 |
+
expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
|
193 |
+
List of scaling coefficient of each block.
|
194 |
+
squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
|
195 |
+
Squeeze expansion ratio.
|
196 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
197 |
+
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
|
198 |
+
`"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
|
199 |
+
hiddem_dim (`int`, *optional*, defaults to 1280):
|
200 |
+
The hidden dimension of the layer before the classification head.
|
201 |
+
pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
|
202 |
+
Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
|
203 |
+
`"max"`]
|
204 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
205 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
206 |
+
batch_norm_eps (`float`, *optional*, defaults to 1e-3):
|
207 |
+
The epsilon used by the batch normalization layers.
|
208 |
+
batch_norm_momentum (`float`, *optional*, defaults to 0.99):
|
209 |
+
The momentum used by the batch normalization layers.
|
210 |
+
drop_connect_rate (`float`, *optional*, defaults to 0.2):
|
211 |
+
The drop rate for skip connections.
|
212 |
+
|
213 |
+
Example:
|
214 |
+
|
215 |
+
```python
|
216 |
+
>>> from transformers import AlignVisionConfig, AlignVisionModel
|
217 |
+
|
218 |
+
>>> # Initializing a AlignVisionConfig with kakaobrain/align-base style configuration
|
219 |
+
>>> configuration = AlignVisionConfig()
|
220 |
+
|
221 |
+
>>> # Initializing a AlignVisionModel (with random weights) from the kakaobrain/align-base style configuration
|
222 |
+
>>> model = AlignVisionModel(configuration)
|
223 |
+
|
224 |
+
>>> # Accessing the model configuration
|
225 |
+
>>> configuration = model.config
|
226 |
+
```"""
|
227 |
+
|
228 |
+
model_type = "align_vision_model"
|
229 |
+
|
230 |
+
def __init__(
|
231 |
+
self,
|
232 |
+
num_channels: int = 3,
|
233 |
+
image_size: int = 600,
|
234 |
+
width_coefficient: float = 2.0,
|
235 |
+
depth_coefficient: float = 3.1,
|
236 |
+
depth_divisor: int = 8,
|
237 |
+
kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
|
238 |
+
in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
|
239 |
+
out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
|
240 |
+
depthwise_padding: List[int] = [],
|
241 |
+
strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
|
242 |
+
num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
|
243 |
+
expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
|
244 |
+
squeeze_expansion_ratio: float = 0.25,
|
245 |
+
hidden_act: str = "swish",
|
246 |
+
hidden_dim: int = 2560,
|
247 |
+
pooling_type: str = "mean",
|
248 |
+
initializer_range: float = 0.02,
|
249 |
+
batch_norm_eps: float = 0.001,
|
250 |
+
batch_norm_momentum: float = 0.99,
|
251 |
+
drop_connect_rate: float = 0.2,
|
252 |
+
**kwargs,
|
253 |
+
):
|
254 |
+
super().__init__(**kwargs)
|
255 |
+
|
256 |
+
self.num_channels = num_channels
|
257 |
+
self.image_size = image_size
|
258 |
+
self.width_coefficient = width_coefficient
|
259 |
+
self.depth_coefficient = depth_coefficient
|
260 |
+
self.depth_divisor = depth_divisor
|
261 |
+
self.kernel_sizes = kernel_sizes
|
262 |
+
self.in_channels = in_channels
|
263 |
+
self.out_channels = out_channels
|
264 |
+
self.depthwise_padding = depthwise_padding
|
265 |
+
self.strides = strides
|
266 |
+
self.num_block_repeats = num_block_repeats
|
267 |
+
self.expand_ratios = expand_ratios
|
268 |
+
self.squeeze_expansion_ratio = squeeze_expansion_ratio
|
269 |
+
self.hidden_act = hidden_act
|
270 |
+
self.hidden_dim = hidden_dim
|
271 |
+
self.pooling_type = pooling_type
|
272 |
+
self.initializer_range = initializer_range
|
273 |
+
self.batch_norm_eps = batch_norm_eps
|
274 |
+
self.batch_norm_momentum = batch_norm_momentum
|
275 |
+
self.drop_connect_rate = drop_connect_rate
|
276 |
+
self.num_hidden_layers = sum(num_block_repeats) * 4
|
277 |
+
|
278 |
+
@classmethod
|
279 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
280 |
+
cls._set_token_in_kwargs(kwargs)
|
281 |
+
|
282 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
283 |
+
|
284 |
+
# get the vision config dict if we are loading from AlignConfig
|
285 |
+
if config_dict.get("model_type") == "align":
|
286 |
+
config_dict = config_dict["vision_config"]
|
287 |
+
|
288 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
289 |
+
logger.warning(
|
290 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
291 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
292 |
+
)
|
293 |
+
|
294 |
+
return cls.from_dict(config_dict, **kwargs)
|
295 |
+
|
296 |
+
|
297 |
+
class AlignConfig(PretrainedConfig):
|
298 |
+
r"""
|
299 |
+
[`AlignConfig`] is the configuration class to store the configuration of a [`AlignModel`]. It is used to
|
300 |
+
instantiate a ALIGN model according to the specified arguments, defining the text model and vision model configs.
|
301 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the ALIGN
|
302 |
+
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture.
|
303 |
+
|
304 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
305 |
+
documentation from [`PretrainedConfig`] for more information.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
text_config (`dict`, *optional*):
|
309 |
+
Dictionary of configuration options used to initialize [`AlignTextConfig`].
|
310 |
+
vision_config (`dict`, *optional*):
|
311 |
+
Dictionary of configuration options used to initialize [`AlignVisionConfig`].
|
312 |
+
projection_dim (`int`, *optional*, defaults to 640):
|
313 |
+
Dimentionality of text and vision projection layers.
|
314 |
+
temperature_init_value (`float`, *optional*, defaults to 1.0):
|
315 |
+
The inital value of the *temperature* paramter. Default is used as per the original ALIGN implementation.
|
316 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
317 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
318 |
+
kwargs (*optional*):
|
319 |
+
Dictionary of keyword arguments.
|
320 |
+
|
321 |
+
Example:
|
322 |
+
|
323 |
+
```python
|
324 |
+
>>> from transformers import AlignConfig, AlignModel
|
325 |
+
|
326 |
+
>>> # Initializing a AlignConfig with kakaobrain/align-base style configuration
|
327 |
+
>>> configuration = AlignConfig()
|
328 |
+
|
329 |
+
>>> # Initializing a AlignModel (with random weights) from the kakaobrain/align-base style configuration
|
330 |
+
>>> model = AlignModel(configuration)
|
331 |
+
|
332 |
+
>>> # Accessing the model configuration
|
333 |
+
>>> configuration = model.config
|
334 |
+
|
335 |
+
>>> # We can also initialize a AlignConfig from a AlignTextConfig and a AlignVisionConfig
|
336 |
+
>>> from transformers import AlignTextConfig, AlignVisionConfig
|
337 |
+
|
338 |
+
>>> # Initializing ALIGN Text and Vision configurations
|
339 |
+
>>> config_text = AlignTextConfig()
|
340 |
+
>>> config_vision = AlignVisionConfig()
|
341 |
+
|
342 |
+
>>> config = AlignConfig.from_text_vision_configs(config_text, config_vision)
|
343 |
+
```"""
|
344 |
+
|
345 |
+
model_type = "align"
|
346 |
+
|
347 |
+
def __init__(
|
348 |
+
self,
|
349 |
+
text_config=None,
|
350 |
+
vision_config=None,
|
351 |
+
projection_dim=640,
|
352 |
+
temperature_init_value=1.0,
|
353 |
+
initializer_range=0.02,
|
354 |
+
**kwargs,
|
355 |
+
):
|
356 |
+
super().__init__(**kwargs)
|
357 |
+
|
358 |
+
if text_config is None:
|
359 |
+
text_config = {}
|
360 |
+
logger.info("text_config is None. Initializing the AlignTextConfig with default values.")
|
361 |
+
|
362 |
+
if vision_config is None:
|
363 |
+
vision_config = {}
|
364 |
+
logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.")
|
365 |
+
|
366 |
+
self.text_config = AlignTextConfig(**text_config)
|
367 |
+
self.vision_config = AlignVisionConfig(**vision_config)
|
368 |
+
|
369 |
+
self.projection_dim = projection_dim
|
370 |
+
self.temperature_init_value = temperature_init_value
|
371 |
+
self.initializer_range = initializer_range
|
372 |
+
|
373 |
+
@classmethod
|
374 |
+
def from_text_vision_configs(cls, text_config: AlignTextConfig, vision_config: AlignVisionConfig, **kwargs):
|
375 |
+
r"""
|
376 |
+
Instantiate a [`AlignConfig`] (or a derived class) from align text model configuration and align vision model
|
377 |
+
configuration.
|
378 |
+
|
379 |
+
Returns:
|
380 |
+
[`AlignConfig`]: An instance of a configuration object
|
381 |
+
"""
|
382 |
+
|
383 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/convert_align_tf_to_hf.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ALIGN checkpoints from the original repository."""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
|
20 |
+
import align
|
21 |
+
import numpy as np
|
22 |
+
import requests
|
23 |
+
import tensorflow as tf
|
24 |
+
import torch
|
25 |
+
from PIL import Image
|
26 |
+
from tokenizer import Tokenizer
|
27 |
+
|
28 |
+
from transformers import (
|
29 |
+
AlignConfig,
|
30 |
+
AlignModel,
|
31 |
+
AlignProcessor,
|
32 |
+
BertConfig,
|
33 |
+
BertTokenizer,
|
34 |
+
EfficientNetConfig,
|
35 |
+
EfficientNetImageProcessor,
|
36 |
+
)
|
37 |
+
from transformers.utils import logging
|
38 |
+
|
39 |
+
|
40 |
+
logging.set_verbosity_info()
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
def preprocess(image):
|
45 |
+
image = tf.image.resize(image, (346, 346))
|
46 |
+
image = tf.image.crop_to_bounding_box(image, (346 - 289) // 2, (346 - 289) // 2, 289, 289)
|
47 |
+
return image
|
48 |
+
|
49 |
+
|
50 |
+
def get_align_config():
|
51 |
+
vision_config = EfficientNetConfig.from_pretrained("google/efficientnet-b7")
|
52 |
+
vision_config.image_size = 289
|
53 |
+
vision_config.hidden_dim = 640
|
54 |
+
vision_config.id2label = {"0": "LABEL_0", "1": "LABEL_1"}
|
55 |
+
vision_config.label2id = {"LABEL_0": 0, "LABEL_1": 1}
|
56 |
+
vision_config.depthwise_padding = []
|
57 |
+
|
58 |
+
text_config = BertConfig()
|
59 |
+
config = AlignConfig.from_text_vision_configs(
|
60 |
+
text_config=text_config, vision_config=vision_config, projection_dim=640
|
61 |
+
)
|
62 |
+
return config
|
63 |
+
|
64 |
+
|
65 |
+
# We will verify our results on an image of cute cats
|
66 |
+
def prepare_img():
|
67 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
68 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
69 |
+
return im
|
70 |
+
|
71 |
+
|
72 |
+
def get_processor():
|
73 |
+
image_processor = EfficientNetImageProcessor(
|
74 |
+
do_center_crop=True,
|
75 |
+
rescale_factor=1 / 127.5,
|
76 |
+
rescale_offset=True,
|
77 |
+
do_normalize=False,
|
78 |
+
include_top=False,
|
79 |
+
resample=Image.BILINEAR,
|
80 |
+
)
|
81 |
+
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
82 |
+
tokenizer.model_max_length = 64
|
83 |
+
processor = AlignProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
84 |
+
return processor
|
85 |
+
|
86 |
+
|
87 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
88 |
+
def rename_keys(original_param_names):
|
89 |
+
# EfficientNet image encoder
|
90 |
+
block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")]
|
91 |
+
block_names = list(set(block_names))
|
92 |
+
block_names = sorted(block_names)
|
93 |
+
num_blocks = len(block_names)
|
94 |
+
block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))}
|
95 |
+
|
96 |
+
rename_keys = []
|
97 |
+
rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight"))
|
98 |
+
rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight"))
|
99 |
+
rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias"))
|
100 |
+
rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean"))
|
101 |
+
rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var"))
|
102 |
+
|
103 |
+
for b in block_names:
|
104 |
+
hf_b = block_name_mapping[b]
|
105 |
+
rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight"))
|
106 |
+
rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight"))
|
107 |
+
rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias"))
|
108 |
+
rename_keys.append(
|
109 |
+
(f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean")
|
110 |
+
)
|
111 |
+
rename_keys.append(
|
112 |
+
(f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var")
|
113 |
+
)
|
114 |
+
rename_keys.append(
|
115 |
+
(f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight")
|
116 |
+
)
|
117 |
+
rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight"))
|
118 |
+
rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias"))
|
119 |
+
rename_keys.append(
|
120 |
+
(f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean")
|
121 |
+
)
|
122 |
+
rename_keys.append(
|
123 |
+
(f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var")
|
124 |
+
)
|
125 |
+
|
126 |
+
rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight"))
|
127 |
+
rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias"))
|
128 |
+
rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight"))
|
129 |
+
rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias"))
|
130 |
+
rename_keys.append(
|
131 |
+
(f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight")
|
132 |
+
)
|
133 |
+
rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight"))
|
134 |
+
rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias"))
|
135 |
+
rename_keys.append(
|
136 |
+
(f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean")
|
137 |
+
)
|
138 |
+
rename_keys.append(
|
139 |
+
(f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var")
|
140 |
+
)
|
141 |
+
|
142 |
+
key_mapping = {}
|
143 |
+
for item in rename_keys:
|
144 |
+
if item[0] in original_param_names:
|
145 |
+
key_mapping[item[0]] = "vision_model." + item[1]
|
146 |
+
|
147 |
+
# BERT text encoder
|
148 |
+
rename_keys = []
|
149 |
+
old = "tf_bert_model/bert"
|
150 |
+
new = "text_model"
|
151 |
+
for i in range(12):
|
152 |
+
rename_keys.append(
|
153 |
+
(
|
154 |
+
f"{old}/encoder/layer_._{i}/attention/self/query/kernel:0",
|
155 |
+
f"{new}.encoder.layer.{i}.attention.self.query.weight",
|
156 |
+
)
|
157 |
+
)
|
158 |
+
rename_keys.append(
|
159 |
+
(
|
160 |
+
f"{old}/encoder/layer_._{i}/attention/self/query/bias:0",
|
161 |
+
f"{new}.encoder.layer.{i}.attention.self.query.bias",
|
162 |
+
)
|
163 |
+
)
|
164 |
+
rename_keys.append(
|
165 |
+
(
|
166 |
+
f"{old}/encoder/layer_._{i}/attention/self/key/kernel:0",
|
167 |
+
f"{new}.encoder.layer.{i}.attention.self.key.weight",
|
168 |
+
)
|
169 |
+
)
|
170 |
+
rename_keys.append(
|
171 |
+
(
|
172 |
+
f"{old}/encoder/layer_._{i}/attention/self/key/bias:0",
|
173 |
+
f"{new}.encoder.layer.{i}.attention.self.key.bias",
|
174 |
+
)
|
175 |
+
)
|
176 |
+
rename_keys.append(
|
177 |
+
(
|
178 |
+
f"{old}/encoder/layer_._{i}/attention/self/value/kernel:0",
|
179 |
+
f"{new}.encoder.layer.{i}.attention.self.value.weight",
|
180 |
+
)
|
181 |
+
)
|
182 |
+
rename_keys.append(
|
183 |
+
(
|
184 |
+
f"{old}/encoder/layer_._{i}/attention/self/value/bias:0",
|
185 |
+
f"{new}.encoder.layer.{i}.attention.self.value.bias",
|
186 |
+
)
|
187 |
+
)
|
188 |
+
rename_keys.append(
|
189 |
+
(
|
190 |
+
f"{old}/encoder/layer_._{i}/attention/output/dense/kernel:0",
|
191 |
+
f"{new}.encoder.layer.{i}.attention.output.dense.weight",
|
192 |
+
)
|
193 |
+
)
|
194 |
+
rename_keys.append(
|
195 |
+
(
|
196 |
+
f"{old}/encoder/layer_._{i}/attention/output/dense/bias:0",
|
197 |
+
f"{new}.encoder.layer.{i}.attention.output.dense.bias",
|
198 |
+
)
|
199 |
+
)
|
200 |
+
rename_keys.append(
|
201 |
+
(
|
202 |
+
f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/gamma:0",
|
203 |
+
f"{new}.encoder.layer.{i}.attention.output.LayerNorm.weight",
|
204 |
+
)
|
205 |
+
)
|
206 |
+
rename_keys.append(
|
207 |
+
(
|
208 |
+
f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/beta:0",
|
209 |
+
f"{new}.encoder.layer.{i}.attention.output.LayerNorm.bias",
|
210 |
+
)
|
211 |
+
)
|
212 |
+
rename_keys.append(
|
213 |
+
(
|
214 |
+
f"{old}/encoder/layer_._{i}/intermediate/dense/kernel:0",
|
215 |
+
f"{new}.encoder.layer.{i}.intermediate.dense.weight",
|
216 |
+
)
|
217 |
+
)
|
218 |
+
rename_keys.append(
|
219 |
+
(
|
220 |
+
f"{old}/encoder/layer_._{i}/intermediate/dense/bias:0",
|
221 |
+
f"{new}.encoder.layer.{i}.intermediate.dense.bias",
|
222 |
+
)
|
223 |
+
)
|
224 |
+
rename_keys.append(
|
225 |
+
(f"{old}/encoder/layer_._{i}/output/dense/kernel:0", f"{new}.encoder.layer.{i}.output.dense.weight")
|
226 |
+
)
|
227 |
+
rename_keys.append(
|
228 |
+
(f"{old}/encoder/layer_._{i}/output/dense/bias:0", f"{new}.encoder.layer.{i}.output.dense.bias")
|
229 |
+
)
|
230 |
+
rename_keys.append(
|
231 |
+
(f"{old}/encoder/layer_._{i}/output/LayerNorm/gamma:0", f"{new}.encoder.layer.{i}.output.LayerNorm.weight")
|
232 |
+
)
|
233 |
+
rename_keys.append(
|
234 |
+
(f"{old}/encoder/layer_._{i}/output/LayerNorm/beta:0", f"{new}.encoder.layer.{i}.output.LayerNorm.bias")
|
235 |
+
)
|
236 |
+
|
237 |
+
rename_keys.append((f"{old}/embeddings/word_embeddings/weight:0", f"{new}.embeddings.word_embeddings.weight"))
|
238 |
+
rename_keys.append(
|
239 |
+
(f"{old}/embeddings/position_embeddings/embeddings:0", f"{new}.embeddings.position_embeddings.weight")
|
240 |
+
)
|
241 |
+
rename_keys.append(
|
242 |
+
(f"{old}/embeddings/token_type_embeddings/embeddings:0", f"{new}.embeddings.token_type_embeddings.weight")
|
243 |
+
)
|
244 |
+
rename_keys.append((f"{old}/embeddings/LayerNorm/gamma:0", f"{new}.embeddings.LayerNorm.weight"))
|
245 |
+
rename_keys.append((f"{old}/embeddings/LayerNorm/beta:0", f"{new}.embeddings.LayerNorm.bias"))
|
246 |
+
|
247 |
+
rename_keys.append((f"{old}/pooler/dense/kernel:0", f"{new}.pooler.dense.weight"))
|
248 |
+
rename_keys.append((f"{old}/pooler/dense/bias:0", f"{new}.pooler.dense.bias"))
|
249 |
+
rename_keys.append(("dense/kernel:0", "text_projection.weight"))
|
250 |
+
rename_keys.append(("dense/bias:0", "text_projection.bias"))
|
251 |
+
rename_keys.append(("dense/bias:0", "text_projection.bias"))
|
252 |
+
rename_keys.append(("temperature:0", "temperature"))
|
253 |
+
|
254 |
+
for item in rename_keys:
|
255 |
+
if item[0] in original_param_names:
|
256 |
+
key_mapping[item[0]] = item[1]
|
257 |
+
return key_mapping
|
258 |
+
|
259 |
+
|
260 |
+
def replace_params(hf_params, tf_params, key_mapping):
|
261 |
+
list(hf_params.keys())
|
262 |
+
|
263 |
+
for key, value in tf_params.items():
|
264 |
+
if key not in key_mapping:
|
265 |
+
continue
|
266 |
+
|
267 |
+
hf_key = key_mapping[key]
|
268 |
+
if "_conv" in key and "kernel" in key:
|
269 |
+
new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1)
|
270 |
+
elif "embeddings" in key:
|
271 |
+
new_hf_value = torch.from_numpy(value)
|
272 |
+
elif "depthwise_kernel" in key:
|
273 |
+
new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1)
|
274 |
+
elif "kernel" in key:
|
275 |
+
new_hf_value = torch.from_numpy(np.transpose(value))
|
276 |
+
elif "temperature" in key:
|
277 |
+
new_hf_value = value
|
278 |
+
elif "bn/gamma" or "bn/beta" in key:
|
279 |
+
new_hf_value = torch.from_numpy(np.transpose(value)).squeeze()
|
280 |
+
else:
|
281 |
+
new_hf_value = torch.from_numpy(value)
|
282 |
+
|
283 |
+
# Replace HF parameters with original TF model parameters
|
284 |
+
hf_params[hf_key].copy_(new_hf_value)
|
285 |
+
|
286 |
+
|
287 |
+
@torch.no_grad()
|
288 |
+
def convert_align_checkpoint(checkpoint_path, pytorch_dump_folder_path, save_model, push_to_hub):
|
289 |
+
"""
|
290 |
+
Copy/paste/tweak model's weights to our ALIGN structure.
|
291 |
+
"""
|
292 |
+
# Load original model
|
293 |
+
seq_length = 64
|
294 |
+
tok = Tokenizer(seq_length)
|
295 |
+
original_model = align.Align("efficientnet-b7", "bert-base", 640, seq_length, tok.get_vocab_size())
|
296 |
+
original_model.compile()
|
297 |
+
original_model.load_weights(checkpoint_path)
|
298 |
+
|
299 |
+
tf_params = original_model.trainable_variables
|
300 |
+
tf_non_train_params = original_model.non_trainable_variables
|
301 |
+
tf_params = {param.name: param.numpy() for param in tf_params}
|
302 |
+
for param in tf_non_train_params:
|
303 |
+
tf_params[param.name] = param.numpy()
|
304 |
+
tf_param_names = list(tf_params.keys())
|
305 |
+
|
306 |
+
# Load HuggingFace model
|
307 |
+
config = get_align_config()
|
308 |
+
hf_model = AlignModel(config).eval()
|
309 |
+
hf_params = hf_model.state_dict()
|
310 |
+
|
311 |
+
# Create src-to-dst parameter name mapping dictionary
|
312 |
+
print("Converting parameters...")
|
313 |
+
key_mapping = rename_keys(tf_param_names)
|
314 |
+
replace_params(hf_params, tf_params, key_mapping)
|
315 |
+
|
316 |
+
# Initialize processor
|
317 |
+
processor = get_processor()
|
318 |
+
inputs = processor(
|
319 |
+
images=prepare_img(), text="A picture of a cat", padding="max_length", max_length=64, return_tensors="pt"
|
320 |
+
)
|
321 |
+
|
322 |
+
# HF model inference
|
323 |
+
hf_model.eval()
|
324 |
+
with torch.no_grad():
|
325 |
+
outputs = hf_model(**inputs)
|
326 |
+
|
327 |
+
hf_image_features = outputs.image_embeds.detach().numpy()
|
328 |
+
hf_text_features = outputs.text_embeds.detach().numpy()
|
329 |
+
|
330 |
+
# Original model inference
|
331 |
+
original_model.trainable = False
|
332 |
+
tf_image_processor = EfficientNetImageProcessor(
|
333 |
+
do_center_crop=True,
|
334 |
+
do_rescale=False,
|
335 |
+
do_normalize=False,
|
336 |
+
include_top=False,
|
337 |
+
resample=Image.BILINEAR,
|
338 |
+
)
|
339 |
+
image = tf_image_processor(images=prepare_img(), return_tensors="tf", data_format="channels_last")["pixel_values"]
|
340 |
+
text = tok(tf.constant(["A picture of a cat"]))
|
341 |
+
|
342 |
+
image_features = original_model.image_encoder(image, training=False)
|
343 |
+
text_features = original_model.text_encoder(text, training=False)
|
344 |
+
|
345 |
+
image_features = tf.nn.l2_normalize(image_features, axis=-1)
|
346 |
+
text_features = tf.nn.l2_normalize(text_features, axis=-1)
|
347 |
+
|
348 |
+
# Check whether original and HF model outputs match -> np.allclose
|
349 |
+
if not np.allclose(image_features, hf_image_features, atol=1e-3):
|
350 |
+
raise ValueError("The predicted image features are not the same.")
|
351 |
+
if not np.allclose(text_features, hf_text_features, atol=1e-3):
|
352 |
+
raise ValueError("The predicted text features are not the same.")
|
353 |
+
print("Model outputs match!")
|
354 |
+
|
355 |
+
if save_model:
|
356 |
+
# Create folder to save model
|
357 |
+
if not os.path.isdir(pytorch_dump_folder_path):
|
358 |
+
os.mkdir(pytorch_dump_folder_path)
|
359 |
+
# Save converted model and image processor
|
360 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
361 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
362 |
+
|
363 |
+
if push_to_hub:
|
364 |
+
# Push model and image processor to hub
|
365 |
+
print("Pushing converted ALIGN to the hub...")
|
366 |
+
processor.push_to_hub("align-base")
|
367 |
+
hf_model.push_to_hub("align-base")
|
368 |
+
|
369 |
+
|
370 |
+
if __name__ == "__main__":
|
371 |
+
parser = argparse.ArgumentParser()
|
372 |
+
# Required parameters
|
373 |
+
parser.add_argument(
|
374 |
+
"--checkpoint_path",
|
375 |
+
default="./weights/model-weights",
|
376 |
+
type=str,
|
377 |
+
help="Path to the pretrained TF ALIGN checkpoint.",
|
378 |
+
)
|
379 |
+
parser.add_argument(
|
380 |
+
"--pytorch_dump_folder_path",
|
381 |
+
default="hf_model",
|
382 |
+
type=str,
|
383 |
+
help="Path to the output PyTorch model directory.",
|
384 |
+
)
|
385 |
+
parser.add_argument("--save_model", action="store_true", help="Save model to local")
|
386 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
|
387 |
+
|
388 |
+
args = parser.parse_args()
|
389 |
+
convert_align_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/modeling_align.py
ADDED
@@ -0,0 +1,1633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Google Research Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ALIGN model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithNoAttention,
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
34 |
+
from ...utils import (
|
35 |
+
ModelOutput,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from .configuration_align import AlignConfig, AlignTextConfig, AlignVisionConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "kakaobrain/align-base"
|
47 |
+
_CONFIG_FOR_DOC = "AlignConfig"
|
48 |
+
|
49 |
+
|
50 |
+
from ..deprecated._archive_maps import ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
51 |
+
|
52 |
+
|
53 |
+
ALIGN_START_DOCSTRING = r"""
|
54 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
55 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
56 |
+
etc.)
|
57 |
+
|
58 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
59 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
60 |
+
and behavior.
|
61 |
+
|
62 |
+
Parameters:
|
63 |
+
config ([`AlignConfig`]): Model configuration class with all the parameters of the model.
|
64 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
65 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
66 |
+
"""
|
67 |
+
|
68 |
+
ALIGN_TEXT_INPUTS_DOCSTRING = r"""
|
69 |
+
Args:
|
70 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
71 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
72 |
+
it.
|
73 |
+
|
74 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
75 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
76 |
+
|
77 |
+
[What are input IDs?](../glossary#input-ids)
|
78 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
79 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
80 |
+
|
81 |
+
- 1 for tokens that are **not masked**,
|
82 |
+
- 0 for tokens that are **masked**.
|
83 |
+
|
84 |
+
[What are attention masks?](../glossary#attention-mask)
|
85 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
86 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
87 |
+
config.max_position_embeddings - 1]`.
|
88 |
+
|
89 |
+
[What are position IDs?](../glossary#position-ids)
|
90 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
91 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
92 |
+
1]`:
|
93 |
+
|
94 |
+
- 0 corresponds to a *sentence A* token,
|
95 |
+
- 1 corresponds to a *sentence B* token.
|
96 |
+
|
97 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
98 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
99 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
100 |
+
|
101 |
+
- 1 indicates the head is **not masked**,
|
102 |
+
- 0 indicates the head is **masked**.
|
103 |
+
|
104 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
105 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
106 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
107 |
+
model's internal embedding lookup matrix.
|
108 |
+
output_attentions (`bool`, *optional*):
|
109 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
110 |
+
tensors for more detail.
|
111 |
+
output_hidden_states (`bool`, *optional*):
|
112 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
113 |
+
more detail.
|
114 |
+
return_dict (`bool`, *optional*):
|
115 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
116 |
+
"""
|
117 |
+
|
118 |
+
ALIGN_VISION_INPUTS_DOCSTRING = r"""
|
119 |
+
Args:
|
120 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
121 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
122 |
+
[`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details.
|
123 |
+
output_hidden_states (`bool`, *optional*):
|
124 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
125 |
+
more detail.
|
126 |
+
return_dict (`bool`, *optional*):
|
127 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
128 |
+
"""
|
129 |
+
|
130 |
+
ALIGN_INPUTS_DOCSTRING = r"""
|
131 |
+
Args:
|
132 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
133 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
134 |
+
it.
|
135 |
+
|
136 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
137 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
138 |
+
|
139 |
+
[What are input IDs?](../glossary#input-ids)
|
140 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
141 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
142 |
+
|
143 |
+
- 1 for tokens that are **not masked**,
|
144 |
+
- 0 for tokens that are **masked**.
|
145 |
+
|
146 |
+
[What are attention masks?](../glossary#attention-mask)
|
147 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
148 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
149 |
+
config.max_position_embeddings - 1]`.
|
150 |
+
|
151 |
+
[What are position IDs?](../glossary#position-ids)
|
152 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
153 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
154 |
+
1]`:
|
155 |
+
|
156 |
+
- 0 corresponds to a *sentence A* token,
|
157 |
+
- 1 corresponds to a *sentence B* token.
|
158 |
+
|
159 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
160 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
161 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
162 |
+
|
163 |
+
- 1 indicates the head is **not masked**,
|
164 |
+
- 0 indicates the head is **masked**.
|
165 |
+
|
166 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
167 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
168 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
169 |
+
model's internal embedding lookup matrix.
|
170 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
171 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
172 |
+
[`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details.
|
173 |
+
return_loss (`bool`, *optional*):
|
174 |
+
Whether or not to return the contrastive loss.
|
175 |
+
output_attentions (`bool`, *optional*):
|
176 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
177 |
+
tensors for more detail.
|
178 |
+
output_hidden_states (`bool`, *optional*):
|
179 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
180 |
+
more detail.
|
181 |
+
return_dict (`bool`, *optional*):
|
182 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
183 |
+
"""
|
184 |
+
|
185 |
+
|
186 |
+
@dataclass
|
187 |
+
class AlignVisionModelOutput(ModelOutput):
|
188 |
+
"""
|
189 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
193 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
194 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
195 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
196 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
197 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
198 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
199 |
+
|
200 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
201 |
+
"""
|
202 |
+
|
203 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
204 |
+
last_hidden_state: torch.FloatTensor = None
|
205 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
206 |
+
|
207 |
+
|
208 |
+
@dataclass
|
209 |
+
class AlignTextModelOutput(ModelOutput):
|
210 |
+
"""
|
211 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
215 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
216 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
217 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
218 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
219 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
220 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
221 |
+
|
222 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
223 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
224 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
225 |
+
sequence_length)`.
|
226 |
+
|
227 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
228 |
+
heads.
|
229 |
+
"""
|
230 |
+
|
231 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
232 |
+
last_hidden_state: torch.FloatTensor = None
|
233 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
234 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
235 |
+
|
236 |
+
|
237 |
+
@dataclass
|
238 |
+
class AlignOutput(ModelOutput):
|
239 |
+
"""
|
240 |
+
Args:
|
241 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
242 |
+
Contrastive loss for image-text similarity.
|
243 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
244 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
245 |
+
similarity scores.
|
246 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
247 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
248 |
+
similarity scores.
|
249 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
250 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`AlignTextModel`].
|
251 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
252 |
+
The output of [`AlignVisionModel`].
|
253 |
+
text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
|
254 |
+
The output of the [`AlignTextModel`].
|
255 |
+
vision_model_output(`BaseModelOutputWithPoolingAndNoAttention`):
|
256 |
+
The output of the [`AlignVisionModel`].
|
257 |
+
"""
|
258 |
+
|
259 |
+
loss: Optional[torch.FloatTensor] = None
|
260 |
+
logits_per_image: torch.FloatTensor = None
|
261 |
+
logits_per_text: torch.FloatTensor = None
|
262 |
+
text_embeds: torch.FloatTensor = None
|
263 |
+
image_embeds: torch.FloatTensor = None
|
264 |
+
text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
|
265 |
+
vision_model_output: BaseModelOutputWithPoolingAndNoAttention = None
|
266 |
+
|
267 |
+
def to_tuple(self) -> Tuple[Any]:
|
268 |
+
return tuple(
|
269 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
270 |
+
for k in self.keys()
|
271 |
+
)
|
272 |
+
|
273 |
+
|
274 |
+
# contrastive loss function, adapted from
|
275 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
276 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
277 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device), label_smoothing=0.1)
|
278 |
+
|
279 |
+
|
280 |
+
def align_loss(similarity: torch.Tensor) -> torch.Tensor:
|
281 |
+
caption_loss = contrastive_loss(similarity)
|
282 |
+
image_loss = contrastive_loss(similarity.t())
|
283 |
+
return (caption_loss + image_loss) / 2.0
|
284 |
+
|
285 |
+
|
286 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.round_filters with EfficientNet->AlignVision
|
287 |
+
def round_filters(config: AlignVisionConfig, num_channels: int):
|
288 |
+
r"""
|
289 |
+
Round number of filters based on depth multiplier.
|
290 |
+
"""
|
291 |
+
divisor = config.depth_divisor
|
292 |
+
num_channels *= config.width_coefficient
|
293 |
+
new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
|
294 |
+
|
295 |
+
# Make sure that round down does not go down by more than 10%.
|
296 |
+
if new_dim < 0.9 * num_channels:
|
297 |
+
new_dim += divisor
|
298 |
+
|
299 |
+
return int(new_dim)
|
300 |
+
|
301 |
+
|
302 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.correct_pad
|
303 |
+
def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
|
304 |
+
r"""
|
305 |
+
Utility function to get the tuple padding value for the depthwise convolution.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
kernel_size (`int` or `tuple`):
|
309 |
+
Kernel size of the convolution layers.
|
310 |
+
adjust (`bool`, *optional*, defaults to `True`):
|
311 |
+
Adjusts padding value to apply to right and bottom sides of the input.
|
312 |
+
"""
|
313 |
+
if isinstance(kernel_size, int):
|
314 |
+
kernel_size = (kernel_size, kernel_size)
|
315 |
+
|
316 |
+
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
|
317 |
+
if adjust:
|
318 |
+
return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
|
319 |
+
else:
|
320 |
+
return (correct[1], correct[1], correct[0], correct[0])
|
321 |
+
|
322 |
+
|
323 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetEmbeddings with EfficientNet->AlignVision
|
324 |
+
class AlignVisionEmbeddings(nn.Module):
|
325 |
+
r"""
|
326 |
+
A module that corresponds to the stem module of the original work.
|
327 |
+
"""
|
328 |
+
|
329 |
+
def __init__(self, config: AlignVisionConfig):
|
330 |
+
super().__init__()
|
331 |
+
|
332 |
+
self.out_dim = round_filters(config, 32)
|
333 |
+
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
|
334 |
+
self.convolution = nn.Conv2d(
|
335 |
+
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
|
336 |
+
)
|
337 |
+
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
|
338 |
+
self.activation = ACT2FN[config.hidden_act]
|
339 |
+
|
340 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
341 |
+
features = self.padding(pixel_values)
|
342 |
+
features = self.convolution(features)
|
343 |
+
features = self.batchnorm(features)
|
344 |
+
features = self.activation(features)
|
345 |
+
|
346 |
+
return features
|
347 |
+
|
348 |
+
|
349 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetDepthwiseConv2d with EfficientNet->AlignVision
|
350 |
+
class AlignVisionDepthwiseConv2d(nn.Conv2d):
|
351 |
+
def __init__(
|
352 |
+
self,
|
353 |
+
in_channels,
|
354 |
+
depth_multiplier=1,
|
355 |
+
kernel_size=3,
|
356 |
+
stride=1,
|
357 |
+
padding=0,
|
358 |
+
dilation=1,
|
359 |
+
bias=True,
|
360 |
+
padding_mode="zeros",
|
361 |
+
):
|
362 |
+
out_channels = in_channels * depth_multiplier
|
363 |
+
super().__init__(
|
364 |
+
in_channels=in_channels,
|
365 |
+
out_channels=out_channels,
|
366 |
+
kernel_size=kernel_size,
|
367 |
+
stride=stride,
|
368 |
+
padding=padding,
|
369 |
+
dilation=dilation,
|
370 |
+
groups=in_channels,
|
371 |
+
bias=bias,
|
372 |
+
padding_mode=padding_mode,
|
373 |
+
)
|
374 |
+
|
375 |
+
|
376 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetExpansionLayer with EfficientNet->AlignVision
|
377 |
+
class AlignVisionExpansionLayer(nn.Module):
|
378 |
+
r"""
|
379 |
+
This corresponds to the expansion phase of each block in the original implementation.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int):
|
383 |
+
super().__init__()
|
384 |
+
self.expand_conv = nn.Conv2d(
|
385 |
+
in_channels=in_dim,
|
386 |
+
out_channels=out_dim,
|
387 |
+
kernel_size=1,
|
388 |
+
padding="same",
|
389 |
+
bias=False,
|
390 |
+
)
|
391 |
+
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
|
392 |
+
self.expand_act = ACT2FN[config.hidden_act]
|
393 |
+
|
394 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
395 |
+
# Expand phase
|
396 |
+
hidden_states = self.expand_conv(hidden_states)
|
397 |
+
hidden_states = self.expand_bn(hidden_states)
|
398 |
+
hidden_states = self.expand_act(hidden_states)
|
399 |
+
|
400 |
+
return hidden_states
|
401 |
+
|
402 |
+
|
403 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetDepthwiseLayer with EfficientNet->AlignVision
|
404 |
+
class AlignVisionDepthwiseLayer(nn.Module):
|
405 |
+
r"""
|
406 |
+
This corresponds to the depthwise convolution phase of each block in the original implementation.
|
407 |
+
"""
|
408 |
+
|
409 |
+
def __init__(
|
410 |
+
self,
|
411 |
+
config: AlignVisionConfig,
|
412 |
+
in_dim: int,
|
413 |
+
stride: int,
|
414 |
+
kernel_size: int,
|
415 |
+
adjust_padding: bool,
|
416 |
+
):
|
417 |
+
super().__init__()
|
418 |
+
self.stride = stride
|
419 |
+
conv_pad = "valid" if self.stride == 2 else "same"
|
420 |
+
padding = correct_pad(kernel_size, adjust=adjust_padding)
|
421 |
+
|
422 |
+
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
|
423 |
+
self.depthwise_conv = AlignVisionDepthwiseConv2d(
|
424 |
+
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
|
425 |
+
)
|
426 |
+
self.depthwise_norm = nn.BatchNorm2d(
|
427 |
+
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
|
428 |
+
)
|
429 |
+
self.depthwise_act = ACT2FN[config.hidden_act]
|
430 |
+
|
431 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
432 |
+
# Depthwise convolution
|
433 |
+
if self.stride == 2:
|
434 |
+
hidden_states = self.depthwise_conv_pad(hidden_states)
|
435 |
+
|
436 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
437 |
+
hidden_states = self.depthwise_norm(hidden_states)
|
438 |
+
hidden_states = self.depthwise_act(hidden_states)
|
439 |
+
|
440 |
+
return hidden_states
|
441 |
+
|
442 |
+
|
443 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetSqueezeExciteLayer with EfficientNet->AlignVision
|
444 |
+
class AlignVisionSqueezeExciteLayer(nn.Module):
|
445 |
+
r"""
|
446 |
+
This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
|
447 |
+
"""
|
448 |
+
|
449 |
+
def __init__(self, config: AlignVisionConfig, in_dim: int, expand_dim: int, expand: bool = False):
|
450 |
+
super().__init__()
|
451 |
+
self.dim = expand_dim if expand else in_dim
|
452 |
+
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
|
453 |
+
|
454 |
+
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
|
455 |
+
self.reduce = nn.Conv2d(
|
456 |
+
in_channels=self.dim,
|
457 |
+
out_channels=self.dim_se,
|
458 |
+
kernel_size=1,
|
459 |
+
padding="same",
|
460 |
+
)
|
461 |
+
self.expand = nn.Conv2d(
|
462 |
+
in_channels=self.dim_se,
|
463 |
+
out_channels=self.dim,
|
464 |
+
kernel_size=1,
|
465 |
+
padding="same",
|
466 |
+
)
|
467 |
+
self.act_reduce = ACT2FN[config.hidden_act]
|
468 |
+
self.act_expand = nn.Sigmoid()
|
469 |
+
|
470 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
471 |
+
inputs = hidden_states
|
472 |
+
hidden_states = self.squeeze(hidden_states)
|
473 |
+
hidden_states = self.reduce(hidden_states)
|
474 |
+
hidden_states = self.act_reduce(hidden_states)
|
475 |
+
|
476 |
+
hidden_states = self.expand(hidden_states)
|
477 |
+
hidden_states = self.act_expand(hidden_states)
|
478 |
+
hidden_states = torch.mul(inputs, hidden_states)
|
479 |
+
|
480 |
+
return hidden_states
|
481 |
+
|
482 |
+
|
483 |
+
class AlignVisionFinalBlockLayer(nn.Module):
|
484 |
+
r"""
|
485 |
+
This corresponds to the final phase of each block in the original implementation.
|
486 |
+
"""
|
487 |
+
|
488 |
+
def __init__(
|
489 |
+
self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
|
490 |
+
):
|
491 |
+
super().__init__()
|
492 |
+
self.apply_dropout = stride == 1 and not id_skip
|
493 |
+
self.project_conv = nn.Conv2d(
|
494 |
+
in_channels=in_dim,
|
495 |
+
out_channels=out_dim,
|
496 |
+
kernel_size=1,
|
497 |
+
padding="same",
|
498 |
+
bias=False,
|
499 |
+
)
|
500 |
+
self.project_bn = nn.BatchNorm2d(
|
501 |
+
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
|
502 |
+
)
|
503 |
+
self.dropout = nn.Dropout(p=drop_rate)
|
504 |
+
|
505 |
+
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
506 |
+
hidden_states = self.project_conv(hidden_states)
|
507 |
+
hidden_states = self.project_bn(hidden_states)
|
508 |
+
|
509 |
+
if self.apply_dropout:
|
510 |
+
hidden_states = self.dropout(hidden_states)
|
511 |
+
hidden_states = hidden_states + embeddings
|
512 |
+
|
513 |
+
return hidden_states
|
514 |
+
|
515 |
+
|
516 |
+
class AlignVisionBlock(nn.Module):
|
517 |
+
r"""
|
518 |
+
This corresponds to the block module of original the EfficientNet vision encoder implementation.
|
519 |
+
|
520 |
+
Args:
|
521 |
+
config ([`AlignVisionConfig`]):
|
522 |
+
Model configuration class.
|
523 |
+
in_dim (`int`):
|
524 |
+
Number of input channels.
|
525 |
+
out_dim (`int`):
|
526 |
+
Number of output channels.
|
527 |
+
stride (`int`):
|
528 |
+
Stride size to be used in convolution layers.
|
529 |
+
expand_ratio (`int`):
|
530 |
+
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
|
531 |
+
kernel_size (`int`):
|
532 |
+
Kernel size for the depthwise convolution layer.
|
533 |
+
drop_rate (`float`):
|
534 |
+
Dropout rate to be used in the final phase of each block.
|
535 |
+
id_skip (`bool`):
|
536 |
+
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
|
537 |
+
of each block. Set to `True` for the first block of each stage.
|
538 |
+
adjust_padding (`bool`):
|
539 |
+
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
|
540 |
+
operation, set to `True` for inputs with odd input sizes.
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(
|
544 |
+
self,
|
545 |
+
config: AlignVisionConfig,
|
546 |
+
in_dim: int,
|
547 |
+
out_dim: int,
|
548 |
+
stride: int,
|
549 |
+
expand_ratio: int,
|
550 |
+
kernel_size: int,
|
551 |
+
drop_rate: float,
|
552 |
+
id_skip: bool,
|
553 |
+
adjust_padding: bool,
|
554 |
+
):
|
555 |
+
super().__init__()
|
556 |
+
self.expand_ratio = expand_ratio
|
557 |
+
self.expand = True if self.expand_ratio != 1 else False
|
558 |
+
expand_in_dim = in_dim * expand_ratio
|
559 |
+
|
560 |
+
if self.expand:
|
561 |
+
self.expansion = AlignVisionExpansionLayer(
|
562 |
+
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
|
563 |
+
)
|
564 |
+
|
565 |
+
self.depthwise_conv = AlignVisionDepthwiseLayer(
|
566 |
+
config=config,
|
567 |
+
in_dim=expand_in_dim if self.expand else in_dim,
|
568 |
+
stride=stride,
|
569 |
+
kernel_size=kernel_size,
|
570 |
+
adjust_padding=adjust_padding,
|
571 |
+
)
|
572 |
+
self.squeeze_excite = AlignVisionSqueezeExciteLayer(
|
573 |
+
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
|
574 |
+
)
|
575 |
+
self.projection = AlignVisionFinalBlockLayer(
|
576 |
+
config=config,
|
577 |
+
in_dim=expand_in_dim if self.expand else in_dim,
|
578 |
+
out_dim=out_dim,
|
579 |
+
stride=stride,
|
580 |
+
drop_rate=drop_rate,
|
581 |
+
id_skip=id_skip,
|
582 |
+
)
|
583 |
+
|
584 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
585 |
+
embeddings = hidden_states
|
586 |
+
# Expansion and depthwise convolution phase
|
587 |
+
if self.expand_ratio != 1:
|
588 |
+
hidden_states = self.expansion(hidden_states)
|
589 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
590 |
+
|
591 |
+
# Squeeze and excite phase
|
592 |
+
hidden_states = self.squeeze_excite(hidden_states)
|
593 |
+
hidden_states = self.projection(embeddings, hidden_states)
|
594 |
+
return hidden_states
|
595 |
+
|
596 |
+
|
597 |
+
class AlignVisionEncoder(nn.Module):
|
598 |
+
r"""
|
599 |
+
Forward propogates the embeddings through each vision encoder (EfficientNet) block.
|
600 |
+
|
601 |
+
Args:
|
602 |
+
config ([`AlignVisionConfig`]):
|
603 |
+
Model configuration class.
|
604 |
+
"""
|
605 |
+
|
606 |
+
def __init__(self, config: AlignVisionConfig):
|
607 |
+
super().__init__()
|
608 |
+
self.depth_coefficient = config.depth_coefficient
|
609 |
+
|
610 |
+
def round_repeats(repeats):
|
611 |
+
# Round number of block repeats based on depth multiplier.
|
612 |
+
return int(math.ceil(self.depth_coefficient * repeats))
|
613 |
+
|
614 |
+
num_base_blocks = len(config.in_channels)
|
615 |
+
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
|
616 |
+
|
617 |
+
curr_block_num = 0
|
618 |
+
blocks = []
|
619 |
+
for i in range(num_base_blocks):
|
620 |
+
in_dim = round_filters(config, config.in_channels[i])
|
621 |
+
out_dim = round_filters(config, config.out_channels[i])
|
622 |
+
stride = config.strides[i]
|
623 |
+
kernel_size = config.kernel_sizes[i]
|
624 |
+
expand_ratio = config.expand_ratios[i]
|
625 |
+
|
626 |
+
for j in range(round_repeats(config.num_block_repeats[i])):
|
627 |
+
id_skip = True if j == 0 else False
|
628 |
+
stride = 1 if j > 0 else stride
|
629 |
+
in_dim = out_dim if j > 0 else in_dim
|
630 |
+
adjust_padding = False if curr_block_num in config.depthwise_padding else True
|
631 |
+
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
|
632 |
+
|
633 |
+
block = AlignVisionBlock(
|
634 |
+
config=config,
|
635 |
+
in_dim=in_dim,
|
636 |
+
out_dim=out_dim,
|
637 |
+
stride=stride,
|
638 |
+
kernel_size=kernel_size,
|
639 |
+
expand_ratio=expand_ratio,
|
640 |
+
drop_rate=drop_rate,
|
641 |
+
id_skip=id_skip,
|
642 |
+
adjust_padding=adjust_padding,
|
643 |
+
)
|
644 |
+
blocks.append(block)
|
645 |
+
curr_block_num += 1
|
646 |
+
|
647 |
+
self.blocks = nn.ModuleList(blocks)
|
648 |
+
|
649 |
+
def forward(
|
650 |
+
self,
|
651 |
+
hidden_states: torch.FloatTensor,
|
652 |
+
output_hidden_states: Optional[bool] = False,
|
653 |
+
return_dict: Optional[bool] = True,
|
654 |
+
) -> BaseModelOutputWithPoolingAndNoAttention:
|
655 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
656 |
+
|
657 |
+
for block in self.blocks:
|
658 |
+
hidden_states = block(hidden_states)
|
659 |
+
if output_hidden_states:
|
660 |
+
all_hidden_states += (hidden_states,)
|
661 |
+
|
662 |
+
if not return_dict:
|
663 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
664 |
+
|
665 |
+
return BaseModelOutputWithNoAttention(
|
666 |
+
last_hidden_state=hidden_states,
|
667 |
+
hidden_states=all_hidden_states,
|
668 |
+
)
|
669 |
+
|
670 |
+
|
671 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->AlignText
|
672 |
+
class AlignTextEmbeddings(nn.Module):
|
673 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
674 |
+
|
675 |
+
def __init__(self, config):
|
676 |
+
super().__init__()
|
677 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
678 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
679 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
680 |
+
|
681 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
682 |
+
# any TensorFlow checkpoint file
|
683 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
684 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
685 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
686 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
687 |
+
self.register_buffer(
|
688 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
689 |
+
)
|
690 |
+
self.register_buffer(
|
691 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
692 |
+
)
|
693 |
+
|
694 |
+
def forward(
|
695 |
+
self,
|
696 |
+
input_ids: Optional[torch.LongTensor] = None,
|
697 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
698 |
+
position_ids: Optional[torch.LongTensor] = None,
|
699 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
700 |
+
past_key_values_length: int = 0,
|
701 |
+
) -> torch.Tensor:
|
702 |
+
if input_ids is not None:
|
703 |
+
input_shape = input_ids.size()
|
704 |
+
else:
|
705 |
+
input_shape = inputs_embeds.size()[:-1]
|
706 |
+
|
707 |
+
seq_length = input_shape[1]
|
708 |
+
|
709 |
+
if position_ids is None:
|
710 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
711 |
+
|
712 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
713 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
714 |
+
# issue #5664
|
715 |
+
if token_type_ids is None:
|
716 |
+
if hasattr(self, "token_type_ids"):
|
717 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
718 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
719 |
+
token_type_ids = buffered_token_type_ids_expanded
|
720 |
+
else:
|
721 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
722 |
+
|
723 |
+
if inputs_embeds is None:
|
724 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
725 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
726 |
+
|
727 |
+
embeddings = inputs_embeds + token_type_embeddings
|
728 |
+
if self.position_embedding_type == "absolute":
|
729 |
+
position_embeddings = self.position_embeddings(position_ids)
|
730 |
+
embeddings += position_embeddings
|
731 |
+
embeddings = self.LayerNorm(embeddings)
|
732 |
+
embeddings = self.dropout(embeddings)
|
733 |
+
return embeddings
|
734 |
+
|
735 |
+
|
736 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->AlignText
|
737 |
+
class AlignTextSelfAttention(nn.Module):
|
738 |
+
def __init__(self, config, position_embedding_type=None):
|
739 |
+
super().__init__()
|
740 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
741 |
+
raise ValueError(
|
742 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
743 |
+
f"heads ({config.num_attention_heads})"
|
744 |
+
)
|
745 |
+
|
746 |
+
self.num_attention_heads = config.num_attention_heads
|
747 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
748 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
749 |
+
|
750 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
751 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
752 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
753 |
+
|
754 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
755 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
756 |
+
config, "position_embedding_type", "absolute"
|
757 |
+
)
|
758 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
759 |
+
self.max_position_embeddings = config.max_position_embeddings
|
760 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
761 |
+
|
762 |
+
self.is_decoder = config.is_decoder
|
763 |
+
|
764 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
765 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
766 |
+
x = x.view(new_x_shape)
|
767 |
+
return x.permute(0, 2, 1, 3)
|
768 |
+
|
769 |
+
def forward(
|
770 |
+
self,
|
771 |
+
hidden_states: torch.Tensor,
|
772 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
773 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
774 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
775 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
776 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
777 |
+
output_attentions: Optional[bool] = False,
|
778 |
+
) -> Tuple[torch.Tensor]:
|
779 |
+
mixed_query_layer = self.query(hidden_states)
|
780 |
+
|
781 |
+
# If this is instantiated as a cross-attention module, the keys
|
782 |
+
# and values come from an encoder; the attention mask needs to be
|
783 |
+
# such that the encoder's padding tokens are not attended to.
|
784 |
+
is_cross_attention = encoder_hidden_states is not None
|
785 |
+
|
786 |
+
if is_cross_attention and past_key_value is not None:
|
787 |
+
# reuse k,v, cross_attentions
|
788 |
+
key_layer = past_key_value[0]
|
789 |
+
value_layer = past_key_value[1]
|
790 |
+
attention_mask = encoder_attention_mask
|
791 |
+
elif is_cross_attention:
|
792 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
793 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
794 |
+
attention_mask = encoder_attention_mask
|
795 |
+
elif past_key_value is not None:
|
796 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
797 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
798 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
799 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
800 |
+
else:
|
801 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
802 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
803 |
+
|
804 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
805 |
+
|
806 |
+
use_cache = past_key_value is not None
|
807 |
+
if self.is_decoder:
|
808 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
809 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
810 |
+
# key/value_states (first "if" case)
|
811 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
812 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
813 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
814 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
815 |
+
past_key_value = (key_layer, value_layer)
|
816 |
+
|
817 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
818 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
819 |
+
|
820 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
821 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
822 |
+
if use_cache:
|
823 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
824 |
+
-1, 1
|
825 |
+
)
|
826 |
+
else:
|
827 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
828 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
829 |
+
distance = position_ids_l - position_ids_r
|
830 |
+
|
831 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
832 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
833 |
+
|
834 |
+
if self.position_embedding_type == "relative_key":
|
835 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
836 |
+
attention_scores = attention_scores + relative_position_scores
|
837 |
+
elif self.position_embedding_type == "relative_key_query":
|
838 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
839 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
840 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
841 |
+
|
842 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
843 |
+
if attention_mask is not None:
|
844 |
+
# Apply the attention mask is (precomputed for all layers in AlignTextModel forward() function)
|
845 |
+
attention_scores = attention_scores + attention_mask
|
846 |
+
|
847 |
+
# Normalize the attention scores to probabilities.
|
848 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
849 |
+
|
850 |
+
# This is actually dropping out entire tokens to attend to, which might
|
851 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
852 |
+
attention_probs = self.dropout(attention_probs)
|
853 |
+
|
854 |
+
# Mask heads if we want to
|
855 |
+
if head_mask is not None:
|
856 |
+
attention_probs = attention_probs * head_mask
|
857 |
+
|
858 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
859 |
+
|
860 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
861 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
862 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
863 |
+
|
864 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
865 |
+
|
866 |
+
if self.is_decoder:
|
867 |
+
outputs = outputs + (past_key_value,)
|
868 |
+
return outputs
|
869 |
+
|
870 |
+
|
871 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->AlignText
|
872 |
+
class AlignTextSelfOutput(nn.Module):
|
873 |
+
def __init__(self, config):
|
874 |
+
super().__init__()
|
875 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
876 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
877 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
878 |
+
|
879 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
880 |
+
hidden_states = self.dense(hidden_states)
|
881 |
+
hidden_states = self.dropout(hidden_states)
|
882 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
883 |
+
return hidden_states
|
884 |
+
|
885 |
+
|
886 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->AlignText
|
887 |
+
class AlignTextAttention(nn.Module):
|
888 |
+
def __init__(self, config, position_embedding_type=None):
|
889 |
+
super().__init__()
|
890 |
+
self.self = AlignTextSelfAttention(config, position_embedding_type=position_embedding_type)
|
891 |
+
self.output = AlignTextSelfOutput(config)
|
892 |
+
self.pruned_heads = set()
|
893 |
+
|
894 |
+
def prune_heads(self, heads):
|
895 |
+
if len(heads) == 0:
|
896 |
+
return
|
897 |
+
heads, index = find_pruneable_heads_and_indices(
|
898 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
899 |
+
)
|
900 |
+
|
901 |
+
# Prune linear layers
|
902 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
903 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
904 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
905 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
906 |
+
|
907 |
+
# Update hyper params and store pruned heads
|
908 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
909 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
910 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
911 |
+
|
912 |
+
def forward(
|
913 |
+
self,
|
914 |
+
hidden_states: torch.Tensor,
|
915 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
916 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
917 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
918 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
919 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
920 |
+
output_attentions: Optional[bool] = False,
|
921 |
+
) -> Tuple[torch.Tensor]:
|
922 |
+
self_outputs = self.self(
|
923 |
+
hidden_states,
|
924 |
+
attention_mask,
|
925 |
+
head_mask,
|
926 |
+
encoder_hidden_states,
|
927 |
+
encoder_attention_mask,
|
928 |
+
past_key_value,
|
929 |
+
output_attentions,
|
930 |
+
)
|
931 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
932 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
933 |
+
return outputs
|
934 |
+
|
935 |
+
|
936 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->AlignText
|
937 |
+
class AlignTextIntermediate(nn.Module):
|
938 |
+
def __init__(self, config):
|
939 |
+
super().__init__()
|
940 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
941 |
+
if isinstance(config.hidden_act, str):
|
942 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
943 |
+
else:
|
944 |
+
self.intermediate_act_fn = config.hidden_act
|
945 |
+
|
946 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
947 |
+
hidden_states = self.dense(hidden_states)
|
948 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
949 |
+
return hidden_states
|
950 |
+
|
951 |
+
|
952 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->AlignText
|
953 |
+
class AlignTextOutput(nn.Module):
|
954 |
+
def __init__(self, config):
|
955 |
+
super().__init__()
|
956 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
957 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
958 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
959 |
+
|
960 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
961 |
+
hidden_states = self.dense(hidden_states)
|
962 |
+
hidden_states = self.dropout(hidden_states)
|
963 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
964 |
+
return hidden_states
|
965 |
+
|
966 |
+
|
967 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->AlignText
|
968 |
+
class AlignTextLayer(nn.Module):
|
969 |
+
def __init__(self, config):
|
970 |
+
super().__init__()
|
971 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
972 |
+
self.seq_len_dim = 1
|
973 |
+
self.attention = AlignTextAttention(config)
|
974 |
+
self.is_decoder = config.is_decoder
|
975 |
+
self.add_cross_attention = config.add_cross_attention
|
976 |
+
if self.add_cross_attention:
|
977 |
+
if not self.is_decoder:
|
978 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
979 |
+
self.crossattention = AlignTextAttention(config, position_embedding_type="absolute")
|
980 |
+
self.intermediate = AlignTextIntermediate(config)
|
981 |
+
self.output = AlignTextOutput(config)
|
982 |
+
|
983 |
+
def forward(
|
984 |
+
self,
|
985 |
+
hidden_states: torch.Tensor,
|
986 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
987 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
988 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
989 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
990 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
991 |
+
output_attentions: Optional[bool] = False,
|
992 |
+
) -> Tuple[torch.Tensor]:
|
993 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
994 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
995 |
+
self_attention_outputs = self.attention(
|
996 |
+
hidden_states,
|
997 |
+
attention_mask,
|
998 |
+
head_mask,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
past_key_value=self_attn_past_key_value,
|
1001 |
+
)
|
1002 |
+
attention_output = self_attention_outputs[0]
|
1003 |
+
|
1004 |
+
# if decoder, the last output is tuple of self-attn cache
|
1005 |
+
if self.is_decoder:
|
1006 |
+
outputs = self_attention_outputs[1:-1]
|
1007 |
+
present_key_value = self_attention_outputs[-1]
|
1008 |
+
else:
|
1009 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
1010 |
+
|
1011 |
+
cross_attn_present_key_value = None
|
1012 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1013 |
+
if not hasattr(self, "crossattention"):
|
1014 |
+
raise ValueError(
|
1015 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
1016 |
+
" by setting `config.add_cross_attention=True`"
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
1020 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
1021 |
+
cross_attention_outputs = self.crossattention(
|
1022 |
+
attention_output,
|
1023 |
+
attention_mask,
|
1024 |
+
head_mask,
|
1025 |
+
encoder_hidden_states,
|
1026 |
+
encoder_attention_mask,
|
1027 |
+
cross_attn_past_key_value,
|
1028 |
+
output_attentions,
|
1029 |
+
)
|
1030 |
+
attention_output = cross_attention_outputs[0]
|
1031 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
1032 |
+
|
1033 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
1034 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
1035 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
1036 |
+
|
1037 |
+
layer_output = apply_chunking_to_forward(
|
1038 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
1039 |
+
)
|
1040 |
+
outputs = (layer_output,) + outputs
|
1041 |
+
|
1042 |
+
# if decoder, return the attn key/values as the last output
|
1043 |
+
if self.is_decoder:
|
1044 |
+
outputs = outputs + (present_key_value,)
|
1045 |
+
|
1046 |
+
return outputs
|
1047 |
+
|
1048 |
+
def feed_forward_chunk(self, attention_output):
|
1049 |
+
intermediate_output = self.intermediate(attention_output)
|
1050 |
+
layer_output = self.output(intermediate_output, attention_output)
|
1051 |
+
return layer_output
|
1052 |
+
|
1053 |
+
|
1054 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->AlignText
|
1055 |
+
class AlignTextEncoder(nn.Module):
|
1056 |
+
def __init__(self, config):
|
1057 |
+
super().__init__()
|
1058 |
+
self.config = config
|
1059 |
+
self.layer = nn.ModuleList([AlignTextLayer(config) for _ in range(config.num_hidden_layers)])
|
1060 |
+
self.gradient_checkpointing = False
|
1061 |
+
|
1062 |
+
def forward(
|
1063 |
+
self,
|
1064 |
+
hidden_states: torch.Tensor,
|
1065 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1066 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1067 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1068 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1069 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1070 |
+
use_cache: Optional[bool] = None,
|
1071 |
+
output_attentions: Optional[bool] = False,
|
1072 |
+
output_hidden_states: Optional[bool] = False,
|
1073 |
+
return_dict: Optional[bool] = True,
|
1074 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
1075 |
+
all_hidden_states = () if output_hidden_states else None
|
1076 |
+
all_self_attentions = () if output_attentions else None
|
1077 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
1078 |
+
|
1079 |
+
if self.gradient_checkpointing and self.training:
|
1080 |
+
if use_cache:
|
1081 |
+
logger.warning_once(
|
1082 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1083 |
+
)
|
1084 |
+
use_cache = False
|
1085 |
+
|
1086 |
+
next_decoder_cache = () if use_cache else None
|
1087 |
+
for i, layer_module in enumerate(self.layer):
|
1088 |
+
if output_hidden_states:
|
1089 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1090 |
+
|
1091 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
1092 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
1093 |
+
|
1094 |
+
if self.gradient_checkpointing and self.training:
|
1095 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1096 |
+
layer_module.__call__,
|
1097 |
+
hidden_states,
|
1098 |
+
attention_mask,
|
1099 |
+
layer_head_mask,
|
1100 |
+
encoder_hidden_states,
|
1101 |
+
encoder_attention_mask,
|
1102 |
+
past_key_value,
|
1103 |
+
output_attentions,
|
1104 |
+
)
|
1105 |
+
else:
|
1106 |
+
layer_outputs = layer_module(
|
1107 |
+
hidden_states,
|
1108 |
+
attention_mask,
|
1109 |
+
layer_head_mask,
|
1110 |
+
encoder_hidden_states,
|
1111 |
+
encoder_attention_mask,
|
1112 |
+
past_key_value,
|
1113 |
+
output_attentions,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
hidden_states = layer_outputs[0]
|
1117 |
+
if use_cache:
|
1118 |
+
next_decoder_cache += (layer_outputs[-1],)
|
1119 |
+
if output_attentions:
|
1120 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
1121 |
+
if self.config.add_cross_attention:
|
1122 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
1123 |
+
|
1124 |
+
if output_hidden_states:
|
1125 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1126 |
+
|
1127 |
+
if not return_dict:
|
1128 |
+
return tuple(
|
1129 |
+
v
|
1130 |
+
for v in [
|
1131 |
+
hidden_states,
|
1132 |
+
next_decoder_cache,
|
1133 |
+
all_hidden_states,
|
1134 |
+
all_self_attentions,
|
1135 |
+
all_cross_attentions,
|
1136 |
+
]
|
1137 |
+
if v is not None
|
1138 |
+
)
|
1139 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1140 |
+
last_hidden_state=hidden_states,
|
1141 |
+
past_key_values=next_decoder_cache,
|
1142 |
+
hidden_states=all_hidden_states,
|
1143 |
+
attentions=all_self_attentions,
|
1144 |
+
cross_attentions=all_cross_attentions,
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
|
1148 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert -> AlignText
|
1149 |
+
class AlignTextPooler(nn.Module):
|
1150 |
+
def __init__(self, config):
|
1151 |
+
super().__init__()
|
1152 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1153 |
+
self.activation = nn.Tanh()
|
1154 |
+
|
1155 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1156 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
1157 |
+
# to the first token.
|
1158 |
+
first_token_tensor = hidden_states[:, 0]
|
1159 |
+
pooled_output = self.dense(first_token_tensor)
|
1160 |
+
pooled_output = self.activation(pooled_output)
|
1161 |
+
return pooled_output
|
1162 |
+
|
1163 |
+
|
1164 |
+
class AlignPreTrainedModel(PreTrainedModel):
|
1165 |
+
"""
|
1166 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1167 |
+
models.
|
1168 |
+
"""
|
1169 |
+
|
1170 |
+
config_class = AlignConfig
|
1171 |
+
base_model_prefix = "align"
|
1172 |
+
supports_gradient_checkpointing = True
|
1173 |
+
|
1174 |
+
def _init_weights(self, module):
|
1175 |
+
"""Initialize the weights"""
|
1176 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
1177 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1178 |
+
if module.bias is not None:
|
1179 |
+
module.bias.data.zero_()
|
1180 |
+
elif isinstance(module, AlignModel):
|
1181 |
+
nn.init.xavier_uniform_(module.text_projection.weight)
|
1182 |
+
module.text_projection.bias.data.zero_()
|
1183 |
+
module.text_projection._is_hf_initialized = True
|
1184 |
+
elif isinstance(module, nn.Embedding):
|
1185 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1186 |
+
if module.padding_idx is not None:
|
1187 |
+
module.weight.data[module.padding_idx].zero_()
|
1188 |
+
if isinstance(module, nn.LayerNorm):
|
1189 |
+
module.bias.data.zero_()
|
1190 |
+
module.weight.data.fill_(1.0)
|
1191 |
+
|
1192 |
+
|
1193 |
+
@add_start_docstrings(
|
1194 |
+
"""The text model from ALIGN without any head or projection on top.""",
|
1195 |
+
ALIGN_START_DOCSTRING,
|
1196 |
+
)
|
1197 |
+
class AlignTextModel(AlignPreTrainedModel):
|
1198 |
+
config_class = AlignTextConfig
|
1199 |
+
|
1200 |
+
def __init__(self, config: AlignTextConfig, add_pooling_layer: bool = True):
|
1201 |
+
super().__init__(config)
|
1202 |
+
self.config = config
|
1203 |
+
|
1204 |
+
self.embeddings = AlignTextEmbeddings(config)
|
1205 |
+
self.encoder = AlignTextEncoder(config)
|
1206 |
+
|
1207 |
+
self.pooler = AlignTextPooler(config) if add_pooling_layer else None
|
1208 |
+
|
1209 |
+
# Initialize weights and apply final processing
|
1210 |
+
self.post_init()
|
1211 |
+
|
1212 |
+
def get_input_embeddings(self):
|
1213 |
+
return self.embeddings.word_embeddings
|
1214 |
+
|
1215 |
+
def set_input_embeddings(self, value):
|
1216 |
+
self.embeddings.word_embeddings = value
|
1217 |
+
|
1218 |
+
@add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING)
|
1219 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=AlignTextConfig)
|
1220 |
+
def forward(
|
1221 |
+
self,
|
1222 |
+
input_ids: Optional[torch.Tensor] = None,
|
1223 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1224 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1225 |
+
position_ids: Optional[torch.Tensor] = None,
|
1226 |
+
head_mask: Optional[torch.Tensor] = None,
|
1227 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1228 |
+
output_attentions: Optional[bool] = None,
|
1229 |
+
output_hidden_states: Optional[bool] = None,
|
1230 |
+
return_dict: Optional[bool] = None,
|
1231 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
|
1232 |
+
r"""
|
1233 |
+
Returns:
|
1234 |
+
|
1235 |
+
Examples:
|
1236 |
+
|
1237 |
+
```python
|
1238 |
+
>>> from transformers import AutoTokenizer, AlignTextModel
|
1239 |
+
|
1240 |
+
>>> model = AlignTextModel.from_pretrained("kakaobrain/align-base")
|
1241 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")
|
1242 |
+
|
1243 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1244 |
+
|
1245 |
+
>>> outputs = model(**inputs)
|
1246 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1247 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
1248 |
+
```"""
|
1249 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1250 |
+
output_hidden_states = (
|
1251 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1252 |
+
)
|
1253 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1254 |
+
|
1255 |
+
if input_ids is not None and inputs_embeds is not None:
|
1256 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1257 |
+
elif input_ids is not None:
|
1258 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1259 |
+
input_shape = input_ids.size()
|
1260 |
+
elif inputs_embeds is not None:
|
1261 |
+
input_shape = inputs_embeds.size()[:-1]
|
1262 |
+
else:
|
1263 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1264 |
+
|
1265 |
+
batch_size, seq_length = input_shape
|
1266 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1267 |
+
|
1268 |
+
if attention_mask is None:
|
1269 |
+
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
|
1270 |
+
|
1271 |
+
if token_type_ids is None:
|
1272 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
1273 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
1274 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
1275 |
+
token_type_ids = buffered_token_type_ids_expanded
|
1276 |
+
else:
|
1277 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1278 |
+
|
1279 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1280 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1281 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
1282 |
+
|
1283 |
+
# Prepare head mask if needed
|
1284 |
+
# 1.0 in head_mask indicate we keep the head
|
1285 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1286 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1287 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1288 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1289 |
+
|
1290 |
+
embedding_output = self.embeddings(
|
1291 |
+
input_ids=input_ids,
|
1292 |
+
position_ids=position_ids,
|
1293 |
+
token_type_ids=token_type_ids,
|
1294 |
+
inputs_embeds=inputs_embeds,
|
1295 |
+
)
|
1296 |
+
encoder_outputs = self.encoder(
|
1297 |
+
embedding_output,
|
1298 |
+
attention_mask=extended_attention_mask,
|
1299 |
+
head_mask=head_mask,
|
1300 |
+
output_attentions=output_attentions,
|
1301 |
+
output_hidden_states=output_hidden_states,
|
1302 |
+
return_dict=return_dict,
|
1303 |
+
)
|
1304 |
+
sequence_output = encoder_outputs[0]
|
1305 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1306 |
+
|
1307 |
+
if not return_dict:
|
1308 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1309 |
+
|
1310 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1311 |
+
last_hidden_state=sequence_output,
|
1312 |
+
pooler_output=pooled_output,
|
1313 |
+
hidden_states=encoder_outputs.hidden_states,
|
1314 |
+
attentions=encoder_outputs.attentions,
|
1315 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
|
1319 |
+
@add_start_docstrings(
|
1320 |
+
"""The vision model from ALIGN without any head or projection on top.""",
|
1321 |
+
ALIGN_START_DOCSTRING,
|
1322 |
+
)
|
1323 |
+
class AlignVisionModel(AlignPreTrainedModel):
|
1324 |
+
config_class = AlignVisionConfig
|
1325 |
+
main_input_name = "pixel_values"
|
1326 |
+
supports_gradient_checkpointing = False
|
1327 |
+
|
1328 |
+
def __init__(self, config: AlignVisionConfig):
|
1329 |
+
super().__init__(config)
|
1330 |
+
self.config = config
|
1331 |
+
self.embeddings = AlignVisionEmbeddings(config)
|
1332 |
+
self.encoder = AlignVisionEncoder(config)
|
1333 |
+
|
1334 |
+
# Final pooling layer
|
1335 |
+
if config.pooling_type == "mean":
|
1336 |
+
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
|
1337 |
+
elif config.pooling_type == "max":
|
1338 |
+
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
|
1339 |
+
else:
|
1340 |
+
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
|
1341 |
+
|
1342 |
+
# Initialize weights and apply final processing
|
1343 |
+
self.post_init()
|
1344 |
+
|
1345 |
+
def get_input_embeddings(self) -> nn.Module:
|
1346 |
+
return self.vision_model.embeddings.convolution
|
1347 |
+
|
1348 |
+
@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
|
1349 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=AlignVisionConfig)
|
1350 |
+
def forward(
|
1351 |
+
self,
|
1352 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1353 |
+
output_hidden_states: Optional[bool] = None,
|
1354 |
+
return_dict: Optional[bool] = None,
|
1355 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
1356 |
+
r"""
|
1357 |
+
Returns:
|
1358 |
+
|
1359 |
+
Examples:
|
1360 |
+
|
1361 |
+
```python
|
1362 |
+
>>> from PIL import Image
|
1363 |
+
>>> import requests
|
1364 |
+
>>> from transformers import AutoProcessor, AlignVisionModel
|
1365 |
+
|
1366 |
+
>>> model = AlignVisionModel.from_pretrained("kakaobrain/align-base")
|
1367 |
+
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
|
1368 |
+
|
1369 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1370 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1371 |
+
|
1372 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1373 |
+
|
1374 |
+
>>> outputs = model(**inputs)
|
1375 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1376 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1377 |
+
```"""
|
1378 |
+
output_hidden_states = (
|
1379 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1380 |
+
)
|
1381 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1382 |
+
|
1383 |
+
if pixel_values is None:
|
1384 |
+
raise ValueError("You have to specify pixel_values")
|
1385 |
+
|
1386 |
+
embedding_output = self.embeddings(pixel_values)
|
1387 |
+
encoder_outputs = self.encoder(
|
1388 |
+
embedding_output,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
# Apply pooling
|
1393 |
+
last_hidden_state = encoder_outputs[0]
|
1394 |
+
pooled_output = self.pooler(last_hidden_state)
|
1395 |
+
# Reshape (batch_size, projection_dim, 1 , 1) -> (batch_size, projection_dim)
|
1396 |
+
pooled_output = pooled_output.reshape(pooled_output.shape[:2])
|
1397 |
+
|
1398 |
+
if not return_dict:
|
1399 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1400 |
+
|
1401 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
1402 |
+
last_hidden_state=last_hidden_state,
|
1403 |
+
pooler_output=pooled_output,
|
1404 |
+
hidden_states=encoder_outputs.hidden_states,
|
1405 |
+
)
|
1406 |
+
|
1407 |
+
|
1408 |
+
@add_start_docstrings(ALIGN_START_DOCSTRING)
|
1409 |
+
class AlignModel(AlignPreTrainedModel):
|
1410 |
+
config_class = AlignConfig
|
1411 |
+
|
1412 |
+
def __init__(self, config: AlignConfig):
|
1413 |
+
super().__init__(config)
|
1414 |
+
|
1415 |
+
if not isinstance(config.text_config, AlignTextConfig):
|
1416 |
+
raise ValueError(
|
1417 |
+
"config.text_config is expected to be of type AlignTextConfig but is of type"
|
1418 |
+
f" {type(config.text_config)}."
|
1419 |
+
)
|
1420 |
+
|
1421 |
+
if not isinstance(config.vision_config, AlignVisionConfig):
|
1422 |
+
raise ValueError(
|
1423 |
+
"config.vision_config is expected to be of type AlignVisionConfig but is of type"
|
1424 |
+
f" {type(config.vision_config)}."
|
1425 |
+
)
|
1426 |
+
|
1427 |
+
text_config = config.text_config
|
1428 |
+
vision_config = config.vision_config
|
1429 |
+
|
1430 |
+
self.projection_dim = config.projection_dim
|
1431 |
+
self.text_embed_dim = text_config.hidden_size
|
1432 |
+
|
1433 |
+
self.text_model = AlignTextModel(text_config)
|
1434 |
+
self.vision_model = AlignVisionModel(vision_config)
|
1435 |
+
|
1436 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim)
|
1437 |
+
self.temperature = nn.Parameter(torch.tensor(self.config.temperature_init_value))
|
1438 |
+
|
1439 |
+
# Initialize weights and apply final processing
|
1440 |
+
self.post_init()
|
1441 |
+
|
1442 |
+
@add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING)
|
1443 |
+
def get_text_features(
|
1444 |
+
self,
|
1445 |
+
input_ids: Optional[torch.Tensor] = None,
|
1446 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1447 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1448 |
+
position_ids: Optional[torch.Tensor] = None,
|
1449 |
+
head_mask: Optional[torch.Tensor] = None,
|
1450 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1451 |
+
output_attentions: Optional[bool] = None,
|
1452 |
+
output_hidden_states: Optional[bool] = None,
|
1453 |
+
return_dict: Optional[bool] = None,
|
1454 |
+
) -> torch.FloatTensor:
|
1455 |
+
r"""
|
1456 |
+
Returns:
|
1457 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1458 |
+
applying the projection layer to the pooled output of [`AlignTextModel`].
|
1459 |
+
|
1460 |
+
Examples:
|
1461 |
+
|
1462 |
+
```python
|
1463 |
+
>>> from transformers import AutoTokenizer, AlignModel
|
1464 |
+
|
1465 |
+
>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
|
1466 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")
|
1467 |
+
|
1468 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1469 |
+
>>> text_features = model.get_text_features(**inputs)
|
1470 |
+
```"""
|
1471 |
+
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
|
1472 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1473 |
+
output_hidden_states = (
|
1474 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1475 |
+
)
|
1476 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1477 |
+
|
1478 |
+
text_outputs = self.text_model(
|
1479 |
+
input_ids=input_ids,
|
1480 |
+
attention_mask=attention_mask,
|
1481 |
+
token_type_ids=token_type_ids,
|
1482 |
+
position_ids=position_ids,
|
1483 |
+
head_mask=head_mask,
|
1484 |
+
inputs_embeds=inputs_embeds,
|
1485 |
+
output_attentions=output_attentions,
|
1486 |
+
output_hidden_states=output_hidden_states,
|
1487 |
+
return_dict=return_dict,
|
1488 |
+
)
|
1489 |
+
|
1490 |
+
last_hidden_state = text_outputs[0][:, 0, :]
|
1491 |
+
text_features = self.text_projection(last_hidden_state)
|
1492 |
+
|
1493 |
+
return text_features
|
1494 |
+
|
1495 |
+
@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
|
1496 |
+
def get_image_features(
|
1497 |
+
self,
|
1498 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1499 |
+
output_hidden_states: Optional[bool] = None,
|
1500 |
+
return_dict: Optional[bool] = None,
|
1501 |
+
) -> torch.FloatTensor:
|
1502 |
+
r"""
|
1503 |
+
Returns:
|
1504 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1505 |
+
applying the projection layer to the pooled output of [`AlignVisionModel`].
|
1506 |
+
|
1507 |
+
Examples:
|
1508 |
+
|
1509 |
+
```python
|
1510 |
+
>>> from PIL import Image
|
1511 |
+
>>> import requests
|
1512 |
+
>>> from transformers import AutoProcessor, AlignModel
|
1513 |
+
|
1514 |
+
>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
|
1515 |
+
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
|
1516 |
+
|
1517 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1518 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1519 |
+
|
1520 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1521 |
+
|
1522 |
+
>>> image_features = model.get_image_features(**inputs)
|
1523 |
+
```"""
|
1524 |
+
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
|
1525 |
+
output_hidden_states = (
|
1526 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1527 |
+
)
|
1528 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1529 |
+
|
1530 |
+
vision_outputs = self.vision_model(
|
1531 |
+
pixel_values=pixel_values,
|
1532 |
+
output_hidden_states=output_hidden_states,
|
1533 |
+
return_dict=return_dict,
|
1534 |
+
)
|
1535 |
+
|
1536 |
+
image_features = vision_outputs[1] # pooled_output
|
1537 |
+
|
1538 |
+
return image_features
|
1539 |
+
|
1540 |
+
@add_start_docstrings_to_model_forward(ALIGN_INPUTS_DOCSTRING)
|
1541 |
+
@replace_return_docstrings(output_type=AlignOutput, config_class=AlignConfig)
|
1542 |
+
def forward(
|
1543 |
+
self,
|
1544 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1545 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1546 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1547 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1548 |
+
position_ids: Optional[torch.Tensor] = None,
|
1549 |
+
head_mask: Optional[torch.Tensor] = None,
|
1550 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1551 |
+
return_loss: Optional[bool] = None,
|
1552 |
+
output_attentions: Optional[bool] = None,
|
1553 |
+
output_hidden_states: Optional[bool] = None,
|
1554 |
+
return_dict: Optional[bool] = None,
|
1555 |
+
) -> Union[Tuple, AlignOutput]:
|
1556 |
+
r"""
|
1557 |
+
Returns:
|
1558 |
+
|
1559 |
+
Examples:
|
1560 |
+
|
1561 |
+
```python
|
1562 |
+
>>> from PIL import Image
|
1563 |
+
>>> import requests
|
1564 |
+
>>> from transformers import AutoProcessor, AlignModel
|
1565 |
+
|
1566 |
+
>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
|
1567 |
+
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
|
1568 |
+
|
1569 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1570 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1571 |
+
|
1572 |
+
>>> inputs = processor(
|
1573 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1574 |
+
... )
|
1575 |
+
|
1576 |
+
>>> outputs = model(**inputs)
|
1577 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1578 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1579 |
+
```"""
|
1580 |
+
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
|
1581 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1582 |
+
output_hidden_states = (
|
1583 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1584 |
+
)
|
1585 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1586 |
+
|
1587 |
+
vision_outputs = self.vision_model(
|
1588 |
+
pixel_values=pixel_values,
|
1589 |
+
output_hidden_states=output_hidden_states,
|
1590 |
+
return_dict=return_dict,
|
1591 |
+
)
|
1592 |
+
|
1593 |
+
text_outputs = self.text_model(
|
1594 |
+
input_ids=input_ids,
|
1595 |
+
attention_mask=attention_mask,
|
1596 |
+
token_type_ids=token_type_ids,
|
1597 |
+
position_ids=position_ids,
|
1598 |
+
head_mask=head_mask,
|
1599 |
+
inputs_embeds=inputs_embeds,
|
1600 |
+
output_attentions=output_attentions,
|
1601 |
+
output_hidden_states=output_hidden_states,
|
1602 |
+
return_dict=return_dict,
|
1603 |
+
)
|
1604 |
+
|
1605 |
+
image_embeds = vision_outputs[1]
|
1606 |
+
text_embeds = text_outputs[0][:, 0, :]
|
1607 |
+
text_embeds = self.text_projection(text_embeds)
|
1608 |
+
|
1609 |
+
# normalized features
|
1610 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1611 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1612 |
+
|
1613 |
+
# cosine similarity as logits
|
1614 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) / self.temperature
|
1615 |
+
logits_per_image = logits_per_text.t()
|
1616 |
+
|
1617 |
+
loss = None
|
1618 |
+
if return_loss:
|
1619 |
+
loss = align_loss(logits_per_text)
|
1620 |
+
|
1621 |
+
if not return_dict:
|
1622 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1623 |
+
return ((loss,) + output) if loss is not None else output
|
1624 |
+
|
1625 |
+
return AlignOutput(
|
1626 |
+
loss=loss,
|
1627 |
+
logits_per_image=logits_per_image,
|
1628 |
+
logits_per_text=logits_per_text,
|
1629 |
+
text_embeds=text_embeds,
|
1630 |
+
image_embeds=image_embeds,
|
1631 |
+
text_model_output=text_outputs,
|
1632 |
+
vision_model_output=vision_outputs,
|
1633 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/align/processing_align.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for ALIGN
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from ...processing_utils import ProcessorMixin
|
21 |
+
from ...tokenization_utils_base import BatchEncoding
|
22 |
+
|
23 |
+
|
24 |
+
class AlignProcessor(ProcessorMixin):
|
25 |
+
r"""
|
26 |
+
Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and
|
27 |
+
[`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and
|
28 |
+
tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
|
29 |
+
information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
image_processor ([`EfficientNetImageProcessor`]):
|
33 |
+
The image processor is a required input.
|
34 |
+
tokenizer ([`BertTokenizer`, `BertTokenizerFast`]):
|
35 |
+
The tokenizer is a required input.
|
36 |
+
"""
|
37 |
+
|
38 |
+
attributes = ["image_processor", "tokenizer"]
|
39 |
+
image_processor_class = "EfficientNetImageProcessor"
|
40 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
41 |
+
|
42 |
+
def __init__(self, image_processor, tokenizer):
|
43 |
+
super().__init__(image_processor, tokenizer)
|
44 |
+
|
45 |
+
def __call__(self, text=None, images=None, padding="max_length", max_length=64, return_tensors=None, **kwargs):
|
46 |
+
"""
|
47 |
+
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
|
48 |
+
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
|
49 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
|
50 |
+
EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer
|
51 |
+
to the doctsring of the above two methods for more information.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
text (`str`, `List[str]`):
|
55 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
56 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
57 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
58 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
59 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
60 |
+
tensor. Both channels-first and channels-last formats are supported.
|
61 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
|
62 |
+
Activates and controls padding for tokenization of input text. Choose between [`True` or `'longest'`,
|
63 |
+
`'max_length'`, `False` or `'do_not_pad'`]
|
64 |
+
max_length (`int`, *optional*, defaults to `max_length`):
|
65 |
+
Maximum padding value to use to pad the input text during tokenization.
|
66 |
+
|
67 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
68 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
69 |
+
|
70 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
71 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
72 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
73 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
77 |
+
|
78 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
79 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
80 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
81 |
+
`None`).
|
82 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
83 |
+
"""
|
84 |
+
if text is None and images is None:
|
85 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
86 |
+
|
87 |
+
if text is not None:
|
88 |
+
encoding = self.tokenizer(
|
89 |
+
text, padding=padding, max_length=max_length, return_tensors=return_tensors, **kwargs
|
90 |
+
)
|
91 |
+
|
92 |
+
if images is not None:
|
93 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
94 |
+
|
95 |
+
if text is not None and images is not None:
|
96 |
+
encoding["pixel_values"] = image_features.pixel_values
|
97 |
+
return encoding
|
98 |
+
elif text is not None:
|
99 |
+
return encoding
|
100 |
+
else:
|
101 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
102 |
+
|
103 |
+
def batch_decode(self, *args, **kwargs):
|
104 |
+
"""
|
105 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
106 |
+
refer to the docstring of this method for more information.
|
107 |
+
"""
|
108 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
109 |
+
|
110 |
+
def decode(self, *args, **kwargs):
|
111 |
+
"""
|
112 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
113 |
+
the docstring of this method for more information.
|
114 |
+
"""
|
115 |
+
return self.tokenizer.decode(*args, **kwargs)
|
116 |
+
|
117 |
+
@property
|
118 |
+
def model_input_names(self):
|
119 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
120 |
+
image_processor_input_names = self.image_processor.model_input_names
|
121 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__init__.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_donut_swin": ["DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "DonutSwinConfig"],
|
21 |
+
"processing_donut": ["DonutProcessor"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_donut_swin"] = [
|
31 |
+
"DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
32 |
+
"DonutSwinModel",
|
33 |
+
"DonutSwinPreTrainedModel",
|
34 |
+
]
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_vision_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["feature_extraction_donut"] = ["DonutFeatureExtractor"]
|
43 |
+
_import_structure["image_processing_donut"] = ["DonutImageProcessor"]
|
44 |
+
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from .configuration_donut_swin import DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, DonutSwinConfig
|
48 |
+
from .processing_donut import DonutProcessor
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_torch_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .modeling_donut_swin import (
|
57 |
+
DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
58 |
+
DonutSwinModel,
|
59 |
+
DonutSwinPreTrainedModel,
|
60 |
+
)
|
61 |
+
|
62 |
+
try:
|
63 |
+
if not is_vision_available():
|
64 |
+
raise OptionalDependencyNotAvailable()
|
65 |
+
except OptionalDependencyNotAvailable:
|
66 |
+
pass
|
67 |
+
else:
|
68 |
+
from .feature_extraction_donut import DonutFeatureExtractor
|
69 |
+
from .image_processing_donut import DonutImageProcessor
|
70 |
+
|
71 |
+
else:
|
72 |
+
import sys
|
73 |
+
|
74 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/configuration_donut_swin.cpython-310.pyc
ADDED
Binary file (4.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/configuration_donut_swin.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Donut Swin Transformer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class DonutSwinConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`DonutSwinModel`]. It is used to instantiate a
|
30 |
+
Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the Donut
|
32 |
+
[naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
image_size (`int`, *optional*, defaults to 224):
|
39 |
+
The size (resolution) of each image.
|
40 |
+
patch_size (`int`, *optional*, defaults to 4):
|
41 |
+
The size (resolution) of each patch.
|
42 |
+
num_channels (`int`, *optional*, defaults to 3):
|
43 |
+
The number of input channels.
|
44 |
+
embed_dim (`int`, *optional*, defaults to 96):
|
45 |
+
Dimensionality of patch embedding.
|
46 |
+
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
|
47 |
+
Depth of each layer in the Transformer encoder.
|
48 |
+
num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
|
49 |
+
Number of attention heads in each layer of the Transformer encoder.
|
50 |
+
window_size (`int`, *optional*, defaults to 7):
|
51 |
+
Size of windows.
|
52 |
+
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
53 |
+
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
54 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
55 |
+
Whether or not a learnable bias should be added to the queries, keys and values.
|
56 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
58 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
61 |
+
Stochastic depth rate.
|
62 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
63 |
+
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
64 |
+
`"selu"` and `"gelu_new"` are supported.
|
65 |
+
use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether or not to add absolute position embeddings to the patch embeddings.
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
|
72 |
+
Example:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import DonutSwinConfig, DonutSwinModel
|
76 |
+
|
77 |
+
>>> # Initializing a Donut naver-clova-ix/donut-base style configuration
|
78 |
+
>>> configuration = DonutSwinConfig()
|
79 |
+
|
80 |
+
>>> # Randomly initializing a model from the naver-clova-ix/donut-base style configuration
|
81 |
+
>>> model = DonutSwinModel(configuration)
|
82 |
+
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
|
87 |
+
model_type = "donut-swin"
|
88 |
+
|
89 |
+
attribute_map = {
|
90 |
+
"num_attention_heads": "num_heads",
|
91 |
+
"num_hidden_layers": "num_layers",
|
92 |
+
}
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
image_size=224,
|
97 |
+
patch_size=4,
|
98 |
+
num_channels=3,
|
99 |
+
embed_dim=96,
|
100 |
+
depths=[2, 2, 6, 2],
|
101 |
+
num_heads=[3, 6, 12, 24],
|
102 |
+
window_size=7,
|
103 |
+
mlp_ratio=4.0,
|
104 |
+
qkv_bias=True,
|
105 |
+
hidden_dropout_prob=0.0,
|
106 |
+
attention_probs_dropout_prob=0.0,
|
107 |
+
drop_path_rate=0.1,
|
108 |
+
hidden_act="gelu",
|
109 |
+
use_absolute_embeddings=False,
|
110 |
+
initializer_range=0.02,
|
111 |
+
layer_norm_eps=1e-5,
|
112 |
+
**kwargs,
|
113 |
+
):
|
114 |
+
super().__init__(**kwargs)
|
115 |
+
|
116 |
+
self.image_size = image_size
|
117 |
+
self.patch_size = patch_size
|
118 |
+
self.num_channels = num_channels
|
119 |
+
self.embed_dim = embed_dim
|
120 |
+
self.depths = depths
|
121 |
+
self.num_layers = len(depths)
|
122 |
+
self.num_heads = num_heads
|
123 |
+
self.window_size = window_size
|
124 |
+
self.mlp_ratio = mlp_ratio
|
125 |
+
self.qkv_bias = qkv_bias
|
126 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
127 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
128 |
+
self.drop_path_rate = drop_path_rate
|
129 |
+
self.hidden_act = hidden_act
|
130 |
+
self.use_absolute_embeddings = use_absolute_embeddings
|
131 |
+
self.layer_norm_eps = layer_norm_eps
|
132 |
+
self.initializer_range = initializer_range
|
133 |
+
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
|
134 |
+
# this indicates the channel dimension after the last stage of the model
|
135 |
+
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/convert_donut_to_pytorch.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Donut checkpoints using the original `donut-python` library. URL: https://github.com/clovaai/donut"""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from datasets import load_dataset
|
21 |
+
from donut import DonutModel
|
22 |
+
|
23 |
+
from transformers import (
|
24 |
+
DonutImageProcessor,
|
25 |
+
DonutProcessor,
|
26 |
+
DonutSwinConfig,
|
27 |
+
DonutSwinModel,
|
28 |
+
MBartConfig,
|
29 |
+
MBartForCausalLM,
|
30 |
+
VisionEncoderDecoderModel,
|
31 |
+
XLMRobertaTokenizerFast,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
def get_configs(model):
|
36 |
+
original_config = model.config
|
37 |
+
|
38 |
+
encoder_config = DonutSwinConfig(
|
39 |
+
image_size=original_config.input_size,
|
40 |
+
patch_size=4,
|
41 |
+
depths=original_config.encoder_layer,
|
42 |
+
num_heads=[4, 8, 16, 32],
|
43 |
+
window_size=original_config.window_size,
|
44 |
+
embed_dim=128,
|
45 |
+
)
|
46 |
+
decoder_config = MBartConfig(
|
47 |
+
is_decoder=True,
|
48 |
+
is_encoder_decoder=False,
|
49 |
+
add_cross_attention=True,
|
50 |
+
decoder_layers=original_config.decoder_layer,
|
51 |
+
max_position_embeddings=original_config.max_position_embeddings,
|
52 |
+
vocab_size=len(
|
53 |
+
model.decoder.tokenizer
|
54 |
+
), # several special tokens are added to the vocab of XLMRobertaTokenizer, see repo on the hub (added_tokens.json)
|
55 |
+
scale_embedding=True,
|
56 |
+
add_final_layer_norm=True,
|
57 |
+
)
|
58 |
+
|
59 |
+
return encoder_config, decoder_config
|
60 |
+
|
61 |
+
|
62 |
+
def rename_key(name):
|
63 |
+
if "encoder.model" in name:
|
64 |
+
name = name.replace("encoder.model", "encoder")
|
65 |
+
if "decoder.model" in name:
|
66 |
+
name = name.replace("decoder.model", "decoder")
|
67 |
+
if "patch_embed.proj" in name:
|
68 |
+
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
|
69 |
+
if "patch_embed.norm" in name:
|
70 |
+
name = name.replace("patch_embed.norm", "embeddings.norm")
|
71 |
+
if name.startswith("encoder"):
|
72 |
+
if "layers" in name:
|
73 |
+
name = "encoder." + name
|
74 |
+
if "attn.proj" in name:
|
75 |
+
name = name.replace("attn.proj", "attention.output.dense")
|
76 |
+
if "attn" in name and "mask" not in name:
|
77 |
+
name = name.replace("attn", "attention.self")
|
78 |
+
if "norm1" in name:
|
79 |
+
name = name.replace("norm1", "layernorm_before")
|
80 |
+
if "norm2" in name:
|
81 |
+
name = name.replace("norm2", "layernorm_after")
|
82 |
+
if "mlp.fc1" in name:
|
83 |
+
name = name.replace("mlp.fc1", "intermediate.dense")
|
84 |
+
if "mlp.fc2" in name:
|
85 |
+
name = name.replace("mlp.fc2", "output.dense")
|
86 |
+
|
87 |
+
if name == "encoder.norm.weight":
|
88 |
+
name = "encoder.layernorm.weight"
|
89 |
+
if name == "encoder.norm.bias":
|
90 |
+
name = "encoder.layernorm.bias"
|
91 |
+
|
92 |
+
return name
|
93 |
+
|
94 |
+
|
95 |
+
def convert_state_dict(orig_state_dict, model):
|
96 |
+
for key in orig_state_dict.copy().keys():
|
97 |
+
val = orig_state_dict.pop(key)
|
98 |
+
|
99 |
+
if "qkv" in key:
|
100 |
+
key_split = key.split(".")
|
101 |
+
layer_num = int(key_split[3])
|
102 |
+
block_num = int(key_split[5])
|
103 |
+
dim = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
|
104 |
+
|
105 |
+
if "weight" in key:
|
106 |
+
orig_state_dict[
|
107 |
+
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight"
|
108 |
+
] = val[:dim, :]
|
109 |
+
orig_state_dict[
|
110 |
+
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"
|
111 |
+
] = val[dim : dim * 2, :]
|
112 |
+
orig_state_dict[
|
113 |
+
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight"
|
114 |
+
] = val[-dim:, :]
|
115 |
+
else:
|
116 |
+
orig_state_dict[
|
117 |
+
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"
|
118 |
+
] = val[:dim]
|
119 |
+
orig_state_dict[
|
120 |
+
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"
|
121 |
+
] = val[dim : dim * 2]
|
122 |
+
orig_state_dict[
|
123 |
+
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"
|
124 |
+
] = val[-dim:]
|
125 |
+
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
|
126 |
+
# HuggingFace implementation doesn't use attn_mask buffer
|
127 |
+
# and model doesn't use final LayerNorms for the encoder
|
128 |
+
pass
|
129 |
+
else:
|
130 |
+
orig_state_dict[rename_key(key)] = val
|
131 |
+
|
132 |
+
return orig_state_dict
|
133 |
+
|
134 |
+
|
135 |
+
def convert_donut_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
|
136 |
+
# load original model
|
137 |
+
original_model = DonutModel.from_pretrained(model_name).eval()
|
138 |
+
|
139 |
+
# load HuggingFace model
|
140 |
+
encoder_config, decoder_config = get_configs(original_model)
|
141 |
+
encoder = DonutSwinModel(encoder_config)
|
142 |
+
decoder = MBartForCausalLM(decoder_config)
|
143 |
+
model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
|
144 |
+
model.eval()
|
145 |
+
|
146 |
+
state_dict = original_model.state_dict()
|
147 |
+
new_state_dict = convert_state_dict(state_dict, model)
|
148 |
+
model.load_state_dict(new_state_dict)
|
149 |
+
|
150 |
+
# verify results on scanned document
|
151 |
+
dataset = load_dataset("hf-internal-testing/example-documents")
|
152 |
+
image = dataset["test"][0]["image"].convert("RGB")
|
153 |
+
|
154 |
+
tokenizer = XLMRobertaTokenizerFast.from_pretrained(model_name, from_slow=True)
|
155 |
+
image_processor = DonutImageProcessor(
|
156 |
+
do_align_long_axis=original_model.config.align_long_axis, size=original_model.config.input_size[::-1]
|
157 |
+
)
|
158 |
+
processor = DonutProcessor(image_processor, tokenizer)
|
159 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
160 |
+
|
161 |
+
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
|
162 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
163 |
+
question = "When is the coffee break?"
|
164 |
+
task_prompt = task_prompt.replace("{user_input}", question)
|
165 |
+
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
|
166 |
+
task_prompt = "<s_rvlcdip>"
|
167 |
+
elif model_name in [
|
168 |
+
"naver-clova-ix/donut-base-finetuned-cord-v1",
|
169 |
+
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
|
170 |
+
]:
|
171 |
+
task_prompt = "<s_cord>"
|
172 |
+
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
|
173 |
+
task_prompt = "s_cord-v2>"
|
174 |
+
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
|
175 |
+
task_prompt = "<s_zhtrainticket>"
|
176 |
+
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
|
177 |
+
# use a random prompt
|
178 |
+
task_prompt = "hello world"
|
179 |
+
else:
|
180 |
+
raise ValueError("Model name not supported")
|
181 |
+
prompt_tensors = original_model.decoder.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")[
|
182 |
+
"input_ids"
|
183 |
+
]
|
184 |
+
|
185 |
+
original_patch_embed = original_model.encoder.model.patch_embed(pixel_values)
|
186 |
+
patch_embeddings, _ = model.encoder.embeddings(pixel_values)
|
187 |
+
assert torch.allclose(original_patch_embed, patch_embeddings, atol=1e-3)
|
188 |
+
|
189 |
+
# verify encoder hidden states
|
190 |
+
original_last_hidden_state = original_model.encoder(pixel_values)
|
191 |
+
last_hidden_state = model.encoder(pixel_values).last_hidden_state
|
192 |
+
assert torch.allclose(original_last_hidden_state, last_hidden_state, atol=1e-2)
|
193 |
+
|
194 |
+
# verify decoder hidden states
|
195 |
+
original_logits = original_model(pixel_values, prompt_tensors, None).logits
|
196 |
+
logits = model(pixel_values, decoder_input_ids=prompt_tensors).logits
|
197 |
+
assert torch.allclose(original_logits, logits, atol=1e-3)
|
198 |
+
print("Looks ok!")
|
199 |
+
|
200 |
+
if pytorch_dump_folder_path is not None:
|
201 |
+
print(f"Saving model and processor to {pytorch_dump_folder_path}")
|
202 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
203 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
204 |
+
|
205 |
+
if push_to_hub:
|
206 |
+
model.push_to_hub("nielsr/" + model_name.split("/")[-1], commit_message="Update model")
|
207 |
+
processor.push_to_hub("nielsr/" + model_name.split("/")[-1], commit_message="Update model")
|
208 |
+
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
parser = argparse.ArgumentParser()
|
212 |
+
# Required parameters
|
213 |
+
parser.add_argument(
|
214 |
+
"--model_name",
|
215 |
+
default="naver-clova-ix/donut-base-finetuned-docvqa",
|
216 |
+
required=False,
|
217 |
+
type=str,
|
218 |
+
help="Name of the original model you'd like to convert.",
|
219 |
+
)
|
220 |
+
parser.add_argument(
|
221 |
+
"--pytorch_dump_folder_path",
|
222 |
+
default=None,
|
223 |
+
required=False,
|
224 |
+
type=str,
|
225 |
+
help="Path to the output PyTorch model directory.",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--push_to_hub",
|
229 |
+
action="store_true",
|
230 |
+
help="Whether or not to push the converted model and processor to the 🤗 hub.",
|
231 |
+
)
|
232 |
+
|
233 |
+
args = parser.parse_args()
|
234 |
+
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/modeling_donut_swin.py
ADDED
@@ -0,0 +1,955 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Donut Swin Transformer model.
|
16 |
+
|
17 |
+
This implementation is identical to a regular Swin Transformer, without final layer norm on top of the final hidden
|
18 |
+
states."""
|
19 |
+
|
20 |
+
import collections.abc
|
21 |
+
import math
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
|
29 |
+
from ...activations import ACT2FN
|
30 |
+
from ...modeling_utils import PreTrainedModel
|
31 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
|
32 |
+
from ...utils import (
|
33 |
+
ModelOutput,
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
logging,
|
38 |
+
)
|
39 |
+
from .configuration_donut_swin import DonutSwinConfig
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
# General docstring
|
45 |
+
_CONFIG_FOR_DOC = "DonutSwinConfig"
|
46 |
+
|
47 |
+
# Base docstring
|
48 |
+
_CHECKPOINT_FOR_DOC = "https://huggingface.co/naver-clova-ix/donut-base"
|
49 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
|
50 |
+
|
51 |
+
|
52 |
+
from ..deprecated._archive_maps import DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin
|
57 |
+
class DonutSwinEncoderOutput(ModelOutput):
|
58 |
+
"""
|
59 |
+
DonutSwin encoder's outputs, with potential hidden states and attentions.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
63 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
64 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
65 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
66 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
67 |
+
|
68 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
69 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
70 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
71 |
+
sequence_length)`.
|
72 |
+
|
73 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
74 |
+
heads.
|
75 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
76 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
77 |
+
shape `(batch_size, hidden_size, height, width)`.
|
78 |
+
|
79 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
80 |
+
include the spatial dimensions.
|
81 |
+
"""
|
82 |
+
|
83 |
+
last_hidden_state: torch.FloatTensor = None
|
84 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
85 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
86 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
87 |
+
|
88 |
+
|
89 |
+
@dataclass
|
90 |
+
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->DonutSwin
|
91 |
+
class DonutSwinModelOutput(ModelOutput):
|
92 |
+
"""
|
93 |
+
DonutSwin model's outputs that also contains a pooling of the last hidden states.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
97 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
98 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
|
99 |
+
Average pooling of the last layer hidden-state.
|
100 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
101 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
102 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
103 |
+
|
104 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
105 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
106 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
107 |
+
sequence_length)`.
|
108 |
+
|
109 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
110 |
+
heads.
|
111 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
112 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
113 |
+
shape `(batch_size, hidden_size, height, width)`.
|
114 |
+
|
115 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
116 |
+
include the spatial dimensions.
|
117 |
+
"""
|
118 |
+
|
119 |
+
last_hidden_state: torch.FloatTensor = None
|
120 |
+
pooler_output: Optional[torch.FloatTensor] = None
|
121 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
122 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
123 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
124 |
+
|
125 |
+
|
126 |
+
# Copied from transformers.models.swin.modeling_swin.window_partition
|
127 |
+
def window_partition(input_feature, window_size):
|
128 |
+
"""
|
129 |
+
Partitions the given input into windows.
|
130 |
+
"""
|
131 |
+
batch_size, height, width, num_channels = input_feature.shape
|
132 |
+
input_feature = input_feature.view(
|
133 |
+
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
|
134 |
+
)
|
135 |
+
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
|
136 |
+
return windows
|
137 |
+
|
138 |
+
|
139 |
+
# Copied from transformers.models.swin.modeling_swin.window_reverse
|
140 |
+
def window_reverse(windows, window_size, height, width):
|
141 |
+
"""
|
142 |
+
Merges windows to produce higher resolution features.
|
143 |
+
"""
|
144 |
+
num_channels = windows.shape[-1]
|
145 |
+
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
|
146 |
+
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
|
147 |
+
return windows
|
148 |
+
|
149 |
+
|
150 |
+
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin
|
151 |
+
class DonutSwinEmbeddings(nn.Module):
|
152 |
+
"""
|
153 |
+
Construct the patch and position embeddings. Optionally, also the mask token.
|
154 |
+
"""
|
155 |
+
|
156 |
+
def __init__(self, config, use_mask_token=False):
|
157 |
+
super().__init__()
|
158 |
+
|
159 |
+
self.patch_embeddings = DonutSwinPatchEmbeddings(config)
|
160 |
+
num_patches = self.patch_embeddings.num_patches
|
161 |
+
self.patch_grid = self.patch_embeddings.grid_size
|
162 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
|
163 |
+
|
164 |
+
if config.use_absolute_embeddings:
|
165 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
|
166 |
+
else:
|
167 |
+
self.position_embeddings = None
|
168 |
+
|
169 |
+
self.norm = nn.LayerNorm(config.embed_dim)
|
170 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
171 |
+
|
172 |
+
def forward(
|
173 |
+
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
|
174 |
+
) -> Tuple[torch.Tensor]:
|
175 |
+
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
|
176 |
+
embeddings = self.norm(embeddings)
|
177 |
+
batch_size, seq_len, _ = embeddings.size()
|
178 |
+
|
179 |
+
if bool_masked_pos is not None:
|
180 |
+
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
181 |
+
# replace the masked visual tokens by mask_tokens
|
182 |
+
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
183 |
+
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
|
184 |
+
|
185 |
+
if self.position_embeddings is not None:
|
186 |
+
embeddings = embeddings + self.position_embeddings
|
187 |
+
|
188 |
+
embeddings = self.dropout(embeddings)
|
189 |
+
|
190 |
+
return embeddings, output_dimensions
|
191 |
+
|
192 |
+
|
193 |
+
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings
|
194 |
+
class DonutSwinPatchEmbeddings(nn.Module):
|
195 |
+
"""
|
196 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
197 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
198 |
+
Transformer.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, config):
|
202 |
+
super().__init__()
|
203 |
+
image_size, patch_size = config.image_size, config.patch_size
|
204 |
+
num_channels, hidden_size = config.num_channels, config.embed_dim
|
205 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
206 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
207 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
208 |
+
self.image_size = image_size
|
209 |
+
self.patch_size = patch_size
|
210 |
+
self.num_channels = num_channels
|
211 |
+
self.num_patches = num_patches
|
212 |
+
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
213 |
+
|
214 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
215 |
+
|
216 |
+
def maybe_pad(self, pixel_values, height, width):
|
217 |
+
if width % self.patch_size[1] != 0:
|
218 |
+
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
|
219 |
+
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
220 |
+
if height % self.patch_size[0] != 0:
|
221 |
+
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
|
222 |
+
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
223 |
+
return pixel_values
|
224 |
+
|
225 |
+
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
|
226 |
+
_, num_channels, height, width = pixel_values.shape
|
227 |
+
if num_channels != self.num_channels:
|
228 |
+
raise ValueError(
|
229 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
230 |
+
)
|
231 |
+
# pad the input to be divisible by self.patch_size, if needed
|
232 |
+
pixel_values = self.maybe_pad(pixel_values, height, width)
|
233 |
+
embeddings = self.projection(pixel_values)
|
234 |
+
_, _, height, width = embeddings.shape
|
235 |
+
output_dimensions = (height, width)
|
236 |
+
embeddings = embeddings.flatten(2).transpose(1, 2)
|
237 |
+
|
238 |
+
return embeddings, output_dimensions
|
239 |
+
|
240 |
+
|
241 |
+
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
|
242 |
+
class DonutSwinPatchMerging(nn.Module):
|
243 |
+
"""
|
244 |
+
Patch Merging Layer.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
input_resolution (`Tuple[int]`):
|
248 |
+
Resolution of input feature.
|
249 |
+
dim (`int`):
|
250 |
+
Number of input channels.
|
251 |
+
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
|
252 |
+
Normalization layer class.
|
253 |
+
"""
|
254 |
+
|
255 |
+
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
|
256 |
+
super().__init__()
|
257 |
+
self.input_resolution = input_resolution
|
258 |
+
self.dim = dim
|
259 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
260 |
+
self.norm = norm_layer(4 * dim)
|
261 |
+
|
262 |
+
def maybe_pad(self, input_feature, height, width):
|
263 |
+
should_pad = (height % 2 == 1) or (width % 2 == 1)
|
264 |
+
if should_pad:
|
265 |
+
pad_values = (0, 0, 0, width % 2, 0, height % 2)
|
266 |
+
input_feature = nn.functional.pad(input_feature, pad_values)
|
267 |
+
|
268 |
+
return input_feature
|
269 |
+
|
270 |
+
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
|
271 |
+
height, width = input_dimensions
|
272 |
+
# `dim` is height * width
|
273 |
+
batch_size, dim, num_channels = input_feature.shape
|
274 |
+
|
275 |
+
input_feature = input_feature.view(batch_size, height, width, num_channels)
|
276 |
+
# pad input to be disible by width and height, if needed
|
277 |
+
input_feature = self.maybe_pad(input_feature, height, width)
|
278 |
+
# [batch_size, height/2, width/2, num_channels]
|
279 |
+
input_feature_0 = input_feature[:, 0::2, 0::2, :]
|
280 |
+
# [batch_size, height/2, width/2, num_channels]
|
281 |
+
input_feature_1 = input_feature[:, 1::2, 0::2, :]
|
282 |
+
# [batch_size, height/2, width/2, num_channels]
|
283 |
+
input_feature_2 = input_feature[:, 0::2, 1::2, :]
|
284 |
+
# [batch_size, height/2, width/2, num_channels]
|
285 |
+
input_feature_3 = input_feature[:, 1::2, 1::2, :]
|
286 |
+
# batch_size height/2 width/2 4*num_channels
|
287 |
+
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
|
288 |
+
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
|
289 |
+
|
290 |
+
input_feature = self.norm(input_feature)
|
291 |
+
input_feature = self.reduction(input_feature)
|
292 |
+
|
293 |
+
return input_feature
|
294 |
+
|
295 |
+
|
296 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
297 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
298 |
+
"""
|
299 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
300 |
+
|
301 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
302 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
303 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
304 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
305 |
+
argument.
|
306 |
+
"""
|
307 |
+
if drop_prob == 0.0 or not training:
|
308 |
+
return input
|
309 |
+
keep_prob = 1 - drop_prob
|
310 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
311 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
312 |
+
random_tensor.floor_() # binarize
|
313 |
+
output = input.div(keep_prob) * random_tensor
|
314 |
+
return output
|
315 |
+
|
316 |
+
|
317 |
+
# Copied from transformers.models.swin.modeling_swin.SwinDropPath
|
318 |
+
class DonutSwinDropPath(nn.Module):
|
319 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
320 |
+
|
321 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
322 |
+
super().__init__()
|
323 |
+
self.drop_prob = drop_prob
|
324 |
+
|
325 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
326 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
327 |
+
|
328 |
+
def extra_repr(self) -> str:
|
329 |
+
return "p={}".format(self.drop_prob)
|
330 |
+
|
331 |
+
|
332 |
+
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->DonutSwin
|
333 |
+
class DonutSwinSelfAttention(nn.Module):
|
334 |
+
def __init__(self, config, dim, num_heads, window_size):
|
335 |
+
super().__init__()
|
336 |
+
if dim % num_heads != 0:
|
337 |
+
raise ValueError(
|
338 |
+
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
|
339 |
+
)
|
340 |
+
|
341 |
+
self.num_attention_heads = num_heads
|
342 |
+
self.attention_head_size = int(dim / num_heads)
|
343 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
344 |
+
self.window_size = (
|
345 |
+
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
|
346 |
+
)
|
347 |
+
|
348 |
+
self.relative_position_bias_table = nn.Parameter(
|
349 |
+
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
|
350 |
+
)
|
351 |
+
|
352 |
+
# get pair-wise relative position index for each token inside the window
|
353 |
+
coords_h = torch.arange(self.window_size[0])
|
354 |
+
coords_w = torch.arange(self.window_size[1])
|
355 |
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
356 |
+
coords_flatten = torch.flatten(coords, 1)
|
357 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
358 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
359 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
360 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
361 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
362 |
+
relative_position_index = relative_coords.sum(-1)
|
363 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
364 |
+
|
365 |
+
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
366 |
+
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
367 |
+
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
368 |
+
|
369 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
370 |
+
|
371 |
+
def transpose_for_scores(self, x):
|
372 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
373 |
+
x = x.view(new_x_shape)
|
374 |
+
return x.permute(0, 2, 1, 3)
|
375 |
+
|
376 |
+
def forward(
|
377 |
+
self,
|
378 |
+
hidden_states: torch.Tensor,
|
379 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
380 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
381 |
+
output_attentions: Optional[bool] = False,
|
382 |
+
) -> Tuple[torch.Tensor]:
|
383 |
+
batch_size, dim, num_channels = hidden_states.shape
|
384 |
+
mixed_query_layer = self.query(hidden_states)
|
385 |
+
|
386 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
387 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
388 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
389 |
+
|
390 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
391 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
392 |
+
|
393 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
394 |
+
|
395 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
|
396 |
+
relative_position_bias = relative_position_bias.view(
|
397 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
398 |
+
)
|
399 |
+
|
400 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
401 |
+
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
|
402 |
+
|
403 |
+
if attention_mask is not None:
|
404 |
+
# Apply the attention mask is (precomputed for all layers in DonutSwinModel forward() function)
|
405 |
+
mask_shape = attention_mask.shape[0]
|
406 |
+
attention_scores = attention_scores.view(
|
407 |
+
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
|
408 |
+
)
|
409 |
+
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
|
410 |
+
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
|
411 |
+
|
412 |
+
# Normalize the attention scores to probabilities.
|
413 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
414 |
+
|
415 |
+
# This is actually dropping out entire tokens to attend to, which might
|
416 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
417 |
+
attention_probs = self.dropout(attention_probs)
|
418 |
+
|
419 |
+
# Mask heads if we want to
|
420 |
+
if head_mask is not None:
|
421 |
+
attention_probs = attention_probs * head_mask
|
422 |
+
|
423 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
424 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
425 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
426 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
427 |
+
|
428 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
429 |
+
|
430 |
+
return outputs
|
431 |
+
|
432 |
+
|
433 |
+
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
|
434 |
+
class DonutSwinSelfOutput(nn.Module):
|
435 |
+
def __init__(self, config, dim):
|
436 |
+
super().__init__()
|
437 |
+
self.dense = nn.Linear(dim, dim)
|
438 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
439 |
+
|
440 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
441 |
+
hidden_states = self.dense(hidden_states)
|
442 |
+
hidden_states = self.dropout(hidden_states)
|
443 |
+
|
444 |
+
return hidden_states
|
445 |
+
|
446 |
+
|
447 |
+
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin
|
448 |
+
class DonutSwinAttention(nn.Module):
|
449 |
+
def __init__(self, config, dim, num_heads, window_size):
|
450 |
+
super().__init__()
|
451 |
+
self.self = DonutSwinSelfAttention(config, dim, num_heads, window_size)
|
452 |
+
self.output = DonutSwinSelfOutput(config, dim)
|
453 |
+
self.pruned_heads = set()
|
454 |
+
|
455 |
+
def prune_heads(self, heads):
|
456 |
+
if len(heads) == 0:
|
457 |
+
return
|
458 |
+
heads, index = find_pruneable_heads_and_indices(
|
459 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
460 |
+
)
|
461 |
+
|
462 |
+
# Prune linear layers
|
463 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
464 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
465 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
466 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
467 |
+
|
468 |
+
# Update hyper params and store pruned heads
|
469 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
470 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
471 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
472 |
+
|
473 |
+
def forward(
|
474 |
+
self,
|
475 |
+
hidden_states: torch.Tensor,
|
476 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
477 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
478 |
+
output_attentions: Optional[bool] = False,
|
479 |
+
) -> Tuple[torch.Tensor]:
|
480 |
+
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
|
481 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
482 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
483 |
+
return outputs
|
484 |
+
|
485 |
+
|
486 |
+
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
|
487 |
+
class DonutSwinIntermediate(nn.Module):
|
488 |
+
def __init__(self, config, dim):
|
489 |
+
super().__init__()
|
490 |
+
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
|
491 |
+
if isinstance(config.hidden_act, str):
|
492 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
493 |
+
else:
|
494 |
+
self.intermediate_act_fn = config.hidden_act
|
495 |
+
|
496 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
497 |
+
hidden_states = self.dense(hidden_states)
|
498 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
499 |
+
return hidden_states
|
500 |
+
|
501 |
+
|
502 |
+
# Copied from transformers.models.swin.modeling_swin.SwinOutput
|
503 |
+
class DonutSwinOutput(nn.Module):
|
504 |
+
def __init__(self, config, dim):
|
505 |
+
super().__init__()
|
506 |
+
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
|
507 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
508 |
+
|
509 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
510 |
+
hidden_states = self.dense(hidden_states)
|
511 |
+
hidden_states = self.dropout(hidden_states)
|
512 |
+
return hidden_states
|
513 |
+
|
514 |
+
|
515 |
+
# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin
|
516 |
+
class DonutSwinLayer(nn.Module):
|
517 |
+
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
|
518 |
+
super().__init__()
|
519 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
520 |
+
self.shift_size = shift_size
|
521 |
+
self.window_size = config.window_size
|
522 |
+
self.input_resolution = input_resolution
|
523 |
+
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
524 |
+
self.attention = DonutSwinAttention(config, dim, num_heads, window_size=self.window_size)
|
525 |
+
self.drop_path = DonutSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
|
526 |
+
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
527 |
+
self.intermediate = DonutSwinIntermediate(config, dim)
|
528 |
+
self.output = DonutSwinOutput(config, dim)
|
529 |
+
|
530 |
+
def set_shift_and_window_size(self, input_resolution):
|
531 |
+
if min(input_resolution) <= self.window_size:
|
532 |
+
# if window size is larger than input resolution, we don't partition windows
|
533 |
+
self.shift_size = 0
|
534 |
+
self.window_size = min(input_resolution)
|
535 |
+
|
536 |
+
def get_attn_mask(self, height, width, dtype):
|
537 |
+
if self.shift_size > 0:
|
538 |
+
# calculate attention mask for SW-MSA
|
539 |
+
img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
|
540 |
+
height_slices = (
|
541 |
+
slice(0, -self.window_size),
|
542 |
+
slice(-self.window_size, -self.shift_size),
|
543 |
+
slice(-self.shift_size, None),
|
544 |
+
)
|
545 |
+
width_slices = (
|
546 |
+
slice(0, -self.window_size),
|
547 |
+
slice(-self.window_size, -self.shift_size),
|
548 |
+
slice(-self.shift_size, None),
|
549 |
+
)
|
550 |
+
count = 0
|
551 |
+
for height_slice in height_slices:
|
552 |
+
for width_slice in width_slices:
|
553 |
+
img_mask[:, height_slice, width_slice, :] = count
|
554 |
+
count += 1
|
555 |
+
|
556 |
+
mask_windows = window_partition(img_mask, self.window_size)
|
557 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
558 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
559 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
560 |
+
else:
|
561 |
+
attn_mask = None
|
562 |
+
return attn_mask
|
563 |
+
|
564 |
+
def maybe_pad(self, hidden_states, height, width):
|
565 |
+
pad_right = (self.window_size - width % self.window_size) % self.window_size
|
566 |
+
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
|
567 |
+
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
|
568 |
+
hidden_states = nn.functional.pad(hidden_states, pad_values)
|
569 |
+
return hidden_states, pad_values
|
570 |
+
|
571 |
+
def forward(
|
572 |
+
self,
|
573 |
+
hidden_states: torch.Tensor,
|
574 |
+
input_dimensions: Tuple[int, int],
|
575 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
576 |
+
output_attentions: Optional[bool] = False,
|
577 |
+
always_partition: Optional[bool] = False,
|
578 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
579 |
+
if not always_partition:
|
580 |
+
self.set_shift_and_window_size(input_dimensions)
|
581 |
+
else:
|
582 |
+
pass
|
583 |
+
height, width = input_dimensions
|
584 |
+
batch_size, _, channels = hidden_states.size()
|
585 |
+
shortcut = hidden_states
|
586 |
+
|
587 |
+
hidden_states = self.layernorm_before(hidden_states)
|
588 |
+
|
589 |
+
hidden_states = hidden_states.view(batch_size, height, width, channels)
|
590 |
+
|
591 |
+
# pad hidden_states to multiples of window size
|
592 |
+
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
|
593 |
+
|
594 |
+
_, height_pad, width_pad, _ = hidden_states.shape
|
595 |
+
# cyclic shift
|
596 |
+
if self.shift_size > 0:
|
597 |
+
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
598 |
+
else:
|
599 |
+
shifted_hidden_states = hidden_states
|
600 |
+
|
601 |
+
# partition windows
|
602 |
+
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
|
603 |
+
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
|
604 |
+
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype)
|
605 |
+
if attn_mask is not None:
|
606 |
+
attn_mask = attn_mask.to(hidden_states_windows.device)
|
607 |
+
|
608 |
+
attention_outputs = self.attention(
|
609 |
+
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
|
610 |
+
)
|
611 |
+
|
612 |
+
attention_output = attention_outputs[0]
|
613 |
+
|
614 |
+
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
|
615 |
+
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
|
616 |
+
|
617 |
+
# reverse cyclic shift
|
618 |
+
if self.shift_size > 0:
|
619 |
+
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
620 |
+
else:
|
621 |
+
attention_windows = shifted_windows
|
622 |
+
|
623 |
+
was_padded = pad_values[3] > 0 or pad_values[5] > 0
|
624 |
+
if was_padded:
|
625 |
+
attention_windows = attention_windows[:, :height, :width, :].contiguous()
|
626 |
+
|
627 |
+
attention_windows = attention_windows.view(batch_size, height * width, channels)
|
628 |
+
|
629 |
+
hidden_states = shortcut + self.drop_path(attention_windows)
|
630 |
+
|
631 |
+
layer_output = self.layernorm_after(hidden_states)
|
632 |
+
layer_output = self.intermediate(layer_output)
|
633 |
+
layer_output = hidden_states + self.output(layer_output)
|
634 |
+
|
635 |
+
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
|
636 |
+
return layer_outputs
|
637 |
+
|
638 |
+
|
639 |
+
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin
|
640 |
+
class DonutSwinStage(nn.Module):
|
641 |
+
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
|
642 |
+
super().__init__()
|
643 |
+
self.config = config
|
644 |
+
self.dim = dim
|
645 |
+
self.blocks = nn.ModuleList(
|
646 |
+
[
|
647 |
+
DonutSwinLayer(
|
648 |
+
config=config,
|
649 |
+
dim=dim,
|
650 |
+
input_resolution=input_resolution,
|
651 |
+
num_heads=num_heads,
|
652 |
+
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
|
653 |
+
)
|
654 |
+
for i in range(depth)
|
655 |
+
]
|
656 |
+
)
|
657 |
+
|
658 |
+
# patch merging layer
|
659 |
+
if downsample is not None:
|
660 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
|
661 |
+
else:
|
662 |
+
self.downsample = None
|
663 |
+
|
664 |
+
self.pointing = False
|
665 |
+
|
666 |
+
def forward(
|
667 |
+
self,
|
668 |
+
hidden_states: torch.Tensor,
|
669 |
+
input_dimensions: Tuple[int, int],
|
670 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
671 |
+
output_attentions: Optional[bool] = False,
|
672 |
+
always_partition: Optional[bool] = False,
|
673 |
+
) -> Tuple[torch.Tensor]:
|
674 |
+
height, width = input_dimensions
|
675 |
+
for i, layer_module in enumerate(self.blocks):
|
676 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
677 |
+
|
678 |
+
layer_outputs = layer_module(
|
679 |
+
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
|
680 |
+
)
|
681 |
+
|
682 |
+
hidden_states = layer_outputs[0]
|
683 |
+
|
684 |
+
hidden_states_before_downsampling = hidden_states
|
685 |
+
if self.downsample is not None:
|
686 |
+
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
|
687 |
+
output_dimensions = (height, width, height_downsampled, width_downsampled)
|
688 |
+
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
|
689 |
+
else:
|
690 |
+
output_dimensions = (height, width, height, width)
|
691 |
+
|
692 |
+
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
|
693 |
+
|
694 |
+
if output_attentions:
|
695 |
+
stage_outputs += layer_outputs[1:]
|
696 |
+
return stage_outputs
|
697 |
+
|
698 |
+
|
699 |
+
# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin
|
700 |
+
class DonutSwinEncoder(nn.Module):
|
701 |
+
def __init__(self, config, grid_size):
|
702 |
+
super().__init__()
|
703 |
+
self.num_layers = len(config.depths)
|
704 |
+
self.config = config
|
705 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
706 |
+
self.layers = nn.ModuleList(
|
707 |
+
[
|
708 |
+
DonutSwinStage(
|
709 |
+
config=config,
|
710 |
+
dim=int(config.embed_dim * 2**i_layer),
|
711 |
+
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
|
712 |
+
depth=config.depths[i_layer],
|
713 |
+
num_heads=config.num_heads[i_layer],
|
714 |
+
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
|
715 |
+
downsample=DonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
|
716 |
+
)
|
717 |
+
for i_layer in range(self.num_layers)
|
718 |
+
]
|
719 |
+
)
|
720 |
+
|
721 |
+
self.gradient_checkpointing = False
|
722 |
+
|
723 |
+
def forward(
|
724 |
+
self,
|
725 |
+
hidden_states: torch.Tensor,
|
726 |
+
input_dimensions: Tuple[int, int],
|
727 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
728 |
+
output_attentions: Optional[bool] = False,
|
729 |
+
output_hidden_states: Optional[bool] = False,
|
730 |
+
output_hidden_states_before_downsampling: Optional[bool] = False,
|
731 |
+
always_partition: Optional[bool] = False,
|
732 |
+
return_dict: Optional[bool] = True,
|
733 |
+
) -> Union[Tuple, DonutSwinEncoderOutput]:
|
734 |
+
all_hidden_states = () if output_hidden_states else None
|
735 |
+
all_reshaped_hidden_states = () if output_hidden_states else None
|
736 |
+
all_self_attentions = () if output_attentions else None
|
737 |
+
|
738 |
+
if output_hidden_states:
|
739 |
+
batch_size, _, hidden_size = hidden_states.shape
|
740 |
+
# rearrange b (h w) c -> b c h w
|
741 |
+
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
742 |
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
743 |
+
all_hidden_states += (hidden_states,)
|
744 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
745 |
+
|
746 |
+
for i, layer_module in enumerate(self.layers):
|
747 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
748 |
+
|
749 |
+
if self.gradient_checkpointing and self.training:
|
750 |
+
layer_outputs = self._gradient_checkpointing_func(
|
751 |
+
layer_module.__call__,
|
752 |
+
hidden_states,
|
753 |
+
input_dimensions,
|
754 |
+
layer_head_mask,
|
755 |
+
output_attentions,
|
756 |
+
always_partition,
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
layer_outputs = layer_module(
|
760 |
+
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
|
761 |
+
)
|
762 |
+
|
763 |
+
hidden_states = layer_outputs[0]
|
764 |
+
hidden_states_before_downsampling = layer_outputs[1]
|
765 |
+
output_dimensions = layer_outputs[2]
|
766 |
+
|
767 |
+
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
|
768 |
+
|
769 |
+
if output_hidden_states and output_hidden_states_before_downsampling:
|
770 |
+
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
|
771 |
+
# rearrange b (h w) c -> b c h w
|
772 |
+
# here we use the original (not downsampled) height and width
|
773 |
+
reshaped_hidden_state = hidden_states_before_downsampling.view(
|
774 |
+
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
|
775 |
+
)
|
776 |
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
777 |
+
all_hidden_states += (hidden_states_before_downsampling,)
|
778 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
779 |
+
elif output_hidden_states and not output_hidden_states_before_downsampling:
|
780 |
+
batch_size, _, hidden_size = hidden_states.shape
|
781 |
+
# rearrange b (h w) c -> b c h w
|
782 |
+
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
783 |
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
784 |
+
all_hidden_states += (hidden_states,)
|
785 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
786 |
+
|
787 |
+
if output_attentions:
|
788 |
+
all_self_attentions += layer_outputs[3:]
|
789 |
+
|
790 |
+
if not return_dict:
|
791 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
792 |
+
|
793 |
+
return DonutSwinEncoderOutput(
|
794 |
+
last_hidden_state=hidden_states,
|
795 |
+
hidden_states=all_hidden_states,
|
796 |
+
attentions=all_self_attentions,
|
797 |
+
reshaped_hidden_states=all_reshaped_hidden_states,
|
798 |
+
)
|
799 |
+
|
800 |
+
|
801 |
+
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->DonutSwin
|
802 |
+
class DonutSwinPreTrainedModel(PreTrainedModel):
|
803 |
+
"""
|
804 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
805 |
+
models.
|
806 |
+
"""
|
807 |
+
|
808 |
+
config_class = DonutSwinConfig
|
809 |
+
base_model_prefix = "swin"
|
810 |
+
main_input_name = "pixel_values"
|
811 |
+
supports_gradient_checkpointing = True
|
812 |
+
|
813 |
+
def _init_weights(self, module):
|
814 |
+
"""Initialize the weights"""
|
815 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
816 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
817 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
818 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
819 |
+
if module.bias is not None:
|
820 |
+
module.bias.data.zero_()
|
821 |
+
elif isinstance(module, nn.LayerNorm):
|
822 |
+
module.bias.data.zero_()
|
823 |
+
module.weight.data.fill_(1.0)
|
824 |
+
|
825 |
+
|
826 |
+
SWIN_START_DOCSTRING = r"""
|
827 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
828 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
829 |
+
behavior.
|
830 |
+
|
831 |
+
Parameters:
|
832 |
+
config ([`DonutSwinConfig`]): Model configuration class with all the parameters of the model.
|
833 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
834 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
835 |
+
"""
|
836 |
+
|
837 |
+
SWIN_INPUTS_DOCSTRING = r"""
|
838 |
+
Args:
|
839 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
840 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
841 |
+
[`DonutImageProcessor.__call__`] for details.
|
842 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
843 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
844 |
+
|
845 |
+
- 1 indicates the head is **not masked**,
|
846 |
+
- 0 indicates the head is **masked**.
|
847 |
+
|
848 |
+
output_attentions (`bool`, *optional*):
|
849 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
850 |
+
tensors for more detail.
|
851 |
+
output_hidden_states (`bool`, *optional*):
|
852 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
853 |
+
more detail.
|
854 |
+
return_dict (`bool`, *optional*):
|
855 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
856 |
+
"""
|
857 |
+
|
858 |
+
|
859 |
+
@add_start_docstrings(
|
860 |
+
"The bare Donut Swin Model transformer outputting raw hidden-states without any specific head on top.",
|
861 |
+
SWIN_START_DOCSTRING,
|
862 |
+
)
|
863 |
+
class DonutSwinModel(DonutSwinPreTrainedModel):
|
864 |
+
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
|
865 |
+
super().__init__(config)
|
866 |
+
self.config = config
|
867 |
+
self.num_layers = len(config.depths)
|
868 |
+
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
|
869 |
+
|
870 |
+
self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token)
|
871 |
+
self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid)
|
872 |
+
|
873 |
+
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
874 |
+
|
875 |
+
# Initialize weights and apply final processing
|
876 |
+
self.post_init()
|
877 |
+
|
878 |
+
def get_input_embeddings(self):
|
879 |
+
return self.embeddings.patch_embeddings
|
880 |
+
|
881 |
+
def _prune_heads(self, heads_to_prune):
|
882 |
+
"""
|
883 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
884 |
+
class PreTrainedModel
|
885 |
+
"""
|
886 |
+
for layer, heads in heads_to_prune.items():
|
887 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
888 |
+
|
889 |
+
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
|
890 |
+
@add_code_sample_docstrings(
|
891 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
892 |
+
output_type=DonutSwinModelOutput,
|
893 |
+
config_class=_CONFIG_FOR_DOC,
|
894 |
+
modality="vision",
|
895 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
896 |
+
)
|
897 |
+
def forward(
|
898 |
+
self,
|
899 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
900 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
901 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
902 |
+
output_attentions: Optional[bool] = None,
|
903 |
+
output_hidden_states: Optional[bool] = None,
|
904 |
+
return_dict: Optional[bool] = None,
|
905 |
+
) -> Union[Tuple, DonutSwinModelOutput]:
|
906 |
+
r"""
|
907 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
908 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
909 |
+
"""
|
910 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
911 |
+
output_hidden_states = (
|
912 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
913 |
+
)
|
914 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
915 |
+
|
916 |
+
if pixel_values is None:
|
917 |
+
raise ValueError("You have to specify pixel_values")
|
918 |
+
|
919 |
+
# Prepare head mask if needed
|
920 |
+
# 1.0 in head_mask indicate we keep the head
|
921 |
+
# attention_probs has shape bsz x n_heads x N x N
|
922 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
923 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
924 |
+
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
|
925 |
+
|
926 |
+
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
|
927 |
+
|
928 |
+
encoder_outputs = self.encoder(
|
929 |
+
embedding_output,
|
930 |
+
input_dimensions,
|
931 |
+
head_mask=head_mask,
|
932 |
+
output_attentions=output_attentions,
|
933 |
+
output_hidden_states=output_hidden_states,
|
934 |
+
return_dict=return_dict,
|
935 |
+
)
|
936 |
+
|
937 |
+
sequence_output = encoder_outputs[0]
|
938 |
+
|
939 |
+
pooled_output = None
|
940 |
+
if self.pooler is not None:
|
941 |
+
pooled_output = self.pooler(sequence_output.transpose(1, 2))
|
942 |
+
pooled_output = torch.flatten(pooled_output, 1)
|
943 |
+
|
944 |
+
if not return_dict:
|
945 |
+
output = (sequence_output, pooled_output) + encoder_outputs[1:]
|
946 |
+
|
947 |
+
return output
|
948 |
+
|
949 |
+
return DonutSwinModelOutput(
|
950 |
+
last_hidden_state=sequence_output,
|
951 |
+
pooler_output=pooled_output,
|
952 |
+
hidden_states=encoder_outputs.hidden_states,
|
953 |
+
attentions=encoder_outputs.attentions,
|
954 |
+
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
|
955 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/processing_donut.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Donut.
|
17 |
+
"""
|
18 |
+
import re
|
19 |
+
import warnings
|
20 |
+
from contextlib import contextmanager
|
21 |
+
|
22 |
+
from ...processing_utils import ProcessorMixin
|
23 |
+
|
24 |
+
|
25 |
+
class DonutProcessor(ProcessorMixin):
|
26 |
+
r"""
|
27 |
+
Constructs a Donut processor which wraps a Donut image processor and an XLMRoBERTa tokenizer into a single
|
28 |
+
processor.
|
29 |
+
|
30 |
+
[`DonutProcessor`] offers all the functionalities of [`DonutImageProcessor`] and
|
31 |
+
[`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]. See the [`~DonutProcessor.__call__`] and
|
32 |
+
[`~DonutProcessor.decode`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image_processor ([`DonutImageProcessor`], *optional*):
|
36 |
+
An instance of [`DonutImageProcessor`]. The image processor is a required input.
|
37 |
+
tokenizer ([`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`], *optional*):
|
38 |
+
An instance of [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]. The tokenizer is a required input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
attributes = ["image_processor", "tokenizer"]
|
42 |
+
image_processor_class = "AutoImageProcessor"
|
43 |
+
tokenizer_class = "AutoTokenizer"
|
44 |
+
|
45 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
46 |
+
feature_extractor = None
|
47 |
+
if "feature_extractor" in kwargs:
|
48 |
+
warnings.warn(
|
49 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
50 |
+
" instead.",
|
51 |
+
FutureWarning,
|
52 |
+
)
|
53 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
54 |
+
|
55 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
56 |
+
if image_processor is None:
|
57 |
+
raise ValueError("You need to specify an `image_processor`.")
|
58 |
+
if tokenizer is None:
|
59 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
60 |
+
|
61 |
+
super().__init__(image_processor, tokenizer)
|
62 |
+
self.current_processor = self.image_processor
|
63 |
+
self._in_target_context_manager = False
|
64 |
+
|
65 |
+
def __call__(self, *args, **kwargs):
|
66 |
+
"""
|
67 |
+
When used in normal mode, this method forwards all its arguments to AutoImageProcessor's
|
68 |
+
[`~AutoImageProcessor.__call__`] and returns its output. If used in the context
|
69 |
+
[`~DonutProcessor.as_target_processor`] this method forwards all its arguments to DonutTokenizer's
|
70 |
+
[`~DonutTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
|
71 |
+
"""
|
72 |
+
# For backward compatibility
|
73 |
+
if self._in_target_context_manager:
|
74 |
+
return self.current_processor(*args, **kwargs)
|
75 |
+
|
76 |
+
images = kwargs.pop("images", None)
|
77 |
+
text = kwargs.pop("text", None)
|
78 |
+
if len(args) > 0:
|
79 |
+
images = args[0]
|
80 |
+
args = args[1:]
|
81 |
+
|
82 |
+
if images is None and text is None:
|
83 |
+
raise ValueError("You need to specify either an `images` or `text` input to process.")
|
84 |
+
|
85 |
+
if images is not None:
|
86 |
+
inputs = self.image_processor(images, *args, **kwargs)
|
87 |
+
if text is not None:
|
88 |
+
encodings = self.tokenizer(text, **kwargs)
|
89 |
+
|
90 |
+
if text is None:
|
91 |
+
return inputs
|
92 |
+
elif images is None:
|
93 |
+
return encodings
|
94 |
+
else:
|
95 |
+
inputs["labels"] = encodings["input_ids"]
|
96 |
+
return inputs
|
97 |
+
|
98 |
+
def batch_decode(self, *args, **kwargs):
|
99 |
+
"""
|
100 |
+
This method forwards all its arguments to DonutTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
|
101 |
+
to the docstring of this method for more information.
|
102 |
+
"""
|
103 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
104 |
+
|
105 |
+
def decode(self, *args, **kwargs):
|
106 |
+
"""
|
107 |
+
This method forwards all its arguments to DonutTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
|
108 |
+
docstring of this method for more information.
|
109 |
+
"""
|
110 |
+
return self.tokenizer.decode(*args, **kwargs)
|
111 |
+
|
112 |
+
@contextmanager
|
113 |
+
def as_target_processor(self):
|
114 |
+
"""
|
115 |
+
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning TrOCR.
|
116 |
+
"""
|
117 |
+
warnings.warn(
|
118 |
+
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
|
119 |
+
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
|
120 |
+
"your images inputs, or in a separate call."
|
121 |
+
)
|
122 |
+
self._in_target_context_manager = True
|
123 |
+
self.current_processor = self.tokenizer
|
124 |
+
yield
|
125 |
+
self.current_processor = self.image_processor
|
126 |
+
self._in_target_context_manager = False
|
127 |
+
|
128 |
+
def token2json(self, tokens, is_inner_value=False, added_vocab=None):
|
129 |
+
"""
|
130 |
+
Convert a (generated) token sequence into an ordered JSON format.
|
131 |
+
"""
|
132 |
+
if added_vocab is None:
|
133 |
+
added_vocab = self.tokenizer.get_added_vocab()
|
134 |
+
|
135 |
+
output = {}
|
136 |
+
|
137 |
+
while tokens:
|
138 |
+
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
|
139 |
+
if start_token is None:
|
140 |
+
break
|
141 |
+
key = start_token.group(1)
|
142 |
+
key_escaped = re.escape(key)
|
143 |
+
|
144 |
+
end_token = re.search(rf"</s_{key_escaped}>", tokens, re.IGNORECASE)
|
145 |
+
start_token = start_token.group()
|
146 |
+
if end_token is None:
|
147 |
+
tokens = tokens.replace(start_token, "")
|
148 |
+
else:
|
149 |
+
end_token = end_token.group()
|
150 |
+
start_token_escaped = re.escape(start_token)
|
151 |
+
end_token_escaped = re.escape(end_token)
|
152 |
+
content = re.search(
|
153 |
+
f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE | re.DOTALL
|
154 |
+
)
|
155 |
+
if content is not None:
|
156 |
+
content = content.group(1).strip()
|
157 |
+
if r"<s_" in content and r"</s_" in content: # non-leaf node
|
158 |
+
value = self.token2json(content, is_inner_value=True, added_vocab=added_vocab)
|
159 |
+
if value:
|
160 |
+
if len(value) == 1:
|
161 |
+
value = value[0]
|
162 |
+
output[key] = value
|
163 |
+
else: # leaf nodes
|
164 |
+
output[key] = []
|
165 |
+
for leaf in content.split(r"<sep/>"):
|
166 |
+
leaf = leaf.strip()
|
167 |
+
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
|
168 |
+
leaf = leaf[1:-2] # for categorical special tokens
|
169 |
+
output[key].append(leaf)
|
170 |
+
if len(output[key]) == 1:
|
171 |
+
output[key] = output[key][0]
|
172 |
+
|
173 |
+
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()
|
174 |
+
if tokens[:6] == r"<sep/>": # non-leaf nodes
|
175 |
+
return [output] + self.token2json(tokens[6:], is_inner_value=True, added_vocab=added_vocab)
|
176 |
+
|
177 |
+
if len(output):
|
178 |
+
return [output] if is_inner_value else output
|
179 |
+
else:
|
180 |
+
return [] if is_inner_value else {"text_sequence": tokens}
|
181 |
+
|
182 |
+
@property
|
183 |
+
def feature_extractor_class(self):
|
184 |
+
warnings.warn(
|
185 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
186 |
+
FutureWarning,
|
187 |
+
)
|
188 |
+
return self.image_processor_class
|
189 |
+
|
190 |
+
@property
|
191 |
+
def feature_extractor(self):
|
192 |
+
warnings.warn(
|
193 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
194 |
+
FutureWarning,
|
195 |
+
)
|
196 |
+
return self.image_processor
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__init__.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_encodec": [
|
25 |
+
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
26 |
+
"EncodecConfig",
|
27 |
+
],
|
28 |
+
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_torch_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["modeling_encodec"] = [
|
38 |
+
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
|
39 |
+
"EncodecModel",
|
40 |
+
"EncodecPreTrainedModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from .configuration_encodec import (
|
45 |
+
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
46 |
+
EncodecConfig,
|
47 |
+
)
|
48 |
+
from .feature_extraction_encodec import EncodecFeatureExtractor
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_torch_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .modeling_encodec import (
|
57 |
+
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
|
58 |
+
EncodecModel,
|
59 |
+
EncodecPreTrainedModel,
|
60 |
+
)
|
61 |
+
|
62 |
+
else:
|
63 |
+
import sys
|
64 |
+
|
65 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (991 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/configuration_encodec.cpython-310.pyc
ADDED
Binary file (7.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/convert_encodec_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/feature_extraction_encodec.cpython-310.pyc
ADDED
Binary file (8.02 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/__pycache__/modeling_encodec.cpython-310.pyc
ADDED
Binary file (26.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/configuration_encodec.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" EnCodec model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Optional
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ...configuration_utils import PretrainedConfig
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class EncodecConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of an [`EncodecModel`]. It is used to instantiate a
|
36 |
+
Encodec model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
37 |
+
with the defaults will yield a similar configuration to that of the
|
38 |
+
[facebook/encodec_24khz](https://huggingface.co/facebook/encodec_24khz) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
target_bandwidths (`List[float]`, *optional*, defaults to `[1.5, 3.0, 6.0, 12.0, 24.0]`):
|
45 |
+
The range of diffent bandwiths the model can encode audio with.
|
46 |
+
sampling_rate (`int`, *optional*, defaults to 24000):
|
47 |
+
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
|
48 |
+
audio_channels (`int`, *optional*, defaults to 1):
|
49 |
+
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
|
50 |
+
normalize (`bool`, *optional*, defaults to `False`):
|
51 |
+
Whether the audio shall be normalized when passed.
|
52 |
+
chunk_length_s (`float`, *optional*):
|
53 |
+
If defined the audio is pre-processed into chunks of lengths `chunk_length_s` and then encoded.
|
54 |
+
overlap (`float`, *optional*):
|
55 |
+
Defines the overlap between each chunk. It is used to compute the `chunk_stride` using the following
|
56 |
+
formulae : `int((1.0 - self.overlap) * self.chunk_length)`.
|
57 |
+
hidden_size (`int`, *optional*, defaults to 128):
|
58 |
+
Intermediate representation dimension.
|
59 |
+
num_filters (`int`, *optional*, defaults to 32):
|
60 |
+
Number of convolution kernels of first `EncodecConv1d` down sampling layer.
|
61 |
+
num_residual_layers (`int`, *optional*, defaults to 1):
|
62 |
+
Number of residual layers.
|
63 |
+
upsampling_ratios (`Sequence[int]` , *optional*, defaults to `[8, 5, 4, 2]`):
|
64 |
+
Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it
|
65 |
+
will use the ratios in the reverse order to the ones specified here that must match the decoder order.
|
66 |
+
norm_type (`str`, *optional*, defaults to `"weight_norm"`):
|
67 |
+
Normalization method. Should be in `["weight_norm", "time_group_norm"]`
|
68 |
+
kernel_size (`int`, *optional*, defaults to 7):
|
69 |
+
Kernel size for the initial convolution.
|
70 |
+
last_kernel_size (`int`, *optional*, defaults to 7):
|
71 |
+
Kernel size for the last convolution layer.
|
72 |
+
residual_kernel_size (`int`, *optional*, defaults to 3):
|
73 |
+
Kernel size for the residual layers.
|
74 |
+
dilation_growth_rate (`int`, *optional*, defaults to 2):
|
75 |
+
How much to increase the dilation with each layer.
|
76 |
+
use_causal_conv (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether to use fully causal convolution.
|
78 |
+
pad_mode (`str`, *optional*, defaults to `"reflect"`):
|
79 |
+
Padding mode for the convolutions.
|
80 |
+
compress (`int`, *optional*, defaults to 2):
|
81 |
+
Reduced dimensionality in residual branches (from Demucs v3).
|
82 |
+
num_lstm_layers (`int`, *optional*, defaults to 2):
|
83 |
+
Number of LSTM layers at the end of the encoder.
|
84 |
+
trim_right_ratio (`float`, *optional*, defaults to 1.0):
|
85 |
+
Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If
|
86 |
+
equal to 1.0, it means that all the trimming is done at the right.
|
87 |
+
codebook_size (`int`, *optional*, defaults to 1024):
|
88 |
+
Number of discret codes that make up VQVAE.
|
89 |
+
codebook_dim (`int`, *optional*):
|
90 |
+
Dimension of the codebook vectors. If not defined, uses `hidden_size`.
|
91 |
+
use_conv_shortcut (`bool`, *optional*, defaults to `True`):
|
92 |
+
Whether to use a convolutional layer as the 'skip' connection in the `EncodecResnetBlock` block. If False,
|
93 |
+
an identity function will be used, giving a generic residual connection.
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import EncodecModel, EncodecConfig
|
99 |
+
|
100 |
+
>>> # Initializing a "facebook/encodec_24khz" style configuration
|
101 |
+
>>> configuration = EncodecConfig()
|
102 |
+
|
103 |
+
>>> # Initializing a model (with random weights) from the "facebook/encodec_24khz" style configuration
|
104 |
+
>>> model = EncodecModel(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "encodec"
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
target_bandwidths=[1.5, 3.0, 6.0, 12.0, 24.0],
|
115 |
+
sampling_rate=24_000,
|
116 |
+
audio_channels=1,
|
117 |
+
normalize=False,
|
118 |
+
chunk_length_s=None,
|
119 |
+
overlap=None,
|
120 |
+
hidden_size=128,
|
121 |
+
num_filters=32,
|
122 |
+
num_residual_layers=1,
|
123 |
+
upsampling_ratios=[8, 5, 4, 2],
|
124 |
+
norm_type="weight_norm",
|
125 |
+
kernel_size=7,
|
126 |
+
last_kernel_size=7,
|
127 |
+
residual_kernel_size=3,
|
128 |
+
dilation_growth_rate=2,
|
129 |
+
use_causal_conv=True,
|
130 |
+
pad_mode="reflect",
|
131 |
+
compress=2,
|
132 |
+
num_lstm_layers=2,
|
133 |
+
trim_right_ratio=1.0,
|
134 |
+
codebook_size=1024,
|
135 |
+
codebook_dim=None,
|
136 |
+
use_conv_shortcut=True,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
self.target_bandwidths = target_bandwidths
|
140 |
+
self.sampling_rate = sampling_rate
|
141 |
+
self.audio_channels = audio_channels
|
142 |
+
self.normalize = normalize
|
143 |
+
self.chunk_length_s = chunk_length_s
|
144 |
+
self.overlap = overlap
|
145 |
+
self.hidden_size = hidden_size
|
146 |
+
self.num_filters = num_filters
|
147 |
+
self.num_residual_layers = num_residual_layers
|
148 |
+
self.upsampling_ratios = upsampling_ratios
|
149 |
+
self.norm_type = norm_type
|
150 |
+
self.kernel_size = kernel_size
|
151 |
+
self.last_kernel_size = last_kernel_size
|
152 |
+
self.residual_kernel_size = residual_kernel_size
|
153 |
+
self.dilation_growth_rate = dilation_growth_rate
|
154 |
+
self.use_causal_conv = use_causal_conv
|
155 |
+
self.pad_mode = pad_mode
|
156 |
+
self.compress = compress
|
157 |
+
self.num_lstm_layers = num_lstm_layers
|
158 |
+
self.trim_right_ratio = trim_right_ratio
|
159 |
+
self.codebook_size = codebook_size
|
160 |
+
self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size
|
161 |
+
self.use_conv_shortcut = use_conv_shortcut
|
162 |
+
|
163 |
+
if self.norm_type not in ["weight_norm", "time_group_norm"]:
|
164 |
+
raise ValueError(
|
165 |
+
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}'
|
166 |
+
)
|
167 |
+
|
168 |
+
super().__init__(**kwargs)
|
169 |
+
|
170 |
+
# This is a property because you might want to change the chunk_length_s on the fly
|
171 |
+
@property
|
172 |
+
def chunk_length(self) -> Optional[int]:
|
173 |
+
if self.chunk_length_s is None:
|
174 |
+
return None
|
175 |
+
else:
|
176 |
+
return int(self.chunk_length_s * self.sampling_rate)
|
177 |
+
|
178 |
+
# This is a property because you might want to change the chunk_length_s on the fly
|
179 |
+
@property
|
180 |
+
def chunk_stride(self) -> Optional[int]:
|
181 |
+
if self.chunk_length_s is None or self.overlap is None:
|
182 |
+
return None
|
183 |
+
else:
|
184 |
+
return max(1, int((1.0 - self.overlap) * self.chunk_length))
|
185 |
+
|
186 |
+
@property
|
187 |
+
def frame_rate(self) -> int:
|
188 |
+
hop_length = np.prod(self.upsampling_ratios)
|
189 |
+
return math.ceil(self.sampling_rate / hop_length)
|
190 |
+
|
191 |
+
@property
|
192 |
+
def num_quantizers(self) -> int:
|
193 |
+
return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10))
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert EnCodec checkpoints."""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from transformers import (
|
22 |
+
EncodecConfig,
|
23 |
+
EncodecFeatureExtractor,
|
24 |
+
EncodecModel,
|
25 |
+
logging,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
# checkpoints downloaded from:
|
30 |
+
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
|
31 |
+
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
|
32 |
+
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
|
33 |
+
|
34 |
+
|
35 |
+
logging.set_verbosity_info()
|
36 |
+
logger = logging.get_logger("transformers.models.encodec")
|
37 |
+
|
38 |
+
MAPPING_QUANTIZER = {
|
39 |
+
"quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited",
|
40 |
+
"quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size",
|
41 |
+
"quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed",
|
42 |
+
"quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg",
|
43 |
+
}
|
44 |
+
MAPPING_ENCODER = {
|
45 |
+
"encoder.model.0.conv.conv": "encoder.layers.0.conv",
|
46 |
+
"encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv",
|
47 |
+
"encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv",
|
48 |
+
"encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv",
|
49 |
+
"encoder.model.3.conv.conv": "encoder.layers.3.conv",
|
50 |
+
"encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv",
|
51 |
+
"encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv",
|
52 |
+
"encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv",
|
53 |
+
"encoder.model.6.conv.conv": "encoder.layers.6.conv",
|
54 |
+
"encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv",
|
55 |
+
"encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv",
|
56 |
+
"encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv",
|
57 |
+
"encoder.model.9.conv.conv": "encoder.layers.9.conv",
|
58 |
+
"encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv",
|
59 |
+
"encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv",
|
60 |
+
"encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv",
|
61 |
+
"encoder.model.12.conv.conv": "encoder.layers.12.conv",
|
62 |
+
"encoder.model.13.lstm": "encoder.layers.13.lstm",
|
63 |
+
"encoder.model.15.conv.conv": "encoder.layers.15.conv",
|
64 |
+
}
|
65 |
+
MAPPING_ENCODER_48K = {
|
66 |
+
"encoder.model.0.conv.norm": "encoder.layers.0.norm",
|
67 |
+
"encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm",
|
68 |
+
"encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm",
|
69 |
+
"encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm",
|
70 |
+
"encoder.model.3.conv.norm": "encoder.layers.3.norm",
|
71 |
+
"encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm",
|
72 |
+
"encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm",
|
73 |
+
"encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm",
|
74 |
+
"encoder.model.6.conv.norm": "encoder.layers.6.norm",
|
75 |
+
"encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm",
|
76 |
+
"encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm",
|
77 |
+
"encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm",
|
78 |
+
"encoder.model.9.conv.norm": "encoder.layers.9.norm",
|
79 |
+
"encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm",
|
80 |
+
"encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm",
|
81 |
+
"encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm",
|
82 |
+
"encoder.model.12.conv.norm": "encoder.layers.12.norm",
|
83 |
+
"encoder.model.15.conv.norm": "encoder.layers.15.norm",
|
84 |
+
}
|
85 |
+
MAPPING_DECODER = {
|
86 |
+
"decoder.model.0.conv.conv": "decoder.layers.0.conv",
|
87 |
+
"decoder.model.1.lstm": "decoder.layers.1.lstm",
|
88 |
+
"decoder.model.3.convtr.convtr": "decoder.layers.3.conv",
|
89 |
+
"decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv",
|
90 |
+
"decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv",
|
91 |
+
"decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv",
|
92 |
+
"decoder.model.6.convtr.convtr": "decoder.layers.6.conv",
|
93 |
+
"decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv",
|
94 |
+
"decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv",
|
95 |
+
"decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv",
|
96 |
+
"decoder.model.9.convtr.convtr": "decoder.layers.9.conv",
|
97 |
+
"decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv",
|
98 |
+
"decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv",
|
99 |
+
"decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv",
|
100 |
+
"decoder.model.12.convtr.convtr": "decoder.layers.12.conv",
|
101 |
+
"decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv",
|
102 |
+
"decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv",
|
103 |
+
"decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv",
|
104 |
+
"decoder.model.15.conv.conv": "decoder.layers.15.conv",
|
105 |
+
}
|
106 |
+
MAPPING_DECODER_48K = {
|
107 |
+
"decoder.model.0.conv.norm": "decoder.layers.0.norm",
|
108 |
+
"decoder.model.3.convtr.norm": "decoder.layers.3.norm",
|
109 |
+
"decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm",
|
110 |
+
"decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm",
|
111 |
+
"decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm",
|
112 |
+
"decoder.model.6.convtr.norm": "decoder.layers.6.norm",
|
113 |
+
"decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm",
|
114 |
+
"decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm",
|
115 |
+
"decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm",
|
116 |
+
"decoder.model.9.convtr.norm": "decoder.layers.9.norm",
|
117 |
+
"decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm",
|
118 |
+
"decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm",
|
119 |
+
"decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm",
|
120 |
+
"decoder.model.12.convtr.norm": "decoder.layers.12.norm",
|
121 |
+
"decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm",
|
122 |
+
"decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm",
|
123 |
+
"decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm",
|
124 |
+
"decoder.model.15.conv.norm": "decoder.layers.15.norm",
|
125 |
+
}
|
126 |
+
MAPPING_24K = {
|
127 |
+
**MAPPING_QUANTIZER,
|
128 |
+
**MAPPING_ENCODER,
|
129 |
+
**MAPPING_DECODER,
|
130 |
+
}
|
131 |
+
MAPPING_48K = {
|
132 |
+
**MAPPING_QUANTIZER,
|
133 |
+
**MAPPING_ENCODER,
|
134 |
+
**MAPPING_ENCODER_48K,
|
135 |
+
**MAPPING_DECODER,
|
136 |
+
**MAPPING_DECODER_48K,
|
137 |
+
}
|
138 |
+
TOP_LEVEL_KEYS = []
|
139 |
+
IGNORE_KEYS = []
|
140 |
+
|
141 |
+
|
142 |
+
def set_recursively(hf_pointer, key, value, full_name, weight_type):
|
143 |
+
for attribute in key.split("."):
|
144 |
+
hf_pointer = getattr(hf_pointer, attribute)
|
145 |
+
|
146 |
+
if weight_type is not None:
|
147 |
+
hf_shape = getattr(hf_pointer, weight_type).shape
|
148 |
+
else:
|
149 |
+
hf_shape = hf_pointer.shape
|
150 |
+
|
151 |
+
if hf_shape != value.shape:
|
152 |
+
raise ValueError(
|
153 |
+
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
|
154 |
+
f" {value.shape} for {full_name}"
|
155 |
+
)
|
156 |
+
|
157 |
+
if weight_type == "weight":
|
158 |
+
hf_pointer.weight.data = value
|
159 |
+
elif weight_type == "weight_g":
|
160 |
+
hf_pointer.weight_g.data = value
|
161 |
+
elif weight_type == "weight_v":
|
162 |
+
hf_pointer.weight_v.data = value
|
163 |
+
elif weight_type == "bias":
|
164 |
+
hf_pointer.bias.data = value
|
165 |
+
elif weight_type == "running_mean":
|
166 |
+
hf_pointer.running_mean.data = value
|
167 |
+
elif weight_type == "running_var":
|
168 |
+
hf_pointer.running_var.data = value
|
169 |
+
elif weight_type == "num_batches_tracked":
|
170 |
+
hf_pointer.num_batches_tracked.data = value
|
171 |
+
elif weight_type == "weight_ih_l0":
|
172 |
+
hf_pointer.weight_ih_l0.data = value
|
173 |
+
elif weight_type == "weight_hh_l0":
|
174 |
+
hf_pointer.weight_hh_l0.data = value
|
175 |
+
elif weight_type == "bias_ih_l0":
|
176 |
+
hf_pointer.bias_ih_l0.data = value
|
177 |
+
elif weight_type == "bias_hh_l0":
|
178 |
+
hf_pointer.bias_hh_l0.data = value
|
179 |
+
elif weight_type == "weight_ih_l1":
|
180 |
+
hf_pointer.weight_ih_l1.data = value
|
181 |
+
elif weight_type == "weight_hh_l1":
|
182 |
+
hf_pointer.weight_hh_l1.data = value
|
183 |
+
elif weight_type == "bias_ih_l1":
|
184 |
+
hf_pointer.bias_ih_l1.data = value
|
185 |
+
elif weight_type == "bias_hh_l1":
|
186 |
+
hf_pointer.bias_hh_l1.data = value
|
187 |
+
else:
|
188 |
+
hf_pointer.data = value
|
189 |
+
|
190 |
+
logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.")
|
191 |
+
|
192 |
+
|
193 |
+
def should_ignore(name, ignore_keys):
|
194 |
+
for key in ignore_keys:
|
195 |
+
if key.endswith(".*"):
|
196 |
+
if name.startswith(key[:-1]):
|
197 |
+
return True
|
198 |
+
elif ".*." in key:
|
199 |
+
prefix, suffix = key.split(".*.")
|
200 |
+
if prefix in name and suffix in name:
|
201 |
+
return True
|
202 |
+
elif key in name:
|
203 |
+
return True
|
204 |
+
return False
|
205 |
+
|
206 |
+
|
207 |
+
def recursively_load_weights(orig_dict, hf_model, model_name):
|
208 |
+
unused_weights = []
|
209 |
+
|
210 |
+
if model_name == "encodec_24khz" or "encodec_32khz":
|
211 |
+
MAPPING = MAPPING_24K
|
212 |
+
elif model_name == "encodec_48khz":
|
213 |
+
MAPPING = MAPPING_48K
|
214 |
+
else:
|
215 |
+
raise ValueError(f"Unsupported model: {model_name}")
|
216 |
+
|
217 |
+
for name, value in orig_dict.items():
|
218 |
+
if should_ignore(name, IGNORE_KEYS):
|
219 |
+
logger.info(f"{name} was ignored")
|
220 |
+
continue
|
221 |
+
|
222 |
+
is_used = False
|
223 |
+
for key, mapped_key in MAPPING.items():
|
224 |
+
if "*" in key:
|
225 |
+
prefix, suffix = key.split(".*.")
|
226 |
+
if prefix in name and suffix in name:
|
227 |
+
key = suffix
|
228 |
+
|
229 |
+
if key in name:
|
230 |
+
# HACK otherwise .embed gets initialized with .embed_avg too
|
231 |
+
if key.endswith("embed") and name.endswith("embed_avg"):
|
232 |
+
continue
|
233 |
+
|
234 |
+
is_used = True
|
235 |
+
if "*" in mapped_key:
|
236 |
+
layer_index = name.split(key)[0].split(".")[-2]
|
237 |
+
mapped_key = mapped_key.replace("*", layer_index)
|
238 |
+
if "weight_g" in name:
|
239 |
+
weight_type = "weight_g"
|
240 |
+
elif "weight_v" in name:
|
241 |
+
weight_type = "weight_v"
|
242 |
+
elif "weight_ih_l0" in name:
|
243 |
+
weight_type = "weight_ih_l0"
|
244 |
+
elif "weight_hh_l0" in name:
|
245 |
+
weight_type = "weight_hh_l0"
|
246 |
+
elif "bias_ih_l0" in name:
|
247 |
+
weight_type = "bias_ih_l0"
|
248 |
+
elif "bias_hh_l0" in name:
|
249 |
+
weight_type = "bias_hh_l0"
|
250 |
+
elif "weight_ih_l1" in name:
|
251 |
+
weight_type = "weight_ih_l1"
|
252 |
+
elif "weight_hh_l1" in name:
|
253 |
+
weight_type = "weight_hh_l1"
|
254 |
+
elif "bias_ih_l1" in name:
|
255 |
+
weight_type = "bias_ih_l1"
|
256 |
+
elif "bias_hh_l1" in name:
|
257 |
+
weight_type = "bias_hh_l1"
|
258 |
+
elif "bias" in name:
|
259 |
+
weight_type = "bias"
|
260 |
+
elif "weight" in name:
|
261 |
+
weight_type = "weight"
|
262 |
+
elif "running_mean" in name:
|
263 |
+
weight_type = "running_mean"
|
264 |
+
elif "running_var" in name:
|
265 |
+
weight_type = "running_var"
|
266 |
+
elif "num_batches_tracked" in name:
|
267 |
+
weight_type = "num_batches_tracked"
|
268 |
+
else:
|
269 |
+
weight_type = None
|
270 |
+
set_recursively(hf_model, mapped_key, value, name, weight_type)
|
271 |
+
continue
|
272 |
+
if not is_used:
|
273 |
+
unused_weights.append(name)
|
274 |
+
|
275 |
+
logger.warning(f"Unused weights: {unused_weights}")
|
276 |
+
|
277 |
+
|
278 |
+
@torch.no_grad()
|
279 |
+
def convert_checkpoint(
|
280 |
+
model_name,
|
281 |
+
checkpoint_path,
|
282 |
+
pytorch_dump_folder_path,
|
283 |
+
config_path=None,
|
284 |
+
repo_id=None,
|
285 |
+
):
|
286 |
+
"""
|
287 |
+
Copy/paste/tweak model's weights to transformers design.
|
288 |
+
"""
|
289 |
+
if config_path is not None:
|
290 |
+
config = EncodecConfig.from_pretrained(config_path)
|
291 |
+
else:
|
292 |
+
config = EncodecConfig()
|
293 |
+
|
294 |
+
if model_name == "encodec_24khz":
|
295 |
+
pass # config is already correct
|
296 |
+
elif model_name == "encodec_32khz":
|
297 |
+
config.upsampling_ratios = [8, 5, 4, 4]
|
298 |
+
config.target_bandwidths = [2.2]
|
299 |
+
config.num_filters = 64
|
300 |
+
config.sampling_rate = 32_000
|
301 |
+
config.codebook_size = 2048
|
302 |
+
config.use_causal_conv = False
|
303 |
+
config.normalize = False
|
304 |
+
config.use_conv_shortcut = False
|
305 |
+
elif model_name == "encodec_48khz":
|
306 |
+
config.upsampling_ratios = [8, 5, 4, 2]
|
307 |
+
config.target_bandwidths = [3.0, 6.0, 12.0, 24.0]
|
308 |
+
config.sampling_rate = 48_000
|
309 |
+
config.audio_channels = 2
|
310 |
+
config.use_causal_conv = False
|
311 |
+
config.norm_type = "time_group_norm"
|
312 |
+
config.normalize = True
|
313 |
+
config.chunk_length_s = 1.0
|
314 |
+
config.overlap = 0.01
|
315 |
+
else:
|
316 |
+
raise ValueError(f"Unknown model name: {model_name}")
|
317 |
+
|
318 |
+
model = EncodecModel(config)
|
319 |
+
|
320 |
+
feature_extractor = EncodecFeatureExtractor(
|
321 |
+
feature_size=config.audio_channels,
|
322 |
+
sampling_rate=config.sampling_rate,
|
323 |
+
chunk_length_s=config.chunk_length_s,
|
324 |
+
overlap=config.overlap,
|
325 |
+
)
|
326 |
+
feature_extractor.save_pretrained(pytorch_dump_folder_path)
|
327 |
+
|
328 |
+
original_checkpoint = torch.load(checkpoint_path)
|
329 |
+
if "best_state" in original_checkpoint:
|
330 |
+
# we might have a training state saved, in which case discard the yaml results and just retain the weights
|
331 |
+
original_checkpoint = original_checkpoint["best_state"]
|
332 |
+
recursively_load_weights(original_checkpoint, model, model_name)
|
333 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
334 |
+
|
335 |
+
if repo_id:
|
336 |
+
print("Pushing to the hub...")
|
337 |
+
feature_extractor.push_to_hub(repo_id)
|
338 |
+
model.push_to_hub(repo_id)
|
339 |
+
|
340 |
+
|
341 |
+
if __name__ == "__main__":
|
342 |
+
parser = argparse.ArgumentParser()
|
343 |
+
parser.add_argument(
|
344 |
+
"--model",
|
345 |
+
default="encodec_24khz",
|
346 |
+
type=str,
|
347 |
+
help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.",
|
348 |
+
)
|
349 |
+
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
|
350 |
+
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
351 |
+
parser.add_argument(
|
352 |
+
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
|
356 |
+
)
|
357 |
+
|
358 |
+
args = parser.parse_args()
|
359 |
+
convert_checkpoint(
|
360 |
+
args.model,
|
361 |
+
args.checkpoint_path,
|
362 |
+
args.pytorch_dump_folder_path,
|
363 |
+
args.config_path,
|
364 |
+
args.push_to_hub,
|
365 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/feature_extraction_encodec.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for EnCodec."""
|
16 |
+
|
17 |
+
from typing import List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
|
22 |
+
from ...feature_extraction_utils import BatchFeature
|
23 |
+
from ...utils import PaddingStrategy, TensorType, logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class EncodecFeatureExtractor(SequenceFeatureExtractor):
|
30 |
+
r"""
|
31 |
+
Constructs an EnCodec feature extractor.
|
32 |
+
|
33 |
+
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
|
34 |
+
most of the main methods. Users should refer to this superclass for more information regarding those methods.
|
35 |
+
|
36 |
+
Instantiating a feature extractor with the defaults will yield a similar configuration to that of the
|
37 |
+
[facebook/encodec_24khz](https://huggingface.co/facebook/encodec_24khz) architecture.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
feature_size (`int`, *optional*, defaults to 1):
|
41 |
+
The feature dimension of the extracted features. Use 1 for mono, 2 for stereo.
|
42 |
+
sampling_rate (`int`, *optional*, defaults to 24000):
|
43 |
+
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
|
44 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
45 |
+
The value that is used to fill the padding values.
|
46 |
+
chunk_length_s (`float`, *optional*):
|
47 |
+
If defined the audio is pre-processed into chunks of lengths `chunk_length_s` and then encoded.
|
48 |
+
overlap (`float`, *optional*):
|
49 |
+
Defines the overlap between each chunk. It is used to compute the `chunk_stride` using the following
|
50 |
+
formulae : `int((1.0 - self.overlap) * self.chunk_length)`.
|
51 |
+
"""
|
52 |
+
|
53 |
+
model_input_names = ["input_values", "padding_mask"]
|
54 |
+
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
feature_size: int = 1,
|
58 |
+
sampling_rate: int = 24000,
|
59 |
+
padding_value: float = 0.0,
|
60 |
+
chunk_length_s: float = None,
|
61 |
+
overlap: float = None,
|
62 |
+
**kwargs,
|
63 |
+
):
|
64 |
+
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
65 |
+
self.chunk_length_s = chunk_length_s
|
66 |
+
self.overlap = overlap
|
67 |
+
|
68 |
+
# This is a property because you might want to change the chunk_length_s on the fly
|
69 |
+
@property
|
70 |
+
def chunk_length(self) -> Optional[int]:
|
71 |
+
if self.chunk_length_s is None:
|
72 |
+
return None
|
73 |
+
else:
|
74 |
+
return int(self.chunk_length_s * self.sampling_rate)
|
75 |
+
|
76 |
+
# This is a property because you might want to change the chunk_length_s on the fly
|
77 |
+
@property
|
78 |
+
def chunk_stride(self) -> Optional[int]:
|
79 |
+
if self.chunk_length_s is None or self.overlap is None:
|
80 |
+
return None
|
81 |
+
else:
|
82 |
+
return max(1, int((1.0 - self.overlap) * self.chunk_length))
|
83 |
+
|
84 |
+
def __call__(
|
85 |
+
self,
|
86 |
+
raw_audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
87 |
+
padding: Optional[Union[bool, str, PaddingStrategy]] = None,
|
88 |
+
truncation: Optional[bool] = False,
|
89 |
+
max_length: Optional[int] = None,
|
90 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
91 |
+
sampling_rate: Optional[int] = None,
|
92 |
+
) -> BatchFeature:
|
93 |
+
"""
|
94 |
+
Main method to featurize and prepare for the model one or several sequence(s).
|
95 |
+
|
96 |
+
Args:
|
97 |
+
raw_audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
98 |
+
The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float
|
99 |
+
values, a list of numpy arrays or a list of list of float values. The numpy array must be of shape
|
100 |
+
`(num_samples,)` for mono audio (`feature_size = 1`), or `(2, num_samples)` for stereo audio
|
101 |
+
(`feature_size = 2`).
|
102 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
103 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
104 |
+
index) among:
|
105 |
+
|
106 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
107 |
+
sequence if provided).
|
108 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
109 |
+
acceptable input length for the model if that argument is not provided.
|
110 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
111 |
+
lengths).
|
112 |
+
truncation (`bool`, *optional*, defaults to `False`):
|
113 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
114 |
+
max_length (`int`, *optional*):
|
115 |
+
Maximum length of the returned list and optionally padding length (see above).
|
116 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
117 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
118 |
+
|
119 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
120 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
121 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
122 |
+
sampling_rate (`int`, *optional*):
|
123 |
+
The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
|
124 |
+
`sampling_rate` at the forward call to prevent silent errors.
|
125 |
+
"""
|
126 |
+
if sampling_rate is not None:
|
127 |
+
if sampling_rate != self.sampling_rate:
|
128 |
+
raise ValueError(
|
129 |
+
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
|
130 |
+
f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"
|
131 |
+
f" {self.sampling_rate} and not {sampling_rate}."
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
logger.warning(
|
135 |
+
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
|
136 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
137 |
+
)
|
138 |
+
|
139 |
+
if padding and truncation:
|
140 |
+
raise ValueError("Both padding and truncation were set. Make sure you only set one.")
|
141 |
+
elif padding is None:
|
142 |
+
# by default let's pad the inputs
|
143 |
+
padding = True
|
144 |
+
|
145 |
+
is_batched = bool(
|
146 |
+
isinstance(raw_audio, (list, tuple)) and (isinstance(raw_audio[0], (np.ndarray, tuple, list)))
|
147 |
+
)
|
148 |
+
|
149 |
+
if is_batched:
|
150 |
+
raw_audio = [np.asarray(audio, dtype=np.float32).T for audio in raw_audio]
|
151 |
+
elif not is_batched and not isinstance(raw_audio, np.ndarray):
|
152 |
+
raw_audio = np.asarray(raw_audio, dtype=np.float32)
|
153 |
+
elif isinstance(raw_audio, np.ndarray) and raw_audio.dtype is np.dtype(np.float64):
|
154 |
+
raw_audio = raw_audio.astype(np.float32)
|
155 |
+
|
156 |
+
# always return batch
|
157 |
+
if not is_batched:
|
158 |
+
raw_audio = [np.asarray(raw_audio).T]
|
159 |
+
|
160 |
+
# verify inputs are valid
|
161 |
+
for idx, example in enumerate(raw_audio):
|
162 |
+
if example.ndim > 2:
|
163 |
+
raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}")
|
164 |
+
if self.feature_size == 1 and example.ndim != 1:
|
165 |
+
raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels")
|
166 |
+
if self.feature_size == 2 and example.shape[-1] != 2:
|
167 |
+
raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels")
|
168 |
+
|
169 |
+
padded_inputs = None
|
170 |
+
input_values = BatchFeature({"input_values": raw_audio})
|
171 |
+
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
|
172 |
+
if truncation:
|
173 |
+
max_length = min(array.shape[0] for array in raw_audio)
|
174 |
+
nb_step = int(np.floor(max_length / self.chunk_stride))
|
175 |
+
max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length
|
176 |
+
elif padding:
|
177 |
+
max_length = max(array.shape[0] for array in raw_audio)
|
178 |
+
nb_step = int(np.ceil(max_length / self.chunk_stride))
|
179 |
+
max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length
|
180 |
+
padding = "max_length"
|
181 |
+
else:
|
182 |
+
padded_inputs = input_values
|
183 |
+
|
184 |
+
# normal padding on batch
|
185 |
+
if padded_inputs is None:
|
186 |
+
padded_inputs = self.pad(
|
187 |
+
input_values,
|
188 |
+
max_length=max_length,
|
189 |
+
truncation=truncation,
|
190 |
+
padding=padding,
|
191 |
+
return_attention_mask=padding,
|
192 |
+
)
|
193 |
+
if padding:
|
194 |
+
padded_inputs["padding_mask"] = padded_inputs.pop("attention_mask")
|
195 |
+
|
196 |
+
input_values = []
|
197 |
+
for example in padded_inputs.pop("input_values"):
|
198 |
+
if self.feature_size == 1:
|
199 |
+
example = example[..., None]
|
200 |
+
input_values.append(example.T)
|
201 |
+
|
202 |
+
padded_inputs["input_values"] = input_values
|
203 |
+
if return_tensors is not None:
|
204 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
205 |
+
|
206 |
+
return padded_inputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/encodec/modeling_encodec.py
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch EnCodec model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ...modeling_utils import PreTrainedModel
|
26 |
+
from ...utils import (
|
27 |
+
ModelOutput,
|
28 |
+
add_start_docstrings,
|
29 |
+
add_start_docstrings_to_model_forward,
|
30 |
+
logging,
|
31 |
+
replace_return_docstrings,
|
32 |
+
)
|
33 |
+
from .configuration_encodec import EncodecConfig
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
# General docstring
|
40 |
+
_CONFIG_FOR_DOC = "EncodecConfig"
|
41 |
+
|
42 |
+
|
43 |
+
from ..deprecated._archive_maps import ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class EncodecOutput(ModelOutput):
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
|
51 |
+
Discret code embeddings computed using `model.encode`.
|
52 |
+
audio_values (`torch.FlaotTensor` of shape `(batch_size, sequence_length)`, *optional*)
|
53 |
+
Decoded audio values, obtained using the decoder part of Encodec.
|
54 |
+
"""
|
55 |
+
|
56 |
+
audio_codes: torch.LongTensor = None
|
57 |
+
audio_values: torch.FloatTensor = None
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class EncodecEncoderOutput(ModelOutput):
|
62 |
+
"""
|
63 |
+
Args:
|
64 |
+
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
|
65 |
+
Discret code embeddings computed using `model.encode`.
|
66 |
+
audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
|
67 |
+
Scaling factor for each `audio_codes` input. This is used to unscale each chunk of audio when decoding.
|
68 |
+
"""
|
69 |
+
|
70 |
+
audio_codes: torch.LongTensor = None
|
71 |
+
audio_scales: torch.FloatTensor = None
|
72 |
+
|
73 |
+
|
74 |
+
@dataclass
|
75 |
+
class EncodecDecoderOutput(ModelOutput):
|
76 |
+
"""
|
77 |
+
Args:
|
78 |
+
audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*):
|
79 |
+
Decoded audio values, obtained using the decoder part of Encodec.
|
80 |
+
"""
|
81 |
+
|
82 |
+
audio_values: torch.FloatTensor = None
|
83 |
+
|
84 |
+
|
85 |
+
class EncodecConv1d(nn.Module):
|
86 |
+
"""Conv1d with asymmetric or causal padding and normalization."""
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, dilation: int = 1
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
self.causal = config.use_causal_conv
|
93 |
+
self.pad_mode = config.pad_mode
|
94 |
+
self.norm_type = config.norm_type
|
95 |
+
|
96 |
+
if self.norm_type not in ["weight_norm", "time_group_norm"]:
|
97 |
+
raise ValueError(
|
98 |
+
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}'
|
99 |
+
)
|
100 |
+
|
101 |
+
# warn user on unusual setup between dilation and stride
|
102 |
+
if stride > 1 and dilation > 1:
|
103 |
+
logger.warning(
|
104 |
+
"EncodecConv1d has been initialized with stride > 1 and dilation > 1"
|
105 |
+
f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})."
|
106 |
+
)
|
107 |
+
|
108 |
+
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, dilation=dilation)
|
109 |
+
if self.norm_type == "weight_norm":
|
110 |
+
self.conv = nn.utils.weight_norm(self.conv)
|
111 |
+
elif self.norm_type == "time_group_norm":
|
112 |
+
self.norm = nn.GroupNorm(1, out_channels)
|
113 |
+
|
114 |
+
kernel_size = self.conv.kernel_size[0]
|
115 |
+
stride = torch.tensor(self.conv.stride[0], dtype=torch.int64)
|
116 |
+
dilation = self.conv.dilation[0]
|
117 |
+
|
118 |
+
# Effective kernel size with dilations.
|
119 |
+
kernel_size = torch.tensor((kernel_size - 1) * dilation + 1, dtype=torch.int64)
|
120 |
+
|
121 |
+
self.register_buffer("stride", stride, persistent=False)
|
122 |
+
self.register_buffer("kernel_size", kernel_size, persistent=False)
|
123 |
+
self.register_buffer("padding_total", torch.tensor(kernel_size - stride, dtype=torch.int64), persistent=False)
|
124 |
+
|
125 |
+
def _get_extra_padding_for_conv1d(
|
126 |
+
self,
|
127 |
+
hidden_states: torch.Tensor,
|
128 |
+
) -> torch.Tensor:
|
129 |
+
"""See `pad_for_conv1d`."""
|
130 |
+
length = hidden_states.shape[-1]
|
131 |
+
n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1
|
132 |
+
n_frames = torch.ceil(n_frames).to(torch.int64) - 1
|
133 |
+
ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total
|
134 |
+
|
135 |
+
return ideal_length - length
|
136 |
+
|
137 |
+
@staticmethod
|
138 |
+
def _pad1d(hidden_states: torch.Tensor, paddings: Tuple[int, int], mode: str = "zero", value: float = 0.0):
|
139 |
+
"""Tiny wrapper around torch.nn.functional.pad, just to allow for reflect padding on small input.
|
140 |
+
If this is the case, we insert extra 0 padding to the right before the reflection happens.
|
141 |
+
"""
|
142 |
+
length = hidden_states.shape[-1]
|
143 |
+
padding_left, padding_right = paddings
|
144 |
+
if not mode == "reflect":
|
145 |
+
return nn.functional.pad(hidden_states, paddings, mode, value)
|
146 |
+
|
147 |
+
max_pad = max(padding_left, padding_right)
|
148 |
+
extra_pad = 0
|
149 |
+
if length <= max_pad:
|
150 |
+
extra_pad = max_pad - length + 1
|
151 |
+
hidden_states = nn.functional.pad(hidden_states, (0, extra_pad))
|
152 |
+
padded = nn.functional.pad(hidden_states, paddings, mode, value)
|
153 |
+
end = padded.shape[-1] - extra_pad
|
154 |
+
return padded[..., :end]
|
155 |
+
|
156 |
+
def forward(self, hidden_states):
|
157 |
+
extra_padding = self._get_extra_padding_for_conv1d(hidden_states)
|
158 |
+
|
159 |
+
if self.causal:
|
160 |
+
# Left padding for causal
|
161 |
+
hidden_states = self._pad1d(hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode)
|
162 |
+
else:
|
163 |
+
# Asymmetric padding required for odd strides
|
164 |
+
padding_right = self.padding_total // 2
|
165 |
+
padding_left = self.padding_total - padding_right
|
166 |
+
hidden_states = self._pad1d(
|
167 |
+
hidden_states, (padding_left, padding_right + extra_padding), mode=self.pad_mode
|
168 |
+
)
|
169 |
+
|
170 |
+
hidden_states = self.conv(hidden_states)
|
171 |
+
|
172 |
+
if self.norm_type == "time_group_norm":
|
173 |
+
hidden_states = self.norm(hidden_states)
|
174 |
+
|
175 |
+
return hidden_states
|
176 |
+
|
177 |
+
|
178 |
+
class EncodecConvTranspose1d(nn.Module):
|
179 |
+
"""ConvTranspose1d with asymmetric or causal padding and normalization."""
|
180 |
+
|
181 |
+
def __init__(self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1):
|
182 |
+
super().__init__()
|
183 |
+
self.causal = config.use_causal_conv
|
184 |
+
self.trim_right_ratio = config.trim_right_ratio
|
185 |
+
self.norm_type = config.norm_type
|
186 |
+
if self.norm_type not in ["weight_norm", "time_group_norm"]:
|
187 |
+
raise ValueError(
|
188 |
+
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}'
|
189 |
+
)
|
190 |
+
|
191 |
+
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride)
|
192 |
+
if config.norm_type == "weight_norm":
|
193 |
+
self.conv = nn.utils.weight_norm(self.conv)
|
194 |
+
elif config.norm_type == "time_group_norm":
|
195 |
+
self.norm = nn.GroupNorm(1, out_channels)
|
196 |
+
|
197 |
+
if not (self.causal or self.trim_right_ratio == 1.0):
|
198 |
+
raise ValueError("`trim_right_ratio` != 1.0 only makes sense for causal convolutions")
|
199 |
+
|
200 |
+
def forward(self, hidden_states):
|
201 |
+
kernel_size = self.conv.kernel_size[0]
|
202 |
+
stride = self.conv.stride[0]
|
203 |
+
padding_total = kernel_size - stride
|
204 |
+
|
205 |
+
hidden_states = self.conv(hidden_states)
|
206 |
+
|
207 |
+
if self.norm_type == "time_group_norm":
|
208 |
+
hidden_states = self.norm(hidden_states)
|
209 |
+
|
210 |
+
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
|
211 |
+
# removed at the very end, when keeping only the right length for the output,
|
212 |
+
# as removing it here would require also passing the length at the matching layer
|
213 |
+
# in the encoder.
|
214 |
+
if self.causal:
|
215 |
+
# Trim the padding on the right according to the specified ratio
|
216 |
+
# if trim_right_ratio = 1.0, trim everything from right
|
217 |
+
padding_right = math.ceil(padding_total * self.trim_right_ratio)
|
218 |
+
else:
|
219 |
+
# Asymmetric padding required for odd strides
|
220 |
+
padding_right = padding_total // 2
|
221 |
+
|
222 |
+
padding_left = padding_total - padding_right
|
223 |
+
|
224 |
+
# unpad
|
225 |
+
end = hidden_states.shape[-1] - padding_right
|
226 |
+
hidden_states = hidden_states[..., padding_left:end]
|
227 |
+
return hidden_states
|
228 |
+
|
229 |
+
|
230 |
+
class EncodecLSTM(nn.Module):
|
231 |
+
"""
|
232 |
+
LSTM without worrying about the hidden state, nor the layout of the data. Expects input as convolutional layout.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, config, dimension):
|
236 |
+
super().__init__()
|
237 |
+
self.lstm = nn.LSTM(dimension, dimension, config.num_lstm_layers)
|
238 |
+
|
239 |
+
def forward(self, hidden_states):
|
240 |
+
hidden_states = hidden_states.permute(2, 0, 1)
|
241 |
+
hidden_states = self.lstm(hidden_states)[0] + hidden_states
|
242 |
+
hidden_states = hidden_states.permute(1, 2, 0)
|
243 |
+
return hidden_states
|
244 |
+
|
245 |
+
|
246 |
+
class EncodecResnetBlock(nn.Module):
|
247 |
+
"""
|
248 |
+
Residual block from SEANet model as used by EnCodec.
|
249 |
+
"""
|
250 |
+
|
251 |
+
def __init__(self, config: EncodecConfig, dim: int, dilations: List[int]):
|
252 |
+
super().__init__()
|
253 |
+
kernel_sizes = (config.residual_kernel_size, 1)
|
254 |
+
if len(kernel_sizes) != len(dilations):
|
255 |
+
raise ValueError("Number of kernel sizes should match number of dilations")
|
256 |
+
|
257 |
+
hidden = dim // config.compress
|
258 |
+
block = []
|
259 |
+
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
|
260 |
+
in_chs = dim if i == 0 else hidden
|
261 |
+
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
|
262 |
+
block += [nn.ELU()]
|
263 |
+
block += [EncodecConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)]
|
264 |
+
self.block = nn.ModuleList(block)
|
265 |
+
|
266 |
+
if config.use_conv_shortcut:
|
267 |
+
self.shortcut = EncodecConv1d(config, dim, dim, kernel_size=1)
|
268 |
+
else:
|
269 |
+
self.shortcut = nn.Identity()
|
270 |
+
|
271 |
+
def forward(self, hidden_states):
|
272 |
+
residual = hidden_states
|
273 |
+
for layer in self.block:
|
274 |
+
hidden_states = layer(hidden_states)
|
275 |
+
|
276 |
+
return self.shortcut(residual) + hidden_states
|
277 |
+
|
278 |
+
|
279 |
+
class EncodecEncoder(nn.Module):
|
280 |
+
"""SEANet encoder as used by EnCodec."""
|
281 |
+
|
282 |
+
def __init__(self, config: EncodecConfig):
|
283 |
+
super().__init__()
|
284 |
+
model = [EncodecConv1d(config, config.audio_channels, config.num_filters, config.kernel_size)]
|
285 |
+
scaling = 1
|
286 |
+
|
287 |
+
# Downsample to raw audio scale
|
288 |
+
for ratio in reversed(config.upsampling_ratios):
|
289 |
+
current_scale = scaling * config.num_filters
|
290 |
+
# Add residual layers
|
291 |
+
for j in range(config.num_residual_layers):
|
292 |
+
model += [EncodecResnetBlock(config, current_scale, [config.dilation_growth_rate**j, 1])]
|
293 |
+
# Add downsampling layers
|
294 |
+
model += [nn.ELU()]
|
295 |
+
model += [EncodecConv1d(config, current_scale, current_scale * 2, kernel_size=ratio * 2, stride=ratio)]
|
296 |
+
scaling *= 2
|
297 |
+
|
298 |
+
model += [EncodecLSTM(config, scaling * config.num_filters)]
|
299 |
+
model += [nn.ELU()]
|
300 |
+
model += [EncodecConv1d(config, scaling * config.num_filters, config.hidden_size, config.last_kernel_size)]
|
301 |
+
|
302 |
+
self.layers = nn.ModuleList(model)
|
303 |
+
|
304 |
+
def forward(self, hidden_states):
|
305 |
+
for layer in self.layers:
|
306 |
+
hidden_states = layer(hidden_states)
|
307 |
+
return hidden_states
|
308 |
+
|
309 |
+
|
310 |
+
class EncodecDecoder(nn.Module):
|
311 |
+
"""SEANet decoder as used by EnCodec."""
|
312 |
+
|
313 |
+
def __init__(self, config: EncodecConfig):
|
314 |
+
super().__init__()
|
315 |
+
scaling = int(2 ** len(config.upsampling_ratios))
|
316 |
+
model = [EncodecConv1d(config, config.hidden_size, scaling * config.num_filters, config.kernel_size)]
|
317 |
+
|
318 |
+
model += [EncodecLSTM(config, scaling * config.num_filters)]
|
319 |
+
|
320 |
+
# Upsample to raw audio scale
|
321 |
+
for ratio in config.upsampling_ratios:
|
322 |
+
current_scale = scaling * config.num_filters
|
323 |
+
# Add upsampling layers
|
324 |
+
model += [nn.ELU()]
|
325 |
+
model += [
|
326 |
+
EncodecConvTranspose1d(config, current_scale, current_scale // 2, kernel_size=ratio * 2, stride=ratio)
|
327 |
+
]
|
328 |
+
# Add residual layers
|
329 |
+
for j in range(config.num_residual_layers):
|
330 |
+
model += [EncodecResnetBlock(config, current_scale // 2, (config.dilation_growth_rate**j, 1))]
|
331 |
+
scaling //= 2
|
332 |
+
|
333 |
+
# Add final layers
|
334 |
+
model += [nn.ELU()]
|
335 |
+
model += [EncodecConv1d(config, config.num_filters, config.audio_channels, config.last_kernel_size)]
|
336 |
+
self.layers = nn.ModuleList(model)
|
337 |
+
|
338 |
+
def forward(self, hidden_states):
|
339 |
+
for layer in self.layers:
|
340 |
+
hidden_states = layer(hidden_states)
|
341 |
+
return hidden_states
|
342 |
+
|
343 |
+
|
344 |
+
class EncodecEuclideanCodebook(nn.Module):
|
345 |
+
"""Codebook with Euclidean distance."""
|
346 |
+
|
347 |
+
def __init__(self, config: EncodecConfig):
|
348 |
+
super().__init__()
|
349 |
+
embed = torch.zeros(config.codebook_size, config.codebook_dim)
|
350 |
+
|
351 |
+
self.codebook_size = config.codebook_size
|
352 |
+
|
353 |
+
self.register_buffer("inited", torch.Tensor([True]))
|
354 |
+
self.register_buffer("cluster_size", torch.zeros(config.codebook_size))
|
355 |
+
self.register_buffer("embed", embed)
|
356 |
+
self.register_buffer("embed_avg", embed.clone())
|
357 |
+
|
358 |
+
def quantize(self, hidden_states):
|
359 |
+
embed = self.embed.t()
|
360 |
+
scaled_states = hidden_states.pow(2).sum(1, keepdim=True)
|
361 |
+
dist = -(scaled_states - 2 * hidden_states @ embed + embed.pow(2).sum(0, keepdim=True))
|
362 |
+
embed_ind = dist.max(dim=-1).indices
|
363 |
+
return embed_ind
|
364 |
+
|
365 |
+
def encode(self, hidden_states):
|
366 |
+
shape = hidden_states.shape
|
367 |
+
# pre-process
|
368 |
+
hidden_states = hidden_states.reshape((-1, shape[-1]))
|
369 |
+
# quantize
|
370 |
+
embed_ind = self.quantize(hidden_states)
|
371 |
+
# post-process
|
372 |
+
embed_ind = embed_ind.view(*shape[:-1])
|
373 |
+
return embed_ind
|
374 |
+
|
375 |
+
def decode(self, embed_ind):
|
376 |
+
quantize = nn.functional.embedding(embed_ind, self.embed)
|
377 |
+
return quantize
|
378 |
+
|
379 |
+
|
380 |
+
class EncodecVectorQuantization(nn.Module):
|
381 |
+
"""
|
382 |
+
Vector quantization implementation. Currently supports only euclidean distance.
|
383 |
+
"""
|
384 |
+
|
385 |
+
def __init__(self, config: EncodecConfig):
|
386 |
+
super().__init__()
|
387 |
+
self.codebook = EncodecEuclideanCodebook(config)
|
388 |
+
|
389 |
+
def encode(self, hidden_states):
|
390 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
391 |
+
embed_in = self.codebook.encode(hidden_states)
|
392 |
+
return embed_in
|
393 |
+
|
394 |
+
def decode(self, embed_ind):
|
395 |
+
quantize = self.codebook.decode(embed_ind)
|
396 |
+
quantize = quantize.permute(0, 2, 1)
|
397 |
+
return quantize
|
398 |
+
|
399 |
+
|
400 |
+
class EncodecResidualVectorQuantizer(nn.Module):
|
401 |
+
"""Residual Vector Quantizer."""
|
402 |
+
|
403 |
+
def __init__(self, config: EncodecConfig):
|
404 |
+
super().__init__()
|
405 |
+
self.codebook_size = config.codebook_size
|
406 |
+
self.frame_rate = config.frame_rate
|
407 |
+
self.num_quantizers = config.num_quantizers
|
408 |
+
self.layers = nn.ModuleList([EncodecVectorQuantization(config) for _ in range(config.num_quantizers)])
|
409 |
+
|
410 |
+
def get_num_quantizers_for_bandwidth(self, bandwidth: Optional[float] = None) -> int:
|
411 |
+
"""Return num_quantizers based on specified target bandwidth."""
|
412 |
+
bw_per_q = math.log2(self.codebook_size) * self.frame_rate
|
413 |
+
num_quantizers = self.num_quantizers
|
414 |
+
if bandwidth is not None and bandwidth > 0.0:
|
415 |
+
num_quantizers = int(max(1, math.floor(bandwidth * 1000 / bw_per_q)))
|
416 |
+
return num_quantizers
|
417 |
+
|
418 |
+
def encode(self, embeddings: torch.Tensor, bandwidth: Optional[float] = None) -> torch.Tensor:
|
419 |
+
"""
|
420 |
+
Encode a given input tensor with the specified frame rate at the given bandwidth. The RVQ encode method sets
|
421 |
+
the appropriate number of quantizers to use and returns indices for each quantizer.
|
422 |
+
"""
|
423 |
+
num_quantizers = self.get_num_quantizers_for_bandwidth(bandwidth)
|
424 |
+
residual = embeddings
|
425 |
+
all_indices = []
|
426 |
+
for layer in self.layers[:num_quantizers]:
|
427 |
+
indices = layer.encode(residual)
|
428 |
+
quantized = layer.decode(indices)
|
429 |
+
residual = residual - quantized
|
430 |
+
all_indices.append(indices)
|
431 |
+
out_indices = torch.stack(all_indices)
|
432 |
+
return out_indices
|
433 |
+
|
434 |
+
def decode(self, codes: torch.Tensor) -> torch.Tensor:
|
435 |
+
"""Decode the given codes to the quantized representation."""
|
436 |
+
quantized_out = torch.tensor(0.0, device=codes.device)
|
437 |
+
for i, indices in enumerate(codes):
|
438 |
+
layer = self.layers[i]
|
439 |
+
quantized = layer.decode(indices)
|
440 |
+
quantized_out = quantized_out + quantized
|
441 |
+
return quantized_out
|
442 |
+
|
443 |
+
|
444 |
+
class EncodecPreTrainedModel(PreTrainedModel):
|
445 |
+
"""
|
446 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
447 |
+
models.
|
448 |
+
"""
|
449 |
+
|
450 |
+
config_class = EncodecConfig
|
451 |
+
base_model_prefix = "encodec"
|
452 |
+
main_input_name = "input_values"
|
453 |
+
|
454 |
+
def _init_weights(self, module):
|
455 |
+
"""Initialize the weights"""
|
456 |
+
if isinstance(module, nn.Linear):
|
457 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
458 |
+
if module.bias is not None:
|
459 |
+
module.bias.data.zero_()
|
460 |
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
461 |
+
module.bias.data.zero_()
|
462 |
+
module.weight.data.fill_(1.0)
|
463 |
+
elif isinstance(module, nn.Conv1d):
|
464 |
+
nn.init.kaiming_normal_(module.weight)
|
465 |
+
if module.bias is not None:
|
466 |
+
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
467 |
+
nn.init.uniform_(module.bias, a=-k, b=k)
|
468 |
+
elif isinstance(module, nn.Embedding):
|
469 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
470 |
+
if module.padding_idx is not None:
|
471 |
+
module.weight.data[module.padding_idx].zero_()
|
472 |
+
elif isinstance(module, nn.LSTM):
|
473 |
+
for name, param in module.named_parameters():
|
474 |
+
if "weight" in name:
|
475 |
+
nn.init.xavier_uniform_(param)
|
476 |
+
elif "bias" in name:
|
477 |
+
nn.init.constant_(param, 0.0)
|
478 |
+
|
479 |
+
|
480 |
+
ENCODEC_START_DOCSTRING = r"""
|
481 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
482 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
483 |
+
etc.)
|
484 |
+
|
485 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
486 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
487 |
+
and behavior.
|
488 |
+
|
489 |
+
Parameters:
|
490 |
+
config ([`EncodecConfig`]):
|
491 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
492 |
+
load the weights associated with the model, only the configuration. Check out the
|
493 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
494 |
+
"""
|
495 |
+
|
496 |
+
|
497 |
+
ENCODEC_INPUTS_DOCSTRING = r"""
|
498 |
+
Args:
|
499 |
+
input_values (`torch.FloatTensor` of shape `(batch_size, channels, sequence_length)`, *optional*):
|
500 |
+
Raw audio input converted to Float and padded to the approriate length in order to be encoded using chunks
|
501 |
+
of length self.chunk_length and a stride of `config.chunk_stride`.
|
502 |
+
padding_mask (`torch.BoolTensor` of shape `(batch_size, channels, sequence_length)`, *optional*):
|
503 |
+
Mask to avoid computing scaling factors on padding token indices (can we avoid computing conv on these+).
|
504 |
+
Mask values selected in `[0, 1]`:
|
505 |
+
|
506 |
+
- 1 for tokens that are **not masked**,
|
507 |
+
- 0 for tokens that are **masked**.
|
508 |
+
|
509 |
+
<Tip warning={true}>
|
510 |
+
|
511 |
+
`padding_mask` should always be passed, unless the input was truncated or not padded. This is because in
|
512 |
+
order to process tensors effectively, the input audio should be padded so that `input_length % stride =
|
513 |
+
step` with `step = chunk_length-stride`. This ensures that all chunks are of the same shape
|
514 |
+
|
515 |
+
</Tip>
|
516 |
+
|
517 |
+
bandwidth (`float`, *optional*):
|
518 |
+
The target bandwidth. Must be one of `config.target_bandwidths`. If `None`, uses the smallest possible
|
519 |
+
bandwidth. bandwidth is represented as a thousandth of what it is, e.g. 6kbps bandwidth is represented as
|
520 |
+
`bandwidth == 6.0`
|
521 |
+
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
|
522 |
+
Discret code embeddings computed using `model.encode`.
|
523 |
+
audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
|
524 |
+
Scaling factor for each `audio_codes` input.
|
525 |
+
return_dict (`bool`, *optional*):
|
526 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
527 |
+
"""
|
528 |
+
|
529 |
+
|
530 |
+
@add_start_docstrings(
|
531 |
+
"The EnCodec neural audio codec model.",
|
532 |
+
ENCODEC_START_DOCSTRING,
|
533 |
+
)
|
534 |
+
class EncodecModel(EncodecPreTrainedModel):
|
535 |
+
def __init__(self, config: EncodecConfig):
|
536 |
+
super().__init__(config)
|
537 |
+
self.config = config
|
538 |
+
|
539 |
+
self.encoder = EncodecEncoder(config)
|
540 |
+
self.decoder = EncodecDecoder(config)
|
541 |
+
|
542 |
+
self.quantizer = EncodecResidualVectorQuantizer(config)
|
543 |
+
|
544 |
+
self.bits_per_codebook = int(math.log2(self.config.codebook_size))
|
545 |
+
if 2**self.bits_per_codebook != self.config.codebook_size:
|
546 |
+
raise ValueError("The codebook_size must be a power of 2.")
|
547 |
+
|
548 |
+
# Initialize weights and apply final processing
|
549 |
+
self.post_init()
|
550 |
+
|
551 |
+
def get_encoder(self):
|
552 |
+
return self.encoder
|
553 |
+
|
554 |
+
def get_decoder(self):
|
555 |
+
return self.decoder
|
556 |
+
|
557 |
+
def _encode_frame(
|
558 |
+
self, input_values: torch.Tensor, bandwidth: float, padding_mask: int
|
559 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
560 |
+
"""
|
561 |
+
Encodes the given input using the underlying VQVAE. If `config.normalize` is set to `True` the input is first
|
562 |
+
normalized. The padding mask is required to compute the correct scale.
|
563 |
+
"""
|
564 |
+
length = input_values.shape[-1]
|
565 |
+
duration = length / self.config.sampling_rate
|
566 |
+
|
567 |
+
if self.config.chunk_length_s is not None and duration > 1e-5 + self.config.chunk_length_s:
|
568 |
+
raise RuntimeError(f"Duration of frame ({duration}) is longer than chunk {self.config.chunk_length_s}")
|
569 |
+
|
570 |
+
scale = None
|
571 |
+
if self.config.normalize:
|
572 |
+
# if the padding is non zero
|
573 |
+
input_values = input_values * padding_mask
|
574 |
+
mono = torch.sum(input_values, 1, keepdim=True) / input_values.shape[1]
|
575 |
+
scale = mono.pow(2).mean(dim=-1, keepdim=True).sqrt() + 1e-8
|
576 |
+
input_values = input_values / scale
|
577 |
+
|
578 |
+
embeddings = self.encoder(input_values)
|
579 |
+
codes = self.quantizer.encode(embeddings, bandwidth)
|
580 |
+
codes = codes.transpose(0, 1)
|
581 |
+
return codes, scale
|
582 |
+
|
583 |
+
def encode(
|
584 |
+
self,
|
585 |
+
input_values: torch.Tensor,
|
586 |
+
padding_mask: torch.Tensor = None,
|
587 |
+
bandwidth: Optional[float] = None,
|
588 |
+
return_dict: Optional[bool] = None,
|
589 |
+
) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], EncodecEncoderOutput]:
|
590 |
+
"""
|
591 |
+
Encodes the input audio waveform into discrete codes.
|
592 |
+
|
593 |
+
Args:
|
594 |
+
input_values (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
|
595 |
+
Float values of the input audio waveform.
|
596 |
+
padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
|
597 |
+
Padding mask used to pad the `input_values`.
|
598 |
+
bandwidth (`float`, *optional*):
|
599 |
+
The target bandwidth. Must be one of `config.target_bandwidths`. If `None`, uses the smallest possible
|
600 |
+
bandwidth. bandwidth is represented as a thousandth of what it is, e.g. 6kbps bandwidth is represented
|
601 |
+
as bandwidth == 6.0
|
602 |
+
|
603 |
+
Returns:
|
604 |
+
A list of frames containing the discrete encoded codes for the input audio waveform, along with rescaling
|
605 |
+
factors for each chunk when `normalize` is True. Each frames is a tuple `(codebook, scale)`, with
|
606 |
+
`codebook` of shape `[batch_size, num_codebooks, frames]`.
|
607 |
+
"""
|
608 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
609 |
+
|
610 |
+
if bandwidth is None:
|
611 |
+
bandwidth = self.config.target_bandwidths[0]
|
612 |
+
if bandwidth not in self.config.target_bandwidths:
|
613 |
+
raise ValueError(
|
614 |
+
f"This model doesn't support the bandwidth {bandwidth}. "
|
615 |
+
f"Select one of {self.config.target_bandwidths}."
|
616 |
+
)
|
617 |
+
|
618 |
+
_, channels, input_length = input_values.shape
|
619 |
+
|
620 |
+
if channels < 1 or channels > 2:
|
621 |
+
raise ValueError(f"Number of audio channels must be 1 or 2, but got {channels}")
|
622 |
+
|
623 |
+
chunk_length = self.config.chunk_length
|
624 |
+
if chunk_length is None:
|
625 |
+
chunk_length = input_length
|
626 |
+
stride = input_length
|
627 |
+
else:
|
628 |
+
stride = self.config.chunk_stride
|
629 |
+
|
630 |
+
if padding_mask is None:
|
631 |
+
padding_mask = torch.ones_like(input_values).bool()
|
632 |
+
|
633 |
+
encoded_frames = []
|
634 |
+
scales = []
|
635 |
+
|
636 |
+
step = chunk_length - stride
|
637 |
+
if (input_length % stride) - step != 0:
|
638 |
+
raise ValueError(
|
639 |
+
"The input length is not properly padded for batched chunked decoding. Make sure to pad the input correctly."
|
640 |
+
)
|
641 |
+
|
642 |
+
for offset in range(0, input_length - step, stride):
|
643 |
+
mask = padding_mask[..., offset : offset + chunk_length].bool()
|
644 |
+
frame = input_values[:, :, offset : offset + chunk_length]
|
645 |
+
encoded_frame, scale = self._encode_frame(frame, bandwidth, mask)
|
646 |
+
encoded_frames.append(encoded_frame)
|
647 |
+
scales.append(scale)
|
648 |
+
|
649 |
+
encoded_frames = torch.stack(encoded_frames)
|
650 |
+
|
651 |
+
if not return_dict:
|
652 |
+
return (encoded_frames, scales)
|
653 |
+
|
654 |
+
return EncodecEncoderOutput(encoded_frames, scales)
|
655 |
+
|
656 |
+
@staticmethod
|
657 |
+
def _linear_overlap_add(frames: List[torch.Tensor], stride: int):
|
658 |
+
# Generic overlap add, with linear fade-in/fade-out, supporting complex scenario
|
659 |
+
# e.g., more than 2 frames per position.
|
660 |
+
# The core idea is to use a weight function that is a triangle,
|
661 |
+
# with a maximum value at the middle of the chunk.
|
662 |
+
# We use this weighting when summing the frames, and divide by the sum of weights
|
663 |
+
# for each positions at the end. Thus:
|
664 |
+
# - if a frame is the only one to cover a position, the weighting is a no-op.
|
665 |
+
# - if 2 frames cover a position:
|
666 |
+
# ... ...
|
667 |
+
# / \/ \
|
668 |
+
# / /\ \
|
669 |
+
# S T , i.e. S offset of second frame starts, T end of first frame.
|
670 |
+
# Then the weight function for each one is: (t - S), (T - t), with `t` a given offset.
|
671 |
+
# After the final normalization, the weight of the second frame at position `t` is
|
672 |
+
# (t - S) / (t - S + (T - t)) = (t - S) / (T - S), which is exactly what we want.
|
673 |
+
#
|
674 |
+
# - if more than 2 frames overlap at a given point, we hope that by induction
|
675 |
+
# something sensible happens.
|
676 |
+
if len(frames) == 0:
|
677 |
+
raise ValueError("`frames` cannot be an empty list.")
|
678 |
+
|
679 |
+
device = frames[0].device
|
680 |
+
dtype = frames[0].dtype
|
681 |
+
shape = frames[0].shape[:-1]
|
682 |
+
total_size = stride * (len(frames) - 1) + frames[-1].shape[-1]
|
683 |
+
|
684 |
+
frame_length = frames[0].shape[-1]
|
685 |
+
time_vec = torch.linspace(0, 1, frame_length + 2, device=device, dtype=dtype)[1:-1]
|
686 |
+
weight = 0.5 - (time_vec - 0.5).abs()
|
687 |
+
|
688 |
+
sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
|
689 |
+
out = torch.zeros(*shape, total_size, device=device, dtype=dtype)
|
690 |
+
offset: int = 0
|
691 |
+
|
692 |
+
for frame in frames:
|
693 |
+
frame_length = frame.shape[-1]
|
694 |
+
out[..., offset : offset + frame_length] += weight[:frame_length] * frame
|
695 |
+
sum_weight[offset : offset + frame_length] += weight[:frame_length]
|
696 |
+
offset += stride
|
697 |
+
|
698 |
+
if sum_weight.min() == 0:
|
699 |
+
raise ValueError(f"`sum_weight` minimum element must be bigger than zero: {sum_weight}`")
|
700 |
+
|
701 |
+
return out / sum_weight
|
702 |
+
|
703 |
+
def _decode_frame(self, codes: torch.Tensor, scale: Optional[torch.Tensor] = None) -> torch.Tensor:
|
704 |
+
codes = codes.transpose(0, 1)
|
705 |
+
embeddings = self.quantizer.decode(codes)
|
706 |
+
outputs = self.decoder(embeddings)
|
707 |
+
if scale is not None:
|
708 |
+
outputs = outputs * scale.view(-1, 1, 1)
|
709 |
+
return outputs
|
710 |
+
|
711 |
+
def decode(
|
712 |
+
self,
|
713 |
+
audio_codes: torch.Tensor,
|
714 |
+
audio_scales: torch.Tensor,
|
715 |
+
padding_mask: Optional[torch.Tensor] = None,
|
716 |
+
return_dict: Optional[bool] = None,
|
717 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], EncodecDecoderOutput]:
|
718 |
+
"""
|
719 |
+
Decodes the given frames into an output audio waveform.
|
720 |
+
|
721 |
+
Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be
|
722 |
+
trimmed.
|
723 |
+
|
724 |
+
Args:
|
725 |
+
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
|
726 |
+
Discret code embeddings computed using `model.encode`.
|
727 |
+
audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
|
728 |
+
Scaling factor for each `audio_codes` input.
|
729 |
+
padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
|
730 |
+
Padding mask used to pad the `input_values`.
|
731 |
+
return_dict (`bool`, *optional*):
|
732 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
733 |
+
|
734 |
+
"""
|
735 |
+
return_dict = return_dict or self.config.return_dict
|
736 |
+
|
737 |
+
chunk_length = self.config.chunk_length
|
738 |
+
if chunk_length is None:
|
739 |
+
if len(audio_codes) != 1:
|
740 |
+
raise ValueError(f"Expected one frame, got {len(audio_codes)}")
|
741 |
+
audio_values = self._decode_frame(audio_codes[0], audio_scales[0])
|
742 |
+
else:
|
743 |
+
decoded_frames = []
|
744 |
+
|
745 |
+
for frame, scale in zip(audio_codes, audio_scales):
|
746 |
+
frames = self._decode_frame(frame, scale)
|
747 |
+
decoded_frames.append(frames)
|
748 |
+
|
749 |
+
audio_values = self._linear_overlap_add(decoded_frames, self.config.chunk_stride or 1)
|
750 |
+
|
751 |
+
# truncate based on padding mask
|
752 |
+
if padding_mask is not None and padding_mask.shape[-1] < audio_values.shape[-1]:
|
753 |
+
audio_values = audio_values[..., : padding_mask.shape[-1]]
|
754 |
+
|
755 |
+
if not return_dict:
|
756 |
+
return (audio_values,)
|
757 |
+
return EncodecDecoderOutput(audio_values)
|
758 |
+
|
759 |
+
@add_start_docstrings_to_model_forward(ENCODEC_INPUTS_DOCSTRING)
|
760 |
+
@replace_return_docstrings(output_type=EncodecOutput, config_class=_CONFIG_FOR_DOC)
|
761 |
+
def forward(
|
762 |
+
self,
|
763 |
+
input_values: torch.Tensor,
|
764 |
+
padding_mask: Optional[torch.Tensor] = None,
|
765 |
+
bandwidth: Optional[float] = None,
|
766 |
+
audio_codes: Optional[torch.Tensor] = None,
|
767 |
+
audio_scales: Optional[torch.Tensor] = None,
|
768 |
+
return_dict: Optional[bool] = None,
|
769 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], EncodecOutput]:
|
770 |
+
r"""
|
771 |
+
Returns:
|
772 |
+
|
773 |
+
Examples:
|
774 |
+
|
775 |
+
```python
|
776 |
+
>>> from datasets import load_dataset
|
777 |
+
>>> from transformers import AutoProcessor, EncodecModel
|
778 |
+
|
779 |
+
>>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
|
780 |
+
>>> audio_sample = dataset["train"]["audio"][0]["array"]
|
781 |
+
|
782 |
+
>>> model_id = "facebook/encodec_24khz"
|
783 |
+
>>> model = EncodecModel.from_pretrained(model_id)
|
784 |
+
>>> processor = AutoProcessor.from_pretrained(model_id)
|
785 |
+
|
786 |
+
>>> inputs = processor(raw_audio=audio_sample, return_tensors="pt")
|
787 |
+
|
788 |
+
>>> outputs = model(**inputs)
|
789 |
+
>>> audio_codes = outputs.audio_codes
|
790 |
+
>>> audio_values = outputs.audio_values
|
791 |
+
```"""
|
792 |
+
return_dict = return_dict or self.config.return_dict
|
793 |
+
|
794 |
+
if padding_mask is None:
|
795 |
+
padding_mask = torch.ones_like(input_values).bool()
|
796 |
+
|
797 |
+
if audio_codes is not None and audio_scales is None:
|
798 |
+
raise ValueError("You specified `audio_codes` but did not specify the `audio_scales`")
|
799 |
+
|
800 |
+
if audio_scales is not None and audio_codes is None:
|
801 |
+
raise ValueError("You specified `audio_scales` but did not specify the `audio_codes`")
|
802 |
+
|
803 |
+
if audio_scales is None and audio_codes is None:
|
804 |
+
audio_codes, audio_scales = self.encode(input_values, padding_mask, bandwidth, False)
|
805 |
+
|
806 |
+
audio_values = self.decode(audio_codes, audio_scales, padding_mask, return_dict=return_dict)[0]
|
807 |
+
if not return_dict:
|
808 |
+
return (audio_codes, audio_values)
|
809 |
+
|
810 |
+
return EncodecOutput(audio_codes=audio_codes, audio_values=audio_values)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
is_vision_available,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
_import_structure = {
|
25 |
+
"configuration_mobilevitv2": [
|
26 |
+
"MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
27 |
+
"MobileViTV2Config",
|
28 |
+
"MobileViTV2OnnxConfig",
|
29 |
+
],
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
try:
|
34 |
+
if not is_torch_available():
|
35 |
+
raise OptionalDependencyNotAvailable()
|
36 |
+
except OptionalDependencyNotAvailable:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
_import_structure["modeling_mobilevitv2"] = [
|
40 |
+
"MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
41 |
+
"MobileViTV2ForImageClassification",
|
42 |
+
"MobileViTV2ForSemanticSegmentation",
|
43 |
+
"MobileViTV2Model",
|
44 |
+
"MobileViTV2PreTrainedModel",
|
45 |
+
]
|
46 |
+
|
47 |
+
if TYPE_CHECKING:
|
48 |
+
from .configuration_mobilevitv2 import (
|
49 |
+
MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
50 |
+
MobileViTV2Config,
|
51 |
+
MobileViTV2OnnxConfig,
|
52 |
+
)
|
53 |
+
|
54 |
+
try:
|
55 |
+
if not is_torch_available():
|
56 |
+
raise OptionalDependencyNotAvailable()
|
57 |
+
except OptionalDependencyNotAvailable:
|
58 |
+
pass
|
59 |
+
else:
|
60 |
+
from .modeling_mobilevitv2 import (
|
61 |
+
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
62 |
+
MobileViTV2ForImageClassification,
|
63 |
+
MobileViTV2ForSemanticSegmentation,
|
64 |
+
MobileViTV2Model,
|
65 |
+
MobileViTV2PreTrainedModel,
|
66 |
+
)
|
67 |
+
|
68 |
+
else:
|
69 |
+
import sys
|
70 |
+
|
71 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/configuration_mobilevitv2.cpython-310.pyc
ADDED
Binary file (6.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/convert_mlcvnets_to_pytorch.cpython-310.pyc
ADDED
Binary file (9.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/__pycache__/modeling_mobilevitv2.cpython-310.pyc
ADDED
Binary file (26.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/configuration_mobilevitv2.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MobileViTV2 model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class MobileViTV2Config(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a
|
36 |
+
MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a
|
37 |
+
configuration with the defaults will yield a similar configuration to that of the MobileViTV2
|
38 |
+
[apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
num_channels (`int`, *optional*, defaults to 3):
|
45 |
+
The number of input channels.
|
46 |
+
image_size (`int`, *optional*, defaults to 256):
|
47 |
+
The size (resolution) of each image.
|
48 |
+
patch_size (`int`, *optional*, defaults to 2):
|
49 |
+
The size (resolution) of each patch.
|
50 |
+
expand_ratio (`float`, *optional*, defaults to 2.0):
|
51 |
+
Expansion factor for the MobileNetv2 layers.
|
52 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
|
53 |
+
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
|
54 |
+
conv_kernel_size (`int`, *optional*, defaults to 3):
|
55 |
+
The size of the convolutional kernel in the MobileViTV2 layer.
|
56 |
+
output_stride (`int`, *optional*, defaults to 32):
|
57 |
+
The ratio of the spatial resolution of the output to the resolution of the input image.
|
58 |
+
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout ratio for attached classifiers.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
aspp_out_channels (`int`, *optional*, defaults to 512):
|
65 |
+
Number of output channels used in the ASPP layer for semantic segmentation.
|
66 |
+
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
|
67 |
+
Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
|
68 |
+
aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
|
69 |
+
The dropout ratio for the ASPP layer for semantic segmentation.
|
70 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
71 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
72 |
+
n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`):
|
73 |
+
The number of attention blocks in each MobileViTV2Layer
|
74 |
+
base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`):
|
75 |
+
The base multiplier for dimensions of attention blocks in each MobileViTV2Layer
|
76 |
+
width_multiplier (`float`, *optional*, defaults to 1.0):
|
77 |
+
The width multiplier for MobileViTV2.
|
78 |
+
ffn_multiplier (`int`, *optional*, defaults to 2):
|
79 |
+
The FFN multiplier for MobileViTV2.
|
80 |
+
attn_dropout (`float`, *optional*, defaults to 0.0):
|
81 |
+
The dropout in the attention layer.
|
82 |
+
ffn_dropout (`float`, *optional*, defaults to 0.0):
|
83 |
+
The dropout between FFN layers.
|
84 |
+
|
85 |
+
Example:
|
86 |
+
|
87 |
+
```python
|
88 |
+
>>> from transformers import MobileViTV2Config, MobileViTV2Model
|
89 |
+
|
90 |
+
>>> # Initializing a mobilevitv2-small style configuration
|
91 |
+
>>> configuration = MobileViTV2Config()
|
92 |
+
|
93 |
+
>>> # Initializing a model from the mobilevitv2-small style configuration
|
94 |
+
>>> model = MobileViTV2Model(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration
|
97 |
+
>>> configuration = model.config
|
98 |
+
```"""
|
99 |
+
|
100 |
+
model_type = "mobilevitv2"
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
num_channels=3,
|
105 |
+
image_size=256,
|
106 |
+
patch_size=2,
|
107 |
+
expand_ratio=2.0,
|
108 |
+
hidden_act="swish",
|
109 |
+
conv_kernel_size=3,
|
110 |
+
output_stride=32,
|
111 |
+
classifier_dropout_prob=0.1,
|
112 |
+
initializer_range=0.02,
|
113 |
+
layer_norm_eps=1e-5,
|
114 |
+
aspp_out_channels=512,
|
115 |
+
atrous_rates=[6, 12, 18],
|
116 |
+
aspp_dropout_prob=0.1,
|
117 |
+
semantic_loss_ignore_index=255,
|
118 |
+
n_attn_blocks=[2, 4, 3],
|
119 |
+
base_attn_unit_dims=[128, 192, 256],
|
120 |
+
width_multiplier=1.0,
|
121 |
+
ffn_multiplier=2,
|
122 |
+
attn_dropout=0.0,
|
123 |
+
ffn_dropout=0.0,
|
124 |
+
**kwargs,
|
125 |
+
):
|
126 |
+
super().__init__(**kwargs)
|
127 |
+
|
128 |
+
self.num_channels = num_channels
|
129 |
+
self.image_size = image_size
|
130 |
+
self.patch_size = patch_size
|
131 |
+
self.expand_ratio = expand_ratio
|
132 |
+
self.hidden_act = hidden_act
|
133 |
+
self.conv_kernel_size = conv_kernel_size
|
134 |
+
self.output_stride = output_stride
|
135 |
+
self.initializer_range = initializer_range
|
136 |
+
self.layer_norm_eps = layer_norm_eps
|
137 |
+
self.n_attn_blocks = n_attn_blocks
|
138 |
+
self.base_attn_unit_dims = base_attn_unit_dims
|
139 |
+
self.width_multiplier = width_multiplier
|
140 |
+
self.ffn_multiplier = ffn_multiplier
|
141 |
+
self.ffn_dropout = ffn_dropout
|
142 |
+
self.attn_dropout = attn_dropout
|
143 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
144 |
+
|
145 |
+
# decode head attributes for semantic segmentation
|
146 |
+
self.aspp_out_channels = aspp_out_channels
|
147 |
+
self.atrous_rates = atrous_rates
|
148 |
+
self.aspp_dropout_prob = aspp_dropout_prob
|
149 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
150 |
+
|
151 |
+
|
152 |
+
class MobileViTV2OnnxConfig(OnnxConfig):
|
153 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
154 |
+
|
155 |
+
@property
|
156 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
157 |
+
return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])
|
158 |
+
|
159 |
+
@property
|
160 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
161 |
+
if self.task == "image-classification":
|
162 |
+
return OrderedDict([("logits", {0: "batch"})])
|
163 |
+
else:
|
164 |
+
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
|
165 |
+
|
166 |
+
@property
|
167 |
+
def atol_for_validation(self) -> float:
|
168 |
+
return 1e-4
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/convert_mlcvnets_to_pytorch.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert MobileViTV2 checkpoints from the ml-cvnets library."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import collections
|
20 |
+
import json
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
import yaml
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
from PIL import Image
|
28 |
+
|
29 |
+
from transformers import (
|
30 |
+
MobileViTImageProcessor,
|
31 |
+
MobileViTV2Config,
|
32 |
+
MobileViTV2ForImageClassification,
|
33 |
+
MobileViTV2ForSemanticSegmentation,
|
34 |
+
)
|
35 |
+
from transformers.utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
logging.set_verbosity_info()
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
def load_orig_config_file(orig_cfg_file):
|
43 |
+
print("Loading config file...")
|
44 |
+
|
45 |
+
def flatten_yaml_as_dict(d, parent_key="", sep="."):
|
46 |
+
items = []
|
47 |
+
for k, v in d.items():
|
48 |
+
new_key = parent_key + sep + k if parent_key else k
|
49 |
+
if isinstance(v, collections.abc.MutableMapping):
|
50 |
+
items.extend(flatten_yaml_as_dict(v, new_key, sep=sep).items())
|
51 |
+
else:
|
52 |
+
items.append((new_key, v))
|
53 |
+
return dict(items)
|
54 |
+
|
55 |
+
config = argparse.Namespace()
|
56 |
+
with open(orig_cfg_file, "r") as yaml_file:
|
57 |
+
try:
|
58 |
+
cfg = yaml.load(yaml_file, Loader=yaml.FullLoader)
|
59 |
+
|
60 |
+
flat_cfg = flatten_yaml_as_dict(cfg)
|
61 |
+
for k, v in flat_cfg.items():
|
62 |
+
setattr(config, k, v)
|
63 |
+
except yaml.YAMLError as exc:
|
64 |
+
logger.error("Error while loading config file: {}. Error message: {}".format(orig_cfg_file, str(exc)))
|
65 |
+
return config
|
66 |
+
|
67 |
+
|
68 |
+
def get_mobilevitv2_config(task_name, orig_cfg_file):
|
69 |
+
config = MobileViTV2Config()
|
70 |
+
|
71 |
+
is_segmentation_model = False
|
72 |
+
|
73 |
+
# dataset
|
74 |
+
if task_name.startswith("imagenet1k_"):
|
75 |
+
config.num_labels = 1000
|
76 |
+
if int(task_name.strip().split("_")[-1]) == 384:
|
77 |
+
config.image_size = 384
|
78 |
+
else:
|
79 |
+
config.image_size = 256
|
80 |
+
filename = "imagenet-1k-id2label.json"
|
81 |
+
elif task_name.startswith("imagenet21k_to_1k_"):
|
82 |
+
config.num_labels = 21000
|
83 |
+
if int(task_name.strip().split("_")[-1]) == 384:
|
84 |
+
config.image_size = 384
|
85 |
+
else:
|
86 |
+
config.image_size = 256
|
87 |
+
filename = "imagenet-22k-id2label.json"
|
88 |
+
elif task_name.startswith("ade20k_"):
|
89 |
+
config.num_labels = 151
|
90 |
+
config.image_size = 512
|
91 |
+
filename = "ade20k-id2label.json"
|
92 |
+
is_segmentation_model = True
|
93 |
+
elif task_name.startswith("voc_"):
|
94 |
+
config.num_labels = 21
|
95 |
+
config.image_size = 512
|
96 |
+
filename = "pascal-voc-id2label.json"
|
97 |
+
is_segmentation_model = True
|
98 |
+
|
99 |
+
# orig_config
|
100 |
+
orig_config = load_orig_config_file(orig_cfg_file)
|
101 |
+
assert getattr(orig_config, "model.classification.name", -1) == "mobilevit_v2", "Invalid model"
|
102 |
+
config.width_multiplier = getattr(orig_config, "model.classification.mitv2.width_multiplier", 1.0)
|
103 |
+
assert (
|
104 |
+
getattr(orig_config, "model.classification.mitv2.attn_norm_layer", -1) == "layer_norm_2d"
|
105 |
+
), "Norm layers other than layer_norm_2d is not supported"
|
106 |
+
config.hidden_act = getattr(orig_config, "model.classification.activation.name", "swish")
|
107 |
+
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
|
108 |
+
|
109 |
+
if is_segmentation_model:
|
110 |
+
config.output_stride = getattr(orig_config, "model.segmentation.output_stride", 16)
|
111 |
+
if "_deeplabv3" in task_name:
|
112 |
+
config.atrous_rates = getattr(orig_config, "model.segmentation.deeplabv3.aspp_rates", [12, 24, 36])
|
113 |
+
config.aspp_out_channels = getattr(orig_config, "model.segmentation.deeplabv3.aspp_out_channels", 512)
|
114 |
+
config.aspp_dropout_prob = getattr(orig_config, "model.segmentation.deeplabv3.aspp_dropout", 0.1)
|
115 |
+
|
116 |
+
# id2label
|
117 |
+
repo_id = "huggingface/label-files"
|
118 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
119 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
120 |
+
config.id2label = id2label
|
121 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
122 |
+
|
123 |
+
return config
|
124 |
+
|
125 |
+
|
126 |
+
def rename_key(dct, old, new):
|
127 |
+
val = dct.pop(old)
|
128 |
+
dct[new] = val
|
129 |
+
|
130 |
+
|
131 |
+
def create_rename_keys(state_dict, base_model=False):
|
132 |
+
if base_model:
|
133 |
+
model_prefix = ""
|
134 |
+
else:
|
135 |
+
model_prefix = "mobilevitv2."
|
136 |
+
|
137 |
+
rename_keys = []
|
138 |
+
for k in state_dict.keys():
|
139 |
+
if k[:8] == "encoder.":
|
140 |
+
k_new = k[8:]
|
141 |
+
else:
|
142 |
+
k_new = k
|
143 |
+
|
144 |
+
if ".block." in k:
|
145 |
+
k_new = k_new.replace(".block.", ".")
|
146 |
+
if ".conv." in k:
|
147 |
+
k_new = k_new.replace(".conv.", ".convolution.")
|
148 |
+
if ".norm." in k:
|
149 |
+
k_new = k_new.replace(".norm.", ".normalization.")
|
150 |
+
|
151 |
+
if "conv_1." in k:
|
152 |
+
k_new = k_new.replace("conv_1.", f"{model_prefix}conv_stem.")
|
153 |
+
for i in [1, 2]:
|
154 |
+
if f"layer_{i}." in k:
|
155 |
+
k_new = k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i-1}.layer.")
|
156 |
+
if ".exp_1x1." in k:
|
157 |
+
k_new = k_new.replace(".exp_1x1.", ".expand_1x1.")
|
158 |
+
if ".red_1x1." in k:
|
159 |
+
k_new = k_new.replace(".red_1x1.", ".reduce_1x1.")
|
160 |
+
|
161 |
+
for i in [3, 4, 5]:
|
162 |
+
if f"layer_{i}.0." in k:
|
163 |
+
k_new = k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i-1}.downsampling_layer.")
|
164 |
+
if f"layer_{i}.1.local_rep.0." in k:
|
165 |
+
k_new = k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i-1}.conv_kxk.")
|
166 |
+
if f"layer_{i}.1.local_rep.1." in k:
|
167 |
+
k_new = k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i-1}.conv_1x1.")
|
168 |
+
|
169 |
+
for i in [3, 4, 5]:
|
170 |
+
if i == 3:
|
171 |
+
j_in = [0, 1]
|
172 |
+
elif i == 4:
|
173 |
+
j_in = [0, 1, 2, 3]
|
174 |
+
elif i == 5:
|
175 |
+
j_in = [0, 1, 2]
|
176 |
+
|
177 |
+
for j in j_in:
|
178 |
+
if f"layer_{i}.1.global_rep.{j}." in k:
|
179 |
+
k_new = k_new.replace(
|
180 |
+
f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}."
|
181 |
+
)
|
182 |
+
if f"layer_{i}.1.global_rep.{j+1}." in k:
|
183 |
+
k_new = k_new.replace(
|
184 |
+
f"layer_{i}.1.global_rep.{j+1}.", f"{model_prefix}encoder.layer.{i-1}.layernorm."
|
185 |
+
)
|
186 |
+
|
187 |
+
if f"layer_{i}.1.conv_proj." in k:
|
188 |
+
k_new = k_new.replace(f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i-1}.conv_projection.")
|
189 |
+
|
190 |
+
if "pre_norm_attn.0." in k:
|
191 |
+
k_new = k_new.replace("pre_norm_attn.0.", "layernorm_before.")
|
192 |
+
if "pre_norm_attn.1." in k:
|
193 |
+
k_new = k_new.replace("pre_norm_attn.1.", "attention.")
|
194 |
+
if "pre_norm_ffn.0." in k:
|
195 |
+
k_new = k_new.replace("pre_norm_ffn.0.", "layernorm_after.")
|
196 |
+
if "pre_norm_ffn.1." in k:
|
197 |
+
k_new = k_new.replace("pre_norm_ffn.1.", "ffn.conv1.")
|
198 |
+
if "pre_norm_ffn.3." in k:
|
199 |
+
k_new = k_new.replace("pre_norm_ffn.3.", "ffn.conv2.")
|
200 |
+
|
201 |
+
if "classifier.1." in k:
|
202 |
+
k_new = k_new.replace("classifier.1.", "classifier.")
|
203 |
+
|
204 |
+
if "seg_head." in k:
|
205 |
+
k_new = k_new.replace("seg_head.", "segmentation_head.")
|
206 |
+
if ".aspp_layer." in k:
|
207 |
+
k_new = k_new.replace(".aspp_layer.", ".")
|
208 |
+
if ".aspp_pool." in k:
|
209 |
+
k_new = k_new.replace(".aspp_pool.", ".")
|
210 |
+
|
211 |
+
rename_keys.append((k, k_new))
|
212 |
+
return rename_keys
|
213 |
+
|
214 |
+
|
215 |
+
def remove_unused_keys(state_dict):
|
216 |
+
"""remove unused keys (e.g.: seg_head.aux_head)"""
|
217 |
+
keys_to_ignore = []
|
218 |
+
for k in state_dict.keys():
|
219 |
+
if k.startswith("seg_head.aux_head."):
|
220 |
+
keys_to_ignore.append(k)
|
221 |
+
for k in keys_to_ignore:
|
222 |
+
state_dict.pop(k, None)
|
223 |
+
|
224 |
+
|
225 |
+
# We will verify our results on an image of cute cats
|
226 |
+
def prepare_img():
|
227 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
228 |
+
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
|
229 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
230 |
+
return im
|
231 |
+
|
232 |
+
|
233 |
+
@torch.no_grad()
|
234 |
+
def convert_mobilevitv2_checkpoint(task_name, checkpoint_path, orig_config_path, pytorch_dump_folder_path):
|
235 |
+
"""
|
236 |
+
Copy/paste/tweak model's weights to our MobileViTV2 structure.
|
237 |
+
"""
|
238 |
+
config = get_mobilevitv2_config(task_name, orig_config_path)
|
239 |
+
|
240 |
+
# load original state_dict
|
241 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
242 |
+
|
243 |
+
# load huggingface model
|
244 |
+
if task_name.startswith("ade20k_") or task_name.startswith("voc_"):
|
245 |
+
model = MobileViTV2ForSemanticSegmentation(config).eval()
|
246 |
+
base_model = False
|
247 |
+
else:
|
248 |
+
model = MobileViTV2ForImageClassification(config).eval()
|
249 |
+
base_model = False
|
250 |
+
|
251 |
+
# remove and rename some keys of load the original model
|
252 |
+
state_dict = checkpoint
|
253 |
+
remove_unused_keys(state_dict)
|
254 |
+
rename_keys = create_rename_keys(state_dict, base_model=base_model)
|
255 |
+
for rename_key_src, rename_key_dest in rename_keys:
|
256 |
+
rename_key(state_dict, rename_key_src, rename_key_dest)
|
257 |
+
|
258 |
+
# load modified state_dict
|
259 |
+
model.load_state_dict(state_dict)
|
260 |
+
|
261 |
+
# Check outputs on an image, prepared by MobileViTImageProcessor
|
262 |
+
image_processor = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32)
|
263 |
+
encoding = image_processor(images=prepare_img(), return_tensors="pt")
|
264 |
+
outputs = model(**encoding)
|
265 |
+
|
266 |
+
# verify classification model
|
267 |
+
if task_name.startswith("imagenet"):
|
268 |
+
logits = outputs.logits
|
269 |
+
predicted_class_idx = logits.argmax(-1).item()
|
270 |
+
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
271 |
+
if task_name.startswith("imagenet1k_256") and config.width_multiplier == 1.0:
|
272 |
+
# expected_logits for base variant
|
273 |
+
expected_logits = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01])
|
274 |
+
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
|
275 |
+
|
276 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
277 |
+
print(f"Saving model {task_name} to {pytorch_dump_folder_path}")
|
278 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
279 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
280 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
281 |
+
|
282 |
+
|
283 |
+
if __name__ == "__main__":
|
284 |
+
parser = argparse.ArgumentParser()
|
285 |
+
# Required parameters
|
286 |
+
parser.add_argument(
|
287 |
+
"--task",
|
288 |
+
default="imagenet1k_256",
|
289 |
+
type=str,
|
290 |
+
help=(
|
291 |
+
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
|
292 |
+
"""
|
293 |
+
Classification (ImageNet-1k)
|
294 |
+
- MobileViTV2 (256x256) : imagenet1k_256
|
295 |
+
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
|
296 |
+
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
|
297 |
+
imagenet21k_to_1k_256
|
298 |
+
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
|
299 |
+
ImageNet-1k 384x384) : imagenet21k_to_1k_384
|
300 |
+
Segmentation
|
301 |
+
- ADE20K Dataset : ade20k_deeplabv3
|
302 |
+
- Pascal VOC 2012 Dataset: voc_deeplabv3
|
303 |
+
"""
|
304 |
+
),
|
305 |
+
choices=[
|
306 |
+
"imagenet1k_256",
|
307 |
+
"imagenet1k_384",
|
308 |
+
"imagenet21k_to_1k_256",
|
309 |
+
"imagenet21k_to_1k_384",
|
310 |
+
"ade20k_deeplabv3",
|
311 |
+
"voc_deeplabv3",
|
312 |
+
],
|
313 |
+
)
|
314 |
+
|
315 |
+
parser.add_argument(
|
316 |
+
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
|
317 |
+
)
|
318 |
+
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
|
319 |
+
parser.add_argument(
|
320 |
+
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
|
321 |
+
)
|
322 |
+
|
323 |
+
args = parser.parse_args()
|
324 |
+
convert_mobilevitv2_checkpoint(
|
325 |
+
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
|
326 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevitv2/modeling_mobilevitv2.py
ADDED
@@ -0,0 +1,1030 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE
|
17 |
+
""" PyTorch MobileViTV2 model."""
|
18 |
+
|
19 |
+
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithNoAttention,
|
30 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
31 |
+
ImageClassifierOutputWithNoAttention,
|
32 |
+
SemanticSegmenterOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
from .configuration_mobilevitv2 import MobileViTV2Config
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
|
48 |
+
# General docstring
|
49 |
+
_CONFIG_FOR_DOC = "MobileViTV2Config"
|
50 |
+
|
51 |
+
# Base docstring
|
52 |
+
_CHECKPOINT_FOR_DOC = "apple/mobilevitv2-1.0-imagenet1k-256"
|
53 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 512, 8, 8]
|
54 |
+
|
55 |
+
# Image classification docstring
|
56 |
+
_IMAGE_CLASS_CHECKPOINT = "apple/mobilevitv2-1.0-imagenet1k-256"
|
57 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
58 |
+
|
59 |
+
|
60 |
+
from ..deprecated._archive_maps import MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.mobilevit.modeling_mobilevit.make_divisible
|
64 |
+
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
|
65 |
+
"""
|
66 |
+
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
|
67 |
+
original TensorFlow repo. It can be seen here:
|
68 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
69 |
+
"""
|
70 |
+
if min_value is None:
|
71 |
+
min_value = divisor
|
72 |
+
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
|
73 |
+
# Make sure that round down does not go down by more than 10%.
|
74 |
+
if new_value < 0.9 * value:
|
75 |
+
new_value += divisor
|
76 |
+
return int(new_value)
|
77 |
+
|
78 |
+
|
79 |
+
def clip(value: float, min_val: float = float("-inf"), max_val: float = float("inf")) -> float:
|
80 |
+
return max(min_val, min(max_val, value))
|
81 |
+
|
82 |
+
|
83 |
+
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTConvLayer with MobileViT->MobileViTV2
|
84 |
+
class MobileViTV2ConvLayer(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
config: MobileViTV2Config,
|
88 |
+
in_channels: int,
|
89 |
+
out_channels: int,
|
90 |
+
kernel_size: int,
|
91 |
+
stride: int = 1,
|
92 |
+
groups: int = 1,
|
93 |
+
bias: bool = False,
|
94 |
+
dilation: int = 1,
|
95 |
+
use_normalization: bool = True,
|
96 |
+
use_activation: Union[bool, str] = True,
|
97 |
+
) -> None:
|
98 |
+
super().__init__()
|
99 |
+
padding = int((kernel_size - 1) / 2) * dilation
|
100 |
+
|
101 |
+
if in_channels % groups != 0:
|
102 |
+
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
|
103 |
+
if out_channels % groups != 0:
|
104 |
+
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
|
105 |
+
|
106 |
+
self.convolution = nn.Conv2d(
|
107 |
+
in_channels=in_channels,
|
108 |
+
out_channels=out_channels,
|
109 |
+
kernel_size=kernel_size,
|
110 |
+
stride=stride,
|
111 |
+
padding=padding,
|
112 |
+
dilation=dilation,
|
113 |
+
groups=groups,
|
114 |
+
bias=bias,
|
115 |
+
padding_mode="zeros",
|
116 |
+
)
|
117 |
+
|
118 |
+
if use_normalization:
|
119 |
+
self.normalization = nn.BatchNorm2d(
|
120 |
+
num_features=out_channels,
|
121 |
+
eps=1e-5,
|
122 |
+
momentum=0.1,
|
123 |
+
affine=True,
|
124 |
+
track_running_stats=True,
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
self.normalization = None
|
128 |
+
|
129 |
+
if use_activation:
|
130 |
+
if isinstance(use_activation, str):
|
131 |
+
self.activation = ACT2FN[use_activation]
|
132 |
+
elif isinstance(config.hidden_act, str):
|
133 |
+
self.activation = ACT2FN[config.hidden_act]
|
134 |
+
else:
|
135 |
+
self.activation = config.hidden_act
|
136 |
+
else:
|
137 |
+
self.activation = None
|
138 |
+
|
139 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
140 |
+
features = self.convolution(features)
|
141 |
+
if self.normalization is not None:
|
142 |
+
features = self.normalization(features)
|
143 |
+
if self.activation is not None:
|
144 |
+
features = self.activation(features)
|
145 |
+
return features
|
146 |
+
|
147 |
+
|
148 |
+
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTInvertedResidual with MobileViT->MobileViTV2
|
149 |
+
class MobileViTV2InvertedResidual(nn.Module):
|
150 |
+
"""
|
151 |
+
Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1
|
156 |
+
) -> None:
|
157 |
+
super().__init__()
|
158 |
+
expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8)
|
159 |
+
|
160 |
+
if stride not in [1, 2]:
|
161 |
+
raise ValueError(f"Invalid stride {stride}.")
|
162 |
+
|
163 |
+
self.use_residual = (stride == 1) and (in_channels == out_channels)
|
164 |
+
|
165 |
+
self.expand_1x1 = MobileViTV2ConvLayer(
|
166 |
+
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
|
167 |
+
)
|
168 |
+
|
169 |
+
self.conv_3x3 = MobileViTV2ConvLayer(
|
170 |
+
config,
|
171 |
+
in_channels=expanded_channels,
|
172 |
+
out_channels=expanded_channels,
|
173 |
+
kernel_size=3,
|
174 |
+
stride=stride,
|
175 |
+
groups=expanded_channels,
|
176 |
+
dilation=dilation,
|
177 |
+
)
|
178 |
+
|
179 |
+
self.reduce_1x1 = MobileViTV2ConvLayer(
|
180 |
+
config,
|
181 |
+
in_channels=expanded_channels,
|
182 |
+
out_channels=out_channels,
|
183 |
+
kernel_size=1,
|
184 |
+
use_activation=False,
|
185 |
+
)
|
186 |
+
|
187 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
188 |
+
residual = features
|
189 |
+
|
190 |
+
features = self.expand_1x1(features)
|
191 |
+
features = self.conv_3x3(features)
|
192 |
+
features = self.reduce_1x1(features)
|
193 |
+
|
194 |
+
return residual + features if self.use_residual else features
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTMobileNetLayer with MobileViT->MobileViTV2
|
198 |
+
class MobileViTV2MobileNetLayer(nn.Module):
|
199 |
+
def __init__(
|
200 |
+
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1
|
201 |
+
) -> None:
|
202 |
+
super().__init__()
|
203 |
+
|
204 |
+
self.layer = nn.ModuleList()
|
205 |
+
for i in range(num_stages):
|
206 |
+
layer = MobileViTV2InvertedResidual(
|
207 |
+
config,
|
208 |
+
in_channels=in_channels,
|
209 |
+
out_channels=out_channels,
|
210 |
+
stride=stride if i == 0 else 1,
|
211 |
+
)
|
212 |
+
self.layer.append(layer)
|
213 |
+
in_channels = out_channels
|
214 |
+
|
215 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
216 |
+
for layer_module in self.layer:
|
217 |
+
features = layer_module(features)
|
218 |
+
return features
|
219 |
+
|
220 |
+
|
221 |
+
class MobileViTV2LinearSelfAttention(nn.Module):
|
222 |
+
"""
|
223 |
+
This layer applies a self-attention with linear complexity, as described in MobileViTV2 paper:
|
224 |
+
https://arxiv.org/abs/2206.02680
|
225 |
+
|
226 |
+
Args:
|
227 |
+
config (`MobileVitv2Config`):
|
228 |
+
Model configuration object
|
229 |
+
embed_dim (`int`):
|
230 |
+
`input_channels` from an expected input of size :math:`(batch_size, input_channels, height, width)`
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(self, config: MobileViTV2Config, embed_dim: int) -> None:
|
234 |
+
super().__init__()
|
235 |
+
|
236 |
+
self.qkv_proj = MobileViTV2ConvLayer(
|
237 |
+
config=config,
|
238 |
+
in_channels=embed_dim,
|
239 |
+
out_channels=1 + (2 * embed_dim),
|
240 |
+
bias=True,
|
241 |
+
kernel_size=1,
|
242 |
+
use_normalization=False,
|
243 |
+
use_activation=False,
|
244 |
+
)
|
245 |
+
|
246 |
+
self.attn_dropout = nn.Dropout(p=config.attn_dropout)
|
247 |
+
self.out_proj = MobileViTV2ConvLayer(
|
248 |
+
config=config,
|
249 |
+
in_channels=embed_dim,
|
250 |
+
out_channels=embed_dim,
|
251 |
+
bias=True,
|
252 |
+
kernel_size=1,
|
253 |
+
use_normalization=False,
|
254 |
+
use_activation=False,
|
255 |
+
)
|
256 |
+
self.embed_dim = embed_dim
|
257 |
+
|
258 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
259 |
+
# (batch_size, embed_dim, num_pixels_in_patch, num_patches) --> (batch_size, 1+2*embed_dim, num_pixels_in_patch, num_patches)
|
260 |
+
qkv = self.qkv_proj(hidden_states)
|
261 |
+
|
262 |
+
# Project hidden_states into query, key and value
|
263 |
+
# Query --> [batch_size, 1, num_pixels_in_patch, num_patches]
|
264 |
+
# value, key --> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
|
265 |
+
query, key, value = torch.split(qkv, split_size_or_sections=[1, self.embed_dim, self.embed_dim], dim=1)
|
266 |
+
|
267 |
+
# apply softmax along num_patches dimension
|
268 |
+
context_scores = torch.nn.functional.softmax(query, dim=-1)
|
269 |
+
context_scores = self.attn_dropout(context_scores)
|
270 |
+
|
271 |
+
# Compute context vector
|
272 |
+
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] x [batch_size, 1, num_pixels_in_patch, num_patches] -> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
|
273 |
+
context_vector = key * context_scores
|
274 |
+
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] --> [batch_size, embed_dim, num_pixels_in_patch, 1]
|
275 |
+
context_vector = torch.sum(context_vector, dim=-1, keepdim=True)
|
276 |
+
|
277 |
+
# combine context vector with values
|
278 |
+
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] * [batch_size, embed_dim, num_pixels_in_patch, 1] --> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
|
279 |
+
out = torch.nn.functional.relu(value) * context_vector.expand_as(value)
|
280 |
+
out = self.out_proj(out)
|
281 |
+
return out
|
282 |
+
|
283 |
+
|
284 |
+
class MobileViTV2FFN(nn.Module):
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
config: MobileViTV2Config,
|
288 |
+
embed_dim: int,
|
289 |
+
ffn_latent_dim: int,
|
290 |
+
ffn_dropout: float = 0.0,
|
291 |
+
) -> None:
|
292 |
+
super().__init__()
|
293 |
+
self.conv1 = MobileViTV2ConvLayer(
|
294 |
+
config=config,
|
295 |
+
in_channels=embed_dim,
|
296 |
+
out_channels=ffn_latent_dim,
|
297 |
+
kernel_size=1,
|
298 |
+
stride=1,
|
299 |
+
bias=True,
|
300 |
+
use_normalization=False,
|
301 |
+
use_activation=True,
|
302 |
+
)
|
303 |
+
self.dropout1 = nn.Dropout(ffn_dropout)
|
304 |
+
|
305 |
+
self.conv2 = MobileViTV2ConvLayer(
|
306 |
+
config=config,
|
307 |
+
in_channels=ffn_latent_dim,
|
308 |
+
out_channels=embed_dim,
|
309 |
+
kernel_size=1,
|
310 |
+
stride=1,
|
311 |
+
bias=True,
|
312 |
+
use_normalization=False,
|
313 |
+
use_activation=False,
|
314 |
+
)
|
315 |
+
self.dropout2 = nn.Dropout(ffn_dropout)
|
316 |
+
|
317 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
318 |
+
hidden_states = self.conv1(hidden_states)
|
319 |
+
hidden_states = self.dropout1(hidden_states)
|
320 |
+
hidden_states = self.conv2(hidden_states)
|
321 |
+
hidden_states = self.dropout2(hidden_states)
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
|
325 |
+
class MobileViTV2TransformerLayer(nn.Module):
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
config: MobileViTV2Config,
|
329 |
+
embed_dim: int,
|
330 |
+
ffn_latent_dim: int,
|
331 |
+
dropout: float = 0.0,
|
332 |
+
) -> None:
|
333 |
+
super().__init__()
|
334 |
+
self.layernorm_before = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps)
|
335 |
+
self.attention = MobileViTV2LinearSelfAttention(config, embed_dim)
|
336 |
+
self.dropout1 = nn.Dropout(p=dropout)
|
337 |
+
self.layernorm_after = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps)
|
338 |
+
self.ffn = MobileViTV2FFN(config, embed_dim, ffn_latent_dim, config.ffn_dropout)
|
339 |
+
|
340 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
341 |
+
layernorm_1_out = self.layernorm_before(hidden_states)
|
342 |
+
attention_output = self.attention(layernorm_1_out)
|
343 |
+
hidden_states = attention_output + hidden_states
|
344 |
+
|
345 |
+
layer_output = self.layernorm_after(hidden_states)
|
346 |
+
layer_output = self.ffn(layer_output)
|
347 |
+
|
348 |
+
layer_output = layer_output + hidden_states
|
349 |
+
return layer_output
|
350 |
+
|
351 |
+
|
352 |
+
class MobileViTV2Transformer(nn.Module):
|
353 |
+
def __init__(self, config: MobileViTV2Config, n_layers: int, d_model: int) -> None:
|
354 |
+
super().__init__()
|
355 |
+
|
356 |
+
ffn_multiplier = config.ffn_multiplier
|
357 |
+
|
358 |
+
ffn_dims = [ffn_multiplier * d_model] * n_layers
|
359 |
+
|
360 |
+
# ensure that dims are multiple of 16
|
361 |
+
ffn_dims = [int((d // 16) * 16) for d in ffn_dims]
|
362 |
+
|
363 |
+
self.layer = nn.ModuleList()
|
364 |
+
for block_idx in range(n_layers):
|
365 |
+
transformer_layer = MobileViTV2TransformerLayer(
|
366 |
+
config, embed_dim=d_model, ffn_latent_dim=ffn_dims[block_idx]
|
367 |
+
)
|
368 |
+
self.layer.append(transformer_layer)
|
369 |
+
|
370 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
371 |
+
for layer_module in self.layer:
|
372 |
+
hidden_states = layer_module(hidden_states)
|
373 |
+
return hidden_states
|
374 |
+
|
375 |
+
|
376 |
+
class MobileViTV2Layer(nn.Module):
|
377 |
+
"""
|
378 |
+
MobileViTV2 layer: https://arxiv.org/abs/2206.02680
|
379 |
+
"""
|
380 |
+
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
config: MobileViTV2Config,
|
384 |
+
in_channels: int,
|
385 |
+
out_channels: int,
|
386 |
+
attn_unit_dim: int,
|
387 |
+
n_attn_blocks: int = 2,
|
388 |
+
dilation: int = 1,
|
389 |
+
stride: int = 2,
|
390 |
+
) -> None:
|
391 |
+
super().__init__()
|
392 |
+
self.patch_width = config.patch_size
|
393 |
+
self.patch_height = config.patch_size
|
394 |
+
|
395 |
+
cnn_out_dim = attn_unit_dim
|
396 |
+
|
397 |
+
if stride == 2:
|
398 |
+
self.downsampling_layer = MobileViTV2InvertedResidual(
|
399 |
+
config,
|
400 |
+
in_channels=in_channels,
|
401 |
+
out_channels=out_channels,
|
402 |
+
stride=stride if dilation == 1 else 1,
|
403 |
+
dilation=dilation // 2 if dilation > 1 else 1,
|
404 |
+
)
|
405 |
+
in_channels = out_channels
|
406 |
+
else:
|
407 |
+
self.downsampling_layer = None
|
408 |
+
|
409 |
+
# Local representations
|
410 |
+
self.conv_kxk = MobileViTV2ConvLayer(
|
411 |
+
config,
|
412 |
+
in_channels=in_channels,
|
413 |
+
out_channels=in_channels,
|
414 |
+
kernel_size=config.conv_kernel_size,
|
415 |
+
groups=in_channels,
|
416 |
+
)
|
417 |
+
self.conv_1x1 = MobileViTV2ConvLayer(
|
418 |
+
config,
|
419 |
+
in_channels=in_channels,
|
420 |
+
out_channels=cnn_out_dim,
|
421 |
+
kernel_size=1,
|
422 |
+
use_normalization=False,
|
423 |
+
use_activation=False,
|
424 |
+
)
|
425 |
+
|
426 |
+
# Global representations
|
427 |
+
self.transformer = MobileViTV2Transformer(config, d_model=attn_unit_dim, n_layers=n_attn_blocks)
|
428 |
+
|
429 |
+
# self.layernorm = MobileViTV2LayerNorm2D(attn_unit_dim, eps=config.layer_norm_eps)
|
430 |
+
self.layernorm = nn.GroupNorm(num_groups=1, num_channels=attn_unit_dim, eps=config.layer_norm_eps)
|
431 |
+
|
432 |
+
# Fusion
|
433 |
+
self.conv_projection = MobileViTV2ConvLayer(
|
434 |
+
config,
|
435 |
+
in_channels=cnn_out_dim,
|
436 |
+
out_channels=in_channels,
|
437 |
+
kernel_size=1,
|
438 |
+
use_normalization=True,
|
439 |
+
use_activation=False,
|
440 |
+
)
|
441 |
+
|
442 |
+
def unfolding(self, feature_map: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
443 |
+
batch_size, in_channels, img_height, img_width = feature_map.shape
|
444 |
+
patches = nn.functional.unfold(
|
445 |
+
feature_map,
|
446 |
+
kernel_size=(self.patch_height, self.patch_width),
|
447 |
+
stride=(self.patch_height, self.patch_width),
|
448 |
+
)
|
449 |
+
patches = patches.reshape(batch_size, in_channels, self.patch_height * self.patch_width, -1)
|
450 |
+
|
451 |
+
return patches, (img_height, img_width)
|
452 |
+
|
453 |
+
def folding(self, patches: torch.Tensor, output_size: Tuple[int, int]) -> torch.Tensor:
|
454 |
+
batch_size, in_dim, patch_size, n_patches = patches.shape
|
455 |
+
patches = patches.reshape(batch_size, in_dim * patch_size, n_patches)
|
456 |
+
|
457 |
+
feature_map = nn.functional.fold(
|
458 |
+
patches,
|
459 |
+
output_size=output_size,
|
460 |
+
kernel_size=(self.patch_height, self.patch_width),
|
461 |
+
stride=(self.patch_height, self.patch_width),
|
462 |
+
)
|
463 |
+
|
464 |
+
return feature_map
|
465 |
+
|
466 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
467 |
+
# reduce spatial dimensions if needed
|
468 |
+
if self.downsampling_layer:
|
469 |
+
features = self.downsampling_layer(features)
|
470 |
+
|
471 |
+
# local representation
|
472 |
+
features = self.conv_kxk(features)
|
473 |
+
features = self.conv_1x1(features)
|
474 |
+
|
475 |
+
# convert feature map to patches
|
476 |
+
patches, output_size = self.unfolding(features)
|
477 |
+
|
478 |
+
# learn global representations
|
479 |
+
patches = self.transformer(patches)
|
480 |
+
patches = self.layernorm(patches)
|
481 |
+
|
482 |
+
# convert patches back to feature maps
|
483 |
+
# [batch_size, patch_height, patch_width, input_dim] --> [batch_size, input_dim, patch_height, patch_width]
|
484 |
+
features = self.folding(patches, output_size)
|
485 |
+
|
486 |
+
features = self.conv_projection(features)
|
487 |
+
return features
|
488 |
+
|
489 |
+
|
490 |
+
class MobileViTV2Encoder(nn.Module):
|
491 |
+
def __init__(self, config: MobileViTV2Config) -> None:
|
492 |
+
super().__init__()
|
493 |
+
self.config = config
|
494 |
+
|
495 |
+
self.layer = nn.ModuleList()
|
496 |
+
self.gradient_checkpointing = False
|
497 |
+
|
498 |
+
# segmentation architectures like DeepLab and PSPNet modify the strides
|
499 |
+
# of the classification backbones
|
500 |
+
dilate_layer_4 = dilate_layer_5 = False
|
501 |
+
if config.output_stride == 8:
|
502 |
+
dilate_layer_4 = True
|
503 |
+
dilate_layer_5 = True
|
504 |
+
elif config.output_stride == 16:
|
505 |
+
dilate_layer_5 = True
|
506 |
+
|
507 |
+
dilation = 1
|
508 |
+
|
509 |
+
layer_0_dim = make_divisible(
|
510 |
+
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16
|
511 |
+
)
|
512 |
+
|
513 |
+
layer_1_dim = make_divisible(64 * config.width_multiplier, divisor=16)
|
514 |
+
layer_2_dim = make_divisible(128 * config.width_multiplier, divisor=8)
|
515 |
+
layer_3_dim = make_divisible(256 * config.width_multiplier, divisor=8)
|
516 |
+
layer_4_dim = make_divisible(384 * config.width_multiplier, divisor=8)
|
517 |
+
layer_5_dim = make_divisible(512 * config.width_multiplier, divisor=8)
|
518 |
+
|
519 |
+
layer_1 = MobileViTV2MobileNetLayer(
|
520 |
+
config,
|
521 |
+
in_channels=layer_0_dim,
|
522 |
+
out_channels=layer_1_dim,
|
523 |
+
stride=1,
|
524 |
+
num_stages=1,
|
525 |
+
)
|
526 |
+
self.layer.append(layer_1)
|
527 |
+
|
528 |
+
layer_2 = MobileViTV2MobileNetLayer(
|
529 |
+
config,
|
530 |
+
in_channels=layer_1_dim,
|
531 |
+
out_channels=layer_2_dim,
|
532 |
+
stride=2,
|
533 |
+
num_stages=2,
|
534 |
+
)
|
535 |
+
self.layer.append(layer_2)
|
536 |
+
|
537 |
+
layer_3 = MobileViTV2Layer(
|
538 |
+
config,
|
539 |
+
in_channels=layer_2_dim,
|
540 |
+
out_channels=layer_3_dim,
|
541 |
+
attn_unit_dim=make_divisible(config.base_attn_unit_dims[0] * config.width_multiplier, divisor=8),
|
542 |
+
n_attn_blocks=config.n_attn_blocks[0],
|
543 |
+
)
|
544 |
+
self.layer.append(layer_3)
|
545 |
+
|
546 |
+
if dilate_layer_4:
|
547 |
+
dilation *= 2
|
548 |
+
|
549 |
+
layer_4 = MobileViTV2Layer(
|
550 |
+
config,
|
551 |
+
in_channels=layer_3_dim,
|
552 |
+
out_channels=layer_4_dim,
|
553 |
+
attn_unit_dim=make_divisible(config.base_attn_unit_dims[1] * config.width_multiplier, divisor=8),
|
554 |
+
n_attn_blocks=config.n_attn_blocks[1],
|
555 |
+
dilation=dilation,
|
556 |
+
)
|
557 |
+
self.layer.append(layer_4)
|
558 |
+
|
559 |
+
if dilate_layer_5:
|
560 |
+
dilation *= 2
|
561 |
+
|
562 |
+
layer_5 = MobileViTV2Layer(
|
563 |
+
config,
|
564 |
+
in_channels=layer_4_dim,
|
565 |
+
out_channels=layer_5_dim,
|
566 |
+
attn_unit_dim=make_divisible(config.base_attn_unit_dims[2] * config.width_multiplier, divisor=8),
|
567 |
+
n_attn_blocks=config.n_attn_blocks[2],
|
568 |
+
dilation=dilation,
|
569 |
+
)
|
570 |
+
self.layer.append(layer_5)
|
571 |
+
|
572 |
+
def forward(
|
573 |
+
self,
|
574 |
+
hidden_states: torch.Tensor,
|
575 |
+
output_hidden_states: bool = False,
|
576 |
+
return_dict: bool = True,
|
577 |
+
) -> Union[tuple, BaseModelOutputWithNoAttention]:
|
578 |
+
all_hidden_states = () if output_hidden_states else None
|
579 |
+
|
580 |
+
for i, layer_module in enumerate(self.layer):
|
581 |
+
if self.gradient_checkpointing and self.training:
|
582 |
+
hidden_states = self._gradient_checkpointing_func(
|
583 |
+
layer_module.__call__,
|
584 |
+
hidden_states,
|
585 |
+
)
|
586 |
+
else:
|
587 |
+
hidden_states = layer_module(hidden_states)
|
588 |
+
|
589 |
+
if output_hidden_states:
|
590 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
594 |
+
|
595 |
+
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
596 |
+
|
597 |
+
|
598 |
+
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTPreTrainedModel with MobileViT->MobileViTV2,mobilevit->mobilevitv2
|
599 |
+
class MobileViTV2PreTrainedModel(PreTrainedModel):
|
600 |
+
"""
|
601 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
602 |
+
models.
|
603 |
+
"""
|
604 |
+
|
605 |
+
config_class = MobileViTV2Config
|
606 |
+
base_model_prefix = "mobilevitv2"
|
607 |
+
main_input_name = "pixel_values"
|
608 |
+
supports_gradient_checkpointing = True
|
609 |
+
|
610 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
611 |
+
"""Initialize the weights"""
|
612 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
613 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
614 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
615 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
616 |
+
if module.bias is not None:
|
617 |
+
module.bias.data.zero_()
|
618 |
+
elif isinstance(module, nn.LayerNorm):
|
619 |
+
module.bias.data.zero_()
|
620 |
+
module.weight.data.fill_(1.0)
|
621 |
+
|
622 |
+
|
623 |
+
MOBILEVITV2_START_DOCSTRING = r"""
|
624 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
625 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
626 |
+
behavior.
|
627 |
+
|
628 |
+
Parameters:
|
629 |
+
config ([`MobileViTV2Config`]): Model configuration class with all the parameters of the model.
|
630 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
631 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
632 |
+
"""
|
633 |
+
|
634 |
+
MOBILEVITV2_INPUTS_DOCSTRING = r"""
|
635 |
+
Args:
|
636 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
637 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
638 |
+
[`MobileViTImageProcessor.__call__`] for details.
|
639 |
+
output_hidden_states (`bool`, *optional*):
|
640 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
641 |
+
more detail.
|
642 |
+
return_dict (`bool`, *optional*):
|
643 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
644 |
+
"""
|
645 |
+
|
646 |
+
|
647 |
+
@add_start_docstrings(
|
648 |
+
"The bare MobileViTV2 model outputting raw hidden-states without any specific head on top.",
|
649 |
+
MOBILEVITV2_START_DOCSTRING,
|
650 |
+
)
|
651 |
+
class MobileViTV2Model(MobileViTV2PreTrainedModel):
|
652 |
+
def __init__(self, config: MobileViTV2Config, expand_output: bool = True):
|
653 |
+
super().__init__(config)
|
654 |
+
self.config = config
|
655 |
+
self.expand_output = expand_output
|
656 |
+
|
657 |
+
layer_0_dim = make_divisible(
|
658 |
+
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16
|
659 |
+
)
|
660 |
+
|
661 |
+
self.conv_stem = MobileViTV2ConvLayer(
|
662 |
+
config,
|
663 |
+
in_channels=config.num_channels,
|
664 |
+
out_channels=layer_0_dim,
|
665 |
+
kernel_size=3,
|
666 |
+
stride=2,
|
667 |
+
use_normalization=True,
|
668 |
+
use_activation=True,
|
669 |
+
)
|
670 |
+
self.encoder = MobileViTV2Encoder(config)
|
671 |
+
|
672 |
+
# Initialize weights and apply final processing
|
673 |
+
self.post_init()
|
674 |
+
|
675 |
+
def _prune_heads(self, heads_to_prune):
|
676 |
+
"""Prunes heads of the model.
|
677 |
+
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
|
678 |
+
"""
|
679 |
+
for layer_index, heads in heads_to_prune.items():
|
680 |
+
mobilevitv2_layer = self.encoder.layer[layer_index]
|
681 |
+
if isinstance(mobilevitv2_layer, MobileViTV2Layer):
|
682 |
+
for transformer_layer in mobilevitv2_layer.transformer.layer:
|
683 |
+
transformer_layer.attention.prune_heads(heads)
|
684 |
+
|
685 |
+
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
|
686 |
+
@add_code_sample_docstrings(
|
687 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
688 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
689 |
+
config_class=_CONFIG_FOR_DOC,
|
690 |
+
modality="vision",
|
691 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
692 |
+
)
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
pixel_values: Optional[torch.Tensor] = None,
|
696 |
+
output_hidden_states: Optional[bool] = None,
|
697 |
+
return_dict: Optional[bool] = None,
|
698 |
+
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
699 |
+
output_hidden_states = (
|
700 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
701 |
+
)
|
702 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
703 |
+
|
704 |
+
if pixel_values is None:
|
705 |
+
raise ValueError("You have to specify pixel_values")
|
706 |
+
|
707 |
+
embedding_output = self.conv_stem(pixel_values)
|
708 |
+
|
709 |
+
encoder_outputs = self.encoder(
|
710 |
+
embedding_output,
|
711 |
+
output_hidden_states=output_hidden_states,
|
712 |
+
return_dict=return_dict,
|
713 |
+
)
|
714 |
+
|
715 |
+
if self.expand_output:
|
716 |
+
last_hidden_state = encoder_outputs[0]
|
717 |
+
|
718 |
+
# global average pooling: (batch_size, channels, height, width) -> (batch_size, channels)
|
719 |
+
pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False)
|
720 |
+
else:
|
721 |
+
last_hidden_state = encoder_outputs[0]
|
722 |
+
pooled_output = None
|
723 |
+
|
724 |
+
if not return_dict:
|
725 |
+
output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,)
|
726 |
+
return output + encoder_outputs[1:]
|
727 |
+
|
728 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
729 |
+
last_hidden_state=last_hidden_state,
|
730 |
+
pooler_output=pooled_output,
|
731 |
+
hidden_states=encoder_outputs.hidden_states,
|
732 |
+
)
|
733 |
+
|
734 |
+
|
735 |
+
@add_start_docstrings(
|
736 |
+
"""
|
737 |
+
MobileViTV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
738 |
+
ImageNet.
|
739 |
+
""",
|
740 |
+
MOBILEVITV2_START_DOCSTRING,
|
741 |
+
)
|
742 |
+
class MobileViTV2ForImageClassification(MobileViTV2PreTrainedModel):
|
743 |
+
def __init__(self, config: MobileViTV2Config) -> None:
|
744 |
+
super().__init__(config)
|
745 |
+
|
746 |
+
self.num_labels = config.num_labels
|
747 |
+
self.mobilevitv2 = MobileViTV2Model(config)
|
748 |
+
|
749 |
+
out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension
|
750 |
+
# Classifier head
|
751 |
+
self.classifier = (
|
752 |
+
nn.Linear(in_features=out_channels, out_features=config.num_labels)
|
753 |
+
if config.num_labels > 0
|
754 |
+
else nn.Identity()
|
755 |
+
)
|
756 |
+
|
757 |
+
# Initialize weights and apply final processing
|
758 |
+
self.post_init()
|
759 |
+
|
760 |
+
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
|
761 |
+
@add_code_sample_docstrings(
|
762 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
763 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
764 |
+
config_class=_CONFIG_FOR_DOC,
|
765 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
766 |
+
)
|
767 |
+
def forward(
|
768 |
+
self,
|
769 |
+
pixel_values: Optional[torch.Tensor] = None,
|
770 |
+
output_hidden_states: Optional[bool] = None,
|
771 |
+
labels: Optional[torch.Tensor] = None,
|
772 |
+
return_dict: Optional[bool] = None,
|
773 |
+
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
|
774 |
+
r"""
|
775 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
776 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
777 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
|
778 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
779 |
+
"""
|
780 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
781 |
+
|
782 |
+
outputs = self.mobilevitv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
783 |
+
|
784 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
785 |
+
|
786 |
+
logits = self.classifier(pooled_output)
|
787 |
+
|
788 |
+
loss = None
|
789 |
+
if labels is not None:
|
790 |
+
if self.config.problem_type is None:
|
791 |
+
if self.num_labels == 1:
|
792 |
+
self.config.problem_type = "regression"
|
793 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
794 |
+
self.config.problem_type = "single_label_classification"
|
795 |
+
else:
|
796 |
+
self.config.problem_type = "multi_label_classification"
|
797 |
+
|
798 |
+
if self.config.problem_type == "regression":
|
799 |
+
loss_fct = MSELoss()
|
800 |
+
if self.num_labels == 1:
|
801 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
802 |
+
else:
|
803 |
+
loss = loss_fct(logits, labels)
|
804 |
+
elif self.config.problem_type == "single_label_classification":
|
805 |
+
loss_fct = CrossEntropyLoss()
|
806 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
807 |
+
elif self.config.problem_type == "multi_label_classification":
|
808 |
+
loss_fct = BCEWithLogitsLoss()
|
809 |
+
loss = loss_fct(logits, labels)
|
810 |
+
|
811 |
+
if not return_dict:
|
812 |
+
output = (logits,) + outputs[2:]
|
813 |
+
return ((loss,) + output) if loss is not None else output
|
814 |
+
|
815 |
+
return ImageClassifierOutputWithNoAttention(
|
816 |
+
loss=loss,
|
817 |
+
logits=logits,
|
818 |
+
hidden_states=outputs.hidden_states,
|
819 |
+
)
|
820 |
+
|
821 |
+
|
822 |
+
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTASPPPooling with MobileViT->MobileViTV2
|
823 |
+
class MobileViTV2ASPPPooling(nn.Module):
|
824 |
+
def __init__(self, config: MobileViTV2Config, in_channels: int, out_channels: int) -> None:
|
825 |
+
super().__init__()
|
826 |
+
|
827 |
+
self.global_pool = nn.AdaptiveAvgPool2d(output_size=1)
|
828 |
+
|
829 |
+
self.conv_1x1 = MobileViTV2ConvLayer(
|
830 |
+
config,
|
831 |
+
in_channels=in_channels,
|
832 |
+
out_channels=out_channels,
|
833 |
+
kernel_size=1,
|
834 |
+
stride=1,
|
835 |
+
use_normalization=True,
|
836 |
+
use_activation="relu",
|
837 |
+
)
|
838 |
+
|
839 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
840 |
+
spatial_size = features.shape[-2:]
|
841 |
+
features = self.global_pool(features)
|
842 |
+
features = self.conv_1x1(features)
|
843 |
+
features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False)
|
844 |
+
return features
|
845 |
+
|
846 |
+
|
847 |
+
class MobileViTV2ASPP(nn.Module):
|
848 |
+
"""
|
849 |
+
ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587
|
850 |
+
"""
|
851 |
+
|
852 |
+
def __init__(self, config: MobileViTV2Config) -> None:
|
853 |
+
super().__init__()
|
854 |
+
|
855 |
+
encoder_out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension
|
856 |
+
in_channels = encoder_out_channels
|
857 |
+
out_channels = config.aspp_out_channels
|
858 |
+
|
859 |
+
if len(config.atrous_rates) != 3:
|
860 |
+
raise ValueError("Expected 3 values for atrous_rates")
|
861 |
+
|
862 |
+
self.convs = nn.ModuleList()
|
863 |
+
|
864 |
+
in_projection = MobileViTV2ConvLayer(
|
865 |
+
config,
|
866 |
+
in_channels=in_channels,
|
867 |
+
out_channels=out_channels,
|
868 |
+
kernel_size=1,
|
869 |
+
use_activation="relu",
|
870 |
+
)
|
871 |
+
self.convs.append(in_projection)
|
872 |
+
|
873 |
+
self.convs.extend(
|
874 |
+
[
|
875 |
+
MobileViTV2ConvLayer(
|
876 |
+
config,
|
877 |
+
in_channels=in_channels,
|
878 |
+
out_channels=out_channels,
|
879 |
+
kernel_size=3,
|
880 |
+
dilation=rate,
|
881 |
+
use_activation="relu",
|
882 |
+
)
|
883 |
+
for rate in config.atrous_rates
|
884 |
+
]
|
885 |
+
)
|
886 |
+
|
887 |
+
pool_layer = MobileViTV2ASPPPooling(config, in_channels, out_channels)
|
888 |
+
self.convs.append(pool_layer)
|
889 |
+
|
890 |
+
self.project = MobileViTV2ConvLayer(
|
891 |
+
config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu"
|
892 |
+
)
|
893 |
+
|
894 |
+
self.dropout = nn.Dropout(p=config.aspp_dropout_prob)
|
895 |
+
|
896 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
897 |
+
pyramid = []
|
898 |
+
for conv in self.convs:
|
899 |
+
pyramid.append(conv(features))
|
900 |
+
pyramid = torch.cat(pyramid, dim=1)
|
901 |
+
|
902 |
+
pooled_features = self.project(pyramid)
|
903 |
+
pooled_features = self.dropout(pooled_features)
|
904 |
+
return pooled_features
|
905 |
+
|
906 |
+
|
907 |
+
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTDeepLabV3 with MobileViT->MobileViTV2
|
908 |
+
class MobileViTV2DeepLabV3(nn.Module):
|
909 |
+
"""
|
910 |
+
DeepLabv3 architecture: https://arxiv.org/abs/1706.05587
|
911 |
+
"""
|
912 |
+
|
913 |
+
def __init__(self, config: MobileViTV2Config) -> None:
|
914 |
+
super().__init__()
|
915 |
+
self.aspp = MobileViTV2ASPP(config)
|
916 |
+
|
917 |
+
self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
|
918 |
+
|
919 |
+
self.classifier = MobileViTV2ConvLayer(
|
920 |
+
config,
|
921 |
+
in_channels=config.aspp_out_channels,
|
922 |
+
out_channels=config.num_labels,
|
923 |
+
kernel_size=1,
|
924 |
+
use_normalization=False,
|
925 |
+
use_activation=False,
|
926 |
+
bias=True,
|
927 |
+
)
|
928 |
+
|
929 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
930 |
+
features = self.aspp(hidden_states[-1])
|
931 |
+
features = self.dropout(features)
|
932 |
+
features = self.classifier(features)
|
933 |
+
return features
|
934 |
+
|
935 |
+
|
936 |
+
@add_start_docstrings(
|
937 |
+
"""
|
938 |
+
MobileViTV2 model with a semantic segmentation head on top, e.g. for Pascal VOC.
|
939 |
+
""",
|
940 |
+
MOBILEVITV2_START_DOCSTRING,
|
941 |
+
)
|
942 |
+
class MobileViTV2ForSemanticSegmentation(MobileViTV2PreTrainedModel):
|
943 |
+
def __init__(self, config: MobileViTV2Config) -> None:
|
944 |
+
super().__init__(config)
|
945 |
+
|
946 |
+
self.num_labels = config.num_labels
|
947 |
+
self.mobilevitv2 = MobileViTV2Model(config, expand_output=False)
|
948 |
+
self.segmentation_head = MobileViTV2DeepLabV3(config)
|
949 |
+
|
950 |
+
# Initialize weights and apply final processing
|
951 |
+
self.post_init()
|
952 |
+
|
953 |
+
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
|
954 |
+
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
|
955 |
+
def forward(
|
956 |
+
self,
|
957 |
+
pixel_values: Optional[torch.Tensor] = None,
|
958 |
+
labels: Optional[torch.Tensor] = None,
|
959 |
+
output_hidden_states: Optional[bool] = None,
|
960 |
+
return_dict: Optional[bool] = None,
|
961 |
+
) -> Union[tuple, SemanticSegmenterOutput]:
|
962 |
+
r"""
|
963 |
+
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
964 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
965 |
+
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
966 |
+
|
967 |
+
Returns:
|
968 |
+
|
969 |
+
Examples:
|
970 |
+
|
971 |
+
```python
|
972 |
+
>>> import requests
|
973 |
+
>>> import torch
|
974 |
+
>>> from PIL import Image
|
975 |
+
>>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation
|
976 |
+
|
977 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
978 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
979 |
+
|
980 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
|
981 |
+
>>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
|
982 |
+
|
983 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
984 |
+
|
985 |
+
>>> with torch.no_grad():
|
986 |
+
... outputs = model(**inputs)
|
987 |
+
|
988 |
+
>>> # logits are of shape (batch_size, num_labels, height, width)
|
989 |
+
>>> logits = outputs.logits
|
990 |
+
```"""
|
991 |
+
output_hidden_states = (
|
992 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
993 |
+
)
|
994 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
995 |
+
|
996 |
+
outputs = self.mobilevitv2(
|
997 |
+
pixel_values,
|
998 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
999 |
+
return_dict=return_dict,
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
1003 |
+
|
1004 |
+
logits = self.segmentation_head(encoder_hidden_states)
|
1005 |
+
|
1006 |
+
loss = None
|
1007 |
+
if labels is not None:
|
1008 |
+
if self.config.num_labels == 1:
|
1009 |
+
raise ValueError("The number of labels should be greater than one")
|
1010 |
+
else:
|
1011 |
+
# upsample logits to the images' original size
|
1012 |
+
upsampled_logits = nn.functional.interpolate(
|
1013 |
+
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1014 |
+
)
|
1015 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
|
1016 |
+
loss = loss_fct(upsampled_logits, labels)
|
1017 |
+
|
1018 |
+
if not return_dict:
|
1019 |
+
if output_hidden_states:
|
1020 |
+
output = (logits,) + outputs[1:]
|
1021 |
+
else:
|
1022 |
+
output = (logits,) + outputs[2:]
|
1023 |
+
return ((loss,) + output) if loss is not None else output
|
1024 |
+
|
1025 |
+
return SemanticSegmenterOutput(
|
1026 |
+
loss=loss,
|
1027 |
+
logits=logits,
|
1028 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1029 |
+
attentions=None,
|
1030 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__init__.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
is_vision_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_owlvit": [
|
29 |
+
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
30 |
+
"OwlViTConfig",
|
31 |
+
"OwlViTOnnxConfig",
|
32 |
+
"OwlViTTextConfig",
|
33 |
+
"OwlViTVisionConfig",
|
34 |
+
],
|
35 |
+
"processing_owlvit": ["OwlViTProcessor"],
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_vision_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["feature_extraction_owlvit"] = ["OwlViTFeatureExtractor"]
|
46 |
+
_import_structure["image_processing_owlvit"] = ["OwlViTImageProcessor"]
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_torch_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
_import_structure["modeling_owlvit"] = [
|
55 |
+
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
56 |
+
"OwlViTModel",
|
57 |
+
"OwlViTPreTrainedModel",
|
58 |
+
"OwlViTTextModel",
|
59 |
+
"OwlViTVisionModel",
|
60 |
+
"OwlViTForObjectDetection",
|
61 |
+
]
|
62 |
+
|
63 |
+
if TYPE_CHECKING:
|
64 |
+
from .configuration_owlvit import (
|
65 |
+
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
66 |
+
OwlViTConfig,
|
67 |
+
OwlViTOnnxConfig,
|
68 |
+
OwlViTTextConfig,
|
69 |
+
OwlViTVisionConfig,
|
70 |
+
)
|
71 |
+
from .processing_owlvit import OwlViTProcessor
|
72 |
+
|
73 |
+
try:
|
74 |
+
if not is_vision_available():
|
75 |
+
raise OptionalDependencyNotAvailable()
|
76 |
+
except OptionalDependencyNotAvailable:
|
77 |
+
pass
|
78 |
+
else:
|
79 |
+
from .feature_extraction_owlvit import OwlViTFeatureExtractor
|
80 |
+
from .image_processing_owlvit import OwlViTImageProcessor
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_torch_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .modeling_owlvit import (
|
89 |
+
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
90 |
+
OwlViTForObjectDetection,
|
91 |
+
OwlViTModel,
|
92 |
+
OwlViTPreTrainedModel,
|
93 |
+
OwlViTTextModel,
|
94 |
+
OwlViTVisionModel,
|
95 |
+
)
|
96 |
+
|
97 |
+
else:
|
98 |
+
import sys
|
99 |
+
|
100 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/configuration_owlvit.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/convert_owlvit_original_flax_to_hf.cpython-310.pyc
ADDED
Binary file (9.53 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/feature_extraction_owlvit.cpython-310.pyc
ADDED
Binary file (1.02 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/image_processing_owlvit.cpython-310.pyc
ADDED
Binary file (23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/modeling_owlvit.cpython-310.pyc
ADDED
Binary file (55.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/processing_owlvit.cpython-310.pyc
ADDED
Binary file (9.52 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/configuration_owlvit.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" OWL-ViT model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ...processing_utils import ProcessorMixin
|
24 |
+
from ...utils import TensorType
|
25 |
+
|
26 |
+
from ...configuration_utils import PretrainedConfig
|
27 |
+
from ...onnx import OnnxConfig
|
28 |
+
from ...utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
from ..deprecated._archive_maps import OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
35 |
+
|
36 |
+
|
37 |
+
class OwlViTTextConfig(PretrainedConfig):
|
38 |
+
r"""
|
39 |
+
This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an
|
40 |
+
OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
41 |
+
configuration with the defaults will yield a similar configuration to that of the OwlViT
|
42 |
+
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
|
43 |
+
|
44 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
45 |
+
documentation from [`PretrainedConfig`] for more information.
|
46 |
+
|
47 |
+
|
48 |
+
Args:
|
49 |
+
vocab_size (`int`, *optional*, defaults to 49408):
|
50 |
+
Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented
|
51 |
+
by the `inputs_ids` passed when calling [`OwlViTTextModel`].
|
52 |
+
hidden_size (`int`, *optional*, defaults to 512):
|
53 |
+
Dimensionality of the encoder layers and the pooler layer.
|
54 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
55 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
56 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
57 |
+
Number of hidden layers in the Transformer encoder.
|
58 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
59 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 16):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
64 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
65 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
67 |
+
The epsilon used by the layer normalization layers.
|
68 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
+
The dropout ratio for the attention probabilities.
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
73 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
74 |
+
testing).
|
75 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
76 |
+
The id of the padding token in the input sequences.
|
77 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
78 |
+
The id of the beginning-of-sequence token in the input sequences.
|
79 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
80 |
+
The id of the end-of-sequence token in the input sequences.
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
```python
|
85 |
+
>>> from transformers import OwlViTTextConfig, OwlViTTextModel
|
86 |
+
|
87 |
+
>>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration
|
88 |
+
>>> configuration = OwlViTTextConfig()
|
89 |
+
|
90 |
+
>>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration
|
91 |
+
>>> model = OwlViTTextModel(configuration)
|
92 |
+
|
93 |
+
>>> # Accessing the model configuration
|
94 |
+
>>> configuration = model.config
|
95 |
+
```"""
|
96 |
+
|
97 |
+
model_type = "owlvit_text_model"
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_size=49408,
|
102 |
+
hidden_size=512,
|
103 |
+
intermediate_size=2048,
|
104 |
+
num_hidden_layers=12,
|
105 |
+
num_attention_heads=8,
|
106 |
+
max_position_embeddings=16,
|
107 |
+
hidden_act="quick_gelu",
|
108 |
+
layer_norm_eps=1e-5,
|
109 |
+
attention_dropout=0.0,
|
110 |
+
initializer_range=0.02,
|
111 |
+
initializer_factor=1.0,
|
112 |
+
pad_token_id=0,
|
113 |
+
bos_token_id=49406,
|
114 |
+
eos_token_id=49407,
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
118 |
+
|
119 |
+
self.vocab_size = vocab_size
|
120 |
+
self.hidden_size = hidden_size
|
121 |
+
self.intermediate_size = intermediate_size
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
self.max_position_embeddings = max_position_embeddings
|
125 |
+
self.hidden_act = hidden_act
|
126 |
+
self.layer_norm_eps = layer_norm_eps
|
127 |
+
self.attention_dropout = attention_dropout
|
128 |
+
self.initializer_range = initializer_range
|
129 |
+
self.initializer_factor = initializer_factor
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
133 |
+
cls._set_token_in_kwargs(kwargs)
|
134 |
+
|
135 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
136 |
+
|
137 |
+
# get the text config dict if we are loading from OwlViTConfig
|
138 |
+
if config_dict.get("model_type") == "owlvit":
|
139 |
+
config_dict = config_dict["text_config"]
|
140 |
+
|
141 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
142 |
+
logger.warning(
|
143 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
144 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
145 |
+
)
|
146 |
+
|
147 |
+
return cls.from_dict(config_dict, **kwargs)
|
148 |
+
|
149 |
+
|
150 |
+
class OwlViTVisionConfig(PretrainedConfig):
|
151 |
+
r"""
|
152 |
+
This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate
|
153 |
+
an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a
|
154 |
+
configuration with the defaults will yield a similar configuration to that of the OWL-ViT
|
155 |
+
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
|
156 |
+
|
157 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
158 |
+
documentation from [`PretrainedConfig`] for more information.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
162 |
+
Dimensionality of the encoder layers and the pooler layer.
|
163 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
164 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
165 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
166 |
+
Number of hidden layers in the Transformer encoder.
|
167 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
168 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
169 |
+
num_channels (`int`, *optional*, defaults to 3):
|
170 |
+
Number of channels in the input images.
|
171 |
+
image_size (`int`, *optional*, defaults to 768):
|
172 |
+
The size (resolution) of each image.
|
173 |
+
patch_size (`int`, *optional*, defaults to 32):
|
174 |
+
The size (resolution) of each patch.
|
175 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
176 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
177 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
178 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
179 |
+
The epsilon used by the layer normalization layers.
|
180 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
181 |
+
The dropout ratio for the attention probabilities.
|
182 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
183 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
184 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
185 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
186 |
+
testing).
|
187 |
+
|
188 |
+
Example:
|
189 |
+
|
190 |
+
```python
|
191 |
+
>>> from transformers import OwlViTVisionConfig, OwlViTVisionModel
|
192 |
+
|
193 |
+
>>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration
|
194 |
+
>>> configuration = OwlViTVisionConfig()
|
195 |
+
|
196 |
+
>>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration
|
197 |
+
>>> model = OwlViTVisionModel(configuration)
|
198 |
+
|
199 |
+
>>> # Accessing the model configuration
|
200 |
+
>>> configuration = model.config
|
201 |
+
```"""
|
202 |
+
|
203 |
+
model_type = "owlvit_vision_model"
|
204 |
+
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
hidden_size=768,
|
208 |
+
intermediate_size=3072,
|
209 |
+
num_hidden_layers=12,
|
210 |
+
num_attention_heads=12,
|
211 |
+
num_channels=3,
|
212 |
+
image_size=768,
|
213 |
+
patch_size=32,
|
214 |
+
hidden_act="quick_gelu",
|
215 |
+
layer_norm_eps=1e-5,
|
216 |
+
attention_dropout=0.0,
|
217 |
+
initializer_range=0.02,
|
218 |
+
initializer_factor=1.0,
|
219 |
+
**kwargs,
|
220 |
+
):
|
221 |
+
super().__init__(**kwargs)
|
222 |
+
|
223 |
+
self.hidden_size = hidden_size
|
224 |
+
self.intermediate_size = intermediate_size
|
225 |
+
self.num_hidden_layers = num_hidden_layers
|
226 |
+
self.num_attention_heads = num_attention_heads
|
227 |
+
self.num_channels = num_channels
|
228 |
+
self.image_size = image_size
|
229 |
+
self.patch_size = patch_size
|
230 |
+
self.hidden_act = hidden_act
|
231 |
+
self.layer_norm_eps = layer_norm_eps
|
232 |
+
self.attention_dropout = attention_dropout
|
233 |
+
self.initializer_range = initializer_range
|
234 |
+
self.initializer_factor = initializer_factor
|
235 |
+
|
236 |
+
@classmethod
|
237 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
238 |
+
cls._set_token_in_kwargs(kwargs)
|
239 |
+
|
240 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
241 |
+
|
242 |
+
# get the vision config dict if we are loading from OwlViTConfig
|
243 |
+
if config_dict.get("model_type") == "owlvit":
|
244 |
+
config_dict = config_dict["vision_config"]
|
245 |
+
|
246 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
247 |
+
logger.warning(
|
248 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
249 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
250 |
+
)
|
251 |
+
|
252 |
+
return cls.from_dict(config_dict, **kwargs)
|
253 |
+
|
254 |
+
|
255 |
+
class OwlViTConfig(PretrainedConfig):
|
256 |
+
r"""
|
257 |
+
[`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to
|
258 |
+
instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model
|
259 |
+
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT
|
260 |
+
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
|
261 |
+
|
262 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
263 |
+
documentation from [`PretrainedConfig`] for more information.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
text_config (`dict`, *optional*):
|
267 |
+
Dictionary of configuration options used to initialize [`OwlViTTextConfig`].
|
268 |
+
vision_config (`dict`, *optional*):
|
269 |
+
Dictionary of configuration options used to initialize [`OwlViTVisionConfig`].
|
270 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
271 |
+
Dimensionality of text and vision projection layers.
|
272 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
273 |
+
The inital value of the *logit_scale* parameter. Default is used as per the original OWL-ViT
|
274 |
+
implementation.
|
275 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
276 |
+
Whether or not the model should return a dictionary. If `False`, returns a tuple.
|
277 |
+
kwargs (*optional*):
|
278 |
+
Dictionary of keyword arguments.
|
279 |
+
"""
|
280 |
+
|
281 |
+
model_type = "owlvit"
|
282 |
+
|
283 |
+
def __init__(
|
284 |
+
self,
|
285 |
+
text_config=None,
|
286 |
+
vision_config=None,
|
287 |
+
projection_dim=512,
|
288 |
+
logit_scale_init_value=2.6592,
|
289 |
+
return_dict=True,
|
290 |
+
**kwargs,
|
291 |
+
):
|
292 |
+
super().__init__(**kwargs)
|
293 |
+
|
294 |
+
if text_config is None:
|
295 |
+
text_config = {}
|
296 |
+
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values.")
|
297 |
+
|
298 |
+
if vision_config is None:
|
299 |
+
vision_config = {}
|
300 |
+
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values.")
|
301 |
+
|
302 |
+
self.text_config = OwlViTTextConfig(**text_config)
|
303 |
+
self.vision_config = OwlViTVisionConfig(**vision_config)
|
304 |
+
|
305 |
+
self.projection_dim = projection_dim
|
306 |
+
self.logit_scale_init_value = logit_scale_init_value
|
307 |
+
self.return_dict = return_dict
|
308 |
+
self.initializer_factor = 1.0
|
309 |
+
|
310 |
+
@classmethod
|
311 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
312 |
+
cls._set_token_in_kwargs(kwargs)
|
313 |
+
|
314 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
315 |
+
|
316 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
317 |
+
logger.warning(
|
318 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
319 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
320 |
+
)
|
321 |
+
|
322 |
+
return cls.from_dict(config_dict, **kwargs)
|
323 |
+
|
324 |
+
@classmethod
|
325 |
+
def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs):
|
326 |
+
r"""
|
327 |
+
Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision
|
328 |
+
model configuration.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
[`OwlViTConfig`]: An instance of a configuration object
|
332 |
+
"""
|
333 |
+
config_dict = {}
|
334 |
+
config_dict["text_config"] = text_config
|
335 |
+
config_dict["vision_config"] = vision_config
|
336 |
+
|
337 |
+
return cls.from_dict(config_dict, **kwargs)
|
338 |
+
|
339 |
+
|
340 |
+
class OwlViTOnnxConfig(OnnxConfig):
|
341 |
+
@property
|
342 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
343 |
+
return OrderedDict(
|
344 |
+
[
|
345 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
346 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
347 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
348 |
+
]
|
349 |
+
)
|
350 |
+
|
351 |
+
@property
|
352 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
353 |
+
return OrderedDict(
|
354 |
+
[
|
355 |
+
("logits_per_image", {0: "batch"}),
|
356 |
+
("logits_per_text", {0: "batch"}),
|
357 |
+
("text_embeds", {0: "batch"}),
|
358 |
+
("image_embeds", {0: "batch"}),
|
359 |
+
]
|
360 |
+
)
|
361 |
+
|
362 |
+
@property
|
363 |
+
def atol_for_validation(self) -> float:
|
364 |
+
return 1e-4
|
365 |
+
|
366 |
+
def generate_dummy_inputs(
|
367 |
+
self,
|
368 |
+
processor: "ProcessorMixin",
|
369 |
+
batch_size: int = -1,
|
370 |
+
seq_length: int = -1,
|
371 |
+
framework: Optional["TensorType"] = None,
|
372 |
+
) -> Mapping[str, Any]:
|
373 |
+
text_input_dict = super().generate_dummy_inputs(
|
374 |
+
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
375 |
+
)
|
376 |
+
image_input_dict = super().generate_dummy_inputs(
|
377 |
+
processor.image_processor, batch_size=batch_size, framework=framework
|
378 |
+
)
|
379 |
+
return {**text_input_dict, **image_input_dict}
|
380 |
+
|
381 |
+
@property
|
382 |
+
def default_onnx_opset(self) -> int:
|
383 |
+
return 14
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/convert_owlvit_original_flax_to_hf.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert OWL-ViT checkpoints from the original repository. URL:
|
16 |
+
https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit"""
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import collections
|
20 |
+
|
21 |
+
import jax
|
22 |
+
import jax.numpy as jnp
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
from clip.model import CLIP
|
26 |
+
from flax.training import checkpoints
|
27 |
+
from huggingface_hub import Repository
|
28 |
+
|
29 |
+
from transformers import (
|
30 |
+
CLIPTokenizer,
|
31 |
+
OwlViTConfig,
|
32 |
+
OwlViTForObjectDetection,
|
33 |
+
OwlViTImageProcessor,
|
34 |
+
OwlViTModel,
|
35 |
+
OwlViTProcessor,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
CONFIGS = {
|
40 |
+
"vit_b32": {
|
41 |
+
"embed_dim": 512,
|
42 |
+
"image_resolution": 768,
|
43 |
+
"context_length": 16,
|
44 |
+
"vocab_size": 49408,
|
45 |
+
"vision_layers": 12,
|
46 |
+
"vision_width": 768,
|
47 |
+
"vision_patch_size": 32,
|
48 |
+
"transformer_width": 512,
|
49 |
+
"transformer_heads": 8,
|
50 |
+
"transformer_layers": 12,
|
51 |
+
},
|
52 |
+
"vit_b16": {
|
53 |
+
"embed_dim": 512,
|
54 |
+
"image_resolution": 768,
|
55 |
+
"context_length": 16,
|
56 |
+
"vocab_size": 49408,
|
57 |
+
"vision_layers": 12,
|
58 |
+
"vision_width": 768,
|
59 |
+
"vision_patch_size": 16,
|
60 |
+
"transformer_width": 512,
|
61 |
+
"transformer_heads": 8,
|
62 |
+
"transformer_layers": 12,
|
63 |
+
},
|
64 |
+
"vit_l14": {
|
65 |
+
"embed_dim": 768,
|
66 |
+
"image_resolution": 840,
|
67 |
+
"context_length": 16,
|
68 |
+
"vocab_size": 49408,
|
69 |
+
"vision_layers": 24,
|
70 |
+
"vision_width": 1024,
|
71 |
+
"vision_patch_size": 14,
|
72 |
+
"transformer_width": 768,
|
73 |
+
"transformer_heads": 12,
|
74 |
+
"transformer_layers": 12,
|
75 |
+
},
|
76 |
+
}
|
77 |
+
|
78 |
+
|
79 |
+
def flatten_nested_dict(params, parent_key="", sep="/"):
|
80 |
+
items = []
|
81 |
+
|
82 |
+
for k, v in params.items():
|
83 |
+
new_key = parent_key + sep + k if parent_key else k
|
84 |
+
|
85 |
+
if isinstance(v, collections.MutableMapping):
|
86 |
+
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
|
87 |
+
else:
|
88 |
+
items.append((new_key, v))
|
89 |
+
return dict(items)
|
90 |
+
|
91 |
+
|
92 |
+
def to_f32(params):
|
93 |
+
return jax.tree_util.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, params)
|
94 |
+
|
95 |
+
|
96 |
+
def copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
97 |
+
q_proj, k_proj, v_proj = pt_attn_layer.in_proj_weight.chunk(3, dim=0)
|
98 |
+
q_proj_bias, k_proj_bias, v_proj_bias = pt_attn_layer.in_proj_bias.chunk(3, dim=0)
|
99 |
+
|
100 |
+
out_proj_weights = pt_attn_layer.out_proj.weight
|
101 |
+
out_proj_bias = pt_attn_layer.out_proj.bias
|
102 |
+
|
103 |
+
hf_attn_layer.q_proj.weight.data = q_proj
|
104 |
+
hf_attn_layer.q_proj.bias.data = q_proj_bias
|
105 |
+
|
106 |
+
hf_attn_layer.k_proj.weight.data = k_proj
|
107 |
+
hf_attn_layer.k_proj.bias.data = k_proj_bias
|
108 |
+
|
109 |
+
hf_attn_layer.v_proj.weight.data = v_proj
|
110 |
+
hf_attn_layer.v_proj.bias.data = v_proj_bias
|
111 |
+
|
112 |
+
hf_attn_layer.out_proj.weight = out_proj_weights
|
113 |
+
hf_attn_layer.out_proj.bias = out_proj_bias
|
114 |
+
|
115 |
+
|
116 |
+
def copy_mlp(hf_mlp, pt_mlp):
|
117 |
+
copy_linear(hf_mlp.fc1, pt_mlp.c_fc)
|
118 |
+
copy_linear(hf_mlp.fc2, pt_mlp.c_proj)
|
119 |
+
|
120 |
+
|
121 |
+
def copy_linear(hf_linear, pt_linear):
|
122 |
+
hf_linear.weight = pt_linear.weight
|
123 |
+
hf_linear.bias = pt_linear.bias
|
124 |
+
|
125 |
+
|
126 |
+
def copy_layer(hf_layer, pt_layer):
|
127 |
+
# copy layer norms
|
128 |
+
copy_linear(hf_layer.layer_norm1, pt_layer.ln_1)
|
129 |
+
copy_linear(hf_layer.layer_norm2, pt_layer.ln_2)
|
130 |
+
|
131 |
+
# copy MLP
|
132 |
+
copy_mlp(hf_layer.mlp, pt_layer.mlp)
|
133 |
+
|
134 |
+
# copy attn
|
135 |
+
copy_attn_layer(hf_layer.self_attn, pt_layer.attn)
|
136 |
+
|
137 |
+
|
138 |
+
def copy_layers(hf_layers, pt_layers):
|
139 |
+
for hf_layer, pt_layer in zip(hf_layers, pt_layers):
|
140 |
+
copy_layer(hf_layer, pt_layer)
|
141 |
+
|
142 |
+
|
143 |
+
def copy_encoder(hf_encoder, pt_model):
|
144 |
+
# copy embeds
|
145 |
+
hf_encoder.embeddings.token_embedding.weight = pt_model.token_embedding.weight
|
146 |
+
hf_encoder.embeddings.position_embedding.weight.data = pt_model.positional_embedding
|
147 |
+
|
148 |
+
# copy layer norm
|
149 |
+
copy_linear(hf_encoder.final_layer_norm, pt_model.ln_final)
|
150 |
+
|
151 |
+
# copy hidden layers
|
152 |
+
copy_layers(hf_encoder.encoder.layers, pt_model.transformer.resblocks)
|
153 |
+
|
154 |
+
|
155 |
+
def copy_text_model_and_projection(hf_model, pt_model):
|
156 |
+
# copy projection
|
157 |
+
hf_model.text_projection.weight.data = pt_model.text_projection.data.T
|
158 |
+
|
159 |
+
# copy text encoder
|
160 |
+
copy_encoder(hf_model.text_model, pt_model)
|
161 |
+
|
162 |
+
|
163 |
+
def copy_vision_model_and_projection(hf_model, pt_model):
|
164 |
+
# copy projection
|
165 |
+
hf_model.visual_projection.weight.data = pt_model.visual.proj.data.T
|
166 |
+
|
167 |
+
# copy layer norms
|
168 |
+
copy_linear(hf_model.vision_model.pre_layernorm, pt_model.visual.ln_pre)
|
169 |
+
copy_linear(hf_model.vision_model.post_layernorm, pt_model.visual.ln_post)
|
170 |
+
|
171 |
+
# copy embeds
|
172 |
+
hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_model.visual.conv1.weight.data
|
173 |
+
hf_model.vision_model.embeddings.class_embedding = pt_model.visual.class_embedding
|
174 |
+
hf_model.vision_model.embeddings.position_embedding.weight.data = pt_model.visual.positional_embedding.data
|
175 |
+
|
176 |
+
# copy encoder
|
177 |
+
copy_layers(hf_model.vision_model.encoder.layers, pt_model.visual.transformer.resblocks)
|
178 |
+
|
179 |
+
|
180 |
+
def copy_class_merge_token(hf_model, flax_params):
|
181 |
+
flax_class_token_params = flatten_nested_dict(flax_params["backbone"]["merged_class_token"])
|
182 |
+
|
183 |
+
weight = torch.from_numpy(flax_class_token_params["scale"])
|
184 |
+
bias = torch.from_numpy(flax_class_token_params["bias"])
|
185 |
+
hf_model.layer_norm.weight = nn.Parameter(weight)
|
186 |
+
hf_model.layer_norm.bias = nn.Parameter(bias)
|
187 |
+
|
188 |
+
|
189 |
+
def copy_class_box_heads(hf_model, flax_params):
|
190 |
+
pt_params = hf_model.state_dict()
|
191 |
+
new_params = {}
|
192 |
+
|
193 |
+
# Rename class prediction head flax params to pytorch HF
|
194 |
+
flax_class_params = flatten_nested_dict(flax_params["class_head"])
|
195 |
+
|
196 |
+
for flax_key, v in flax_class_params.items():
|
197 |
+
torch_key = flax_key.replace("/", ".")
|
198 |
+
torch_key = torch_key.replace(".kernel", ".weight")
|
199 |
+
torch_key = torch_key.replace("Dense_0", "dense0")
|
200 |
+
torch_key = "class_head." + torch_key
|
201 |
+
|
202 |
+
if "weight" in torch_key and v.ndim == 2:
|
203 |
+
v = v.T
|
204 |
+
|
205 |
+
new_params[torch_key] = nn.Parameter(torch.from_numpy(v))
|
206 |
+
|
207 |
+
# Rename box prediction box flax params to pytorch HF
|
208 |
+
flax_box_params = flatten_nested_dict(flax_params["obj_box_head"])
|
209 |
+
|
210 |
+
for flax_key, v in flax_box_params.items():
|
211 |
+
torch_key = flax_key.replace("/", ".")
|
212 |
+
torch_key = torch_key.replace(".kernel", ".weight")
|
213 |
+
torch_key = torch_key.replace("_", "").lower()
|
214 |
+
torch_key = "box_head." + torch_key
|
215 |
+
|
216 |
+
if "weight" in torch_key and v.ndim == 2:
|
217 |
+
v = v.T
|
218 |
+
|
219 |
+
new_params[torch_key] = nn.Parameter(torch.from_numpy(v))
|
220 |
+
|
221 |
+
# Copy flax params to PyTorch params
|
222 |
+
for name, param in new_params.items():
|
223 |
+
if name in pt_params.keys():
|
224 |
+
pt_params[name].copy_(param)
|
225 |
+
|
226 |
+
|
227 |
+
def copy_flax_attn_params(hf_backbone, flax_attn_params):
|
228 |
+
for k, v in flax_attn_params.items():
|
229 |
+
if k.startswith("transformer"):
|
230 |
+
torch_key = k.replace("transformer.resblocks", "text_model.encoder.layers")
|
231 |
+
else:
|
232 |
+
torch_key = k.replace("visual.transformer.resblocks", "vision_model.encoder.layers")
|
233 |
+
|
234 |
+
torch_key = torch_key.replace("attn", "self_attn")
|
235 |
+
torch_key = torch_key.replace("key", "k_proj")
|
236 |
+
torch_key = torch_key.replace("value", "v_proj")
|
237 |
+
torch_key = torch_key.replace("query", "q_proj")
|
238 |
+
torch_key = torch_key.replace("out", "out_proj")
|
239 |
+
|
240 |
+
if "bias" in torch_key and v.ndim == 2:
|
241 |
+
shape = v.shape[0] * v.shape[1]
|
242 |
+
v = v.reshape(shape)
|
243 |
+
|
244 |
+
if "weight" in torch_key and "out" in torch_key:
|
245 |
+
shape = (v.shape[0] * v.shape[1], v.shape[2])
|
246 |
+
v = v.reshape(shape).T
|
247 |
+
|
248 |
+
if "weight" in torch_key and "out" not in torch_key:
|
249 |
+
shape = (v.shape[0], v.shape[1] * v.shape[2])
|
250 |
+
v = v.reshape(shape).T
|
251 |
+
|
252 |
+
# Copy flax CLIP attn params to HF PyTorch params
|
253 |
+
v = torch.from_numpy(v)
|
254 |
+
hf_backbone.state_dict()[torch_key].copy_(v)
|
255 |
+
|
256 |
+
|
257 |
+
def _convert_attn_layers(params):
|
258 |
+
new_params = {}
|
259 |
+
processed_attn_layers = []
|
260 |
+
|
261 |
+
for k, v in params.items():
|
262 |
+
if "attn." in k:
|
263 |
+
base = k[: k.rindex("attn.") + 5]
|
264 |
+
if base in processed_attn_layers:
|
265 |
+
continue
|
266 |
+
|
267 |
+
processed_attn_layers.append(base)
|
268 |
+
dim = params[base + "out.weight"].shape[-1]
|
269 |
+
new_params[base + "out_proj.weight"] = params[base + "out.weight"].reshape(dim, dim).T
|
270 |
+
new_params[base + "out_proj.bias"] = params[base + "out.bias"]
|
271 |
+
else:
|
272 |
+
new_params[k] = v
|
273 |
+
return new_params
|
274 |
+
|
275 |
+
|
276 |
+
def convert_clip_backbone(flax_params, torch_config):
|
277 |
+
torch_model = CLIP(**torch_config)
|
278 |
+
torch_model.eval()
|
279 |
+
torch_clip_params = torch_model.state_dict()
|
280 |
+
|
281 |
+
flax_clip_params = flatten_nested_dict(flax_params["backbone"]["clip"])
|
282 |
+
new_torch_params = {}
|
283 |
+
|
284 |
+
for flax_key, v in flax_clip_params.items():
|
285 |
+
torch_key = flax_key.replace("/", ".")
|
286 |
+
torch_key = torch_key.replace("text.token_embedding.embedding", "token_embedding.kernel")
|
287 |
+
|
288 |
+
if (
|
289 |
+
torch_key.startswith("text.transformer")
|
290 |
+
or torch_key.startswith("text.text_projection")
|
291 |
+
or torch_key.startswith("text.ln_final")
|
292 |
+
or torch_key.startswith("text.positional_embedding")
|
293 |
+
):
|
294 |
+
torch_key = torch_key[5:]
|
295 |
+
|
296 |
+
torch_key = torch_key.replace("text_projection.kernel", "text_projection")
|
297 |
+
torch_key = torch_key.replace("visual.proj.kernel", "visual.proj")
|
298 |
+
torch_key = torch_key.replace(".scale", ".weight")
|
299 |
+
torch_key = torch_key.replace(".kernel", ".weight")
|
300 |
+
|
301 |
+
if "conv" in torch_key or "downsample.0.weight" in torch_key:
|
302 |
+
v = v.transpose(3, 2, 0, 1)
|
303 |
+
|
304 |
+
elif "weight" in torch_key and v.ndim == 2 and "embedding" not in torch_key:
|
305 |
+
# Fully connected layers are transposed, embeddings are not
|
306 |
+
v = v.T
|
307 |
+
|
308 |
+
new_torch_params[torch_key] = v
|
309 |
+
|
310 |
+
attn_params = _convert_attn_layers(new_torch_params)
|
311 |
+
new_torch_params.update(attn_params)
|
312 |
+
attn_params = {}
|
313 |
+
|
314 |
+
# Copy flax CLIP backbone params to PyTorch params
|
315 |
+
for name, param in new_torch_params.items():
|
316 |
+
if name in torch_clip_params.keys():
|
317 |
+
new_param = torch.from_numpy(new_torch_params[name])
|
318 |
+
torch_clip_params[name].copy_(new_param)
|
319 |
+
else:
|
320 |
+
attn_params[name] = param
|
321 |
+
|
322 |
+
return torch_clip_params, torch_model, attn_params
|
323 |
+
|
324 |
+
|
325 |
+
@torch.no_grad()
|
326 |
+
def convert_owlvit_checkpoint(pt_backbone, flax_params, attn_params, pytorch_dump_folder_path, config_path=None):
|
327 |
+
"""
|
328 |
+
Copy/paste/tweak model's weights to transformers design.
|
329 |
+
"""
|
330 |
+
repo = Repository(pytorch_dump_folder_path, clone_from=f"google/{pytorch_dump_folder_path}")
|
331 |
+
repo.git_pull()
|
332 |
+
|
333 |
+
if config_path is not None:
|
334 |
+
config = OwlViTConfig.from_pretrained(config_path)
|
335 |
+
else:
|
336 |
+
config = OwlViTConfig()
|
337 |
+
|
338 |
+
hf_backbone = OwlViTModel(config).eval()
|
339 |
+
hf_model = OwlViTForObjectDetection(config).eval()
|
340 |
+
|
341 |
+
copy_text_model_and_projection(hf_backbone, pt_backbone)
|
342 |
+
copy_vision_model_and_projection(hf_backbone, pt_backbone)
|
343 |
+
hf_backbone.logit_scale = pt_backbone.logit_scale
|
344 |
+
copy_flax_attn_params(hf_backbone, attn_params)
|
345 |
+
|
346 |
+
hf_model.owlvit = hf_backbone
|
347 |
+
copy_class_merge_token(hf_model, flax_params)
|
348 |
+
copy_class_box_heads(hf_model, flax_params)
|
349 |
+
|
350 |
+
# Save HF model
|
351 |
+
hf_model.save_pretrained(repo.local_dir)
|
352 |
+
|
353 |
+
# Initialize image processor
|
354 |
+
image_processor = OwlViTImageProcessor(
|
355 |
+
size=config.vision_config.image_size, crop_size=config.vision_config.image_size
|
356 |
+
)
|
357 |
+
# Initialize tokenizer
|
358 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32", pad_token="!", model_max_length=16)
|
359 |
+
|
360 |
+
# Initialize processor
|
361 |
+
processor = OwlViTProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
362 |
+
image_processor.save_pretrained(repo.local_dir)
|
363 |
+
processor.save_pretrained(repo.local_dir)
|
364 |
+
|
365 |
+
repo.git_add()
|
366 |
+
repo.git_commit("Upload model and processor")
|
367 |
+
repo.git_push()
|
368 |
+
|
369 |
+
|
370 |
+
if __name__ == "__main__":
|
371 |
+
parser = argparse.ArgumentParser()
|
372 |
+
# Required parameters
|
373 |
+
parser.add_argument(
|
374 |
+
"--owlvit_version",
|
375 |
+
default=None,
|
376 |
+
type=str,
|
377 |
+
required=True,
|
378 |
+
help="OWL-ViT model name [clip_b16, clip_b32, clip_l14].",
|
379 |
+
)
|
380 |
+
parser.add_argument(
|
381 |
+
"--owlvit_checkpoint", default=None, type=str, required=True, help="Path to flax model checkpoint."
|
382 |
+
)
|
383 |
+
parser.add_argument("--hf_config", default=None, type=str, required=True, help="Path to HF model config.")
|
384 |
+
parser.add_argument(
|
385 |
+
"--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model."
|
386 |
+
)
|
387 |
+
args = parser.parse_args()
|
388 |
+
|
389 |
+
# Initialize PyToch clip model
|
390 |
+
model_name = args.owlvit_version
|
391 |
+
if model_name == "clip_b16":
|
392 |
+
torch_config = CONFIGS["vit_b16"]
|
393 |
+
elif model_name == "clip_b32":
|
394 |
+
torch_config = CONFIGS["vit_b32"]
|
395 |
+
elif model_name == "clip_l14":
|
396 |
+
torch_config = CONFIGS["vit_l14"]
|
397 |
+
|
398 |
+
# Load from checkpoint and convert params to float-32
|
399 |
+
variables = checkpoints.restore_checkpoint(args.owlvit_checkpoint, target=None)["optimizer"]["target"]
|
400 |
+
flax_params = jax.tree_util.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, variables)
|
401 |
+
del variables
|
402 |
+
|
403 |
+
# Convert CLIP backbone
|
404 |
+
pt_backbone_params, clip_pt, attn_params = convert_clip_backbone(flax_params, torch_config)
|
405 |
+
|
406 |
+
convert_owlvit_checkpoint(clip_pt, flax_params, attn_params, args.pytorch_dump_folder_path, args.hf_config)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/feature_extraction_owlvit.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for OwlViT."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_owlvit import OwlViTImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class OwlViTFeatureExtractor(OwlViTImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
|
30 |
+
" use OwlViTImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/image_processing_owlvit.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for OwlViT"""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
23 |
+
from ...image_transforms import (
|
24 |
+
center_crop,
|
25 |
+
center_to_corners_format,
|
26 |
+
rescale,
|
27 |
+
resize,
|
28 |
+
to_channel_dimension_format,
|
29 |
+
)
|
30 |
+
from ...image_utils import (
|
31 |
+
OPENAI_CLIP_MEAN,
|
32 |
+
OPENAI_CLIP_STD,
|
33 |
+
ChannelDimension,
|
34 |
+
ImageInput,
|
35 |
+
PILImageResampling,
|
36 |
+
infer_channel_dimension_format,
|
37 |
+
is_scaled_image,
|
38 |
+
make_list_of_images,
|
39 |
+
to_numpy_array,
|
40 |
+
valid_images,
|
41 |
+
validate_kwargs,
|
42 |
+
validate_preprocess_arguments,
|
43 |
+
)
|
44 |
+
from ...utils import TensorType, is_torch_available, logging
|
45 |
+
|
46 |
+
|
47 |
+
if is_torch_available():
|
48 |
+
import torch
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
|
54 |
+
def _upcast(t):
|
55 |
+
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
|
56 |
+
if t.is_floating_point():
|
57 |
+
return t if t.dtype in (torch.float32, torch.float64) else t.float()
|
58 |
+
else:
|
59 |
+
return t if t.dtype in (torch.int32, torch.int64) else t.int()
|
60 |
+
|
61 |
+
|
62 |
+
def box_area(boxes):
|
63 |
+
"""
|
64 |
+
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
|
68 |
+
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
|
69 |
+
< x2` and `0 <= y1 < y2`.
|
70 |
+
Returns:
|
71 |
+
`torch.FloatTensor`: a tensor containing the area for each box.
|
72 |
+
"""
|
73 |
+
boxes = _upcast(boxes)
|
74 |
+
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
75 |
+
|
76 |
+
|
77 |
+
def box_iou(boxes1, boxes2):
|
78 |
+
area1 = box_area(boxes1)
|
79 |
+
area2 = box_area(boxes2)
|
80 |
+
|
81 |
+
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
82 |
+
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
83 |
+
|
84 |
+
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
|
85 |
+
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
|
86 |
+
|
87 |
+
union = area1[:, None] + area2 - inter
|
88 |
+
|
89 |
+
iou = inter / union
|
90 |
+
return iou, union
|
91 |
+
|
92 |
+
|
93 |
+
class OwlViTImageProcessor(BaseImageProcessor):
|
94 |
+
r"""
|
95 |
+
Constructs an OWL-ViT image processor.
|
96 |
+
|
97 |
+
This image processor inherits from [`ImageProcessingMixin`] which contains most of the main methods. Users should
|
98 |
+
refer to this superclass for more information regarding those methods.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether to resize the shorter edge of the input to a certain `size`.
|
103 |
+
size (`Dict[str, int]`, *optional*, defaults to {"height": 768, "width": 768}):
|
104 |
+
The size to use for resizing the image. Only has an effect if `do_resize` is set to `True`. If `size` is a
|
105 |
+
sequence like (h, w), output size will be matched to this. If `size` is an int, then image will be resized
|
106 |
+
to (size, size).
|
107 |
+
resample (`int`, *optional*, defaults to `Resampling.BICUBIC`):
|
108 |
+
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
|
109 |
+
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
|
110 |
+
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
|
111 |
+
to `True`.
|
112 |
+
do_center_crop (`bool`, *optional*, defaults to `False`):
|
113 |
+
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
|
114 |
+
image is padded with 0's and then center cropped.
|
115 |
+
crop_size (`int`, *optional*, defaults to {"height": 768, "width": 768}):
|
116 |
+
The size to use for center cropping the image. Only has an effect if `do_center_crop` is set to `True`.
|
117 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
118 |
+
Whether to rescale the input by a certain factor.
|
119 |
+
rescale_factor (`float`, *optional*, defaults to `1/255`):
|
120 |
+
The factor to use for rescaling the image. Only has an effect if `do_rescale` is set to `True`.
|
121 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
122 |
+
Whether or not to normalize the input with `image_mean` and `image_std`. Desired output size when applying
|
123 |
+
center-cropping. Only has an effect if `do_center_crop` is set to `True`.
|
124 |
+
image_mean (`List[int]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
125 |
+
The sequence of means for each channel, to be used when normalizing images.
|
126 |
+
image_std (`List[int]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
127 |
+
The sequence of standard deviations for each channel, to be used when normalizing images.
|
128 |
+
"""
|
129 |
+
|
130 |
+
model_input_names = ["pixel_values"]
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
do_resize=True,
|
135 |
+
size=None,
|
136 |
+
resample=PILImageResampling.BICUBIC,
|
137 |
+
do_center_crop=False,
|
138 |
+
crop_size=None,
|
139 |
+
do_rescale=True,
|
140 |
+
rescale_factor=1 / 255,
|
141 |
+
do_normalize=True,
|
142 |
+
image_mean=None,
|
143 |
+
image_std=None,
|
144 |
+
**kwargs,
|
145 |
+
):
|
146 |
+
size = size if size is not None else {"height": 768, "width": 768}
|
147 |
+
size = get_size_dict(size, default_to_square=True)
|
148 |
+
|
149 |
+
crop_size = crop_size if crop_size is not None else {"height": 768, "width": 768}
|
150 |
+
crop_size = get_size_dict(crop_size, default_to_square=True)
|
151 |
+
|
152 |
+
# Early versions of the OWL-ViT config on the hub had "rescale" as a flag. This clashes with the
|
153 |
+
# vision image processor method `rescale` as it would be set as an attribute during the super().__init__
|
154 |
+
# call. This is for backwards compatibility.
|
155 |
+
if "rescale" in kwargs:
|
156 |
+
rescale_val = kwargs.pop("rescale")
|
157 |
+
kwargs["do_rescale"] = rescale_val
|
158 |
+
|
159 |
+
super().__init__(**kwargs)
|
160 |
+
self.do_resize = do_resize
|
161 |
+
self.size = size
|
162 |
+
self.resample = resample
|
163 |
+
self.do_center_crop = do_center_crop
|
164 |
+
self.crop_size = crop_size
|
165 |
+
self.do_rescale = do_rescale
|
166 |
+
self.rescale_factor = rescale_factor
|
167 |
+
self.do_normalize = do_normalize
|
168 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
169 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
170 |
+
self._valid_processor_keys = [
|
171 |
+
"images",
|
172 |
+
"do_resize",
|
173 |
+
"size",
|
174 |
+
"resample",
|
175 |
+
"do_center_crop",
|
176 |
+
"crop_size",
|
177 |
+
"do_rescale",
|
178 |
+
"rescale_factor",
|
179 |
+
"do_normalize",
|
180 |
+
"image_mean",
|
181 |
+
"image_std",
|
182 |
+
"return_tensors",
|
183 |
+
"data_format",
|
184 |
+
"input_data_format",
|
185 |
+
]
|
186 |
+
|
187 |
+
def resize(
|
188 |
+
self,
|
189 |
+
image: np.ndarray,
|
190 |
+
size: Dict[str, int],
|
191 |
+
resample: PILImageResampling.BICUBIC,
|
192 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
193 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
194 |
+
**kwargs,
|
195 |
+
) -> np.ndarray:
|
196 |
+
"""
|
197 |
+
Resize an image to a certain size.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
image (`np.ndarray`):
|
201 |
+
Image to resize.
|
202 |
+
size (`Dict[str, int]`):
|
203 |
+
The size to resize the image to. Must contain height and width keys.
|
204 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
205 |
+
The resampling filter to use when resizing the input.
|
206 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
207 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
208 |
+
image is used.
|
209 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
210 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
211 |
+
"""
|
212 |
+
size = get_size_dict(size, default_to_square=True)
|
213 |
+
if "height" not in size or "width" not in size:
|
214 |
+
raise ValueError("size dictionary must contain height and width keys")
|
215 |
+
|
216 |
+
return resize(
|
217 |
+
image,
|
218 |
+
(size["height"], size["width"]),
|
219 |
+
resample=resample,
|
220 |
+
data_format=data_format,
|
221 |
+
input_data_format=input_data_format,
|
222 |
+
**kwargs,
|
223 |
+
)
|
224 |
+
|
225 |
+
def center_crop(
|
226 |
+
self,
|
227 |
+
image: np.ndarray,
|
228 |
+
crop_size: Dict[str, int],
|
229 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
230 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
231 |
+
**kwargs,
|
232 |
+
) -> np.ndarray:
|
233 |
+
"""
|
234 |
+
Center crop an image to a certain size.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
image (`np.ndarray`):
|
238 |
+
Image to center crop.
|
239 |
+
crop_size (`Dict[str, int]`):
|
240 |
+
The size to center crop the image to. Must contain height and width keys.
|
241 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
242 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
243 |
+
image is used.
|
244 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
245 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
246 |
+
"""
|
247 |
+
crop_size = get_size_dict(crop_size, default_to_square=True)
|
248 |
+
if "height" not in crop_size or "width" not in crop_size:
|
249 |
+
raise ValueError("crop_size dictionary must contain height and width keys")
|
250 |
+
|
251 |
+
return center_crop(
|
252 |
+
image,
|
253 |
+
(crop_size["height"], crop_size["width"]),
|
254 |
+
data_format=data_format,
|
255 |
+
input_data_format=input_data_format,
|
256 |
+
**kwargs,
|
257 |
+
)
|
258 |
+
|
259 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
|
260 |
+
def rescale(
|
261 |
+
self,
|
262 |
+
image: np.ndarray,
|
263 |
+
rescale_factor: float,
|
264 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
265 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
266 |
+
) -> np.ndarray:
|
267 |
+
"""
|
268 |
+
Rescale the image by the given factor. image = image * rescale_factor.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
image (`np.ndarray`):
|
272 |
+
Image to rescale.
|
273 |
+
rescale_factor (`float`):
|
274 |
+
The value to use for rescaling.
|
275 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
276 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
277 |
+
image is used. Can be one of:
|
278 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
279 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
280 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
281 |
+
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
|
282 |
+
one of:
|
283 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
284 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
285 |
+
"""
|
286 |
+
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
|
287 |
+
|
288 |
+
def preprocess(
|
289 |
+
self,
|
290 |
+
images: ImageInput,
|
291 |
+
do_resize: Optional[bool] = None,
|
292 |
+
size: Optional[Dict[str, int]] = None,
|
293 |
+
resample: PILImageResampling = None,
|
294 |
+
do_center_crop: Optional[bool] = None,
|
295 |
+
crop_size: Optional[Dict[str, int]] = None,
|
296 |
+
do_rescale: Optional[bool] = None,
|
297 |
+
rescale_factor: Optional[float] = None,
|
298 |
+
do_normalize: Optional[bool] = None,
|
299 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
300 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
301 |
+
return_tensors: Optional[Union[TensorType, str]] = None,
|
302 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
303 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
304 |
+
**kwargs,
|
305 |
+
) -> BatchFeature:
|
306 |
+
"""
|
307 |
+
Prepares an image or batch of images for the model.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
images (`ImageInput`):
|
311 |
+
The image or batch of images to be prepared. Expects a single or batch of images with pixel values
|
312 |
+
ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
313 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
314 |
+
Whether or not to resize the input. If `True`, will resize the input to the size specified by `size`.
|
315 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
316 |
+
The size to resize the input to. Only has an effect if `do_resize` is set to `True`.
|
317 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
318 |
+
The resampling filter to use when resizing the input. Only has an effect if `do_resize` is set to
|
319 |
+
`True`.
|
320 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
321 |
+
Whether or not to center crop the input. If `True`, will center crop the input to the size specified by
|
322 |
+
`crop_size`.
|
323 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
324 |
+
The size to center crop the input to. Only has an effect if `do_center_crop` is set to `True`.
|
325 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
326 |
+
Whether or not to rescale the input. If `True`, will rescale the input by dividing it by
|
327 |
+
`rescale_factor`.
|
328 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
329 |
+
The factor to rescale the input by. Only has an effect if `do_rescale` is set to `True`.
|
330 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
331 |
+
Whether or not to normalize the input. If `True`, will normalize the input by subtracting `image_mean`
|
332 |
+
and dividing by `image_std`.
|
333 |
+
image_mean (`Union[float, List[float]]`, *optional*, defaults to `self.image_mean`):
|
334 |
+
The mean to subtract from the input when normalizing. Only has an effect if `do_normalize` is set to
|
335 |
+
`True`.
|
336 |
+
image_std (`Union[float, List[float]]`, *optional*, defaults to `self.image_std`):
|
337 |
+
The standard deviation to divide the input by when normalizing. Only has an effect if `do_normalize` is
|
338 |
+
set to `True`.
|
339 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
340 |
+
The type of tensors to return. Can be one of:
|
341 |
+
- Unset: Return a list of `np.ndarray`.
|
342 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
343 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
344 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
345 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
346 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
347 |
+
The channel dimension format for the output image. Can be one of:
|
348 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
349 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
350 |
+
- Unset: defaults to the channel dimension format of the input image.
|
351 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
352 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
353 |
+
from the input image. Can be one of:
|
354 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
355 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
356 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
357 |
+
"""
|
358 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
359 |
+
size = size if size is not None else self.size
|
360 |
+
resample = resample if resample is not None else self.resample
|
361 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
362 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
363 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
364 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
365 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
366 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
367 |
+
image_std = image_std if image_std is not None else self.image_std
|
368 |
+
|
369 |
+
images = make_list_of_images(images)
|
370 |
+
|
371 |
+
if not valid_images(images):
|
372 |
+
raise ValueError(
|
373 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
374 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
375 |
+
)
|
376 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
377 |
+
|
378 |
+
validate_preprocess_arguments(
|
379 |
+
do_rescale=do_rescale,
|
380 |
+
rescale_factor=rescale_factor,
|
381 |
+
do_normalize=do_normalize,
|
382 |
+
image_mean=image_mean,
|
383 |
+
image_std=image_std,
|
384 |
+
do_center_crop=do_center_crop,
|
385 |
+
crop_size=crop_size,
|
386 |
+
do_resize=do_resize,
|
387 |
+
size=size,
|
388 |
+
resample=resample,
|
389 |
+
)
|
390 |
+
|
391 |
+
# All transformations expect numpy arrays
|
392 |
+
images = [to_numpy_array(image) for image in images]
|
393 |
+
|
394 |
+
if is_scaled_image(images[0]) and do_rescale:
|
395 |
+
logger.warning_once(
|
396 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
397 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
398 |
+
)
|
399 |
+
|
400 |
+
if input_data_format is None:
|
401 |
+
# We assume that all images have the same channel dimension format.
|
402 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
403 |
+
|
404 |
+
if do_resize:
|
405 |
+
images = [
|
406 |
+
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
|
407 |
+
for image in images
|
408 |
+
]
|
409 |
+
|
410 |
+
if do_center_crop:
|
411 |
+
images = [
|
412 |
+
self.center_crop(image, crop_size=crop_size, input_data_format=input_data_format) for image in images
|
413 |
+
]
|
414 |
+
|
415 |
+
if do_rescale:
|
416 |
+
images = [
|
417 |
+
self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format)
|
418 |
+
for image in images
|
419 |
+
]
|
420 |
+
|
421 |
+
if do_normalize:
|
422 |
+
images = [
|
423 |
+
self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
424 |
+
for image in images
|
425 |
+
]
|
426 |
+
|
427 |
+
images = [
|
428 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
429 |
+
]
|
430 |
+
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
431 |
+
return encoded_inputs
|
432 |
+
|
433 |
+
def post_process(self, outputs, target_sizes):
|
434 |
+
"""
|
435 |
+
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
|
436 |
+
bottom_right_x, bottom_right_y) format.
|
437 |
+
|
438 |
+
Args:
|
439 |
+
outputs ([`OwlViTObjectDetectionOutput`]):
|
440 |
+
Raw outputs of the model.
|
441 |
+
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
|
442 |
+
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
|
443 |
+
image size (before any data augmentation). For visualization, this should be the image size after data
|
444 |
+
augment, but before padding.
|
445 |
+
Returns:
|
446 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
447 |
+
in the batch as predicted by the model.
|
448 |
+
"""
|
449 |
+
# TODO: (amy) add support for other frameworks
|
450 |
+
warnings.warn(
|
451 |
+
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
|
452 |
+
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
|
453 |
+
FutureWarning,
|
454 |
+
)
|
455 |
+
|
456 |
+
logits, boxes = outputs.logits, outputs.pred_boxes
|
457 |
+
|
458 |
+
if len(logits) != len(target_sizes):
|
459 |
+
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
|
460 |
+
if target_sizes.shape[1] != 2:
|
461 |
+
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
|
462 |
+
|
463 |
+
probs = torch.max(logits, dim=-1)
|
464 |
+
scores = torch.sigmoid(probs.values)
|
465 |
+
labels = probs.indices
|
466 |
+
|
467 |
+
# Convert to [x0, y0, x1, y1] format
|
468 |
+
boxes = center_to_corners_format(boxes)
|
469 |
+
|
470 |
+
# Convert from relative [0, 1] to absolute [0, height] coordinates
|
471 |
+
img_h, img_w = target_sizes.unbind(1)
|
472 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
|
473 |
+
boxes = boxes * scale_fct[:, None, :]
|
474 |
+
|
475 |
+
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
|
476 |
+
|
477 |
+
return results
|
478 |
+
|
479 |
+
def post_process_object_detection(
|
480 |
+
self, outputs, threshold: float = 0.1, target_sizes: Union[TensorType, List[Tuple]] = None
|
481 |
+
):
|
482 |
+
"""
|
483 |
+
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
|
484 |
+
bottom_right_x, bottom_right_y) format.
|
485 |
+
|
486 |
+
Args:
|
487 |
+
outputs ([`OwlViTObjectDetectionOutput`]):
|
488 |
+
Raw outputs of the model.
|
489 |
+
threshold (`float`, *optional*):
|
490 |
+
Score threshold to keep object detection predictions.
|
491 |
+
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
|
492 |
+
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
|
493 |
+
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
|
494 |
+
Returns:
|
495 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
496 |
+
in the batch as predicted by the model.
|
497 |
+
"""
|
498 |
+
# TODO: (amy) add support for other frameworks
|
499 |
+
logits, boxes = outputs.logits, outputs.pred_boxes
|
500 |
+
|
501 |
+
if target_sizes is not None:
|
502 |
+
if len(logits) != len(target_sizes):
|
503 |
+
raise ValueError(
|
504 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
505 |
+
)
|
506 |
+
|
507 |
+
probs = torch.max(logits, dim=-1)
|
508 |
+
scores = torch.sigmoid(probs.values)
|
509 |
+
labels = probs.indices
|
510 |
+
|
511 |
+
# Convert to [x0, y0, x1, y1] format
|
512 |
+
boxes = center_to_corners_format(boxes)
|
513 |
+
|
514 |
+
# Convert from relative [0, 1] to absolute [0, height] coordinates
|
515 |
+
if target_sizes is not None:
|
516 |
+
if isinstance(target_sizes, List):
|
517 |
+
img_h = torch.Tensor([i[0] for i in target_sizes])
|
518 |
+
img_w = torch.Tensor([i[1] for i in target_sizes])
|
519 |
+
else:
|
520 |
+
img_h, img_w = target_sizes.unbind(1)
|
521 |
+
|
522 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
|
523 |
+
boxes = boxes * scale_fct[:, None, :]
|
524 |
+
|
525 |
+
results = []
|
526 |
+
for s, l, b in zip(scores, labels, boxes):
|
527 |
+
score = s[s > threshold]
|
528 |
+
label = l[s > threshold]
|
529 |
+
box = b[s > threshold]
|
530 |
+
results.append({"scores": score, "labels": label, "boxes": box})
|
531 |
+
|
532 |
+
return results
|
533 |
+
|
534 |
+
# TODO: (Amy) Make compatible with other frameworks
|
535 |
+
def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None):
|
536 |
+
"""
|
537 |
+
Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO
|
538 |
+
api.
|
539 |
+
|
540 |
+
Args:
|
541 |
+
outputs ([`OwlViTImageGuidedObjectDetectionOutput`]):
|
542 |
+
Raw outputs of the model.
|
543 |
+
threshold (`float`, *optional*, defaults to 0.0):
|
544 |
+
Minimum confidence threshold to use to filter out predicted boxes.
|
545 |
+
nms_threshold (`float`, *optional*, defaults to 0.3):
|
546 |
+
IoU threshold for non-maximum suppression of overlapping boxes.
|
547 |
+
target_sizes (`torch.Tensor`, *optional*):
|
548 |
+
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
|
549 |
+
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
|
550 |
+
None, predictions will not be unnormalized.
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
554 |
+
in the batch as predicted by the model. All labels are set to None as
|
555 |
+
`OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection.
|
556 |
+
"""
|
557 |
+
logits, target_boxes = outputs.logits, outputs.target_pred_boxes
|
558 |
+
|
559 |
+
if len(logits) != len(target_sizes):
|
560 |
+
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
|
561 |
+
if target_sizes.shape[1] != 2:
|
562 |
+
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
|
563 |
+
|
564 |
+
probs = torch.max(logits, dim=-1)
|
565 |
+
scores = torch.sigmoid(probs.values)
|
566 |
+
|
567 |
+
# Convert to [x0, y0, x1, y1] format
|
568 |
+
target_boxes = center_to_corners_format(target_boxes)
|
569 |
+
|
570 |
+
# Apply non-maximum suppression (NMS)
|
571 |
+
if nms_threshold < 1.0:
|
572 |
+
for idx in range(target_boxes.shape[0]):
|
573 |
+
for i in torch.argsort(-scores[idx]):
|
574 |
+
if not scores[idx][i]:
|
575 |
+
continue
|
576 |
+
|
577 |
+
ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0]
|
578 |
+
ious[i] = -1.0 # Mask self-IoU.
|
579 |
+
scores[idx][ious > nms_threshold] = 0.0
|
580 |
+
|
581 |
+
# Convert from relative [0, 1] to absolute [0, height] coordinates
|
582 |
+
img_h, img_w = target_sizes.unbind(1)
|
583 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(target_boxes.device)
|
584 |
+
target_boxes = target_boxes * scale_fct[:, None, :]
|
585 |
+
|
586 |
+
# Compute box display alphas based on prediction scores
|
587 |
+
results = []
|
588 |
+
alphas = torch.zeros_like(scores)
|
589 |
+
|
590 |
+
for idx in range(target_boxes.shape[0]):
|
591 |
+
# Select scores for boxes matching the current query:
|
592 |
+
query_scores = scores[idx]
|
593 |
+
if not query_scores.nonzero().numel():
|
594 |
+
continue
|
595 |
+
|
596 |
+
# Apply threshold on scores before scaling
|
597 |
+
query_scores[query_scores < threshold] = 0.0
|
598 |
+
|
599 |
+
# Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1.
|
600 |
+
# All other boxes will either belong to a different query, or will not be shown.
|
601 |
+
max_score = torch.max(query_scores) + 1e-6
|
602 |
+
query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9)
|
603 |
+
query_alphas = torch.clip(query_alphas, 0.0, 1.0)
|
604 |
+
alphas[idx] = query_alphas
|
605 |
+
|
606 |
+
mask = alphas[idx] > 0
|
607 |
+
box_scores = alphas[idx][mask]
|
608 |
+
boxes = target_boxes[idx][mask]
|
609 |
+
results.append({"scores": box_scores, "labels": None, "boxes": boxes})
|
610 |
+
|
611 |
+
return results
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/modeling_owlvit.py
ADDED
@@ -0,0 +1,1685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Google AI and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch OWL-ViT model."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from functools import lru_cache
|
20 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import Tensor, nn
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
28 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...utils import (
|
31 |
+
ModelOutput,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
is_vision_available,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from .configuration_owlvit import OwlViTConfig, OwlViTTextConfig, OwlViTVisionConfig
|
39 |
+
|
40 |
+
|
41 |
+
if is_vision_available():
|
42 |
+
from transformers.image_transforms import center_to_corners_format
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CHECKPOINT_FOR_DOC = "google/owlvit-base-patch32"
|
48 |
+
|
49 |
+
# See all OwlViT models at https://huggingface.co/models?filter=owlvit
|
50 |
+
|
51 |
+
from ..deprecated._archive_maps import OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
52 |
+
|
53 |
+
|
54 |
+
# Copied from transformers.models.clip.modeling_clip.contrastive_loss with clip->owlvit
|
55 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
56 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
57 |
+
|
58 |
+
|
59 |
+
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->owlvit
|
60 |
+
def owlvit_loss(similarity: torch.Tensor) -> torch.Tensor:
|
61 |
+
caption_loss = contrastive_loss(similarity)
|
62 |
+
image_loss = contrastive_loss(similarity.t())
|
63 |
+
return (caption_loss + image_loss) / 2.0
|
64 |
+
|
65 |
+
|
66 |
+
@dataclass
|
67 |
+
class OwlViTOutput(ModelOutput):
|
68 |
+
"""
|
69 |
+
Args:
|
70 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
71 |
+
Contrastive loss for image-text similarity.
|
72 |
+
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
73 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
74 |
+
similarity scores.
|
75 |
+
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
76 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
77 |
+
similarity scores.
|
78 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size * num_max_text_queries, output_dim`):
|
79 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`OwlViTTextModel`].
|
80 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
81 |
+
The image embeddings obtained by applying the projection layer to the pooled output of
|
82 |
+
[`OwlViTVisionModel`].
|
83 |
+
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
|
84 |
+
The output of the [`OwlViTTextModel`].
|
85 |
+
vision_model_output (`BaseModelOutputWithPooling`):
|
86 |
+
The output of the [`OwlViTVisionModel`].
|
87 |
+
"""
|
88 |
+
|
89 |
+
loss: Optional[torch.FloatTensor] = None
|
90 |
+
logits_per_image: torch.FloatTensor = None
|
91 |
+
logits_per_text: torch.FloatTensor = None
|
92 |
+
text_embeds: torch.FloatTensor = None
|
93 |
+
image_embeds: torch.FloatTensor = None
|
94 |
+
text_model_output: BaseModelOutputWithPooling = None
|
95 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
96 |
+
|
97 |
+
def to_tuple(self) -> Tuple[Any]:
|
98 |
+
return tuple(
|
99 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
100 |
+
for k in self.keys()
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
# Copied from transformers.models.detr.modeling_detr._upcast
|
105 |
+
def _upcast(t: Tensor) -> Tensor:
|
106 |
+
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
|
107 |
+
if t.is_floating_point():
|
108 |
+
return t if t.dtype in (torch.float32, torch.float64) else t.float()
|
109 |
+
else:
|
110 |
+
return t if t.dtype in (torch.int32, torch.int64) else t.int()
|
111 |
+
|
112 |
+
|
113 |
+
# Copied from transformers.models.detr.modeling_detr.box_area
|
114 |
+
def box_area(boxes: Tensor) -> Tensor:
|
115 |
+
"""
|
116 |
+
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
|
120 |
+
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
|
121 |
+
< x2` and `0 <= y1 < y2`.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
`torch.FloatTensor`: a tensor containing the area for each box.
|
125 |
+
"""
|
126 |
+
boxes = _upcast(boxes)
|
127 |
+
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
128 |
+
|
129 |
+
|
130 |
+
# Copied from transformers.models.detr.modeling_detr.box_iou
|
131 |
+
def box_iou(boxes1, boxes2):
|
132 |
+
area1 = box_area(boxes1)
|
133 |
+
area2 = box_area(boxes2)
|
134 |
+
|
135 |
+
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
136 |
+
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
137 |
+
|
138 |
+
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
|
139 |
+
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
|
140 |
+
|
141 |
+
union = area1[:, None] + area2 - inter
|
142 |
+
|
143 |
+
iou = inter / union
|
144 |
+
return iou, union
|
145 |
+
|
146 |
+
|
147 |
+
# Copied from transformers.models.detr.modeling_detr.generalized_box_iou
|
148 |
+
def generalized_box_iou(boxes1, boxes2):
|
149 |
+
"""
|
150 |
+
Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
`torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
|
154 |
+
"""
|
155 |
+
# degenerate boxes gives inf / nan results
|
156 |
+
# so do an early check
|
157 |
+
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
|
158 |
+
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
|
159 |
+
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
|
160 |
+
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
|
161 |
+
iou, union = box_iou(boxes1, boxes2)
|
162 |
+
|
163 |
+
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
|
164 |
+
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
|
165 |
+
|
166 |
+
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
|
167 |
+
area = width_height[:, :, 0] * width_height[:, :, 1]
|
168 |
+
|
169 |
+
return iou - (area - union) / area
|
170 |
+
|
171 |
+
|
172 |
+
@dataclass
|
173 |
+
class OwlViTObjectDetectionOutput(ModelOutput):
|
174 |
+
"""
|
175 |
+
Output type of [`OwlViTForObjectDetection`].
|
176 |
+
|
177 |
+
Args:
|
178 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
|
179 |
+
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
|
180 |
+
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
|
181 |
+
scale-invariant IoU loss.
|
182 |
+
loss_dict (`Dict`, *optional*):
|
183 |
+
A dictionary containing the individual losses. Useful for logging.
|
184 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`):
|
185 |
+
Classification logits (including no-object) for all queries.
|
186 |
+
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
|
187 |
+
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
188 |
+
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
|
189 |
+
possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to retrieve the
|
190 |
+
unnormalized bounding boxes.
|
191 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, num_max_text_queries, output_dim`):
|
192 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`OwlViTTextModel`].
|
193 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
|
194 |
+
Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes
|
195 |
+
image embeddings for each patch.
|
196 |
+
class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
|
197 |
+
Class embeddings of all image patches. OWL-ViT represents images as a set of image patches where the total
|
198 |
+
number of patches is (image_size / patch_size)**2.
|
199 |
+
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
|
200 |
+
The output of the [`OwlViTTextModel`].
|
201 |
+
vision_model_output (`BaseModelOutputWithPooling`):
|
202 |
+
The output of the [`OwlViTVisionModel`].
|
203 |
+
"""
|
204 |
+
|
205 |
+
loss: Optional[torch.FloatTensor] = None
|
206 |
+
loss_dict: Optional[Dict] = None
|
207 |
+
logits: torch.FloatTensor = None
|
208 |
+
pred_boxes: torch.FloatTensor = None
|
209 |
+
text_embeds: torch.FloatTensor = None
|
210 |
+
image_embeds: torch.FloatTensor = None
|
211 |
+
class_embeds: torch.FloatTensor = None
|
212 |
+
text_model_output: BaseModelOutputWithPooling = None
|
213 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
214 |
+
|
215 |
+
def to_tuple(self) -> Tuple[Any]:
|
216 |
+
return tuple(
|
217 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
218 |
+
for k in self.keys()
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
+
@dataclass
|
223 |
+
class OwlViTImageGuidedObjectDetectionOutput(ModelOutput):
|
224 |
+
"""
|
225 |
+
Output type of [`OwlViTForObjectDetection.image_guided_detection`].
|
226 |
+
|
227 |
+
Args:
|
228 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`):
|
229 |
+
Classification logits (including no-object) for all queries.
|
230 |
+
target_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
|
231 |
+
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
232 |
+
values are normalized in [0, 1], relative to the size of each individual target image in the batch
|
233 |
+
(disregarding possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to
|
234 |
+
retrieve the unnormalized bounding boxes.
|
235 |
+
query_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
|
236 |
+
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
237 |
+
values are normalized in [0, 1], relative to the size of each individual query image in the batch
|
238 |
+
(disregarding possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to
|
239 |
+
retrieve the unnormalized bounding boxes.
|
240 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
|
241 |
+
Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes
|
242 |
+
image embeddings for each patch.
|
243 |
+
query_image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
|
244 |
+
Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes
|
245 |
+
image embeddings for each patch.
|
246 |
+
class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
|
247 |
+
Class embeddings of all image patches. OWL-ViT represents images as a set of image patches where the total
|
248 |
+
number of patches is (image_size / patch_size)**2.
|
249 |
+
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
|
250 |
+
The output of the [`OwlViTTextModel`].
|
251 |
+
vision_model_output (`BaseModelOutputWithPooling`):
|
252 |
+
The output of the [`OwlViTVisionModel`].
|
253 |
+
"""
|
254 |
+
|
255 |
+
logits: torch.FloatTensor = None
|
256 |
+
image_embeds: torch.FloatTensor = None
|
257 |
+
query_image_embeds: torch.FloatTensor = None
|
258 |
+
target_pred_boxes: torch.FloatTensor = None
|
259 |
+
query_pred_boxes: torch.FloatTensor = None
|
260 |
+
class_embeds: torch.FloatTensor = None
|
261 |
+
text_model_output: BaseModelOutputWithPooling = None
|
262 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
263 |
+
|
264 |
+
def to_tuple(self) -> Tuple[Any]:
|
265 |
+
return tuple(
|
266 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
267 |
+
for k in self.keys()
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
class OwlViTVisionEmbeddings(nn.Module):
|
272 |
+
def __init__(self, config: OwlViTVisionConfig):
|
273 |
+
super().__init__()
|
274 |
+
self.config = config
|
275 |
+
self.embed_dim = config.hidden_size
|
276 |
+
self.class_embedding = nn.Parameter(torch.randn(config.hidden_size))
|
277 |
+
|
278 |
+
self.patch_embedding = nn.Conv2d(
|
279 |
+
in_channels=config.num_channels,
|
280 |
+
out_channels=self.embed_dim,
|
281 |
+
kernel_size=config.patch_size,
|
282 |
+
stride=config.patch_size,
|
283 |
+
bias=False,
|
284 |
+
)
|
285 |
+
|
286 |
+
self.num_patches = (config.image_size // config.patch_size) ** 2
|
287 |
+
self.num_positions = self.num_patches + 1
|
288 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
289 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
290 |
+
|
291 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
292 |
+
batch_size = pixel_values.shape[0]
|
293 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [batch_size, num_channels, height, width]
|
294 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
295 |
+
|
296 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
297 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
298 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
299 |
+
|
300 |
+
return embeddings
|
301 |
+
|
302 |
+
|
303 |
+
class OwlViTTextEmbeddings(nn.Module):
|
304 |
+
def __init__(self, config: OwlViTTextConfig):
|
305 |
+
super().__init__()
|
306 |
+
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
307 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
308 |
+
|
309 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
310 |
+
self.register_buffer(
|
311 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
312 |
+
)
|
313 |
+
|
314 |
+
def forward(
|
315 |
+
self,
|
316 |
+
input_ids: Optional[torch.LongTensor] = None,
|
317 |
+
position_ids: Optional[torch.LongTensor] = None,
|
318 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
319 |
+
) -> torch.Tensor:
|
320 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
321 |
+
|
322 |
+
if position_ids is None:
|
323 |
+
position_ids = self.position_ids[:, :seq_length]
|
324 |
+
|
325 |
+
if inputs_embeds is None:
|
326 |
+
inputs_embeds = self.token_embedding(input_ids)
|
327 |
+
|
328 |
+
position_embeddings = self.position_embedding(position_ids)
|
329 |
+
embeddings = inputs_embeds + position_embeddings
|
330 |
+
|
331 |
+
return embeddings
|
332 |
+
|
333 |
+
|
334 |
+
class OwlViTAttention(nn.Module):
|
335 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
336 |
+
|
337 |
+
def __init__(self, config):
|
338 |
+
super().__init__()
|
339 |
+
self.config = config
|
340 |
+
self.embed_dim = config.hidden_size
|
341 |
+
self.num_heads = config.num_attention_heads
|
342 |
+
self.head_dim = self.embed_dim // self.num_heads
|
343 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
344 |
+
raise ValueError(
|
345 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
346 |
+
f" {self.num_heads})."
|
347 |
+
)
|
348 |
+
self.scale = self.head_dim**-0.5
|
349 |
+
self.dropout = config.attention_dropout
|
350 |
+
|
351 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
352 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
353 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
354 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
355 |
+
|
356 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
357 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
358 |
+
|
359 |
+
def forward(
|
360 |
+
self,
|
361 |
+
hidden_states: torch.Tensor,
|
362 |
+
attention_mask: Optional[torch.Tensor] = None,
|
363 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
364 |
+
output_attentions: Optional[bool] = False,
|
365 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
366 |
+
"""Input shape: Batch x Time x Channel"""
|
367 |
+
|
368 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
369 |
+
|
370 |
+
# get query proj
|
371 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
372 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
373 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
374 |
+
|
375 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
376 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
377 |
+
key_states = key_states.view(*proj_shape)
|
378 |
+
value_states = value_states.view(*proj_shape)
|
379 |
+
|
380 |
+
src_len = key_states.size(1)
|
381 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
382 |
+
|
383 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
384 |
+
raise ValueError(
|
385 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
386 |
+
f" {attn_weights.size()}"
|
387 |
+
)
|
388 |
+
|
389 |
+
# apply the causal_attention_mask first
|
390 |
+
if causal_attention_mask is not None:
|
391 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
392 |
+
raise ValueError(
|
393 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
394 |
+
f" {causal_attention_mask.size()}"
|
395 |
+
)
|
396 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
397 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
398 |
+
|
399 |
+
if attention_mask is not None:
|
400 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
401 |
+
raise ValueError(
|
402 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
403 |
+
)
|
404 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
405 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
406 |
+
|
407 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
408 |
+
|
409 |
+
if output_attentions:
|
410 |
+
# this operation is a bit akward, but it's required to
|
411 |
+
# make sure that attn_weights keeps its gradient.
|
412 |
+
# In order to do so, attn_weights have to reshaped
|
413 |
+
# twice and have to be reused in the following
|
414 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
415 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
416 |
+
else:
|
417 |
+
attn_weights_reshaped = None
|
418 |
+
|
419 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
420 |
+
|
421 |
+
# For int8 compatibility, sometimes the `attn_probs` are in `fp32`
|
422 |
+
attn_probs = attn_probs.to(value_states.dtype)
|
423 |
+
|
424 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
425 |
+
|
426 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
427 |
+
raise ValueError(
|
428 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
429 |
+
f" {attn_output.size()}"
|
430 |
+
)
|
431 |
+
|
432 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
433 |
+
attn_output = attn_output.transpose(1, 2)
|
434 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
435 |
+
|
436 |
+
attn_output = self.out_proj(attn_output)
|
437 |
+
|
438 |
+
return attn_output, attn_weights_reshaped
|
439 |
+
|
440 |
+
|
441 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->OwlViT
|
442 |
+
class OwlViTMLP(nn.Module):
|
443 |
+
def __init__(self, config):
|
444 |
+
super().__init__()
|
445 |
+
self.config = config
|
446 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
447 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
448 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
449 |
+
|
450 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
451 |
+
hidden_states = self.fc1(hidden_states)
|
452 |
+
hidden_states = self.activation_fn(hidden_states)
|
453 |
+
hidden_states = self.fc2(hidden_states)
|
454 |
+
return hidden_states
|
455 |
+
|
456 |
+
|
457 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->OwlViT
|
458 |
+
class OwlViTEncoderLayer(nn.Module):
|
459 |
+
def __init__(self, config: OwlViTConfig):
|
460 |
+
super().__init__()
|
461 |
+
self.embed_dim = config.hidden_size
|
462 |
+
self.self_attn = OwlViTAttention(config)
|
463 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
464 |
+
self.mlp = OwlViTMLP(config)
|
465 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
466 |
+
|
467 |
+
def forward(
|
468 |
+
self,
|
469 |
+
hidden_states: torch.Tensor,
|
470 |
+
attention_mask: torch.Tensor,
|
471 |
+
causal_attention_mask: torch.Tensor,
|
472 |
+
output_attentions: Optional[bool] = False,
|
473 |
+
) -> Tuple[torch.FloatTensor]:
|
474 |
+
"""
|
475 |
+
Args:
|
476 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
477 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
478 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
479 |
+
`(config.encoder_attention_heads,)`.
|
480 |
+
output_attentions (`bool`, *optional*):
|
481 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
482 |
+
returned tensors for more detail.
|
483 |
+
"""
|
484 |
+
residual = hidden_states
|
485 |
+
|
486 |
+
hidden_states = self.layer_norm1(hidden_states)
|
487 |
+
hidden_states, attn_weights = self.self_attn(
|
488 |
+
hidden_states=hidden_states,
|
489 |
+
attention_mask=attention_mask,
|
490 |
+
causal_attention_mask=causal_attention_mask,
|
491 |
+
output_attentions=output_attentions,
|
492 |
+
)
|
493 |
+
hidden_states = residual + hidden_states
|
494 |
+
|
495 |
+
residual = hidden_states
|
496 |
+
hidden_states = self.layer_norm2(hidden_states)
|
497 |
+
hidden_states = self.mlp(hidden_states)
|
498 |
+
hidden_states = residual + hidden_states
|
499 |
+
|
500 |
+
outputs = (hidden_states,)
|
501 |
+
|
502 |
+
if output_attentions:
|
503 |
+
outputs += (attn_weights,)
|
504 |
+
|
505 |
+
return outputs
|
506 |
+
|
507 |
+
|
508 |
+
class OwlViTPreTrainedModel(PreTrainedModel):
|
509 |
+
"""
|
510 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
511 |
+
models.
|
512 |
+
"""
|
513 |
+
|
514 |
+
config_class = OwlViTConfig
|
515 |
+
base_model_prefix = "owlvit"
|
516 |
+
supports_gradient_checkpointing = True
|
517 |
+
_no_split_modules = ["OwlViTEncoderLayer"]
|
518 |
+
|
519 |
+
def _init_weights(self, module):
|
520 |
+
"""Initialize the weights"""
|
521 |
+
factor = self.config.initializer_factor
|
522 |
+
if isinstance(module, OwlViTTextEmbeddings):
|
523 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
524 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
525 |
+
elif isinstance(module, OwlViTVisionEmbeddings):
|
526 |
+
factor = self.config.initializer_factor
|
527 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
528 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
529 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
530 |
+
elif isinstance(module, OwlViTAttention):
|
531 |
+
factor = self.config.initializer_factor
|
532 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
533 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
534 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
535 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
536 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
537 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
538 |
+
elif isinstance(module, OwlViTMLP):
|
539 |
+
factor = self.config.initializer_factor
|
540 |
+
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
541 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
542 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
543 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
544 |
+
elif isinstance(module, OwlViTModel):
|
545 |
+
nn.init.normal_(
|
546 |
+
module.text_projection.weight,
|
547 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
548 |
+
)
|
549 |
+
nn.init.normal_(
|
550 |
+
module.visual_projection.weight,
|
551 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
552 |
+
)
|
553 |
+
if isinstance(module, nn.LayerNorm):
|
554 |
+
module.bias.data.zero_()
|
555 |
+
module.weight.data.fill_(1.0)
|
556 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
557 |
+
module.bias.data.zero_()
|
558 |
+
|
559 |
+
|
560 |
+
OWLVIT_START_DOCSTRING = r"""
|
561 |
+
|
562 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
563 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
564 |
+
etc.)
|
565 |
+
|
566 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
567 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
568 |
+
and behavior.
|
569 |
+
|
570 |
+
Parameters:
|
571 |
+
config ([`OwlViTConfig`]): Model configuration class with all the parameters of the model.
|
572 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
573 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
574 |
+
"""
|
575 |
+
|
576 |
+
OWLVIT_TEXT_INPUTS_DOCSTRING = r"""
|
577 |
+
Args:
|
578 |
+
input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`):
|
579 |
+
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
580 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
581 |
+
IDs?](../glossary#input-ids)
|
582 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*):
|
583 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
584 |
+
- 1 for tokens that are **not masked**,
|
585 |
+
- 0 for tokens that are **masked**.
|
586 |
+
[What are attention masks?](../glossary#attention-mask)
|
587 |
+
output_attentions (`bool`, *optional*):
|
588 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
589 |
+
tensors for more detail.
|
590 |
+
output_hidden_states (`bool`, *optional*):
|
591 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
592 |
+
more detail.
|
593 |
+
return_dict (`bool`, *optional*):
|
594 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
595 |
+
"""
|
596 |
+
|
597 |
+
OWLVIT_VISION_INPUTS_DOCSTRING = r"""
|
598 |
+
Args:
|
599 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
600 |
+
Pixel values.
|
601 |
+
output_attentions (`bool`, *optional*):
|
602 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
603 |
+
tensors for more detail.
|
604 |
+
output_hidden_states (`bool`, *optional*):
|
605 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
606 |
+
more detail.
|
607 |
+
return_dict (`bool`, *optional*):
|
608 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
609 |
+
"""
|
610 |
+
|
611 |
+
OWLVIT_INPUTS_DOCSTRING = r"""
|
612 |
+
Args:
|
613 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
614 |
+
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
615 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
616 |
+
IDs?](../glossary#input-ids)
|
617 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
618 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
619 |
+
- 1 for tokens that are **not masked**,
|
620 |
+
- 0 for tokens that are **masked**.
|
621 |
+
[What are attention masks?](../glossary#attention-mask)
|
622 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
623 |
+
Pixel values.
|
624 |
+
return_loss (`bool`, *optional*):
|
625 |
+
Whether or not to return the contrastive loss.
|
626 |
+
output_attentions (`bool`, *optional*):
|
627 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
628 |
+
tensors for more detail.
|
629 |
+
output_hidden_states (`bool`, *optional*):
|
630 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
631 |
+
more detail.
|
632 |
+
return_dict (`bool`, *optional*):
|
633 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
634 |
+
"""
|
635 |
+
|
636 |
+
OWLVIT_OBJECT_DETECTION_INPUTS_DOCSTRING = r"""
|
637 |
+
Args:
|
638 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
639 |
+
Pixel values.
|
640 |
+
input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`, *optional*):
|
641 |
+
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
642 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
643 |
+
IDs?](../glossary#input-ids).
|
644 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*):
|
645 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
646 |
+
- 1 for tokens that are **not masked**,
|
647 |
+
- 0 for tokens that are **masked**.
|
648 |
+
[What are attention masks?](../glossary#attention-mask)
|
649 |
+
output_hidden_states (`bool`, *optional*):
|
650 |
+
Whether or not to return the last hidden state. See `text_model_last_hidden_state` and
|
651 |
+
`vision_model_last_hidden_state` under returned tensors for more detail.
|
652 |
+
return_dict (`bool`, *optional*):
|
653 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
654 |
+
"""
|
655 |
+
|
656 |
+
OWLVIT_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING = r"""
|
657 |
+
Args:
|
658 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
659 |
+
Pixel values.
|
660 |
+
query_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
661 |
+
Pixel values of query image(s) to be detected. Pass in one query image per target image.
|
662 |
+
output_attentions (`bool`, *optional*):
|
663 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
664 |
+
tensors for more detail.
|
665 |
+
output_hidden_states (`bool`, *optional*):
|
666 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
667 |
+
more detail.
|
668 |
+
return_dict (`bool`, *optional*):
|
669 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
670 |
+
"""
|
671 |
+
|
672 |
+
|
673 |
+
class OwlViTEncoder(nn.Module):
|
674 |
+
"""
|
675 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
676 |
+
[`OwlViTEncoderLayer`].
|
677 |
+
|
678 |
+
Args:
|
679 |
+
config: OwlViTConfig
|
680 |
+
"""
|
681 |
+
|
682 |
+
def __init__(self, config: OwlViTConfig):
|
683 |
+
super().__init__()
|
684 |
+
self.layers = nn.ModuleList([OwlViTEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
685 |
+
self.gradient_checkpointing = False
|
686 |
+
|
687 |
+
def forward(
|
688 |
+
self,
|
689 |
+
inputs_embeds,
|
690 |
+
attention_mask: Optional[torch.Tensor] = None,
|
691 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
692 |
+
output_attentions: Optional[bool] = None,
|
693 |
+
output_hidden_states: Optional[bool] = None,
|
694 |
+
return_dict: Optional[bool] = None,
|
695 |
+
) -> Union[Tuple, BaseModelOutput]:
|
696 |
+
r"""
|
697 |
+
Args:
|
698 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`).
|
699 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
700 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
701 |
+
- 1 for tokens that are **not masked**,
|
702 |
+
- 0 for tokens that are **masked**.
|
703 |
+
[What are attention masks?](../glossary#attention-mask)
|
704 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
705 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
706 |
+
- 1 for tokens that are **not masked**,
|
707 |
+
- 0 for tokens that are **masked**.
|
708 |
+
[What are attention masks?](../glossary#attention-mask)
|
709 |
+
output_attentions (`bool`, *optional*):
|
710 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
711 |
+
returned tensors for more detail.
|
712 |
+
output_hidden_states (`bool`, *optional*):
|
713 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
714 |
+
for more detail.
|
715 |
+
return_dict (`bool`, *optional*):
|
716 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
717 |
+
"""
|
718 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
719 |
+
output_hidden_states = (
|
720 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
721 |
+
)
|
722 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
723 |
+
|
724 |
+
encoder_states = () if output_hidden_states else None
|
725 |
+
all_attentions = () if output_attentions else None
|
726 |
+
|
727 |
+
hidden_states = inputs_embeds
|
728 |
+
for encoder_layer in self.layers:
|
729 |
+
if output_hidden_states:
|
730 |
+
encoder_states = encoder_states + (hidden_states,)
|
731 |
+
if self.gradient_checkpointing and self.training:
|
732 |
+
layer_outputs = self._gradient_checkpointing_func(
|
733 |
+
encoder_layer.__call__,
|
734 |
+
hidden_states,
|
735 |
+
attention_mask,
|
736 |
+
causal_attention_mask,
|
737 |
+
output_attentions,
|
738 |
+
)
|
739 |
+
else:
|
740 |
+
layer_outputs = encoder_layer(
|
741 |
+
hidden_states,
|
742 |
+
attention_mask,
|
743 |
+
causal_attention_mask,
|
744 |
+
output_attentions=output_attentions,
|
745 |
+
)
|
746 |
+
|
747 |
+
hidden_states = layer_outputs[0]
|
748 |
+
|
749 |
+
if output_attentions:
|
750 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
751 |
+
|
752 |
+
if output_hidden_states:
|
753 |
+
encoder_states = encoder_states + (hidden_states,)
|
754 |
+
|
755 |
+
if not return_dict:
|
756 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
757 |
+
return BaseModelOutput(
|
758 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
759 |
+
)
|
760 |
+
|
761 |
+
|
762 |
+
class OwlViTTextTransformer(nn.Module):
|
763 |
+
def __init__(self, config: OwlViTTextConfig):
|
764 |
+
super().__init__()
|
765 |
+
self.config = config
|
766 |
+
embed_dim = config.hidden_size
|
767 |
+
self.embeddings = OwlViTTextEmbeddings(config)
|
768 |
+
self.encoder = OwlViTEncoder(config)
|
769 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
770 |
+
|
771 |
+
@add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING)
|
772 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTTextConfig)
|
773 |
+
def forward(
|
774 |
+
self,
|
775 |
+
input_ids: torch.Tensor,
|
776 |
+
attention_mask: Optional[torch.Tensor] = None,
|
777 |
+
position_ids: Optional[torch.Tensor] = None,
|
778 |
+
output_attentions: Optional[bool] = None,
|
779 |
+
output_hidden_states: Optional[bool] = None,
|
780 |
+
return_dict: Optional[bool] = None,
|
781 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
782 |
+
r"""
|
783 |
+
Returns:
|
784 |
+
"""
|
785 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
786 |
+
output_hidden_states = (
|
787 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
788 |
+
)
|
789 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
790 |
+
|
791 |
+
input_shape = input_ids.size()
|
792 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
793 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
794 |
+
|
795 |
+
# num_samples, seq_len = input_shape where num_samples = batch_size * num_max_text_queries
|
796 |
+
# OWLVIT's text model uses causal mask, prepare it here.
|
797 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
798 |
+
causal_attention_mask = _create_4d_causal_attention_mask(
|
799 |
+
input_shape, hidden_states.dtype, device=hidden_states.device
|
800 |
+
)
|
801 |
+
# expand attention_mask
|
802 |
+
if attention_mask is not None:
|
803 |
+
# [num_samples, seq_len] -> [num_samples, 1, tgt_seq_len, src_seq_len]
|
804 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
805 |
+
|
806 |
+
encoder_outputs = self.encoder(
|
807 |
+
inputs_embeds=hidden_states,
|
808 |
+
attention_mask=attention_mask,
|
809 |
+
causal_attention_mask=causal_attention_mask,
|
810 |
+
output_attentions=output_attentions,
|
811 |
+
output_hidden_states=output_hidden_states,
|
812 |
+
return_dict=return_dict,
|
813 |
+
)
|
814 |
+
|
815 |
+
last_hidden_state = encoder_outputs[0]
|
816 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
817 |
+
|
818 |
+
# take features from the end of tokens embedding (end of token is the highest number in each sequence)
|
819 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
820 |
+
pooled_output = last_hidden_state[
|
821 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
822 |
+
input_ids.to(torch.int).argmax(dim=-1).to(last_hidden_state.device),
|
823 |
+
]
|
824 |
+
|
825 |
+
if not return_dict:
|
826 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
827 |
+
|
828 |
+
return BaseModelOutputWithPooling(
|
829 |
+
last_hidden_state=last_hidden_state,
|
830 |
+
pooler_output=pooled_output,
|
831 |
+
hidden_states=encoder_outputs.hidden_states,
|
832 |
+
attentions=encoder_outputs.attentions,
|
833 |
+
)
|
834 |
+
|
835 |
+
|
836 |
+
class OwlViTTextModel(OwlViTPreTrainedModel):
|
837 |
+
config_class = OwlViTTextConfig
|
838 |
+
|
839 |
+
def __init__(self, config: OwlViTTextConfig):
|
840 |
+
super().__init__(config)
|
841 |
+
self.text_model = OwlViTTextTransformer(config)
|
842 |
+
# Initialize weights and apply final processing
|
843 |
+
self.post_init()
|
844 |
+
|
845 |
+
def get_input_embeddings(self) -> nn.Module:
|
846 |
+
return self.text_model.embeddings.token_embedding
|
847 |
+
|
848 |
+
def set_input_embeddings(self, value):
|
849 |
+
self.text_model.embeddings.token_embedding = value
|
850 |
+
|
851 |
+
@add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING)
|
852 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTTextConfig)
|
853 |
+
def forward(
|
854 |
+
self,
|
855 |
+
input_ids: torch.Tensor,
|
856 |
+
attention_mask: Optional[torch.Tensor] = None,
|
857 |
+
output_attentions: Optional[bool] = None,
|
858 |
+
output_hidden_states: Optional[bool] = None,
|
859 |
+
return_dict: Optional[bool] = None,
|
860 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
861 |
+
r"""
|
862 |
+
Returns:
|
863 |
+
|
864 |
+
Examples:
|
865 |
+
```python
|
866 |
+
>>> from transformers import AutoProcessor, OwlViTTextModel
|
867 |
+
|
868 |
+
>>> model = OwlViTTextModel.from_pretrained("google/owlvit-base-patch32")
|
869 |
+
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
|
870 |
+
>>> inputs = processor(
|
871 |
+
... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt"
|
872 |
+
... )
|
873 |
+
>>> outputs = model(**inputs)
|
874 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
875 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
876 |
+
```"""
|
877 |
+
|
878 |
+
# Get embeddings for all text queries in all batch samples
|
879 |
+
return self.text_model(
|
880 |
+
input_ids=input_ids,
|
881 |
+
attention_mask=attention_mask,
|
882 |
+
output_attentions=output_attentions,
|
883 |
+
output_hidden_states=output_hidden_states,
|
884 |
+
return_dict=return_dict,
|
885 |
+
)
|
886 |
+
|
887 |
+
|
888 |
+
class OwlViTVisionTransformer(nn.Module):
|
889 |
+
def __init__(self, config: OwlViTVisionConfig):
|
890 |
+
super().__init__()
|
891 |
+
self.config = config
|
892 |
+
|
893 |
+
self.embeddings = OwlViTVisionEmbeddings(config)
|
894 |
+
self.pre_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
895 |
+
self.encoder = OwlViTEncoder(config)
|
896 |
+
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
897 |
+
|
898 |
+
@add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING)
|
899 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTVisionConfig)
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
pixel_values: torch.FloatTensor,
|
903 |
+
output_attentions: Optional[bool] = None,
|
904 |
+
output_hidden_states: Optional[bool] = None,
|
905 |
+
return_dict: Optional[bool] = None,
|
906 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
907 |
+
r"""
|
908 |
+
Returns:
|
909 |
+
"""
|
910 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
911 |
+
output_hidden_states = (
|
912 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
913 |
+
)
|
914 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
915 |
+
|
916 |
+
# Cast the input to the expected `dtype`
|
917 |
+
expected_input_dtype = self.embeddings.patch_embedding.weight.dtype
|
918 |
+
pixel_values = pixel_values.to(expected_input_dtype)
|
919 |
+
|
920 |
+
hidden_states = self.embeddings(pixel_values)
|
921 |
+
hidden_states = self.pre_layernorm(hidden_states)
|
922 |
+
|
923 |
+
encoder_outputs = self.encoder(
|
924 |
+
inputs_embeds=hidden_states,
|
925 |
+
output_attentions=output_attentions,
|
926 |
+
output_hidden_states=output_hidden_states,
|
927 |
+
return_dict=return_dict,
|
928 |
+
)
|
929 |
+
|
930 |
+
last_hidden_state = encoder_outputs[0]
|
931 |
+
pooled_output = last_hidden_state[:, 0, :]
|
932 |
+
|
933 |
+
pooled_output = self.post_layernorm(pooled_output)
|
934 |
+
|
935 |
+
if not return_dict:
|
936 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
937 |
+
|
938 |
+
return BaseModelOutputWithPooling(
|
939 |
+
last_hidden_state=last_hidden_state,
|
940 |
+
pooler_output=pooled_output,
|
941 |
+
hidden_states=encoder_outputs.hidden_states,
|
942 |
+
attentions=encoder_outputs.attentions,
|
943 |
+
)
|
944 |
+
|
945 |
+
|
946 |
+
class OwlViTVisionModel(OwlViTPreTrainedModel):
|
947 |
+
config_class = OwlViTVisionConfig
|
948 |
+
main_input_name = "pixel_values"
|
949 |
+
|
950 |
+
def __init__(self, config: OwlViTVisionConfig):
|
951 |
+
super().__init__(config)
|
952 |
+
self.vision_model = OwlViTVisionTransformer(config)
|
953 |
+
# Initialize weights and apply final processing
|
954 |
+
self.post_init()
|
955 |
+
|
956 |
+
def get_input_embeddings(self) -> nn.Module:
|
957 |
+
return self.vision_model.embeddings.patch_embedding
|
958 |
+
|
959 |
+
@add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING)
|
960 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTVisionConfig)
|
961 |
+
def forward(
|
962 |
+
self,
|
963 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
964 |
+
output_attentions: Optional[bool] = None,
|
965 |
+
output_hidden_states: Optional[bool] = None,
|
966 |
+
return_dict: Optional[bool] = None,
|
967 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
968 |
+
r"""
|
969 |
+
Returns:
|
970 |
+
|
971 |
+
Examples:
|
972 |
+
```python
|
973 |
+
>>> from PIL import Image
|
974 |
+
>>> import requests
|
975 |
+
>>> from transformers import AutoProcessor, OwlViTVisionModel
|
976 |
+
|
977 |
+
>>> model = OwlViTVisionModel.from_pretrained("google/owlvit-base-patch32")
|
978 |
+
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
|
979 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
980 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
981 |
+
|
982 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
983 |
+
|
984 |
+
>>> outputs = model(**inputs)
|
985 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
986 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
987 |
+
```"""
|
988 |
+
return self.vision_model(
|
989 |
+
pixel_values=pixel_values,
|
990 |
+
output_attentions=output_attentions,
|
991 |
+
output_hidden_states=output_hidden_states,
|
992 |
+
return_dict=return_dict,
|
993 |
+
)
|
994 |
+
|
995 |
+
|
996 |
+
@add_start_docstrings(OWLVIT_START_DOCSTRING)
|
997 |
+
class OwlViTModel(OwlViTPreTrainedModel):
|
998 |
+
config_class = OwlViTConfig
|
999 |
+
|
1000 |
+
def __init__(self, config: OwlViTConfig):
|
1001 |
+
super().__init__(config)
|
1002 |
+
|
1003 |
+
if not isinstance(config.text_config, OwlViTTextConfig):
|
1004 |
+
raise ValueError(
|
1005 |
+
"config.text_config is expected to be of type OwlViTTextConfig but is of type"
|
1006 |
+
f" {type(config.text_config)}."
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
if not isinstance(config.vision_config, OwlViTVisionConfig):
|
1010 |
+
raise ValueError(
|
1011 |
+
"config.vision_config is expected to be of type OwlViTVisionConfig but is of type"
|
1012 |
+
f" {type(config.vision_config)}."
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
text_config = config.text_config
|
1016 |
+
vision_config = config.vision_config
|
1017 |
+
|
1018 |
+
self.projection_dim = config.projection_dim
|
1019 |
+
self.text_embed_dim = text_config.hidden_size
|
1020 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1021 |
+
|
1022 |
+
self.text_model = OwlViTTextTransformer(text_config)
|
1023 |
+
self.vision_model = OwlViTVisionTransformer(vision_config)
|
1024 |
+
|
1025 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
1026 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
1027 |
+
self.logit_scale = nn.Parameter(torch.tensor(config.logit_scale_init_value))
|
1028 |
+
|
1029 |
+
# Initialize weights and apply final processing
|
1030 |
+
self.post_init()
|
1031 |
+
|
1032 |
+
@add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING)
|
1033 |
+
def get_text_features(
|
1034 |
+
self,
|
1035 |
+
input_ids: Optional[torch.Tensor] = None,
|
1036 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1037 |
+
output_attentions: Optional[bool] = None,
|
1038 |
+
output_hidden_states: Optional[bool] = None,
|
1039 |
+
return_dict: Optional[bool] = None,
|
1040 |
+
) -> torch.FloatTensor:
|
1041 |
+
r"""
|
1042 |
+
Returns:
|
1043 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1044 |
+
applying the projection layer to the pooled output of [`OwlViTTextModel`].
|
1045 |
+
|
1046 |
+
Examples:
|
1047 |
+
```python
|
1048 |
+
>>> from transformers import AutoProcessor, OwlViTModel
|
1049 |
+
|
1050 |
+
>>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32")
|
1051 |
+
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
|
1052 |
+
>>> inputs = processor(
|
1053 |
+
... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt"
|
1054 |
+
... )
|
1055 |
+
>>> text_features = model.get_text_features(**inputs)
|
1056 |
+
```"""
|
1057 |
+
# Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components.
|
1058 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1059 |
+
|
1060 |
+
# Get embeddings for all text queries in all batch samples
|
1061 |
+
text_output = self.text_model(input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict)
|
1062 |
+
pooled_output = text_output[1]
|
1063 |
+
text_features = self.text_projection(pooled_output)
|
1064 |
+
|
1065 |
+
return text_features
|
1066 |
+
|
1067 |
+
@add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING)
|
1068 |
+
def get_image_features(
|
1069 |
+
self,
|
1070 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1071 |
+
output_attentions: Optional[bool] = None,
|
1072 |
+
output_hidden_states: Optional[bool] = None,
|
1073 |
+
return_dict: Optional[bool] = None,
|
1074 |
+
) -> torch.FloatTensor:
|
1075 |
+
r"""
|
1076 |
+
Returns:
|
1077 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1078 |
+
applying the projection layer to the pooled output of [`OwlViTVisionModel`].
|
1079 |
+
|
1080 |
+
Examples:
|
1081 |
+
```python
|
1082 |
+
>>> from PIL import Image
|
1083 |
+
>>> import requests
|
1084 |
+
>>> from transformers import AutoProcessor, OwlViTModel
|
1085 |
+
|
1086 |
+
>>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32")
|
1087 |
+
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
|
1088 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1089 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1090 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1091 |
+
>>> image_features = model.get_image_features(**inputs)
|
1092 |
+
```"""
|
1093 |
+
# Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components.
|
1094 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1095 |
+
output_hidden_states = (
|
1096 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1097 |
+
)
|
1098 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1099 |
+
|
1100 |
+
vision_outputs = self.vision_model(
|
1101 |
+
pixel_values=pixel_values,
|
1102 |
+
output_attentions=output_attentions,
|
1103 |
+
output_hidden_states=output_hidden_states,
|
1104 |
+
return_dict=return_dict,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
pooled_output = vision_outputs[1]
|
1108 |
+
image_features = self.visual_projection(pooled_output)
|
1109 |
+
|
1110 |
+
return image_features
|
1111 |
+
|
1112 |
+
@add_start_docstrings_to_model_forward(OWLVIT_INPUTS_DOCSTRING)
|
1113 |
+
@replace_return_docstrings(output_type=OwlViTOutput, config_class=OwlViTConfig)
|
1114 |
+
def forward(
|
1115 |
+
self,
|
1116 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1117 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1118 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1119 |
+
return_loss: Optional[bool] = None,
|
1120 |
+
output_attentions: Optional[bool] = None,
|
1121 |
+
output_hidden_states: Optional[bool] = None,
|
1122 |
+
return_base_image_embeds: Optional[bool] = None,
|
1123 |
+
return_dict: Optional[bool] = None,
|
1124 |
+
) -> Union[Tuple, OwlViTOutput]:
|
1125 |
+
r"""
|
1126 |
+
Returns:
|
1127 |
+
|
1128 |
+
Examples:
|
1129 |
+
```python
|
1130 |
+
>>> from PIL import Image
|
1131 |
+
>>> import requests
|
1132 |
+
>>> from transformers import AutoProcessor, OwlViTModel
|
1133 |
+
|
1134 |
+
>>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32")
|
1135 |
+
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
|
1136 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1137 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1138 |
+
>>> inputs = processor(text=[["a photo of a cat", "a photo of a dog"]], images=image, return_tensors="pt")
|
1139 |
+
>>> outputs = model(**inputs)
|
1140 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1141 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1142 |
+
```"""
|
1143 |
+
# Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components.
|
1144 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1145 |
+
output_hidden_states = (
|
1146 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1147 |
+
)
|
1148 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1149 |
+
|
1150 |
+
vision_outputs = self.vision_model(
|
1151 |
+
pixel_values=pixel_values,
|
1152 |
+
output_attentions=output_attentions,
|
1153 |
+
output_hidden_states=output_hidden_states,
|
1154 |
+
return_dict=return_dict,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
# Get embeddings for all text queries in all batch samples
|
1158 |
+
text_outputs = self.text_model(
|
1159 |
+
input_ids=input_ids,
|
1160 |
+
attention_mask=attention_mask,
|
1161 |
+
output_attentions=output_attentions,
|
1162 |
+
output_hidden_states=output_hidden_states,
|
1163 |
+
return_dict=return_dict,
|
1164 |
+
)
|
1165 |
+
|
1166 |
+
text_embeds = text_outputs[1]
|
1167 |
+
text_embeds = self.text_projection(text_embeds)
|
1168 |
+
image_embeds = vision_outputs[1]
|
1169 |
+
image_embeds = self.visual_projection(image_embeds)
|
1170 |
+
|
1171 |
+
# normalized features
|
1172 |
+
image_embeds = image_embeds / torch.linalg.norm(image_embeds, ord=2, dim=-1, keepdim=True)
|
1173 |
+
text_embeds_norm = text_embeds / torch.linalg.norm(text_embeds, ord=2, dim=-1, keepdim=True)
|
1174 |
+
|
1175 |
+
# cosine similarity as logits and set it on the correct device
|
1176 |
+
logit_scale = self.logit_scale.exp().to(image_embeds.device)
|
1177 |
+
|
1178 |
+
logits_per_text = torch.matmul(text_embeds_norm, image_embeds.t()) * logit_scale
|
1179 |
+
logits_per_image = logits_per_text.t()
|
1180 |
+
|
1181 |
+
loss = None
|
1182 |
+
if return_loss:
|
1183 |
+
loss = owlvit_loss(logits_per_text)
|
1184 |
+
|
1185 |
+
if return_base_image_embeds:
|
1186 |
+
warnings.warn(
|
1187 |
+
"`return_base_image_embeds` is deprecated and will be removed in v4.27 of Transformers, one can"
|
1188 |
+
" obtain the base (unprojected) image embeddings from outputs.vision_model_output.",
|
1189 |
+
FutureWarning,
|
1190 |
+
)
|
1191 |
+
last_hidden_state = vision_outputs[0]
|
1192 |
+
image_embeds = self.vision_model.post_layernorm(last_hidden_state)
|
1193 |
+
else:
|
1194 |
+
text_embeds = text_embeds_norm
|
1195 |
+
|
1196 |
+
if not return_dict:
|
1197 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1198 |
+
return ((loss,) + output) if loss is not None else output
|
1199 |
+
|
1200 |
+
return OwlViTOutput(
|
1201 |
+
loss=loss,
|
1202 |
+
logits_per_image=logits_per_image,
|
1203 |
+
logits_per_text=logits_per_text,
|
1204 |
+
text_embeds=text_embeds,
|
1205 |
+
image_embeds=image_embeds,
|
1206 |
+
text_model_output=text_outputs,
|
1207 |
+
vision_model_output=vision_outputs,
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
|
1211 |
+
class OwlViTBoxPredictionHead(nn.Module):
|
1212 |
+
def __init__(self, config: OwlViTConfig, out_dim: int = 4):
|
1213 |
+
super().__init__()
|
1214 |
+
|
1215 |
+
width = config.vision_config.hidden_size
|
1216 |
+
self.dense0 = nn.Linear(width, width)
|
1217 |
+
self.dense1 = nn.Linear(width, width)
|
1218 |
+
self.gelu = nn.GELU()
|
1219 |
+
self.dense2 = nn.Linear(width, out_dim)
|
1220 |
+
|
1221 |
+
def forward(self, image_features: torch.Tensor) -> torch.FloatTensor:
|
1222 |
+
output = self.dense0(image_features)
|
1223 |
+
output = self.gelu(output)
|
1224 |
+
output = self.dense1(output)
|
1225 |
+
output = self.gelu(output)
|
1226 |
+
output = self.dense2(output)
|
1227 |
+
return output
|
1228 |
+
|
1229 |
+
|
1230 |
+
class OwlViTClassPredictionHead(nn.Module):
|
1231 |
+
def __init__(self, config: OwlViTConfig):
|
1232 |
+
super().__init__()
|
1233 |
+
|
1234 |
+
out_dim = config.text_config.hidden_size
|
1235 |
+
self.query_dim = config.vision_config.hidden_size
|
1236 |
+
|
1237 |
+
self.dense0 = nn.Linear(self.query_dim, out_dim)
|
1238 |
+
self.logit_shift = nn.Linear(self.query_dim, 1)
|
1239 |
+
self.logit_scale = nn.Linear(self.query_dim, 1)
|
1240 |
+
self.elu = nn.ELU()
|
1241 |
+
|
1242 |
+
def forward(
|
1243 |
+
self,
|
1244 |
+
image_embeds: torch.FloatTensor,
|
1245 |
+
query_embeds: Optional[torch.FloatTensor],
|
1246 |
+
query_mask: Optional[torch.Tensor],
|
1247 |
+
) -> Tuple[torch.FloatTensor]:
|
1248 |
+
image_class_embeds = self.dense0(image_embeds)
|
1249 |
+
if query_embeds is None:
|
1250 |
+
device = image_class_embeds.device
|
1251 |
+
batch_size, num_patches = image_class_embeds.shape[:2]
|
1252 |
+
pred_logits = torch.zeros((batch_size, num_patches, self.query_dim)).to(device)
|
1253 |
+
return (pred_logits, image_class_embeds)
|
1254 |
+
|
1255 |
+
# Normalize image and text features
|
1256 |
+
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
|
1257 |
+
query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
|
1258 |
+
|
1259 |
+
# Get class predictions
|
1260 |
+
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds)
|
1261 |
+
|
1262 |
+
# Apply a learnable shift and scale to logits
|
1263 |
+
logit_shift = self.logit_shift(image_embeds)
|
1264 |
+
logit_scale = self.logit_scale(image_embeds)
|
1265 |
+
logit_scale = self.elu(logit_scale) + 1
|
1266 |
+
pred_logits = (pred_logits + logit_shift) * logit_scale
|
1267 |
+
|
1268 |
+
if query_mask is not None:
|
1269 |
+
if query_mask.ndim > 1:
|
1270 |
+
query_mask = torch.unsqueeze(query_mask, dim=-2)
|
1271 |
+
|
1272 |
+
pred_logits = pred_logits.to(torch.float64)
|
1273 |
+
pred_logits = torch.where(query_mask == 0, -1e6, pred_logits)
|
1274 |
+
pred_logits = pred_logits.to(torch.float32)
|
1275 |
+
|
1276 |
+
return (pred_logits, image_class_embeds)
|
1277 |
+
|
1278 |
+
|
1279 |
+
class OwlViTForObjectDetection(OwlViTPreTrainedModel):
|
1280 |
+
config_class = OwlViTConfig
|
1281 |
+
|
1282 |
+
def __init__(self, config: OwlViTConfig):
|
1283 |
+
super().__init__(config)
|
1284 |
+
|
1285 |
+
self.owlvit = OwlViTModel(config)
|
1286 |
+
self.class_head = OwlViTClassPredictionHead(config)
|
1287 |
+
self.box_head = OwlViTBoxPredictionHead(config)
|
1288 |
+
|
1289 |
+
self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps)
|
1290 |
+
self.sigmoid = nn.Sigmoid()
|
1291 |
+
|
1292 |
+
self.sqrt_num_patches = config.vision_config.image_size // config.vision_config.patch_size
|
1293 |
+
self.box_bias = self.compute_box_bias(self.sqrt_num_patches)
|
1294 |
+
|
1295 |
+
@staticmethod
|
1296 |
+
def normalize_grid_corner_coordinates(num_patches: int) -> torch.Tensor:
|
1297 |
+
# Create grid coordinates using torch
|
1298 |
+
x_coordinates = torch.arange(1, num_patches + 1, dtype=torch.float32)
|
1299 |
+
y_coordinates = torch.arange(1, num_patches + 1, dtype=torch.float32)
|
1300 |
+
xx, yy = torch.meshgrid(x_coordinates, y_coordinates, indexing="xy")
|
1301 |
+
|
1302 |
+
# Stack the coordinates and divide by num_patches
|
1303 |
+
box_coordinates = torch.stack((xx, yy), dim=-1)
|
1304 |
+
box_coordinates /= num_patches
|
1305 |
+
|
1306 |
+
# Flatten (h, w, 2) -> (h*w, 2)
|
1307 |
+
box_coordinates = box_coordinates.view(-1, 2)
|
1308 |
+
|
1309 |
+
return box_coordinates
|
1310 |
+
|
1311 |
+
@lru_cache(maxsize=2)
|
1312 |
+
def compute_box_bias(self, num_patches: int, feature_map: Optional[torch.FloatTensor] = None) -> torch.Tensor:
|
1313 |
+
if feature_map is not None:
|
1314 |
+
raise ValueError("feature_map has been deprecated as an input. Please pass in num_patches instead")
|
1315 |
+
# The box center is biased to its position on the feature grid
|
1316 |
+
box_coordinates = self.normalize_grid_corner_coordinates(num_patches)
|
1317 |
+
box_coordinates = torch.clip(box_coordinates, 0.0, 1.0)
|
1318 |
+
|
1319 |
+
# Unnormalize xy
|
1320 |
+
box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4)
|
1321 |
+
|
1322 |
+
# The box size is biased to the patch size
|
1323 |
+
box_size = torch.full_like(box_coord_bias, 1.0 / num_patches)
|
1324 |
+
box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4)
|
1325 |
+
|
1326 |
+
# Compute box bias
|
1327 |
+
box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1)
|
1328 |
+
return box_bias
|
1329 |
+
|
1330 |
+
def box_predictor(
|
1331 |
+
self,
|
1332 |
+
image_feats: torch.FloatTensor,
|
1333 |
+
feature_map: torch.FloatTensor,
|
1334 |
+
) -> torch.FloatTensor:
|
1335 |
+
"""
|
1336 |
+
Args:
|
1337 |
+
image_feats:
|
1338 |
+
Features extracted from the image, returned by the `image_text_embedder` method.
|
1339 |
+
feature_map:
|
1340 |
+
A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method.
|
1341 |
+
Returns:
|
1342 |
+
pred_boxes:
|
1343 |
+
List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
|
1344 |
+
"""
|
1345 |
+
# Bounding box detection head [batch_size, num_boxes, 4].
|
1346 |
+
pred_boxes = self.box_head(image_feats)
|
1347 |
+
|
1348 |
+
# Compute the location of each token on the grid and use it to compute a bias for the bbox prediction
|
1349 |
+
box_bias = self.box_bias.to(feature_map.device)
|
1350 |
+
pred_boxes += box_bias
|
1351 |
+
pred_boxes = self.sigmoid(pred_boxes)
|
1352 |
+
return pred_boxes
|
1353 |
+
|
1354 |
+
def class_predictor(
|
1355 |
+
self,
|
1356 |
+
image_feats: torch.FloatTensor,
|
1357 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
1358 |
+
query_mask: Optional[torch.Tensor] = None,
|
1359 |
+
) -> Tuple[torch.FloatTensor]:
|
1360 |
+
"""
|
1361 |
+
Args:
|
1362 |
+
image_feats:
|
1363 |
+
Features extracted from the `image_text_embedder`.
|
1364 |
+
query_embeds:
|
1365 |
+
Text query embeddings.
|
1366 |
+
query_mask:
|
1367 |
+
Must be provided with query_embeddings. A mask indicating which query embeddings are valid.
|
1368 |
+
"""
|
1369 |
+
(pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask)
|
1370 |
+
|
1371 |
+
return (pred_logits, image_class_embeds)
|
1372 |
+
|
1373 |
+
def image_text_embedder(
|
1374 |
+
self,
|
1375 |
+
input_ids: torch.Tensor,
|
1376 |
+
pixel_values: torch.FloatTensor,
|
1377 |
+
attention_mask: torch.Tensor,
|
1378 |
+
output_attentions: Optional[bool] = None,
|
1379 |
+
output_hidden_states: Optional[bool] = None,
|
1380 |
+
) -> Tuple[torch.FloatTensor]:
|
1381 |
+
# Encode text and image
|
1382 |
+
outputs = self.owlvit(
|
1383 |
+
pixel_values=pixel_values,
|
1384 |
+
input_ids=input_ids,
|
1385 |
+
attention_mask=attention_mask,
|
1386 |
+
output_attentions=output_attentions,
|
1387 |
+
output_hidden_states=output_hidden_states,
|
1388 |
+
return_dict=True,
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
# Get image embeddings
|
1392 |
+
last_hidden_state = outputs.vision_model_output[0]
|
1393 |
+
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state)
|
1394 |
+
|
1395 |
+
# Resize class token
|
1396 |
+
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape)
|
1397 |
+
|
1398 |
+
# Merge image embedding with class tokens
|
1399 |
+
image_embeds = image_embeds[:, 1:, :] * class_token_out
|
1400 |
+
image_embeds = self.layer_norm(image_embeds)
|
1401 |
+
|
1402 |
+
# Resize to [batch_size, num_patches, num_patches, hidden_size]
|
1403 |
+
new_size = (
|
1404 |
+
image_embeds.shape[0],
|
1405 |
+
self.sqrt_num_patches,
|
1406 |
+
self.sqrt_num_patches,
|
1407 |
+
image_embeds.shape[-1],
|
1408 |
+
)
|
1409 |
+
image_embeds = image_embeds.reshape(new_size)
|
1410 |
+
text_embeds = outputs[-4]
|
1411 |
+
|
1412 |
+
return (text_embeds, image_embeds, outputs)
|
1413 |
+
|
1414 |
+
def image_embedder(
|
1415 |
+
self,
|
1416 |
+
pixel_values: torch.FloatTensor,
|
1417 |
+
output_attentions: Optional[bool] = None,
|
1418 |
+
output_hidden_states: Optional[bool] = None,
|
1419 |
+
) -> Tuple[torch.FloatTensor]:
|
1420 |
+
# Get OwlViTModel vision embeddings (same as CLIP)
|
1421 |
+
vision_outputs = self.owlvit.vision_model(pixel_values=pixel_values, return_dict=True)
|
1422 |
+
|
1423 |
+
# Apply post_layernorm to last_hidden_state, return non-projected output
|
1424 |
+
last_hidden_state = vision_outputs[0]
|
1425 |
+
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state)
|
1426 |
+
|
1427 |
+
# Resize class token
|
1428 |
+
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape)
|
1429 |
+
|
1430 |
+
# Merge image embedding with class tokens
|
1431 |
+
image_embeds = image_embeds[:, 1:, :] * class_token_out
|
1432 |
+
image_embeds = self.layer_norm(image_embeds)
|
1433 |
+
|
1434 |
+
# Resize to [batch_size, num_patches, num_patches, hidden_size]
|
1435 |
+
new_size = (
|
1436 |
+
image_embeds.shape[0],
|
1437 |
+
self.sqrt_num_patches,
|
1438 |
+
self.sqrt_num_patches,
|
1439 |
+
image_embeds.shape[-1],
|
1440 |
+
)
|
1441 |
+
image_embeds = image_embeds.reshape(new_size)
|
1442 |
+
|
1443 |
+
return (image_embeds, vision_outputs)
|
1444 |
+
|
1445 |
+
def embed_image_query(
|
1446 |
+
self, query_image_features: torch.FloatTensor, query_feature_map: torch.FloatTensor
|
1447 |
+
) -> torch.FloatTensor:
|
1448 |
+
_, class_embeds = self.class_predictor(query_image_features)
|
1449 |
+
pred_boxes = self.box_predictor(query_image_features, query_feature_map)
|
1450 |
+
pred_boxes_as_corners = center_to_corners_format(pred_boxes)
|
1451 |
+
|
1452 |
+
# Loop over query images
|
1453 |
+
best_class_embeds = []
|
1454 |
+
best_box_indices = []
|
1455 |
+
pred_boxes_device = pred_boxes_as_corners.device
|
1456 |
+
|
1457 |
+
for i in range(query_image_features.shape[0]):
|
1458 |
+
each_query_box = torch.tensor([[0, 0, 1, 1]], device=pred_boxes_device)
|
1459 |
+
each_query_pred_boxes = pred_boxes_as_corners[i]
|
1460 |
+
ious, _ = box_iou(each_query_box, each_query_pred_boxes)
|
1461 |
+
|
1462 |
+
# If there are no overlapping boxes, fall back to generalized IoU
|
1463 |
+
if torch.all(ious[0] == 0.0):
|
1464 |
+
ious = generalized_box_iou(each_query_box, each_query_pred_boxes)
|
1465 |
+
|
1466 |
+
# Use an adaptive threshold to include all boxes within 80% of the best IoU
|
1467 |
+
iou_threshold = torch.max(ious) * 0.8
|
1468 |
+
|
1469 |
+
selected_inds = (ious[0] >= iou_threshold).nonzero()
|
1470 |
+
if selected_inds.numel():
|
1471 |
+
selected_embeddings = class_embeds[i][selected_inds.squeeze(1)]
|
1472 |
+
mean_embeds = torch.mean(class_embeds[i], axis=0)
|
1473 |
+
mean_sim = torch.einsum("d,id->i", mean_embeds, selected_embeddings)
|
1474 |
+
best_box_ind = selected_inds[torch.argmin(mean_sim)]
|
1475 |
+
best_class_embeds.append(class_embeds[i][best_box_ind])
|
1476 |
+
best_box_indices.append(best_box_ind)
|
1477 |
+
|
1478 |
+
if best_class_embeds:
|
1479 |
+
query_embeds = torch.stack(best_class_embeds)
|
1480 |
+
box_indices = torch.stack(best_box_indices)
|
1481 |
+
else:
|
1482 |
+
query_embeds, box_indices = None, None
|
1483 |
+
|
1484 |
+
return query_embeds, box_indices, pred_boxes
|
1485 |
+
|
1486 |
+
@add_start_docstrings_to_model_forward(OWLVIT_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING)
|
1487 |
+
@replace_return_docstrings(output_type=OwlViTImageGuidedObjectDetectionOutput, config_class=OwlViTConfig)
|
1488 |
+
def image_guided_detection(
|
1489 |
+
self,
|
1490 |
+
pixel_values: torch.FloatTensor,
|
1491 |
+
query_pixel_values: Optional[torch.FloatTensor] = None,
|
1492 |
+
output_attentions: Optional[bool] = None,
|
1493 |
+
output_hidden_states: Optional[bool] = None,
|
1494 |
+
return_dict: Optional[bool] = None,
|
1495 |
+
) -> OwlViTImageGuidedObjectDetectionOutput:
|
1496 |
+
r"""
|
1497 |
+
Returns:
|
1498 |
+
|
1499 |
+
Examples:
|
1500 |
+
```python
|
1501 |
+
>>> import requests
|
1502 |
+
>>> from PIL import Image
|
1503 |
+
>>> import torch
|
1504 |
+
>>> from transformers import AutoProcessor, OwlViTForObjectDetection
|
1505 |
+
|
1506 |
+
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch16")
|
1507 |
+
>>> model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch16")
|
1508 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1509 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1510 |
+
>>> query_url = "http://images.cocodataset.org/val2017/000000001675.jpg"
|
1511 |
+
>>> query_image = Image.open(requests.get(query_url, stream=True).raw)
|
1512 |
+
>>> inputs = processor(images=image, query_images=query_image, return_tensors="pt")
|
1513 |
+
>>> with torch.no_grad():
|
1514 |
+
... outputs = model.image_guided_detection(**inputs)
|
1515 |
+
>>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
|
1516 |
+
>>> target_sizes = torch.Tensor([image.size[::-1]])
|
1517 |
+
>>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
|
1518 |
+
>>> results = processor.post_process_image_guided_detection(
|
1519 |
+
... outputs=outputs, threshold=0.6, nms_threshold=0.3, target_sizes=target_sizes
|
1520 |
+
... )
|
1521 |
+
>>> i = 0 # Retrieve predictions for the first image
|
1522 |
+
>>> boxes, scores = results[i]["boxes"], results[i]["scores"]
|
1523 |
+
>>> for box, score in zip(boxes, scores):
|
1524 |
+
... box = [round(i, 2) for i in box.tolist()]
|
1525 |
+
... print(f"Detected similar object with confidence {round(score.item(), 3)} at location {box}")
|
1526 |
+
Detected similar object with confidence 0.856 at location [10.94, 50.4, 315.8, 471.39]
|
1527 |
+
Detected similar object with confidence 1.0 at location [334.84, 25.33, 636.16, 374.71]
|
1528 |
+
```"""
|
1529 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1530 |
+
output_hidden_states = (
|
1531 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1532 |
+
)
|
1533 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1534 |
+
|
1535 |
+
# Compute feature maps for the input and query images
|
1536 |
+
query_feature_map = self.image_embedder(pixel_values=query_pixel_values)[0]
|
1537 |
+
feature_map, vision_outputs = self.image_embedder(
|
1538 |
+
pixel_values=pixel_values,
|
1539 |
+
output_attentions=output_attentions,
|
1540 |
+
output_hidden_states=output_hidden_states,
|
1541 |
+
)
|
1542 |
+
|
1543 |
+
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
|
1544 |
+
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
1545 |
+
|
1546 |
+
batch_size, num_patches, num_patches, hidden_dim = query_feature_map.shape
|
1547 |
+
query_image_feats = torch.reshape(query_feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
1548 |
+
# Get top class embedding and best box index for each query image in batch
|
1549 |
+
query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(query_image_feats, query_feature_map)
|
1550 |
+
|
1551 |
+
# Predict object classes [batch_size, num_patches, num_queries+1]
|
1552 |
+
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_embeds=query_embeds)
|
1553 |
+
|
1554 |
+
# Predict object boxes
|
1555 |
+
target_pred_boxes = self.box_predictor(image_feats, feature_map)
|
1556 |
+
|
1557 |
+
if not return_dict:
|
1558 |
+
output = (
|
1559 |
+
feature_map,
|
1560 |
+
query_feature_map,
|
1561 |
+
target_pred_boxes,
|
1562 |
+
query_pred_boxes,
|
1563 |
+
pred_logits,
|
1564 |
+
class_embeds,
|
1565 |
+
vision_outputs.to_tuple(),
|
1566 |
+
)
|
1567 |
+
output = tuple(x for x in output if x is not None)
|
1568 |
+
return output
|
1569 |
+
|
1570 |
+
return OwlViTImageGuidedObjectDetectionOutput(
|
1571 |
+
image_embeds=feature_map,
|
1572 |
+
query_image_embeds=query_feature_map,
|
1573 |
+
target_pred_boxes=target_pred_boxes,
|
1574 |
+
query_pred_boxes=query_pred_boxes,
|
1575 |
+
logits=pred_logits,
|
1576 |
+
class_embeds=class_embeds,
|
1577 |
+
text_model_output=None,
|
1578 |
+
vision_model_output=vision_outputs,
|
1579 |
+
)
|
1580 |
+
|
1581 |
+
@add_start_docstrings_to_model_forward(OWLVIT_OBJECT_DETECTION_INPUTS_DOCSTRING)
|
1582 |
+
@replace_return_docstrings(output_type=OwlViTObjectDetectionOutput, config_class=OwlViTConfig)
|
1583 |
+
def forward(
|
1584 |
+
self,
|
1585 |
+
input_ids: torch.Tensor,
|
1586 |
+
pixel_values: torch.FloatTensor,
|
1587 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1588 |
+
output_attentions: Optional[bool] = None,
|
1589 |
+
output_hidden_states: Optional[bool] = None,
|
1590 |
+
return_dict: Optional[bool] = None,
|
1591 |
+
) -> OwlViTObjectDetectionOutput:
|
1592 |
+
r"""
|
1593 |
+
Returns:
|
1594 |
+
|
1595 |
+
Examples:
|
1596 |
+
```python
|
1597 |
+
>>> import requests
|
1598 |
+
>>> from PIL import Image
|
1599 |
+
>>> import torch
|
1600 |
+
>>> from transformers import AutoProcessor, OwlViTForObjectDetection
|
1601 |
+
|
1602 |
+
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
|
1603 |
+
>>> model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
|
1604 |
+
|
1605 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1606 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1607 |
+
>>> texts = [["a photo of a cat", "a photo of a dog"]]
|
1608 |
+
>>> inputs = processor(text=texts, images=image, return_tensors="pt")
|
1609 |
+
>>> outputs = model(**inputs)
|
1610 |
+
|
1611 |
+
>>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
|
1612 |
+
>>> target_sizes = torch.Tensor([image.size[::-1]])
|
1613 |
+
>>> # Convert outputs (bounding boxes and class logits) to final bounding boxes and scores
|
1614 |
+
>>> results = processor.post_process_object_detection(
|
1615 |
+
... outputs=outputs, threshold=0.1, target_sizes=target_sizes
|
1616 |
+
... )
|
1617 |
+
|
1618 |
+
>>> i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
1619 |
+
>>> text = texts[i]
|
1620 |
+
>>> boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
1621 |
+
|
1622 |
+
>>> for box, score, label in zip(boxes, scores, labels):
|
1623 |
+
... box = [round(i, 2) for i in box.tolist()]
|
1624 |
+
... print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|
1625 |
+
Detected a photo of a cat with confidence 0.707 at location [324.97, 20.44, 640.58, 373.29]
|
1626 |
+
Detected a photo of a cat with confidence 0.717 at location [1.46, 55.26, 315.55, 472.17]
|
1627 |
+
```"""
|
1628 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1629 |
+
output_hidden_states = (
|
1630 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1631 |
+
)
|
1632 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1633 |
+
|
1634 |
+
# Embed images and text queries
|
1635 |
+
query_embeds, feature_map, outputs = self.image_text_embedder(
|
1636 |
+
input_ids=input_ids,
|
1637 |
+
pixel_values=pixel_values,
|
1638 |
+
attention_mask=attention_mask,
|
1639 |
+
output_attentions=output_attentions,
|
1640 |
+
output_hidden_states=output_hidden_states,
|
1641 |
+
)
|
1642 |
+
|
1643 |
+
# Text and vision model outputs
|
1644 |
+
text_outputs = outputs.text_model_output
|
1645 |
+
vision_outputs = outputs.vision_model_output
|
1646 |
+
|
1647 |
+
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
|
1648 |
+
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
1649 |
+
|
1650 |
+
# Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim]
|
1651 |
+
max_text_queries = input_ids.shape[0] // batch_size
|
1652 |
+
query_embeds = query_embeds.reshape(batch_size, max_text_queries, query_embeds.shape[-1])
|
1653 |
+
|
1654 |
+
# If first token is 0, then this is a padded query [batch_size, num_queries].
|
1655 |
+
input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1])
|
1656 |
+
query_mask = input_ids[..., 0] > 0
|
1657 |
+
|
1658 |
+
# Predict object classes [batch_size, num_patches, num_queries+1]
|
1659 |
+
(pred_logits, class_embeds) = self.class_predictor(image_feats, query_embeds, query_mask)
|
1660 |
+
|
1661 |
+
# Predict object boxes
|
1662 |
+
pred_boxes = self.box_predictor(image_feats, feature_map)
|
1663 |
+
|
1664 |
+
if not return_dict:
|
1665 |
+
output = (
|
1666 |
+
pred_logits,
|
1667 |
+
pred_boxes,
|
1668 |
+
query_embeds,
|
1669 |
+
feature_map,
|
1670 |
+
class_embeds,
|
1671 |
+
text_outputs.to_tuple(),
|
1672 |
+
vision_outputs.to_tuple(),
|
1673 |
+
)
|
1674 |
+
output = tuple(x for x in output if x is not None)
|
1675 |
+
return output
|
1676 |
+
|
1677 |
+
return OwlViTObjectDetectionOutput(
|
1678 |
+
image_embeds=feature_map,
|
1679 |
+
text_embeds=query_embeds,
|
1680 |
+
pred_boxes=pred_boxes,
|
1681 |
+
logits=pred_logits,
|
1682 |
+
class_embeds=class_embeds,
|
1683 |
+
text_model_output=text_outputs,
|
1684 |
+
vision_model_output=vision_outputs,
|
1685 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/owlvit/processing_owlvit.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for OWL-ViT
|
17 |
+
"""
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...processing_utils import ProcessorMixin
|
25 |
+
from ...tokenization_utils_base import BatchEncoding
|
26 |
+
from ...utils import is_flax_available, is_tf_available, is_torch_available
|
27 |
+
|
28 |
+
|
29 |
+
class OwlViTProcessor(ProcessorMixin):
|
30 |
+
r"""
|
31 |
+
Constructs an OWL-ViT processor which wraps [`OwlViTImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`]
|
32 |
+
into a single processor that interits both the image processor and tokenizer functionalities. See the
|
33 |
+
[`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
image_processor ([`OwlViTImageProcessor`], *optional*):
|
37 |
+
The image processor is a required input.
|
38 |
+
tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`], *optional*):
|
39 |
+
The tokenizer is a required input.
|
40 |
+
"""
|
41 |
+
|
42 |
+
attributes = ["image_processor", "tokenizer"]
|
43 |
+
image_processor_class = "OwlViTImageProcessor"
|
44 |
+
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
|
45 |
+
|
46 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
47 |
+
feature_extractor = None
|
48 |
+
if "feature_extractor" in kwargs:
|
49 |
+
warnings.warn(
|
50 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
51 |
+
" instead.",
|
52 |
+
FutureWarning,
|
53 |
+
)
|
54 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
55 |
+
|
56 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
57 |
+
if image_processor is None:
|
58 |
+
raise ValueError("You need to specify an `image_processor`.")
|
59 |
+
if tokenizer is None:
|
60 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
61 |
+
|
62 |
+
super().__init__(image_processor, tokenizer)
|
63 |
+
|
64 |
+
def __call__(self, text=None, images=None, query_images=None, padding="max_length", return_tensors="np", **kwargs):
|
65 |
+
"""
|
66 |
+
Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
|
67 |
+
`kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
|
68 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
69 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
70 |
+
of the above two methods for more information.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
74 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
75 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
76 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
77 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
|
78 |
+
`List[torch.Tensor]`):
|
79 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
80 |
+
tensor. Both channels-first and channels-last formats are supported.
|
81 |
+
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
82 |
+
The query image to be prepared, one query image is expected per target image to be queried. Each image
|
83 |
+
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
|
84 |
+
should be of shape (C, H, W), where C is a number of channels, H and W are image height and width.
|
85 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
86 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
87 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
88 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
89 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
90 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
91 |
+
Returns:
|
92 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
93 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
94 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
95 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
96 |
+
`None`).
|
97 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
98 |
+
"""
|
99 |
+
|
100 |
+
if text is None and query_images is None and images is None:
|
101 |
+
raise ValueError(
|
102 |
+
"You have to specify at least one text or query image or image. All three cannot be none."
|
103 |
+
)
|
104 |
+
|
105 |
+
if text is not None:
|
106 |
+
if isinstance(text, str) or (isinstance(text, List) and not isinstance(text[0], List)):
|
107 |
+
encodings = [self.tokenizer(text, padding=padding, return_tensors=return_tensors, **kwargs)]
|
108 |
+
|
109 |
+
elif isinstance(text, List) and isinstance(text[0], List):
|
110 |
+
encodings = []
|
111 |
+
|
112 |
+
# Maximum number of queries across batch
|
113 |
+
max_num_queries = max([len(t) for t in text])
|
114 |
+
|
115 |
+
# Pad all batch samples to max number of text queries
|
116 |
+
for t in text:
|
117 |
+
if len(t) != max_num_queries:
|
118 |
+
t = t + [" "] * (max_num_queries - len(t))
|
119 |
+
|
120 |
+
encoding = self.tokenizer(t, padding=padding, return_tensors=return_tensors, **kwargs)
|
121 |
+
encodings.append(encoding)
|
122 |
+
else:
|
123 |
+
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
|
124 |
+
|
125 |
+
if return_tensors == "np":
|
126 |
+
input_ids = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
|
127 |
+
attention_mask = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
|
128 |
+
|
129 |
+
elif return_tensors == "jax" and is_flax_available():
|
130 |
+
import jax.numpy as jnp
|
131 |
+
|
132 |
+
input_ids = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
|
133 |
+
attention_mask = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
|
134 |
+
|
135 |
+
elif return_tensors == "pt" and is_torch_available():
|
136 |
+
import torch
|
137 |
+
|
138 |
+
input_ids = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0)
|
139 |
+
attention_mask = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0)
|
140 |
+
|
141 |
+
elif return_tensors == "tf" and is_tf_available():
|
142 |
+
import tensorflow as tf
|
143 |
+
|
144 |
+
input_ids = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0)
|
145 |
+
attention_mask = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0)
|
146 |
+
|
147 |
+
else:
|
148 |
+
raise ValueError("Target return tensor type could not be returned")
|
149 |
+
|
150 |
+
encoding = BatchEncoding()
|
151 |
+
encoding["input_ids"] = input_ids
|
152 |
+
encoding["attention_mask"] = attention_mask
|
153 |
+
|
154 |
+
if query_images is not None:
|
155 |
+
encoding = BatchEncoding()
|
156 |
+
query_pixel_values = self.image_processor(
|
157 |
+
query_images, return_tensors=return_tensors, **kwargs
|
158 |
+
).pixel_values
|
159 |
+
encoding["query_pixel_values"] = query_pixel_values
|
160 |
+
|
161 |
+
if images is not None:
|
162 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
163 |
+
|
164 |
+
if text is not None and images is not None:
|
165 |
+
encoding["pixel_values"] = image_features.pixel_values
|
166 |
+
return encoding
|
167 |
+
elif query_images is not None and images is not None:
|
168 |
+
encoding["pixel_values"] = image_features.pixel_values
|
169 |
+
return encoding
|
170 |
+
elif text is not None or query_images is not None:
|
171 |
+
return encoding
|
172 |
+
else:
|
173 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
174 |
+
|
175 |
+
def post_process(self, *args, **kwargs):
|
176 |
+
"""
|
177 |
+
This method forwards all its arguments to [`OwlViTImageProcessor.post_process`]. Please refer to the docstring
|
178 |
+
of this method for more information.
|
179 |
+
"""
|
180 |
+
return self.image_processor.post_process(*args, **kwargs)
|
181 |
+
|
182 |
+
def post_process_object_detection(self, *args, **kwargs):
|
183 |
+
"""
|
184 |
+
This method forwards all its arguments to [`OwlViTImageProcessor.post_process_object_detection`]. Please refer
|
185 |
+
to the docstring of this method for more information.
|
186 |
+
"""
|
187 |
+
return self.image_processor.post_process_object_detection(*args, **kwargs)
|
188 |
+
|
189 |
+
def post_process_image_guided_detection(self, *args, **kwargs):
|
190 |
+
"""
|
191 |
+
This method forwards all its arguments to [`OwlViTImageProcessor.post_process_one_shot_object_detection`].
|
192 |
+
Please refer to the docstring of this method for more information.
|
193 |
+
"""
|
194 |
+
return self.image_processor.post_process_image_guided_detection(*args, **kwargs)
|
195 |
+
|
196 |
+
def batch_decode(self, *args, **kwargs):
|
197 |
+
"""
|
198 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
199 |
+
refer to the docstring of this method for more information.
|
200 |
+
"""
|
201 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
202 |
+
|
203 |
+
def decode(self, *args, **kwargs):
|
204 |
+
"""
|
205 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
206 |
+
the docstring of this method for more information.
|
207 |
+
"""
|
208 |
+
return self.tokenizer.decode(*args, **kwargs)
|
209 |
+
|
210 |
+
@property
|
211 |
+
def feature_extractor_class(self):
|
212 |
+
warnings.warn(
|
213 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
214 |
+
FutureWarning,
|
215 |
+
)
|
216 |
+
return self.image_processor_class
|
217 |
+
|
218 |
+
@property
|
219 |
+
def feature_extractor(self):
|
220 |
+
warnings.warn(
|
221 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
222 |
+
FutureWarning,
|
223 |
+
)
|
224 |
+
return self.image_processor
|
llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__init__.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 AdeptAI and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_persimmon": ["PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP", "PersimmonConfig"],
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_persimmon"] = [
|
35 |
+
"PersimmonForCausalLM",
|
36 |
+
"PersimmonModel",
|
37 |
+
"PersimmonPreTrainedModel",
|
38 |
+
"PersimmonForSequenceClassification",
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from .configuration_persimmon import PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP, PersimmonConfig
|
44 |
+
|
45 |
+
try:
|
46 |
+
if not is_torch_available():
|
47 |
+
raise OptionalDependencyNotAvailable()
|
48 |
+
except OptionalDependencyNotAvailable:
|
49 |
+
pass
|
50 |
+
else:
|
51 |
+
from .modeling_persimmon import (
|
52 |
+
PersimmonForCausalLM,
|
53 |
+
PersimmonForSequenceClassification,
|
54 |
+
PersimmonModel,
|
55 |
+
PersimmonPreTrainedModel,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
else:
|
60 |
+
import sys
|
61 |
+
|
62 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/persimmon/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (959 Bytes). View file
|
|