Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/configuration_clipseg.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/convert_donut_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/feature_extraction_donut.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/image_processing_donut.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/modeling_donut_swin.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/processing_donut.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/feature_extraction_donut.py +33 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/donut/image_processing_donut.py +480 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__init__.py +97 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/configuration_flava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_dalle_to_flava_codebook.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_flava_original_pytorch_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/feature_extraction_flava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/image_processing_flava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/modeling_flava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/processing_flava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/configuration_flava.py +764 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_dalle_to_flava_codebook.py +102 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_flava_original_pytorch_to_hf.py +99 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/feature_extraction_flava.py +33 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/image_processing_flava.py +738 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/modeling_flava.py +2098 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flava/processing_flava.py +165 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py +83 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/feature_extraction_markuplm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/modeling_markuplm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/processing_markuplm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py +156 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py +183 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py +1316 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py +146 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py +1445 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py +918 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__init__.py +73 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/configuration_oneformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/convert_to_hf_oneformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/image_processing_oneformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/modeling_oneformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/processing_oneformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/configuration_oneformer.py +276 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/convert_to_hf_oneformer.py +1191 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/configuration_clipseg.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (201 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__pycache__/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/convert_donut_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/feature_extraction_donut.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/image_processing_donut.cpython-310.pyc
ADDED
Binary file (17.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/modeling_donut_swin.cpython-310.pyc
ADDED
Binary file (31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/__pycache__/processing_donut.cpython-310.pyc
ADDED
Binary file (6.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/feature_extraction_donut.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for Donut."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_donut import DonutImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class DonutFeatureExtractor(DonutImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
|
30 |
+
" use DonutImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/donut/image_processing_donut.py
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Donut."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
get_resize_output_image_size,
|
24 |
+
pad,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from ...image_utils import (
|
29 |
+
IMAGENET_STANDARD_MEAN,
|
30 |
+
IMAGENET_STANDARD_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
get_image_size,
|
35 |
+
infer_channel_dimension_format,
|
36 |
+
is_scaled_image,
|
37 |
+
make_list_of_images,
|
38 |
+
to_numpy_array,
|
39 |
+
valid_images,
|
40 |
+
validate_kwargs,
|
41 |
+
validate_preprocess_arguments,
|
42 |
+
)
|
43 |
+
from ...utils import TensorType, logging
|
44 |
+
from ...utils.import_utils import is_vision_available
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
if is_vision_available():
|
51 |
+
import PIL
|
52 |
+
|
53 |
+
|
54 |
+
class DonutImageProcessor(BaseImageProcessor):
|
55 |
+
r"""
|
56 |
+
Constructs a Donut image processor.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
61 |
+
`do_resize` in the `preprocess` method.
|
62 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
63 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
64 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
65 |
+
method.
|
66 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
67 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
68 |
+
do_thumbnail (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to resize the image using thumbnail method.
|
70 |
+
do_align_long_axis (`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
|
72 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether to pad the image. If `random_padding` is set to `True` in `preprocess`, each image is padded with a
|
74 |
+
random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
|
75 |
+
padded to the largest image size in the batch.
|
76 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
78 |
+
the `preprocess` method.
|
79 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
80 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
81 |
+
method.
|
82 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
84 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
85 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
86 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
87 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
88 |
+
Image standard deviation.
|
89 |
+
"""
|
90 |
+
|
91 |
+
model_input_names = ["pixel_values"]
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
do_resize: bool = True,
|
96 |
+
size: Dict[str, int] = None,
|
97 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
98 |
+
do_thumbnail: bool = True,
|
99 |
+
do_align_long_axis: bool = False,
|
100 |
+
do_pad: bool = True,
|
101 |
+
do_rescale: bool = True,
|
102 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
103 |
+
do_normalize: bool = True,
|
104 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
105 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
106 |
+
**kwargs,
|
107 |
+
) -> None:
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
|
110 |
+
size = size if size is not None else {"height": 2560, "width": 1920}
|
111 |
+
if isinstance(size, (tuple, list)):
|
112 |
+
# The previous feature extractor size parameter was in (width, height) format
|
113 |
+
size = size[::-1]
|
114 |
+
size = get_size_dict(size)
|
115 |
+
|
116 |
+
self.do_resize = do_resize
|
117 |
+
self.size = size
|
118 |
+
self.resample = resample
|
119 |
+
self.do_thumbnail = do_thumbnail
|
120 |
+
self.do_align_long_axis = do_align_long_axis
|
121 |
+
self.do_pad = do_pad
|
122 |
+
self.do_rescale = do_rescale
|
123 |
+
self.rescale_factor = rescale_factor
|
124 |
+
self.do_normalize = do_normalize
|
125 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
126 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
127 |
+
self._valid_processor_keys = [
|
128 |
+
"images",
|
129 |
+
"do_resize",
|
130 |
+
"size",
|
131 |
+
"resample",
|
132 |
+
"do_thumbnail",
|
133 |
+
"do_align_long_axis",
|
134 |
+
"do_pad",
|
135 |
+
"random_padding",
|
136 |
+
"do_rescale",
|
137 |
+
"rescale_factor",
|
138 |
+
"do_normalize",
|
139 |
+
"image_mean",
|
140 |
+
"image_std",
|
141 |
+
"return_tensors",
|
142 |
+
"data_format",
|
143 |
+
"input_data_format",
|
144 |
+
]
|
145 |
+
|
146 |
+
def align_long_axis(
|
147 |
+
self,
|
148 |
+
image: np.ndarray,
|
149 |
+
size: Dict[str, int],
|
150 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
151 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
152 |
+
) -> np.ndarray:
|
153 |
+
"""
|
154 |
+
Align the long axis of the image to the longest axis of the specified size.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
image (`np.ndarray`):
|
158 |
+
The image to be aligned.
|
159 |
+
size (`Dict[str, int]`):
|
160 |
+
The size `{"height": h, "width": w}` to align the long axis to.
|
161 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
162 |
+
The data format of the output image. If unset, the same format as the input image is used.
|
163 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
164 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
`np.ndarray`: The aligned image.
|
168 |
+
"""
|
169 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
170 |
+
output_height, output_width = size["height"], size["width"]
|
171 |
+
|
172 |
+
if (output_width < output_height and input_width > input_height) or (
|
173 |
+
output_width > output_height and input_width < input_height
|
174 |
+
):
|
175 |
+
image = np.rot90(image, 3)
|
176 |
+
|
177 |
+
if data_format is not None:
|
178 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
179 |
+
|
180 |
+
return image
|
181 |
+
|
182 |
+
def pad_image(
|
183 |
+
self,
|
184 |
+
image: np.ndarray,
|
185 |
+
size: Dict[str, int],
|
186 |
+
random_padding: bool = False,
|
187 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
188 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
189 |
+
) -> np.ndarray:
|
190 |
+
"""
|
191 |
+
Pad the image to the specified size.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
image (`np.ndarray`):
|
195 |
+
The image to be padded.
|
196 |
+
size (`Dict[str, int]`):
|
197 |
+
The size `{"height": h, "width": w}` to pad the image to.
|
198 |
+
random_padding (`bool`, *optional*, defaults to `False`):
|
199 |
+
Whether to use random padding or not.
|
200 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
201 |
+
The data format of the output image. If unset, the same format as the input image is used.
|
202 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
203 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
204 |
+
"""
|
205 |
+
output_height, output_width = size["height"], size["width"]
|
206 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
207 |
+
|
208 |
+
delta_width = output_width - input_width
|
209 |
+
delta_height = output_height - input_height
|
210 |
+
|
211 |
+
if random_padding:
|
212 |
+
pad_top = np.random.randint(low=0, high=delta_height + 1)
|
213 |
+
pad_left = np.random.randint(low=0, high=delta_width + 1)
|
214 |
+
else:
|
215 |
+
pad_top = delta_height // 2
|
216 |
+
pad_left = delta_width // 2
|
217 |
+
|
218 |
+
pad_bottom = delta_height - pad_top
|
219 |
+
pad_right = delta_width - pad_left
|
220 |
+
|
221 |
+
padding = ((pad_top, pad_bottom), (pad_left, pad_right))
|
222 |
+
return pad(image, padding, data_format=data_format, input_data_format=input_data_format)
|
223 |
+
|
224 |
+
def pad(self, *args, **kwargs):
|
225 |
+
logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.")
|
226 |
+
return self.pad_image(*args, **kwargs)
|
227 |
+
|
228 |
+
def thumbnail(
|
229 |
+
self,
|
230 |
+
image: np.ndarray,
|
231 |
+
size: Dict[str, int],
|
232 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
233 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
234 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
235 |
+
**kwargs,
|
236 |
+
) -> np.ndarray:
|
237 |
+
"""
|
238 |
+
Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
|
239 |
+
corresponding dimension of the specified size.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
image (`np.ndarray`):
|
243 |
+
The image to be resized.
|
244 |
+
size (`Dict[str, int]`):
|
245 |
+
The size `{"height": h, "width": w}` to resize the image to.
|
246 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
247 |
+
The resampling filter to use.
|
248 |
+
data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
|
249 |
+
The data format of the output image. If unset, the same format as the input image is used.
|
250 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
251 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
252 |
+
"""
|
253 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
254 |
+
output_height, output_width = size["height"], size["width"]
|
255 |
+
|
256 |
+
# We always resize to the smallest of either the input or output size.
|
257 |
+
height = min(input_height, output_height)
|
258 |
+
width = min(input_width, output_width)
|
259 |
+
|
260 |
+
if height == input_height and width == input_width:
|
261 |
+
return image
|
262 |
+
|
263 |
+
if input_height > input_width:
|
264 |
+
width = int(input_width * height / input_height)
|
265 |
+
elif input_width > input_height:
|
266 |
+
height = int(input_height * width / input_width)
|
267 |
+
|
268 |
+
return resize(
|
269 |
+
image,
|
270 |
+
size=(height, width),
|
271 |
+
resample=resample,
|
272 |
+
reducing_gap=2.0,
|
273 |
+
data_format=data_format,
|
274 |
+
input_data_format=input_data_format,
|
275 |
+
**kwargs,
|
276 |
+
)
|
277 |
+
|
278 |
+
def resize(
|
279 |
+
self,
|
280 |
+
image: np.ndarray,
|
281 |
+
size: Dict[str, int],
|
282 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
283 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
284 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
285 |
+
**kwargs,
|
286 |
+
) -> np.ndarray:
|
287 |
+
"""
|
288 |
+
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
image (`np.ndarray`):
|
292 |
+
Image to resize.
|
293 |
+
size (`Dict[str, int]`):
|
294 |
+
Size of the output image.
|
295 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
296 |
+
Resampling filter to use when resiizing the image.
|
297 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
298 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
299 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
300 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
301 |
+
"""
|
302 |
+
size = get_size_dict(size)
|
303 |
+
shortest_edge = min(size["height"], size["width"])
|
304 |
+
output_size = get_resize_output_image_size(
|
305 |
+
image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
|
306 |
+
)
|
307 |
+
resized_image = resize(
|
308 |
+
image,
|
309 |
+
size=output_size,
|
310 |
+
resample=resample,
|
311 |
+
data_format=data_format,
|
312 |
+
input_data_format=input_data_format,
|
313 |
+
**kwargs,
|
314 |
+
)
|
315 |
+
return resized_image
|
316 |
+
|
317 |
+
def preprocess(
|
318 |
+
self,
|
319 |
+
images: ImageInput,
|
320 |
+
do_resize: bool = None,
|
321 |
+
size: Dict[str, int] = None,
|
322 |
+
resample: PILImageResampling = None,
|
323 |
+
do_thumbnail: bool = None,
|
324 |
+
do_align_long_axis: bool = None,
|
325 |
+
do_pad: bool = None,
|
326 |
+
random_padding: bool = False,
|
327 |
+
do_rescale: bool = None,
|
328 |
+
rescale_factor: float = None,
|
329 |
+
do_normalize: bool = None,
|
330 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
331 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
332 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
333 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
334 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
335 |
+
**kwargs,
|
336 |
+
) -> PIL.Image.Image:
|
337 |
+
"""
|
338 |
+
Preprocess an image or batch of images.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
images (`ImageInput`):
|
342 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
343 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
344 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
345 |
+
Whether to resize the image.
|
346 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
347 |
+
Size of the image after resizing. Shortest edge of the image is resized to min(size["height"],
|
348 |
+
size["width"]) with the longest edge resized to keep the input aspect ratio.
|
349 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
350 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
351 |
+
has an effect if `do_resize` is set to `True`.
|
352 |
+
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
|
353 |
+
Whether to resize the image using thumbnail method.
|
354 |
+
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
|
355 |
+
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
|
356 |
+
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
357 |
+
Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
|
358 |
+
amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
|
359 |
+
padded to the largest image size in the batch.
|
360 |
+
random_padding (`bool`, *optional*, defaults to `self.random_padding`):
|
361 |
+
Whether to use random padding when padding the image. If `True`, each image in the batch with be padded
|
362 |
+
with a random amount of padding on each side up to the size of the largest image in the batch.
|
363 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
364 |
+
Whether to rescale the image pixel values.
|
365 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
366 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
367 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
368 |
+
Whether to normalize the image.
|
369 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
370 |
+
Image mean to use for normalization.
|
371 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
372 |
+
Image standard deviation to use for normalization.
|
373 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
374 |
+
The type of tensors to return. Can be one of:
|
375 |
+
- Unset: Return a list of `np.ndarray`.
|
376 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
377 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
378 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
379 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
380 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
381 |
+
The channel dimension format for the output image. Can be one of:
|
382 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
383 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
384 |
+
- Unset: defaults to the channel dimension format of the input image.
|
385 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
386 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
387 |
+
from the input image. Can be one of:
|
388 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
389 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
390 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
391 |
+
"""
|
392 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
393 |
+
size = size if size is not None else self.size
|
394 |
+
if isinstance(size, (tuple, list)):
|
395 |
+
# Previous feature extractor had size in (width, height) format
|
396 |
+
size = size[::-1]
|
397 |
+
size = get_size_dict(size)
|
398 |
+
resample = resample if resample is not None else self.resample
|
399 |
+
do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail
|
400 |
+
do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis
|
401 |
+
do_pad = do_pad if do_pad is not None else self.do_pad
|
402 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
403 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
404 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
405 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
406 |
+
image_std = image_std if image_std is not None else self.image_std
|
407 |
+
|
408 |
+
images = make_list_of_images(images)
|
409 |
+
|
410 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
411 |
+
|
412 |
+
if not valid_images(images):
|
413 |
+
raise ValueError(
|
414 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
415 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
416 |
+
)
|
417 |
+
validate_preprocess_arguments(
|
418 |
+
do_rescale=do_rescale,
|
419 |
+
rescale_factor=rescale_factor,
|
420 |
+
do_normalize=do_normalize,
|
421 |
+
image_mean=image_mean,
|
422 |
+
image_std=image_std,
|
423 |
+
do_pad=do_pad,
|
424 |
+
size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg.
|
425 |
+
do_resize=do_resize,
|
426 |
+
size=size,
|
427 |
+
resample=resample,
|
428 |
+
)
|
429 |
+
|
430 |
+
# All transformations expect numpy arrays.
|
431 |
+
images = [to_numpy_array(image) for image in images]
|
432 |
+
|
433 |
+
if is_scaled_image(images[0]) and do_rescale:
|
434 |
+
logger.warning_once(
|
435 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
436 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
437 |
+
)
|
438 |
+
|
439 |
+
if input_data_format is None:
|
440 |
+
# We assume that all images have the same channel dimension format.
|
441 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
442 |
+
|
443 |
+
if do_align_long_axis:
|
444 |
+
images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images]
|
445 |
+
|
446 |
+
if do_resize:
|
447 |
+
images = [
|
448 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
449 |
+
for image in images
|
450 |
+
]
|
451 |
+
|
452 |
+
if do_thumbnail:
|
453 |
+
images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images]
|
454 |
+
|
455 |
+
if do_pad:
|
456 |
+
images = [
|
457 |
+
self.pad_image(
|
458 |
+
image=image, size=size, random_padding=random_padding, input_data_format=input_data_format
|
459 |
+
)
|
460 |
+
for image in images
|
461 |
+
]
|
462 |
+
|
463 |
+
if do_rescale:
|
464 |
+
images = [
|
465 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
466 |
+
for image in images
|
467 |
+
]
|
468 |
+
|
469 |
+
if do_normalize:
|
470 |
+
images = [
|
471 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
472 |
+
for image in images
|
473 |
+
]
|
474 |
+
|
475 |
+
images = [
|
476 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
477 |
+
]
|
478 |
+
|
479 |
+
data = {"pixel_values": images}
|
480 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__init__.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_flava": [
|
21 |
+
"FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"FlavaConfig",
|
23 |
+
"FlavaImageCodebookConfig",
|
24 |
+
"FlavaImageConfig",
|
25 |
+
"FlavaMultimodalConfig",
|
26 |
+
"FlavaTextConfig",
|
27 |
+
],
|
28 |
+
}
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_vision_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["feature_extraction_flava"] = ["FlavaFeatureExtractor"]
|
37 |
+
_import_structure["image_processing_flava"] = ["FlavaImageProcessor"]
|
38 |
+
_import_structure["processing_flava"] = ["FlavaProcessor"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_flava"] = [
|
47 |
+
"FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"FlavaForPreTraining",
|
49 |
+
"FlavaImageCodebook",
|
50 |
+
"FlavaImageModel",
|
51 |
+
"FlavaModel",
|
52 |
+
"FlavaMultimodalModel",
|
53 |
+
"FlavaPreTrainedModel",
|
54 |
+
"FlavaTextModel",
|
55 |
+
]
|
56 |
+
|
57 |
+
if TYPE_CHECKING:
|
58 |
+
from .configuration_flava import (
|
59 |
+
FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
60 |
+
FlavaConfig,
|
61 |
+
FlavaImageCodebookConfig,
|
62 |
+
FlavaImageConfig,
|
63 |
+
FlavaMultimodalConfig,
|
64 |
+
FlavaTextConfig,
|
65 |
+
)
|
66 |
+
|
67 |
+
try:
|
68 |
+
if not is_vision_available():
|
69 |
+
raise OptionalDependencyNotAvailable()
|
70 |
+
except OptionalDependencyNotAvailable:
|
71 |
+
pass
|
72 |
+
else:
|
73 |
+
from .feature_extraction_flava import FlavaFeatureExtractor
|
74 |
+
from .image_processing_flava import FlavaImageProcessor
|
75 |
+
from .processing_flava import FlavaProcessor
|
76 |
+
|
77 |
+
try:
|
78 |
+
if not is_torch_available():
|
79 |
+
raise OptionalDependencyNotAvailable()
|
80 |
+
except OptionalDependencyNotAvailable:
|
81 |
+
pass
|
82 |
+
else:
|
83 |
+
from .modeling_flava import (
|
84 |
+
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
85 |
+
FlavaForPreTraining,
|
86 |
+
FlavaImageCodebook,
|
87 |
+
FlavaImageModel,
|
88 |
+
FlavaModel,
|
89 |
+
FlavaMultimodalModel,
|
90 |
+
FlavaPreTrainedModel,
|
91 |
+
FlavaTextModel,
|
92 |
+
)
|
93 |
+
|
94 |
+
else:
|
95 |
+
import sys
|
96 |
+
|
97 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.52 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/configuration_flava.cpython-310.pyc
ADDED
Binary file (25.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_dalle_to_flava_codebook.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/convert_flava_original_pytorch_to_hf.cpython-310.pyc
ADDED
Binary file (3.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/feature_extraction_flava.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/image_processing_flava.cpython-310.pyc
ADDED
Binary file (27.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/modeling_flava.cpython-310.pyc
ADDED
Binary file (67.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/__pycache__/processing_flava.cpython-310.pyc
ADDED
Binary file (5.29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/configuration_flava.py
ADDED
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" FLAVA model configurations"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Any, Dict, Union
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class FlavaImageConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
|
33 |
+
FLAVA model according to the specified arguments, defining the model architecture.
|
34 |
+
|
35 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
|
36 |
+
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
44 |
+
Dimensionality of the encoder layers and the pooler layer.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
50 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
51 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
52 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
53 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
54 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
55 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
56 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout ratio for the attention probabilities.
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
image_size (`int`, *optional*, defaults to 224):
|
63 |
+
The size (resolution) of each image.
|
64 |
+
patch_size (`int`, *optional*, defaults to 16):
|
65 |
+
The size (resolution) of each patch.
|
66 |
+
num_channels (`int`, *optional*, defaults to 3):
|
67 |
+
The number of input channels.
|
68 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to add a bias to the queries, keys and values.
|
70 |
+
mask_token (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
|
72 |
+
vocab_size (`int`, *optional*, defaults to 8192):
|
73 |
+
Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
|
74 |
+
Image Modeling) loss for FLAVA.
|
75 |
+
|
76 |
+
Example:
|
77 |
+
|
78 |
+
```python
|
79 |
+
>>> from transformers import FlavaImageConfig, FlavaImageModel
|
80 |
+
|
81 |
+
>>> # Initializing a FlavaImageModel with style configuration
|
82 |
+
>>> configuration = FlavaImageConfig()
|
83 |
+
|
84 |
+
>>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
|
85 |
+
>>> model = FlavaImageModel(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
|
91 |
+
model_type = "flava_image_model"
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
hidden_size: int = 768,
|
96 |
+
num_hidden_layers: int = 12,
|
97 |
+
num_attention_heads: int = 12,
|
98 |
+
intermediate_size: int = 3072,
|
99 |
+
hidden_act: int = "gelu",
|
100 |
+
hidden_dropout_prob: float = 0.0,
|
101 |
+
attention_probs_dropout_prob: float = 0.0,
|
102 |
+
initializer_range: float = 0.02,
|
103 |
+
layer_norm_eps: float = 1e-12,
|
104 |
+
image_size: int = 224,
|
105 |
+
patch_size: int = 16,
|
106 |
+
num_channels: int = 3,
|
107 |
+
qkv_bias: bool = True,
|
108 |
+
mask_token: bool = True,
|
109 |
+
vocab_size: int = 8192,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
super().__init__(**kwargs)
|
113 |
+
|
114 |
+
self.hidden_size = hidden_size
|
115 |
+
self.num_hidden_layers = num_hidden_layers
|
116 |
+
self.num_attention_heads = num_attention_heads
|
117 |
+
self.intermediate_size = intermediate_size
|
118 |
+
self.hidden_act = hidden_act
|
119 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
120 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
121 |
+
self.initializer_range = initializer_range
|
122 |
+
self.layer_norm_eps = layer_norm_eps
|
123 |
+
self.image_size = image_size
|
124 |
+
self.patch_size = patch_size
|
125 |
+
self.num_channels = num_channels
|
126 |
+
self.qkv_bias = qkv_bias
|
127 |
+
self.mask_token = mask_token
|
128 |
+
self.vocab_size = vocab_size
|
129 |
+
|
130 |
+
@classmethod
|
131 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
132 |
+
cls._set_token_in_kwargs(kwargs)
|
133 |
+
|
134 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
135 |
+
|
136 |
+
# get the image config dict if we are loading from FlavaConfig
|
137 |
+
if config_dict.get("model_type") == "flava":
|
138 |
+
config_dict = config_dict["image_config"]
|
139 |
+
|
140 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
141 |
+
logger.warning(
|
142 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
143 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
144 |
+
)
|
145 |
+
|
146 |
+
return cls.from_dict(config_dict, **kwargs)
|
147 |
+
|
148 |
+
|
149 |
+
class FlavaTextConfig(PretrainedConfig):
|
150 |
+
r"""
|
151 |
+
This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
|
152 |
+
FLAVA model according to the specified arguments, defining the model architecture.
|
153 |
+
|
154 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
|
155 |
+
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
|
156 |
+
|
157 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
158 |
+
documentation from [`PretrainedConfig`] for more information.
|
159 |
+
|
160 |
+
|
161 |
+
Args:
|
162 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
163 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
164 |
+
`inputs_ids` passed when calling [`FlavaTextModel`].
|
165 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
166 |
+
The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
|
167 |
+
text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
|
168 |
+
used similar to RoBERTa.
|
169 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
170 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
171 |
+
just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
|
172 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
173 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
174 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
175 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
176 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
177 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
178 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
179 |
+
Dimensionality of the encoder layers and the pooler layer.
|
180 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
181 |
+
Number of hidden layers in the Transformer encoder.
|
182 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
183 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
184 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
185 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
186 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
187 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
188 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
189 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
190 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
191 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
192 |
+
The dropout ratio for the attention probabilities.
|
193 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
194 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
195 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
196 |
+
The epsilon used by the layer normalization layers.
|
197 |
+
image_size (`int`, *optional*, defaults to 224):
|
198 |
+
The size (resolution) of each image.
|
199 |
+
patch_size (`int`, *optional*, defaults to 16):
|
200 |
+
The size (resolution) of each patch.
|
201 |
+
num_channels (`int`, *optional*, defaults to 3):
|
202 |
+
The number of input channels.
|
203 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
204 |
+
Whether to add a bias to the queries, keys and values.
|
205 |
+
|
206 |
+
Example:
|
207 |
+
|
208 |
+
```python
|
209 |
+
>>> from transformers import FlavaTextConfig, FlavaTextModel
|
210 |
+
|
211 |
+
>>> # Initializing a FlavaTextModel with style configuration
|
212 |
+
>>> configuration = FlavaTextConfig()
|
213 |
+
|
214 |
+
>>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
|
215 |
+
>>> model = FlavaTextModel(configuration)
|
216 |
+
|
217 |
+
>>> # Accessing the model configuration
|
218 |
+
>>> configuration = model.config
|
219 |
+
```"""
|
220 |
+
|
221 |
+
model_type = "flava_text_model"
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
vocab_size: int = 30522,
|
226 |
+
type_vocab_size: int = 2,
|
227 |
+
max_position_embeddings: int = 512,
|
228 |
+
position_embedding_type: str = "absolute",
|
229 |
+
hidden_size: int = 768,
|
230 |
+
num_hidden_layers: int = 12,
|
231 |
+
num_attention_heads: int = 12,
|
232 |
+
intermediate_size: int = 3072,
|
233 |
+
hidden_act: str = "gelu",
|
234 |
+
hidden_dropout_prob: float = 0.0,
|
235 |
+
attention_probs_dropout_prob: float = 0.0,
|
236 |
+
initializer_range: float = 0.02,
|
237 |
+
layer_norm_eps: float = 1e-12,
|
238 |
+
pad_token_id: int = 0,
|
239 |
+
qkv_bias: bool = True,
|
240 |
+
**kwargs,
|
241 |
+
):
|
242 |
+
super().__init__(**kwargs)
|
243 |
+
|
244 |
+
self.vocab_size = vocab_size
|
245 |
+
self.type_vocab_size = type_vocab_size
|
246 |
+
self.max_position_embeddings = max_position_embeddings
|
247 |
+
self.position_embedding_type = position_embedding_type
|
248 |
+
self.hidden_size = hidden_size
|
249 |
+
self.num_hidden_layers = num_hidden_layers
|
250 |
+
self.num_attention_heads = num_attention_heads
|
251 |
+
self.intermediate_size = intermediate_size
|
252 |
+
self.hidden_act = hidden_act
|
253 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
254 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
255 |
+
self.initializer_range = initializer_range
|
256 |
+
self.layer_norm_eps = layer_norm_eps
|
257 |
+
self.qkv_bias = qkv_bias
|
258 |
+
self.pad_token_id = pad_token_id
|
259 |
+
|
260 |
+
@classmethod
|
261 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
262 |
+
cls._set_token_in_kwargs(kwargs)
|
263 |
+
|
264 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
265 |
+
|
266 |
+
# get the text config dict if we are loading from FlavaConfig
|
267 |
+
if config_dict.get("model_type") == "flava":
|
268 |
+
config_dict = config_dict["text_config"]
|
269 |
+
|
270 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
271 |
+
logger.warning(
|
272 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
273 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
274 |
+
)
|
275 |
+
|
276 |
+
return cls.from_dict(config_dict, **kwargs)
|
277 |
+
|
278 |
+
|
279 |
+
class FlavaMultimodalConfig(PretrainedConfig):
|
280 |
+
r"""
|
281 |
+
This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
|
282 |
+
an FLAVA model according to the specified arguments, defining the model architecture.
|
283 |
+
|
284 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
|
285 |
+
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
|
286 |
+
|
287 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
288 |
+
documentation from [`PretrainedConfig`] for more information.
|
289 |
+
|
290 |
+
|
291 |
+
Args:
|
292 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
293 |
+
Dimensionality of the encoder layers and the pooler layer.
|
294 |
+
num_hidden_layers (`int`, *optional*, defaults to 6):
|
295 |
+
Number of hidden layers in the Transformer encoder.
|
296 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
297 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
298 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
299 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
300 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
301 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
302 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
303 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
304 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
305 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
306 |
+
The dropout ratio for the attention probabilities.
|
307 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
308 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
309 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
310 |
+
The epsilon used by the layer normalization layers.
|
311 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
312 |
+
Whether to add a bias to the queries, keys and values.
|
313 |
+
use_cls_token (`bool`, *optional*, defaults to `True`):
|
314 |
+
Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.
|
315 |
+
|
316 |
+
|
317 |
+
Example:
|
318 |
+
|
319 |
+
```python
|
320 |
+
>>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel
|
321 |
+
|
322 |
+
>>> # Initializing a FlavaMultimodalModel with style configuration
|
323 |
+
>>> configuration = FlavaMultimodalConfig()
|
324 |
+
|
325 |
+
>>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
|
326 |
+
>>> model = FlavaMultimodalModel(configuration)
|
327 |
+
|
328 |
+
>>> # Accessing the model configuration
|
329 |
+
>>> configuration = model.config
|
330 |
+
```"""
|
331 |
+
|
332 |
+
model_type = "flava_multimodal_model"
|
333 |
+
|
334 |
+
def __init__(
|
335 |
+
self,
|
336 |
+
hidden_size: int = 768,
|
337 |
+
num_hidden_layers: int = 6,
|
338 |
+
num_attention_heads: int = 12,
|
339 |
+
intermediate_size: int = 3072,
|
340 |
+
hidden_act: int = "gelu",
|
341 |
+
hidden_dropout_prob: int = 0.0,
|
342 |
+
attention_probs_dropout_prob: int = 0.0,
|
343 |
+
initializer_range: float = 0.02,
|
344 |
+
layer_norm_eps: float = 1e-12,
|
345 |
+
qkv_bias: bool = True,
|
346 |
+
use_cls_token: bool = True,
|
347 |
+
**kwargs,
|
348 |
+
):
|
349 |
+
super().__init__(**kwargs)
|
350 |
+
|
351 |
+
self.hidden_size = hidden_size
|
352 |
+
self.num_hidden_layers = num_hidden_layers
|
353 |
+
self.num_attention_heads = num_attention_heads
|
354 |
+
self.intermediate_size = intermediate_size
|
355 |
+
self.hidden_act = hidden_act
|
356 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
357 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
358 |
+
self.initializer_range = initializer_range
|
359 |
+
self.layer_norm_eps = layer_norm_eps
|
360 |
+
self.qkv_bias = qkv_bias
|
361 |
+
self.use_cls_token = use_cls_token
|
362 |
+
|
363 |
+
@classmethod
|
364 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
365 |
+
cls._set_token_in_kwargs(kwargs)
|
366 |
+
|
367 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
368 |
+
|
369 |
+
# get the multimodal config dict if we are loading from FlavaConfig
|
370 |
+
if config_dict.get("model_type") == "flava":
|
371 |
+
config_dict = config_dict["multimodal_config"]
|
372 |
+
|
373 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
374 |
+
logger.warning(
|
375 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
376 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
377 |
+
)
|
378 |
+
|
379 |
+
return cls.from_dict(config_dict, **kwargs)
|
380 |
+
|
381 |
+
|
382 |
+
class FlavaImageCodebookConfig(PretrainedConfig):
|
383 |
+
model_type = "flava_image_codebook"
|
384 |
+
|
385 |
+
r"""
|
386 |
+
[`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It
|
387 |
+
is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture.
|
388 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
|
389 |
+
[facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture.
|
390 |
+
|
391 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
392 |
+
documentation from [`PretrainedConfig`] for more information.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
num_groups (`int`, defaults to 4):
|
396 |
+
Number of groups to be created. This parameter as of now doesn't affect the model and is used for some
|
397 |
+
internal calculation and estimations.
|
398 |
+
input_channels (`int`, defaults to 3):
|
399 |
+
Number of channels in the image to be passed.
|
400 |
+
num_blocks_per_group (`int`, defaults to 2):
|
401 |
+
Number of conv-based blocks per group.
|
402 |
+
hidden_size (`int`, defaults to 256):
|
403 |
+
Size of hidden dim for the blocks.
|
404 |
+
vocab_size (`int`, defaults to 8192):
|
405 |
+
Size of the output vocabulary for the codebook.
|
406 |
+
freeze (`bool`, defaults to `True`):
|
407 |
+
Whether to freeze the weights of the model.
|
408 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
409 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
410 |
+
kwargs (*optional*):
|
411 |
+
Dictionary of keyword arguments.
|
412 |
+
|
413 |
+
Example:
|
414 |
+
|
415 |
+
```python
|
416 |
+
>>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook
|
417 |
+
|
418 |
+
>>> # Initializing a FlavaImageCodebook with style configuration
|
419 |
+
>>> configuration = FlavaImageCodebookConfig()
|
420 |
+
|
421 |
+
>>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration
|
422 |
+
>>> model = FlavaImageCodebook(configuration)
|
423 |
+
>>> # Accessing the model configuration
|
424 |
+
>>> configuration = model.config
|
425 |
+
```
|
426 |
+
"""
|
427 |
+
|
428 |
+
def __init__(
|
429 |
+
self,
|
430 |
+
num_groups: int = 4,
|
431 |
+
input_channels: int = 3,
|
432 |
+
num_blocks_per_group: int = 2,
|
433 |
+
hidden_size: int = 256,
|
434 |
+
vocab_size: int = 8192,
|
435 |
+
freeze: int = True,
|
436 |
+
initializer_range: float = 0.02,
|
437 |
+
**kwargs,
|
438 |
+
):
|
439 |
+
super().__init__(**kwargs)
|
440 |
+
self.num_groups = num_groups
|
441 |
+
self.input_channels = input_channels
|
442 |
+
self.num_blocks_per_group = num_blocks_per_group
|
443 |
+
self.hidden_size = hidden_size
|
444 |
+
self.vocab_size = vocab_size
|
445 |
+
self.freeze = freeze
|
446 |
+
self.initializer_range = initializer_range
|
447 |
+
|
448 |
+
@classmethod
|
449 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
450 |
+
cls._set_token_in_kwargs(kwargs)
|
451 |
+
|
452 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
453 |
+
|
454 |
+
# get the image codebook config dict if we are loading from FlavaConfig
|
455 |
+
if config_dict.get("model_type") == "flava":
|
456 |
+
config_dict = config_dict["image_codebook_config"]
|
457 |
+
|
458 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
459 |
+
logger.warning(
|
460 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
461 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
462 |
+
)
|
463 |
+
|
464 |
+
return cls.from_dict(config_dict, **kwargs)
|
465 |
+
|
466 |
+
|
467 |
+
class FlavaConfig(PretrainedConfig):
|
468 |
+
r"""
|
469 |
+
[`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
|
470 |
+
instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
|
471 |
+
and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
|
472 |
+
that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
|
473 |
+
|
474 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
475 |
+
documentation from [`PretrainedConfig`] for more information.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
text_config (`dict`, *optional*):
|
479 |
+
Dictionary of configuration options used to initialize [`FlavaTextConfig`].
|
480 |
+
image_config (`dict`, *optional*):
|
481 |
+
Dictionary of configuration options used to initialize [`FlavaImageConfig`].
|
482 |
+
multimodal_config (`dict`, *optional*):
|
483 |
+
Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
|
484 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
485 |
+
Dimensionality of the encoder layers and the pooler layer.
|
486 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
487 |
+
The epsilon used by the layer normalization layers.
|
488 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
489 |
+
Dimentionality of text and image projection layers.
|
490 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
491 |
+
The inital value of the *logit_scale* paramter. Default is used as per the original FLAVA/CLIP
|
492 |
+
implementation.
|
493 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
494 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
495 |
+
ce_ignore_index (`int`, *optional*, defaults to -100):
|
496 |
+
Cross entropy index to ignore.
|
497 |
+
mim_weight (`float`, *optional*, defaults to 1.0):
|
498 |
+
Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
|
499 |
+
mlm_weight (`float`, *optional*, defaults to 1.0):
|
500 |
+
Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
|
501 |
+
global_contrastive_weight (`float`, *optional*, defaults to 1.0):
|
502 |
+
Weight to be assigned to global contrastive cross-alignment loss.
|
503 |
+
itm_weight (`float`, *optional*, defaults to 1.0):
|
504 |
+
Weight to be assigned to image-text matching multimodal loss.
|
505 |
+
mmm_image_weight (`float`, *optional*, defaults to 1.0):
|
506 |
+
Weight to be assigned to MMM loss's image part.
|
507 |
+
mmm_text_weight (`float`, *optional*, defaults to 1.0):
|
508 |
+
Weight to be assigned to MMM loss's text part.
|
509 |
+
global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
|
510 |
+
Whether to use global backpropgation through all workers in contrastive loss.
|
511 |
+
skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
|
512 |
+
Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
|
513 |
+
return_loss (`bool`, *optional*, defaults to `True`):
|
514 |
+
Whether to return loss or not
|
515 |
+
|
516 |
+
kwargs (*optional*):
|
517 |
+
Dictionary of keyword arguments.
|
518 |
+
|
519 |
+
Example:
|
520 |
+
|
521 |
+
```python
|
522 |
+
>>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining
|
523 |
+
|
524 |
+
>>> # Initializing a FlavaConfig with style configuration
|
525 |
+
>>> configuration = FlavaConfig()
|
526 |
+
|
527 |
+
>>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
|
528 |
+
>>> model = FlavaModel(configuration)
|
529 |
+
>>> model_pre = FlavaForPreTraining(configuration)
|
530 |
+
|
531 |
+
>>> # Accessing the model configuration
|
532 |
+
>>> configuration = model.config
|
533 |
+
>>> configuration_pre = model_pre.config
|
534 |
+
```
|
535 |
+
"""
|
536 |
+
|
537 |
+
model_type = "flava"
|
538 |
+
|
539 |
+
def __init__(
|
540 |
+
self,
|
541 |
+
image_config: Dict[str, Any] = None,
|
542 |
+
text_config: Dict[str, Any] = None,
|
543 |
+
multimodal_config: Dict[str, Any] = None,
|
544 |
+
image_codebook_config: Dict[str, Any] = None,
|
545 |
+
hidden_size: int = 768,
|
546 |
+
layer_norm_eps: float = 1e-12,
|
547 |
+
projection_dim: int = 768,
|
548 |
+
init_codebook: bool = True,
|
549 |
+
logit_scale_init_value: float = 2.6592,
|
550 |
+
initializer_range: float = 0.02,
|
551 |
+
ce_ignore_index: int = -100,
|
552 |
+
mim_weight: float = 1.0,
|
553 |
+
mlm_weight: float = 1.0,
|
554 |
+
global_contrastive_weight: float = 1.0,
|
555 |
+
itm_weight: float = 1.0,
|
556 |
+
mmm_image_weight: float = 1.0,
|
557 |
+
mmm_text_weight: float = 1.0,
|
558 |
+
global_backprop_contrastive: bool = True,
|
559 |
+
skip_unmasked_multimodal_encoder: bool = True,
|
560 |
+
return_loss: bool = True,
|
561 |
+
**kwargs,
|
562 |
+
):
|
563 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
564 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
565 |
+
# of confusion!).
|
566 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
567 |
+
image_config_dict = kwargs.pop("image_config_dict", None)
|
568 |
+
multimodal_config_dict = kwargs.pop("multimodal_config_dict", None)
|
569 |
+
image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None)
|
570 |
+
|
571 |
+
super().__init__(**kwargs)
|
572 |
+
|
573 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
574 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
575 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
576 |
+
if text_config_dict is not None:
|
577 |
+
if text_config is None:
|
578 |
+
text_config = {}
|
579 |
+
|
580 |
+
# This is the complete result when using `text_config_dict`.
|
581 |
+
_text_config_dict = FlavaTextConfig(**text_config_dict).to_dict()
|
582 |
+
|
583 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
584 |
+
for key, value in _text_config_dict.items():
|
585 |
+
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
586 |
+
# If specified in `text_config_dict`
|
587 |
+
if key in text_config_dict:
|
588 |
+
message = (
|
589 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
590 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
591 |
+
)
|
592 |
+
# If inferred from default argument values (just to be super careful)
|
593 |
+
else:
|
594 |
+
message = (
|
595 |
+
f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The "
|
596 |
+
f'value `text_config["{key}"]` will be overriden.'
|
597 |
+
)
|
598 |
+
logger.info(message)
|
599 |
+
|
600 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
601 |
+
text_config.update(_text_config_dict)
|
602 |
+
|
603 |
+
if image_config_dict is not None:
|
604 |
+
if image_config is None:
|
605 |
+
image_config = {}
|
606 |
+
|
607 |
+
# This is the complete result when using `image_config_dict`.
|
608 |
+
_image_config_dict = FlavaImageConfig(**image_config_dict).to_dict()
|
609 |
+
# convert keys to string instead of integer
|
610 |
+
if "id2label" in _image_config_dict:
|
611 |
+
_image_config_dict["id2label"] = {
|
612 |
+
str(key): value for key, value in _image_config_dict["id2label"].items()
|
613 |
+
}
|
614 |
+
|
615 |
+
# Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different.
|
616 |
+
for key, value in _image_config_dict.items():
|
617 |
+
if key in image_config and value != image_config[key] and key not in ["transformers_version"]:
|
618 |
+
# If specified in `image_config_dict`
|
619 |
+
if key in image_config_dict:
|
620 |
+
message = (
|
621 |
+
f"`{key}` is found in both `image_config_dict` and `image_config` but with different "
|
622 |
+
f'values. The value `image_config_dict["{key}"]` will be used instead.'
|
623 |
+
)
|
624 |
+
# If inferred from default argument values (just to be super careful)
|
625 |
+
else:
|
626 |
+
message = (
|
627 |
+
f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. "
|
628 |
+
f'The value `image_config["{key}"]` will be overriden.'
|
629 |
+
)
|
630 |
+
logger.info(message)
|
631 |
+
|
632 |
+
# Update all values in `image_config` with the ones in `_image_config_dict`.
|
633 |
+
image_config.update(_image_config_dict)
|
634 |
+
|
635 |
+
if multimodal_config_dict is not None:
|
636 |
+
if multimodal_config is None:
|
637 |
+
multimodal_config = {}
|
638 |
+
|
639 |
+
# This is the complete result when using `multimodal_config_dict`.
|
640 |
+
_multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict()
|
641 |
+
|
642 |
+
# Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being
|
643 |
+
# different.
|
644 |
+
for key, value in _multimodal_config_dict.items():
|
645 |
+
if (
|
646 |
+
key in multimodal_config
|
647 |
+
and value != multimodal_config[key]
|
648 |
+
and key not in ["transformers_version"]
|
649 |
+
):
|
650 |
+
# If specified in `multimodal_config_dict`
|
651 |
+
if key in multimodal_config_dict:
|
652 |
+
message = (
|
653 |
+
f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with "
|
654 |
+
f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.'
|
655 |
+
)
|
656 |
+
# If inferred from default argument values (just to be super careful)
|
657 |
+
else:
|
658 |
+
message = (
|
659 |
+
f"`multimodal_config_dict` is provided which will be used to initialize "
|
660 |
+
f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overriden.'
|
661 |
+
)
|
662 |
+
logger.info(message)
|
663 |
+
|
664 |
+
# Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`.
|
665 |
+
multimodal_config.update(_multimodal_config_dict)
|
666 |
+
|
667 |
+
if image_codebook_config_dict is not None:
|
668 |
+
if image_codebook_config is None:
|
669 |
+
image_codebook_config = {}
|
670 |
+
|
671 |
+
# This is the complete result when using `image_codebook_config_dict`.
|
672 |
+
_image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict()
|
673 |
+
|
674 |
+
# Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but
|
675 |
+
# being different.
|
676 |
+
for key, value in _image_codebook_config_dict.items():
|
677 |
+
if (
|
678 |
+
key in image_codebook_config
|
679 |
+
and value != image_codebook_config[key]
|
680 |
+
and key not in ["transformers_version"]
|
681 |
+
):
|
682 |
+
# If specified in `image_codebook_config_dict`
|
683 |
+
if key in image_codebook_config_dict:
|
684 |
+
message = (
|
685 |
+
f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but "
|
686 |
+
f'with different values. The value `image_codebook_config_dict["{key}"]` will be used '
|
687 |
+
"instead."
|
688 |
+
)
|
689 |
+
# If inferred from default argument values (just to be super careful)
|
690 |
+
else:
|
691 |
+
message = (
|
692 |
+
f"`image_codebook_config_dict` is provided which will be used to initialize "
|
693 |
+
f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overriden.'
|
694 |
+
)
|
695 |
+
logger.info(message)
|
696 |
+
|
697 |
+
# Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`.
|
698 |
+
image_codebook_config.update(_image_codebook_config_dict)
|
699 |
+
|
700 |
+
if image_config is None:
|
701 |
+
image_config = {}
|
702 |
+
logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.")
|
703 |
+
|
704 |
+
if text_config is None:
|
705 |
+
text_config = {}
|
706 |
+
logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.")
|
707 |
+
|
708 |
+
if multimodal_config is None:
|
709 |
+
multimodal_config = {}
|
710 |
+
logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.")
|
711 |
+
|
712 |
+
if image_codebook_config is None:
|
713 |
+
image_codebook_config = {}
|
714 |
+
logger.info(
|
715 |
+
"`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values."
|
716 |
+
)
|
717 |
+
|
718 |
+
self.image_config = FlavaImageConfig(**image_config)
|
719 |
+
self.text_config = FlavaTextConfig(**text_config)
|
720 |
+
self.multimodal_config = FlavaMultimodalConfig(**multimodal_config)
|
721 |
+
self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config)
|
722 |
+
self.projection_dim = projection_dim
|
723 |
+
self.init_codebook = init_codebook
|
724 |
+
|
725 |
+
self.hidden_size = hidden_size
|
726 |
+
self.layer_norm_eps = layer_norm_eps
|
727 |
+
self.initializer_range = initializer_range
|
728 |
+
self.logit_scale_init_value = logit_scale_init_value
|
729 |
+
self.initializer_factor = 1.0
|
730 |
+
self.ce_ignore_index = ce_ignore_index
|
731 |
+
self.mim_weight = mim_weight
|
732 |
+
self.mlm_weight = mlm_weight
|
733 |
+
self.global_contrastive_weight = global_contrastive_weight
|
734 |
+
self.itm_weight = itm_weight
|
735 |
+
self.mmm_image_weight = mmm_image_weight
|
736 |
+
self.mmm_text_weight = mmm_text_weight
|
737 |
+
self.global_backprop_contrastive = global_backprop_contrastive
|
738 |
+
self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder
|
739 |
+
self.return_loss = return_loss
|
740 |
+
|
741 |
+
@classmethod
|
742 |
+
def from_configs(
|
743 |
+
cls,
|
744 |
+
image_config: FlavaImageConfig,
|
745 |
+
text_config: FlavaTextConfig,
|
746 |
+
multimodal_config: FlavaMultimodalConfig,
|
747 |
+
image_codebook_config: FlavaImageCodebookConfig,
|
748 |
+
**kwargs,
|
749 |
+
):
|
750 |
+
r"""
|
751 |
+
Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
|
752 |
+
configuration, flava multimodal model and flava codebook model configuration.
|
753 |
+
|
754 |
+
Returns:
|
755 |
+
[`FlavaConfig`]: An instance of a configuration object
|
756 |
+
"""
|
757 |
+
|
758 |
+
return cls(
|
759 |
+
image_config=image_config.to_dict(),
|
760 |
+
text_config=text_config.to_dict(),
|
761 |
+
multimodal_config=multimodal_config.to_dict(),
|
762 |
+
image_codebook_config=image_codebook_config.to_dict(),
|
763 |
+
**kwargs,
|
764 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_dalle_to_flava_codebook.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import os
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
|
22 |
+
|
23 |
+
|
24 |
+
def rreplace(s, old, new, occurrence):
|
25 |
+
li = s.rsplit(old, occurrence)
|
26 |
+
return new.join(li)
|
27 |
+
|
28 |
+
|
29 |
+
def count_parameters(state_dict):
|
30 |
+
# encoder.embeddings are double copied in original FLAVA
|
31 |
+
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
|
32 |
+
|
33 |
+
|
34 |
+
def upgrade_state_dict(state_dict):
|
35 |
+
upgrade = {}
|
36 |
+
|
37 |
+
group_keys = ["group_1", "group_2", "group_3", "group_4"]
|
38 |
+
for key, value in state_dict.items():
|
39 |
+
for group_key in group_keys:
|
40 |
+
if group_key in key:
|
41 |
+
key = key.replace(f"{group_key}.", f"{group_key}.group.")
|
42 |
+
|
43 |
+
if "res_path" in key:
|
44 |
+
key = key.replace("res_path.", "res_path.path.")
|
45 |
+
|
46 |
+
if key.endswith(".w"):
|
47 |
+
key = rreplace(key, ".w", ".weight", 1)
|
48 |
+
if key.endswith(".b"):
|
49 |
+
key = rreplace(key, ".b", ".bias", 1)
|
50 |
+
|
51 |
+
upgrade[key] = value.float()
|
52 |
+
|
53 |
+
return upgrade
|
54 |
+
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def convert_dalle_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None, save_checkpoint=True):
|
58 |
+
"""
|
59 |
+
Copy/paste/tweak model's weights to transformers design.
|
60 |
+
"""
|
61 |
+
from dall_e import Encoder
|
62 |
+
|
63 |
+
encoder = Encoder()
|
64 |
+
if os.path.exists(checkpoint_path):
|
65 |
+
ckpt = torch.load(checkpoint_path)
|
66 |
+
else:
|
67 |
+
ckpt = torch.hub.load_state_dict_from_url(checkpoint_path)
|
68 |
+
|
69 |
+
if isinstance(ckpt, Encoder):
|
70 |
+
ckpt = ckpt.state_dict()
|
71 |
+
encoder.load_state_dict(ckpt)
|
72 |
+
|
73 |
+
if config_path is not None:
|
74 |
+
config = FlavaImageCodebookConfig.from_pretrained(config_path)
|
75 |
+
else:
|
76 |
+
config = FlavaImageCodebookConfig()
|
77 |
+
|
78 |
+
hf_model = FlavaImageCodebook(config).eval()
|
79 |
+
state_dict = encoder.state_dict()
|
80 |
+
|
81 |
+
hf_state_dict = upgrade_state_dict(state_dict)
|
82 |
+
hf_model.load_state_dict(hf_state_dict)
|
83 |
+
hf_state_dict = hf_model.state_dict()
|
84 |
+
hf_count = count_parameters(hf_state_dict)
|
85 |
+
state_dict_count = count_parameters(state_dict)
|
86 |
+
|
87 |
+
assert torch.allclose(hf_count, state_dict_count, atol=1e-3)
|
88 |
+
|
89 |
+
if save_checkpoint:
|
90 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
91 |
+
else:
|
92 |
+
return hf_state_dict
|
93 |
+
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
parser = argparse.ArgumentParser()
|
97 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
98 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
|
99 |
+
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
100 |
+
args = parser.parse_args()
|
101 |
+
|
102 |
+
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/convert_flava_original_pytorch_to_hf.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import os
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from transformers import FlavaConfig, FlavaForPreTraining
|
22 |
+
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
|
23 |
+
|
24 |
+
|
25 |
+
def count_parameters(state_dict):
|
26 |
+
# encoder.embeddings are double copied in original FLAVA
|
27 |
+
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
|
28 |
+
|
29 |
+
|
30 |
+
def upgrade_state_dict(state_dict, codebook_state_dict):
|
31 |
+
upgrade = {}
|
32 |
+
|
33 |
+
for key, value in state_dict.items():
|
34 |
+
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
|
35 |
+
continue
|
36 |
+
|
37 |
+
key = key.replace("heads.cmd.mim_head.cls.predictions", "mmm_image_head")
|
38 |
+
key = key.replace("heads.cmd.mlm_head.cls.predictions", "mmm_text_head")
|
39 |
+
key = key.replace("heads.cmd.itm_head.cls", "itm_head")
|
40 |
+
key = key.replace("heads.cmd.itm_head.pooler", "itm_head.pooler")
|
41 |
+
key = key.replace("heads.cmd.clip_head.logit_scale", "flava.logit_scale")
|
42 |
+
key = key.replace("heads.fairseq_mlm.cls.predictions", "mlm_head")
|
43 |
+
key = key.replace("heads.imagenet.mim_head.cls.predictions", "mim_head")
|
44 |
+
key = key.replace("mm_text_projection", "flava.text_to_mm_projection")
|
45 |
+
key = key.replace("mm_image_projection", "flava.image_to_mm_projection")
|
46 |
+
key = key.replace("image_encoder.module", "flava.image_model")
|
47 |
+
key = key.replace("text_encoder.module", "flava.text_model")
|
48 |
+
key = key.replace("mm_encoder.module.encoder.cls_token", "flava.multimodal_model.cls_token")
|
49 |
+
key = key.replace("mm_encoder.module", "flava.multimodal_model")
|
50 |
+
key = key.replace("text_projection", "flava.text_projection")
|
51 |
+
key = key.replace("image_projection", "flava.image_projection")
|
52 |
+
|
53 |
+
upgrade[key] = value.float()
|
54 |
+
|
55 |
+
for key, value in codebook_state_dict.items():
|
56 |
+
upgrade[f"image_codebook.{key}"] = value
|
57 |
+
|
58 |
+
return upgrade
|
59 |
+
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def convert_flava_checkpoint(checkpoint_path, codebook_path, pytorch_dump_folder_path, config_path=None):
|
63 |
+
"""
|
64 |
+
Copy/paste/tweak model's weights to transformers design.
|
65 |
+
"""
|
66 |
+
if config_path is not None:
|
67 |
+
config = FlavaConfig.from_pretrained(config_path)
|
68 |
+
else:
|
69 |
+
config = FlavaConfig()
|
70 |
+
|
71 |
+
hf_model = FlavaForPreTraining(config).eval()
|
72 |
+
|
73 |
+
codebook_state_dict = convert_dalle_checkpoint(codebook_path, None, save_checkpoint=False)
|
74 |
+
|
75 |
+
if os.path.exists(checkpoint_path):
|
76 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
77 |
+
else:
|
78 |
+
state_dict = torch.hub.load_state_dict_from_url(checkpoint_path, map_location="cpu")
|
79 |
+
|
80 |
+
hf_state_dict = upgrade_state_dict(state_dict, codebook_state_dict)
|
81 |
+
hf_model.load_state_dict(hf_state_dict)
|
82 |
+
hf_state_dict = hf_model.state_dict()
|
83 |
+
hf_count = count_parameters(hf_state_dict)
|
84 |
+
state_dict_count = count_parameters(state_dict) + count_parameters(codebook_state_dict)
|
85 |
+
|
86 |
+
assert torch.allclose(hf_count, state_dict_count, atol=1e-3)
|
87 |
+
|
88 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
parser = argparse.ArgumentParser()
|
93 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
94 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
|
95 |
+
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
|
96 |
+
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
97 |
+
args = parser.parse_args()
|
98 |
+
|
99 |
+
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/feature_extraction_flava.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for FLAVA."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_flava import FlavaImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class FlavaFeatureExtractor(FlavaImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
|
30 |
+
" use FlavaImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/image_processing_flava.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Flava."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import random
|
19 |
+
from functools import lru_cache
|
20 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
25 |
+
from ...image_transforms import resize, to_channel_dimension_format
|
26 |
+
from ...image_utils import (
|
27 |
+
OPENAI_CLIP_MEAN,
|
28 |
+
OPENAI_CLIP_STD,
|
29 |
+
ChannelDimension,
|
30 |
+
ImageInput,
|
31 |
+
PILImageResampling,
|
32 |
+
infer_channel_dimension_format,
|
33 |
+
is_scaled_image,
|
34 |
+
make_list_of_images,
|
35 |
+
to_numpy_array,
|
36 |
+
valid_images,
|
37 |
+
validate_kwargs,
|
38 |
+
validate_preprocess_arguments,
|
39 |
+
)
|
40 |
+
from ...utils import TensorType, is_vision_available, logging
|
41 |
+
|
42 |
+
|
43 |
+
if is_vision_available():
|
44 |
+
import PIL
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
# These values are taken from CLIP
|
51 |
+
FLAVA_IMAGE_MEAN = OPENAI_CLIP_MEAN
|
52 |
+
FLAVA_IMAGE_STD = OPENAI_CLIP_STD
|
53 |
+
FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
|
54 |
+
FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
|
55 |
+
LOGIT_LAPLACE_EPS: float = 0.1
|
56 |
+
|
57 |
+
|
58 |
+
# Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
|
59 |
+
class FlavaMaskingGenerator:
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
input_size: Union[int, Tuple[int, int]] = 14,
|
63 |
+
total_mask_patches: int = 75,
|
64 |
+
mask_group_max_patches: Optional[int] = None,
|
65 |
+
mask_group_min_patches: int = 16,
|
66 |
+
mask_group_min_aspect_ratio: Optional[float] = 0.3,
|
67 |
+
mask_group_max_aspect_ratio: float = None,
|
68 |
+
):
|
69 |
+
if not isinstance(input_size, tuple):
|
70 |
+
input_size = (input_size,) * 2
|
71 |
+
self.height, self.width = input_size
|
72 |
+
|
73 |
+
self.num_patches = self.height * self.width
|
74 |
+
self.total_mask_patches = total_mask_patches
|
75 |
+
|
76 |
+
self.mask_group_min_patches = mask_group_min_patches
|
77 |
+
self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
|
78 |
+
|
79 |
+
mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
|
80 |
+
self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
|
81 |
+
|
82 |
+
def __repr__(self):
|
83 |
+
repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
|
84 |
+
self.height,
|
85 |
+
self.width,
|
86 |
+
self.mask_group_min_patches,
|
87 |
+
self.mask_group_max_patches,
|
88 |
+
self.total_mask_patches,
|
89 |
+
self.log_aspect_ratio[0],
|
90 |
+
self.log_aspect_ratio[1],
|
91 |
+
)
|
92 |
+
return repr_str
|
93 |
+
|
94 |
+
def get_shape(self):
|
95 |
+
return self.height, self.width
|
96 |
+
|
97 |
+
def _mask(self, mask, max_mask_patches):
|
98 |
+
delta = 0
|
99 |
+
for _attempt in range(10):
|
100 |
+
target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
|
101 |
+
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
|
102 |
+
height = int(round(math.sqrt(target_area * aspect_ratio)))
|
103 |
+
width = int(round(math.sqrt(target_area / aspect_ratio)))
|
104 |
+
if width < self.width and height < self.height:
|
105 |
+
top = random.randint(0, self.height - height)
|
106 |
+
left = random.randint(0, self.width - width)
|
107 |
+
|
108 |
+
num_masked = mask[top : top + height, left : left + width].sum()
|
109 |
+
# Overlap
|
110 |
+
if 0 < height * width - num_masked <= max_mask_patches:
|
111 |
+
for i in range(top, top + height):
|
112 |
+
for j in range(left, left + width):
|
113 |
+
if mask[i, j] == 0:
|
114 |
+
mask[i, j] = 1
|
115 |
+
delta += 1
|
116 |
+
|
117 |
+
if delta > 0:
|
118 |
+
break
|
119 |
+
return delta
|
120 |
+
|
121 |
+
def __call__(self):
|
122 |
+
mask = np.zeros(shape=self.get_shape(), dtype=int)
|
123 |
+
mask_count = 0
|
124 |
+
while mask_count < self.total_mask_patches:
|
125 |
+
max_mask_patches = self.total_mask_patches - mask_count
|
126 |
+
max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
|
127 |
+
|
128 |
+
delta = self._mask(mask, max_mask_patches)
|
129 |
+
if delta == 0:
|
130 |
+
break
|
131 |
+
else:
|
132 |
+
mask_count += delta
|
133 |
+
|
134 |
+
return mask
|
135 |
+
|
136 |
+
|
137 |
+
class FlavaImageProcessor(BaseImageProcessor):
|
138 |
+
r"""
|
139 |
+
Constructs a Flava image processor.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
143 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
|
144 |
+
`do_resize` parameter in `preprocess`.
|
145 |
+
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
146 |
+
Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
|
147 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
148 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
|
149 |
+
`preprocess`.
|
150 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
151 |
+
Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
|
152 |
+
crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
153 |
+
Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
|
154 |
+
`crop_size` parameter in `preprocess`.
|
155 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
156 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
157 |
+
parameter in `preprocess`.
|
158 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
159 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
|
160 |
+
`preprocess`.
|
161 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
162 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
|
163 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
164 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
165 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
166 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
167 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
168 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
169 |
+
return_image_mask (`bool`, *optional*, defaults to `False`):
|
170 |
+
Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
|
171 |
+
input_size_patches (`int`, *optional*, defaults to 14):
|
172 |
+
Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
|
173 |
+
by the `input_size_patches` parameter in `preprocess`.
|
174 |
+
total_mask_patches (`int`, *optional*, defaults to 75):
|
175 |
+
Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
|
176 |
+
`preprocess`.
|
177 |
+
mask_group_min_patches (`int`, *optional*, defaults to 16):
|
178 |
+
Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
|
179 |
+
parameter in `preprocess`.
|
180 |
+
mask_group_max_patches (`int`, *optional*):
|
181 |
+
Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
|
182 |
+
parameter in `preprocess`.
|
183 |
+
mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
|
184 |
+
Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
|
185 |
+
in `preprocess`.
|
186 |
+
mask_group_max_aspect_ratio (`float`, *optional*):
|
187 |
+
Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
|
188 |
+
in `preprocess`.
|
189 |
+
codebook_do_resize (`bool`, *optional*, defaults to `True`):
|
190 |
+
Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
|
191 |
+
parameter in `preprocess`. `codebook_size`.
|
192 |
+
codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
193 |
+
Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
|
194 |
+
`preprocess`.
|
195 |
+
codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
|
196 |
+
Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
|
197 |
+
parameter in `preprocess`.
|
198 |
+
codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
|
199 |
+
Whether to crop the input for codebook at the center. If the input size is smaller than
|
200 |
+
`codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
|
201 |
+
overridden by the `codebook_do_center_crop` parameter in `preprocess`.
|
202 |
+
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
203 |
+
Desired output size for codebook input when applying center-cropping. Can be overridden by the
|
204 |
+
`codebook_crop_size` parameter in `preprocess`.
|
205 |
+
codebook_do_rescale (`bool`, *optional*, defaults to `True`):
|
206 |
+
Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
|
207 |
+
overridden by the `codebook_do_rescale` parameter in `preprocess`.
|
208 |
+
codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
209 |
+
Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
|
210 |
+
`codebook_rescale_factor` parameter in `preprocess`.
|
211 |
+
codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
|
212 |
+
Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
|
213 |
+
`codebook_do_map_pixels` parameter in `preprocess`.
|
214 |
+
codebook_do_normalize (`bool`, *optional*, defaults to `True`):
|
215 |
+
Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
|
216 |
+
be overridden by the `codebook_do_normalize` parameter in `preprocess`.
|
217 |
+
codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
|
218 |
+
The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
|
219 |
+
by the `codebook_image_mean` parameter in `preprocess`.
|
220 |
+
codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
221 |
+
The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
|
222 |
+
be overridden by the `codebook_image_std` parameter in `preprocess`.
|
223 |
+
"""
|
224 |
+
|
225 |
+
model_input_names = ["pixel_values"]
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
do_resize: bool = True,
|
230 |
+
size: Dict[str, int] = None,
|
231 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
232 |
+
do_center_crop: bool = True,
|
233 |
+
crop_size: Dict[str, int] = None,
|
234 |
+
do_rescale: bool = True,
|
235 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
236 |
+
do_normalize: bool = True,
|
237 |
+
image_mean: Optional[Union[float, Iterable[float]]] = None,
|
238 |
+
image_std: Optional[Union[float, Iterable[float]]] = None,
|
239 |
+
# Mask related params
|
240 |
+
return_image_mask: bool = False,
|
241 |
+
input_size_patches: int = 14,
|
242 |
+
total_mask_patches: int = 75,
|
243 |
+
mask_group_min_patches: int = 16,
|
244 |
+
mask_group_max_patches: Optional[int] = None,
|
245 |
+
mask_group_min_aspect_ratio: float = 0.3,
|
246 |
+
mask_group_max_aspect_ratio: Optional[float] = None,
|
247 |
+
# Codebook related params
|
248 |
+
return_codebook_pixels: bool = False,
|
249 |
+
codebook_do_resize: bool = True,
|
250 |
+
codebook_size: bool = None,
|
251 |
+
codebook_resample: int = PILImageResampling.LANCZOS,
|
252 |
+
codebook_do_center_crop: bool = True,
|
253 |
+
codebook_crop_size: int = None,
|
254 |
+
codebook_do_rescale: bool = True,
|
255 |
+
codebook_rescale_factor: Union[int, float] = 1 / 255,
|
256 |
+
codebook_do_map_pixels: bool = True,
|
257 |
+
codebook_do_normalize: bool = True,
|
258 |
+
codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
|
259 |
+
codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
|
260 |
+
**kwargs,
|
261 |
+
) -> None:
|
262 |
+
super().__init__(**kwargs)
|
263 |
+
size = size if size is not None else {"height": 224, "width": 224}
|
264 |
+
size = get_size_dict(size)
|
265 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
266 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
267 |
+
|
268 |
+
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
|
269 |
+
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
|
270 |
+
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
|
271 |
+
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
|
272 |
+
|
273 |
+
self.do_resize = do_resize
|
274 |
+
self.size = size
|
275 |
+
self.resample = resample
|
276 |
+
self.do_rescale = do_rescale
|
277 |
+
self.rescale_factor = rescale_factor
|
278 |
+
self.do_center_crop = do_center_crop
|
279 |
+
self.crop_size = crop_size
|
280 |
+
self.do_normalize = do_normalize
|
281 |
+
self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
|
282 |
+
self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
|
283 |
+
|
284 |
+
self.return_image_mask = return_image_mask
|
285 |
+
self.input_size_patches = input_size_patches
|
286 |
+
self.total_mask_patches = total_mask_patches
|
287 |
+
self.mask_group_min_patches = mask_group_min_patches
|
288 |
+
self.mask_group_max_patches = mask_group_max_patches
|
289 |
+
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
|
290 |
+
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
|
291 |
+
|
292 |
+
self.return_codebook_pixels = return_codebook_pixels
|
293 |
+
self.codebook_do_resize = codebook_do_resize
|
294 |
+
self.codebook_size = codebook_size
|
295 |
+
self.codebook_resample = codebook_resample
|
296 |
+
self.codebook_do_center_crop = codebook_do_center_crop
|
297 |
+
self.codebook_crop_size = codebook_crop_size
|
298 |
+
self.codebook_do_rescale = codebook_do_rescale
|
299 |
+
self.codebook_rescale_factor = codebook_rescale_factor
|
300 |
+
self.codebook_do_map_pixels = codebook_do_map_pixels
|
301 |
+
self.codebook_do_normalize = codebook_do_normalize
|
302 |
+
self.codebook_image_mean = codebook_image_mean
|
303 |
+
self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
|
304 |
+
self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
|
305 |
+
self._valid_processor_keys = [
|
306 |
+
"images",
|
307 |
+
"do_resize",
|
308 |
+
"size",
|
309 |
+
"resample",
|
310 |
+
"do_center_crop",
|
311 |
+
"crop_size",
|
312 |
+
"do_rescale",
|
313 |
+
"rescale_factor",
|
314 |
+
"do_normalize",
|
315 |
+
"image_mean",
|
316 |
+
"image_std",
|
317 |
+
"return_image_mask",
|
318 |
+
"input_size_patches",
|
319 |
+
"total_mask_patches",
|
320 |
+
"mask_group_min_patches",
|
321 |
+
"mask_group_max_patches",
|
322 |
+
"mask_group_min_aspect_ratio",
|
323 |
+
"mask_group_max_aspect_ratio",
|
324 |
+
"return_codebook_pixels",
|
325 |
+
"codebook_do_resize",
|
326 |
+
"codebook_size",
|
327 |
+
"codebook_resample",
|
328 |
+
"codebook_do_center_crop",
|
329 |
+
"codebook_crop_size",
|
330 |
+
"codebook_do_rescale",
|
331 |
+
"codebook_rescale_factor",
|
332 |
+
"codebook_do_map_pixels",
|
333 |
+
"codebook_do_normalize",
|
334 |
+
"codebook_image_mean",
|
335 |
+
"codebook_image_std",
|
336 |
+
"return_tensors",
|
337 |
+
"data_format",
|
338 |
+
"input_data_format",
|
339 |
+
]
|
340 |
+
|
341 |
+
@classmethod
|
342 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
343 |
+
"""
|
344 |
+
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
|
345 |
+
created using from_dict and kwargs e.g. `FlavaImageProcessor.from_pretrained(checkpoint, codebook_size=600)`
|
346 |
+
"""
|
347 |
+
image_processor_dict = image_processor_dict.copy()
|
348 |
+
if "codebook_size" in kwargs:
|
349 |
+
image_processor_dict["codebook_size"] = kwargs.pop("codebook_size")
|
350 |
+
if "codebook_crop_size" in kwargs:
|
351 |
+
image_processor_dict["codebook_crop_size"] = kwargs.pop("codebook_crop_size")
|
352 |
+
return super().from_dict(image_processor_dict, **kwargs)
|
353 |
+
|
354 |
+
@lru_cache()
|
355 |
+
def masking_generator(
|
356 |
+
self,
|
357 |
+
input_size_patches,
|
358 |
+
total_mask_patches,
|
359 |
+
mask_group_min_patches,
|
360 |
+
mask_group_max_patches,
|
361 |
+
mask_group_min_aspect_ratio,
|
362 |
+
mask_group_max_aspect_ratio,
|
363 |
+
) -> FlavaMaskingGenerator:
|
364 |
+
return FlavaMaskingGenerator(
|
365 |
+
input_size=input_size_patches,
|
366 |
+
total_mask_patches=total_mask_patches,
|
367 |
+
mask_group_min_patches=mask_group_min_patches,
|
368 |
+
mask_group_max_patches=mask_group_max_patches,
|
369 |
+
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
|
370 |
+
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
|
371 |
+
)
|
372 |
+
|
373 |
+
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
|
374 |
+
def resize(
|
375 |
+
self,
|
376 |
+
image: np.ndarray,
|
377 |
+
size: Dict[str, int],
|
378 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
379 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
380 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
381 |
+
**kwargs,
|
382 |
+
) -> np.ndarray:
|
383 |
+
"""
|
384 |
+
Resize an image to `(size["height"], size["width"])`.
|
385 |
+
|
386 |
+
Args:
|
387 |
+
image (`np.ndarray`):
|
388 |
+
Image to resize.
|
389 |
+
size (`Dict[str, int]`):
|
390 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
391 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
392 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
|
393 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
394 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
395 |
+
image is used. Can be one of:
|
396 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
397 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
398 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
399 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
400 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
401 |
+
from the input image. Can be one of:
|
402 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
403 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
404 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
405 |
+
|
406 |
+
Returns:
|
407 |
+
`np.ndarray`: The resized image.
|
408 |
+
"""
|
409 |
+
size = get_size_dict(size)
|
410 |
+
if "height" not in size or "width" not in size:
|
411 |
+
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
|
412 |
+
output_size = (size["height"], size["width"])
|
413 |
+
return resize(
|
414 |
+
image,
|
415 |
+
size=output_size,
|
416 |
+
resample=resample,
|
417 |
+
data_format=data_format,
|
418 |
+
input_data_format=input_data_format,
|
419 |
+
**kwargs,
|
420 |
+
)
|
421 |
+
|
422 |
+
def map_pixels(self, image: np.ndarray) -> np.ndarray:
|
423 |
+
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
|
424 |
+
|
425 |
+
def _preprocess_image(
|
426 |
+
self,
|
427 |
+
image: ImageInput,
|
428 |
+
do_resize: bool = None,
|
429 |
+
size: Dict[str, int] = None,
|
430 |
+
resample: PILImageResampling = None,
|
431 |
+
do_center_crop: bool = None,
|
432 |
+
crop_size: Dict[str, int] = None,
|
433 |
+
do_rescale: bool = None,
|
434 |
+
rescale_factor: float = None,
|
435 |
+
do_normalize: bool = None,
|
436 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
437 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
438 |
+
do_map_pixels: bool = None,
|
439 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
440 |
+
input_data_format: Optional[ChannelDimension] = None,
|
441 |
+
) -> np.ndarray:
|
442 |
+
"""Preprocesses a single image."""
|
443 |
+
|
444 |
+
validate_preprocess_arguments(
|
445 |
+
do_rescale=do_rescale,
|
446 |
+
rescale_factor=rescale_factor,
|
447 |
+
do_normalize=do_normalize,
|
448 |
+
image_mean=image_mean,
|
449 |
+
image_std=image_std,
|
450 |
+
do_center_crop=do_center_crop,
|
451 |
+
crop_size=crop_size,
|
452 |
+
do_resize=do_resize,
|
453 |
+
size=size,
|
454 |
+
resample=resample,
|
455 |
+
)
|
456 |
+
|
457 |
+
# All transformations expect numpy arrays.
|
458 |
+
image = to_numpy_array(image)
|
459 |
+
|
460 |
+
if is_scaled_image(image) and do_rescale:
|
461 |
+
logger.warning_once(
|
462 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
463 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
464 |
+
)
|
465 |
+
|
466 |
+
if input_data_format is None:
|
467 |
+
# We assume that all images have the same channel dimension format.
|
468 |
+
input_data_format = infer_channel_dimension_format(image)
|
469 |
+
|
470 |
+
if do_resize:
|
471 |
+
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
472 |
+
|
473 |
+
if do_center_crop:
|
474 |
+
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
|
475 |
+
|
476 |
+
if do_rescale:
|
477 |
+
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
478 |
+
|
479 |
+
if do_normalize:
|
480 |
+
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
481 |
+
|
482 |
+
if do_map_pixels:
|
483 |
+
image = self.map_pixels(image)
|
484 |
+
|
485 |
+
if data_format is not None:
|
486 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
487 |
+
return image
|
488 |
+
|
489 |
+
def preprocess(
|
490 |
+
self,
|
491 |
+
images: ImageInput,
|
492 |
+
do_resize: Optional[bool] = None,
|
493 |
+
size: Dict[str, int] = None,
|
494 |
+
resample: PILImageResampling = None,
|
495 |
+
do_center_crop: Optional[bool] = None,
|
496 |
+
crop_size: Optional[Dict[str, int]] = None,
|
497 |
+
do_rescale: Optional[bool] = None,
|
498 |
+
rescale_factor: Optional[float] = None,
|
499 |
+
do_normalize: Optional[bool] = None,
|
500 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
501 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
502 |
+
# Mask related params
|
503 |
+
return_image_mask: Optional[bool] = None,
|
504 |
+
input_size_patches: Optional[int] = None,
|
505 |
+
total_mask_patches: Optional[int] = None,
|
506 |
+
mask_group_min_patches: Optional[int] = None,
|
507 |
+
mask_group_max_patches: Optional[int] = None,
|
508 |
+
mask_group_min_aspect_ratio: Optional[float] = None,
|
509 |
+
mask_group_max_aspect_ratio: Optional[float] = None,
|
510 |
+
# Codebook related params
|
511 |
+
return_codebook_pixels: Optional[bool] = None,
|
512 |
+
codebook_do_resize: Optional[bool] = None,
|
513 |
+
codebook_size: Optional[Dict[str, int]] = None,
|
514 |
+
codebook_resample: Optional[int] = None,
|
515 |
+
codebook_do_center_crop: Optional[bool] = None,
|
516 |
+
codebook_crop_size: Optional[Dict[str, int]] = None,
|
517 |
+
codebook_do_rescale: Optional[bool] = None,
|
518 |
+
codebook_rescale_factor: Optional[float] = None,
|
519 |
+
codebook_do_map_pixels: Optional[bool] = None,
|
520 |
+
codebook_do_normalize: Optional[bool] = None,
|
521 |
+
codebook_image_mean: Optional[Iterable[float]] = None,
|
522 |
+
codebook_image_std: Optional[Iterable[float]] = None,
|
523 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
524 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
525 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
526 |
+
**kwargs,
|
527 |
+
) -> PIL.Image.Image:
|
528 |
+
"""
|
529 |
+
Preprocess an image or batch of images.
|
530 |
+
|
531 |
+
Args:
|
532 |
+
images (`ImageInput`):
|
533 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
534 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
535 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
536 |
+
Whether to resize the image.
|
537 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
538 |
+
Size of the image.
|
539 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
540 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
|
541 |
+
has an effect if `do_resize` is set to `True`.
|
542 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
543 |
+
Whether to center crop the image.
|
544 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
545 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
546 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
547 |
+
Whether to rescale the image values between [0 - 1].
|
548 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
549 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
550 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
551 |
+
Whether to normalize the image.
|
552 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
553 |
+
Image mean.
|
554 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
555 |
+
Image standard deviation.
|
556 |
+
return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
|
557 |
+
Whether to return the image mask.
|
558 |
+
input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
|
559 |
+
Size of the patches to extract from the image.
|
560 |
+
total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
|
561 |
+
Total number of patches to extract from the image.
|
562 |
+
mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
|
563 |
+
Minimum number of patches to extract from the image.
|
564 |
+
mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
|
565 |
+
Maximum number of patches to extract from the image.
|
566 |
+
mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
|
567 |
+
Minimum aspect ratio of the patches to extract from the image.
|
568 |
+
mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
|
569 |
+
Maximum aspect ratio of the patches to extract from the image.
|
570 |
+
return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
|
571 |
+
Whether to return the codebook pixels.
|
572 |
+
codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
|
573 |
+
Whether to resize the codebook pixels.
|
574 |
+
codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
|
575 |
+
Size of the codebook pixels.
|
576 |
+
codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
|
577 |
+
Resampling filter to use if resizing the codebook pixels. This can be one of the enum
|
578 |
+
`PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
|
579 |
+
codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
|
580 |
+
Whether to center crop the codebook pixels.
|
581 |
+
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
|
582 |
+
Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
|
583 |
+
to `True`.
|
584 |
+
codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
|
585 |
+
Whether to rescale the codebook pixels values between [0 - 1].
|
586 |
+
codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
|
587 |
+
Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
|
588 |
+
codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
|
589 |
+
Whether to map the codebook pixels values.
|
590 |
+
codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
|
591 |
+
Whether to normalize the codebook pixels.
|
592 |
+
codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
|
593 |
+
Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
|
594 |
+
codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
|
595 |
+
Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
|
596 |
+
set to `True`.
|
597 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
598 |
+
The type of tensors to return. Can be one of:
|
599 |
+
- Unset: Return a list of `np.ndarray`.
|
600 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
601 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
602 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
603 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
604 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
605 |
+
The channel dimension format for the output image. Can be one of:
|
606 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
607 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
608 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
609 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
610 |
+
from the input image. Can be one of:
|
611 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
612 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
613 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
614 |
+
"""
|
615 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
616 |
+
size = size if size is not None else self.size
|
617 |
+
size = get_size_dict(size)
|
618 |
+
resample = resample if resample is not None else self.resample
|
619 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
620 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
621 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
622 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
623 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
624 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
625 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
626 |
+
image_std = image_std if image_std is not None else self.image_std
|
627 |
+
|
628 |
+
return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
|
629 |
+
input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
|
630 |
+
total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
|
631 |
+
mask_group_min_patches = (
|
632 |
+
mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
|
633 |
+
)
|
634 |
+
mask_group_max_patches = (
|
635 |
+
mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
|
636 |
+
)
|
637 |
+
mask_group_min_aspect_ratio = (
|
638 |
+
mask_group_min_aspect_ratio
|
639 |
+
if mask_group_min_aspect_ratio is not None
|
640 |
+
else self.mask_group_min_aspect_ratio
|
641 |
+
)
|
642 |
+
mask_group_max_aspect_ratio = (
|
643 |
+
mask_group_max_aspect_ratio
|
644 |
+
if mask_group_max_aspect_ratio is not None
|
645 |
+
else self.mask_group_max_aspect_ratio
|
646 |
+
)
|
647 |
+
|
648 |
+
return_codebook_pixels = (
|
649 |
+
return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
|
650 |
+
)
|
651 |
+
codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
|
652 |
+
codebook_size = codebook_size if codebook_size is not None else self.codebook_size
|
653 |
+
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
|
654 |
+
codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
|
655 |
+
codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
|
656 |
+
codebook_rescale_factor = (
|
657 |
+
codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
|
658 |
+
)
|
659 |
+
codebook_do_center_crop = (
|
660 |
+
codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
|
661 |
+
)
|
662 |
+
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
|
663 |
+
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
|
664 |
+
codebook_do_map_pixels = (
|
665 |
+
codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
|
666 |
+
)
|
667 |
+
codebook_do_normalize = (
|
668 |
+
codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
|
669 |
+
)
|
670 |
+
codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
|
671 |
+
codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
|
672 |
+
|
673 |
+
images = make_list_of_images(images)
|
674 |
+
|
675 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
676 |
+
|
677 |
+
if not valid_images(images):
|
678 |
+
raise ValueError(
|
679 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
680 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
681 |
+
)
|
682 |
+
|
683 |
+
processed_images = [
|
684 |
+
self._preprocess_image(
|
685 |
+
image=img,
|
686 |
+
do_resize=do_resize,
|
687 |
+
size=size,
|
688 |
+
resample=resample,
|
689 |
+
do_center_crop=do_center_crop,
|
690 |
+
crop_size=crop_size,
|
691 |
+
do_rescale=do_rescale,
|
692 |
+
rescale_factor=rescale_factor,
|
693 |
+
do_normalize=do_normalize,
|
694 |
+
image_mean=image_mean,
|
695 |
+
image_std=image_std,
|
696 |
+
do_map_pixels=False,
|
697 |
+
data_format=data_format,
|
698 |
+
input_data_format=input_data_format,
|
699 |
+
)
|
700 |
+
for img in images
|
701 |
+
]
|
702 |
+
data = {"pixel_values": processed_images}
|
703 |
+
|
704 |
+
if return_codebook_pixels:
|
705 |
+
codebook_images = [
|
706 |
+
self._preprocess_image(
|
707 |
+
image=img,
|
708 |
+
do_resize=codebook_do_resize,
|
709 |
+
size=codebook_size,
|
710 |
+
resample=codebook_resample,
|
711 |
+
do_center_crop=codebook_do_center_crop,
|
712 |
+
crop_size=codebook_crop_size,
|
713 |
+
do_rescale=codebook_do_rescale,
|
714 |
+
rescale_factor=codebook_rescale_factor,
|
715 |
+
do_normalize=codebook_do_normalize,
|
716 |
+
image_mean=codebook_image_mean,
|
717 |
+
image_std=codebook_image_std,
|
718 |
+
do_map_pixels=codebook_do_map_pixels,
|
719 |
+
data_format=data_format,
|
720 |
+
input_data_format=input_data_format,
|
721 |
+
)
|
722 |
+
for img in images
|
723 |
+
]
|
724 |
+
data["codebook_pixel_values"] = codebook_images
|
725 |
+
|
726 |
+
if return_image_mask:
|
727 |
+
mask_generator = self.masking_generator(
|
728 |
+
input_size_patches=input_size_patches,
|
729 |
+
total_mask_patches=total_mask_patches,
|
730 |
+
mask_group_min_patches=mask_group_min_patches,
|
731 |
+
mask_group_max_patches=mask_group_max_patches,
|
732 |
+
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
|
733 |
+
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
|
734 |
+
)
|
735 |
+
masks = [mask_generator() for _ in images]
|
736 |
+
data["bool_masked_pos"] = masks
|
737 |
+
|
738 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/modeling_flava.py
ADDED
@@ -0,0 +1,2098 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch FLAVA model."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import math
|
19 |
+
from collections import OrderedDict
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
29 |
+
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
30 |
+
from ...utils import (
|
31 |
+
ModelOutput,
|
32 |
+
add_code_sample_docstrings,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from .configuration_flava import (
|
39 |
+
FlavaConfig,
|
40 |
+
FlavaImageCodebookConfig,
|
41 |
+
FlavaImageConfig,
|
42 |
+
FlavaMultimodalConfig,
|
43 |
+
FlavaTextConfig,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CHECKPOINT_FOR_DOC = "facebook/flava-full"
|
50 |
+
|
51 |
+
# Codebook docstring
|
52 |
+
_CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook"
|
53 |
+
_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig"
|
54 |
+
_CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig"
|
55 |
+
_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig"
|
56 |
+
_EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768]
|
57 |
+
|
58 |
+
from ..deprecated._archive_maps import FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
59 |
+
|
60 |
+
|
61 |
+
FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST = ["facebook/flava-image-codebook"]
|
62 |
+
LOGIT_SCALE_CLAMP_MIN = 0
|
63 |
+
LOGIT_SCALE_CLAMP_MAX = 4.6052
|
64 |
+
|
65 |
+
FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig]
|
66 |
+
|
67 |
+
|
68 |
+
@dataclass
|
69 |
+
class FlavaModelOutput(ModelOutput):
|
70 |
+
"""
|
71 |
+
Output from FlavaModel containing embeddings and outputs from individual encoders.
|
72 |
+
|
73 |
+
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
|
74 |
+
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
|
75 |
+
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
|
79 |
+
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
|
80 |
+
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
|
81 |
+
The output of the [`FlavaImageModel`].
|
82 |
+
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
|
83 |
+
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
|
84 |
+
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
|
85 |
+
The output of the [`FlavaTextModel`].
|
86 |
+
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
|
87 |
+
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
|
88 |
+
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
|
89 |
+
The output of the [`FlavaMultimodalModel`].
|
90 |
+
"""
|
91 |
+
|
92 |
+
image_embeddings: Optional[torch.FloatTensor] = None
|
93 |
+
image_output: Optional[BaseModelOutputWithPooling] = None
|
94 |
+
text_embeddings: Optional[torch.FloatTensor] = None
|
95 |
+
text_output: Optional[BaseModelOutputWithPooling] = None
|
96 |
+
multimodal_embeddings: Optional[torch.FloatTensor] = None
|
97 |
+
multimodal_output: Optional[BaseModelOutputWithPooling] = None
|
98 |
+
|
99 |
+
def to_tuple(self) -> Tuple[Any]:
|
100 |
+
return tuple(
|
101 |
+
self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
|
102 |
+
for k in self.keys()
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
@dataclass
|
107 |
+
class FlavaLosses(ModelOutput):
|
108 |
+
"""Class representing pretraining losses from FLAVA model
|
109 |
+
|
110 |
+
Args:
|
111 |
+
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
|
112 |
+
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
|
113 |
+
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
|
114 |
+
Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
|
115 |
+
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
|
116 |
+
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
|
117 |
+
masked pairs in FLAVA.
|
118 |
+
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
|
119 |
+
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
|
120 |
+
data. This is calculated on unmasked images and texts.
|
121 |
+
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
|
122 |
+
Masked Multimodal Modeling loss's image component calculated on paired image-text data.
|
123 |
+
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
|
124 |
+
Masked Multimodal Modeling loss's text component calculated on paired image-text data.
|
125 |
+
"""
|
126 |
+
|
127 |
+
mim: Optional[torch.FloatTensor] = None
|
128 |
+
mlm: Optional[torch.FloatTensor] = None
|
129 |
+
itm: Optional[torch.FloatTensor] = None
|
130 |
+
global_contrastive: Optional[torch.FloatTensor] = None
|
131 |
+
mmm_image: Optional[torch.FloatTensor] = None
|
132 |
+
mmm_text: Optional[torch.FloatTensor] = None
|
133 |
+
|
134 |
+
def all_none(self) -> bool:
|
135 |
+
all_none = True
|
136 |
+
for v in self.values():
|
137 |
+
if v is not None:
|
138 |
+
all_none = False
|
139 |
+
break
|
140 |
+
return all_none
|
141 |
+
|
142 |
+
|
143 |
+
@dataclass
|
144 |
+
class FlavaForPreTrainingOutput(ModelOutput):
|
145 |
+
"""
|
146 |
+
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
|
147 |
+
|
148 |
+
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
|
149 |
+
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
|
150 |
+
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
|
154 |
+
Total loss calculated for this model.
|
155 |
+
loss_info (`FlavaLosses`):
|
156 |
+
Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
|
157 |
+
the keys.
|
158 |
+
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
|
159 |
+
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
|
160 |
+
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
|
161 |
+
The output of the [`FlavaImageModel`].
|
162 |
+
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
|
163 |
+
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
|
164 |
+
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
|
165 |
+
The output of the [`FlavaTextModel`].
|
166 |
+
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
|
167 |
+
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
|
168 |
+
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
|
169 |
+
The output of the [`FlavaMultimodalModel`].
|
170 |
+
|
171 |
+
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
|
172 |
+
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
|
173 |
+
to create masked images.
|
174 |
+
image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
|
175 |
+
The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
|
176 |
+
text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
|
177 |
+
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
|
178 |
+
text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
|
179 |
+
The output of the [`FlavaTextModel`].
|
180 |
+
multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
|
181 |
+
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
|
182 |
+
multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present):
|
183 |
+
The output of the [`FlavaMultimodalModel`].
|
184 |
+
|
185 |
+
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
|
186 |
+
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
|
187 |
+
returned when `bool_masked_pos` has some of the patches masked.
|
188 |
+
mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
|
189 |
+
The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
|
190 |
+
the tokens masked.
|
191 |
+
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
|
192 |
+
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
|
193 |
+
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
|
194 |
+
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
|
195 |
+
output is returned when `bool_masked_pos` has some of the patches masked.
|
196 |
+
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
|
197 |
+
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
|
198 |
+
some of the tokens masked.
|
199 |
+
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
200 |
+
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
|
201 |
+
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity
|
202 |
+
scores. This is calculated on unmasked images and texts.
|
203 |
+
contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
204 |
+
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
|
205 |
+
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
|
206 |
+
texts.
|
207 |
+
"""
|
208 |
+
|
209 |
+
loss: Optional[torch.FloatTensor] = None
|
210 |
+
loss_info: FlavaLosses = None
|
211 |
+
image_embeddings: Optional[torch.FloatTensor] = None
|
212 |
+
image_output: Optional[BaseModelOutputWithPooling] = None
|
213 |
+
text_embeddings: Optional[torch.FloatTensor] = None
|
214 |
+
text_output: Optional[BaseModelOutputWithPooling] = None
|
215 |
+
multimodal_embeddings: Optional[torch.FloatTensor] = None
|
216 |
+
multimodal_output: Optional[BaseModelOutputWithPooling] = None
|
217 |
+
image_masked_embeddings: Optional[torch.FloatTensor] = None
|
218 |
+
image_masked_output: Optional[BaseModelOutputWithPooling] = None
|
219 |
+
text_masked_embeddings: Optional[torch.FloatTensor] = None
|
220 |
+
text_masked_output: Optional[BaseModelOutputWithPooling] = None
|
221 |
+
multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
|
222 |
+
multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
|
223 |
+
mim_logits: Optional[torch.FloatTensor] = None
|
224 |
+
mlm_logits: Optional[torch.FloatTensor] = None
|
225 |
+
itm_logits: Optional[torch.FloatTensor] = None
|
226 |
+
contrastive_logits_per_image: Optional[torch.FloatTensor] = None
|
227 |
+
contrastive_logits_per_text: Optional[torch.FloatTensor] = None
|
228 |
+
mmm_image_logits: Optional[torch.FloatTensor] = None
|
229 |
+
mmm_text_logits: Optional[torch.FloatTensor] = None
|
230 |
+
|
231 |
+
def to_tuple(self) -> Tuple[Any]:
|
232 |
+
transformer_outputs = [
|
233 |
+
"text_output",
|
234 |
+
"image_output",
|
235 |
+
"multimodal_output",
|
236 |
+
"text_masked_output",
|
237 |
+
"image_masked_output",
|
238 |
+
"multimodal_masked_output",
|
239 |
+
]
|
240 |
+
return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
|
241 |
+
|
242 |
+
|
243 |
+
# Based on timm implementation, which can be found here:
|
244 |
+
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
|
245 |
+
class FlavaImageEmbeddings(nn.Module):
|
246 |
+
"""
|
247 |
+
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
248 |
+
"""
|
249 |
+
|
250 |
+
def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
|
251 |
+
super().__init__()
|
252 |
+
|
253 |
+
use_mask_token = use_mask_token or config.mask_token
|
254 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
255 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
|
256 |
+
self.patch_embeddings = PatchEmbeddings(
|
257 |
+
image_size=config.image_size,
|
258 |
+
patch_size=config.patch_size,
|
259 |
+
num_channels=config.num_channels,
|
260 |
+
embed_dim=config.hidden_size,
|
261 |
+
)
|
262 |
+
num_patches = self.patch_embeddings.num_patches
|
263 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
264 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
265 |
+
self.config = config
|
266 |
+
|
267 |
+
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
268 |
+
"""
|
269 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
270 |
+
resolution images.
|
271 |
+
|
272 |
+
Source:
|
273 |
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174
|
274 |
+
"""
|
275 |
+
|
276 |
+
npatch = embeddings.shape[1] - 1
|
277 |
+
num_pos = self.position_embeddings.shape[1] - 1
|
278 |
+
if npatch == num_pos and height == width:
|
279 |
+
return self.position_embeddings
|
280 |
+
class_pos_embed = self.position_embeddings[:, 0]
|
281 |
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
282 |
+
dim = embeddings.shape[-1]
|
283 |
+
num_h_patches = height // self.config.patch_size
|
284 |
+
num_w_patches = width // self.config.patch_size
|
285 |
+
# we add a small number to avoid floating point error in the interpolation
|
286 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
287 |
+
num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
|
288 |
+
patch_pos_embed = nn.functional.interpolate(
|
289 |
+
patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2),
|
290 |
+
scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)),
|
291 |
+
mode="bicubic",
|
292 |
+
align_corners=False,
|
293 |
+
)
|
294 |
+
if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]:
|
295 |
+
raise ValueError(
|
296 |
+
f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
|
297 |
+
f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})"
|
298 |
+
)
|
299 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
300 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
301 |
+
|
302 |
+
def forward(
|
303 |
+
self,
|
304 |
+
pixel_values: torch.Tensor,
|
305 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
306 |
+
interpolate_pos_encoding: bool = False,
|
307 |
+
) -> torch.Tensor:
|
308 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
309 |
+
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
310 |
+
|
311 |
+
batch_size, seq_len, _ = embeddings.size()
|
312 |
+
if bool_masked_pos is not None:
|
313 |
+
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
314 |
+
# B X H X W = B X HW
|
315 |
+
if bool_masked_pos.dim() == 3:
|
316 |
+
bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
|
317 |
+
# replace the masked visual tokens by mask_tokens
|
318 |
+
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
319 |
+
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
|
320 |
+
|
321 |
+
# add the [CLS] token to the embedded patch tokens
|
322 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
323 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
324 |
+
|
325 |
+
# add positional encoding to each token
|
326 |
+
if interpolate_pos_encoding:
|
327 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
328 |
+
else:
|
329 |
+
embeddings = embeddings + self.position_embeddings
|
330 |
+
|
331 |
+
embeddings = self.dropout(embeddings)
|
332 |
+
|
333 |
+
return embeddings
|
334 |
+
|
335 |
+
|
336 |
+
# Based on timm implementation, which can be found here:
|
337 |
+
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
|
338 |
+
class PatchEmbeddings(nn.Module):
|
339 |
+
"""
|
340 |
+
Image to Patch Embedding.
|
341 |
+
"""
|
342 |
+
|
343 |
+
def __init__(
|
344 |
+
self,
|
345 |
+
image_size: int = 224,
|
346 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
347 |
+
num_channels: int = 3,
|
348 |
+
embed_dim: int = 768,
|
349 |
+
):
|
350 |
+
super().__init__()
|
351 |
+
if not isinstance(image_size, collections.abc.Iterable):
|
352 |
+
image_size = (image_size, image_size)
|
353 |
+
if not isinstance(patch_size, collections.abc.Iterable):
|
354 |
+
patch_size = (patch_size, patch_size)
|
355 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
356 |
+
self.image_size = image_size
|
357 |
+
self.patch_size = patch_size
|
358 |
+
self.num_patches = num_patches
|
359 |
+
|
360 |
+
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
361 |
+
|
362 |
+
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
|
363 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
364 |
+
if not interpolate_pos_encoding:
|
365 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
366 |
+
raise ValueError(
|
367 |
+
f"Input image size ({height}*{width}) doesn't match model"
|
368 |
+
f" ({self.image_size[0]}*{self.image_size[1]})."
|
369 |
+
)
|
370 |
+
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
371 |
+
return x
|
372 |
+
|
373 |
+
|
374 |
+
class FlavaTextEmbeddings(nn.Module):
|
375 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
376 |
+
|
377 |
+
def __init__(self, config):
|
378 |
+
super().__init__()
|
379 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
380 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
381 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
382 |
+
|
383 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
384 |
+
# any TensorFlow checkpoint file
|
385 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
386 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
387 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
388 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
389 |
+
self.register_buffer(
|
390 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
391 |
+
)
|
392 |
+
self.register_buffer(
|
393 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
394 |
+
)
|
395 |
+
|
396 |
+
def forward(
|
397 |
+
self,
|
398 |
+
input_ids: Optional[torch.Tensor] = None,
|
399 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
400 |
+
position_ids: Optional[torch.Tensor] = None,
|
401 |
+
):
|
402 |
+
input_shape = input_ids.size()
|
403 |
+
seq_length = input_shape[1]
|
404 |
+
|
405 |
+
if position_ids is None:
|
406 |
+
position_ids = self.position_ids[:, :seq_length]
|
407 |
+
|
408 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
409 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
410 |
+
# issue #5664
|
411 |
+
if token_type_ids is None:
|
412 |
+
if hasattr(self, "token_type_ids"):
|
413 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
414 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
415 |
+
token_type_ids = buffered_token_type_ids_expanded
|
416 |
+
else:
|
417 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
418 |
+
|
419 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
420 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
421 |
+
|
422 |
+
embeddings = inputs_embeds + token_type_embeddings
|
423 |
+
if self.position_embedding_type == "absolute":
|
424 |
+
position_embeddings = self.position_embeddings(position_ids)
|
425 |
+
embeddings += position_embeddings
|
426 |
+
embeddings = self.LayerNorm(embeddings)
|
427 |
+
embeddings = self.dropout(embeddings)
|
428 |
+
return embeddings
|
429 |
+
|
430 |
+
|
431 |
+
class FlavaSelfAttention(nn.Module):
|
432 |
+
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
433 |
+
super().__init__()
|
434 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
435 |
+
raise ValueError(
|
436 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
437 |
+
f"heads {config.num_attention_heads}."
|
438 |
+
)
|
439 |
+
|
440 |
+
self.num_attention_heads = config.num_attention_heads
|
441 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
442 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
443 |
+
|
444 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
445 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
446 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
447 |
+
|
448 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
449 |
+
|
450 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
451 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
452 |
+
x = x.view(*new_x_shape)
|
453 |
+
return x.permute(0, 2, 1, 3)
|
454 |
+
|
455 |
+
def forward(
|
456 |
+
self,
|
457 |
+
hidden_states: torch.Tensor,
|
458 |
+
attention_mask: Optional[torch.Tensor] = None,
|
459 |
+
head_mask: Optional[torch.Tensor] = None,
|
460 |
+
output_attentions: bool = False,
|
461 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
462 |
+
mixed_query_layer = self.query(hidden_states)
|
463 |
+
|
464 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
465 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
466 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
467 |
+
|
468 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
469 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
470 |
+
|
471 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
472 |
+
if attention_mask is not None:
|
473 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
474 |
+
attention_scores = attention_scores + attention_mask
|
475 |
+
|
476 |
+
# Normalize the attention scores to probabilities.
|
477 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
478 |
+
# Normalize the attention scores to probabilities.
|
479 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
480 |
+
|
481 |
+
# This is actually dropping out entire tokens to attend to, which might
|
482 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
483 |
+
attention_probs = self.dropout(attention_probs)
|
484 |
+
|
485 |
+
# Mask heads if we want to
|
486 |
+
if head_mask is not None:
|
487 |
+
attention_probs = attention_probs * head_mask
|
488 |
+
|
489 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
490 |
+
|
491 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
492 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
493 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
494 |
+
|
495 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
496 |
+
|
497 |
+
return outputs
|
498 |
+
|
499 |
+
|
500 |
+
class FlavaSelfOutput(nn.Module):
|
501 |
+
"""
|
502 |
+
The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
|
503 |
+
models), due to the layernorm applied before each block.
|
504 |
+
"""
|
505 |
+
|
506 |
+
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
507 |
+
super().__init__()
|
508 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
509 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
510 |
+
|
511 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
512 |
+
hidden_states = self.dense(hidden_states)
|
513 |
+
hidden_states = self.dropout(hidden_states)
|
514 |
+
|
515 |
+
return hidden_states
|
516 |
+
|
517 |
+
|
518 |
+
class FlavaAttention(nn.Module):
|
519 |
+
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
520 |
+
super().__init__()
|
521 |
+
self.attention = FlavaSelfAttention(config)
|
522 |
+
self.output = FlavaSelfOutput(config)
|
523 |
+
self.pruned_heads = set()
|
524 |
+
|
525 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
526 |
+
if len(heads) == 0:
|
527 |
+
return
|
528 |
+
heads, index = find_pruneable_heads_and_indices(
|
529 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
530 |
+
)
|
531 |
+
|
532 |
+
# Prune linear layers
|
533 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
534 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
535 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
536 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
537 |
+
|
538 |
+
# Update hyper params and store pruned heads
|
539 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
540 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
541 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
542 |
+
|
543 |
+
def forward(
|
544 |
+
self,
|
545 |
+
hidden_states: torch.Tensor,
|
546 |
+
attention_mask: Optional[torch.Tensor] = None,
|
547 |
+
head_mask: Optional[torch.Tensor] = None,
|
548 |
+
output_attentions: bool = False,
|
549 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
550 |
+
self_outputs = self.attention(
|
551 |
+
hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
|
552 |
+
)
|
553 |
+
|
554 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
555 |
+
|
556 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
557 |
+
return outputs
|
558 |
+
|
559 |
+
|
560 |
+
class FlavaIntermediate(nn.Module):
|
561 |
+
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
562 |
+
super().__init__()
|
563 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
564 |
+
if isinstance(config.hidden_act, str):
|
565 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
566 |
+
else:
|
567 |
+
self.intermediate_act_fn = config.hidden_act
|
568 |
+
|
569 |
+
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
|
570 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
571 |
+
hidden_states = self.dense(hidden_states)
|
572 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
573 |
+
|
574 |
+
return hidden_states
|
575 |
+
|
576 |
+
|
577 |
+
class FlavaOutput(nn.Module):
|
578 |
+
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
579 |
+
super().__init__()
|
580 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
581 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
582 |
+
|
583 |
+
# Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
|
584 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
585 |
+
hidden_states = self.dense(hidden_states)
|
586 |
+
hidden_states = self.dropout(hidden_states)
|
587 |
+
|
588 |
+
hidden_states = hidden_states + input_tensor
|
589 |
+
|
590 |
+
return hidden_states
|
591 |
+
|
592 |
+
|
593 |
+
class FlavaLayer(nn.Module):
|
594 |
+
"""This corresponds to the Block class in the timm implementation."""
|
595 |
+
|
596 |
+
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
597 |
+
super().__init__()
|
598 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
599 |
+
self.seq_len_dim = 1
|
600 |
+
self.attention = FlavaAttention(config)
|
601 |
+
self.intermediate = FlavaIntermediate(config)
|
602 |
+
self.output = FlavaOutput(config)
|
603 |
+
|
604 |
+
# TODO: Check fp32 layer norm possiblity
|
605 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
606 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
607 |
+
|
608 |
+
def forward(
|
609 |
+
self,
|
610 |
+
hidden_states: torch.Tensor,
|
611 |
+
attention_mask: Optional[torch.Tensor] = None,
|
612 |
+
head_mask: Optional[torch.Tensor] = None,
|
613 |
+
output_attentions: bool = False,
|
614 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
615 |
+
self_attention_outputs = self.attention(
|
616 |
+
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
|
617 |
+
attention_mask=attention_mask,
|
618 |
+
head_mask=head_mask,
|
619 |
+
output_attentions=output_attentions,
|
620 |
+
)
|
621 |
+
attention_output = self_attention_outputs[0]
|
622 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
623 |
+
|
624 |
+
# first residual connection
|
625 |
+
hidden_states = attention_output + hidden_states
|
626 |
+
|
627 |
+
# in ViT, layernorm is also applied after self-attention
|
628 |
+
layer_output = self.layernorm_after(hidden_states)
|
629 |
+
layer_output = self.intermediate(layer_output)
|
630 |
+
|
631 |
+
# second residual connection is done here
|
632 |
+
layer_output = self.output(layer_output, hidden_states)
|
633 |
+
|
634 |
+
outputs = (layer_output,) + outputs
|
635 |
+
|
636 |
+
return outputs
|
637 |
+
|
638 |
+
|
639 |
+
class FlavaEncoder(nn.Module):
|
640 |
+
def __init__(self, config: FlavaConfig) -> None:
|
641 |
+
super().__init__()
|
642 |
+
self.config = config
|
643 |
+
self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
|
644 |
+
self.gradient_checkpointing = False
|
645 |
+
|
646 |
+
def forward(
|
647 |
+
self,
|
648 |
+
hidden_states: torch.Tensor,
|
649 |
+
attention_mask: Optional[torch.Tensor] = None,
|
650 |
+
head_mask: Optional[torch.Tensor] = None,
|
651 |
+
output_attentions: bool = False,
|
652 |
+
output_hidden_states: bool = False,
|
653 |
+
return_dict: bool = True,
|
654 |
+
) -> Union[tuple, BaseModelOutput]:
|
655 |
+
all_hidden_states = () if output_hidden_states else None
|
656 |
+
all_self_attentions = () if output_attentions else None
|
657 |
+
|
658 |
+
for i, layer_module in enumerate(self.layer):
|
659 |
+
if output_hidden_states:
|
660 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
661 |
+
|
662 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
663 |
+
|
664 |
+
if self.gradient_checkpointing and self.training:
|
665 |
+
layer_outputs = self._gradient_checkpointing_func(
|
666 |
+
layer_module.__call__,
|
667 |
+
hidden_states,
|
668 |
+
attention_mask,
|
669 |
+
layer_head_mask,
|
670 |
+
output_attentions,
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
|
674 |
+
|
675 |
+
hidden_states = layer_outputs[0]
|
676 |
+
|
677 |
+
if output_attentions:
|
678 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
679 |
+
|
680 |
+
if output_hidden_states:
|
681 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
682 |
+
|
683 |
+
if not return_dict:
|
684 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
685 |
+
return BaseModelOutput(
|
686 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
|
687 |
+
)
|
688 |
+
|
689 |
+
|
690 |
+
class FlavaPooler(nn.Module):
|
691 |
+
def __init__(self, config: FlavaPossibleConfigs):
|
692 |
+
super().__init__()
|
693 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
694 |
+
self.activation = nn.Tanh()
|
695 |
+
|
696 |
+
def forward(self, hidden_states: torch.Tensor):
|
697 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
698 |
+
# to the first token.
|
699 |
+
first_token_tensor = hidden_states[:, 0]
|
700 |
+
pooled_output = self.dense(first_token_tensor)
|
701 |
+
pooled_output = self.activation(pooled_output)
|
702 |
+
return pooled_output
|
703 |
+
|
704 |
+
|
705 |
+
FLAVA_START_DOCSTRING = r"""
|
706 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
707 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
708 |
+
behavior.
|
709 |
+
|
710 |
+
Parameters:
|
711 |
+
config ([`{config}`]): Model configuration class with all the parameters of the model.
|
712 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
713 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
714 |
+
"""
|
715 |
+
|
716 |
+
FLAVA_INPUTS_DOCSTRING_COMMON = r"""
|
717 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
718 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
719 |
+
- 1 for tokens that are **not masked**,
|
720 |
+
- 0 for tokens that are **masked**.
|
721 |
+
[What are attention masks?](../glossary#attention-mask)
|
722 |
+
|
723 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
724 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
725 |
+
|
726 |
+
- 1 indicates the head is **not masked**,
|
727 |
+
- 0 indicates the head is **masked**.
|
728 |
+
|
729 |
+
output_attentions (`bool`, *optional*):
|
730 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
731 |
+
tensors for more detail.
|
732 |
+
output_hidden_states (`bool`, *optional*):
|
733 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
734 |
+
more detail.
|
735 |
+
|
736 |
+
return_dict (`bool`, *optional*):
|
737 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
738 |
+
"""
|
739 |
+
|
740 |
+
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r"""
|
741 |
+
Args:
|
742 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
743 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
744 |
+
[`FlavaImageProcessor.__call__`] for details.
|
745 |
+
|
746 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
|
747 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
748 |
+
|
749 |
+
interpolate_pos_encoding (`bool`, *optional*):
|
750 |
+
Whether to interpolate the pre-trained position encodings.
|
751 |
+
"""
|
752 |
+
|
753 |
+
FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
|
754 |
+
|
755 |
+
FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r"""
|
756 |
+
Args:
|
757 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
758 |
+
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
759 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
760 |
+
IDs?](../glossary#input-ids)
|
761 |
+
|
762 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
763 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
764 |
+
1]`:
|
765 |
+
- 0 corresponds to a *sentence A* token,
|
766 |
+
- 1 corresponds to a *sentence B* token.
|
767 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
768 |
+
"""
|
769 |
+
|
770 |
+
FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
|
771 |
+
|
772 |
+
FLAVA_MULTIMODAL_INPUTS_DOCSTRING = (
|
773 |
+
r"""
|
774 |
+
Args:
|
775 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
|
776 |
+
The concatenated hidden states of unimodal encoders.
|
777 |
+
"""
|
778 |
+
+ FLAVA_INPUTS_DOCSTRING_COMMON
|
779 |
+
)
|
780 |
+
|
781 |
+
FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r"""
|
782 |
+
Args:
|
783 |
+
skip_multimodal_encoder (*bool*, *optional*):
|
784 |
+
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
|
785 |
+
"""
|
786 |
+
|
787 |
+
FLAVA_MODEL_INPUTS_DOCSTRING = (
|
788 |
+
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
|
789 |
+
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
|
790 |
+
+ FLAVA_INPUTS_DOCSTRING_COMMON
|
791 |
+
+ FLAVA_MODEL_INPUTS_DOCSTRING_BASE
|
792 |
+
)
|
793 |
+
|
794 |
+
|
795 |
+
FLAVA_PRETRAINING_INPUTS_DOCSTRING = (
|
796 |
+
r"""
|
797 |
+
Args:
|
798 |
+
input_ids_masked (`torch.LongTensor` of shape `({0})`):
|
799 |
+
Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
|
800 |
+
to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
|
801 |
+
[`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
|
802 |
+
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
|
803 |
+
|
804 |
+
"""
|
805 |
+
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
|
806 |
+
+ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
|
807 |
+
+ r"""
|
808 |
+
image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
|
809 |
+
Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
|
810 |
+
in `[0, 1]`:
|
811 |
+
- 1 for tokens that are **not masked**,
|
812 |
+
- 0 for tokens that are **masked**.
|
813 |
+
[What are attention masks?](../glossary#attention-mask)
|
814 |
+
|
815 |
+
skip_unmasked_multimodal_encoder (*bool*, *optional*):
|
816 |
+
Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
|
817 |
+
multimodal embeddings or outputs as of now.
|
818 |
+
|
819 |
+
mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
|
820 |
+
Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
|
821 |
+
Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
|
822 |
+
indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
|
823 |
+
..., text_config.vocab_size - 1]`.
|
824 |
+
|
825 |
+
mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
|
826 |
+
Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
|
827 |
+
image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
|
828 |
+
computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
|
829 |
+
generated automatically using the image codebook assigned to the model. By default, it uses
|
830 |
+
[`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
|
831 |
+
|
832 |
+
itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
|
833 |
+
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
|
834 |
+
The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
|
835 |
+
|
836 |
+
return_loss (`bool`, *optional*, default to None):
|
837 |
+
Whether to return calculated loss or not.
|
838 |
+
"""
|
839 |
+
+ FLAVA_INPUTS_DOCSTRING_COMMON
|
840 |
+
)
|
841 |
+
|
842 |
+
FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r"""
|
843 |
+
Parameters:
|
844 |
+
image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
|
845 |
+
be initialized using the image_codebook_config defined in the config first as the first parameter.
|
846 |
+
"""
|
847 |
+
|
848 |
+
|
849 |
+
class FlavaPreTrainedModel(PreTrainedModel):
|
850 |
+
"""
|
851 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
852 |
+
models.
|
853 |
+
"""
|
854 |
+
|
855 |
+
config_class = FlavaConfig
|
856 |
+
base_model_prefix = "flava"
|
857 |
+
supports_gradient_checkpointing = True
|
858 |
+
|
859 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
860 |
+
"""Initialize the weights"""
|
861 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
862 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
863 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
864 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
865 |
+
if module.bias is not None:
|
866 |
+
module.bias.data.zero_()
|
867 |
+
elif isinstance(module, nn.Embedding):
|
868 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
869 |
+
if module.padding_idx is not None:
|
870 |
+
module.weight.data[module.padding_idx].zero_()
|
871 |
+
elif isinstance(module, nn.LayerNorm):
|
872 |
+
module.bias.data.zero_()
|
873 |
+
module.weight.data.fill_(1.0)
|
874 |
+
|
875 |
+
|
876 |
+
@add_start_docstrings(
|
877 |
+
"The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.",
|
878 |
+
FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"),
|
879 |
+
)
|
880 |
+
class FlavaImageModel(FlavaPreTrainedModel):
|
881 |
+
config_class = FlavaImageConfig
|
882 |
+
# This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
|
883 |
+
base_model_prefix = "flava.image_model"
|
884 |
+
main_input_name = "pixel_values"
|
885 |
+
|
886 |
+
def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
|
887 |
+
super().__init__(config)
|
888 |
+
|
889 |
+
self.config = config
|
890 |
+
|
891 |
+
self.embeddings = FlavaImageEmbeddings(config)
|
892 |
+
self.encoder = FlavaEncoder(config)
|
893 |
+
|
894 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
895 |
+
self.pooler = FlavaPooler(config) if add_pooling_layer else None
|
896 |
+
|
897 |
+
self.post_init()
|
898 |
+
|
899 |
+
def get_input_embeddings(self) -> nn.Module:
|
900 |
+
return self.embeddings.patch_embeddings
|
901 |
+
|
902 |
+
def set_input_embeddings(self, value: nn.Module):
|
903 |
+
self.embeddings.patch_embeddings = value
|
904 |
+
|
905 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
906 |
+
"""
|
907 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
908 |
+
class PreTrainedModel
|
909 |
+
"""
|
910 |
+
for layer, heads in heads_to_prune.items():
|
911 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
912 |
+
|
913 |
+
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
|
914 |
+
@add_code_sample_docstrings(
|
915 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
916 |
+
output_type=BaseModelOutputWithPooling,
|
917 |
+
config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
|
918 |
+
modality="vision",
|
919 |
+
expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
|
920 |
+
)
|
921 |
+
def forward(
|
922 |
+
self,
|
923 |
+
pixel_values: Optional[torch.Tensor] = None,
|
924 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
925 |
+
interpolate_pos_encoding: Optional[bool] = None,
|
926 |
+
attention_mask: Optional[torch.Tensor] = None,
|
927 |
+
head_mask: Optional[torch.Tensor] = None,
|
928 |
+
output_attentions: Optional[bool] = None,
|
929 |
+
output_hidden_states: Optional[bool] = None,
|
930 |
+
return_dict: Optional[bool] = None,
|
931 |
+
) -> Union[tuple, BaseModelOutputWithPooling]:
|
932 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
933 |
+
output_hidden_states = (
|
934 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
935 |
+
)
|
936 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
937 |
+
|
938 |
+
if pixel_values is None:
|
939 |
+
raise ValueError("You have to specify pixel_values")
|
940 |
+
|
941 |
+
# Prepare head mask if needed
|
942 |
+
# 1.0 in head_mask indicate we keep the head
|
943 |
+
# attention_probs has shape bsz x n_heads x N x N
|
944 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
945 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
946 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
947 |
+
|
948 |
+
embedding_output = self.embeddings(
|
949 |
+
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
|
950 |
+
)
|
951 |
+
|
952 |
+
encoder_outputs = self.encoder(
|
953 |
+
embedding_output,
|
954 |
+
attention_mask=attention_mask,
|
955 |
+
head_mask=head_mask,
|
956 |
+
output_attentions=output_attentions,
|
957 |
+
output_hidden_states=output_hidden_states,
|
958 |
+
return_dict=return_dict,
|
959 |
+
)
|
960 |
+
sequence_output = encoder_outputs[0]
|
961 |
+
sequence_output = self.layernorm(sequence_output)
|
962 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
963 |
+
|
964 |
+
if not return_dict:
|
965 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
966 |
+
|
967 |
+
return BaseModelOutputWithPooling(
|
968 |
+
last_hidden_state=sequence_output,
|
969 |
+
pooler_output=pooled_output,
|
970 |
+
hidden_states=encoder_outputs.hidden_states,
|
971 |
+
attentions=encoder_outputs.attentions,
|
972 |
+
)
|
973 |
+
|
974 |
+
|
975 |
+
@add_start_docstrings(
|
976 |
+
"The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.",
|
977 |
+
FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"),
|
978 |
+
)
|
979 |
+
class FlavaTextModel(FlavaPreTrainedModel):
|
980 |
+
config_class = FlavaTextConfig
|
981 |
+
# This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
|
982 |
+
base_model_prefix = "flava.text_model"
|
983 |
+
|
984 |
+
def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
|
985 |
+
super().__init__(config)
|
986 |
+
self.config = config
|
987 |
+
|
988 |
+
self.embeddings = FlavaTextEmbeddings(config)
|
989 |
+
self.encoder = FlavaEncoder(config)
|
990 |
+
|
991 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
992 |
+
self.pooler = FlavaPooler(config) if add_pooling_layer else None
|
993 |
+
|
994 |
+
self.post_init()
|
995 |
+
|
996 |
+
def get_input_embeddings(self) -> PatchEmbeddings:
|
997 |
+
return self.embeddings.word_embeddings
|
998 |
+
|
999 |
+
def set_input_embeddings(self, value: nn.Module):
|
1000 |
+
self.embeddings.word_embeddings = value
|
1001 |
+
|
1002 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
1003 |
+
"""
|
1004 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1005 |
+
class PreTrainedModel
|
1006 |
+
"""
|
1007 |
+
for layer, heads in heads_to_prune.items():
|
1008 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1009 |
+
|
1010 |
+
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
|
1011 |
+
@add_code_sample_docstrings(
|
1012 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1013 |
+
output_type=BaseModelOutputWithPooling,
|
1014 |
+
config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
|
1015 |
+
)
|
1016 |
+
def forward(
|
1017 |
+
self,
|
1018 |
+
input_ids: Optional[torch.Tensor] = None,
|
1019 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1020 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1021 |
+
position_ids: Optional[torch.Tensor] = None,
|
1022 |
+
head_mask: Optional[torch.Tensor] = None,
|
1023 |
+
output_attentions: Optional[bool] = None,
|
1024 |
+
output_hidden_states: Optional[bool] = None,
|
1025 |
+
return_dict: Optional[bool] = None,
|
1026 |
+
) -> Union[tuple, BaseModelOutputWithPooling]:
|
1027 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1028 |
+
output_hidden_states = (
|
1029 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1030 |
+
)
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
if input_ids is None:
|
1034 |
+
raise ValueError("You have to specify input_ids")
|
1035 |
+
|
1036 |
+
input_shape = input_ids.size()
|
1037 |
+
|
1038 |
+
if attention_mask is None:
|
1039 |
+
attention_mask = torch.ones(input_shape, device=input_ids.device)
|
1040 |
+
|
1041 |
+
# Prepare head mask if needed
|
1042 |
+
# 1.0 in head_mask indicate we keep the head
|
1043 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1044 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1045 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1046 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1047 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
1048 |
+
attention_mask, input_shape, input_ids.device
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
embedding_output = self.embeddings(
|
1052 |
+
input_ids=input_ids,
|
1053 |
+
token_type_ids=token_type_ids,
|
1054 |
+
position_ids=position_ids,
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
encoder_outputs = self.encoder(
|
1058 |
+
embedding_output,
|
1059 |
+
attention_mask=extended_attention_mask,
|
1060 |
+
head_mask=head_mask,
|
1061 |
+
output_attentions=output_attentions,
|
1062 |
+
output_hidden_states=output_hidden_states,
|
1063 |
+
return_dict=return_dict,
|
1064 |
+
)
|
1065 |
+
sequence_output = encoder_outputs[0]
|
1066 |
+
sequence_output = self.layernorm(sequence_output)
|
1067 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1068 |
+
|
1069 |
+
if not return_dict:
|
1070 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1071 |
+
|
1072 |
+
return BaseModelOutputWithPooling(
|
1073 |
+
last_hidden_state=sequence_output,
|
1074 |
+
pooler_output=pooled_output,
|
1075 |
+
hidden_states=encoder_outputs.hidden_states,
|
1076 |
+
attentions=encoder_outputs.attentions,
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
|
1080 |
+
@add_start_docstrings(
|
1081 |
+
"The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.",
|
1082 |
+
FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"),
|
1083 |
+
)
|
1084 |
+
class FlavaMultimodalModel(FlavaPreTrainedModel):
|
1085 |
+
config_class = FlavaMultimodalConfig
|
1086 |
+
# This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
|
1087 |
+
base_model_prefix = "flava.multimodal_model"
|
1088 |
+
main_input_name = "hidden_states"
|
1089 |
+
|
1090 |
+
def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
|
1091 |
+
super().__init__(config)
|
1092 |
+
self.config = config
|
1093 |
+
self.use_cls_token = self.config.use_cls_token
|
1094 |
+
if self.use_cls_token:
|
1095 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
1096 |
+
|
1097 |
+
self.encoder = FlavaEncoder(config)
|
1098 |
+
|
1099 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1100 |
+
self.pooler = FlavaPooler(config) if add_pooling_layer else None
|
1101 |
+
|
1102 |
+
self.post_init()
|
1103 |
+
|
1104 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
1105 |
+
"""
|
1106 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1107 |
+
class PreTrainedModel
|
1108 |
+
"""
|
1109 |
+
for layer, heads in heads_to_prune.items():
|
1110 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1111 |
+
|
1112 |
+
@add_start_docstrings_to_model_forward(
|
1113 |
+
FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
|
1114 |
+
)
|
1115 |
+
@add_code_sample_docstrings(
|
1116 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1117 |
+
output_type=BaseModelOutputWithPooling,
|
1118 |
+
config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
|
1119 |
+
)
|
1120 |
+
def forward(
|
1121 |
+
self,
|
1122 |
+
hidden_states: torch.Tensor,
|
1123 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1124 |
+
head_mask: Optional[torch.Tensor] = None,
|
1125 |
+
output_attentions: Optional[bool] = None,
|
1126 |
+
output_hidden_states: Optional[bool] = None,
|
1127 |
+
return_dict: Optional[bool] = None,
|
1128 |
+
) -> Union[tuple, BaseModelOutputWithPooling]:
|
1129 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1130 |
+
output_hidden_states = (
|
1131 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1132 |
+
)
|
1133 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1134 |
+
|
1135 |
+
batch_size, seq_length, _ = hidden_states.size()
|
1136 |
+
|
1137 |
+
if self.use_cls_token:
|
1138 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
1139 |
+
hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
|
1140 |
+
seq_length += 1
|
1141 |
+
|
1142 |
+
if attention_mask is None:
|
1143 |
+
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
|
1144 |
+
|
1145 |
+
# Prepare head mask if needed
|
1146 |
+
# 1.0 in head_mask indicate we keep the head
|
1147 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1148 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1149 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1150 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1151 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
1152 |
+
attention_mask, (batch_size, seq_length), hidden_states.device
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
encoder_outputs = self.encoder(
|
1156 |
+
hidden_states,
|
1157 |
+
attention_mask=extended_attention_mask,
|
1158 |
+
head_mask=head_mask,
|
1159 |
+
output_attentions=output_attentions,
|
1160 |
+
output_hidden_states=output_hidden_states,
|
1161 |
+
return_dict=return_dict,
|
1162 |
+
)
|
1163 |
+
sequence_output = encoder_outputs[0]
|
1164 |
+
sequence_output = self.layernorm(sequence_output)
|
1165 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1166 |
+
|
1167 |
+
if not return_dict:
|
1168 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1169 |
+
|
1170 |
+
return BaseModelOutputWithPooling(
|
1171 |
+
last_hidden_state=sequence_output,
|
1172 |
+
pooler_output=pooled_output,
|
1173 |
+
hidden_states=encoder_outputs.hidden_states,
|
1174 |
+
attentions=encoder_outputs.attentions,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
|
1178 |
+
@add_start_docstrings(
|
1179 |
+
"The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.",
|
1180 |
+
FLAVA_START_DOCSTRING.format(config="FlavaConfig"),
|
1181 |
+
)
|
1182 |
+
class FlavaModel(FlavaPreTrainedModel):
|
1183 |
+
config_class = FlavaConfig
|
1184 |
+
|
1185 |
+
def __init__(self, config: FlavaConfig):
|
1186 |
+
super().__init__(config)
|
1187 |
+
|
1188 |
+
if not isinstance(config.text_config, FlavaTextConfig):
|
1189 |
+
raise ValueError(
|
1190 |
+
"config.text_config is expected to be of type FlavaTextConfig but is of type"
|
1191 |
+
f" {type(config.text_config)}."
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
if not isinstance(config.image_config, FlavaImageConfig):
|
1195 |
+
raise ValueError(
|
1196 |
+
"config.image_config is expected to be of type FlavaImageConfig but is of type"
|
1197 |
+
f" {type(config.image_config)}."
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
|
1201 |
+
raise ValueError(
|
1202 |
+
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
|
1203 |
+
+ f"is of type {type(config.multimodal_config)}."
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
text_config = config.text_config
|
1207 |
+
image_config = config.image_config
|
1208 |
+
multimodal_config = config.multimodal_config
|
1209 |
+
|
1210 |
+
self.projection_dim = config.projection_dim
|
1211 |
+
self.text_hidden_size = text_config.hidden_size
|
1212 |
+
self.image_hidden_size = image_config.hidden_size
|
1213 |
+
self.mm_hidden_size = multimodal_config.hidden_size
|
1214 |
+
|
1215 |
+
self.text_model = FlavaTextModel(text_config)
|
1216 |
+
self.image_model = FlavaImageModel(image_config)
|
1217 |
+
self.multimodal_model = FlavaMultimodalModel(multimodal_config)
|
1218 |
+
|
1219 |
+
self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
|
1220 |
+
self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
|
1221 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
1222 |
+
|
1223 |
+
self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
|
1224 |
+
self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
|
1225 |
+
# Initialize weights and apply final processing
|
1226 |
+
self.post_init()
|
1227 |
+
|
1228 |
+
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
|
1229 |
+
def get_text_features(
|
1230 |
+
self,
|
1231 |
+
input_ids: Optional[torch.Tensor] = None,
|
1232 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1233 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1234 |
+
position_ids: Optional[torch.Tensor] = None,
|
1235 |
+
output_attentions: Optional[bool] = None,
|
1236 |
+
output_hidden_states: Optional[bool] = None,
|
1237 |
+
return_dict: Optional[bool] = None,
|
1238 |
+
) -> torch.FloatTensor:
|
1239 |
+
r"""
|
1240 |
+
Returns:
|
1241 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1242 |
+
applying the projection layer to the pooled output of [`FlavaTextModel`].
|
1243 |
+
|
1244 |
+
Examples:
|
1245 |
+
|
1246 |
+
```python
|
1247 |
+
>>> from transformers import AutoProcessor, FlavaModel
|
1248 |
+
|
1249 |
+
>>> model = FlavaModel.from_pretrained("{0}")
|
1250 |
+
>>> processor = AutoProcessor.from_pretrained("{0}")
|
1251 |
+
|
1252 |
+
>>> inputs = processor(
|
1253 |
+
... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
|
1254 |
+
... )
|
1255 |
+
>>> text_features = model.get_text_features(**inputs)
|
1256 |
+
```""".format(_CHECKPOINT_FOR_DOC)
|
1257 |
+
text_outputs = self.text_model(
|
1258 |
+
input_ids=input_ids,
|
1259 |
+
attention_mask=attention_mask,
|
1260 |
+
token_type_ids=token_type_ids,
|
1261 |
+
position_ids=position_ids,
|
1262 |
+
output_attentions=output_attentions,
|
1263 |
+
output_hidden_states=output_hidden_states,
|
1264 |
+
return_dict=return_dict,
|
1265 |
+
)
|
1266 |
+
|
1267 |
+
pooled_output = text_outputs[0] # last_hidden_state
|
1268 |
+
text_features = self.text_projection(pooled_output)
|
1269 |
+
|
1270 |
+
return text_features
|
1271 |
+
|
1272 |
+
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
|
1273 |
+
def get_image_features(
|
1274 |
+
self,
|
1275 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1276 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
1277 |
+
interpolate_pos_encoding: Optional[bool] = None,
|
1278 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1279 |
+
head_mask: Optional[torch.Tensor] = None,
|
1280 |
+
output_attentions: Optional[bool] = None,
|
1281 |
+
output_hidden_states: Optional[bool] = None,
|
1282 |
+
return_dict: Optional[bool] = None,
|
1283 |
+
) -> torch.FloatTensor:
|
1284 |
+
r"""
|
1285 |
+
Returns:
|
1286 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1287 |
+
applying the projection layer to the pooled output of [`FlavaImageModel`].
|
1288 |
+
|
1289 |
+
Examples:
|
1290 |
+
|
1291 |
+
```python
|
1292 |
+
>>> from PIL import Image
|
1293 |
+
>>> import requests
|
1294 |
+
>>> from transformers import AutoProcessor, FlavaModel
|
1295 |
+
|
1296 |
+
>>> model = FlavaModel.from_pretrained("{0}")
|
1297 |
+
>>> processor = AutoProcessor.from_pretrained("{0}")
|
1298 |
+
|
1299 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1300 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1301 |
+
|
1302 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1303 |
+
|
1304 |
+
>>> image_features = model.get_image_features(**inputs)
|
1305 |
+
```""".format(_CHECKPOINT_FOR_DOC)
|
1306 |
+
image_outputs = self.image_model(
|
1307 |
+
pixel_values=pixel_values,
|
1308 |
+
bool_masked_pos=bool_masked_pos,
|
1309 |
+
attention_mask=attention_mask,
|
1310 |
+
head_mask=head_mask,
|
1311 |
+
output_attentions=output_attentions,
|
1312 |
+
output_hidden_states=output_hidden_states,
|
1313 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
1314 |
+
return_dict=return_dict,
|
1315 |
+
)
|
1316 |
+
|
1317 |
+
pooled_output = image_outputs[0] # last_hidden_state
|
1318 |
+
image_features = self.image_projection(pooled_output)
|
1319 |
+
|
1320 |
+
return image_features
|
1321 |
+
|
1322 |
+
@add_start_docstrings_to_model_forward(
|
1323 |
+
FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
|
1324 |
+
)
|
1325 |
+
@replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
|
1326 |
+
def forward(
|
1327 |
+
self,
|
1328 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1329 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1330 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1331 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1332 |
+
bool_masked_pos: Optional[torch.Tensor] = None,
|
1333 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1334 |
+
image_attention_mask: Optional[torch.Tensor] = None,
|
1335 |
+
skip_multimodal_encoder: Optional[bool] = None,
|
1336 |
+
output_attentions: Optional[bool] = None,
|
1337 |
+
output_hidden_states: bool = True,
|
1338 |
+
return_dict: Optional[bool] = None,
|
1339 |
+
) -> Union[Tuple, FlavaOutput]:
|
1340 |
+
r"""
|
1341 |
+
Returns:
|
1342 |
+
|
1343 |
+
Examples:
|
1344 |
+
|
1345 |
+
```python
|
1346 |
+
>>> from PIL import Image
|
1347 |
+
>>> import requests
|
1348 |
+
>>> from transformers import AutoProcessor, FlavaModel
|
1349 |
+
|
1350 |
+
>>> model = FlavaModel.from_pretrained("facebook/flava-full")
|
1351 |
+
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
|
1352 |
+
|
1353 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1354 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1355 |
+
|
1356 |
+
>>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
|
1357 |
+
|
1358 |
+
>>> outputs = model(**inputs)
|
1359 |
+
|
1360 |
+
>>> image_embeddings = outputs.image_embeddings
|
1361 |
+
>>> text_embeddings = outputs.text_embeddings
|
1362 |
+
>>> multimodal_embeddings = outputs.multimodal_embeddings
|
1363 |
+
|
1364 |
+
>>> outputs.image_embeddings.shape
|
1365 |
+
torch.Size([1, 197, 768])
|
1366 |
+
|
1367 |
+
>>> text_embeddings.shape
|
1368 |
+
torch.Size([1, 7, 768])
|
1369 |
+
|
1370 |
+
>>> multimodal_embeddings.shape
|
1371 |
+
torch.Size([1, 205, 768])
|
1372 |
+
```
|
1373 |
+
"""
|
1374 |
+
|
1375 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1376 |
+
if not output_hidden_states:
|
1377 |
+
raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
|
1378 |
+
image_embeddings = None
|
1379 |
+
image_states = None
|
1380 |
+
image_mm_projection = None
|
1381 |
+
image_output = None
|
1382 |
+
if pixel_values is not None:
|
1383 |
+
image_output = self.image_model(
|
1384 |
+
pixel_values=pixel_values,
|
1385 |
+
bool_masked_pos=bool_masked_pos,
|
1386 |
+
attention_mask=image_attention_mask,
|
1387 |
+
output_attentions=output_attentions,
|
1388 |
+
output_hidden_states=output_hidden_states,
|
1389 |
+
return_dict=return_dict,
|
1390 |
+
)
|
1391 |
+
image_embeddings, image_states = image_output[0], image_output[2]
|
1392 |
+
# Note that these states don't use final layernorm in the transformer model
|
1393 |
+
image_mm_projection = self.image_to_mm_projection(image_states[-1])
|
1394 |
+
|
1395 |
+
text_embeddings = None
|
1396 |
+
text_states = None
|
1397 |
+
text_mm_projection = None
|
1398 |
+
text_output = None
|
1399 |
+
if input_ids is not None:
|
1400 |
+
text_output = self.text_model(
|
1401 |
+
input_ids=input_ids,
|
1402 |
+
attention_mask=attention_mask,
|
1403 |
+
position_ids=position_ids,
|
1404 |
+
token_type_ids=token_type_ids,
|
1405 |
+
output_attentions=output_attentions,
|
1406 |
+
output_hidden_states=output_hidden_states,
|
1407 |
+
return_dict=return_dict,
|
1408 |
+
)
|
1409 |
+
|
1410 |
+
text_embeddings, text_states = text_output[0], text_output[2]
|
1411 |
+
# Note that these states don't use final layernorm in the transformer model
|
1412 |
+
text_mm_projection = self.text_to_mm_projection(text_states[-1])
|
1413 |
+
|
1414 |
+
multimodal_embeddings = None
|
1415 |
+
multimodal_output = None
|
1416 |
+
if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
|
1417 |
+
if attention_mask is not None:
|
1418 |
+
batch_size, seq_len, _ = image_mm_projection.shape
|
1419 |
+
if self.multimodal_model.use_cls_token:
|
1420 |
+
seq_len += 1
|
1421 |
+
attention_mask_image = torch.ones(batch_size, seq_len, device=image_mm_projection.device)
|
1422 |
+
attention_multimodal = torch.cat([attention_mask_image, attention_mask], dim=1)
|
1423 |
+
else:
|
1424 |
+
attention_multimodal = None
|
1425 |
+
multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
|
1426 |
+
multimodal_output = self.multimodal_model(
|
1427 |
+
multimodal_input, attention_mask=attention_multimodal, return_dict=return_dict
|
1428 |
+
)
|
1429 |
+
multimodal_embeddings = multimodal_output[0]
|
1430 |
+
|
1431 |
+
if not return_dict:
|
1432 |
+
return (
|
1433 |
+
image_embeddings,
|
1434 |
+
image_output,
|
1435 |
+
text_embeddings,
|
1436 |
+
text_output,
|
1437 |
+
multimodal_embeddings,
|
1438 |
+
multimodal_output,
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
return FlavaModelOutput(
|
1442 |
+
image_embeddings=image_embeddings,
|
1443 |
+
image_output=image_output,
|
1444 |
+
text_embeddings=text_embeddings,
|
1445 |
+
text_output=text_output,
|
1446 |
+
multimodal_embeddings=multimodal_embeddings,
|
1447 |
+
multimodal_output=multimodal_output,
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
|
1451 |
+
class FlavaImageCodebookResPath(nn.Module):
|
1452 |
+
def __init__(self, in_size: int, out_size: int, **kwargs):
|
1453 |
+
super().__init__()
|
1454 |
+
hid_size = out_size // 4
|
1455 |
+
|
1456 |
+
path = OrderedDict()
|
1457 |
+
path["relu_1"] = nn.ReLU()
|
1458 |
+
path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
|
1459 |
+
path["relu_2"] = nn.ReLU()
|
1460 |
+
path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
|
1461 |
+
path["relu_3"] = nn.ReLU()
|
1462 |
+
path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
|
1463 |
+
path["relu_4"] = nn.ReLU()
|
1464 |
+
path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
|
1465 |
+
|
1466 |
+
self.path = nn.Sequential(path)
|
1467 |
+
|
1468 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1469 |
+
return self.path(x)
|
1470 |
+
|
1471 |
+
|
1472 |
+
class FlavaImageCodebookBlock(nn.Module):
|
1473 |
+
def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
|
1474 |
+
super().__init__()
|
1475 |
+
|
1476 |
+
self.post_gain = 1 / (num_layers**2)
|
1477 |
+
|
1478 |
+
if in_size != out_size:
|
1479 |
+
self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
|
1480 |
+
else:
|
1481 |
+
self.id_path = nn.Identity()
|
1482 |
+
|
1483 |
+
self.res_path = FlavaImageCodebookResPath(in_size, out_size)
|
1484 |
+
|
1485 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1486 |
+
return self.id_path(x) + self.post_gain * self.res_path(x)
|
1487 |
+
|
1488 |
+
|
1489 |
+
class FlavaImageCodebookLayerGroup(nn.Module):
|
1490 |
+
def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
|
1491 |
+
super().__init__()
|
1492 |
+
blocks = OrderedDict()
|
1493 |
+
for i in range(num_blocks):
|
1494 |
+
if i == 0:
|
1495 |
+
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
|
1496 |
+
else:
|
1497 |
+
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
|
1498 |
+
|
1499 |
+
if use_pool:
|
1500 |
+
blocks["pool"] = nn.MaxPool2d(kernel_size=2)
|
1501 |
+
|
1502 |
+
self.group = nn.Sequential(blocks)
|
1503 |
+
|
1504 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1505 |
+
return self.group(x)
|
1506 |
+
|
1507 |
+
|
1508 |
+
# Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42
|
1509 |
+
@add_start_docstrings(
|
1510 |
+
"""
|
1511 |
+
The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
|
1512 |
+
to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
|
1513 |
+
`get_codebook_indices` to get image tokens for an image.
|
1514 |
+
""",
|
1515 |
+
FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"),
|
1516 |
+
)
|
1517 |
+
class FlavaImageCodebook(FlavaPreTrainedModel):
|
1518 |
+
base_model_prefix = ""
|
1519 |
+
config_class = FlavaImageCodebookConfig
|
1520 |
+
main_input_name = "pixel_values"
|
1521 |
+
supports_gradient_checkpointing = False
|
1522 |
+
|
1523 |
+
def __init__(
|
1524 |
+
self,
|
1525 |
+
config: FlavaImageCodebookConfig,
|
1526 |
+
**kwargs: Any,
|
1527 |
+
):
|
1528 |
+
super().__init__(config)
|
1529 |
+
|
1530 |
+
self.config = config
|
1531 |
+
self.num_groups = config.num_groups
|
1532 |
+
self.input_channels = config.input_channels
|
1533 |
+
self.num_blocks_per_group = config.num_blocks_per_group
|
1534 |
+
self.hidden_size = config.hidden_size
|
1535 |
+
self.vocab_size = config.vocab_size
|
1536 |
+
|
1537 |
+
num_layers = self.num_groups * self.num_blocks_per_group
|
1538 |
+
|
1539 |
+
output_blocks = OrderedDict()
|
1540 |
+
output_blocks["relu"] = nn.ReLU()
|
1541 |
+
output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
|
1542 |
+
|
1543 |
+
blocks = OrderedDict()
|
1544 |
+
blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
|
1545 |
+
blocks["group_1"] = FlavaImageCodebookLayerGroup(
|
1546 |
+
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
|
1547 |
+
)
|
1548 |
+
blocks["group_2"] = FlavaImageCodebookLayerGroup(
|
1549 |
+
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
|
1550 |
+
)
|
1551 |
+
blocks["group_3"] = FlavaImageCodebookLayerGroup(
|
1552 |
+
self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
|
1553 |
+
)
|
1554 |
+
blocks["group_4"] = FlavaImageCodebookLayerGroup(
|
1555 |
+
self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
|
1556 |
+
)
|
1557 |
+
blocks["output"] = nn.Sequential(output_blocks)
|
1558 |
+
|
1559 |
+
self.blocks = nn.Sequential(blocks)
|
1560 |
+
|
1561 |
+
self.post_init()
|
1562 |
+
|
1563 |
+
if self.config.freeze:
|
1564 |
+
for param in self.parameters():
|
1565 |
+
param.requires_grad = False
|
1566 |
+
|
1567 |
+
def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
1568 |
+
"""
|
1569 |
+
Args:
|
1570 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1571 |
+
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
|
1572 |
+
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
|
1573 |
+
|
1574 |
+
Examples:
|
1575 |
+
```python
|
1576 |
+
>>> from PIL import Image
|
1577 |
+
>>> import requests
|
1578 |
+
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
|
1579 |
+
|
1580 |
+
>>> model = FlavaImageCodebook.from_pretrained("{0}")
|
1581 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
|
1582 |
+
|
1583 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1584 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1585 |
+
|
1586 |
+
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
|
1587 |
+
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
|
1588 |
+
|
1589 |
+
>>> outputs = model.get_codebook_indices(**inputs)
|
1590 |
+
```
|
1591 |
+
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
|
1592 |
+
z_logits = self.blocks(pixel_values)
|
1593 |
+
return torch.argmax(z_logits, axis=1)
|
1594 |
+
|
1595 |
+
def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
1596 |
+
z_logits = self.blocks(pixel_values)
|
1597 |
+
return nn.Softmax(dim=1)(z_logits)
|
1598 |
+
|
1599 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
1600 |
+
"""
|
1601 |
+
Args:
|
1602 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1603 |
+
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
|
1604 |
+
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
|
1605 |
+
|
1606 |
+
Examples:
|
1607 |
+
|
1608 |
+
```python
|
1609 |
+
>>> from PIL import Image
|
1610 |
+
>>> import requests
|
1611 |
+
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
|
1612 |
+
|
1613 |
+
>>> model = FlavaImageCodebook.from_pretrained("{0}")
|
1614 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
|
1615 |
+
|
1616 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1617 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1618 |
+
|
1619 |
+
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
|
1620 |
+
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
|
1621 |
+
|
1622 |
+
>>> outputs = model(**inputs)
|
1623 |
+
>>> print(outputs.shape)
|
1624 |
+
(1, 196)
|
1625 |
+
```
|
1626 |
+
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
|
1627 |
+
if len(pixel_values.shape) != 4:
|
1628 |
+
raise ValueError(f"input shape {pixel_values.shape} is not 4d")
|
1629 |
+
if pixel_values.shape[1] != self.input_channels:
|
1630 |
+
raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
|
1631 |
+
return self.blocks(pixel_values)
|
1632 |
+
|
1633 |
+
|
1634 |
+
class FlavaPredictionHeadTransform(nn.Module):
|
1635 |
+
def __init__(self, config):
|
1636 |
+
super().__init__()
|
1637 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1638 |
+
if isinstance(config.hidden_act, str):
|
1639 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1640 |
+
else:
|
1641 |
+
self.transform_act_fn = config.hidden_act
|
1642 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1643 |
+
|
1644 |
+
def forward(self, hidden_states):
|
1645 |
+
hidden_states = self.dense(hidden_states)
|
1646 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1647 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1648 |
+
return hidden_states
|
1649 |
+
|
1650 |
+
|
1651 |
+
class FlavaMaskedPredictionHead(nn.Module):
|
1652 |
+
def __init__(self, config, weight=None):
|
1653 |
+
super().__init__()
|
1654 |
+
self.config = config
|
1655 |
+
self.transform = FlavaPredictionHeadTransform(config)
|
1656 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1657 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1658 |
+
if weight is not None:
|
1659 |
+
self.decoder.weight = weight
|
1660 |
+
|
1661 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
1662 |
+
self.decoder.bias = self.bias
|
1663 |
+
|
1664 |
+
def forward(self, x):
|
1665 |
+
x = self.transform(x)
|
1666 |
+
x = self.decoder(x)
|
1667 |
+
return x
|
1668 |
+
|
1669 |
+
|
1670 |
+
class FlavaITMHead(nn.Module):
|
1671 |
+
def __init__(self, config):
|
1672 |
+
super().__init__()
|
1673 |
+
self.config = config
|
1674 |
+
self.pooler = FlavaPooler(config)
|
1675 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
1676 |
+
|
1677 |
+
def forward(self, x):
|
1678 |
+
x = self.pooler(x)
|
1679 |
+
x = self.seq_relationship(x)
|
1680 |
+
return x
|
1681 |
+
|
1682 |
+
|
1683 |
+
class FlavaGlobalContrastiveHead(nn.Module):
|
1684 |
+
def __init__(self, config):
|
1685 |
+
super().__init__()
|
1686 |
+
self.config = config
|
1687 |
+
self.global_backprop_contrastive = config.global_backprop_contrastive
|
1688 |
+
|
1689 |
+
def forward(self, image_embeddings, text_embeddings, logit_scale):
|
1690 |
+
temperature = torch.exp(logit_scale)
|
1691 |
+
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
|
1692 |
+
labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
|
1693 |
+
image_embeddings_all = [image_embeddings]
|
1694 |
+
text_embeddings_all = [text_embeddings]
|
1695 |
+
else:
|
1696 |
+
local_batch_size = image_embeddings.size(0)
|
1697 |
+
world_size = torch.distributed.get_world_size()
|
1698 |
+
|
1699 |
+
if self.global_backprop_contrastive:
|
1700 |
+
# `torch.distributed.nn.functional.all_gather` does backprop on all active workers
|
1701 |
+
# whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
|
1702 |
+
image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
|
1703 |
+
text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
|
1704 |
+
else:
|
1705 |
+
image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
|
1706 |
+
text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
|
1707 |
+
torch.distributed.all_gather(image_embeddings_all, image_embeddings)
|
1708 |
+
torch.distributed.all_gather(text_embeddings_all, text_embeddings)
|
1709 |
+
|
1710 |
+
labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
|
1711 |
+
local_batch_size, device=image_embeddings.device
|
1712 |
+
)
|
1713 |
+
|
1714 |
+
image_embeddings_all = torch.cat(image_embeddings_all)
|
1715 |
+
text_embeddings_all = torch.cat(text_embeddings_all)
|
1716 |
+
|
1717 |
+
logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
|
1718 |
+
logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
|
1719 |
+
|
1720 |
+
return logits_per_image, logits_per_text, labels
|
1721 |
+
|
1722 |
+
|
1723 |
+
@add_start_docstrings(
|
1724 |
+
"""
|
1725 |
+
The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
|
1726 |
+
""",
|
1727 |
+
FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA,
|
1728 |
+
)
|
1729 |
+
class FlavaForPreTraining(FlavaPreTrainedModel):
|
1730 |
+
# Those are linked to xxx.bias
|
1731 |
+
_tied_weights_keys = [
|
1732 |
+
"mmm_text_head.decoder.bias",
|
1733 |
+
"mmm_image_head.decoder.bias",
|
1734 |
+
"mlm_head.decoder.bias",
|
1735 |
+
"mim_head.decoder.bias",
|
1736 |
+
]
|
1737 |
+
|
1738 |
+
def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
|
1739 |
+
super().__init__(config)
|
1740 |
+
self.flava = FlavaModel(config)
|
1741 |
+
|
1742 |
+
self.image_codebook = image_codebook
|
1743 |
+
if self.image_codebook is None and config.init_codebook:
|
1744 |
+
self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
|
1745 |
+
|
1746 |
+
# Levarage text and image encoder configs to create the masked
|
1747 |
+
# head since it has the right vocab
|
1748 |
+
self.mim_head = FlavaMaskedPredictionHead(config.image_config)
|
1749 |
+
self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
|
1750 |
+
self.itm_head = FlavaITMHead(config)
|
1751 |
+
self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
|
1752 |
+
self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
|
1753 |
+
self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
|
1754 |
+
|
1755 |
+
self.image_vocab_size = config.image_config.vocab_size
|
1756 |
+
self.text_vocab_size = config.text_config.vocab_size
|
1757 |
+
self.mlm_weight = config.mlm_weight
|
1758 |
+
self.mim_weight = config.mim_weight
|
1759 |
+
self.global_contrastive_weight = config.global_contrastive_weight
|
1760 |
+
self.ce_ignore_index = config.ce_ignore_index
|
1761 |
+
self.itm_weight = config.itm_weight
|
1762 |
+
self.mmm_image_weight = config.mmm_image_weight
|
1763 |
+
self.mmm_text_weight = config.mmm_text_weight
|
1764 |
+
self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
|
1765 |
+
|
1766 |
+
self.post_init()
|
1767 |
+
|
1768 |
+
def _resize_to_2d(self, x: torch.Tensor):
|
1769 |
+
if x.dim() > 2:
|
1770 |
+
x = x.view(x.size(0), -1)
|
1771 |
+
return x
|
1772 |
+
|
1773 |
+
@add_start_docstrings_to_model_forward(
|
1774 |
+
FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
|
1775 |
+
)
|
1776 |
+
@replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
|
1777 |
+
def forward(
|
1778 |
+
self,
|
1779 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1780 |
+
input_ids_masked: Optional[torch.LongTensor] = None,
|
1781 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1782 |
+
codebook_pixel_values: Optional[torch.FloatTensor] = None,
|
1783 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1784 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1785 |
+
bool_masked_pos: Optional[torch.Tensor] = None,
|
1786 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1787 |
+
image_attention_mask: Optional[torch.Tensor] = None,
|
1788 |
+
skip_unmasked_multimodal_encoder: bool = None,
|
1789 |
+
mlm_labels: Optional[torch.Tensor] = None,
|
1790 |
+
mim_labels: Optional[torch.Tensor] = None,
|
1791 |
+
itm_labels: Optional[torch.Tensor] = None,
|
1792 |
+
output_attentions: Optional[bool] = None,
|
1793 |
+
output_hidden_states: bool = True,
|
1794 |
+
return_dict: Optional[bool] = None,
|
1795 |
+
return_loss: Optional[bool] = None,
|
1796 |
+
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
|
1797 |
+
"""
|
1798 |
+
Examples:
|
1799 |
+
```python
|
1800 |
+
>>> from PIL import Image
|
1801 |
+
>>> import requests
|
1802 |
+
>>> from transformers import FlavaForPreTraining, AutoProcessor
|
1803 |
+
|
1804 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1805 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1806 |
+
|
1807 |
+
>>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
|
1808 |
+
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
|
1809 |
+
|
1810 |
+
>>> text = ["a photo of a cat"]
|
1811 |
+
|
1812 |
+
>>> inputs = processor(
|
1813 |
+
... images=[image],
|
1814 |
+
... text=text,
|
1815 |
+
... return_masks=True,
|
1816 |
+
... return_codebook_pixels=True,
|
1817 |
+
... padding=True,
|
1818 |
+
... max_length=77,
|
1819 |
+
... return_tensors="pt",
|
1820 |
+
... )
|
1821 |
+
|
1822 |
+
|
1823 |
+
>>> output = model(**inputs)
|
1824 |
+
```
|
1825 |
+
|
1826 |
+
Return:
|
1827 |
+
|
1828 |
+
"""
|
1829 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1830 |
+
return_loss = return_loss if return_loss is not None else self.config.return_loss
|
1831 |
+
|
1832 |
+
skip_unmasked_multimodal_encoder = (
|
1833 |
+
skip_unmasked_multimodal_encoder
|
1834 |
+
if skip_unmasked_multimodal_encoder is not None
|
1835 |
+
else self.skip_unmasked_multimodal_encoder
|
1836 |
+
)
|
1837 |
+
|
1838 |
+
if input_ids_masked is None and input_ids is not None:
|
1839 |
+
logger.warning(
|
1840 |
+
"`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
|
1841 |
+
" `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
|
1842 |
+
" you are doing inference on unmasked text..."
|
1843 |
+
)
|
1844 |
+
input_ids_masked = input_ids
|
1845 |
+
|
1846 |
+
flava_output = self.flava(
|
1847 |
+
input_ids=input_ids,
|
1848 |
+
pixel_values=pixel_values,
|
1849 |
+
attention_mask=attention_mask,
|
1850 |
+
token_type_ids=token_type_ids,
|
1851 |
+
position_ids=position_ids,
|
1852 |
+
image_attention_mask=image_attention_mask,
|
1853 |
+
# Don't need unmasked multimodal embedding for anything so skip it
|
1854 |
+
# NOTE: ITM uses masked version
|
1855 |
+
skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
|
1856 |
+
output_attentions=output_attentions,
|
1857 |
+
output_hidden_states=output_hidden_states,
|
1858 |
+
# Pass true to have deterministic outputs
|
1859 |
+
return_dict=True,
|
1860 |
+
)
|
1861 |
+
|
1862 |
+
flava_masked_output = self.flava(
|
1863 |
+
input_ids=input_ids_masked,
|
1864 |
+
pixel_values=pixel_values,
|
1865 |
+
attention_mask=attention_mask,
|
1866 |
+
token_type_ids=token_type_ids,
|
1867 |
+
image_attention_mask=image_attention_mask,
|
1868 |
+
bool_masked_pos=bool_masked_pos,
|
1869 |
+
output_attentions=output_attentions,
|
1870 |
+
output_hidden_states=output_hidden_states,
|
1871 |
+
return_dict=True,
|
1872 |
+
)
|
1873 |
+
|
1874 |
+
pos_mask = None
|
1875 |
+
|
1876 |
+
image_embeddings = flava_output.image_embeddings
|
1877 |
+
text_embeddings = flava_output.text_embeddings
|
1878 |
+
image_masked_embeddings = flava_masked_output.image_embeddings
|
1879 |
+
text_masked_embeddings = flava_masked_output.text_embeddings
|
1880 |
+
multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
|
1881 |
+
|
1882 |
+
total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
|
1883 |
+
mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
|
1884 |
+
itm_logits = logits_per_image = logits_per_text = None
|
1885 |
+
|
1886 |
+
# Calculate mim_labels if necessary from the image_codebook
|
1887 |
+
if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
|
1888 |
+
if mim_labels is None and return_loss:
|
1889 |
+
if self.image_codebook is None:
|
1890 |
+
raise RuntimeError(
|
1891 |
+
"`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
|
1892 |
+
" have been passed. Reinstantiate the model with `init_codebook` set to True or "
|
1893 |
+
"pass in your custom `mim_labels`"
|
1894 |
+
)
|
1895 |
+
if codebook_pixel_values is None:
|
1896 |
+
raise ValueError(
|
1897 |
+
"`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
|
1898 |
+
"Call `AutoProcessor` with `return_codebook_pixels` set to True"
|
1899 |
+
)
|
1900 |
+
mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
|
1901 |
+
# Unimodal MIM Loss
|
1902 |
+
# If multimodal embeddings are present, we will calculate MMM loss
|
1903 |
+
if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
|
1904 |
+
sequence_for_image = image_masked_embeddings
|
1905 |
+
|
1906 |
+
if mim_labels is not None:
|
1907 |
+
mim_labels = self._resize_to_2d(mim_labels)
|
1908 |
+
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
|
1909 |
+
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
|
1910 |
+
|
1911 |
+
sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
|
1912 |
+
masked_tokens = mim_labels.ne(self.ce_ignore_index)
|
1913 |
+
mim_labels_filtered = mim_labels[masked_tokens]
|
1914 |
+
sequence_for_image = sequence_for_image[masked_tokens, :]
|
1915 |
+
mim_logits = self.mim_head(sequence_for_image)
|
1916 |
+
if return_loss:
|
1917 |
+
mim_loss = nn.functional.cross_entropy(
|
1918 |
+
mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
|
1919 |
+
)
|
1920 |
+
mim_loss *= self.mim_weight
|
1921 |
+
else:
|
1922 |
+
mim_logits = self.mim_head(sequence_for_image)
|
1923 |
+
|
1924 |
+
# Unimodal MLM Loss
|
1925 |
+
if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
|
1926 |
+
sequence_for_text = text_masked_embeddings
|
1927 |
+
if mlm_labels is not None:
|
1928 |
+
mlm_labels = self._resize_to_2d(mlm_labels)
|
1929 |
+
sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
|
1930 |
+
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
|
1931 |
+
mlm_labels_filtered = mlm_labels[masked_tokens]
|
1932 |
+
sequence_for_text = sequence_for_text[masked_tokens, :]
|
1933 |
+
mlm_logits = self.mlm_head(sequence_for_text)
|
1934 |
+
if return_loss:
|
1935 |
+
mlm_loss = nn.functional.cross_entropy(
|
1936 |
+
mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
|
1937 |
+
)
|
1938 |
+
mlm_loss *= self.mlm_weight
|
1939 |
+
else:
|
1940 |
+
mlm_logits = self.mlm_head(sequence_for_text)
|
1941 |
+
|
1942 |
+
# ITM Loss
|
1943 |
+
if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
|
1944 |
+
itm_logits = self.itm_head(multimodal_masked_embeddings)
|
1945 |
+
|
1946 |
+
if itm_labels is not None:
|
1947 |
+
pos_pairs = itm_labels.ne(0)
|
1948 |
+
pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
|
1949 |
+
if return_loss:
|
1950 |
+
itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
|
1951 |
+
itm_loss *= self.itm_weight
|
1952 |
+
|
1953 |
+
if multimodal_masked_embeddings is not None:
|
1954 |
+
multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
|
1955 |
+
|
1956 |
+
if mlm_labels is not None:
|
1957 |
+
mlm_labels = mlm_labels[pos_mask]
|
1958 |
+
|
1959 |
+
if mim_labels is not None:
|
1960 |
+
mim_labels = mim_labels[pos_mask]
|
1961 |
+
bool_masked_pos = bool_masked_pos[pos_mask]
|
1962 |
+
|
1963 |
+
# MMM Image Loss
|
1964 |
+
if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
|
1965 |
+
sequence_for_image = multimodal_masked_embeddings
|
1966 |
+
end_index = image_masked_embeddings.size(1) - 1
|
1967 |
+
sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
|
1968 |
+
|
1969 |
+
if mim_labels is not None:
|
1970 |
+
mim_labels = self._resize_to_2d(mim_labels)
|
1971 |
+
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
|
1972 |
+
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
|
1973 |
+
|
1974 |
+
masked_tokens = mim_labels.ne(self.ce_ignore_index)
|
1975 |
+
mim_labels_filtered = mim_labels[masked_tokens]
|
1976 |
+
sequence_for_image = sequence_for_image[masked_tokens, :]
|
1977 |
+
mmm_image_logits = self.mmm_image_head(sequence_for_image)
|
1978 |
+
if return_loss:
|
1979 |
+
mmm_image_loss = nn.functional.cross_entropy(
|
1980 |
+
mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
|
1981 |
+
)
|
1982 |
+
mmm_image_loss *= self.mmm_image_weight
|
1983 |
+
else:
|
1984 |
+
mmm_image_logits = self.mmm_image_head(sequence_for_image)
|
1985 |
+
|
1986 |
+
# MMM Text Loss
|
1987 |
+
if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
|
1988 |
+
sequence_for_text = multimodal_masked_embeddings
|
1989 |
+
sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
|
1990 |
+
|
1991 |
+
if mlm_labels is not None:
|
1992 |
+
mlm_labels = self._resize_to_2d(mlm_labels)
|
1993 |
+
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
|
1994 |
+
mlm_labels_filtered = mlm_labels[masked_tokens]
|
1995 |
+
sequence_for_text = sequence_for_text[masked_tokens, :]
|
1996 |
+
mmm_text_logits = self.mmm_text_head(sequence_for_text)
|
1997 |
+
if return_loss:
|
1998 |
+
mmm_text_loss = nn.functional.cross_entropy(
|
1999 |
+
mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
|
2000 |
+
)
|
2001 |
+
mmm_text_loss *= self.mmm_text_weight
|
2002 |
+
else:
|
2003 |
+
mmm_text_logits = self.mmm_text_head(sequence_for_text)
|
2004 |
+
|
2005 |
+
# Global Contrastive Loss
|
2006 |
+
if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
|
2007 |
+
text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
|
2008 |
+
text_embedding = nn.functional.normalize(text_embedding, dim=-1)
|
2009 |
+
|
2010 |
+
image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
|
2011 |
+
image_embedding = nn.functional.normalize(image_embedding, dim=-1)
|
2012 |
+
|
2013 |
+
self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
|
2014 |
+
|
2015 |
+
logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
|
2016 |
+
image_embedding, text_embedding, self.flava.logit_scale
|
2017 |
+
)
|
2018 |
+
|
2019 |
+
# Apply ITM negative mask if any
|
2020 |
+
if pos_mask is not None:
|
2021 |
+
logits_per_image = logits_per_image[pos_mask]
|
2022 |
+
logits_per_text = logits_per_text[pos_mask]
|
2023 |
+
gc_labels = gc_labels[pos_mask]
|
2024 |
+
|
2025 |
+
if return_loss:
|
2026 |
+
gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
|
2027 |
+
gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
|
2028 |
+
gc_loss = (gc_loss_image + gc_loss_text) / 2
|
2029 |
+
gc_loss *= self.global_contrastive_weight
|
2030 |
+
|
2031 |
+
flava_losses = FlavaLosses(
|
2032 |
+
mim=mim_loss,
|
2033 |
+
mlm=mlm_loss,
|
2034 |
+
itm=itm_loss,
|
2035 |
+
global_contrastive=gc_loss,
|
2036 |
+
mmm_image=mmm_image_loss,
|
2037 |
+
mmm_text=mmm_text_loss,
|
2038 |
+
)
|
2039 |
+
|
2040 |
+
if return_loss and not flava_losses.all_none():
|
2041 |
+
total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
|
2042 |
+
|
2043 |
+
if not return_dict:
|
2044 |
+
output = (
|
2045 |
+
image_embeddings,
|
2046 |
+
flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
|
2047 |
+
text_embeddings,
|
2048 |
+
flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
|
2049 |
+
flava_output.multimodal_embeddings,
|
2050 |
+
flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
|
2051 |
+
image_masked_embeddings,
|
2052 |
+
flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
|
2053 |
+
text_masked_embeddings,
|
2054 |
+
flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
|
2055 |
+
multimodal_masked_embeddings,
|
2056 |
+
flava_masked_output.multimodal_output.to_tuple()
|
2057 |
+
if flava_masked_output.multimodal_output is not None
|
2058 |
+
else None,
|
2059 |
+
mim_logits,
|
2060 |
+
mlm_logits,
|
2061 |
+
itm_logits,
|
2062 |
+
logits_per_image,
|
2063 |
+
logits_per_image,
|
2064 |
+
mmm_image_logits,
|
2065 |
+
mmm_text_logits,
|
2066 |
+
)
|
2067 |
+
if return_loss and not flava_losses.all_none():
|
2068 |
+
output = (
|
2069 |
+
total_loss,
|
2070 |
+
flava_losses,
|
2071 |
+
) + output
|
2072 |
+
|
2073 |
+
# Filter None as transformer by default won't handle it
|
2074 |
+
return tuple(x for x in output if x is None)
|
2075 |
+
|
2076 |
+
return FlavaForPreTrainingOutput(
|
2077 |
+
loss=total_loss,
|
2078 |
+
loss_info=flava_losses,
|
2079 |
+
image_embeddings=image_embeddings,
|
2080 |
+
image_output=flava_output.image_output,
|
2081 |
+
text_embeddings=text_embeddings,
|
2082 |
+
text_output=flava_output.text_output,
|
2083 |
+
multimodal_embeddings=flava_output.multimodal_embeddings,
|
2084 |
+
multimodal_output=flava_output.multimodal_output,
|
2085 |
+
image_masked_embeddings=image_masked_embeddings,
|
2086 |
+
image_masked_output=flava_masked_output.image_output,
|
2087 |
+
text_masked_embeddings=text_masked_embeddings,
|
2088 |
+
text_masked_output=flava_masked_output.text_output,
|
2089 |
+
multimodal_masked_embeddings=multimodal_masked_embeddings,
|
2090 |
+
multimodal_masked_output=flava_masked_output.multimodal_output,
|
2091 |
+
mim_logits=mim_logits,
|
2092 |
+
mlm_logits=mlm_logits,
|
2093 |
+
itm_logits=itm_logits,
|
2094 |
+
contrastive_logits_per_image=logits_per_image,
|
2095 |
+
contrastive_logits_per_text=logits_per_text,
|
2096 |
+
mmm_image_logits=mmm_image_logits,
|
2097 |
+
mmm_text_logits=mmm_text_logits,
|
2098 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flava/processing_flava.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for FLAVA
|
17 |
+
"""
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
from ...image_utils import ImageInput
|
23 |
+
from ...processing_utils import ProcessorMixin
|
24 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
25 |
+
from ...utils import TensorType
|
26 |
+
|
27 |
+
|
28 |
+
class FlavaProcessor(ProcessorMixin):
|
29 |
+
r"""
|
30 |
+
Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor.
|
31 |
+
|
32 |
+
[`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the
|
33 |
+
[`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
image_processor ([`FlavaImageProcessor`], *optional*): The image processor is a required input.
|
37 |
+
tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input.
|
38 |
+
"""
|
39 |
+
|
40 |
+
attributes = ["image_processor", "tokenizer"]
|
41 |
+
image_processor_class = "FlavaImageProcessor"
|
42 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
43 |
+
|
44 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
45 |
+
feature_extractor = None
|
46 |
+
if "feature_extractor" in kwargs:
|
47 |
+
warnings.warn(
|
48 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
49 |
+
" instead.",
|
50 |
+
FutureWarning,
|
51 |
+
)
|
52 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
53 |
+
|
54 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
55 |
+
if image_processor is None:
|
56 |
+
raise ValueError("You need to specify an `image_processor`.")
|
57 |
+
if tokenizer is None:
|
58 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
59 |
+
|
60 |
+
super().__init__(image_processor, tokenizer)
|
61 |
+
self.current_processor = self.image_processor
|
62 |
+
|
63 |
+
def __call__(
|
64 |
+
self,
|
65 |
+
images: Optional[ImageInput] = None,
|
66 |
+
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
67 |
+
add_special_tokens: bool = True,
|
68 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
69 |
+
truncation: Union[bool, str, TruncationStrategy] = False,
|
70 |
+
max_length: Optional[int] = None,
|
71 |
+
stride: int = 0,
|
72 |
+
pad_to_multiple_of: Optional[int] = None,
|
73 |
+
return_image_mask: Optional[bool] = None,
|
74 |
+
return_codebook_pixels: Optional[bool] = None,
|
75 |
+
return_token_type_ids: Optional[bool] = None,
|
76 |
+
return_attention_mask: Optional[bool] = None,
|
77 |
+
return_overflowing_tokens: bool = False,
|
78 |
+
return_special_tokens_mask: bool = False,
|
79 |
+
return_offsets_mapping: bool = False,
|
80 |
+
return_length: bool = False,
|
81 |
+
verbose: bool = True,
|
82 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
"""
|
86 |
+
This method uses [`FlavaImageProcessor.__call__`] method to prepare image(s) for the model, and
|
87 |
+
[`BertTokenizerFast.__call__`] to prepare text for the model.
|
88 |
+
|
89 |
+
Please refer to the docstring of the above two methods for more information.
|
90 |
+
"""
|
91 |
+
|
92 |
+
if text is None and images is None:
|
93 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
94 |
+
|
95 |
+
if text is not None:
|
96 |
+
encoding = self.tokenizer(
|
97 |
+
text=text,
|
98 |
+
add_special_tokens=add_special_tokens,
|
99 |
+
padding=padding,
|
100 |
+
truncation=truncation,
|
101 |
+
max_length=max_length,
|
102 |
+
stride=stride,
|
103 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
104 |
+
return_token_type_ids=return_token_type_ids,
|
105 |
+
return_attention_mask=return_attention_mask,
|
106 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
107 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
108 |
+
return_offsets_mapping=return_offsets_mapping,
|
109 |
+
return_length=return_length,
|
110 |
+
verbose=verbose,
|
111 |
+
return_tensors=return_tensors,
|
112 |
+
**kwargs,
|
113 |
+
)
|
114 |
+
if images is not None:
|
115 |
+
image_features = self.image_processor(
|
116 |
+
images,
|
117 |
+
return_image_mask=return_image_mask,
|
118 |
+
return_codebook_pixels=return_codebook_pixels,
|
119 |
+
return_tensors=return_tensors,
|
120 |
+
**kwargs,
|
121 |
+
)
|
122 |
+
|
123 |
+
if text is not None and images is not None:
|
124 |
+
encoding.update(image_features)
|
125 |
+
return encoding
|
126 |
+
elif text is not None:
|
127 |
+
return encoding
|
128 |
+
else:
|
129 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
130 |
+
|
131 |
+
def batch_decode(self, *args, **kwargs):
|
132 |
+
"""
|
133 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
134 |
+
refer to the docstring of this method for more information.
|
135 |
+
"""
|
136 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
137 |
+
|
138 |
+
def decode(self, *args, **kwargs):
|
139 |
+
"""
|
140 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
141 |
+
the docstring of this method for more information.
|
142 |
+
"""
|
143 |
+
return self.tokenizer.decode(*args, **kwargs)
|
144 |
+
|
145 |
+
@property
|
146 |
+
def model_input_names(self):
|
147 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
148 |
+
image_processor_input_names = self.image_processor.model_input_names
|
149 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
150 |
+
|
151 |
+
@property
|
152 |
+
def feature_extractor_class(self):
|
153 |
+
warnings.warn(
|
154 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
155 |
+
FutureWarning,
|
156 |
+
)
|
157 |
+
return self.image_processor_class
|
158 |
+
|
159 |
+
@property
|
160 |
+
def feature_extractor(self):
|
161 |
+
warnings.warn(
|
162 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
163 |
+
FutureWarning,
|
164 |
+
)
|
165 |
+
return self.image_processor
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__init__.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_markuplm": ["MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "MarkupLMConfig"],
|
21 |
+
"feature_extraction_markuplm": ["MarkupLMFeatureExtractor"],
|
22 |
+
"processing_markuplm": ["MarkupLMProcessor"],
|
23 |
+
"tokenization_markuplm": ["MarkupLMTokenizer"],
|
24 |
+
}
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_tokenizers_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["tokenization_markuplm_fast"] = ["MarkupLMTokenizerFast"]
|
33 |
+
|
34 |
+
try:
|
35 |
+
if not is_torch_available():
|
36 |
+
raise OptionalDependencyNotAvailable()
|
37 |
+
except OptionalDependencyNotAvailable:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
_import_structure["modeling_markuplm"] = [
|
41 |
+
"MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
42 |
+
"MarkupLMForQuestionAnswering",
|
43 |
+
"MarkupLMForSequenceClassification",
|
44 |
+
"MarkupLMForTokenClassification",
|
45 |
+
"MarkupLMModel",
|
46 |
+
"MarkupLMPreTrainedModel",
|
47 |
+
]
|
48 |
+
|
49 |
+
|
50 |
+
if TYPE_CHECKING:
|
51 |
+
from .configuration_markuplm import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP, MarkupLMConfig
|
52 |
+
from .feature_extraction_markuplm import MarkupLMFeatureExtractor
|
53 |
+
from .processing_markuplm import MarkupLMProcessor
|
54 |
+
from .tokenization_markuplm import MarkupLMTokenizer
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_tokenizers_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .tokenization_markuplm_fast import MarkupLMTokenizerFast
|
63 |
+
|
64 |
+
try:
|
65 |
+
if not is_torch_available():
|
66 |
+
raise OptionalDependencyNotAvailable()
|
67 |
+
except OptionalDependencyNotAvailable:
|
68 |
+
pass
|
69 |
+
else:
|
70 |
+
from .modeling_markuplm import (
|
71 |
+
MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
72 |
+
MarkupLMForQuestionAnswering,
|
73 |
+
MarkupLMForSequenceClassification,
|
74 |
+
MarkupLMForTokenClassification,
|
75 |
+
MarkupLMModel,
|
76 |
+
MarkupLMPreTrainedModel,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
else:
|
81 |
+
import sys
|
82 |
+
|
83 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/configuration_markuplm.cpython-310.pyc
ADDED
Binary file (6.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/feature_extraction_markuplm.cpython-310.pyc
ADDED
Binary file (5.19 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/modeling_markuplm.cpython-310.pyc
ADDED
Binary file (37.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/processing_markuplm.cpython-310.pyc
ADDED
Binary file (5.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm.cpython-310.pyc
ADDED
Binary file (44.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/__pycache__/tokenization_markuplm_fast.cpython-310.pyc
ADDED
Binary file (24.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/configuration_markuplm.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021, The Microsoft Research Asia MarkupLM Team authors
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MarkupLM model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class MarkupLMConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a
|
30 |
+
MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the MarkupLM
|
32 |
+
[microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`BertConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
39 |
+
Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the
|
40 |
+
*inputs_ids* passed to the forward method of [`MarkupLMModel`].
|
41 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
42 |
+
Dimensionality of the encoder layers and the pooler layer.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
44 |
+
Number of hidden layers in the Transformer encoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
46 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
48 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
49 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
50 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
51 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
52 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
53 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
54 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
55 |
+
The dropout ratio for the attention probabilities.
|
56 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
57 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
58 |
+
just in case (e.g., 512 or 1024 or 2048).
|
59 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
60 |
+
The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`].
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
64 |
+
The epsilon used by the layer normalization layers.
|
65 |
+
max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024):
|
66 |
+
The maximum value that the tree id unit embedding might ever use. Typically set this to something large
|
67 |
+
just in case (e.g., 1024).
|
68 |
+
max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256):
|
69 |
+
The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large
|
70 |
+
just in case (e.g., 256).
|
71 |
+
max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024):
|
72 |
+
The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something
|
73 |
+
large just in case (e.g., 1024).
|
74 |
+
tag_pad_id (`int`, *optional*, defaults to 216):
|
75 |
+
The id of the padding token in the xpath tags.
|
76 |
+
subs_pad_id (`int`, *optional*, defaults to 1001):
|
77 |
+
The id of the padding token in the xpath subscripts.
|
78 |
+
xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32):
|
79 |
+
The hidden size of each tree id unit. One complete tree index will have
|
80 |
+
(50*xpath_tag_unit_hidden_size)-dim.
|
81 |
+
max_depth (`int`, *optional*, defaults to 50):
|
82 |
+
The maximum depth in xpath.
|
83 |
+
|
84 |
+
Examples:
|
85 |
+
|
86 |
+
```python
|
87 |
+
>>> from transformers import MarkupLMModel, MarkupLMConfig
|
88 |
+
|
89 |
+
>>> # Initializing a MarkupLM microsoft/markuplm-base style configuration
|
90 |
+
>>> configuration = MarkupLMConfig()
|
91 |
+
|
92 |
+
>>> # Initializing a model from the microsoft/markuplm-base style configuration
|
93 |
+
>>> model = MarkupLMModel(configuration)
|
94 |
+
|
95 |
+
>>> # Accessing the model configuration
|
96 |
+
>>> configuration = model.config
|
97 |
+
```"""
|
98 |
+
|
99 |
+
model_type = "markuplm"
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
vocab_size=30522,
|
104 |
+
hidden_size=768,
|
105 |
+
num_hidden_layers=12,
|
106 |
+
num_attention_heads=12,
|
107 |
+
intermediate_size=3072,
|
108 |
+
hidden_act="gelu",
|
109 |
+
hidden_dropout_prob=0.1,
|
110 |
+
attention_probs_dropout_prob=0.1,
|
111 |
+
max_position_embeddings=512,
|
112 |
+
type_vocab_size=2,
|
113 |
+
initializer_range=0.02,
|
114 |
+
layer_norm_eps=1e-12,
|
115 |
+
pad_token_id=0,
|
116 |
+
bos_token_id=0,
|
117 |
+
eos_token_id=2,
|
118 |
+
max_xpath_tag_unit_embeddings=256,
|
119 |
+
max_xpath_subs_unit_embeddings=1024,
|
120 |
+
tag_pad_id=216,
|
121 |
+
subs_pad_id=1001,
|
122 |
+
xpath_unit_hidden_size=32,
|
123 |
+
max_depth=50,
|
124 |
+
position_embedding_type="absolute",
|
125 |
+
use_cache=True,
|
126 |
+
classifier_dropout=None,
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
super().__init__(
|
130 |
+
pad_token_id=pad_token_id,
|
131 |
+
bos_token_id=bos_token_id,
|
132 |
+
eos_token_id=eos_token_id,
|
133 |
+
**kwargs,
|
134 |
+
)
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
self.hidden_size = hidden_size
|
137 |
+
self.num_hidden_layers = num_hidden_layers
|
138 |
+
self.num_attention_heads = num_attention_heads
|
139 |
+
self.hidden_act = hidden_act
|
140 |
+
self.intermediate_size = intermediate_size
|
141 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
142 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
143 |
+
self.max_position_embeddings = max_position_embeddings
|
144 |
+
self.type_vocab_size = type_vocab_size
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
147 |
+
self.position_embedding_type = position_embedding_type
|
148 |
+
self.use_cache = use_cache
|
149 |
+
self.classifier_dropout = classifier_dropout
|
150 |
+
# additional properties
|
151 |
+
self.max_depth = max_depth
|
152 |
+
self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings
|
153 |
+
self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings
|
154 |
+
self.tag_pad_id = tag_pad_id
|
155 |
+
self.subs_pad_id = subs_pad_id
|
156 |
+
self.xpath_unit_hidden_size = xpath_unit_hidden_size
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/feature_extraction_markuplm.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extractor class for MarkupLM.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import html
|
20 |
+
|
21 |
+
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
|
22 |
+
from ...utils import is_bs4_available, logging, requires_backends
|
23 |
+
|
24 |
+
|
25 |
+
if is_bs4_available():
|
26 |
+
import bs4
|
27 |
+
from bs4 import BeautifulSoup
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class MarkupLMFeatureExtractor(FeatureExtractionMixin):
|
34 |
+
r"""
|
35 |
+
Constructs a MarkupLM feature extractor. This can be used to get a list of nodes and corresponding xpaths from HTML
|
36 |
+
strings.
|
37 |
+
|
38 |
+
This feature extractor inherits from [`~feature_extraction_utils.PreTrainedFeatureExtractor`] which contains most
|
39 |
+
of the main methods. Users should refer to this superclass for more information regarding those methods.
|
40 |
+
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, **kwargs):
|
44 |
+
requires_backends(self, ["bs4"])
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
def xpath_soup(self, element):
|
48 |
+
xpath_tags = []
|
49 |
+
xpath_subscripts = []
|
50 |
+
child = element if element.name else element.parent
|
51 |
+
for parent in child.parents: # type: bs4.element.Tag
|
52 |
+
siblings = parent.find_all(child.name, recursive=False)
|
53 |
+
xpath_tags.append(child.name)
|
54 |
+
xpath_subscripts.append(
|
55 |
+
0 if 1 == len(siblings) else next(i for i, s in enumerate(siblings, 1) if s is child)
|
56 |
+
)
|
57 |
+
child = parent
|
58 |
+
xpath_tags.reverse()
|
59 |
+
xpath_subscripts.reverse()
|
60 |
+
return xpath_tags, xpath_subscripts
|
61 |
+
|
62 |
+
def get_three_from_single(self, html_string):
|
63 |
+
html_code = BeautifulSoup(html_string, "html.parser")
|
64 |
+
|
65 |
+
all_doc_strings = []
|
66 |
+
string2xtag_seq = []
|
67 |
+
string2xsubs_seq = []
|
68 |
+
|
69 |
+
for element in html_code.descendants:
|
70 |
+
if isinstance(element, bs4.element.NavigableString):
|
71 |
+
if type(element.parent) != bs4.element.Tag:
|
72 |
+
continue
|
73 |
+
|
74 |
+
text_in_this_tag = html.unescape(element).strip()
|
75 |
+
if not text_in_this_tag:
|
76 |
+
continue
|
77 |
+
|
78 |
+
all_doc_strings.append(text_in_this_tag)
|
79 |
+
|
80 |
+
xpath_tags, xpath_subscripts = self.xpath_soup(element)
|
81 |
+
string2xtag_seq.append(xpath_tags)
|
82 |
+
string2xsubs_seq.append(xpath_subscripts)
|
83 |
+
|
84 |
+
if len(all_doc_strings) != len(string2xtag_seq):
|
85 |
+
raise ValueError("Number of doc strings and xtags does not correspond")
|
86 |
+
if len(all_doc_strings) != len(string2xsubs_seq):
|
87 |
+
raise ValueError("Number of doc strings and xsubs does not correspond")
|
88 |
+
|
89 |
+
return all_doc_strings, string2xtag_seq, string2xsubs_seq
|
90 |
+
|
91 |
+
def construct_xpath(self, xpath_tags, xpath_subscripts):
|
92 |
+
xpath = ""
|
93 |
+
for tagname, subs in zip(xpath_tags, xpath_subscripts):
|
94 |
+
xpath += f"/{tagname}"
|
95 |
+
if subs != 0:
|
96 |
+
xpath += f"[{subs}]"
|
97 |
+
return xpath
|
98 |
+
|
99 |
+
def __call__(self, html_strings) -> BatchFeature:
|
100 |
+
"""
|
101 |
+
Main method to prepare for the model one or several HTML strings.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
html_strings (`str`, `List[str]`):
|
105 |
+
The HTML string or batch of HTML strings from which to extract nodes and corresponding xpaths.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
109 |
+
|
110 |
+
- **nodes** -- Nodes.
|
111 |
+
- **xpaths** -- Corresponding xpaths.
|
112 |
+
|
113 |
+
Examples:
|
114 |
+
|
115 |
+
```python
|
116 |
+
>>> from transformers import MarkupLMFeatureExtractor
|
117 |
+
|
118 |
+
>>> page_name_1 = "page1.html"
|
119 |
+
>>> page_name_2 = "page2.html"
|
120 |
+
>>> page_name_3 = "page3.html"
|
121 |
+
|
122 |
+
>>> with open(page_name_1) as f:
|
123 |
+
... single_html_string = f.read()
|
124 |
+
|
125 |
+
>>> feature_extractor = MarkupLMFeatureExtractor()
|
126 |
+
|
127 |
+
>>> # single example
|
128 |
+
>>> encoding = feature_extractor(single_html_string)
|
129 |
+
>>> print(encoding.keys())
|
130 |
+
>>> # dict_keys(['nodes', 'xpaths'])
|
131 |
+
|
132 |
+
>>> # batched example
|
133 |
+
|
134 |
+
>>> multi_html_strings = []
|
135 |
+
|
136 |
+
>>> with open(page_name_2) as f:
|
137 |
+
... multi_html_strings.append(f.read())
|
138 |
+
>>> with open(page_name_3) as f:
|
139 |
+
... multi_html_strings.append(f.read())
|
140 |
+
|
141 |
+
>>> encoding = feature_extractor(multi_html_strings)
|
142 |
+
>>> print(encoding.keys())
|
143 |
+
>>> # dict_keys(['nodes', 'xpaths'])
|
144 |
+
```"""
|
145 |
+
|
146 |
+
# Input type checking for clearer error
|
147 |
+
valid_strings = False
|
148 |
+
|
149 |
+
# Check that strings has a valid type
|
150 |
+
if isinstance(html_strings, str):
|
151 |
+
valid_strings = True
|
152 |
+
elif isinstance(html_strings, (list, tuple)):
|
153 |
+
if len(html_strings) == 0 or isinstance(html_strings[0], str):
|
154 |
+
valid_strings = True
|
155 |
+
|
156 |
+
if not valid_strings:
|
157 |
+
raise ValueError(
|
158 |
+
"HTML strings must of type `str`, `List[str]` (batch of examples), "
|
159 |
+
f"but is of type {type(html_strings)}."
|
160 |
+
)
|
161 |
+
|
162 |
+
is_batched = bool(isinstance(html_strings, (list, tuple)) and (isinstance(html_strings[0], str)))
|
163 |
+
|
164 |
+
if not is_batched:
|
165 |
+
html_strings = [html_strings]
|
166 |
+
|
167 |
+
# Get nodes + xpaths
|
168 |
+
nodes = []
|
169 |
+
xpaths = []
|
170 |
+
for html_string in html_strings:
|
171 |
+
all_doc_strings, string2xtag_seq, string2xsubs_seq = self.get_three_from_single(html_string)
|
172 |
+
nodes.append(all_doc_strings)
|
173 |
+
xpath_strings = []
|
174 |
+
for node, tag_list, sub_list in zip(all_doc_strings, string2xtag_seq, string2xsubs_seq):
|
175 |
+
xpath_string = self.construct_xpath(tag_list, sub_list)
|
176 |
+
xpath_strings.append(xpath_string)
|
177 |
+
xpaths.append(xpath_strings)
|
178 |
+
|
179 |
+
# return as Dict
|
180 |
+
data = {"nodes": nodes, "xpaths": xpaths}
|
181 |
+
encoded_inputs = BatchFeature(data=data, tensor_type=None)
|
182 |
+
|
183 |
+
return encoded_inputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py
ADDED
@@ -0,0 +1,1316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft Research Asia and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch MarkupLM model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...file_utils import (
|
28 |
+
add_start_docstrings,
|
29 |
+
add_start_docstrings_to_model_forward,
|
30 |
+
replace_return_docstrings,
|
31 |
+
)
|
32 |
+
from ...modeling_outputs import (
|
33 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
34 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
35 |
+
MaskedLMOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from ...modeling_utils import (
|
41 |
+
PreTrainedModel,
|
42 |
+
apply_chunking_to_forward,
|
43 |
+
find_pruneable_heads_and_indices,
|
44 |
+
prune_linear_layer,
|
45 |
+
)
|
46 |
+
from ...utils import logging
|
47 |
+
from .configuration_markuplm import MarkupLMConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CHECKPOINT_FOR_DOC = "microsoft/markuplm-base"
|
53 |
+
_CONFIG_FOR_DOC = "MarkupLMConfig"
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
class XPathEmbeddings(nn.Module):
|
60 |
+
"""Construct the embeddings from xpath tags and subscripts.
|
61 |
+
|
62 |
+
We drop tree-id in this version, as its info can be covered by xpath.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super(XPathEmbeddings, self).__init__()
|
67 |
+
self.max_depth = config.max_depth
|
68 |
+
|
69 |
+
self.xpath_unitseq2_embeddings = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, config.hidden_size)
|
70 |
+
|
71 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
72 |
+
|
73 |
+
self.activation = nn.ReLU()
|
74 |
+
self.xpath_unitseq2_inner = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, 4 * config.hidden_size)
|
75 |
+
self.inner2emb = nn.Linear(4 * config.hidden_size, config.hidden_size)
|
76 |
+
|
77 |
+
self.xpath_tag_sub_embeddings = nn.ModuleList(
|
78 |
+
[
|
79 |
+
nn.Embedding(config.max_xpath_tag_unit_embeddings, config.xpath_unit_hidden_size)
|
80 |
+
for _ in range(self.max_depth)
|
81 |
+
]
|
82 |
+
)
|
83 |
+
|
84 |
+
self.xpath_subs_sub_embeddings = nn.ModuleList(
|
85 |
+
[
|
86 |
+
nn.Embedding(config.max_xpath_subs_unit_embeddings, config.xpath_unit_hidden_size)
|
87 |
+
for _ in range(self.max_depth)
|
88 |
+
]
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, xpath_tags_seq=None, xpath_subs_seq=None):
|
92 |
+
xpath_tags_embeddings = []
|
93 |
+
xpath_subs_embeddings = []
|
94 |
+
|
95 |
+
for i in range(self.max_depth):
|
96 |
+
xpath_tags_embeddings.append(self.xpath_tag_sub_embeddings[i](xpath_tags_seq[:, :, i]))
|
97 |
+
xpath_subs_embeddings.append(self.xpath_subs_sub_embeddings[i](xpath_subs_seq[:, :, i]))
|
98 |
+
|
99 |
+
xpath_tags_embeddings = torch.cat(xpath_tags_embeddings, dim=-1)
|
100 |
+
xpath_subs_embeddings = torch.cat(xpath_subs_embeddings, dim=-1)
|
101 |
+
|
102 |
+
xpath_embeddings = xpath_tags_embeddings + xpath_subs_embeddings
|
103 |
+
|
104 |
+
xpath_embeddings = self.inner2emb(self.dropout(self.activation(self.xpath_unitseq2_inner(xpath_embeddings))))
|
105 |
+
|
106 |
+
return xpath_embeddings
|
107 |
+
|
108 |
+
|
109 |
+
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
110 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
111 |
+
"""
|
112 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
113 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
x: torch.Tensor x:
|
117 |
+
|
118 |
+
Returns: torch.Tensor
|
119 |
+
"""
|
120 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
121 |
+
mask = input_ids.ne(padding_idx).int()
|
122 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
123 |
+
return incremental_indices.long() + padding_idx
|
124 |
+
|
125 |
+
|
126 |
+
class MarkupLMEmbeddings(nn.Module):
|
127 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
128 |
+
|
129 |
+
def __init__(self, config):
|
130 |
+
super(MarkupLMEmbeddings, self).__init__()
|
131 |
+
self.config = config
|
132 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
133 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
134 |
+
|
135 |
+
self.max_depth = config.max_depth
|
136 |
+
|
137 |
+
self.xpath_embeddings = XPathEmbeddings(config)
|
138 |
+
|
139 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
140 |
+
|
141 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
142 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
143 |
+
|
144 |
+
self.register_buffer(
|
145 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
146 |
+
)
|
147 |
+
|
148 |
+
self.padding_idx = config.pad_token_id
|
149 |
+
self.position_embeddings = nn.Embedding(
|
150 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
151 |
+
)
|
152 |
+
|
153 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds
|
154 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
155 |
+
"""
|
156 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
inputs_embeds: torch.Tensor
|
160 |
+
|
161 |
+
Returns: torch.Tensor
|
162 |
+
"""
|
163 |
+
input_shape = inputs_embeds.size()[:-1]
|
164 |
+
sequence_length = input_shape[1]
|
165 |
+
|
166 |
+
position_ids = torch.arange(
|
167 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
168 |
+
)
|
169 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
170 |
+
|
171 |
+
def forward(
|
172 |
+
self,
|
173 |
+
input_ids=None,
|
174 |
+
xpath_tags_seq=None,
|
175 |
+
xpath_subs_seq=None,
|
176 |
+
token_type_ids=None,
|
177 |
+
position_ids=None,
|
178 |
+
inputs_embeds=None,
|
179 |
+
past_key_values_length=0,
|
180 |
+
):
|
181 |
+
if input_ids is not None:
|
182 |
+
input_shape = input_ids.size()
|
183 |
+
else:
|
184 |
+
input_shape = inputs_embeds.size()[:-1]
|
185 |
+
|
186 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
187 |
+
|
188 |
+
if position_ids is None:
|
189 |
+
if input_ids is not None:
|
190 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
191 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
192 |
+
else:
|
193 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
194 |
+
|
195 |
+
if token_type_ids is None:
|
196 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
197 |
+
|
198 |
+
if inputs_embeds is None:
|
199 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
200 |
+
|
201 |
+
# prepare xpath seq
|
202 |
+
if xpath_tags_seq is None:
|
203 |
+
xpath_tags_seq = self.config.tag_pad_id * torch.ones(
|
204 |
+
tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device
|
205 |
+
)
|
206 |
+
if xpath_subs_seq is None:
|
207 |
+
xpath_subs_seq = self.config.subs_pad_id * torch.ones(
|
208 |
+
tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device
|
209 |
+
)
|
210 |
+
|
211 |
+
words_embeddings = inputs_embeds
|
212 |
+
position_embeddings = self.position_embeddings(position_ids)
|
213 |
+
|
214 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
215 |
+
|
216 |
+
xpath_embeddings = self.xpath_embeddings(xpath_tags_seq, xpath_subs_seq)
|
217 |
+
embeddings = words_embeddings + position_embeddings + token_type_embeddings + xpath_embeddings
|
218 |
+
|
219 |
+
embeddings = self.LayerNorm(embeddings)
|
220 |
+
embeddings = self.dropout(embeddings)
|
221 |
+
return embeddings
|
222 |
+
|
223 |
+
|
224 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->MarkupLM
|
225 |
+
class MarkupLMSelfOutput(nn.Module):
|
226 |
+
def __init__(self, config):
|
227 |
+
super().__init__()
|
228 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
229 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
230 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
231 |
+
|
232 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
233 |
+
hidden_states = self.dense(hidden_states)
|
234 |
+
hidden_states = self.dropout(hidden_states)
|
235 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
236 |
+
return hidden_states
|
237 |
+
|
238 |
+
|
239 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
240 |
+
class MarkupLMIntermediate(nn.Module):
|
241 |
+
def __init__(self, config):
|
242 |
+
super().__init__()
|
243 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
244 |
+
if isinstance(config.hidden_act, str):
|
245 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
246 |
+
else:
|
247 |
+
self.intermediate_act_fn = config.hidden_act
|
248 |
+
|
249 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
250 |
+
hidden_states = self.dense(hidden_states)
|
251 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
252 |
+
return hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->MarkupLM
|
256 |
+
class MarkupLMOutput(nn.Module):
|
257 |
+
def __init__(self, config):
|
258 |
+
super().__init__()
|
259 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
260 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
261 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
262 |
+
|
263 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
264 |
+
hidden_states = self.dense(hidden_states)
|
265 |
+
hidden_states = self.dropout(hidden_states)
|
266 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
267 |
+
return hidden_states
|
268 |
+
|
269 |
+
|
270 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
271 |
+
class MarkupLMPooler(nn.Module):
|
272 |
+
def __init__(self, config):
|
273 |
+
super().__init__()
|
274 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
275 |
+
self.activation = nn.Tanh()
|
276 |
+
|
277 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
278 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
279 |
+
# to the first token.
|
280 |
+
first_token_tensor = hidden_states[:, 0]
|
281 |
+
pooled_output = self.dense(first_token_tensor)
|
282 |
+
pooled_output = self.activation(pooled_output)
|
283 |
+
return pooled_output
|
284 |
+
|
285 |
+
|
286 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MarkupLM
|
287 |
+
class MarkupLMPredictionHeadTransform(nn.Module):
|
288 |
+
def __init__(self, config):
|
289 |
+
super().__init__()
|
290 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
291 |
+
if isinstance(config.hidden_act, str):
|
292 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
293 |
+
else:
|
294 |
+
self.transform_act_fn = config.hidden_act
|
295 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
296 |
+
|
297 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
298 |
+
hidden_states = self.dense(hidden_states)
|
299 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
300 |
+
hidden_states = self.LayerNorm(hidden_states)
|
301 |
+
return hidden_states
|
302 |
+
|
303 |
+
|
304 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MarkupLM
|
305 |
+
class MarkupLMLMPredictionHead(nn.Module):
|
306 |
+
def __init__(self, config):
|
307 |
+
super().__init__()
|
308 |
+
self.transform = MarkupLMPredictionHeadTransform(config)
|
309 |
+
|
310 |
+
# The output weights are the same as the input embeddings, but there is
|
311 |
+
# an output-only bias for each token.
|
312 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
313 |
+
|
314 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
315 |
+
|
316 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
317 |
+
self.decoder.bias = self.bias
|
318 |
+
|
319 |
+
def forward(self, hidden_states):
|
320 |
+
hidden_states = self.transform(hidden_states)
|
321 |
+
hidden_states = self.decoder(hidden_states)
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
|
325 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MarkupLM
|
326 |
+
class MarkupLMOnlyMLMHead(nn.Module):
|
327 |
+
def __init__(self, config):
|
328 |
+
super().__init__()
|
329 |
+
self.predictions = MarkupLMLMPredictionHead(config)
|
330 |
+
|
331 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
332 |
+
prediction_scores = self.predictions(sequence_output)
|
333 |
+
return prediction_scores
|
334 |
+
|
335 |
+
|
336 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MarkupLM
|
337 |
+
class MarkupLMSelfAttention(nn.Module):
|
338 |
+
def __init__(self, config, position_embedding_type=None):
|
339 |
+
super().__init__()
|
340 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
341 |
+
raise ValueError(
|
342 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
343 |
+
f"heads ({config.num_attention_heads})"
|
344 |
+
)
|
345 |
+
|
346 |
+
self.num_attention_heads = config.num_attention_heads
|
347 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
348 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
349 |
+
|
350 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
351 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
352 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
353 |
+
|
354 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
355 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
356 |
+
config, "position_embedding_type", "absolute"
|
357 |
+
)
|
358 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
359 |
+
self.max_position_embeddings = config.max_position_embeddings
|
360 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
361 |
+
|
362 |
+
self.is_decoder = config.is_decoder
|
363 |
+
|
364 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
365 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
366 |
+
x = x.view(new_x_shape)
|
367 |
+
return x.permute(0, 2, 1, 3)
|
368 |
+
|
369 |
+
def forward(
|
370 |
+
self,
|
371 |
+
hidden_states: torch.Tensor,
|
372 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
373 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
374 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
375 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
376 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
377 |
+
output_attentions: Optional[bool] = False,
|
378 |
+
) -> Tuple[torch.Tensor]:
|
379 |
+
mixed_query_layer = self.query(hidden_states)
|
380 |
+
|
381 |
+
# If this is instantiated as a cross-attention module, the keys
|
382 |
+
# and values come from an encoder; the attention mask needs to be
|
383 |
+
# such that the encoder's padding tokens are not attended to.
|
384 |
+
is_cross_attention = encoder_hidden_states is not None
|
385 |
+
|
386 |
+
if is_cross_attention and past_key_value is not None:
|
387 |
+
# reuse k,v, cross_attentions
|
388 |
+
key_layer = past_key_value[0]
|
389 |
+
value_layer = past_key_value[1]
|
390 |
+
attention_mask = encoder_attention_mask
|
391 |
+
elif is_cross_attention:
|
392 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
393 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
394 |
+
attention_mask = encoder_attention_mask
|
395 |
+
elif past_key_value is not None:
|
396 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
397 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
398 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
399 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
400 |
+
else:
|
401 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
402 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
403 |
+
|
404 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
405 |
+
|
406 |
+
use_cache = past_key_value is not None
|
407 |
+
if self.is_decoder:
|
408 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
409 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
410 |
+
# key/value_states (first "if" case)
|
411 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
412 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
413 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
414 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
415 |
+
past_key_value = (key_layer, value_layer)
|
416 |
+
|
417 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
418 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
419 |
+
|
420 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
421 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
422 |
+
if use_cache:
|
423 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
424 |
+
-1, 1
|
425 |
+
)
|
426 |
+
else:
|
427 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
428 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
429 |
+
distance = position_ids_l - position_ids_r
|
430 |
+
|
431 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
432 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
433 |
+
|
434 |
+
if self.position_embedding_type == "relative_key":
|
435 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
436 |
+
attention_scores = attention_scores + relative_position_scores
|
437 |
+
elif self.position_embedding_type == "relative_key_query":
|
438 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
439 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
440 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
441 |
+
|
442 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
443 |
+
if attention_mask is not None:
|
444 |
+
# Apply the attention mask is (precomputed for all layers in MarkupLMModel forward() function)
|
445 |
+
attention_scores = attention_scores + attention_mask
|
446 |
+
|
447 |
+
# Normalize the attention scores to probabilities.
|
448 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
449 |
+
|
450 |
+
# This is actually dropping out entire tokens to attend to, which might
|
451 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
452 |
+
attention_probs = self.dropout(attention_probs)
|
453 |
+
|
454 |
+
# Mask heads if we want to
|
455 |
+
if head_mask is not None:
|
456 |
+
attention_probs = attention_probs * head_mask
|
457 |
+
|
458 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
459 |
+
|
460 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
461 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
462 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
463 |
+
|
464 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
465 |
+
|
466 |
+
if self.is_decoder:
|
467 |
+
outputs = outputs + (past_key_value,)
|
468 |
+
return outputs
|
469 |
+
|
470 |
+
|
471 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->MarkupLM
|
472 |
+
class MarkupLMAttention(nn.Module):
|
473 |
+
def __init__(self, config, position_embedding_type=None):
|
474 |
+
super().__init__()
|
475 |
+
self.self = MarkupLMSelfAttention(config, position_embedding_type=position_embedding_type)
|
476 |
+
self.output = MarkupLMSelfOutput(config)
|
477 |
+
self.pruned_heads = set()
|
478 |
+
|
479 |
+
def prune_heads(self, heads):
|
480 |
+
if len(heads) == 0:
|
481 |
+
return
|
482 |
+
heads, index = find_pruneable_heads_and_indices(
|
483 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
484 |
+
)
|
485 |
+
|
486 |
+
# Prune linear layers
|
487 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
488 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
489 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
490 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
491 |
+
|
492 |
+
# Update hyper params and store pruned heads
|
493 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
494 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
495 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
496 |
+
|
497 |
+
def forward(
|
498 |
+
self,
|
499 |
+
hidden_states: torch.Tensor,
|
500 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
501 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
502 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
503 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
504 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
505 |
+
output_attentions: Optional[bool] = False,
|
506 |
+
) -> Tuple[torch.Tensor]:
|
507 |
+
self_outputs = self.self(
|
508 |
+
hidden_states,
|
509 |
+
attention_mask,
|
510 |
+
head_mask,
|
511 |
+
encoder_hidden_states,
|
512 |
+
encoder_attention_mask,
|
513 |
+
past_key_value,
|
514 |
+
output_attentions,
|
515 |
+
)
|
516 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
517 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
518 |
+
return outputs
|
519 |
+
|
520 |
+
|
521 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->MarkupLM
|
522 |
+
class MarkupLMLayer(nn.Module):
|
523 |
+
def __init__(self, config):
|
524 |
+
super().__init__()
|
525 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
526 |
+
self.seq_len_dim = 1
|
527 |
+
self.attention = MarkupLMAttention(config)
|
528 |
+
self.is_decoder = config.is_decoder
|
529 |
+
self.add_cross_attention = config.add_cross_attention
|
530 |
+
if self.add_cross_attention:
|
531 |
+
if not self.is_decoder:
|
532 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
533 |
+
self.crossattention = MarkupLMAttention(config, position_embedding_type="absolute")
|
534 |
+
self.intermediate = MarkupLMIntermediate(config)
|
535 |
+
self.output = MarkupLMOutput(config)
|
536 |
+
|
537 |
+
def forward(
|
538 |
+
self,
|
539 |
+
hidden_states: torch.Tensor,
|
540 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
541 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
542 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
543 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
544 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
545 |
+
output_attentions: Optional[bool] = False,
|
546 |
+
) -> Tuple[torch.Tensor]:
|
547 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
548 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
549 |
+
self_attention_outputs = self.attention(
|
550 |
+
hidden_states,
|
551 |
+
attention_mask,
|
552 |
+
head_mask,
|
553 |
+
output_attentions=output_attentions,
|
554 |
+
past_key_value=self_attn_past_key_value,
|
555 |
+
)
|
556 |
+
attention_output = self_attention_outputs[0]
|
557 |
+
|
558 |
+
# if decoder, the last output is tuple of self-attn cache
|
559 |
+
if self.is_decoder:
|
560 |
+
outputs = self_attention_outputs[1:-1]
|
561 |
+
present_key_value = self_attention_outputs[-1]
|
562 |
+
else:
|
563 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
564 |
+
|
565 |
+
cross_attn_present_key_value = None
|
566 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
567 |
+
if not hasattr(self, "crossattention"):
|
568 |
+
raise ValueError(
|
569 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
570 |
+
" by setting `config.add_cross_attention=True`"
|
571 |
+
)
|
572 |
+
|
573 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
574 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
575 |
+
cross_attention_outputs = self.crossattention(
|
576 |
+
attention_output,
|
577 |
+
attention_mask,
|
578 |
+
head_mask,
|
579 |
+
encoder_hidden_states,
|
580 |
+
encoder_attention_mask,
|
581 |
+
cross_attn_past_key_value,
|
582 |
+
output_attentions,
|
583 |
+
)
|
584 |
+
attention_output = cross_attention_outputs[0]
|
585 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
586 |
+
|
587 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
588 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
589 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
590 |
+
|
591 |
+
layer_output = apply_chunking_to_forward(
|
592 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
593 |
+
)
|
594 |
+
outputs = (layer_output,) + outputs
|
595 |
+
|
596 |
+
# if decoder, return the attn key/values as the last output
|
597 |
+
if self.is_decoder:
|
598 |
+
outputs = outputs + (present_key_value,)
|
599 |
+
|
600 |
+
return outputs
|
601 |
+
|
602 |
+
def feed_forward_chunk(self, attention_output):
|
603 |
+
intermediate_output = self.intermediate(attention_output)
|
604 |
+
layer_output = self.output(intermediate_output, attention_output)
|
605 |
+
return layer_output
|
606 |
+
|
607 |
+
|
608 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->MarkupLM
|
609 |
+
class MarkupLMEncoder(nn.Module):
|
610 |
+
def __init__(self, config):
|
611 |
+
super().__init__()
|
612 |
+
self.config = config
|
613 |
+
self.layer = nn.ModuleList([MarkupLMLayer(config) for _ in range(config.num_hidden_layers)])
|
614 |
+
self.gradient_checkpointing = False
|
615 |
+
|
616 |
+
def forward(
|
617 |
+
self,
|
618 |
+
hidden_states: torch.Tensor,
|
619 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
620 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
621 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
622 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
623 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
624 |
+
use_cache: Optional[bool] = None,
|
625 |
+
output_attentions: Optional[bool] = False,
|
626 |
+
output_hidden_states: Optional[bool] = False,
|
627 |
+
return_dict: Optional[bool] = True,
|
628 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
629 |
+
all_hidden_states = () if output_hidden_states else None
|
630 |
+
all_self_attentions = () if output_attentions else None
|
631 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
632 |
+
|
633 |
+
if self.gradient_checkpointing and self.training:
|
634 |
+
if use_cache:
|
635 |
+
logger.warning_once(
|
636 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
637 |
+
)
|
638 |
+
use_cache = False
|
639 |
+
|
640 |
+
next_decoder_cache = () if use_cache else None
|
641 |
+
for i, layer_module in enumerate(self.layer):
|
642 |
+
if output_hidden_states:
|
643 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
644 |
+
|
645 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
646 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
647 |
+
|
648 |
+
if self.gradient_checkpointing and self.training:
|
649 |
+
layer_outputs = self._gradient_checkpointing_func(
|
650 |
+
layer_module.__call__,
|
651 |
+
hidden_states,
|
652 |
+
attention_mask,
|
653 |
+
layer_head_mask,
|
654 |
+
encoder_hidden_states,
|
655 |
+
encoder_attention_mask,
|
656 |
+
past_key_value,
|
657 |
+
output_attentions,
|
658 |
+
)
|
659 |
+
else:
|
660 |
+
layer_outputs = layer_module(
|
661 |
+
hidden_states,
|
662 |
+
attention_mask,
|
663 |
+
layer_head_mask,
|
664 |
+
encoder_hidden_states,
|
665 |
+
encoder_attention_mask,
|
666 |
+
past_key_value,
|
667 |
+
output_attentions,
|
668 |
+
)
|
669 |
+
|
670 |
+
hidden_states = layer_outputs[0]
|
671 |
+
if use_cache:
|
672 |
+
next_decoder_cache += (layer_outputs[-1],)
|
673 |
+
if output_attentions:
|
674 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
675 |
+
if self.config.add_cross_attention:
|
676 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
677 |
+
|
678 |
+
if output_hidden_states:
|
679 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
680 |
+
|
681 |
+
if not return_dict:
|
682 |
+
return tuple(
|
683 |
+
v
|
684 |
+
for v in [
|
685 |
+
hidden_states,
|
686 |
+
next_decoder_cache,
|
687 |
+
all_hidden_states,
|
688 |
+
all_self_attentions,
|
689 |
+
all_cross_attentions,
|
690 |
+
]
|
691 |
+
if v is not None
|
692 |
+
)
|
693 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
694 |
+
last_hidden_state=hidden_states,
|
695 |
+
past_key_values=next_decoder_cache,
|
696 |
+
hidden_states=all_hidden_states,
|
697 |
+
attentions=all_self_attentions,
|
698 |
+
cross_attentions=all_cross_attentions,
|
699 |
+
)
|
700 |
+
|
701 |
+
|
702 |
+
class MarkupLMPreTrainedModel(PreTrainedModel):
|
703 |
+
"""
|
704 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
705 |
+
models.
|
706 |
+
"""
|
707 |
+
|
708 |
+
config_class = MarkupLMConfig
|
709 |
+
base_model_prefix = "markuplm"
|
710 |
+
|
711 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with Bert->MarkupLM
|
712 |
+
def _init_weights(self, module):
|
713 |
+
"""Initialize the weights"""
|
714 |
+
if isinstance(module, nn.Linear):
|
715 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
716 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
717 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
718 |
+
if module.bias is not None:
|
719 |
+
module.bias.data.zero_()
|
720 |
+
elif isinstance(module, nn.Embedding):
|
721 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
722 |
+
if module.padding_idx is not None:
|
723 |
+
module.weight.data[module.padding_idx].zero_()
|
724 |
+
elif isinstance(module, nn.LayerNorm):
|
725 |
+
module.bias.data.zero_()
|
726 |
+
module.weight.data.fill_(1.0)
|
727 |
+
|
728 |
+
@classmethod
|
729 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
730 |
+
return super(MarkupLMPreTrainedModel, cls).from_pretrained(
|
731 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
732 |
+
)
|
733 |
+
|
734 |
+
|
735 |
+
MARKUPLM_START_DOCSTRING = r"""
|
736 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
737 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
738 |
+
behavior.
|
739 |
+
|
740 |
+
Parameters:
|
741 |
+
config ([`MarkupLMConfig`]): Model configuration class with all the parameters of the model.
|
742 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
743 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
744 |
+
"""
|
745 |
+
|
746 |
+
MARKUPLM_INPUTS_DOCSTRING = r"""
|
747 |
+
Args:
|
748 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
749 |
+
Indices of input sequence tokens in the vocabulary.
|
750 |
+
|
751 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
752 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
753 |
+
|
754 |
+
[What are input IDs?](../glossary#input-ids)
|
755 |
+
|
756 |
+
xpath_tags_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*):
|
757 |
+
Tag IDs for each token in the input sequence, padded up to config.max_depth.
|
758 |
+
|
759 |
+
xpath_subs_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*):
|
760 |
+
Subscript IDs for each token in the input sequence, padded up to config.max_depth.
|
761 |
+
|
762 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
763 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for
|
764 |
+
tokens that are NOT MASKED, `0` for MASKED tokens.
|
765 |
+
|
766 |
+
[What are attention masks?](../glossary#attention-mask)
|
767 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
768 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
769 |
+
1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token
|
770 |
+
|
771 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
772 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
773 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
774 |
+
config.max_position_embeddings - 1]`.
|
775 |
+
|
776 |
+
[What are position IDs?](../glossary#position-ids)
|
777 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
778 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1`
|
779 |
+
indicates the head is **not masked**, `0` indicates the head is **masked**.
|
780 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
781 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
782 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
783 |
+
model's internal embedding lookup matrix.
|
784 |
+
output_attentions (`bool`, *optional*):
|
785 |
+
If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under
|
786 |
+
returned tensors for more detail.
|
787 |
+
output_hidden_states (`bool`, *optional*):
|
788 |
+
If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors
|
789 |
+
for more detail.
|
790 |
+
return_dict (`bool`, *optional*):
|
791 |
+
If set to `True`, the model will return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
792 |
+
"""
|
793 |
+
|
794 |
+
|
795 |
+
@add_start_docstrings(
|
796 |
+
"The bare MarkupLM Model transformer outputting raw hidden-states without any specific head on top.",
|
797 |
+
MARKUPLM_START_DOCSTRING,
|
798 |
+
)
|
799 |
+
class MarkupLMModel(MarkupLMPreTrainedModel):
|
800 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->MarkupLM
|
801 |
+
def __init__(self, config, add_pooling_layer=True):
|
802 |
+
super().__init__(config)
|
803 |
+
self.config = config
|
804 |
+
|
805 |
+
self.embeddings = MarkupLMEmbeddings(config)
|
806 |
+
self.encoder = MarkupLMEncoder(config)
|
807 |
+
|
808 |
+
self.pooler = MarkupLMPooler(config) if add_pooling_layer else None
|
809 |
+
|
810 |
+
# Initialize weights and apply final processing
|
811 |
+
self.post_init()
|
812 |
+
|
813 |
+
def get_input_embeddings(self):
|
814 |
+
return self.embeddings.word_embeddings
|
815 |
+
|
816 |
+
def set_input_embeddings(self, value):
|
817 |
+
self.embeddings.word_embeddings = value
|
818 |
+
|
819 |
+
def _prune_heads(self, heads_to_prune):
|
820 |
+
"""
|
821 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
822 |
+
class PreTrainedModel
|
823 |
+
"""
|
824 |
+
for layer, heads in heads_to_prune.items():
|
825 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
826 |
+
|
827 |
+
@add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
828 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
829 |
+
def forward(
|
830 |
+
self,
|
831 |
+
input_ids: Optional[torch.LongTensor] = None,
|
832 |
+
xpath_tags_seq: Optional[torch.LongTensor] = None,
|
833 |
+
xpath_subs_seq: Optional[torch.LongTensor] = None,
|
834 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
835 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
836 |
+
position_ids: Optional[torch.LongTensor] = None,
|
837 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
838 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
839 |
+
output_attentions: Optional[bool] = None,
|
840 |
+
output_hidden_states: Optional[bool] = None,
|
841 |
+
return_dict: Optional[bool] = None,
|
842 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
|
843 |
+
r"""
|
844 |
+
Returns:
|
845 |
+
|
846 |
+
Examples:
|
847 |
+
|
848 |
+
```python
|
849 |
+
>>> from transformers import AutoProcessor, MarkupLMModel
|
850 |
+
|
851 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
|
852 |
+
>>> model = MarkupLMModel.from_pretrained("microsoft/markuplm-base")
|
853 |
+
|
854 |
+
>>> html_string = "<html> <head> <title>Page Title</title> </head> </html>"
|
855 |
+
|
856 |
+
>>> encoding = processor(html_string, return_tensors="pt")
|
857 |
+
|
858 |
+
>>> outputs = model(**encoding)
|
859 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
860 |
+
>>> list(last_hidden_states.shape)
|
861 |
+
[1, 4, 768]
|
862 |
+
```"""
|
863 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
864 |
+
output_hidden_states = (
|
865 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
866 |
+
)
|
867 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
868 |
+
|
869 |
+
if input_ids is not None and inputs_embeds is not None:
|
870 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
871 |
+
elif input_ids is not None:
|
872 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
873 |
+
input_shape = input_ids.size()
|
874 |
+
elif inputs_embeds is not None:
|
875 |
+
input_shape = inputs_embeds.size()[:-1]
|
876 |
+
else:
|
877 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
878 |
+
|
879 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
880 |
+
|
881 |
+
if attention_mask is None:
|
882 |
+
attention_mask = torch.ones(input_shape, device=device)
|
883 |
+
|
884 |
+
if token_type_ids is None:
|
885 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
886 |
+
|
887 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
888 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
|
889 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
890 |
+
|
891 |
+
if head_mask is not None:
|
892 |
+
if head_mask.dim() == 1:
|
893 |
+
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
894 |
+
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
|
895 |
+
elif head_mask.dim() == 2:
|
896 |
+
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
|
897 |
+
head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
|
898 |
+
else:
|
899 |
+
head_mask = [None] * self.config.num_hidden_layers
|
900 |
+
|
901 |
+
embedding_output = self.embeddings(
|
902 |
+
input_ids=input_ids,
|
903 |
+
xpath_tags_seq=xpath_tags_seq,
|
904 |
+
xpath_subs_seq=xpath_subs_seq,
|
905 |
+
position_ids=position_ids,
|
906 |
+
token_type_ids=token_type_ids,
|
907 |
+
inputs_embeds=inputs_embeds,
|
908 |
+
)
|
909 |
+
encoder_outputs = self.encoder(
|
910 |
+
embedding_output,
|
911 |
+
extended_attention_mask,
|
912 |
+
head_mask=head_mask,
|
913 |
+
output_attentions=output_attentions,
|
914 |
+
output_hidden_states=output_hidden_states,
|
915 |
+
return_dict=return_dict,
|
916 |
+
)
|
917 |
+
sequence_output = encoder_outputs[0]
|
918 |
+
|
919 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
920 |
+
|
921 |
+
if not return_dict:
|
922 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
923 |
+
|
924 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
925 |
+
last_hidden_state=sequence_output,
|
926 |
+
pooler_output=pooled_output,
|
927 |
+
hidden_states=encoder_outputs.hidden_states,
|
928 |
+
attentions=encoder_outputs.attentions,
|
929 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
930 |
+
)
|
931 |
+
|
932 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.prepare_inputs_for_generation
|
933 |
+
def prepare_inputs_for_generation(
|
934 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
|
935 |
+
):
|
936 |
+
input_shape = input_ids.shape
|
937 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
938 |
+
if attention_mask is None:
|
939 |
+
attention_mask = input_ids.new_ones(input_shape)
|
940 |
+
|
941 |
+
# cut decoder_input_ids if past_key_values is used
|
942 |
+
if past_key_values is not None:
|
943 |
+
past_length = past_key_values[0][0].shape[2]
|
944 |
+
|
945 |
+
# Some generation methods already pass only the last input ID
|
946 |
+
if input_ids.shape[1] > past_length:
|
947 |
+
remove_prefix_length = past_length
|
948 |
+
else:
|
949 |
+
# Default to old behavior: keep only final ID
|
950 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
951 |
+
|
952 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
953 |
+
|
954 |
+
return {
|
955 |
+
"input_ids": input_ids,
|
956 |
+
"attention_mask": attention_mask,
|
957 |
+
"past_key_values": past_key_values,
|
958 |
+
"use_cache": use_cache,
|
959 |
+
}
|
960 |
+
|
961 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel._reorder_cache
|
962 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
963 |
+
reordered_past = ()
|
964 |
+
for layer_past in past_key_values:
|
965 |
+
reordered_past += (
|
966 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
967 |
+
)
|
968 |
+
return reordered_past
|
969 |
+
|
970 |
+
|
971 |
+
@add_start_docstrings(
|
972 |
+
"""
|
973 |
+
MarkupLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
974 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
975 |
+
""",
|
976 |
+
MARKUPLM_START_DOCSTRING,
|
977 |
+
)
|
978 |
+
class MarkupLMForQuestionAnswering(MarkupLMPreTrainedModel):
|
979 |
+
# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with bert->markuplm, Bert->MarkupLM
|
980 |
+
def __init__(self, config):
|
981 |
+
super().__init__(config)
|
982 |
+
self.num_labels = config.num_labels
|
983 |
+
|
984 |
+
self.markuplm = MarkupLMModel(config, add_pooling_layer=False)
|
985 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
986 |
+
|
987 |
+
# Initialize weights and apply final processing
|
988 |
+
self.post_init()
|
989 |
+
|
990 |
+
@add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
991 |
+
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
|
992 |
+
def forward(
|
993 |
+
self,
|
994 |
+
input_ids: Optional[torch.Tensor] = None,
|
995 |
+
xpath_tags_seq: Optional[torch.Tensor] = None,
|
996 |
+
xpath_subs_seq: Optional[torch.Tensor] = None,
|
997 |
+
attention_mask: Optional[torch.Tensor] = None,
|
998 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
999 |
+
position_ids: Optional[torch.Tensor] = None,
|
1000 |
+
head_mask: Optional[torch.Tensor] = None,
|
1001 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1002 |
+
start_positions: Optional[torch.Tensor] = None,
|
1003 |
+
end_positions: Optional[torch.Tensor] = None,
|
1004 |
+
output_attentions: Optional[bool] = None,
|
1005 |
+
output_hidden_states: Optional[bool] = None,
|
1006 |
+
return_dict: Optional[bool] = None,
|
1007 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1008 |
+
r"""
|
1009 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1010 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1011 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1012 |
+
are not taken into account for computing the loss.
|
1013 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1014 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1015 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1016 |
+
are not taken into account for computing the loss.
|
1017 |
+
|
1018 |
+
Returns:
|
1019 |
+
|
1020 |
+
Examples:
|
1021 |
+
|
1022 |
+
```python
|
1023 |
+
>>> from transformers import AutoProcessor, MarkupLMForQuestionAnswering
|
1024 |
+
>>> import torch
|
1025 |
+
|
1026 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base-finetuned-websrc")
|
1027 |
+
>>> model = MarkupLMForQuestionAnswering.from_pretrained("microsoft/markuplm-base-finetuned-websrc")
|
1028 |
+
|
1029 |
+
>>> html_string = "<html> <head> <title>My name is Niels</title> </head> </html>"
|
1030 |
+
>>> question = "What's his name?"
|
1031 |
+
|
1032 |
+
>>> encoding = processor(html_string, questions=question, return_tensors="pt")
|
1033 |
+
|
1034 |
+
>>> with torch.no_grad():
|
1035 |
+
... outputs = model(**encoding)
|
1036 |
+
|
1037 |
+
>>> answer_start_index = outputs.start_logits.argmax()
|
1038 |
+
>>> answer_end_index = outputs.end_logits.argmax()
|
1039 |
+
|
1040 |
+
>>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
|
1041 |
+
>>> processor.decode(predict_answer_tokens).strip()
|
1042 |
+
'Niels'
|
1043 |
+
```"""
|
1044 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1045 |
+
|
1046 |
+
outputs = self.markuplm(
|
1047 |
+
input_ids,
|
1048 |
+
xpath_tags_seq=xpath_tags_seq,
|
1049 |
+
xpath_subs_seq=xpath_subs_seq,
|
1050 |
+
attention_mask=attention_mask,
|
1051 |
+
token_type_ids=token_type_ids,
|
1052 |
+
position_ids=position_ids,
|
1053 |
+
head_mask=head_mask,
|
1054 |
+
inputs_embeds=inputs_embeds,
|
1055 |
+
output_attentions=output_attentions,
|
1056 |
+
output_hidden_states=output_hidden_states,
|
1057 |
+
return_dict=return_dict,
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
sequence_output = outputs[0]
|
1061 |
+
|
1062 |
+
logits = self.qa_outputs(sequence_output)
|
1063 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1064 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1065 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1066 |
+
|
1067 |
+
total_loss = None
|
1068 |
+
if start_positions is not None and end_positions is not None:
|
1069 |
+
# If we are on multi-GPU, split add a dimension
|
1070 |
+
if len(start_positions.size()) > 1:
|
1071 |
+
start_positions = start_positions.squeeze(-1)
|
1072 |
+
if len(end_positions.size()) > 1:
|
1073 |
+
end_positions = end_positions.squeeze(-1)
|
1074 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1075 |
+
ignored_index = start_logits.size(1)
|
1076 |
+
start_positions.clamp_(0, ignored_index)
|
1077 |
+
end_positions.clamp_(0, ignored_index)
|
1078 |
+
|
1079 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1080 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1081 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1082 |
+
total_loss = (start_loss + end_loss) / 2
|
1083 |
+
|
1084 |
+
if not return_dict:
|
1085 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1086 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1087 |
+
|
1088 |
+
return QuestionAnsweringModelOutput(
|
1089 |
+
loss=total_loss,
|
1090 |
+
start_logits=start_logits,
|
1091 |
+
end_logits=end_logits,
|
1092 |
+
hidden_states=outputs.hidden_states,
|
1093 |
+
attentions=outputs.attentions,
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
|
1097 |
+
@add_start_docstrings("""MarkupLM Model with a `token_classification` head on top.""", MARKUPLM_START_DOCSTRING)
|
1098 |
+
class MarkupLMForTokenClassification(MarkupLMPreTrainedModel):
|
1099 |
+
# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with bert->markuplm, Bert->MarkupLM
|
1100 |
+
def __init__(self, config):
|
1101 |
+
super().__init__(config)
|
1102 |
+
self.num_labels = config.num_labels
|
1103 |
+
|
1104 |
+
self.markuplm = MarkupLMModel(config, add_pooling_layer=False)
|
1105 |
+
classifier_dropout = (
|
1106 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1107 |
+
)
|
1108 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1109 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1110 |
+
|
1111 |
+
# Initialize weights and apply final processing
|
1112 |
+
self.post_init()
|
1113 |
+
|
1114 |
+
@add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1115 |
+
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
1116 |
+
def forward(
|
1117 |
+
self,
|
1118 |
+
input_ids: Optional[torch.Tensor] = None,
|
1119 |
+
xpath_tags_seq: Optional[torch.Tensor] = None,
|
1120 |
+
xpath_subs_seq: Optional[torch.Tensor] = None,
|
1121 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1122 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1123 |
+
position_ids: Optional[torch.Tensor] = None,
|
1124 |
+
head_mask: Optional[torch.Tensor] = None,
|
1125 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1126 |
+
labels: Optional[torch.Tensor] = None,
|
1127 |
+
output_attentions: Optional[bool] = None,
|
1128 |
+
output_hidden_states: Optional[bool] = None,
|
1129 |
+
return_dict: Optional[bool] = None,
|
1130 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1131 |
+
r"""
|
1132 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1133 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1134 |
+
|
1135 |
+
Returns:
|
1136 |
+
|
1137 |
+
Examples:
|
1138 |
+
|
1139 |
+
```python
|
1140 |
+
>>> from transformers import AutoProcessor, AutoModelForTokenClassification
|
1141 |
+
>>> import torch
|
1142 |
+
|
1143 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
|
1144 |
+
>>> processor.parse_html = False
|
1145 |
+
>>> model = AutoModelForTokenClassification.from_pretrained("microsoft/markuplm-base", num_labels=7)
|
1146 |
+
|
1147 |
+
>>> nodes = ["hello", "world"]
|
1148 |
+
>>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"]
|
1149 |
+
>>> node_labels = [1, 2]
|
1150 |
+
>>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt")
|
1151 |
+
|
1152 |
+
>>> with torch.no_grad():
|
1153 |
+
... outputs = model(**encoding)
|
1154 |
+
|
1155 |
+
>>> loss = outputs.loss
|
1156 |
+
>>> logits = outputs.logits
|
1157 |
+
```"""
|
1158 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1159 |
+
|
1160 |
+
outputs = self.markuplm(
|
1161 |
+
input_ids,
|
1162 |
+
xpath_tags_seq=xpath_tags_seq,
|
1163 |
+
xpath_subs_seq=xpath_subs_seq,
|
1164 |
+
attention_mask=attention_mask,
|
1165 |
+
token_type_ids=token_type_ids,
|
1166 |
+
position_ids=position_ids,
|
1167 |
+
head_mask=head_mask,
|
1168 |
+
inputs_embeds=inputs_embeds,
|
1169 |
+
output_attentions=output_attentions,
|
1170 |
+
output_hidden_states=output_hidden_states,
|
1171 |
+
return_dict=return_dict,
|
1172 |
+
)
|
1173 |
+
|
1174 |
+
sequence_output = outputs[0]
|
1175 |
+
prediction_scores = self.classifier(sequence_output) # (batch_size, seq_length, node_type_size)
|
1176 |
+
|
1177 |
+
loss = None
|
1178 |
+
if labels is not None:
|
1179 |
+
loss_fct = CrossEntropyLoss()
|
1180 |
+
loss = loss_fct(
|
1181 |
+
prediction_scores.view(-1, self.config.num_labels),
|
1182 |
+
labels.view(-1),
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
if not return_dict:
|
1186 |
+
output = (prediction_scores,) + outputs[2:]
|
1187 |
+
return ((loss,) + output) if loss is not None else output
|
1188 |
+
|
1189 |
+
return TokenClassifierOutput(
|
1190 |
+
loss=loss,
|
1191 |
+
logits=prediction_scores,
|
1192 |
+
hidden_states=outputs.hidden_states,
|
1193 |
+
attentions=outputs.attentions,
|
1194 |
+
)
|
1195 |
+
|
1196 |
+
|
1197 |
+
@add_start_docstrings(
|
1198 |
+
"""
|
1199 |
+
MarkupLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1200 |
+
pooled output) e.g. for GLUE tasks.
|
1201 |
+
""",
|
1202 |
+
MARKUPLM_START_DOCSTRING,
|
1203 |
+
)
|
1204 |
+
class MarkupLMForSequenceClassification(MarkupLMPreTrainedModel):
|
1205 |
+
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with bert->markuplm, Bert->MarkupLM
|
1206 |
+
def __init__(self, config):
|
1207 |
+
super().__init__(config)
|
1208 |
+
self.num_labels = config.num_labels
|
1209 |
+
self.config = config
|
1210 |
+
|
1211 |
+
self.markuplm = MarkupLMModel(config)
|
1212 |
+
classifier_dropout = (
|
1213 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1214 |
+
)
|
1215 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1216 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1217 |
+
|
1218 |
+
# Initialize weights and apply final processing
|
1219 |
+
self.post_init()
|
1220 |
+
|
1221 |
+
@add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1222 |
+
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1223 |
+
def forward(
|
1224 |
+
self,
|
1225 |
+
input_ids: Optional[torch.Tensor] = None,
|
1226 |
+
xpath_tags_seq: Optional[torch.Tensor] = None,
|
1227 |
+
xpath_subs_seq: Optional[torch.Tensor] = None,
|
1228 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1229 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1230 |
+
position_ids: Optional[torch.Tensor] = None,
|
1231 |
+
head_mask: Optional[torch.Tensor] = None,
|
1232 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1233 |
+
labels: Optional[torch.Tensor] = None,
|
1234 |
+
output_attentions: Optional[bool] = None,
|
1235 |
+
output_hidden_states: Optional[bool] = None,
|
1236 |
+
return_dict: Optional[bool] = None,
|
1237 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1238 |
+
r"""
|
1239 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1240 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1241 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1242 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1243 |
+
|
1244 |
+
Returns:
|
1245 |
+
|
1246 |
+
Examples:
|
1247 |
+
|
1248 |
+
```python
|
1249 |
+
>>> from transformers import AutoProcessor, AutoModelForSequenceClassification
|
1250 |
+
>>> import torch
|
1251 |
+
|
1252 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
|
1253 |
+
>>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/markuplm-base", num_labels=7)
|
1254 |
+
|
1255 |
+
>>> html_string = "<html> <head> <title>Page Title</title> </head> </html>"
|
1256 |
+
>>> encoding = processor(html_string, return_tensors="pt")
|
1257 |
+
|
1258 |
+
>>> with torch.no_grad():
|
1259 |
+
... outputs = model(**encoding)
|
1260 |
+
|
1261 |
+
>>> loss = outputs.loss
|
1262 |
+
>>> logits = outputs.logits
|
1263 |
+
```"""
|
1264 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1265 |
+
|
1266 |
+
outputs = self.markuplm(
|
1267 |
+
input_ids,
|
1268 |
+
xpath_tags_seq=xpath_tags_seq,
|
1269 |
+
xpath_subs_seq=xpath_subs_seq,
|
1270 |
+
attention_mask=attention_mask,
|
1271 |
+
token_type_ids=token_type_ids,
|
1272 |
+
position_ids=position_ids,
|
1273 |
+
head_mask=head_mask,
|
1274 |
+
inputs_embeds=inputs_embeds,
|
1275 |
+
output_attentions=output_attentions,
|
1276 |
+
output_hidden_states=output_hidden_states,
|
1277 |
+
return_dict=return_dict,
|
1278 |
+
)
|
1279 |
+
|
1280 |
+
pooled_output = outputs[1]
|
1281 |
+
|
1282 |
+
pooled_output = self.dropout(pooled_output)
|
1283 |
+
logits = self.classifier(pooled_output)
|
1284 |
+
|
1285 |
+
loss = None
|
1286 |
+
if labels is not None:
|
1287 |
+
if self.config.problem_type is None:
|
1288 |
+
if self.num_labels == 1:
|
1289 |
+
self.config.problem_type = "regression"
|
1290 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1291 |
+
self.config.problem_type = "single_label_classification"
|
1292 |
+
else:
|
1293 |
+
self.config.problem_type = "multi_label_classification"
|
1294 |
+
|
1295 |
+
if self.config.problem_type == "regression":
|
1296 |
+
loss_fct = MSELoss()
|
1297 |
+
if self.num_labels == 1:
|
1298 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1299 |
+
else:
|
1300 |
+
loss = loss_fct(logits, labels)
|
1301 |
+
elif self.config.problem_type == "single_label_classification":
|
1302 |
+
loss_fct = CrossEntropyLoss()
|
1303 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1304 |
+
elif self.config.problem_type == "multi_label_classification":
|
1305 |
+
loss_fct = BCEWithLogitsLoss()
|
1306 |
+
loss = loss_fct(logits, labels)
|
1307 |
+
if not return_dict:
|
1308 |
+
output = (logits,) + outputs[2:]
|
1309 |
+
return ((loss,) + output) if loss is not None else output
|
1310 |
+
|
1311 |
+
return SequenceClassifierOutput(
|
1312 |
+
loss=loss,
|
1313 |
+
logits=logits,
|
1314 |
+
hidden_states=outputs.hidden_states,
|
1315 |
+
attentions=outputs.attentions,
|
1316 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/processing_markuplm.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for MarkupLM.
|
17 |
+
"""
|
18 |
+
from typing import Optional, Union
|
19 |
+
|
20 |
+
from ...file_utils import TensorType
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy
|
23 |
+
|
24 |
+
|
25 |
+
class MarkupLMProcessor(ProcessorMixin):
|
26 |
+
r"""
|
27 |
+
Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single
|
28 |
+
processor.
|
29 |
+
|
30 |
+
[`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model.
|
31 |
+
|
32 |
+
It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings.
|
33 |
+
Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level
|
34 |
+
`input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
feature_extractor (`MarkupLMFeatureExtractor`):
|
38 |
+
An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input.
|
39 |
+
tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`):
|
40 |
+
An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input.
|
41 |
+
parse_html (`bool`, *optional*, defaults to `True`):
|
42 |
+
Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths.
|
43 |
+
"""
|
44 |
+
|
45 |
+
feature_extractor_class = "MarkupLMFeatureExtractor"
|
46 |
+
tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast")
|
47 |
+
parse_html = True
|
48 |
+
|
49 |
+
def __call__(
|
50 |
+
self,
|
51 |
+
html_strings=None,
|
52 |
+
nodes=None,
|
53 |
+
xpaths=None,
|
54 |
+
node_labels=None,
|
55 |
+
questions=None,
|
56 |
+
add_special_tokens: bool = True,
|
57 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
58 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
59 |
+
max_length: Optional[int] = None,
|
60 |
+
stride: int = 0,
|
61 |
+
pad_to_multiple_of: Optional[int] = None,
|
62 |
+
return_token_type_ids: Optional[bool] = None,
|
63 |
+
return_attention_mask: Optional[bool] = None,
|
64 |
+
return_overflowing_tokens: bool = False,
|
65 |
+
return_special_tokens_mask: bool = False,
|
66 |
+
return_offsets_mapping: bool = False,
|
67 |
+
return_length: bool = False,
|
68 |
+
verbose: bool = True,
|
69 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
70 |
+
**kwargs,
|
71 |
+
) -> BatchEncoding:
|
72 |
+
"""
|
73 |
+
This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it
|
74 |
+
passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and
|
75 |
+
returns the output.
|
76 |
+
|
77 |
+
Optionally, one can also provide a `text` argument which is passed along as first sequence.
|
78 |
+
|
79 |
+
Please refer to the docstring of the above two methods for more information.
|
80 |
+
"""
|
81 |
+
# first, create nodes and xpaths
|
82 |
+
if self.parse_html:
|
83 |
+
if html_strings is None:
|
84 |
+
raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`")
|
85 |
+
|
86 |
+
if nodes is not None or xpaths is not None or node_labels is not None:
|
87 |
+
raise ValueError(
|
88 |
+
"Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`"
|
89 |
+
)
|
90 |
+
|
91 |
+
features = self.feature_extractor(html_strings)
|
92 |
+
nodes = features["nodes"]
|
93 |
+
xpaths = features["xpaths"]
|
94 |
+
else:
|
95 |
+
if html_strings is not None:
|
96 |
+
raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.")
|
97 |
+
if nodes is None or xpaths is None:
|
98 |
+
raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`")
|
99 |
+
|
100 |
+
# # second, apply the tokenizer
|
101 |
+
if questions is not None and self.parse_html:
|
102 |
+
if isinstance(questions, str):
|
103 |
+
questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension)
|
104 |
+
|
105 |
+
encoded_inputs = self.tokenizer(
|
106 |
+
text=questions if questions is not None else nodes,
|
107 |
+
text_pair=nodes if questions is not None else None,
|
108 |
+
xpaths=xpaths,
|
109 |
+
node_labels=node_labels,
|
110 |
+
add_special_tokens=add_special_tokens,
|
111 |
+
padding=padding,
|
112 |
+
truncation=truncation,
|
113 |
+
max_length=max_length,
|
114 |
+
stride=stride,
|
115 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
116 |
+
return_token_type_ids=return_token_type_ids,
|
117 |
+
return_attention_mask=return_attention_mask,
|
118 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
119 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
120 |
+
return_offsets_mapping=return_offsets_mapping,
|
121 |
+
return_length=return_length,
|
122 |
+
verbose=verbose,
|
123 |
+
return_tensors=return_tensors,
|
124 |
+
**kwargs,
|
125 |
+
)
|
126 |
+
|
127 |
+
return encoded_inputs
|
128 |
+
|
129 |
+
def batch_decode(self, *args, **kwargs):
|
130 |
+
"""
|
131 |
+
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
|
132 |
+
to the docstring of this method for more information.
|
133 |
+
"""
|
134 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
135 |
+
|
136 |
+
def decode(self, *args, **kwargs):
|
137 |
+
"""
|
138 |
+
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
|
139 |
+
docstring of this method for more information.
|
140 |
+
"""
|
141 |
+
return self.tokenizer.decode(*args, **kwargs)
|
142 |
+
|
143 |
+
@property
|
144 |
+
def model_input_names(self):
|
145 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
146 |
+
return tokenizer_input_names
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm.py
ADDED
@@ -0,0 +1,1445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization class for MarkupLM."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
from functools import lru_cache
|
20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import regex as re
|
23 |
+
|
24 |
+
from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings
|
25 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
26 |
+
from ...tokenization_utils_base import (
|
27 |
+
ENCODE_KWARGS_DOCSTRING,
|
28 |
+
BatchEncoding,
|
29 |
+
EncodedInput,
|
30 |
+
PreTokenizedInput,
|
31 |
+
TextInput,
|
32 |
+
TextInputPair,
|
33 |
+
TruncationStrategy,
|
34 |
+
)
|
35 |
+
from ...utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
41 |
+
|
42 |
+
|
43 |
+
MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
|
44 |
+
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
45 |
+
Whether or not to encode the sequences with the special tokens relative to their model.
|
46 |
+
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
|
47 |
+
Activates and controls padding. Accepts the following values:
|
48 |
+
|
49 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
50 |
+
sequence if provided).
|
51 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
52 |
+
acceptable input length for the model if that argument is not provided.
|
53 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
54 |
+
lengths).
|
55 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
56 |
+
Activates and controls truncation. Accepts the following values:
|
57 |
+
|
58 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
59 |
+
to the maximum acceptable input length for the model if that argument is not provided. This will
|
60 |
+
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
61 |
+
sequences (or a batch of pairs) is provided.
|
62 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
63 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
64 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
65 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
66 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
67 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
68 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
69 |
+
greater than the model maximum admissible input size).
|
70 |
+
max_length (`int`, *optional*):
|
71 |
+
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
|
72 |
+
`None`, this will use the predefined model maximum length if a maximum length is required by one of the
|
73 |
+
truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
|
74 |
+
truncation/padding to a maximum length will be deactivated.
|
75 |
+
stride (`int`, *optional*, defaults to 0):
|
76 |
+
If set to a number along with `max_length`, the overflowing tokens returned when
|
77 |
+
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
78 |
+
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
79 |
+
argument defines the number of overlapping tokens.
|
80 |
+
pad_to_multiple_of (`int`, *optional*):
|
81 |
+
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
82 |
+
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
83 |
+
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
84 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
85 |
+
|
86 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
87 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
88 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
89 |
+
"""
|
90 |
+
|
91 |
+
|
92 |
+
@lru_cache()
|
93 |
+
def bytes_to_unicode():
|
94 |
+
"""
|
95 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
96 |
+
characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
|
97 |
+
of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
|
98 |
+
you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
|
99 |
+
vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
100 |
+
"""
|
101 |
+
bs = (
|
102 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
103 |
+
)
|
104 |
+
cs = bs[:]
|
105 |
+
n = 0
|
106 |
+
for b in range(2**8):
|
107 |
+
if b not in bs:
|
108 |
+
bs.append(b)
|
109 |
+
cs.append(2**8 + n)
|
110 |
+
n += 1
|
111 |
+
cs = [chr(n) for n in cs]
|
112 |
+
return dict(zip(bs, cs))
|
113 |
+
|
114 |
+
|
115 |
+
def get_pairs(word):
|
116 |
+
"""
|
117 |
+
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
|
118 |
+
strings).
|
119 |
+
"""
|
120 |
+
pairs = set()
|
121 |
+
prev_char = word[0]
|
122 |
+
for char in word[1:]:
|
123 |
+
pairs.add((prev_char, char))
|
124 |
+
prev_char = char
|
125 |
+
return pairs
|
126 |
+
|
127 |
+
|
128 |
+
class MarkupLMTokenizer(PreTrainedTokenizer):
|
129 |
+
r"""
|
130 |
+
Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizer`] can be used to
|
131 |
+
turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and
|
132 |
+
`xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
|
133 |
+
Users should refer to this superclass for more information regarding those methods.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
vocab_file (`str`):
|
137 |
+
Path to the vocabulary file.
|
138 |
+
merges_file (`str`):
|
139 |
+
Path to the merges file.
|
140 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
141 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
142 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
143 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
144 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
145 |
+
|
146 |
+
<Tip>
|
147 |
+
|
148 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
149 |
+
sequence. The token used is the `cls_token`.
|
150 |
+
|
151 |
+
</Tip>
|
152 |
+
|
153 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
154 |
+
The end of sequence token.
|
155 |
+
|
156 |
+
<Tip>
|
157 |
+
|
158 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
159 |
+
The token used is the `sep_token`.
|
160 |
+
|
161 |
+
</Tip>
|
162 |
+
|
163 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
164 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
165 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
166 |
+
token of a sequence built with special tokens.
|
167 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
168 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
169 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
170 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
171 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
172 |
+
token instead.
|
173 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
174 |
+
The token used for padding, for example when batching sequences of different lengths.
|
175 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
176 |
+
The token used for masking values. This is the token used when training this model with masked language
|
177 |
+
modeling. This is the token which the model will try to predict.
|
178 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
179 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
180 |
+
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
|
181 |
+
"""
|
182 |
+
|
183 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
184 |
+
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
vocab_file,
|
188 |
+
merges_file,
|
189 |
+
tags_dict,
|
190 |
+
errors="replace",
|
191 |
+
bos_token="<s>",
|
192 |
+
eos_token="</s>",
|
193 |
+
sep_token="</s>",
|
194 |
+
cls_token="<s>",
|
195 |
+
unk_token="<unk>",
|
196 |
+
pad_token="<pad>",
|
197 |
+
mask_token="<mask>",
|
198 |
+
add_prefix_space=False,
|
199 |
+
max_depth=50,
|
200 |
+
max_width=1000,
|
201 |
+
pad_width=1001,
|
202 |
+
pad_token_label=-100,
|
203 |
+
only_label_first_subword=True,
|
204 |
+
**kwargs,
|
205 |
+
):
|
206 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
207 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
208 |
+
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
209 |
+
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
210 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
211 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
212 |
+
|
213 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
214 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
215 |
+
|
216 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
217 |
+
self.encoder = json.load(vocab_handle)
|
218 |
+
|
219 |
+
self.tags_dict = tags_dict
|
220 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
221 |
+
self.errors = errors # how to handle errors in decoding
|
222 |
+
self.byte_encoder = bytes_to_unicode()
|
223 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
224 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
225 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
226 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
227 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
228 |
+
self.cache = {}
|
229 |
+
self.add_prefix_space = add_prefix_space
|
230 |
+
|
231 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
232 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
233 |
+
|
234 |
+
# additional properties
|
235 |
+
self.max_depth = max_depth
|
236 |
+
self.max_width = max_width
|
237 |
+
self.pad_width = pad_width
|
238 |
+
self.unk_tag_id = len(self.tags_dict)
|
239 |
+
self.pad_tag_id = self.unk_tag_id + 1
|
240 |
+
self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth
|
241 |
+
self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth
|
242 |
+
|
243 |
+
super().__init__(
|
244 |
+
vocab_file=vocab_file,
|
245 |
+
merges_file=merges_file,
|
246 |
+
tags_dict=tags_dict,
|
247 |
+
errors=errors,
|
248 |
+
bos_token=bos_token,
|
249 |
+
eos_token=eos_token,
|
250 |
+
unk_token=unk_token,
|
251 |
+
sep_token=sep_token,
|
252 |
+
cls_token=cls_token,
|
253 |
+
pad_token=pad_token,
|
254 |
+
mask_token=mask_token,
|
255 |
+
add_prefix_space=add_prefix_space,
|
256 |
+
max_depth=max_depth,
|
257 |
+
max_width=max_width,
|
258 |
+
pad_width=pad_width,
|
259 |
+
pad_token_label=pad_token_label,
|
260 |
+
only_label_first_subword=only_label_first_subword,
|
261 |
+
**kwargs,
|
262 |
+
)
|
263 |
+
|
264 |
+
self.pad_token_label = pad_token_label
|
265 |
+
self.only_label_first_subword = only_label_first_subword
|
266 |
+
|
267 |
+
def get_xpath_seq(self, xpath):
|
268 |
+
"""
|
269 |
+
Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of
|
270 |
+
tag IDs and corresponding subscripts, taking into account max depth.
|
271 |
+
"""
|
272 |
+
xpath_tags_list = []
|
273 |
+
xpath_subs_list = []
|
274 |
+
|
275 |
+
xpath_units = xpath.split("/")
|
276 |
+
for unit in xpath_units:
|
277 |
+
if not unit.strip():
|
278 |
+
continue
|
279 |
+
name_subs = unit.strip().split("[")
|
280 |
+
tag_name = name_subs[0]
|
281 |
+
sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1])
|
282 |
+
xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id))
|
283 |
+
xpath_subs_list.append(min(self.max_width, sub))
|
284 |
+
|
285 |
+
xpath_tags_list = xpath_tags_list[: self.max_depth]
|
286 |
+
xpath_subs_list = xpath_subs_list[: self.max_depth]
|
287 |
+
xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list))
|
288 |
+
xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list))
|
289 |
+
|
290 |
+
return xpath_tags_list, xpath_subs_list
|
291 |
+
|
292 |
+
@property
|
293 |
+
def vocab_size(self):
|
294 |
+
return len(self.encoder)
|
295 |
+
|
296 |
+
def get_vocab(self):
|
297 |
+
vocab = self.encoder.copy()
|
298 |
+
vocab.update(self.added_tokens_encoder)
|
299 |
+
return vocab
|
300 |
+
|
301 |
+
def bpe(self, token):
|
302 |
+
if token in self.cache:
|
303 |
+
return self.cache[token]
|
304 |
+
word = tuple(token)
|
305 |
+
pairs = get_pairs(word)
|
306 |
+
|
307 |
+
if not pairs:
|
308 |
+
return token
|
309 |
+
|
310 |
+
while True:
|
311 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
312 |
+
if bigram not in self.bpe_ranks:
|
313 |
+
break
|
314 |
+
first, second = bigram
|
315 |
+
new_word = []
|
316 |
+
i = 0
|
317 |
+
while i < len(word):
|
318 |
+
try:
|
319 |
+
j = word.index(first, i)
|
320 |
+
except ValueError:
|
321 |
+
new_word.extend(word[i:])
|
322 |
+
break
|
323 |
+
else:
|
324 |
+
new_word.extend(word[i:j])
|
325 |
+
i = j
|
326 |
+
|
327 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
328 |
+
new_word.append(first + second)
|
329 |
+
i += 2
|
330 |
+
else:
|
331 |
+
new_word.append(word[i])
|
332 |
+
i += 1
|
333 |
+
new_word = tuple(new_word)
|
334 |
+
word = new_word
|
335 |
+
if len(word) == 1:
|
336 |
+
break
|
337 |
+
else:
|
338 |
+
pairs = get_pairs(word)
|
339 |
+
word = " ".join(word)
|
340 |
+
self.cache[token] = word
|
341 |
+
return word
|
342 |
+
|
343 |
+
def _tokenize(self, text):
|
344 |
+
"""Tokenize a string."""
|
345 |
+
bpe_tokens = []
|
346 |
+
for token in re.findall(self.pat, text):
|
347 |
+
token = "".join(
|
348 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
349 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
350 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
351 |
+
return bpe_tokens
|
352 |
+
|
353 |
+
def _convert_token_to_id(self, token):
|
354 |
+
"""Converts a token (str) in an id using the vocab."""
|
355 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
356 |
+
|
357 |
+
def _convert_id_to_token(self, index):
|
358 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
359 |
+
return self.decoder.get(index)
|
360 |
+
|
361 |
+
def convert_tokens_to_string(self, tokens):
|
362 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
363 |
+
logger.warning(
|
364 |
+
"MarkupLM now does not support generative tasks, decoding is experimental and subject to change."
|
365 |
+
)
|
366 |
+
text = "".join(tokens)
|
367 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
368 |
+
return text
|
369 |
+
|
370 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
371 |
+
if not os.path.isdir(save_directory):
|
372 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
373 |
+
return
|
374 |
+
vocab_file = os.path.join(
|
375 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
376 |
+
)
|
377 |
+
merge_file = os.path.join(
|
378 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
379 |
+
)
|
380 |
+
|
381 |
+
# save vocab_file
|
382 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
383 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
384 |
+
|
385 |
+
# save merge_file
|
386 |
+
index = 0
|
387 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
388 |
+
writer.write("#version: 0.2\n")
|
389 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
390 |
+
if index != token_index:
|
391 |
+
logger.warning(
|
392 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
393 |
+
" Please check that the tokenizer is not corrupted!"
|
394 |
+
)
|
395 |
+
index = token_index
|
396 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
397 |
+
index += 1
|
398 |
+
|
399 |
+
return vocab_file, merge_file
|
400 |
+
|
401 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
402 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
403 |
+
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
|
404 |
+
text = " " + text
|
405 |
+
return (text, kwargs)
|
406 |
+
|
407 |
+
def build_inputs_with_special_tokens(
|
408 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
409 |
+
) -> List[int]:
|
410 |
+
"""
|
411 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
412 |
+
adding special tokens. A RoBERTa sequence has the following format:
|
413 |
+
- single sequence: `<s> X </s>`
|
414 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
415 |
+
|
416 |
+
Args:
|
417 |
+
token_ids_0 (`List[int]`):
|
418 |
+
List of IDs to which the special tokens will be added.
|
419 |
+
token_ids_1 (`List[int]`, *optional*):
|
420 |
+
Optional second list of IDs for sequence pairs.
|
421 |
+
Returns:
|
422 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
423 |
+
"""
|
424 |
+
if token_ids_1 is None:
|
425 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
426 |
+
cls = [self.cls_token_id]
|
427 |
+
sep = [self.sep_token_id]
|
428 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
429 |
+
|
430 |
+
def build_xpath_tags_with_special_tokens(
|
431 |
+
self, xpath_tags_0: List[int], xpath_tags_1: Optional[List[int]] = None
|
432 |
+
) -> List[int]:
|
433 |
+
pad = [self.pad_xpath_tags_seq]
|
434 |
+
if len(xpath_tags_1) == 0:
|
435 |
+
return pad + xpath_tags_0 + pad
|
436 |
+
return pad + xpath_tags_0 + pad + xpath_tags_1 + pad
|
437 |
+
|
438 |
+
def build_xpath_subs_with_special_tokens(
|
439 |
+
self, xpath_subs_0: List[int], xpath_subs_1: Optional[List[int]] = None
|
440 |
+
) -> List[int]:
|
441 |
+
pad = [self.pad_xpath_subs_seq]
|
442 |
+
if len(xpath_subs_1) == 0:
|
443 |
+
return pad + xpath_subs_0 + pad
|
444 |
+
return pad + xpath_subs_0 + pad + xpath_subs_1 + pad
|
445 |
+
|
446 |
+
def get_special_tokens_mask(
|
447 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
448 |
+
) -> List[int]:
|
449 |
+
"""
|
450 |
+
Args:
|
451 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
452 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
453 |
+
token_ids_0 (`List[int]`):
|
454 |
+
List of IDs.
|
455 |
+
token_ids_1 (`List[int]`, *optional*):
|
456 |
+
Optional second list of IDs for sequence pairs.
|
457 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
458 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
459 |
+
Returns:
|
460 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
461 |
+
"""
|
462 |
+
if already_has_special_tokens:
|
463 |
+
return super().get_special_tokens_mask(
|
464 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
465 |
+
)
|
466 |
+
|
467 |
+
if token_ids_1 is None:
|
468 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
469 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
470 |
+
|
471 |
+
def create_token_type_ids_from_sequences(
|
472 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
473 |
+
) -> List[int]:
|
474 |
+
"""
|
475 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
|
476 |
+
make use of token type ids, therefore a list of zeros is returned.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
token_ids_0 (`List[int]`):
|
480 |
+
List of IDs.
|
481 |
+
token_ids_1 (`List[int]`, *optional*):
|
482 |
+
Optional second list of IDs for sequence pairs.
|
483 |
+
Returns:
|
484 |
+
`List[int]`: List of zeros.
|
485 |
+
"""
|
486 |
+
sep = [self.sep_token_id]
|
487 |
+
cls = [self.cls_token_id]
|
488 |
+
|
489 |
+
if token_ids_1 is None:
|
490 |
+
return len(cls + token_ids_0 + sep) * [0]
|
491 |
+
return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0]
|
492 |
+
|
493 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
494 |
+
def __call__(
|
495 |
+
self,
|
496 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
497 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
498 |
+
xpaths: Union[List[List[int]], List[List[List[int]]]] = None,
|
499 |
+
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
500 |
+
add_special_tokens: bool = True,
|
501 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
502 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
503 |
+
max_length: Optional[int] = None,
|
504 |
+
stride: int = 0,
|
505 |
+
pad_to_multiple_of: Optional[int] = None,
|
506 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
507 |
+
return_token_type_ids: Optional[bool] = None,
|
508 |
+
return_attention_mask: Optional[bool] = None,
|
509 |
+
return_overflowing_tokens: bool = False,
|
510 |
+
return_special_tokens_mask: bool = False,
|
511 |
+
return_offsets_mapping: bool = False,
|
512 |
+
return_length: bool = False,
|
513 |
+
verbose: bool = True,
|
514 |
+
**kwargs,
|
515 |
+
) -> BatchEncoding:
|
516 |
+
"""
|
517 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
518 |
+
sequences with node-level xpaths and optional labels.
|
519 |
+
|
520 |
+
Args:
|
521 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
522 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
523 |
+
(nodes of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
524 |
+
nodes).
|
525 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
526 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
527 |
+
(pretokenized string).
|
528 |
+
xpaths (`List[List[int]]`, `List[List[List[int]]]`):
|
529 |
+
Node-level xpaths.
|
530 |
+
node_labels (`List[int]`, `List[List[int]]`, *optional*):
|
531 |
+
Node-level integer labels (for token classification tasks).
|
532 |
+
"""
|
533 |
+
|
534 |
+
# Input type checking for clearer error
|
535 |
+
def _is_valid_text_input(t):
|
536 |
+
if isinstance(t, str):
|
537 |
+
# Strings are fine
|
538 |
+
return True
|
539 |
+
elif isinstance(t, (list, tuple)):
|
540 |
+
# List are fine as long as they are...
|
541 |
+
if len(t) == 0:
|
542 |
+
# ... empty
|
543 |
+
return True
|
544 |
+
elif isinstance(t[0], str):
|
545 |
+
# ... list of strings
|
546 |
+
return True
|
547 |
+
elif isinstance(t[0], (list, tuple)):
|
548 |
+
# ... list with an empty list or with a list of strings
|
549 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
550 |
+
else:
|
551 |
+
return False
|
552 |
+
else:
|
553 |
+
return False
|
554 |
+
|
555 |
+
if text_pair is not None:
|
556 |
+
# in case text + text_pair are provided, text = questions, text_pair = nodes
|
557 |
+
if not _is_valid_text_input(text):
|
558 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
559 |
+
if not isinstance(text_pair, (list, tuple)):
|
560 |
+
raise ValueError(
|
561 |
+
"Nodes must be of type `List[str]` (single pretokenized example), "
|
562 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
563 |
+
)
|
564 |
+
else:
|
565 |
+
# in case only text is provided => must be nodes
|
566 |
+
if not isinstance(text, (list, tuple)):
|
567 |
+
raise ValueError(
|
568 |
+
"Nodes must be of type `List[str]` (single pretokenized example), "
|
569 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
570 |
+
)
|
571 |
+
|
572 |
+
if text_pair is not None:
|
573 |
+
is_batched = isinstance(text, (list, tuple))
|
574 |
+
else:
|
575 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
576 |
+
|
577 |
+
nodes = text if text_pair is None else text_pair
|
578 |
+
assert xpaths is not None, "You must provide corresponding xpaths"
|
579 |
+
if is_batched:
|
580 |
+
assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples"
|
581 |
+
for nodes_example, xpaths_example in zip(nodes, xpaths):
|
582 |
+
assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths"
|
583 |
+
else:
|
584 |
+
assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths"
|
585 |
+
|
586 |
+
if is_batched:
|
587 |
+
if text_pair is not None and len(text) != len(text_pair):
|
588 |
+
raise ValueError(
|
589 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
590 |
+
f" {len(text_pair)}."
|
591 |
+
)
|
592 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
593 |
+
is_pair = bool(text_pair is not None)
|
594 |
+
return self.batch_encode_plus(
|
595 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
596 |
+
is_pair=is_pair,
|
597 |
+
xpaths=xpaths,
|
598 |
+
node_labels=node_labels,
|
599 |
+
add_special_tokens=add_special_tokens,
|
600 |
+
padding=padding,
|
601 |
+
truncation=truncation,
|
602 |
+
max_length=max_length,
|
603 |
+
stride=stride,
|
604 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
605 |
+
return_tensors=return_tensors,
|
606 |
+
return_token_type_ids=return_token_type_ids,
|
607 |
+
return_attention_mask=return_attention_mask,
|
608 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
609 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
610 |
+
return_offsets_mapping=return_offsets_mapping,
|
611 |
+
return_length=return_length,
|
612 |
+
verbose=verbose,
|
613 |
+
**kwargs,
|
614 |
+
)
|
615 |
+
else:
|
616 |
+
return self.encode_plus(
|
617 |
+
text=text,
|
618 |
+
text_pair=text_pair,
|
619 |
+
xpaths=xpaths,
|
620 |
+
node_labels=node_labels,
|
621 |
+
add_special_tokens=add_special_tokens,
|
622 |
+
padding=padding,
|
623 |
+
truncation=truncation,
|
624 |
+
max_length=max_length,
|
625 |
+
stride=stride,
|
626 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
627 |
+
return_tensors=return_tensors,
|
628 |
+
return_token_type_ids=return_token_type_ids,
|
629 |
+
return_attention_mask=return_attention_mask,
|
630 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
631 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
632 |
+
return_offsets_mapping=return_offsets_mapping,
|
633 |
+
return_length=return_length,
|
634 |
+
verbose=verbose,
|
635 |
+
**kwargs,
|
636 |
+
)
|
637 |
+
|
638 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
639 |
+
def batch_encode_plus(
|
640 |
+
self,
|
641 |
+
batch_text_or_text_pairs: Union[
|
642 |
+
List[TextInput],
|
643 |
+
List[TextInputPair],
|
644 |
+
List[PreTokenizedInput],
|
645 |
+
],
|
646 |
+
is_pair: bool = None,
|
647 |
+
xpaths: Optional[List[List[List[int]]]] = None,
|
648 |
+
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
649 |
+
add_special_tokens: bool = True,
|
650 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
651 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
652 |
+
max_length: Optional[int] = None,
|
653 |
+
stride: int = 0,
|
654 |
+
pad_to_multiple_of: Optional[int] = None,
|
655 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
656 |
+
return_token_type_ids: Optional[bool] = None,
|
657 |
+
return_attention_mask: Optional[bool] = None,
|
658 |
+
return_overflowing_tokens: bool = False,
|
659 |
+
return_special_tokens_mask: bool = False,
|
660 |
+
return_offsets_mapping: bool = False,
|
661 |
+
return_length: bool = False,
|
662 |
+
verbose: bool = True,
|
663 |
+
**kwargs,
|
664 |
+
) -> BatchEncoding:
|
665 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
666 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
667 |
+
padding=padding,
|
668 |
+
truncation=truncation,
|
669 |
+
max_length=max_length,
|
670 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
671 |
+
verbose=verbose,
|
672 |
+
**kwargs,
|
673 |
+
)
|
674 |
+
|
675 |
+
return self._batch_encode_plus(
|
676 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
677 |
+
is_pair=is_pair,
|
678 |
+
xpaths=xpaths,
|
679 |
+
node_labels=node_labels,
|
680 |
+
add_special_tokens=add_special_tokens,
|
681 |
+
padding_strategy=padding_strategy,
|
682 |
+
truncation_strategy=truncation_strategy,
|
683 |
+
max_length=max_length,
|
684 |
+
stride=stride,
|
685 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
686 |
+
return_tensors=return_tensors,
|
687 |
+
return_token_type_ids=return_token_type_ids,
|
688 |
+
return_attention_mask=return_attention_mask,
|
689 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
690 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
691 |
+
return_offsets_mapping=return_offsets_mapping,
|
692 |
+
return_length=return_length,
|
693 |
+
verbose=verbose,
|
694 |
+
**kwargs,
|
695 |
+
)
|
696 |
+
|
697 |
+
def _batch_encode_plus(
|
698 |
+
self,
|
699 |
+
batch_text_or_text_pairs: Union[
|
700 |
+
List[TextInput],
|
701 |
+
List[TextInputPair],
|
702 |
+
List[PreTokenizedInput],
|
703 |
+
],
|
704 |
+
is_pair: bool = None,
|
705 |
+
xpaths: Optional[List[List[List[int]]]] = None,
|
706 |
+
node_labels: Optional[List[List[int]]] = None,
|
707 |
+
add_special_tokens: bool = True,
|
708 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
709 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
710 |
+
max_length: Optional[int] = None,
|
711 |
+
stride: int = 0,
|
712 |
+
pad_to_multiple_of: Optional[int] = None,
|
713 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
714 |
+
return_token_type_ids: Optional[bool] = None,
|
715 |
+
return_attention_mask: Optional[bool] = None,
|
716 |
+
return_overflowing_tokens: bool = False,
|
717 |
+
return_special_tokens_mask: bool = False,
|
718 |
+
return_offsets_mapping: bool = False,
|
719 |
+
return_length: bool = False,
|
720 |
+
verbose: bool = True,
|
721 |
+
**kwargs,
|
722 |
+
) -> BatchEncoding:
|
723 |
+
if return_offsets_mapping:
|
724 |
+
raise NotImplementedError(
|
725 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
726 |
+
"To use this feature, change your tokenizer to one deriving from "
|
727 |
+
"transformers.PreTrainedTokenizerFast."
|
728 |
+
)
|
729 |
+
|
730 |
+
batch_outputs = self._batch_prepare_for_model(
|
731 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
732 |
+
is_pair=is_pair,
|
733 |
+
xpaths=xpaths,
|
734 |
+
node_labels=node_labels,
|
735 |
+
add_special_tokens=add_special_tokens,
|
736 |
+
padding_strategy=padding_strategy,
|
737 |
+
truncation_strategy=truncation_strategy,
|
738 |
+
max_length=max_length,
|
739 |
+
stride=stride,
|
740 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
741 |
+
return_attention_mask=return_attention_mask,
|
742 |
+
return_token_type_ids=return_token_type_ids,
|
743 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
744 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
745 |
+
return_length=return_length,
|
746 |
+
return_tensors=return_tensors,
|
747 |
+
verbose=verbose,
|
748 |
+
)
|
749 |
+
|
750 |
+
return BatchEncoding(batch_outputs)
|
751 |
+
|
752 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
753 |
+
def _batch_prepare_for_model(
|
754 |
+
self,
|
755 |
+
batch_text_or_text_pairs,
|
756 |
+
is_pair: bool = None,
|
757 |
+
xpaths: Optional[List[List[int]]] = None,
|
758 |
+
node_labels: Optional[List[List[int]]] = None,
|
759 |
+
add_special_tokens: bool = True,
|
760 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
761 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
762 |
+
max_length: Optional[int] = None,
|
763 |
+
stride: int = 0,
|
764 |
+
pad_to_multiple_of: Optional[int] = None,
|
765 |
+
return_tensors: Optional[str] = None,
|
766 |
+
return_token_type_ids: Optional[bool] = None,
|
767 |
+
return_attention_mask: Optional[bool] = None,
|
768 |
+
return_overflowing_tokens: bool = False,
|
769 |
+
return_special_tokens_mask: bool = False,
|
770 |
+
return_length: bool = False,
|
771 |
+
verbose: bool = True,
|
772 |
+
) -> BatchEncoding:
|
773 |
+
"""
|
774 |
+
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
775 |
+
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
776 |
+
manages a moving window (with user defined stride) for overflowing tokens.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
batch_ids_pairs: list of tokenized input ids or input ids pairs
|
780 |
+
"""
|
781 |
+
|
782 |
+
batch_outputs = {}
|
783 |
+
for idx, example in enumerate(zip(batch_text_or_text_pairs, xpaths)):
|
784 |
+
batch_text_or_text_pair, xpaths_example = example
|
785 |
+
outputs = self.prepare_for_model(
|
786 |
+
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
|
787 |
+
batch_text_or_text_pair[1] if is_pair else None,
|
788 |
+
xpaths_example,
|
789 |
+
node_labels=node_labels[idx] if node_labels is not None else None,
|
790 |
+
add_special_tokens=add_special_tokens,
|
791 |
+
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
|
792 |
+
truncation=truncation_strategy.value,
|
793 |
+
max_length=max_length,
|
794 |
+
stride=stride,
|
795 |
+
pad_to_multiple_of=None, # we pad in batch afterward
|
796 |
+
return_attention_mask=False, # we pad in batch afterward
|
797 |
+
return_token_type_ids=return_token_type_ids,
|
798 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
799 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
800 |
+
return_length=return_length,
|
801 |
+
return_tensors=None, # We convert the whole batch to tensors at the end
|
802 |
+
prepend_batch_axis=False,
|
803 |
+
verbose=verbose,
|
804 |
+
)
|
805 |
+
|
806 |
+
for key, value in outputs.items():
|
807 |
+
if key not in batch_outputs:
|
808 |
+
batch_outputs[key] = []
|
809 |
+
batch_outputs[key].append(value)
|
810 |
+
|
811 |
+
batch_outputs = self.pad(
|
812 |
+
batch_outputs,
|
813 |
+
padding=padding_strategy.value,
|
814 |
+
max_length=max_length,
|
815 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
816 |
+
return_attention_mask=return_attention_mask,
|
817 |
+
)
|
818 |
+
|
819 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
820 |
+
|
821 |
+
return batch_outputs
|
822 |
+
|
823 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING)
|
824 |
+
def encode(
|
825 |
+
self,
|
826 |
+
text: Union[TextInput, PreTokenizedInput],
|
827 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
828 |
+
xpaths: Optional[List[List[int]]] = None,
|
829 |
+
node_labels: Optional[List[int]] = None,
|
830 |
+
add_special_tokens: bool = True,
|
831 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
832 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
833 |
+
max_length: Optional[int] = None,
|
834 |
+
stride: int = 0,
|
835 |
+
pad_to_multiple_of: Optional[int] = None,
|
836 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
837 |
+
return_token_type_ids: Optional[bool] = None,
|
838 |
+
return_attention_mask: Optional[bool] = None,
|
839 |
+
return_overflowing_tokens: bool = False,
|
840 |
+
return_special_tokens_mask: bool = False,
|
841 |
+
return_offsets_mapping: bool = False,
|
842 |
+
return_length: bool = False,
|
843 |
+
verbose: bool = True,
|
844 |
+
**kwargs,
|
845 |
+
) -> List[int]:
|
846 |
+
encoded_inputs = self.encode_plus(
|
847 |
+
text=text,
|
848 |
+
text_pair=text_pair,
|
849 |
+
xpaths=xpaths,
|
850 |
+
node_labels=node_labels,
|
851 |
+
add_special_tokens=add_special_tokens,
|
852 |
+
padding=padding,
|
853 |
+
truncation=truncation,
|
854 |
+
max_length=max_length,
|
855 |
+
stride=stride,
|
856 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
857 |
+
return_tensors=return_tensors,
|
858 |
+
return_token_type_ids=return_token_type_ids,
|
859 |
+
return_attention_mask=return_attention_mask,
|
860 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
861 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
862 |
+
return_offsets_mapping=return_offsets_mapping,
|
863 |
+
return_length=return_length,
|
864 |
+
verbose=verbose,
|
865 |
+
**kwargs,
|
866 |
+
)
|
867 |
+
|
868 |
+
return encoded_inputs["input_ids"]
|
869 |
+
|
870 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
871 |
+
def encode_plus(
|
872 |
+
self,
|
873 |
+
text: Union[TextInput, PreTokenizedInput],
|
874 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
875 |
+
xpaths: Optional[List[List[int]]] = None,
|
876 |
+
node_labels: Optional[List[int]] = None,
|
877 |
+
add_special_tokens: bool = True,
|
878 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
879 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
880 |
+
max_length: Optional[int] = None,
|
881 |
+
stride: int = 0,
|
882 |
+
pad_to_multiple_of: Optional[int] = None,
|
883 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
884 |
+
return_token_type_ids: Optional[bool] = None,
|
885 |
+
return_attention_mask: Optional[bool] = None,
|
886 |
+
return_overflowing_tokens: bool = False,
|
887 |
+
return_special_tokens_mask: bool = False,
|
888 |
+
return_offsets_mapping: bool = False,
|
889 |
+
return_length: bool = False,
|
890 |
+
verbose: bool = True,
|
891 |
+
**kwargs,
|
892 |
+
) -> BatchEncoding:
|
893 |
+
"""
|
894 |
+
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
|
895 |
+
`__call__` should be used instead.
|
896 |
+
|
897 |
+
Args:
|
898 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
899 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
900 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
901 |
+
Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a
|
902 |
+
list of list of strings (nodes of a batch of examples).
|
903 |
+
"""
|
904 |
+
|
905 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
906 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
907 |
+
padding=padding,
|
908 |
+
truncation=truncation,
|
909 |
+
max_length=max_length,
|
910 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
911 |
+
verbose=verbose,
|
912 |
+
**kwargs,
|
913 |
+
)
|
914 |
+
|
915 |
+
return self._encode_plus(
|
916 |
+
text=text,
|
917 |
+
xpaths=xpaths,
|
918 |
+
text_pair=text_pair,
|
919 |
+
node_labels=node_labels,
|
920 |
+
add_special_tokens=add_special_tokens,
|
921 |
+
padding_strategy=padding_strategy,
|
922 |
+
truncation_strategy=truncation_strategy,
|
923 |
+
max_length=max_length,
|
924 |
+
stride=stride,
|
925 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
926 |
+
return_tensors=return_tensors,
|
927 |
+
return_token_type_ids=return_token_type_ids,
|
928 |
+
return_attention_mask=return_attention_mask,
|
929 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
930 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
931 |
+
return_offsets_mapping=return_offsets_mapping,
|
932 |
+
return_length=return_length,
|
933 |
+
verbose=verbose,
|
934 |
+
**kwargs,
|
935 |
+
)
|
936 |
+
|
937 |
+
def _encode_plus(
|
938 |
+
self,
|
939 |
+
text: Union[TextInput, PreTokenizedInput],
|
940 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
941 |
+
xpaths: Optional[List[List[int]]] = None,
|
942 |
+
node_labels: Optional[List[int]] = None,
|
943 |
+
add_special_tokens: bool = True,
|
944 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
945 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
946 |
+
max_length: Optional[int] = None,
|
947 |
+
stride: int = 0,
|
948 |
+
pad_to_multiple_of: Optional[int] = None,
|
949 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
950 |
+
return_token_type_ids: Optional[bool] = None,
|
951 |
+
return_attention_mask: Optional[bool] = None,
|
952 |
+
return_overflowing_tokens: bool = False,
|
953 |
+
return_special_tokens_mask: bool = False,
|
954 |
+
return_offsets_mapping: bool = False,
|
955 |
+
return_length: bool = False,
|
956 |
+
verbose: bool = True,
|
957 |
+
**kwargs,
|
958 |
+
) -> BatchEncoding:
|
959 |
+
if return_offsets_mapping:
|
960 |
+
raise NotImplementedError(
|
961 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
962 |
+
"To use this feature, change your tokenizer to one deriving from "
|
963 |
+
"transformers.PreTrainedTokenizerFast. "
|
964 |
+
"More information on available tokenizers at "
|
965 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
966 |
+
)
|
967 |
+
|
968 |
+
return self.prepare_for_model(
|
969 |
+
text=text,
|
970 |
+
text_pair=text_pair,
|
971 |
+
xpaths=xpaths,
|
972 |
+
node_labels=node_labels,
|
973 |
+
add_special_tokens=add_special_tokens,
|
974 |
+
padding=padding_strategy.value,
|
975 |
+
truncation=truncation_strategy.value,
|
976 |
+
max_length=max_length,
|
977 |
+
stride=stride,
|
978 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
979 |
+
return_tensors=return_tensors,
|
980 |
+
prepend_batch_axis=True,
|
981 |
+
return_attention_mask=return_attention_mask,
|
982 |
+
return_token_type_ids=return_token_type_ids,
|
983 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
984 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
985 |
+
return_length=return_length,
|
986 |
+
verbose=verbose,
|
987 |
+
)
|
988 |
+
|
989 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
990 |
+
def prepare_for_model(
|
991 |
+
self,
|
992 |
+
text: Union[TextInput, PreTokenizedInput],
|
993 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
994 |
+
xpaths: Optional[List[List[int]]] = None,
|
995 |
+
node_labels: Optional[List[int]] = None,
|
996 |
+
add_special_tokens: bool = True,
|
997 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
998 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
999 |
+
max_length: Optional[int] = None,
|
1000 |
+
stride: int = 0,
|
1001 |
+
pad_to_multiple_of: Optional[int] = None,
|
1002 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
1003 |
+
return_token_type_ids: Optional[bool] = None,
|
1004 |
+
return_attention_mask: Optional[bool] = None,
|
1005 |
+
return_overflowing_tokens: bool = False,
|
1006 |
+
return_special_tokens_mask: bool = False,
|
1007 |
+
return_offsets_mapping: bool = False,
|
1008 |
+
return_length: bool = False,
|
1009 |
+
verbose: bool = True,
|
1010 |
+
prepend_batch_axis: bool = False,
|
1011 |
+
**kwargs,
|
1012 |
+
) -> BatchEncoding:
|
1013 |
+
"""
|
1014 |
+
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
|
1015 |
+
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
|
1016 |
+
(with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
|
1017 |
+
*truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
|
1018 |
+
combination of arguments will raise an error.
|
1019 |
+
|
1020 |
+
Node-level `xpaths` are turned into token-level `xpath_tags_seq` and `xpath_subs_seq`. If provided, node-level
|
1021 |
+
`node_labels` are turned into token-level `labels`. The node label is used for the first token of the node,
|
1022 |
+
while remaining tokens are labeled with -100, such that they will be ignored by the loss function.
|
1023 |
+
|
1024 |
+
Args:
|
1025 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
1026 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
1027 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
1028 |
+
Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a
|
1029 |
+
list of list of strings (nodes of a batch of examples).
|
1030 |
+
"""
|
1031 |
+
|
1032 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
1033 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
1034 |
+
padding=padding,
|
1035 |
+
truncation=truncation,
|
1036 |
+
max_length=max_length,
|
1037 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
1038 |
+
verbose=verbose,
|
1039 |
+
**kwargs,
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
tokens = []
|
1043 |
+
pair_tokens = []
|
1044 |
+
xpath_tags_seq = []
|
1045 |
+
xpath_subs_seq = []
|
1046 |
+
pair_xpath_tags_seq = []
|
1047 |
+
pair_xpath_subs_seq = []
|
1048 |
+
labels = []
|
1049 |
+
|
1050 |
+
if text_pair is None:
|
1051 |
+
if node_labels is None:
|
1052 |
+
# CASE 1: web page classification (training + inference) + CASE 2: token classification (inference)
|
1053 |
+
for word, xpath in zip(text, xpaths):
|
1054 |
+
if len(word) < 1: # skip empty nodes
|
1055 |
+
continue
|
1056 |
+
word_tokens = self.tokenize(word)
|
1057 |
+
tokens.extend(word_tokens)
|
1058 |
+
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
|
1059 |
+
xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
|
1060 |
+
xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
|
1061 |
+
else:
|
1062 |
+
# CASE 2: token classification (training)
|
1063 |
+
for word, xpath, label in zip(text, xpaths, node_labels):
|
1064 |
+
if len(word) < 1: # skip empty nodes
|
1065 |
+
continue
|
1066 |
+
word_tokens = self.tokenize(word)
|
1067 |
+
tokens.extend(word_tokens)
|
1068 |
+
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
|
1069 |
+
xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
|
1070 |
+
xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
|
1071 |
+
if self.only_label_first_subword:
|
1072 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
1073 |
+
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
|
1074 |
+
else:
|
1075 |
+
labels.extend([label] * len(word_tokens))
|
1076 |
+
else:
|
1077 |
+
# CASE 3: web page question answering (inference)
|
1078 |
+
# text = question
|
1079 |
+
# text_pair = nodes
|
1080 |
+
tokens = self.tokenize(text)
|
1081 |
+
xpath_tags_seq = [self.pad_xpath_tags_seq for _ in range(len(tokens))]
|
1082 |
+
xpath_subs_seq = [self.pad_xpath_subs_seq for _ in range(len(tokens))]
|
1083 |
+
|
1084 |
+
for word, xpath in zip(text_pair, xpaths):
|
1085 |
+
if len(word) < 1: # skip empty nodes
|
1086 |
+
continue
|
1087 |
+
word_tokens = self.tokenize(word)
|
1088 |
+
pair_tokens.extend(word_tokens)
|
1089 |
+
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
|
1090 |
+
pair_xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
|
1091 |
+
pair_xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
|
1092 |
+
|
1093 |
+
# Create ids + pair_ids
|
1094 |
+
ids = self.convert_tokens_to_ids(tokens)
|
1095 |
+
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
|
1096 |
+
|
1097 |
+
if (
|
1098 |
+
return_overflowing_tokens
|
1099 |
+
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
|
1100 |
+
and pair_ids is not None
|
1101 |
+
):
|
1102 |
+
raise ValueError(
|
1103 |
+
"Not possible to return overflowing tokens for pair of sequences with the "
|
1104 |
+
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
1105 |
+
"for instance `only_second` or `only_first`."
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
# Compute the total size of the returned encodings
|
1109 |
+
pair = bool(pair_ids is not None)
|
1110 |
+
len_ids = len(ids)
|
1111 |
+
len_pair_ids = len(pair_ids) if pair else 0
|
1112 |
+
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
1113 |
+
|
1114 |
+
# Truncation: Handle max sequence length
|
1115 |
+
overflowing_tokens = []
|
1116 |
+
overflowing_xpath_tags_seq = []
|
1117 |
+
overflowing_xpath_subs_seq = []
|
1118 |
+
overflowing_labels = []
|
1119 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
1120 |
+
(
|
1121 |
+
ids,
|
1122 |
+
xpath_tags_seq,
|
1123 |
+
xpath_subs_seq,
|
1124 |
+
pair_ids,
|
1125 |
+
pair_xpath_tags_seq,
|
1126 |
+
pair_xpath_subs_seq,
|
1127 |
+
labels,
|
1128 |
+
overflowing_tokens,
|
1129 |
+
overflowing_xpath_tags_seq,
|
1130 |
+
overflowing_xpath_subs_seq,
|
1131 |
+
overflowing_labels,
|
1132 |
+
) = self.truncate_sequences(
|
1133 |
+
ids,
|
1134 |
+
xpath_tags_seq=xpath_tags_seq,
|
1135 |
+
xpath_subs_seq=xpath_subs_seq,
|
1136 |
+
pair_ids=pair_ids,
|
1137 |
+
pair_xpath_tags_seq=pair_xpath_tags_seq,
|
1138 |
+
pair_xpath_subs_seq=pair_xpath_subs_seq,
|
1139 |
+
labels=labels,
|
1140 |
+
num_tokens_to_remove=total_len - max_length,
|
1141 |
+
truncation_strategy=truncation_strategy,
|
1142 |
+
stride=stride,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
if return_token_type_ids and not add_special_tokens:
|
1146 |
+
raise ValueError(
|
1147 |
+
"Asking to return token_type_ids while setting add_special_tokens to False "
|
1148 |
+
"results in an undefined behavior. Please set add_special_tokens to True or "
|
1149 |
+
"set return_token_type_ids to None."
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
# Load from model defaults
|
1153 |
+
if return_token_type_ids is None:
|
1154 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
1155 |
+
if return_attention_mask is None:
|
1156 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1157 |
+
|
1158 |
+
encoded_inputs = {}
|
1159 |
+
|
1160 |
+
if return_overflowing_tokens:
|
1161 |
+
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
1162 |
+
encoded_inputs["overflowing_xpath_tags_seq"] = overflowing_xpath_tags_seq
|
1163 |
+
encoded_inputs["overflowing_xpath_subs_seq"] = overflowing_xpath_subs_seq
|
1164 |
+
encoded_inputs["overflowing_labels"] = overflowing_labels
|
1165 |
+
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
1166 |
+
|
1167 |
+
# Add special tokens
|
1168 |
+
if add_special_tokens:
|
1169 |
+
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
1170 |
+
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
1171 |
+
xpath_tags_ids = self.build_xpath_tags_with_special_tokens(xpath_tags_seq, pair_xpath_tags_seq)
|
1172 |
+
xpath_subs_ids = self.build_xpath_subs_with_special_tokens(xpath_subs_seq, pair_xpath_subs_seq)
|
1173 |
+
if labels:
|
1174 |
+
labels = [self.pad_token_label] + labels + [self.pad_token_label]
|
1175 |
+
else:
|
1176 |
+
sequence = ids + pair_ids if pair else ids
|
1177 |
+
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
1178 |
+
xpath_tags_ids = xpath_tags_seq + pair_xpath_tags_seq if pair else xpath_tags_seq
|
1179 |
+
xpath_subs_ids = xpath_subs_seq + pair_xpath_subs_seq if pair else xpath_subs_seq
|
1180 |
+
|
1181 |
+
# Build output dictionary
|
1182 |
+
encoded_inputs["input_ids"] = sequence
|
1183 |
+
encoded_inputs["xpath_tags_seq"] = xpath_tags_ids
|
1184 |
+
encoded_inputs["xpath_subs_seq"] = xpath_subs_ids
|
1185 |
+
if return_token_type_ids:
|
1186 |
+
encoded_inputs["token_type_ids"] = token_type_ids
|
1187 |
+
if return_special_tokens_mask:
|
1188 |
+
if add_special_tokens:
|
1189 |
+
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
1190 |
+
else:
|
1191 |
+
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
1192 |
+
|
1193 |
+
if labels:
|
1194 |
+
encoded_inputs["labels"] = labels
|
1195 |
+
|
1196 |
+
# Check lengths
|
1197 |
+
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
1198 |
+
|
1199 |
+
# Padding
|
1200 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
1201 |
+
encoded_inputs = self.pad(
|
1202 |
+
encoded_inputs,
|
1203 |
+
max_length=max_length,
|
1204 |
+
padding=padding_strategy.value,
|
1205 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
1206 |
+
return_attention_mask=return_attention_mask,
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
if return_length:
|
1210 |
+
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
1211 |
+
|
1212 |
+
batch_outputs = BatchEncoding(
|
1213 |
+
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
return batch_outputs
|
1217 |
+
|
1218 |
+
def truncate_sequences(
|
1219 |
+
self,
|
1220 |
+
ids: List[int],
|
1221 |
+
xpath_tags_seq: List[List[int]],
|
1222 |
+
xpath_subs_seq: List[List[int]],
|
1223 |
+
pair_ids: Optional[List[int]] = None,
|
1224 |
+
pair_xpath_tags_seq: Optional[List[List[int]]] = None,
|
1225 |
+
pair_xpath_subs_seq: Optional[List[List[int]]] = None,
|
1226 |
+
labels: Optional[List[int]] = None,
|
1227 |
+
num_tokens_to_remove: int = 0,
|
1228 |
+
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
|
1229 |
+
stride: int = 0,
|
1230 |
+
) -> Tuple[List[int], List[int], List[int]]:
|
1231 |
+
"""
|
1232 |
+
Args:
|
1233 |
+
Truncates a sequence pair in-place following the strategy.
|
1234 |
+
ids (`List[int]`):
|
1235 |
+
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
1236 |
+
`convert_tokens_to_ids` methods.
|
1237 |
+
xpath_tags_seq (`List[List[int]]`):
|
1238 |
+
XPath tag IDs of the first sequence.
|
1239 |
+
xpath_subs_seq (`List[List[int]]`):
|
1240 |
+
XPath sub IDs of the first sequence.
|
1241 |
+
pair_ids (`List[int]`, *optional*):
|
1242 |
+
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
1243 |
+
and `convert_tokens_to_ids` methods.
|
1244 |
+
pair_xpath_tags_seq (`List[List[int]]`, *optional*):
|
1245 |
+
XPath tag IDs of the second sequence.
|
1246 |
+
pair_xpath_subs_seq (`List[List[int]]`, *optional*):
|
1247 |
+
XPath sub IDs of the second sequence.
|
1248 |
+
num_tokens_to_remove (`int`, *optional*, defaults to 0):
|
1249 |
+
Number of tokens to remove using the truncation strategy.
|
1250 |
+
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to
|
1251 |
+
`False`):
|
1252 |
+
The strategy to follow for truncation. Can be:
|
1253 |
+
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1254 |
+
maximum acceptable input length for the model if that argument is not provided. This will truncate
|
1255 |
+
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
|
1256 |
+
batch of pairs) is provided.
|
1257 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1258 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1259 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1260 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1261 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1262 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1263 |
+
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
|
1264 |
+
than the model maximum admissible input size).
|
1265 |
+
stride (`int`, *optional*, defaults to 0):
|
1266 |
+
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
|
1267 |
+
sequence returned. The value of this argument defines the number of additional tokens.
|
1268 |
+
Returns:
|
1269 |
+
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
|
1270 |
+
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
|
1271 |
+
of sequences (or a batch of pairs) is provided.
|
1272 |
+
"""
|
1273 |
+
if num_tokens_to_remove <= 0:
|
1274 |
+
return ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, [], [], []
|
1275 |
+
|
1276 |
+
if not isinstance(truncation_strategy, TruncationStrategy):
|
1277 |
+
truncation_strategy = TruncationStrategy(truncation_strategy)
|
1278 |
+
|
1279 |
+
overflowing_tokens = []
|
1280 |
+
overflowing_xpath_tags_seq = []
|
1281 |
+
overflowing_xpath_subs_seq = []
|
1282 |
+
overflowing_labels = []
|
1283 |
+
if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
|
1284 |
+
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
|
1285 |
+
):
|
1286 |
+
if len(ids) > num_tokens_to_remove:
|
1287 |
+
window_len = min(len(ids), stride + num_tokens_to_remove)
|
1288 |
+
overflowing_tokens = ids[-window_len:]
|
1289 |
+
overflowing_xpath_tags_seq = xpath_tags_seq[-window_len:]
|
1290 |
+
overflowing_xpath_subs_seq = xpath_subs_seq[-window_len:]
|
1291 |
+
ids = ids[:-num_tokens_to_remove]
|
1292 |
+
xpath_tags_seq = xpath_tags_seq[:-num_tokens_to_remove]
|
1293 |
+
xpath_subs_seq = xpath_subs_seq[:-num_tokens_to_remove]
|
1294 |
+
labels = labels[:-num_tokens_to_remove]
|
1295 |
+
else:
|
1296 |
+
error_msg = (
|
1297 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1298 |
+
f"but the first sequence has a length {len(ids)}. "
|
1299 |
+
)
|
1300 |
+
if truncation_strategy == TruncationStrategy.ONLY_FIRST:
|
1301 |
+
error_msg = (
|
1302 |
+
error_msg + "Please select another truncation strategy than "
|
1303 |
+
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
|
1304 |
+
)
|
1305 |
+
logger.error(error_msg)
|
1306 |
+
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
|
1307 |
+
logger.warning(
|
1308 |
+
"Be aware, overflowing tokens are not returned for the setting you have chosen,"
|
1309 |
+
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
|
1310 |
+
"truncation strategy. So the returned list will always be empty even if some "
|
1311 |
+
"tokens have been removed."
|
1312 |
+
)
|
1313 |
+
for _ in range(num_tokens_to_remove):
|
1314 |
+
if pair_ids is None or len(ids) > len(pair_ids):
|
1315 |
+
ids = ids[:-1]
|
1316 |
+
xpath_tags_seq = xpath_tags_seq[:-1]
|
1317 |
+
xpath_subs_seq = xpath_subs_seq[:-1]
|
1318 |
+
labels = labels[:-1]
|
1319 |
+
else:
|
1320 |
+
pair_ids = pair_ids[:-1]
|
1321 |
+
pair_xpath_tags_seq = pair_xpath_tags_seq[:-1]
|
1322 |
+
pair_xpath_subs_seq = pair_xpath_subs_seq[:-1]
|
1323 |
+
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
|
1324 |
+
if len(pair_ids) > num_tokens_to_remove:
|
1325 |
+
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
|
1326 |
+
overflowing_tokens = pair_ids[-window_len:]
|
1327 |
+
overflowing_xpath_tags_seq = pair_xpath_tags_seq[-window_len:]
|
1328 |
+
overflowing_xpath_subs_seq = pair_xpath_subs_seq[-window_len:]
|
1329 |
+
pair_ids = pair_ids[:-num_tokens_to_remove]
|
1330 |
+
pair_xpath_tags_seq = pair_xpath_tags_seq[:-num_tokens_to_remove]
|
1331 |
+
pair_xpath_subs_seq = pair_xpath_subs_seq[:-num_tokens_to_remove]
|
1332 |
+
else:
|
1333 |
+
logger.error(
|
1334 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1335 |
+
f"but the second sequence has a length {len(pair_ids)}. "
|
1336 |
+
f"Please select another truncation strategy than {truncation_strategy}, "
|
1337 |
+
"for instance 'longest_first' or 'only_first'."
|
1338 |
+
)
|
1339 |
+
|
1340 |
+
return (
|
1341 |
+
ids,
|
1342 |
+
xpath_tags_seq,
|
1343 |
+
xpath_subs_seq,
|
1344 |
+
pair_ids,
|
1345 |
+
pair_xpath_tags_seq,
|
1346 |
+
pair_xpath_subs_seq,
|
1347 |
+
labels,
|
1348 |
+
overflowing_tokens,
|
1349 |
+
overflowing_xpath_tags_seq,
|
1350 |
+
overflowing_xpath_subs_seq,
|
1351 |
+
overflowing_labels,
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
def _pad(
|
1355 |
+
self,
|
1356 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
1357 |
+
max_length: Optional[int] = None,
|
1358 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
1359 |
+
pad_to_multiple_of: Optional[int] = None,
|
1360 |
+
return_attention_mask: Optional[bool] = None,
|
1361 |
+
) -> dict:
|
1362 |
+
"""
|
1363 |
+
Args:
|
1364 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
1365 |
+
encoded_inputs:
|
1366 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
1367 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
1368 |
+
Will truncate by taking into account the special tokens.
|
1369 |
+
padding_strategy: PaddingStrategy to use for padding.
|
1370 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
1371 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
1372 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
1373 |
+
The tokenizer padding sides are defined in self.padding_side:
|
1374 |
+
- 'left': pads on the left of the sequences
|
1375 |
+
- 'right': pads on the right of the sequences
|
1376 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
1377 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
1378 |
+
`>= 7.5` (Volta).
|
1379 |
+
return_attention_mask:
|
1380 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
1381 |
+
"""
|
1382 |
+
# Load from model defaults
|
1383 |
+
if return_attention_mask is None:
|
1384 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1385 |
+
|
1386 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
1387 |
+
|
1388 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
1389 |
+
max_length = len(required_input)
|
1390 |
+
|
1391 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
1392 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
1393 |
+
|
1394 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
1395 |
+
|
1396 |
+
# Initialize attention mask if not present.
|
1397 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
1398 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
1399 |
+
|
1400 |
+
if needs_to_be_padded:
|
1401 |
+
difference = max_length - len(required_input)
|
1402 |
+
if self.padding_side == "right":
|
1403 |
+
if return_attention_mask:
|
1404 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
1405 |
+
if "token_type_ids" in encoded_inputs:
|
1406 |
+
encoded_inputs["token_type_ids"] = (
|
1407 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
1408 |
+
)
|
1409 |
+
if "xpath_tags_seq" in encoded_inputs:
|
1410 |
+
encoded_inputs["xpath_tags_seq"] = (
|
1411 |
+
encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference
|
1412 |
+
)
|
1413 |
+
if "xpath_subs_seq" in encoded_inputs:
|
1414 |
+
encoded_inputs["xpath_subs_seq"] = (
|
1415 |
+
encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference
|
1416 |
+
)
|
1417 |
+
if "labels" in encoded_inputs:
|
1418 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
1419 |
+
if "special_tokens_mask" in encoded_inputs:
|
1420 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
1421 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
1422 |
+
elif self.padding_side == "left":
|
1423 |
+
if return_attention_mask:
|
1424 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
1425 |
+
if "token_type_ids" in encoded_inputs:
|
1426 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
1427 |
+
"token_type_ids"
|
1428 |
+
]
|
1429 |
+
if "xpath_tags_seq" in encoded_inputs:
|
1430 |
+
encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[
|
1431 |
+
"xpath_tags_seq"
|
1432 |
+
]
|
1433 |
+
if "xpath_subs_seq" in encoded_inputs:
|
1434 |
+
encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[
|
1435 |
+
"xpath_subs_seq"
|
1436 |
+
]
|
1437 |
+
if "labels" in encoded_inputs:
|
1438 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
1439 |
+
if "special_tokens_mask" in encoded_inputs:
|
1440 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
1441 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
1442 |
+
else:
|
1443 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
1444 |
+
|
1445 |
+
return encoded_inputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/markuplm/tokenization_markuplm_fast.py
ADDED
@@ -0,0 +1,918 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Fast tokenization class for MarkupLM. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
|
17 |
+
and _encode_plus, in which the Rust tokenizer is used.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import json
|
21 |
+
from functools import lru_cache
|
22 |
+
from typing import Dict, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
from tokenizers import pre_tokenizers, processors
|
25 |
+
|
26 |
+
from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings
|
27 |
+
from ...tokenization_utils_base import (
|
28 |
+
ENCODE_KWARGS_DOCSTRING,
|
29 |
+
AddedToken,
|
30 |
+
BatchEncoding,
|
31 |
+
EncodedInput,
|
32 |
+
PreTokenizedInput,
|
33 |
+
TextInput,
|
34 |
+
TextInputPair,
|
35 |
+
TruncationStrategy,
|
36 |
+
)
|
37 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
38 |
+
from ...utils import logging
|
39 |
+
from .tokenization_markuplm import MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, MarkupLMTokenizer
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
45 |
+
|
46 |
+
|
47 |
+
@lru_cache()
|
48 |
+
def bytes_to_unicode():
|
49 |
+
"""
|
50 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
51 |
+
characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
|
52 |
+
of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
|
53 |
+
you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
|
54 |
+
vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
55 |
+
"""
|
56 |
+
bs = (
|
57 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
58 |
+
)
|
59 |
+
cs = bs[:]
|
60 |
+
n = 0
|
61 |
+
for b in range(2**8):
|
62 |
+
if b not in bs:
|
63 |
+
bs.append(b)
|
64 |
+
cs.append(2**8 + n)
|
65 |
+
n += 1
|
66 |
+
cs = [chr(n) for n in cs]
|
67 |
+
return dict(zip(bs, cs))
|
68 |
+
|
69 |
+
|
70 |
+
def get_pairs(word):
|
71 |
+
"""
|
72 |
+
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
|
73 |
+
strings).
|
74 |
+
"""
|
75 |
+
pairs = set()
|
76 |
+
prev_char = word[0]
|
77 |
+
for char in word[1:]:
|
78 |
+
pairs.add((prev_char, char))
|
79 |
+
prev_char = char
|
80 |
+
return pairs
|
81 |
+
|
82 |
+
|
83 |
+
class MarkupLMTokenizerFast(PreTrainedTokenizerFast):
|
84 |
+
r"""
|
85 |
+
Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE).
|
86 |
+
|
87 |
+
[`MarkupLMTokenizerFast`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`,
|
88 |
+
`token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which
|
89 |
+
contains most of the main methods.
|
90 |
+
|
91 |
+
Users should refer to this superclass for more information regarding those methods.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
vocab_file (`str`):
|
95 |
+
Path to the vocabulary file.
|
96 |
+
merges_file (`str`):
|
97 |
+
Path to the merges file.
|
98 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
99 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
100 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
101 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
102 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
103 |
+
|
104 |
+
<Tip>
|
105 |
+
|
106 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
107 |
+
sequence. The token used is the `cls_token`.
|
108 |
+
|
109 |
+
</Tip>
|
110 |
+
|
111 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
112 |
+
The end of sequence token.
|
113 |
+
|
114 |
+
<Tip>
|
115 |
+
|
116 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
117 |
+
The token used is the `sep_token`.
|
118 |
+
|
119 |
+
</Tip>
|
120 |
+
|
121 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
122 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
123 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
124 |
+
token of a sequence built with special tokens.
|
125 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
126 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
127 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
128 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
129 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
130 |
+
token instead.
|
131 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
132 |
+
The token used for padding, for example when batching sequences of different lengths.
|
133 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
134 |
+
The token used for masking values. This is the token used when training this model with masked language
|
135 |
+
modeling. This is the token which the model will try to predict.
|
136 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
137 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
138 |
+
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
|
139 |
+
"""
|
140 |
+
|
141 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
142 |
+
slow_tokenizer_class = MarkupLMTokenizer
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
vocab_file,
|
147 |
+
merges_file,
|
148 |
+
tags_dict,
|
149 |
+
tokenizer_file=None,
|
150 |
+
errors="replace",
|
151 |
+
bos_token="<s>",
|
152 |
+
eos_token="</s>",
|
153 |
+
sep_token="</s>",
|
154 |
+
cls_token="<s>",
|
155 |
+
unk_token="<unk>",
|
156 |
+
pad_token="<pad>",
|
157 |
+
mask_token="<mask>",
|
158 |
+
add_prefix_space=False,
|
159 |
+
max_depth=50,
|
160 |
+
max_width=1000,
|
161 |
+
pad_width=1001,
|
162 |
+
pad_token_label=-100,
|
163 |
+
only_label_first_subword=True,
|
164 |
+
trim_offsets=False,
|
165 |
+
**kwargs,
|
166 |
+
):
|
167 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
168 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
169 |
+
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
170 |
+
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
171 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
172 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
173 |
+
|
174 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
175 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
176 |
+
|
177 |
+
super().__init__(
|
178 |
+
vocab_file=vocab_file,
|
179 |
+
merges_file=merges_file,
|
180 |
+
tags_dict=tags_dict,
|
181 |
+
tokenizer_file=tokenizer_file,
|
182 |
+
errors=errors,
|
183 |
+
bos_token=bos_token,
|
184 |
+
eos_token=eos_token,
|
185 |
+
unk_token=unk_token,
|
186 |
+
sep_token=sep_token,
|
187 |
+
cls_token=cls_token,
|
188 |
+
pad_token=pad_token,
|
189 |
+
mask_token=mask_token,
|
190 |
+
add_prefix_space=add_prefix_space,
|
191 |
+
trim_offsets=trim_offsets,
|
192 |
+
max_depth=max_depth,
|
193 |
+
max_width=max_width,
|
194 |
+
pad_width=pad_width,
|
195 |
+
pad_token_label=pad_token_label,
|
196 |
+
only_label_first_subword=only_label_first_subword,
|
197 |
+
**kwargs,
|
198 |
+
)
|
199 |
+
if trim_offsets:
|
200 |
+
# Not implemented yet, because we need to chain two post processors which is not possible yet
|
201 |
+
# We need to wait for https://github.com/huggingface/tokenizers/pull/1005
|
202 |
+
# With `trim_offsets=False` we don't need to do add `processors.ByteLevel(trim_offsets=False)`
|
203 |
+
# because it's not doing anything
|
204 |
+
raise NotImplementedError(
|
205 |
+
"`trim_offsets=True` is not implemented for MarkupLMTokenizerFast. Please set it to False."
|
206 |
+
)
|
207 |
+
|
208 |
+
self.tags_dict = tags_dict
|
209 |
+
|
210 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
211 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
212 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
213 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
214 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
215 |
+
|
216 |
+
self.add_prefix_space = add_prefix_space
|
217 |
+
|
218 |
+
tokenizer_component = "post_processor"
|
219 |
+
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
|
220 |
+
if tokenizer_component_instance:
|
221 |
+
state = json.loads(tokenizer_component_instance.__getstate__())
|
222 |
+
|
223 |
+
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
|
224 |
+
if "sep" in state:
|
225 |
+
state["sep"] = tuple(state["sep"])
|
226 |
+
if "cls" in state:
|
227 |
+
state["cls"] = tuple(state["cls"])
|
228 |
+
|
229 |
+
changes_to_apply = False
|
230 |
+
|
231 |
+
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
232 |
+
state["add_prefix_space"] = add_prefix_space
|
233 |
+
changes_to_apply = True
|
234 |
+
|
235 |
+
if changes_to_apply:
|
236 |
+
component_class = getattr(processors, state.pop("type"))
|
237 |
+
new_value = component_class(**state)
|
238 |
+
setattr(self.backend_tokenizer, tokenizer_component, new_value)
|
239 |
+
|
240 |
+
# additional properties
|
241 |
+
self.max_depth = max_depth
|
242 |
+
self.max_width = max_width
|
243 |
+
self.pad_width = pad_width
|
244 |
+
self.unk_tag_id = len(self.tags_dict)
|
245 |
+
self.pad_tag_id = self.unk_tag_id + 1
|
246 |
+
self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth
|
247 |
+
self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth
|
248 |
+
self.pad_token_label = pad_token_label
|
249 |
+
self.only_label_first_subword = only_label_first_subword
|
250 |
+
|
251 |
+
def get_xpath_seq(self, xpath):
|
252 |
+
"""
|
253 |
+
Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of
|
254 |
+
tag IDs and corresponding subscripts, taking into account max depth.
|
255 |
+
"""
|
256 |
+
xpath_tags_list = []
|
257 |
+
xpath_subs_list = []
|
258 |
+
|
259 |
+
xpath_units = xpath.split("/")
|
260 |
+
for unit in xpath_units:
|
261 |
+
if not unit.strip():
|
262 |
+
continue
|
263 |
+
name_subs = unit.strip().split("[")
|
264 |
+
tag_name = name_subs[0]
|
265 |
+
sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1])
|
266 |
+
xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id))
|
267 |
+
xpath_subs_list.append(min(self.max_width, sub))
|
268 |
+
|
269 |
+
xpath_tags_list = xpath_tags_list[: self.max_depth]
|
270 |
+
xpath_subs_list = xpath_subs_list[: self.max_depth]
|
271 |
+
xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list))
|
272 |
+
xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list))
|
273 |
+
|
274 |
+
return xpath_tags_list, xpath_subs_list
|
275 |
+
|
276 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
277 |
+
def __call__(
|
278 |
+
self,
|
279 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
280 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
281 |
+
xpaths: Union[List[List[int]], List[List[List[int]]]] = None,
|
282 |
+
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
283 |
+
add_special_tokens: bool = True,
|
284 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
285 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
286 |
+
max_length: Optional[int] = None,
|
287 |
+
stride: int = 0,
|
288 |
+
pad_to_multiple_of: Optional[int] = None,
|
289 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
290 |
+
return_token_type_ids: Optional[bool] = None,
|
291 |
+
return_attention_mask: Optional[bool] = None,
|
292 |
+
return_overflowing_tokens: bool = False,
|
293 |
+
return_special_tokens_mask: bool = False,
|
294 |
+
return_offsets_mapping: bool = False,
|
295 |
+
return_length: bool = False,
|
296 |
+
verbose: bool = True,
|
297 |
+
**kwargs,
|
298 |
+
) -> BatchEncoding:
|
299 |
+
"""
|
300 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
301 |
+
sequences with nodes, xpaths and optional labels.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
305 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
306 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
307 |
+
words).
|
308 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
309 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
310 |
+
(pretokenized string).
|
311 |
+
xpaths (`List[List[int]]`, `List[List[List[int]]]`):
|
312 |
+
Node-level xpaths. Each bounding box should be normalized to be on a 0-1000 scale.
|
313 |
+
node_labels (`List[int]`, `List[List[int]]`, *optional*):
|
314 |
+
Node-level integer labels (for token classification tasks).
|
315 |
+
"""
|
316 |
+
|
317 |
+
# Input type checking for clearer error
|
318 |
+
def _is_valid_text_input(t):
|
319 |
+
if isinstance(t, str):
|
320 |
+
# Strings are fine
|
321 |
+
return True
|
322 |
+
elif isinstance(t, (list, tuple)):
|
323 |
+
# List are fine as long as they are...
|
324 |
+
if len(t) == 0:
|
325 |
+
# ... empty
|
326 |
+
return True
|
327 |
+
elif isinstance(t[0], str):
|
328 |
+
# ... list of strings
|
329 |
+
return True
|
330 |
+
elif isinstance(t[0], (list, tuple)):
|
331 |
+
# ... list with an empty list or with a list of strings
|
332 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
333 |
+
else:
|
334 |
+
return False
|
335 |
+
else:
|
336 |
+
return False
|
337 |
+
|
338 |
+
if text_pair is not None:
|
339 |
+
# in case text + text_pair are provided, text = questions, text_pair = nodes
|
340 |
+
if not _is_valid_text_input(text):
|
341 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
342 |
+
if not isinstance(text_pair, (list, tuple)):
|
343 |
+
raise ValueError(
|
344 |
+
"Nodes must be of type `List[str]` (single pretokenized example), "
|
345 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
# in case only text is provided => must be nodes
|
349 |
+
if not isinstance(text, (list, tuple)):
|
350 |
+
raise ValueError(
|
351 |
+
"Nodes must be of type `List[str]` (single pretokenized example), "
|
352 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
353 |
+
)
|
354 |
+
|
355 |
+
if text_pair is not None:
|
356 |
+
is_batched = isinstance(text, (list, tuple))
|
357 |
+
else:
|
358 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
359 |
+
|
360 |
+
nodes = text if text_pair is None else text_pair
|
361 |
+
assert xpaths is not None, "You must provide corresponding xpaths"
|
362 |
+
if is_batched:
|
363 |
+
assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples"
|
364 |
+
for nodes_example, xpaths_example in zip(nodes, xpaths):
|
365 |
+
assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths"
|
366 |
+
else:
|
367 |
+
assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths"
|
368 |
+
|
369 |
+
if is_batched:
|
370 |
+
if text_pair is not None and len(text) != len(text_pair):
|
371 |
+
raise ValueError(
|
372 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
373 |
+
f" {len(text_pair)}."
|
374 |
+
)
|
375 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
376 |
+
is_pair = bool(text_pair is not None)
|
377 |
+
return self.batch_encode_plus(
|
378 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
379 |
+
is_pair=is_pair,
|
380 |
+
xpaths=xpaths,
|
381 |
+
node_labels=node_labels,
|
382 |
+
add_special_tokens=add_special_tokens,
|
383 |
+
padding=padding,
|
384 |
+
truncation=truncation,
|
385 |
+
max_length=max_length,
|
386 |
+
stride=stride,
|
387 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
388 |
+
return_tensors=return_tensors,
|
389 |
+
return_token_type_ids=return_token_type_ids,
|
390 |
+
return_attention_mask=return_attention_mask,
|
391 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
392 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
393 |
+
return_offsets_mapping=return_offsets_mapping,
|
394 |
+
return_length=return_length,
|
395 |
+
verbose=verbose,
|
396 |
+
**kwargs,
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
return self.encode_plus(
|
400 |
+
text=text,
|
401 |
+
text_pair=text_pair,
|
402 |
+
xpaths=xpaths,
|
403 |
+
node_labels=node_labels,
|
404 |
+
add_special_tokens=add_special_tokens,
|
405 |
+
padding=padding,
|
406 |
+
truncation=truncation,
|
407 |
+
max_length=max_length,
|
408 |
+
stride=stride,
|
409 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
410 |
+
return_tensors=return_tensors,
|
411 |
+
return_token_type_ids=return_token_type_ids,
|
412 |
+
return_attention_mask=return_attention_mask,
|
413 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
414 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
415 |
+
return_offsets_mapping=return_offsets_mapping,
|
416 |
+
return_length=return_length,
|
417 |
+
verbose=verbose,
|
418 |
+
**kwargs,
|
419 |
+
)
|
420 |
+
|
421 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
422 |
+
def batch_encode_plus(
|
423 |
+
self,
|
424 |
+
batch_text_or_text_pairs: Union[
|
425 |
+
List[TextInput],
|
426 |
+
List[TextInputPair],
|
427 |
+
List[PreTokenizedInput],
|
428 |
+
],
|
429 |
+
is_pair: bool = None,
|
430 |
+
xpaths: Optional[List[List[List[int]]]] = None,
|
431 |
+
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
432 |
+
add_special_tokens: bool = True,
|
433 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
434 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
435 |
+
max_length: Optional[int] = None,
|
436 |
+
stride: int = 0,
|
437 |
+
pad_to_multiple_of: Optional[int] = None,
|
438 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
439 |
+
return_token_type_ids: Optional[bool] = None,
|
440 |
+
return_attention_mask: Optional[bool] = None,
|
441 |
+
return_overflowing_tokens: bool = False,
|
442 |
+
return_special_tokens_mask: bool = False,
|
443 |
+
return_offsets_mapping: bool = False,
|
444 |
+
return_length: bool = False,
|
445 |
+
verbose: bool = True,
|
446 |
+
**kwargs,
|
447 |
+
) -> BatchEncoding:
|
448 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
449 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
450 |
+
padding=padding,
|
451 |
+
truncation=truncation,
|
452 |
+
max_length=max_length,
|
453 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
454 |
+
verbose=verbose,
|
455 |
+
**kwargs,
|
456 |
+
)
|
457 |
+
|
458 |
+
return self._batch_encode_plus(
|
459 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
460 |
+
is_pair=is_pair,
|
461 |
+
xpaths=xpaths,
|
462 |
+
node_labels=node_labels,
|
463 |
+
add_special_tokens=add_special_tokens,
|
464 |
+
padding_strategy=padding_strategy,
|
465 |
+
truncation_strategy=truncation_strategy,
|
466 |
+
max_length=max_length,
|
467 |
+
stride=stride,
|
468 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
469 |
+
return_tensors=return_tensors,
|
470 |
+
return_token_type_ids=return_token_type_ids,
|
471 |
+
return_attention_mask=return_attention_mask,
|
472 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
473 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
474 |
+
return_offsets_mapping=return_offsets_mapping,
|
475 |
+
return_length=return_length,
|
476 |
+
verbose=verbose,
|
477 |
+
**kwargs,
|
478 |
+
)
|
479 |
+
|
480 |
+
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
|
481 |
+
batched_input = [(text, pair)] if pair else [text]
|
482 |
+
encodings = self._tokenizer.encode_batch(
|
483 |
+
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
|
484 |
+
)
|
485 |
+
|
486 |
+
return encodings[0].tokens
|
487 |
+
|
488 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
489 |
+
def encode_plus(
|
490 |
+
self,
|
491 |
+
text: Union[TextInput, PreTokenizedInput],
|
492 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
493 |
+
xpaths: Optional[List[List[int]]] = None,
|
494 |
+
node_labels: Optional[List[int]] = None,
|
495 |
+
add_special_tokens: bool = True,
|
496 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
497 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
498 |
+
max_length: Optional[int] = None,
|
499 |
+
stride: int = 0,
|
500 |
+
pad_to_multiple_of: Optional[int] = None,
|
501 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
502 |
+
return_token_type_ids: Optional[bool] = None,
|
503 |
+
return_attention_mask: Optional[bool] = None,
|
504 |
+
return_overflowing_tokens: bool = False,
|
505 |
+
return_special_tokens_mask: bool = False,
|
506 |
+
return_offsets_mapping: bool = False,
|
507 |
+
return_length: bool = False,
|
508 |
+
verbose: bool = True,
|
509 |
+
**kwargs,
|
510 |
+
) -> BatchEncoding:
|
511 |
+
"""
|
512 |
+
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
|
513 |
+
`__call__` should be used instead.
|
514 |
+
|
515 |
+
Args:
|
516 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
517 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
518 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
519 |
+
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
|
520 |
+
list of list of strings (words of a batch of examples).
|
521 |
+
"""
|
522 |
+
|
523 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
524 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
525 |
+
padding=padding,
|
526 |
+
truncation=truncation,
|
527 |
+
max_length=max_length,
|
528 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
529 |
+
verbose=verbose,
|
530 |
+
**kwargs,
|
531 |
+
)
|
532 |
+
|
533 |
+
return self._encode_plus(
|
534 |
+
text=text,
|
535 |
+
xpaths=xpaths,
|
536 |
+
text_pair=text_pair,
|
537 |
+
node_labels=node_labels,
|
538 |
+
add_special_tokens=add_special_tokens,
|
539 |
+
padding_strategy=padding_strategy,
|
540 |
+
truncation_strategy=truncation_strategy,
|
541 |
+
max_length=max_length,
|
542 |
+
stride=stride,
|
543 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
544 |
+
return_tensors=return_tensors,
|
545 |
+
return_token_type_ids=return_token_type_ids,
|
546 |
+
return_attention_mask=return_attention_mask,
|
547 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
548 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
549 |
+
return_offsets_mapping=return_offsets_mapping,
|
550 |
+
return_length=return_length,
|
551 |
+
verbose=verbose,
|
552 |
+
**kwargs,
|
553 |
+
)
|
554 |
+
|
555 |
+
def _batch_encode_plus(
|
556 |
+
self,
|
557 |
+
batch_text_or_text_pairs: Union[
|
558 |
+
List[TextInput],
|
559 |
+
List[TextInputPair],
|
560 |
+
List[PreTokenizedInput],
|
561 |
+
],
|
562 |
+
is_pair: bool = None,
|
563 |
+
xpaths: Optional[List[List[List[int]]]] = None,
|
564 |
+
node_labels: Optional[List[List[int]]] = None,
|
565 |
+
add_special_tokens: bool = True,
|
566 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
567 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
568 |
+
max_length: Optional[int] = None,
|
569 |
+
stride: int = 0,
|
570 |
+
pad_to_multiple_of: Optional[int] = None,
|
571 |
+
return_tensors: Optional[str] = None,
|
572 |
+
return_token_type_ids: Optional[bool] = None,
|
573 |
+
return_attention_mask: Optional[bool] = None,
|
574 |
+
return_overflowing_tokens: bool = False,
|
575 |
+
return_special_tokens_mask: bool = False,
|
576 |
+
return_offsets_mapping: bool = False,
|
577 |
+
return_length: bool = False,
|
578 |
+
verbose: bool = True,
|
579 |
+
) -> BatchEncoding:
|
580 |
+
if not isinstance(batch_text_or_text_pairs, list):
|
581 |
+
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
|
582 |
+
|
583 |
+
# Set the truncation and padding strategy and restore the initial configuration
|
584 |
+
self.set_truncation_and_padding(
|
585 |
+
padding_strategy=padding_strategy,
|
586 |
+
truncation_strategy=truncation_strategy,
|
587 |
+
max_length=max_length,
|
588 |
+
stride=stride,
|
589 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
590 |
+
)
|
591 |
+
|
592 |
+
if is_pair:
|
593 |
+
batch_text_or_text_pairs = [([text], text_pair) for text, text_pair in batch_text_or_text_pairs]
|
594 |
+
|
595 |
+
encodings = self._tokenizer.encode_batch(
|
596 |
+
batch_text_or_text_pairs,
|
597 |
+
add_special_tokens=add_special_tokens,
|
598 |
+
is_pretokenized=True, # we set this to True as MarkupLM always expects pretokenized inputs
|
599 |
+
)
|
600 |
+
|
601 |
+
# Convert encoding to dict
|
602 |
+
# `Tokens` is a tuple of (List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
|
603 |
+
# List[EncodingFast]) with nested dimensions corresponding to batch, overflows, sequence length
|
604 |
+
tokens_and_encodings = [
|
605 |
+
self._convert_encoding(
|
606 |
+
encoding=encoding,
|
607 |
+
return_token_type_ids=return_token_type_ids,
|
608 |
+
return_attention_mask=return_attention_mask,
|
609 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
610 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
611 |
+
return_offsets_mapping=True
|
612 |
+
if node_labels is not None
|
613 |
+
else return_offsets_mapping, # we use offsets to create the labels
|
614 |
+
return_length=return_length,
|
615 |
+
verbose=verbose,
|
616 |
+
)
|
617 |
+
for encoding in encodings
|
618 |
+
]
|
619 |
+
|
620 |
+
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
|
621 |
+
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
|
622 |
+
# (we say ~ because the number of overflow varies with the example in the batch)
|
623 |
+
#
|
624 |
+
# To match each overflowing sample with the original sample in the batch
|
625 |
+
# we add an overflow_to_sample_mapping array (see below)
|
626 |
+
sanitized_tokens = {}
|
627 |
+
for key in tokens_and_encodings[0][0].keys():
|
628 |
+
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
|
629 |
+
sanitized_tokens[key] = stack
|
630 |
+
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
|
631 |
+
|
632 |
+
# If returning overflowing tokens, we need to return a mapping
|
633 |
+
# from the batch idx to the original sample
|
634 |
+
if return_overflowing_tokens:
|
635 |
+
overflow_to_sample_mapping = []
|
636 |
+
for i, (toks, _) in enumerate(tokens_and_encodings):
|
637 |
+
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
|
638 |
+
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
|
639 |
+
|
640 |
+
for input_ids in sanitized_tokens["input_ids"]:
|
641 |
+
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
|
642 |
+
|
643 |
+
# create the token-level xpaths tags and subscripts
|
644 |
+
xpath_tags_seq = []
|
645 |
+
xpath_subs_seq = []
|
646 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
647 |
+
if return_overflowing_tokens:
|
648 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
649 |
+
else:
|
650 |
+
original_index = batch_index
|
651 |
+
xpath_tags_seq_example = []
|
652 |
+
xpath_subs_seq_example = []
|
653 |
+
for id, sequence_id, word_id in zip(
|
654 |
+
sanitized_tokens["input_ids"][batch_index],
|
655 |
+
sanitized_encodings[batch_index].sequence_ids,
|
656 |
+
sanitized_encodings[batch_index].word_ids,
|
657 |
+
):
|
658 |
+
if word_id is not None:
|
659 |
+
if is_pair and sequence_id == 0:
|
660 |
+
xpath_tags_seq_example.append(self.pad_xpath_tags_seq)
|
661 |
+
xpath_subs_seq_example.append(self.pad_xpath_subs_seq)
|
662 |
+
else:
|
663 |
+
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpaths[original_index][word_id])
|
664 |
+
xpath_tags_seq_example.extend([xpath_tags_list])
|
665 |
+
xpath_subs_seq_example.extend([xpath_subs_list])
|
666 |
+
else:
|
667 |
+
if id in [self.cls_token_id, self.sep_token_id, self.pad_token_id]:
|
668 |
+
xpath_tags_seq_example.append(self.pad_xpath_tags_seq)
|
669 |
+
xpath_subs_seq_example.append(self.pad_xpath_subs_seq)
|
670 |
+
else:
|
671 |
+
raise ValueError("Id not recognized")
|
672 |
+
xpath_tags_seq.append(xpath_tags_seq_example)
|
673 |
+
xpath_subs_seq.append(xpath_subs_seq_example)
|
674 |
+
|
675 |
+
sanitized_tokens["xpath_tags_seq"] = xpath_tags_seq
|
676 |
+
sanitized_tokens["xpath_subs_seq"] = xpath_subs_seq
|
677 |
+
|
678 |
+
# optionally, create the labels
|
679 |
+
if node_labels is not None:
|
680 |
+
labels = []
|
681 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
682 |
+
if return_overflowing_tokens:
|
683 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
684 |
+
else:
|
685 |
+
original_index = batch_index
|
686 |
+
labels_example = []
|
687 |
+
for id, offset, word_id in zip(
|
688 |
+
sanitized_tokens["input_ids"][batch_index],
|
689 |
+
sanitized_tokens["offset_mapping"][batch_index],
|
690 |
+
sanitized_encodings[batch_index].word_ids,
|
691 |
+
):
|
692 |
+
if word_id is not None:
|
693 |
+
if self.only_label_first_subword:
|
694 |
+
if offset[0] == 0:
|
695 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
696 |
+
labels_example.append(node_labels[original_index][word_id])
|
697 |
+
else:
|
698 |
+
labels_example.append(self.pad_token_label)
|
699 |
+
else:
|
700 |
+
labels_example.append(node_labels[original_index][word_id])
|
701 |
+
else:
|
702 |
+
labels_example.append(self.pad_token_label)
|
703 |
+
labels.append(labels_example)
|
704 |
+
|
705 |
+
sanitized_tokens["labels"] = labels
|
706 |
+
# finally, remove offsets if the user didn't want them
|
707 |
+
if not return_offsets_mapping:
|
708 |
+
del sanitized_tokens["offset_mapping"]
|
709 |
+
|
710 |
+
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
|
711 |
+
|
712 |
+
def _encode_plus(
|
713 |
+
self,
|
714 |
+
text: Union[TextInput, PreTokenizedInput],
|
715 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
716 |
+
xpaths: Optional[List[List[int]]] = None,
|
717 |
+
node_labels: Optional[List[int]] = None,
|
718 |
+
add_special_tokens: bool = True,
|
719 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
720 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
721 |
+
max_length: Optional[int] = None,
|
722 |
+
stride: int = 0,
|
723 |
+
pad_to_multiple_of: Optional[int] = None,
|
724 |
+
return_tensors: Optional[bool] = None,
|
725 |
+
return_token_type_ids: Optional[bool] = None,
|
726 |
+
return_attention_mask: Optional[bool] = None,
|
727 |
+
return_overflowing_tokens: bool = False,
|
728 |
+
return_special_tokens_mask: bool = False,
|
729 |
+
return_offsets_mapping: bool = False,
|
730 |
+
return_length: bool = False,
|
731 |
+
verbose: bool = True,
|
732 |
+
**kwargs,
|
733 |
+
) -> BatchEncoding:
|
734 |
+
# make it a batched input
|
735 |
+
# 2 options:
|
736 |
+
# 1) only text, in case text must be a list of str
|
737 |
+
# 2) text + text_pair, in which case text = str and text_pair a list of str
|
738 |
+
batched_input = [(text, text_pair)] if text_pair else [text]
|
739 |
+
batched_xpaths = [xpaths]
|
740 |
+
batched_node_labels = [node_labels] if node_labels is not None else None
|
741 |
+
batched_output = self._batch_encode_plus(
|
742 |
+
batched_input,
|
743 |
+
is_pair=bool(text_pair is not None),
|
744 |
+
xpaths=batched_xpaths,
|
745 |
+
node_labels=batched_node_labels,
|
746 |
+
add_special_tokens=add_special_tokens,
|
747 |
+
padding_strategy=padding_strategy,
|
748 |
+
truncation_strategy=truncation_strategy,
|
749 |
+
max_length=max_length,
|
750 |
+
stride=stride,
|
751 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
752 |
+
return_tensors=return_tensors,
|
753 |
+
return_token_type_ids=return_token_type_ids,
|
754 |
+
return_attention_mask=return_attention_mask,
|
755 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
756 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
757 |
+
return_offsets_mapping=return_offsets_mapping,
|
758 |
+
return_length=return_length,
|
759 |
+
verbose=verbose,
|
760 |
+
**kwargs,
|
761 |
+
)
|
762 |
+
|
763 |
+
# Return tensor is None, then we can remove the leading batch axis
|
764 |
+
# Overflowing tokens are returned as a batch of output so we keep them in this case
|
765 |
+
if return_tensors is None and not return_overflowing_tokens:
|
766 |
+
batched_output = BatchEncoding(
|
767 |
+
{
|
768 |
+
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
|
769 |
+
for key, value in batched_output.items()
|
770 |
+
},
|
771 |
+
batched_output.encodings,
|
772 |
+
)
|
773 |
+
|
774 |
+
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
|
775 |
+
|
776 |
+
return batched_output
|
777 |
+
|
778 |
+
def _pad(
|
779 |
+
self,
|
780 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
781 |
+
max_length: Optional[int] = None,
|
782 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
783 |
+
pad_to_multiple_of: Optional[int] = None,
|
784 |
+
return_attention_mask: Optional[bool] = None,
|
785 |
+
) -> dict:
|
786 |
+
"""
|
787 |
+
Args:
|
788 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
789 |
+
encoded_inputs:
|
790 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
791 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
792 |
+
Will truncate by taking into account the special tokens.
|
793 |
+
padding_strategy: PaddingStrategy to use for padding.
|
794 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
795 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
796 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
797 |
+
The tokenizer padding sides are defined in self.padding_side:
|
798 |
+
- 'left': pads on the left of the sequences
|
799 |
+
- 'right': pads on the right of the sequences
|
800 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
801 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
802 |
+
`>= 7.5` (Volta).
|
803 |
+
return_attention_mask:
|
804 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
805 |
+
"""
|
806 |
+
# Load from model defaults
|
807 |
+
if return_attention_mask is None:
|
808 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
809 |
+
|
810 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
811 |
+
|
812 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
813 |
+
max_length = len(required_input)
|
814 |
+
|
815 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
816 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
817 |
+
|
818 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
819 |
+
|
820 |
+
# Initialize attention mask if not present.
|
821 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
822 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
823 |
+
|
824 |
+
if needs_to_be_padded:
|
825 |
+
difference = max_length - len(required_input)
|
826 |
+
if self.padding_side == "right":
|
827 |
+
if return_attention_mask:
|
828 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
829 |
+
if "token_type_ids" in encoded_inputs:
|
830 |
+
encoded_inputs["token_type_ids"] = (
|
831 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
832 |
+
)
|
833 |
+
if "xpath_tags_seq" in encoded_inputs:
|
834 |
+
encoded_inputs["xpath_tags_seq"] = (
|
835 |
+
encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference
|
836 |
+
)
|
837 |
+
if "xpath_subs_seq" in encoded_inputs:
|
838 |
+
encoded_inputs["xpath_subs_seq"] = (
|
839 |
+
encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference
|
840 |
+
)
|
841 |
+
if "labels" in encoded_inputs:
|
842 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
843 |
+
if "special_tokens_mask" in encoded_inputs:
|
844 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
845 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
846 |
+
elif self.padding_side == "left":
|
847 |
+
if return_attention_mask:
|
848 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
849 |
+
if "token_type_ids" in encoded_inputs:
|
850 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
851 |
+
"token_type_ids"
|
852 |
+
]
|
853 |
+
if "xpath_tags_seq" in encoded_inputs:
|
854 |
+
encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[
|
855 |
+
"xpath_tags_seq"
|
856 |
+
]
|
857 |
+
if "xpath_subs_seq" in encoded_inputs:
|
858 |
+
encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[
|
859 |
+
"xpath_subs_seq"
|
860 |
+
]
|
861 |
+
if "labels" in encoded_inputs:
|
862 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
863 |
+
if "special_tokens_mask" in encoded_inputs:
|
864 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
865 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
866 |
+
else:
|
867 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
868 |
+
|
869 |
+
return encoded_inputs
|
870 |
+
|
871 |
+
def build_inputs_with_special_tokens(
|
872 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
873 |
+
) -> List[int]:
|
874 |
+
"""
|
875 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
876 |
+
adding special tokens. A RoBERTa sequence has the following format:
|
877 |
+
- single sequence: `<s> X </s>`
|
878 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
879 |
+
|
880 |
+
Args:
|
881 |
+
token_ids_0 (`List[int]`):
|
882 |
+
List of IDs to which the special tokens will be added.
|
883 |
+
token_ids_1 (`List[int]`, *optional*):
|
884 |
+
Optional second list of IDs for sequence pairs.
|
885 |
+
Returns:
|
886 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
887 |
+
"""
|
888 |
+
if token_ids_1 is None:
|
889 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
890 |
+
cls = [self.cls_token_id]
|
891 |
+
sep = [self.sep_token_id]
|
892 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
893 |
+
|
894 |
+
def create_token_type_ids_from_sequences(
|
895 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
896 |
+
) -> List[int]:
|
897 |
+
"""
|
898 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
|
899 |
+
make use of token type ids, therefore a list of zeros is returned.
|
900 |
+
|
901 |
+
Args:
|
902 |
+
token_ids_0 (`List[int]`):
|
903 |
+
List of IDs.
|
904 |
+
token_ids_1 (`List[int]`, *optional*):
|
905 |
+
Optional second list of IDs for sequence pairs.
|
906 |
+
Returns:
|
907 |
+
`List[int]`: List of zeros.
|
908 |
+
"""
|
909 |
+
sep = [self.sep_token_id]
|
910 |
+
cls = [self.cls_token_id]
|
911 |
+
|
912 |
+
if token_ids_1 is None:
|
913 |
+
return len(cls + token_ids_0 + sep) * [0]
|
914 |
+
return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0]
|
915 |
+
|
916 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
917 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
918 |
+
return tuple(files)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_oneformer": ["ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "OneFormerConfig"],
|
21 |
+
"processing_oneformer": ["OneFormerProcessor"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_vision_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["image_processing_oneformer"] = ["OneFormerImageProcessor"]
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_torch_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["modeling_oneformer"] = [
|
39 |
+
"ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
40 |
+
"OneFormerForUniversalSegmentation",
|
41 |
+
"OneFormerModel",
|
42 |
+
"OneFormerPreTrainedModel",
|
43 |
+
]
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig
|
47 |
+
from .processing_oneformer import OneFormerProcessor
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_vision_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .image_processing_oneformer import OneFormerImageProcessor
|
56 |
+
try:
|
57 |
+
if not is_torch_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .modeling_oneformer import (
|
63 |
+
ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
64 |
+
OneFormerForUniversalSegmentation,
|
65 |
+
OneFormerModel,
|
66 |
+
OneFormerPreTrainedModel,
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/configuration_oneformer.cpython-310.pyc
ADDED
Binary file (11.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/convert_to_hf_oneformer.cpython-310.pyc
ADDED
Binary file (31.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/image_processing_oneformer.cpython-310.pyc
ADDED
Binary file (42.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/modeling_oneformer.cpython-310.pyc
ADDED
Binary file (105 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/processing_oneformer.cpython-310.pyc
ADDED
Binary file (7.82 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/configuration_oneformer.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""OneFormer model configuration"""
|
16 |
+
from typing import Dict, Optional
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
from ..auto import CONFIG_MAPPING
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class OneFormerConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`OneFormerModel`]. It is used to instantiate a
|
32 |
+
OneFormer model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the OneFormer
|
34 |
+
[shi-labs/oneformer_ade20k_swin_tiny](https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny) architecture
|
35 |
+
trained on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
backbone_config (`PretrainedConfig`, *optional*, defaults to `SwinConfig`):
|
42 |
+
The configuration of the backbone model.
|
43 |
+
backbone (`str`, *optional*):
|
44 |
+
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
45 |
+
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
46 |
+
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
47 |
+
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
|
48 |
+
Whether to use pretrained weights for the backbone.
|
49 |
+
use_timm_backbone (`bool`, *optional*, defaults to `False`):
|
50 |
+
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
|
51 |
+
library.
|
52 |
+
backbone_kwargs (`dict`, *optional*):
|
53 |
+
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
|
54 |
+
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
|
55 |
+
ignore_value (`int`, *optional*, defaults to 255):
|
56 |
+
Values to be ignored in GT label while calculating loss.
|
57 |
+
num_queries (`int`, *optional*, defaults to 150):
|
58 |
+
Number of object queries.
|
59 |
+
no_object_weight (`float`, *optional*, defaults to 0.1):
|
60 |
+
Weight for no-object class predictions.
|
61 |
+
class_weight (`float`, *optional*, defaults to 2.0):
|
62 |
+
Weight for Classification CE loss.
|
63 |
+
mask_weight (`float`, *optional*, defaults to 5.0):
|
64 |
+
Weight for binary CE loss.
|
65 |
+
dice_weight (`float`, *optional*, defaults to 5.0):
|
66 |
+
Weight for dice loss.
|
67 |
+
contrastive_weight (`float`, *optional*, defaults to 0.5):
|
68 |
+
Weight for contrastive loss.
|
69 |
+
contrastive_temperature (`float`, *optional*, defaults to 0.07):
|
70 |
+
Initial value for scaling the contrastive logits.
|
71 |
+
train_num_points (`int`, *optional*, defaults to 12544):
|
72 |
+
Number of points to sample while calculating losses on mask predictions.
|
73 |
+
oversample_ratio (`float`, *optional*, defaults to 3.0):
|
74 |
+
Ratio to decide how many points to oversample.
|
75 |
+
importance_sample_ratio (`float`, *optional*, defaults to 0.75):
|
76 |
+
Ratio of points that are sampled via importance sampling.
|
77 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
78 |
+
Standard deviation for normal intialization.
|
79 |
+
init_xavier_std (`float`, *optional*, defaults to 1.0):
|
80 |
+
Standard deviation for xavier uniform initialization.
|
81 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
82 |
+
Epsilon for layer normalization.
|
83 |
+
is_training (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether to run in training or inference mode.
|
85 |
+
use_auxiliary_loss (`bool`, *optional*, defaults to `True`):
|
86 |
+
Whether to calculate loss using intermediate predictions from transformer decoder.
|
87 |
+
output_auxiliary_logits (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to return intermediate predictions from transformer decoder.
|
89 |
+
strides (`list`, *optional*, defaults to `[4, 8, 16, 32]`):
|
90 |
+
List containing the strides for feature maps in the encoder.
|
91 |
+
task_seq_len (`int`, *optional*, defaults to 77):
|
92 |
+
Sequence length for tokenizing text list input.
|
93 |
+
text_encoder_width (`int`, *optional*, defaults to 256):
|
94 |
+
Hidden size for text encoder.
|
95 |
+
text_encoder_context_length (`int`, *optional*, defaults to 77):
|
96 |
+
Input sequence length for text encoder.
|
97 |
+
text_encoder_num_layers (`int`, *optional*, defaults to 6):
|
98 |
+
Number of layers for transformer in text encoder.
|
99 |
+
text_encoder_vocab_size (`int`, *optional*, defaults to 49408):
|
100 |
+
Vocabulary size for tokenizer.
|
101 |
+
text_encoder_proj_layers (`int`, *optional*, defaults to 2):
|
102 |
+
Number of layers in MLP for project text queries.
|
103 |
+
text_encoder_n_ctx (`int`, *optional*, defaults to 16):
|
104 |
+
Number of learnable text context queries.
|
105 |
+
conv_dim (`int`, *optional*, defaults to 256):
|
106 |
+
Feature map dimension to map outputs from the backbone.
|
107 |
+
mask_dim (`int`, *optional*, defaults to 256):
|
108 |
+
Dimension for feature maps in pixel decoder.
|
109 |
+
hidden_dim (`int`, *optional*, defaults to 256):
|
110 |
+
Dimension for hidden states in transformer decoder.
|
111 |
+
encoder_feedforward_dim (`int`, *optional*, defaults to 1024):
|
112 |
+
Dimension for FFN layer in pixel decoder.
|
113 |
+
norm (`str`, *optional*, defaults to `"GN"`):
|
114 |
+
Type of normalization.
|
115 |
+
encoder_layers (`int`, *optional*, defaults to 6):
|
116 |
+
Number of layers in pixel decoder.
|
117 |
+
decoder_layers (`int`, *optional*, defaults to 10):
|
118 |
+
Number of layers in transformer decoder.
|
119 |
+
use_task_norm (`bool`, *optional*, defaults to `True`):
|
120 |
+
Whether to normalize the task token.
|
121 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
122 |
+
Number of attention heads in transformer layers in the pixel and transformer decoders.
|
123 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
124 |
+
Dropout probability for pixel and transformer decoders.
|
125 |
+
dim_feedforward (`int`, *optional*, defaults to 2048):
|
126 |
+
Dimension for FFN layer in transformer decoder.
|
127 |
+
pre_norm (`bool`, *optional*, defaults to `False`):
|
128 |
+
Whether to normalize hidden states before attention layers in transformer decoder.
|
129 |
+
enforce_input_proj (`bool`, *optional*, defaults to `False`):
|
130 |
+
Whether to project hidden states in transformer decoder.
|
131 |
+
query_dec_layers (`int`, *optional*, defaults to 2):
|
132 |
+
Number of layers in query transformer.
|
133 |
+
common_stride (`int`, *optional*, defaults to 4):
|
134 |
+
Common stride used for features in pixel decoder.
|
135 |
+
|
136 |
+
Examples:
|
137 |
+
```python
|
138 |
+
>>> from transformers import OneFormerConfig, OneFormerModel
|
139 |
+
|
140 |
+
>>> # Initializing a OneFormer shi-labs/oneformer_ade20k_swin_tiny configuration
|
141 |
+
>>> configuration = OneFormerConfig()
|
142 |
+
>>> # Initializing a model (with random weights) from the shi-labs/oneformer_ade20k_swin_tiny style configuration
|
143 |
+
>>> model = OneFormerModel(configuration)
|
144 |
+
>>> # Accessing the model configuration
|
145 |
+
>>> configuration = model.config
|
146 |
+
```
|
147 |
+
"""
|
148 |
+
|
149 |
+
model_type = "oneformer"
|
150 |
+
attribute_map = {"hidden_size": "hidden_dim"}
|
151 |
+
|
152 |
+
def __init__(
|
153 |
+
self,
|
154 |
+
backbone_config: Optional[Dict] = None,
|
155 |
+
backbone: Optional[str] = None,
|
156 |
+
use_pretrained_backbone: bool = False,
|
157 |
+
use_timm_backbone: bool = False,
|
158 |
+
backbone_kwargs: Optional[Dict] = None,
|
159 |
+
ignore_value: int = 255,
|
160 |
+
num_queries: int = 150,
|
161 |
+
no_object_weight: int = 0.1,
|
162 |
+
class_weight: float = 2.0,
|
163 |
+
mask_weight: float = 5.0,
|
164 |
+
dice_weight: float = 5.0,
|
165 |
+
contrastive_weight: float = 0.5,
|
166 |
+
contrastive_temperature: float = 0.07,
|
167 |
+
train_num_points: int = 12544,
|
168 |
+
oversample_ratio: float = 3.0,
|
169 |
+
importance_sample_ratio: float = 0.75,
|
170 |
+
init_std: float = 0.02,
|
171 |
+
init_xavier_std: float = 1.0,
|
172 |
+
layer_norm_eps: float = 1e-05,
|
173 |
+
is_training: bool = False,
|
174 |
+
use_auxiliary_loss: bool = True,
|
175 |
+
output_auxiliary_logits: bool = True,
|
176 |
+
strides: Optional[list] = [4, 8, 16, 32],
|
177 |
+
task_seq_len: int = 77,
|
178 |
+
text_encoder_width: int = 256,
|
179 |
+
text_encoder_context_length: int = 77,
|
180 |
+
text_encoder_num_layers: int = 6,
|
181 |
+
text_encoder_vocab_size: int = 49408,
|
182 |
+
text_encoder_proj_layers: int = 2,
|
183 |
+
text_encoder_n_ctx: int = 16,
|
184 |
+
conv_dim: int = 256,
|
185 |
+
mask_dim: int = 256,
|
186 |
+
hidden_dim: int = 256,
|
187 |
+
encoder_feedforward_dim: int = 1024,
|
188 |
+
norm: str = "GN",
|
189 |
+
encoder_layers: int = 6,
|
190 |
+
decoder_layers: int = 10,
|
191 |
+
use_task_norm: bool = True,
|
192 |
+
num_attention_heads: int = 8,
|
193 |
+
dropout: float = 0.1,
|
194 |
+
dim_feedforward: int = 2048,
|
195 |
+
pre_norm: bool = False,
|
196 |
+
enforce_input_proj: bool = False,
|
197 |
+
query_dec_layers: int = 2,
|
198 |
+
common_stride: int = 4,
|
199 |
+
**kwargs,
|
200 |
+
):
|
201 |
+
if use_pretrained_backbone:
|
202 |
+
raise ValueError("Pretrained backbones are not supported yet.")
|
203 |
+
|
204 |
+
if backbone_config is not None and backbone is not None:
|
205 |
+
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
|
206 |
+
|
207 |
+
if backbone_config is None and backbone is None:
|
208 |
+
logger.info("`backbone_config` is unset. Initializing the config with the default `Swin` backbone.")
|
209 |
+
backbone_config = CONFIG_MAPPING["swin"](
|
210 |
+
image_size=224,
|
211 |
+
in_channels=3,
|
212 |
+
patch_size=4,
|
213 |
+
embed_dim=96,
|
214 |
+
depths=[2, 2, 6, 2],
|
215 |
+
num_heads=[3, 6, 12, 24],
|
216 |
+
window_size=7,
|
217 |
+
drop_path_rate=0.3,
|
218 |
+
use_absolute_embeddings=False,
|
219 |
+
out_features=["stage1", "stage2", "stage3", "stage4"],
|
220 |
+
)
|
221 |
+
elif isinstance(backbone_config, dict):
|
222 |
+
backbone_model_type = backbone_config.get("model_type")
|
223 |
+
config_class = CONFIG_MAPPING[backbone_model_type]
|
224 |
+
backbone_config = config_class.from_dict(backbone_config)
|
225 |
+
|
226 |
+
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
|
227 |
+
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
|
228 |
+
|
229 |
+
self.backbone_config = backbone_config
|
230 |
+
self.backbone = backbone
|
231 |
+
self.use_pretrained_backbone = use_pretrained_backbone
|
232 |
+
self.use_timm_backbone = use_timm_backbone
|
233 |
+
self.backbone_kwargs = backbone_kwargs
|
234 |
+
self.ignore_value = ignore_value
|
235 |
+
self.num_queries = num_queries
|
236 |
+
self.no_object_weight = no_object_weight
|
237 |
+
self.class_weight = class_weight
|
238 |
+
self.mask_weight = mask_weight
|
239 |
+
self.dice_weight = dice_weight
|
240 |
+
self.contrastive_weight = contrastive_weight
|
241 |
+
self.contrastive_temperature = contrastive_temperature
|
242 |
+
self.train_num_points = train_num_points
|
243 |
+
self.oversample_ratio = oversample_ratio
|
244 |
+
self.importance_sample_ratio = importance_sample_ratio
|
245 |
+
self.init_std = init_std
|
246 |
+
self.init_xavier_std = init_xavier_std
|
247 |
+
self.layer_norm_eps = layer_norm_eps
|
248 |
+
self.is_training = is_training
|
249 |
+
self.use_auxiliary_loss = use_auxiliary_loss
|
250 |
+
self.output_auxiliary_logits = output_auxiliary_logits
|
251 |
+
self.strides = strides
|
252 |
+
self.task_seq_len = task_seq_len
|
253 |
+
self.text_encoder_width = text_encoder_width
|
254 |
+
self.text_encoder_context_length = text_encoder_context_length
|
255 |
+
self.text_encoder_num_layers = text_encoder_num_layers
|
256 |
+
self.text_encoder_vocab_size = text_encoder_vocab_size
|
257 |
+
self.text_encoder_proj_layers = text_encoder_proj_layers
|
258 |
+
self.text_encoder_n_ctx = text_encoder_n_ctx
|
259 |
+
self.conv_dim = conv_dim
|
260 |
+
self.mask_dim = mask_dim
|
261 |
+
self.hidden_dim = hidden_dim
|
262 |
+
self.encoder_feedforward_dim = encoder_feedforward_dim
|
263 |
+
self.norm = norm
|
264 |
+
self.encoder_layers = encoder_layers
|
265 |
+
self.decoder_layers = decoder_layers
|
266 |
+
self.use_task_norm = use_task_norm
|
267 |
+
self.num_attention_heads = num_attention_heads
|
268 |
+
self.dropout = dropout
|
269 |
+
self.dim_feedforward = dim_feedforward
|
270 |
+
self.pre_norm = pre_norm
|
271 |
+
self.enforce_input_proj = enforce_input_proj
|
272 |
+
self.query_dec_layers = query_dec_layers
|
273 |
+
self.common_stride = common_stride
|
274 |
+
self.num_hidden_layers = decoder_layers
|
275 |
+
|
276 |
+
super().__init__(**kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/oneformer/convert_to_hf_oneformer.py
ADDED
@@ -0,0 +1,1191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Convert OneFormer checkpoints from the original repository. URL: https://github.com/SHI-Labs/OneFormer"""
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
from argparse import ArgumentParser
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from pathlib import Path
|
23 |
+
from pprint import pformat
|
24 |
+
from typing import Any, Dict, Iterator, List, Set, Tuple
|
25 |
+
|
26 |
+
import requests
|
27 |
+
import torch
|
28 |
+
import torchvision.transforms as T
|
29 |
+
from PIL import Image
|
30 |
+
from torch import Tensor, nn
|
31 |
+
|
32 |
+
|
33 |
+
try:
|
34 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
35 |
+
from detectron2.config import get_cfg
|
36 |
+
from detectron2.data import MetadataCatalog
|
37 |
+
from detectron2.projects.deeplab import add_deeplab_config
|
38 |
+
except ImportError:
|
39 |
+
pass
|
40 |
+
from transformers import CLIPTokenizer, DinatConfig, SwinConfig
|
41 |
+
from transformers.models.oneformer.image_processing_oneformer import OneFormerImageProcessor
|
42 |
+
from transformers.models.oneformer.modeling_oneformer import (
|
43 |
+
OneFormerConfig,
|
44 |
+
OneFormerForUniversalSegmentation,
|
45 |
+
OneFormerForUniversalSegmentationOutput,
|
46 |
+
OneFormerModel,
|
47 |
+
OneFormerModelOutput,
|
48 |
+
)
|
49 |
+
from transformers.models.oneformer.processing_oneformer import OneFormerProcessor
|
50 |
+
from transformers.utils import logging
|
51 |
+
|
52 |
+
|
53 |
+
StateDict = Dict[str, Tensor]
|
54 |
+
|
55 |
+
logging.set_verbosity_info()
|
56 |
+
logger = logging.get_logger()
|
57 |
+
|
58 |
+
torch.manual_seed(0)
|
59 |
+
|
60 |
+
|
61 |
+
class TrackedStateDict:
|
62 |
+
def __init__(self, to_track: Dict):
|
63 |
+
"""This class "tracks" a python dictionary by keeping track of which item is accessed.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
to_track (Dict): The dictionary we wish to track
|
67 |
+
"""
|
68 |
+
self.to_track = to_track
|
69 |
+
self._seen: Set[str] = set()
|
70 |
+
|
71 |
+
def __getitem__(self, key: str) -> Any:
|
72 |
+
return self.to_track[key]
|
73 |
+
|
74 |
+
def __setitem__(self, key: str, item: Any):
|
75 |
+
self._seen.add(key)
|
76 |
+
self.to_track[key] = item
|
77 |
+
|
78 |
+
def diff(self) -> List[str]:
|
79 |
+
"""This method returns a set difference between the keys in the tracked state dict and the one we have access so far.
|
80 |
+
This is an effective method to check if we have update all the keys
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
List[str]: List of keys not yet updated
|
84 |
+
"""
|
85 |
+
return set(self.to_track.keys()) - self._seen
|
86 |
+
|
87 |
+
def copy(self) -> Dict:
|
88 |
+
# proxy the call to the internal dictionary
|
89 |
+
return self.to_track.copy()
|
90 |
+
|
91 |
+
|
92 |
+
# Image to verify the result
|
93 |
+
def prepare_img():
|
94 |
+
url = "https://praeclarumjj3.github.io/files/coco.jpeg"
|
95 |
+
img_data = requests.get(url, stream=True).raw
|
96 |
+
im = Image.open(img_data)
|
97 |
+
return im
|
98 |
+
|
99 |
+
|
100 |
+
@dataclass
|
101 |
+
class Args:
|
102 |
+
"""Fake command line arguments needed by oneformer/detectron2 implementation"""
|
103 |
+
|
104 |
+
config_file: str
|
105 |
+
|
106 |
+
|
107 |
+
def setup_cfg(args: Args):
|
108 |
+
# load config from file and command-line arguments
|
109 |
+
cfg = get_cfg()
|
110 |
+
add_deeplab_config(cfg)
|
111 |
+
add_common_config(cfg)
|
112 |
+
add_oneformer_config(cfg)
|
113 |
+
add_swin_config(cfg)
|
114 |
+
add_dinat_config(cfg)
|
115 |
+
cfg.merge_from_file(args.config_file)
|
116 |
+
cfg.freeze()
|
117 |
+
return cfg
|
118 |
+
|
119 |
+
|
120 |
+
class OriginalOneFormerConfigToOursConverter:
|
121 |
+
def __call__(self, original_config: object, is_swin: bool) -> OneFormerConfig:
|
122 |
+
model = original_config.MODEL
|
123 |
+
|
124 |
+
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
|
125 |
+
id2label = dict(enumerate(dataset_catalog.stuff_classes))
|
126 |
+
label2id = {label: idx for idx, label in id2label.items()}
|
127 |
+
|
128 |
+
if is_swin:
|
129 |
+
if model.SWIN.EMBED_DIM == 96:
|
130 |
+
backbone_config = SwinConfig.from_pretrained(
|
131 |
+
"microsoft/swin-tiny-patch4-window7-224",
|
132 |
+
drop_path_rate=model.SWIN.DROP_PATH_RATE,
|
133 |
+
out_features=["stage1", "stage2", "stage3", "stage4"],
|
134 |
+
)
|
135 |
+
elif model.SWIN.EMBED_DIM == 192:
|
136 |
+
backbone_config = SwinConfig.from_pretrained(
|
137 |
+
"microsoft/swin-large-patch4-window12-384",
|
138 |
+
drop_path_rate=model.SWIN.DROP_PATH_RATE,
|
139 |
+
out_features=["stage1", "stage2", "stage3", "stage4"],
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!")
|
143 |
+
else:
|
144 |
+
backbone_config = DinatConfig.from_pretrained(
|
145 |
+
"shi-labs/dinat-large-11x11-in22k-in1k-384",
|
146 |
+
dilations=model.DiNAT.DILATIONS,
|
147 |
+
kernel_size=model.DiNAT.KERNEL_SIZE,
|
148 |
+
out_features=["stage1", "stage2", "stage3", "stage4"],
|
149 |
+
)
|
150 |
+
|
151 |
+
config: OneFormerConfig = OneFormerConfig(
|
152 |
+
backbone_config=backbone_config,
|
153 |
+
output_attentions=True,
|
154 |
+
output_hidden_states=True,
|
155 |
+
return_dict=True,
|
156 |
+
ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE,
|
157 |
+
num_classes=model.SEM_SEG_HEAD.NUM_CLASSES,
|
158 |
+
num_queries=model.ONE_FORMER.NUM_OBJECT_QUERIES,
|
159 |
+
no_object_weight=model.ONE_FORMER.NO_OBJECT_WEIGHT,
|
160 |
+
class_weight=model.ONE_FORMER.CLASS_WEIGHT,
|
161 |
+
mask_weight=model.ONE_FORMER.MASK_WEIGHT,
|
162 |
+
dice_weight=model.ONE_FORMER.DICE_WEIGHT,
|
163 |
+
contrastive_weight=model.ONE_FORMER.CONTRASTIVE_WEIGHT,
|
164 |
+
contrastive_temperature=model.ONE_FORMER.CONTRASTIVE_TEMPERATURE,
|
165 |
+
train_num_points=model.ONE_FORMER.TRAIN_NUM_POINTS,
|
166 |
+
oversample_ratio=model.ONE_FORMER.OVERSAMPLE_RATIO,
|
167 |
+
importance_sample_ratio=model.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO,
|
168 |
+
init_std=0.02,
|
169 |
+
init_xavier_std=1.0,
|
170 |
+
layer_norm_eps=1e-05,
|
171 |
+
is_training=False,
|
172 |
+
use_auxiliary_loss=model.ONE_FORMER.DEEP_SUPERVISION,
|
173 |
+
output_auxiliary_logits=True,
|
174 |
+
strides=[4, 8, 16, 32],
|
175 |
+
task_seq_len=original_config.INPUT.TASK_SEQ_LEN,
|
176 |
+
max_seq_len=original_config.INPUT.MAX_SEQ_LEN,
|
177 |
+
text_encoder_width=model.TEXT_ENCODER.WIDTH,
|
178 |
+
text_encoder_context_length=model.TEXT_ENCODER.CONTEXT_LENGTH,
|
179 |
+
text_encoder_num_layers=model.TEXT_ENCODER.NUM_LAYERS,
|
180 |
+
text_encoder_vocab_size=model.TEXT_ENCODER.VOCAB_SIZE,
|
181 |
+
text_encoder_proj_layers=model.TEXT_ENCODER.PROJ_NUM_LAYERS,
|
182 |
+
text_encoder_n_ctx=model.TEXT_ENCODER.N_CTX,
|
183 |
+
conv_dim=model.SEM_SEG_HEAD.CONVS_DIM,
|
184 |
+
mask_dim=model.SEM_SEG_HEAD.MASK_DIM,
|
185 |
+
hidden_dim=model.ONE_FORMER.HIDDEN_DIM,
|
186 |
+
norm=model.SEM_SEG_HEAD.NORM,
|
187 |
+
encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS,
|
188 |
+
encoder_feedforward_dim=1024,
|
189 |
+
decoder_layers=model.ONE_FORMER.DEC_LAYERS,
|
190 |
+
use_task_norm=model.ONE_FORMER.USE_TASK_NORM,
|
191 |
+
num_attention_heads=model.ONE_FORMER.NHEADS,
|
192 |
+
dropout=model.ONE_FORMER.DROPOUT,
|
193 |
+
dim_feedforward=model.ONE_FORMER.DIM_FEEDFORWARD,
|
194 |
+
pre_norm=model.ONE_FORMER.PRE_NORM,
|
195 |
+
enforce_input_proj=model.ONE_FORMER.ENFORCE_INPUT_PROJ,
|
196 |
+
query_dec_layers=model.ONE_FORMER.CLASS_DEC_LAYERS,
|
197 |
+
common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE,
|
198 |
+
id2label=id2label,
|
199 |
+
label2id=label2id,
|
200 |
+
)
|
201 |
+
|
202 |
+
return config
|
203 |
+
|
204 |
+
|
205 |
+
class OriginalOneFormerConfigToProcessorConverter:
|
206 |
+
def __call__(self, original_config: object, model_repo: str) -> OneFormerProcessor:
|
207 |
+
model = original_config.MODEL
|
208 |
+
model_input = original_config.INPUT
|
209 |
+
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
|
210 |
+
|
211 |
+
if "ade20k" in model_repo:
|
212 |
+
class_info_file = "ade20k_panoptic.json"
|
213 |
+
elif "coco" in model_repo:
|
214 |
+
class_info_file = "coco_panoptic.json"
|
215 |
+
elif "cityscapes" in model_repo:
|
216 |
+
class_info_file = "cityscapes_panoptic.json"
|
217 |
+
else:
|
218 |
+
raise ValueError("Invalid Dataset!")
|
219 |
+
|
220 |
+
image_processor = OneFormerImageProcessor(
|
221 |
+
image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(),
|
222 |
+
image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(),
|
223 |
+
size=model_input.MIN_SIZE_TEST,
|
224 |
+
max_size=model_input.MAX_SIZE_TEST,
|
225 |
+
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
|
226 |
+
ignore_index=dataset_catalog.ignore_label,
|
227 |
+
class_info_file=class_info_file,
|
228 |
+
)
|
229 |
+
|
230 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_repo)
|
231 |
+
|
232 |
+
return OneFormerProcessor(
|
233 |
+
image_processor=image_processor,
|
234 |
+
tokenizer=tokenizer,
|
235 |
+
task_seq_length=original_config.INPUT.TASK_SEQ_LEN,
|
236 |
+
max_seq_length=original_config.INPUT.MAX_SEQ_LEN,
|
237 |
+
)
|
238 |
+
|
239 |
+
|
240 |
+
class OriginalOneFormerCheckpointToOursConverter:
|
241 |
+
def __init__(self, original_model: nn.Module, config: OneFormerConfig):
|
242 |
+
self.original_model = original_model
|
243 |
+
self.config = config
|
244 |
+
|
245 |
+
def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict):
|
246 |
+
for src_key, dst_key in renamed_keys:
|
247 |
+
dst_state_dict[dst_key] = src_state_dict.pop(src_key)
|
248 |
+
|
249 |
+
# Swin Backbone
|
250 |
+
def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
|
251 |
+
dst_prefix: str = "pixel_level_module.encoder"
|
252 |
+
src_prefix: str = "backbone"
|
253 |
+
|
254 |
+
renamed_keys = [
|
255 |
+
(
|
256 |
+
f"{src_prefix}.patch_embed.proj.weight",
|
257 |
+
f"{dst_prefix}.embeddings.patch_embeddings.projection.weight",
|
258 |
+
),
|
259 |
+
(f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"),
|
260 |
+
(f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"),
|
261 |
+
(f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"),
|
262 |
+
]
|
263 |
+
num_layers = len(config.backbone_config.depths)
|
264 |
+
for layer_idx in range(num_layers):
|
265 |
+
for block_idx in range(config.backbone_config.depths[layer_idx]):
|
266 |
+
renamed_keys.extend(
|
267 |
+
[ # src, dst
|
268 |
+
(
|
269 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
|
270 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
|
271 |
+
),
|
272 |
+
(
|
273 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
|
274 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
|
275 |
+
),
|
276 |
+
(
|
277 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
|
278 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
|
279 |
+
),
|
280 |
+
]
|
281 |
+
)
|
282 |
+
# now we need to handle the attentions
|
283 |
+
# read in weights + bias of input projection layer of cross-attention
|
284 |
+
|
285 |
+
src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
|
286 |
+
src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
|
287 |
+
|
288 |
+
size = src_att_weight.shape[0]
|
289 |
+
offset = size // 3
|
290 |
+
dst_state_dict[
|
291 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
|
292 |
+
] = src_att_weight[:offset, :]
|
293 |
+
dst_state_dict[
|
294 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
|
295 |
+
] = src_att_bias[:offset]
|
296 |
+
|
297 |
+
dst_state_dict[
|
298 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
|
299 |
+
] = src_att_weight[offset : offset * 2, :]
|
300 |
+
dst_state_dict[
|
301 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
|
302 |
+
] = src_att_bias[offset : offset * 2]
|
303 |
+
|
304 |
+
dst_state_dict[
|
305 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
|
306 |
+
] = src_att_weight[-offset:, :]
|
307 |
+
dst_state_dict[
|
308 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
|
309 |
+
] = src_att_bias[-offset:]
|
310 |
+
|
311 |
+
# let's pop them
|
312 |
+
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
|
313 |
+
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
|
314 |
+
# proj
|
315 |
+
renamed_keys.extend(
|
316 |
+
[
|
317 |
+
(
|
318 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
|
319 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
|
320 |
+
),
|
321 |
+
(
|
322 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
|
323 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
|
324 |
+
),
|
325 |
+
]
|
326 |
+
)
|
327 |
+
|
328 |
+
# second norm
|
329 |
+
renamed_keys.extend(
|
330 |
+
[
|
331 |
+
(
|
332 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
|
333 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
|
334 |
+
),
|
335 |
+
(
|
336 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
|
337 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
|
338 |
+
),
|
339 |
+
]
|
340 |
+
)
|
341 |
+
|
342 |
+
# mlp
|
343 |
+
renamed_keys.extend(
|
344 |
+
[
|
345 |
+
(
|
346 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
|
347 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
|
348 |
+
),
|
349 |
+
(
|
350 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
|
351 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
|
352 |
+
),
|
353 |
+
(
|
354 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
|
355 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
|
356 |
+
),
|
357 |
+
(
|
358 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
|
359 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
|
360 |
+
),
|
361 |
+
]
|
362 |
+
)
|
363 |
+
|
364 |
+
renamed_keys.extend(
|
365 |
+
[
|
366 |
+
(
|
367 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
|
368 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
|
369 |
+
)
|
370 |
+
]
|
371 |
+
)
|
372 |
+
|
373 |
+
if layer_idx < num_layers - 1:
|
374 |
+
# patch merging
|
375 |
+
renamed_keys.extend(
|
376 |
+
[
|
377 |
+
(
|
378 |
+
f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
|
379 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight",
|
380 |
+
),
|
381 |
+
(
|
382 |
+
f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
|
383 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight",
|
384 |
+
),
|
385 |
+
(
|
386 |
+
f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
|
387 |
+
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias",
|
388 |
+
),
|
389 |
+
]
|
390 |
+
)
|
391 |
+
|
392 |
+
# hidden states norms
|
393 |
+
renamed_keys.extend(
|
394 |
+
[
|
395 |
+
(
|
396 |
+
f"{src_prefix}.norm{layer_idx}.weight",
|
397 |
+
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
|
398 |
+
),
|
399 |
+
(
|
400 |
+
f"{src_prefix}.norm{layer_idx}.bias",
|
401 |
+
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
|
402 |
+
),
|
403 |
+
]
|
404 |
+
)
|
405 |
+
|
406 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
407 |
+
|
408 |
+
# Dinat Backbone
|
409 |
+
def replace_dinat_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
|
410 |
+
dst_prefix: str = "pixel_level_module.encoder"
|
411 |
+
src_prefix: str = "backbone"
|
412 |
+
|
413 |
+
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
|
414 |
+
return [
|
415 |
+
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
|
416 |
+
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
|
417 |
+
]
|
418 |
+
|
419 |
+
renamed_keys = rename_keys_for_weight_bias(f"{src_prefix}.patch_embed.norm", f"{dst_prefix}.embeddings.norm")
|
420 |
+
|
421 |
+
for i in range(2):
|
422 |
+
renamed_keys.extend(
|
423 |
+
rename_keys_for_weight_bias(
|
424 |
+
f"{src_prefix}.patch_embed.proj.{i}",
|
425 |
+
f"{dst_prefix}.embeddings.patch_embeddings.projection.{i}",
|
426 |
+
)
|
427 |
+
)
|
428 |
+
|
429 |
+
num_layers = len(config.backbone_config.depths)
|
430 |
+
for layer_idx in range(num_layers):
|
431 |
+
for block_idx in range(config.backbone_config.depths[layer_idx]):
|
432 |
+
renamed_keys.extend(
|
433 |
+
rename_keys_for_weight_bias(
|
434 |
+
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm1",
|
435 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_before",
|
436 |
+
)
|
437 |
+
)
|
438 |
+
|
439 |
+
renamed_keys.extend(
|
440 |
+
rename_keys_for_weight_bias(
|
441 |
+
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm2",
|
442 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_after",
|
443 |
+
)
|
444 |
+
)
|
445 |
+
|
446 |
+
renamed_keys.extend(
|
447 |
+
[ # src, dst
|
448 |
+
(
|
449 |
+
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.rpb",
|
450 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.rpb",
|
451 |
+
),
|
452 |
+
]
|
453 |
+
)
|
454 |
+
# now we need to handle the attentions
|
455 |
+
# read in weights + bias of input projection layer of cross-attention
|
456 |
+
|
457 |
+
src_att_weight = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
|
458 |
+
src_att_bias = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
|
459 |
+
|
460 |
+
size = src_att_weight.shape[0]
|
461 |
+
offset = size // 3
|
462 |
+
dst_state_dict[
|
463 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.weight"
|
464 |
+
] = src_att_weight[:offset, :]
|
465 |
+
dst_state_dict[
|
466 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.bias"
|
467 |
+
] = src_att_bias[:offset]
|
468 |
+
|
469 |
+
dst_state_dict[
|
470 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.weight"
|
471 |
+
] = src_att_weight[offset : offset * 2, :]
|
472 |
+
dst_state_dict[
|
473 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.bias"
|
474 |
+
] = src_att_bias[offset : offset * 2]
|
475 |
+
|
476 |
+
dst_state_dict[
|
477 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.weight"
|
478 |
+
] = src_att_weight[-offset:, :]
|
479 |
+
dst_state_dict[
|
480 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.bias"
|
481 |
+
] = src_att_bias[-offset:]
|
482 |
+
|
483 |
+
# let's pop them
|
484 |
+
src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
|
485 |
+
src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
|
486 |
+
# proj
|
487 |
+
|
488 |
+
renamed_keys.extend(
|
489 |
+
rename_keys_for_weight_bias(
|
490 |
+
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.proj",
|
491 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.output.dense",
|
492 |
+
)
|
493 |
+
)
|
494 |
+
|
495 |
+
# mlp
|
496 |
+
renamed_keys.extend(
|
497 |
+
rename_keys_for_weight_bias(
|
498 |
+
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc1",
|
499 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.intermediate.dense",
|
500 |
+
)
|
501 |
+
)
|
502 |
+
|
503 |
+
renamed_keys.extend(
|
504 |
+
rename_keys_for_weight_bias(
|
505 |
+
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc2",
|
506 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.output.dense",
|
507 |
+
)
|
508 |
+
)
|
509 |
+
|
510 |
+
if layer_idx < num_layers - 1:
|
511 |
+
# patch merging
|
512 |
+
renamed_keys.extend(
|
513 |
+
[
|
514 |
+
(
|
515 |
+
f"{src_prefix}.levels.{layer_idx}.downsample.reduction.weight",
|
516 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.reduction.weight",
|
517 |
+
),
|
518 |
+
(
|
519 |
+
f"{src_prefix}.levels.{layer_idx}.downsample.norm.weight",
|
520 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.weight",
|
521 |
+
),
|
522 |
+
(
|
523 |
+
f"{src_prefix}.levels.{layer_idx}.downsample.norm.bias",
|
524 |
+
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.bias",
|
525 |
+
),
|
526 |
+
]
|
527 |
+
)
|
528 |
+
|
529 |
+
# hidden states norms
|
530 |
+
renamed_keys.extend(
|
531 |
+
[
|
532 |
+
(
|
533 |
+
f"{src_prefix}.norm{layer_idx}.weight",
|
534 |
+
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
|
535 |
+
),
|
536 |
+
(
|
537 |
+
f"{src_prefix}.norm{layer_idx}.bias",
|
538 |
+
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
|
539 |
+
),
|
540 |
+
]
|
541 |
+
)
|
542 |
+
|
543 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
544 |
+
|
545 |
+
# Backbone + Pixel Decoder
|
546 |
+
def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict, is_swin: bool):
|
547 |
+
dst_prefix: str = "pixel_level_module.decoder"
|
548 |
+
src_prefix: str = "sem_seg_head.pixel_decoder"
|
549 |
+
|
550 |
+
if is_swin:
|
551 |
+
self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config)
|
552 |
+
else:
|
553 |
+
self.replace_dinat_backbone(dst_state_dict, src_state_dict, self.config)
|
554 |
+
|
555 |
+
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
|
556 |
+
return [
|
557 |
+
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
|
558 |
+
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
|
559 |
+
]
|
560 |
+
|
561 |
+
def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
|
562 |
+
self_attn_keys = []
|
563 |
+
self_attn_keys.extend(
|
564 |
+
rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights")
|
565 |
+
)
|
566 |
+
self_attn_keys.extend(
|
567 |
+
rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj")
|
568 |
+
)
|
569 |
+
self_attn_keys.extend(
|
570 |
+
rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets")
|
571 |
+
)
|
572 |
+
self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj"))
|
573 |
+
|
574 |
+
return self_attn_keys
|
575 |
+
|
576 |
+
def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str):
|
577 |
+
encoder_keys = []
|
578 |
+
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1"))
|
579 |
+
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2"))
|
580 |
+
encoder_keys.extend(
|
581 |
+
rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm")
|
582 |
+
)
|
583 |
+
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm"))
|
584 |
+
encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn"))
|
585 |
+
|
586 |
+
return encoder_keys
|
587 |
+
|
588 |
+
# convolution layer for final features
|
589 |
+
renamed_keys = [
|
590 |
+
(f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"),
|
591 |
+
(f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"),
|
592 |
+
(f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"),
|
593 |
+
]
|
594 |
+
|
595 |
+
renamed_keys.extend(
|
596 |
+
[
|
597 |
+
(f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"),
|
598 |
+
(f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"),
|
599 |
+
(f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"),
|
600 |
+
]
|
601 |
+
)
|
602 |
+
|
603 |
+
# proj layers
|
604 |
+
for i in range(3):
|
605 |
+
for j in range(2):
|
606 |
+
renamed_keys.extend(
|
607 |
+
[
|
608 |
+
(f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"),
|
609 |
+
(f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"),
|
610 |
+
]
|
611 |
+
)
|
612 |
+
|
613 |
+
renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")])
|
614 |
+
|
615 |
+
# layers
|
616 |
+
for layer_idx in range(self.config.encoder_layers):
|
617 |
+
renamed_keys.extend(
|
618 |
+
rename_keys_for_encoder_layer(
|
619 |
+
f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}"
|
620 |
+
)
|
621 |
+
)
|
622 |
+
|
623 |
+
# proj
|
624 |
+
renamed_keys.extend(
|
625 |
+
[
|
626 |
+
(f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"),
|
627 |
+
(f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"),
|
628 |
+
]
|
629 |
+
)
|
630 |
+
|
631 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
632 |
+
|
633 |
+
# Transformer Decoder
|
634 |
+
def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
635 |
+
dst_prefix: str = "transformer_module.decoder.layers"
|
636 |
+
src_prefix: str = "sem_seg_head.predictor"
|
637 |
+
for i in range(self.config.decoder_layers - 1):
|
638 |
+
# read in weights + bias of input projection layer of self-attention
|
639 |
+
in_proj_weight = src_state_dict.pop(
|
640 |
+
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight"
|
641 |
+
)
|
642 |
+
in_proj_bias = src_state_dict.pop(
|
643 |
+
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias"
|
644 |
+
)
|
645 |
+
# next, add query, keys and values (in that order) to the state dict
|
646 |
+
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
647 |
+
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
648 |
+
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
649 |
+
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
650 |
+
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
651 |
+
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
652 |
+
|
653 |
+
def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
654 |
+
dst_prefix: str = "transformer_module"
|
655 |
+
src_prefix: str = "sem_seg_head.predictor"
|
656 |
+
|
657 |
+
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
|
658 |
+
return [
|
659 |
+
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
|
660 |
+
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
|
661 |
+
]
|
662 |
+
|
663 |
+
def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
|
664 |
+
attn_keys = [
|
665 |
+
(f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
|
666 |
+
(f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
|
667 |
+
]
|
668 |
+
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
|
669 |
+
|
670 |
+
return attn_keys
|
671 |
+
|
672 |
+
def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
|
673 |
+
attn_keys = []
|
674 |
+
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
|
675 |
+
|
676 |
+
return attn_keys
|
677 |
+
|
678 |
+
def rename_keys_for_query_transformer_layer(src_prefix: str, dst_prefix: str):
|
679 |
+
query_transformer_layer_keys = []
|
680 |
+
|
681 |
+
query_transformer_layer_keys.extend(
|
682 |
+
rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1")
|
683 |
+
)
|
684 |
+
query_transformer_layer_keys.extend(
|
685 |
+
rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2")
|
686 |
+
)
|
687 |
+
query_transformer_layer_keys.extend(
|
688 |
+
rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.norm1")
|
689 |
+
)
|
690 |
+
query_transformer_layer_keys.extend(
|
691 |
+
rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.norm2")
|
692 |
+
)
|
693 |
+
query_transformer_layer_keys.extend(
|
694 |
+
rename_keys_for_weight_bias(f"{src_prefix}.norm3", f"{dst_prefix}.norm3")
|
695 |
+
)
|
696 |
+
|
697 |
+
query_transformer_layer_keys.extend(
|
698 |
+
rename_keys_for_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
|
699 |
+
)
|
700 |
+
|
701 |
+
query_transformer_layer_keys.extend(
|
702 |
+
rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
|
703 |
+
)
|
704 |
+
|
705 |
+
return query_transformer_layer_keys
|
706 |
+
|
707 |
+
def rename_keys_for_cross_attn_layer(src_prefix: str, dst_prefix: str):
|
708 |
+
cross_attn_layer_keys = []
|
709 |
+
|
710 |
+
cross_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
|
711 |
+
cross_attn_layer_keys.extend(
|
712 |
+
rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
|
713 |
+
)
|
714 |
+
|
715 |
+
return cross_attn_layer_keys
|
716 |
+
|
717 |
+
def rename_keys_for_self_attn_layer(src_prefix: str, dst_prefix: str):
|
718 |
+
self_attn_layer_keys = []
|
719 |
+
|
720 |
+
self_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
|
721 |
+
self_attn_layer_keys.extend(
|
722 |
+
rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
|
723 |
+
)
|
724 |
+
|
725 |
+
return self_attn_layer_keys
|
726 |
+
|
727 |
+
def rename_keys_for_ffn_layer(src_prefix: str, dst_prefix: str):
|
728 |
+
ffn_layer_keys = []
|
729 |
+
|
730 |
+
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1"))
|
731 |
+
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2"))
|
732 |
+
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
|
733 |
+
|
734 |
+
return ffn_layer_keys
|
735 |
+
|
736 |
+
def rename_keys_for_transformer_decoder_layer(src_prefix: str, dst_prefix: str, idx: int):
|
737 |
+
transformer_decoder_layer_keys = []
|
738 |
+
|
739 |
+
transformer_decoder_layer_keys.extend(
|
740 |
+
rename_keys_for_cross_attn_layer(
|
741 |
+
f"{src_prefix}.transformer_cross_attention_layers.{idx}", f"{dst_prefix}.{idx}.cross_attn"
|
742 |
+
)
|
743 |
+
)
|
744 |
+
|
745 |
+
transformer_decoder_layer_keys.extend(
|
746 |
+
rename_keys_for_self_attn_layer(
|
747 |
+
f"{src_prefix}.transformer_self_attention_layers.{idx}", f"{dst_prefix}.{idx}.self_attn"
|
748 |
+
)
|
749 |
+
)
|
750 |
+
|
751 |
+
transformer_decoder_layer_keys.extend(
|
752 |
+
rename_keys_for_ffn_layer(f"{src_prefix}.transformer_ffn_layers.{idx}", f"{dst_prefix}.{idx}.ffn")
|
753 |
+
)
|
754 |
+
|
755 |
+
return transformer_decoder_layer_keys
|
756 |
+
|
757 |
+
# positional embedding for object queries
|
758 |
+
renamed_keys = [
|
759 |
+
(f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"),
|
760 |
+
(f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"),
|
761 |
+
]
|
762 |
+
|
763 |
+
# norm
|
764 |
+
renamed_keys.extend(
|
765 |
+
rename_keys_for_weight_bias(f"{src_prefix}.decoder_norm", f"{dst_prefix}.decoder.decoder_norm")
|
766 |
+
)
|
767 |
+
|
768 |
+
# proj
|
769 |
+
renamed_keys.extend(
|
770 |
+
rename_keys_for_weight_bias(
|
771 |
+
f"{src_prefix}.class_input_proj", f"{dst_prefix}.decoder.query_input_projection"
|
772 |
+
)
|
773 |
+
)
|
774 |
+
|
775 |
+
renamed_keys.extend(
|
776 |
+
rename_keys_for_weight_bias(f"{src_prefix}.class_embed", f"{dst_prefix}.decoder.class_embed")
|
777 |
+
)
|
778 |
+
|
779 |
+
for i in range(3):
|
780 |
+
renamed_keys.extend(
|
781 |
+
rename_keys_for_weight_bias(
|
782 |
+
f"{src_prefix}.mask_embed.layers.{i}", f"{dst_prefix}.decoder.mask_embed.layers.{i}.0"
|
783 |
+
)
|
784 |
+
)
|
785 |
+
|
786 |
+
# norm
|
787 |
+
renamed_keys.extend(
|
788 |
+
rename_keys_for_weight_bias(
|
789 |
+
f"{src_prefix}.class_transformer.decoder.norm", f"{dst_prefix}.decoder.query_transformer.decoder.norm"
|
790 |
+
)
|
791 |
+
)
|
792 |
+
|
793 |
+
# transformer to update queries with task tokens
|
794 |
+
for i in range(self.config.query_dec_layers):
|
795 |
+
renamed_keys.extend(
|
796 |
+
rename_keys_for_query_transformer_layer(
|
797 |
+
f"{src_prefix}.class_transformer.decoder.layers.{i}",
|
798 |
+
f"{dst_prefix}.decoder.query_transformer.decoder.layers.{i}",
|
799 |
+
)
|
800 |
+
)
|
801 |
+
|
802 |
+
# decoder layers
|
803 |
+
for i in range(self.config.decoder_layers - 1):
|
804 |
+
renamed_keys.extend(
|
805 |
+
rename_keys_for_transformer_decoder_layer(
|
806 |
+
f"{src_prefix}",
|
807 |
+
f"{dst_prefix}.decoder.layers",
|
808 |
+
i,
|
809 |
+
)
|
810 |
+
)
|
811 |
+
|
812 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
813 |
+
self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict)
|
814 |
+
|
815 |
+
def replace_task_mlp(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
816 |
+
dst_prefix: str = "task_encoder"
|
817 |
+
src_prefix: str = "task_mlp"
|
818 |
+
|
819 |
+
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
|
820 |
+
return [
|
821 |
+
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
|
822 |
+
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
|
823 |
+
]
|
824 |
+
|
825 |
+
renamed_keys = []
|
826 |
+
|
827 |
+
for i in range(2):
|
828 |
+
renamed_keys.extend(
|
829 |
+
rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.task_mlp.layers.{i}.0")
|
830 |
+
)
|
831 |
+
|
832 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
833 |
+
|
834 |
+
def replace_text_projector(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
835 |
+
dst_prefix: str = "text_mapper.text_projector"
|
836 |
+
src_prefix: str = "text_projector"
|
837 |
+
|
838 |
+
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
|
839 |
+
return [
|
840 |
+
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
|
841 |
+
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
|
842 |
+
]
|
843 |
+
|
844 |
+
renamed_keys = []
|
845 |
+
|
846 |
+
for i in range(self.config.text_encoder_config["text_encoder_proj_layers"]):
|
847 |
+
renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.{i}.0"))
|
848 |
+
|
849 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
850 |
+
|
851 |
+
def replace_text_mapper(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
852 |
+
dst_prefix: str = "text_mapper.text_encoder"
|
853 |
+
src_prefix: str = "text_encoder"
|
854 |
+
|
855 |
+
self.replace_text_projector(dst_state_dict, src_state_dict)
|
856 |
+
|
857 |
+
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
|
858 |
+
return [
|
859 |
+
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
|
860 |
+
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
|
861 |
+
]
|
862 |
+
|
863 |
+
def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
|
864 |
+
attn_keys = [
|
865 |
+
(f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
|
866 |
+
(f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
|
867 |
+
]
|
868 |
+
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
|
869 |
+
|
870 |
+
return attn_keys
|
871 |
+
|
872 |
+
def rename_keys_for_layer(src_prefix: str, dst_prefix: str):
|
873 |
+
resblock_keys = []
|
874 |
+
|
875 |
+
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_fc", f"{dst_prefix}.mlp.fc1"))
|
876 |
+
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_proj", f"{dst_prefix}.mlp.fc2"))
|
877 |
+
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_1", f"{dst_prefix}.layer_norm1"))
|
878 |
+
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_2", f"{dst_prefix}.layer_norm2"))
|
879 |
+
resblock_keys.extend(rename_keys_for_attn(f"{src_prefix}.attn", f"{dst_prefix}.self_attn"))
|
880 |
+
|
881 |
+
return resblock_keys
|
882 |
+
|
883 |
+
renamed_keys = [
|
884 |
+
("prompt_ctx.weight", "text_mapper.prompt_ctx.weight"),
|
885 |
+
]
|
886 |
+
|
887 |
+
renamed_keys.extend(
|
888 |
+
[
|
889 |
+
(f"{src_prefix}.positional_embedding", f"{dst_prefix}.positional_embedding"),
|
890 |
+
(f"{src_prefix}.token_embedding.weight", f"{dst_prefix}.token_embedding.weight"),
|
891 |
+
]
|
892 |
+
)
|
893 |
+
|
894 |
+
renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_final", f"{dst_prefix}.ln_final"))
|
895 |
+
|
896 |
+
for i in range(self.config.text_encoder_config["text_encoder_num_layers"]):
|
897 |
+
renamed_keys.extend(
|
898 |
+
rename_keys_for_layer(
|
899 |
+
f"{src_prefix}.transformer.resblocks.{i}", f"{dst_prefix}.transformer.layers.{i}"
|
900 |
+
)
|
901 |
+
)
|
902 |
+
|
903 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
904 |
+
|
905 |
+
def convert(self, oneformer: OneFormerModel, is_swin: bool) -> OneFormerModel:
|
906 |
+
dst_state_dict = TrackedStateDict(oneformer.state_dict())
|
907 |
+
src_state_dict = self.original_model.state_dict()
|
908 |
+
|
909 |
+
self.replace_pixel_module(dst_state_dict, src_state_dict, is_swin)
|
910 |
+
self.replace_transformer_module(dst_state_dict, src_state_dict)
|
911 |
+
self.replace_task_mlp(dst_state_dict, src_state_dict)
|
912 |
+
if self.config.is_training:
|
913 |
+
self.replace_text_mapper(dst_state_dict, src_state_dict)
|
914 |
+
|
915 |
+
logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}")
|
916 |
+
logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}")
|
917 |
+
logger.info("🙌 Done")
|
918 |
+
|
919 |
+
oneformer.load_state_dict(dst_state_dict)
|
920 |
+
|
921 |
+
return oneformer
|
922 |
+
|
923 |
+
@staticmethod
|
924 |
+
def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]:
|
925 |
+
checkpoints: List[Path] = checkpoints_dir.glob("**/*.pth")
|
926 |
+
|
927 |
+
for checkpoint in checkpoints:
|
928 |
+
logger.info(f"💪 Converting {checkpoint.stem}")
|
929 |
+
# find associated config file
|
930 |
+
config: Path = config_dir / f"{checkpoint.stem}.yaml"
|
931 |
+
|
932 |
+
yield config, checkpoint
|
933 |
+
|
934 |
+
|
935 |
+
def post_process_sem_seg_output(outputs: OneFormerForUniversalSegmentationOutput, target_size: Tuple[int, int]):
|
936 |
+
# class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1]
|
937 |
+
class_queries_logits = outputs.class_queries_logits
|
938 |
+
# masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH]
|
939 |
+
masks_queries_logits = outputs.masks_queries_logits
|
940 |
+
if target_size is not None:
|
941 |
+
masks_queries_logits = torch.nn.functional.interpolate(
|
942 |
+
masks_queries_logits,
|
943 |
+
size=target_size,
|
944 |
+
mode="bilinear",
|
945 |
+
align_corners=False,
|
946 |
+
)
|
947 |
+
# remove the null class `[..., :-1]`
|
948 |
+
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
|
949 |
+
# mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH]
|
950 |
+
masks_probs = masks_queries_logits.sigmoid()
|
951 |
+
# now we want to sum over the queries,
|
952 |
+
# $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $
|
953 |
+
# where $ softmax(p) \in R^{q, c} $ is the mask classes
|
954 |
+
# and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities
|
955 |
+
# b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth)
|
956 |
+
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
|
957 |
+
|
958 |
+
return segmentation
|
959 |
+
|
960 |
+
|
961 |
+
def test(
|
962 |
+
original_model,
|
963 |
+
our_model: OneFormerForUniversalSegmentation,
|
964 |
+
processor: OneFormerProcessor,
|
965 |
+
model_repo: str,
|
966 |
+
):
|
967 |
+
def _preprocess_text(text_list=None, max_length=77):
|
968 |
+
if text_list is None:
|
969 |
+
raise ValueError("tokens cannot be None.")
|
970 |
+
|
971 |
+
tokens = tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True)
|
972 |
+
|
973 |
+
attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"]
|
974 |
+
|
975 |
+
token_inputs = []
|
976 |
+
for attn_mask, input_id in zip(attention_masks, input_ids):
|
977 |
+
token = torch.tensor(attn_mask) * torch.tensor(input_id)
|
978 |
+
token_inputs.append(token.unsqueeze(0))
|
979 |
+
|
980 |
+
token_inputs = torch.cat(token_inputs, dim=0)
|
981 |
+
return token_inputs
|
982 |
+
|
983 |
+
with torch.no_grad():
|
984 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_repo)
|
985 |
+
original_model = original_model.eval()
|
986 |
+
our_model = our_model.eval()
|
987 |
+
|
988 |
+
im = prepare_img()
|
989 |
+
|
990 |
+
tr = T.Compose(
|
991 |
+
[
|
992 |
+
T.Resize((640, 640)),
|
993 |
+
T.ToTensor(),
|
994 |
+
T.Normalize(
|
995 |
+
mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0,
|
996 |
+
std=torch.tensor([58.395, 57.120, 57.375]) / 255.0,
|
997 |
+
),
|
998 |
+
],
|
999 |
+
)
|
1000 |
+
|
1001 |
+
x = tr(im).unsqueeze(0)
|
1002 |
+
|
1003 |
+
task_input = ["the task is semantic"]
|
1004 |
+
task_token = _preprocess_text(task_input, max_length=processor.task_seq_length)
|
1005 |
+
|
1006 |
+
original_model_backbone_features = original_model.backbone(x.clone())
|
1007 |
+
|
1008 |
+
our_model_output: OneFormerModelOutput = our_model.model(x.clone(), task_token, output_hidden_states=True)
|
1009 |
+
|
1010 |
+
for original_model_feature, our_model_feature in zip(
|
1011 |
+
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
|
1012 |
+
):
|
1013 |
+
assert torch.allclose(
|
1014 |
+
original_model_feature, our_model_feature, atol=3e-3
|
1015 |
+
), "The backbone features are not the same."
|
1016 |
+
mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features(
|
1017 |
+
original_model_backbone_features
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
original_pixel_decoder_features = []
|
1021 |
+
original_pixel_decoder_features.append(mask_features)
|
1022 |
+
for i in range(len(multi_scale_features)):
|
1023 |
+
original_pixel_decoder_features.append(multi_scale_features[i])
|
1024 |
+
|
1025 |
+
for original_model_feature, our_model_feature in zip(
|
1026 |
+
original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states
|
1027 |
+
):
|
1028 |
+
assert torch.allclose(
|
1029 |
+
original_model_feature, our_model_feature, atol=3e-4
|
1030 |
+
), "The pixel decoder feature are not the same"
|
1031 |
+
|
1032 |
+
tr_complete = T.Compose(
|
1033 |
+
[
|
1034 |
+
T.Resize((640, 640)),
|
1035 |
+
T.ToTensor(),
|
1036 |
+
],
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
y = (tr_complete(im) * 255.0).to(torch.int).float()
|
1040 |
+
|
1041 |
+
# let's test the full model
|
1042 |
+
original_model_out = original_model([{"image": y.clone(), "task": "The task is semantic"}])
|
1043 |
+
|
1044 |
+
original_segmentation = original_model_out[0]["sem_seg"]
|
1045 |
+
|
1046 |
+
our_model_out: OneFormerForUniversalSegmentationOutput = our_model(
|
1047 |
+
x.clone(), task_token, output_hidden_states=True
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0]
|
1051 |
+
|
1052 |
+
assert torch.allclose(
|
1053 |
+
original_segmentation, our_segmentation, atol=1e-3
|
1054 |
+
), "The segmentation image is not the same."
|
1055 |
+
|
1056 |
+
logger.info("✅ Test passed!")
|
1057 |
+
|
1058 |
+
|
1059 |
+
def get_name(checkpoint_file: Path):
|
1060 |
+
model_name_raw: str = checkpoint_file.stem
|
1061 |
+
|
1062 |
+
backbone = "swin" if "swin" in model_name_raw else "dinat"
|
1063 |
+
dataset = ""
|
1064 |
+
if "coco" in model_name_raw:
|
1065 |
+
dataset = "coco"
|
1066 |
+
elif "ade20k" in model_name_raw:
|
1067 |
+
dataset = "ade20k"
|
1068 |
+
elif "cityscapes" in model_name_raw:
|
1069 |
+
dataset = "cityscapes"
|
1070 |
+
else:
|
1071 |
+
raise ValueError(
|
1072 |
+
f"{model_name_raw} must be wrong since we didn't find 'coco' or 'ade20k' or 'cityscapes' in it "
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
backbone_types = ["tiny", "large"]
|
1076 |
+
|
1077 |
+
backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0]
|
1078 |
+
|
1079 |
+
model_name = f"oneformer_{dataset}_{backbone}_{backbone_type}"
|
1080 |
+
|
1081 |
+
return model_name
|
1082 |
+
|
1083 |
+
|
1084 |
+
if __name__ == "__main__":
|
1085 |
+
parser = ArgumentParser(
|
1086 |
+
description=(
|
1087 |
+
"Command line to convert the original oneformer models (with swin backbone) to transformers"
|
1088 |
+
" implementation."
|
1089 |
+
)
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
parser.add_argument(
|
1093 |
+
"--checkpoints_dir",
|
1094 |
+
type=Path,
|
1095 |
+
help=(
|
1096 |
+
"A directory containing the model's checkpoints. The directory has to have the following structure:"
|
1097 |
+
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pth; where <CONFIG_NAME> name must follow the"
|
1098 |
+
" following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>"
|
1099 |
+
),
|
1100 |
+
)
|
1101 |
+
parser.add_argument(
|
1102 |
+
"--configs_dir",
|
1103 |
+
type=Path,
|
1104 |
+
help=(
|
1105 |
+
"A directory containing the model's configs, see detectron2 doc. The directory has to have the following"
|
1106 |
+
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml; where <CONFIG_NAME> name must follow the"
|
1107 |
+
" following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>"
|
1108 |
+
),
|
1109 |
+
)
|
1110 |
+
parser.add_argument(
|
1111 |
+
"--pytorch_dump_folder_path",
|
1112 |
+
required=True,
|
1113 |
+
type=Path,
|
1114 |
+
help="Path to the folder to output PyTorch models.",
|
1115 |
+
)
|
1116 |
+
parser.add_argument(
|
1117 |
+
"--oneformer_dir",
|
1118 |
+
required=True,
|
1119 |
+
type=Path,
|
1120 |
+
help=(
|
1121 |
+
"A path to OneFormer's original implementation directory. You can download from here: "
|
1122 |
+
"https://github.com/SHI-Labs/OneFormer"
|
1123 |
+
),
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
args = parser.parse_args()
|
1127 |
+
|
1128 |
+
checkpoints_dir: Path = args.checkpoints_dir
|
1129 |
+
config_dir: Path = args.configs_dir
|
1130 |
+
save_directory: Path = args.pytorch_dump_folder_path
|
1131 |
+
oneformer_dir: Path = args.oneformer_dir
|
1132 |
+
# append the path to the parents to oneformer dir
|
1133 |
+
sys.path.append(str(oneformer_dir.parent))
|
1134 |
+
# and import what's needed
|
1135 |
+
from OneFormer.oneformer import add_common_config, add_dinat_config, add_oneformer_config, add_swin_config
|
1136 |
+
from OneFormer.oneformer.oneformer_model import OneFormer as OriginalOneFormer
|
1137 |
+
|
1138 |
+
if not save_directory.exists():
|
1139 |
+
save_directory.mkdir(parents=True)
|
1140 |
+
|
1141 |
+
for config_file, checkpoint_file in OriginalOneFormerCheckpointToOursConverter.using_dirs(
|
1142 |
+
checkpoints_dir, config_dir
|
1143 |
+
):
|
1144 |
+
processor = OriginalOneFormerConfigToProcessorConverter()(
|
1145 |
+
setup_cfg(Args(config_file=config_file)), os.path.join("shi-labs", config_file.stem)
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
original_config = setup_cfg(Args(config_file=config_file))
|
1149 |
+
oneformer_kwargs = OriginalOneFormer.from_config(original_config)
|
1150 |
+
|
1151 |
+
original_model = OriginalOneFormer(**oneformer_kwargs).eval()
|
1152 |
+
|
1153 |
+
DetectionCheckpointer(original_model).load(str(checkpoint_file))
|
1154 |
+
|
1155 |
+
is_swin = "swin" in config_file.stem
|
1156 |
+
|
1157 |
+
config: OneFormerConfig = OriginalOneFormerConfigToOursConverter()(original_config, is_swin)
|
1158 |
+
|
1159 |
+
oneformer = OneFormerModel(config=config).eval()
|
1160 |
+
|
1161 |
+
converter = OriginalOneFormerCheckpointToOursConverter(original_model, config)
|
1162 |
+
|
1163 |
+
oneformer = converter.convert(oneformer, is_swin)
|
1164 |
+
|
1165 |
+
oneformer_for_universal_segmentation = OneFormerForUniversalSegmentation(config=config).eval()
|
1166 |
+
|
1167 |
+
oneformer_for_universal_segmentation.model = oneformer
|
1168 |
+
|
1169 |
+
test(
|
1170 |
+
original_model,
|
1171 |
+
oneformer_for_universal_segmentation,
|
1172 |
+
processor,
|
1173 |
+
os.path.join("shi-labs", config_file.stem),
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
model_name = get_name(checkpoint_file)
|
1177 |
+
logger.info(f"🪄 Saving {model_name}")
|
1178 |
+
|
1179 |
+
processor.save_pretrained(save_directory / model_name)
|
1180 |
+
oneformer_for_universal_segmentation.save_pretrained(save_directory / model_name)
|
1181 |
+
|
1182 |
+
processor.push_to_hub(
|
1183 |
+
repo_id=os.path.join("shi-labs", config_file.stem),
|
1184 |
+
commit_message="Add configs",
|
1185 |
+
use_temp_dir=True,
|
1186 |
+
)
|
1187 |
+
oneformer_for_universal_segmentation.push_to_hub(
|
1188 |
+
repo_id=os.path.join("shi-labs", config_file.stem),
|
1189 |
+
commit_message="Add model",
|
1190 |
+
use_temp_dir=True,
|
1191 |
+
)
|