Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/configuration_canine.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/convert_canine_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/modeling_canine.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/tokenization_canine.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/canine/configuration_canine.py +141 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/canine/modeling_canine.py +1645 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__init__.py +71 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/convert_clipseg_original_pytorch_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/modeling_clipseg.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/processing_clipseg.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/configuration_clipseg.py +432 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/convert_clipseg_original_pytorch_to_hf.py +264 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py +1477 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/processing_clipseg.py +161 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.py +46 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py +43 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py +197 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py +318 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py +57 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/modeling_graphormer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx +107 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py +134 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py +218 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/modeling_graphormer.py +911 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__init__.py +73 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/image_processing_idefics.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/modeling_idefics.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/processing_idefics.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/vision.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/perceiver.py +188 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/configuration_instructblip.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/processing_instructblip.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__init__.py +135 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/configuration_canine.cpython-310.pyc
ADDED
Binary file (5.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/convert_canine_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/modeling_canine.cpython-310.pyc
ADDED
Binary file (45.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/tokenization_canine.cpython-310.pyc
ADDED
Binary file (7.83 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/canine/configuration_canine.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CANINE model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class CanineConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
|
30 |
+
CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the CANINE
|
32 |
+
[google/canine-s](https://huggingface.co/google/canine-s) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
40 |
+
Dimension of the encoder layers and the pooler layer.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
42 |
+
Number of hidden layers in the deep Transformer encoder.
|
43 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
44 |
+
Number of attention heads for each attention layer in the Transformer encoders.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
|
47 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
48 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
49 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
50 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
51 |
+
The dropout probability for all fully connected layers in the embeddings, encoders, and pooler.
|
52 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
53 |
+
The dropout ratio for the attention probabilities.
|
54 |
+
max_position_embeddings (`int`, *optional*, defaults to 16384):
|
55 |
+
The maximum sequence length that this model might ever be used with.
|
56 |
+
type_vocab_size (`int`, *optional*, defaults to 16):
|
57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
63 |
+
Padding token id.
|
64 |
+
bos_token_id (`int`, *optional*, defaults to 57344):
|
65 |
+
Beginning of stream token id.
|
66 |
+
eos_token_id (`int`, *optional*, defaults to 57345):
|
67 |
+
End of stream token id.
|
68 |
+
downsampling_rate (`int`, *optional*, defaults to 4):
|
69 |
+
The rate at which to downsample the original character sequence length before applying the deep Transformer
|
70 |
+
encoder.
|
71 |
+
upsampling_kernel_size (`int`, *optional*, defaults to 4):
|
72 |
+
The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
|
73 |
+
projecting back from `hidden_size`*2 to `hidden_size`.
|
74 |
+
num_hash_functions (`int`, *optional*, defaults to 8):
|
75 |
+
The number of hash functions to use. Each hash function has its own embedding matrix.
|
76 |
+
num_hash_buckets (`int`, *optional*, defaults to 16384):
|
77 |
+
The number of hash buckets to use.
|
78 |
+
local_transformer_stride (`int`, *optional*, defaults to 128):
|
79 |
+
The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
|
80 |
+
TPU/XLA memory alignment.
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
```python
|
85 |
+
>>> from transformers import CanineConfig, CanineModel
|
86 |
+
|
87 |
+
>>> # Initializing a CANINE google/canine-s style configuration
|
88 |
+
>>> configuration = CanineConfig()
|
89 |
+
|
90 |
+
>>> # Initializing a model (with random weights) from the google/canine-s style configuration
|
91 |
+
>>> model = CanineModel(configuration)
|
92 |
+
|
93 |
+
>>> # Accessing the model configuration
|
94 |
+
>>> configuration = model.config
|
95 |
+
```"""
|
96 |
+
|
97 |
+
model_type = "canine"
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
hidden_size=768,
|
102 |
+
num_hidden_layers=12,
|
103 |
+
num_attention_heads=12,
|
104 |
+
intermediate_size=3072,
|
105 |
+
hidden_act="gelu",
|
106 |
+
hidden_dropout_prob=0.1,
|
107 |
+
attention_probs_dropout_prob=0.1,
|
108 |
+
max_position_embeddings=16384,
|
109 |
+
type_vocab_size=16,
|
110 |
+
initializer_range=0.02,
|
111 |
+
layer_norm_eps=1e-12,
|
112 |
+
pad_token_id=0,
|
113 |
+
bos_token_id=0xE000,
|
114 |
+
eos_token_id=0xE001,
|
115 |
+
downsampling_rate=4,
|
116 |
+
upsampling_kernel_size=4,
|
117 |
+
num_hash_functions=8,
|
118 |
+
num_hash_buckets=16384,
|
119 |
+
local_transformer_stride=128, # Good TPU/XLA memory alignment.
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
123 |
+
|
124 |
+
self.max_position_embeddings = max_position_embeddings
|
125 |
+
self.hidden_size = hidden_size
|
126 |
+
self.num_hidden_layers = num_hidden_layers
|
127 |
+
self.num_attention_heads = num_attention_heads
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_act = hidden_act
|
130 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
131 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
132 |
+
self.initializer_range = initializer_range
|
133 |
+
self.type_vocab_size = type_vocab_size
|
134 |
+
self.layer_norm_eps = layer_norm_eps
|
135 |
+
|
136 |
+
# Character config:
|
137 |
+
self.downsampling_rate = downsampling_rate
|
138 |
+
self.upsampling_kernel_size = upsampling_kernel_size
|
139 |
+
self.num_hash_functions = num_hash_functions
|
140 |
+
self.num_hash_buckets = num_hash_buckets
|
141 |
+
self.local_transformer_stride = local_transformer_stride
|
llmeval-env/lib/python3.10/site-packages/transformers/models/canine/modeling_canine.py
ADDED
@@ -0,0 +1,1645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Google AI The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CANINE model."""
|
16 |
+
|
17 |
+
|
18 |
+
import copy
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from ...activations import ACT2FN
|
30 |
+
from ...modeling_outputs import (
|
31 |
+
BaseModelOutput,
|
32 |
+
ModelOutput,
|
33 |
+
MultipleChoiceModelOutput,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutput,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from ...modeling_utils import PreTrainedModel
|
39 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
40 |
+
from ...utils import (
|
41 |
+
add_code_sample_docstrings,
|
42 |
+
add_start_docstrings,
|
43 |
+
add_start_docstrings_to_model_forward,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
from .configuration_canine import CanineConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CHECKPOINT_FOR_DOC = "google/canine-s"
|
53 |
+
_CONFIG_FOR_DOC = "CanineConfig"
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import CANINE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
# Support up to 16 hash functions.
|
60 |
+
_PRIMES = [31, 43, 59, 61, 73, 97, 103, 113, 137, 149, 157, 173, 181, 193, 211, 223]
|
61 |
+
|
62 |
+
|
63 |
+
@dataclass
|
64 |
+
class CanineModelOutputWithPooling(ModelOutput):
|
65 |
+
"""
|
66 |
+
Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly
|
67 |
+
different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow
|
68 |
+
Transformer encoders.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
72 |
+
Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final
|
73 |
+
shallow Transformer encoder).
|
74 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
75 |
+
Hidden-state of the first token of the sequence (classification token) at the last layer of the deep
|
76 |
+
Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer
|
77 |
+
weights are trained from the next sentence prediction (classification) objective during pretraining.
|
78 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
79 |
+
Tuple of `torch.FloatTensor` (one for the input to each encoder + one for the output of each layer of each
|
80 |
+
encoder) of shape `(batch_size, sequence_length, hidden_size)` and `(batch_size, sequence_length //
|
81 |
+
config.downsampling_rate, hidden_size)`. Hidden-states of the model at the output of each layer plus the
|
82 |
+
initial input to each Transformer encoder. The hidden states of the shallow encoders have length
|
83 |
+
`sequence_length`, but the hidden states of the deep encoder have length `sequence_length` //
|
84 |
+
`config.downsampling_rate`.
|
85 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
86 |
+
Tuple of `torch.FloatTensor` (one for each layer) of the 3 Transformer encoders of shape `(batch_size,
|
87 |
+
num_heads, sequence_length, sequence_length)` and `(batch_size, num_heads, sequence_length //
|
88 |
+
config.downsampling_rate, sequence_length // config.downsampling_rate)`. Attentions weights after the
|
89 |
+
attention softmax, used to compute the weighted average in the self-attention heads.
|
90 |
+
"""
|
91 |
+
|
92 |
+
last_hidden_state: torch.FloatTensor = None
|
93 |
+
pooler_output: torch.FloatTensor = None
|
94 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
95 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
96 |
+
|
97 |
+
|
98 |
+
def load_tf_weights_in_canine(model, config, tf_checkpoint_path):
|
99 |
+
"""Load tf checkpoints in a pytorch model."""
|
100 |
+
try:
|
101 |
+
import re
|
102 |
+
|
103 |
+
import numpy as np
|
104 |
+
import tensorflow as tf
|
105 |
+
except ImportError:
|
106 |
+
logger.error(
|
107 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
108 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
109 |
+
)
|
110 |
+
raise
|
111 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
112 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
113 |
+
# Load weights from TF model
|
114 |
+
init_vars = tf.train.list_variables(tf_path)
|
115 |
+
names = []
|
116 |
+
arrays = []
|
117 |
+
for name, shape in init_vars:
|
118 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
119 |
+
array = tf.train.load_variable(tf_path, name)
|
120 |
+
names.append(name)
|
121 |
+
arrays.append(array)
|
122 |
+
|
123 |
+
for name, array in zip(names, arrays):
|
124 |
+
name = name.split("/")
|
125 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
126 |
+
# which are not required for using pretrained model
|
127 |
+
# also discard the cls weights (which were used for the next sentence prediction pre-training task)
|
128 |
+
if any(
|
129 |
+
n
|
130 |
+
in [
|
131 |
+
"adam_v",
|
132 |
+
"adam_m",
|
133 |
+
"AdamWeightDecayOptimizer",
|
134 |
+
"AdamWeightDecayOptimizer_1",
|
135 |
+
"global_step",
|
136 |
+
"cls",
|
137 |
+
"autoregressive_decoder",
|
138 |
+
"char_output_weights",
|
139 |
+
]
|
140 |
+
for n in name
|
141 |
+
):
|
142 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
143 |
+
continue
|
144 |
+
# if first scope name starts with "bert", change it to "encoder"
|
145 |
+
if name[0] == "bert":
|
146 |
+
name[0] = "encoder"
|
147 |
+
# remove "embeddings" middle name of HashBucketCodepointEmbedders
|
148 |
+
elif name[1] == "embeddings":
|
149 |
+
name.remove(name[1])
|
150 |
+
# rename segment_embeddings to token_type_embeddings
|
151 |
+
elif name[1] == "segment_embeddings":
|
152 |
+
name[1] = "token_type_embeddings"
|
153 |
+
# rename initial convolutional projection layer
|
154 |
+
elif name[1] == "initial_char_encoder":
|
155 |
+
name = ["chars_to_molecules"] + name[-2:]
|
156 |
+
# rename final convolutional projection layer
|
157 |
+
elif name[0] == "final_char_encoder" and name[1] in ["LayerNorm", "conv"]:
|
158 |
+
name = ["projection"] + name[1:]
|
159 |
+
pointer = model
|
160 |
+
for m_name in name:
|
161 |
+
if (re.fullmatch(r"[A-Za-z]+_\d+", m_name)) and "Embedder" not in m_name:
|
162 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
163 |
+
else:
|
164 |
+
scope_names = [m_name]
|
165 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
166 |
+
pointer = getattr(pointer, "weight")
|
167 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
168 |
+
pointer = getattr(pointer, "bias")
|
169 |
+
elif scope_names[0] == "output_weights":
|
170 |
+
pointer = getattr(pointer, "weight")
|
171 |
+
else:
|
172 |
+
try:
|
173 |
+
pointer = getattr(pointer, scope_names[0])
|
174 |
+
except AttributeError:
|
175 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
176 |
+
continue
|
177 |
+
if len(scope_names) >= 2:
|
178 |
+
num = int(scope_names[1])
|
179 |
+
pointer = pointer[num]
|
180 |
+
if m_name[-11:] == "_embeddings":
|
181 |
+
pointer = getattr(pointer, "weight")
|
182 |
+
elif m_name[-10:] in [f"Embedder_{i}" for i in range(8)]:
|
183 |
+
pointer = getattr(pointer, "weight")
|
184 |
+
elif m_name == "kernel":
|
185 |
+
array = np.transpose(array)
|
186 |
+
|
187 |
+
if pointer.shape != array.shape:
|
188 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
189 |
+
|
190 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
191 |
+
pointer.data = torch.from_numpy(array)
|
192 |
+
return model
|
193 |
+
|
194 |
+
|
195 |
+
class CanineEmbeddings(nn.Module):
|
196 |
+
"""Construct the character, position and token_type embeddings."""
|
197 |
+
|
198 |
+
def __init__(self, config):
|
199 |
+
super().__init__()
|
200 |
+
|
201 |
+
self.config = config
|
202 |
+
|
203 |
+
# character embeddings
|
204 |
+
shard_embedding_size = config.hidden_size // config.num_hash_functions
|
205 |
+
for i in range(config.num_hash_functions):
|
206 |
+
name = f"HashBucketCodepointEmbedder_{i}"
|
207 |
+
setattr(self, name, nn.Embedding(config.num_hash_buckets, shard_embedding_size))
|
208 |
+
self.char_position_embeddings = nn.Embedding(config.num_hash_buckets, config.hidden_size)
|
209 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
210 |
+
|
211 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
212 |
+
# any TensorFlow checkpoint file
|
213 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
214 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
215 |
+
|
216 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
217 |
+
self.register_buffer(
|
218 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
219 |
+
)
|
220 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
221 |
+
|
222 |
+
def _hash_bucket_tensors(self, input_ids, num_hashes: int, num_buckets: int):
|
223 |
+
"""
|
224 |
+
Converts ids to hash bucket ids via multiple hashing.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
input_ids: The codepoints or other IDs to be hashed.
|
228 |
+
num_hashes: The number of hash functions to use.
|
229 |
+
num_buckets: The number of hash buckets (i.e. embeddings in each table).
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
A list of tensors, each of which is the hash bucket IDs from one hash function.
|
233 |
+
"""
|
234 |
+
if num_hashes > len(_PRIMES):
|
235 |
+
raise ValueError(f"`num_hashes` must be <= {len(_PRIMES)}")
|
236 |
+
|
237 |
+
primes = _PRIMES[:num_hashes]
|
238 |
+
|
239 |
+
result_tensors = []
|
240 |
+
for prime in primes:
|
241 |
+
hashed = ((input_ids + 1) * prime) % num_buckets
|
242 |
+
result_tensors.append(hashed)
|
243 |
+
return result_tensors
|
244 |
+
|
245 |
+
def _embed_hash_buckets(self, input_ids, embedding_size: int, num_hashes: int, num_buckets: int):
|
246 |
+
"""Converts IDs (e.g. codepoints) into embeddings via multiple hashing."""
|
247 |
+
if embedding_size % num_hashes != 0:
|
248 |
+
raise ValueError(f"Expected `embedding_size` ({embedding_size}) % `num_hashes` ({num_hashes}) == 0")
|
249 |
+
|
250 |
+
hash_bucket_tensors = self._hash_bucket_tensors(input_ids, num_hashes=num_hashes, num_buckets=num_buckets)
|
251 |
+
embedding_shards = []
|
252 |
+
for i, hash_bucket_ids in enumerate(hash_bucket_tensors):
|
253 |
+
name = f"HashBucketCodepointEmbedder_{i}"
|
254 |
+
shard_embeddings = getattr(self, name)(hash_bucket_ids)
|
255 |
+
embedding_shards.append(shard_embeddings)
|
256 |
+
|
257 |
+
return torch.cat(embedding_shards, dim=-1)
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
input_ids: Optional[torch.LongTensor] = None,
|
262 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
263 |
+
position_ids: Optional[torch.LongTensor] = None,
|
264 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
265 |
+
) -> torch.FloatTensor:
|
266 |
+
if input_ids is not None:
|
267 |
+
input_shape = input_ids.size()
|
268 |
+
else:
|
269 |
+
input_shape = inputs_embeds.size()[:-1]
|
270 |
+
|
271 |
+
seq_length = input_shape[1]
|
272 |
+
|
273 |
+
if position_ids is None:
|
274 |
+
position_ids = self.position_ids[:, :seq_length]
|
275 |
+
|
276 |
+
if token_type_ids is None:
|
277 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
278 |
+
|
279 |
+
if inputs_embeds is None:
|
280 |
+
inputs_embeds = self._embed_hash_buckets(
|
281 |
+
input_ids, self.config.hidden_size, self.config.num_hash_functions, self.config.num_hash_buckets
|
282 |
+
)
|
283 |
+
|
284 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
285 |
+
|
286 |
+
embeddings = inputs_embeds + token_type_embeddings
|
287 |
+
|
288 |
+
if self.position_embedding_type == "absolute":
|
289 |
+
position_embeddings = self.char_position_embeddings(position_ids)
|
290 |
+
embeddings += position_embeddings
|
291 |
+
embeddings = self.LayerNorm(embeddings)
|
292 |
+
embeddings = self.dropout(embeddings)
|
293 |
+
return embeddings
|
294 |
+
|
295 |
+
|
296 |
+
class CharactersToMolecules(nn.Module):
|
297 |
+
"""Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions."""
|
298 |
+
|
299 |
+
def __init__(self, config):
|
300 |
+
super().__init__()
|
301 |
+
|
302 |
+
self.conv = nn.Conv1d(
|
303 |
+
in_channels=config.hidden_size,
|
304 |
+
out_channels=config.hidden_size,
|
305 |
+
kernel_size=config.downsampling_rate,
|
306 |
+
stride=config.downsampling_rate,
|
307 |
+
)
|
308 |
+
self.activation = ACT2FN[config.hidden_act]
|
309 |
+
|
310 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
311 |
+
# any TensorFlow checkpoint file
|
312 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
313 |
+
|
314 |
+
def forward(self, char_encoding: torch.Tensor) -> torch.Tensor:
|
315 |
+
# `cls_encoding`: [batch, 1, hidden_size]
|
316 |
+
cls_encoding = char_encoding[:, 0:1, :]
|
317 |
+
|
318 |
+
# char_encoding has shape [batch, char_seq, hidden_size]
|
319 |
+
# We transpose it to be [batch, hidden_size, char_seq]
|
320 |
+
char_encoding = torch.transpose(char_encoding, 1, 2)
|
321 |
+
downsampled = self.conv(char_encoding)
|
322 |
+
downsampled = torch.transpose(downsampled, 1, 2)
|
323 |
+
downsampled = self.activation(downsampled)
|
324 |
+
|
325 |
+
# Truncate the last molecule in order to reserve a position for [CLS].
|
326 |
+
# Often, the last position is never used (unless we completely fill the
|
327 |
+
# text buffer). This is important in order to maintain alignment on TPUs
|
328 |
+
# (i.e. a multiple of 128).
|
329 |
+
downsampled_truncated = downsampled[:, 0:-1, :]
|
330 |
+
|
331 |
+
# We also keep [CLS] as a separate sequence position since we always
|
332 |
+
# want to reserve a position (and the model capacity that goes along
|
333 |
+
# with that) in the deep BERT stack.
|
334 |
+
# `result`: [batch, molecule_seq, molecule_dim]
|
335 |
+
result = torch.cat([cls_encoding, downsampled_truncated], dim=1)
|
336 |
+
|
337 |
+
result = self.LayerNorm(result)
|
338 |
+
|
339 |
+
return result
|
340 |
+
|
341 |
+
|
342 |
+
class ConvProjection(nn.Module):
|
343 |
+
"""
|
344 |
+
Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size
|
345 |
+
characters.
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __init__(self, config):
|
349 |
+
super().__init__()
|
350 |
+
self.config = config
|
351 |
+
self.conv = nn.Conv1d(
|
352 |
+
in_channels=config.hidden_size * 2,
|
353 |
+
out_channels=config.hidden_size,
|
354 |
+
kernel_size=config.upsampling_kernel_size,
|
355 |
+
stride=1,
|
356 |
+
)
|
357 |
+
self.activation = ACT2FN[config.hidden_act]
|
358 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
359 |
+
# any TensorFlow checkpoint file
|
360 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
361 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
362 |
+
|
363 |
+
def forward(
|
364 |
+
self,
|
365 |
+
inputs: torch.Tensor,
|
366 |
+
final_seq_char_positions: Optional[torch.Tensor] = None,
|
367 |
+
) -> torch.Tensor:
|
368 |
+
# inputs has shape [batch, mol_seq, molecule_hidden_size+char_hidden_final]
|
369 |
+
# we transpose it to be [batch, molecule_hidden_size+char_hidden_final, mol_seq]
|
370 |
+
inputs = torch.transpose(inputs, 1, 2)
|
371 |
+
|
372 |
+
# PyTorch < 1.9 does not support padding="same" (which is used in the original implementation),
|
373 |
+
# so we pad the tensor manually before passing it to the conv layer
|
374 |
+
# based on https://github.com/google-research/big_transfer/blob/49afe42338b62af9fbe18f0258197a33ee578a6b/bit_tf2/models.py#L36-L38
|
375 |
+
pad_total = self.config.upsampling_kernel_size - 1
|
376 |
+
pad_beg = pad_total // 2
|
377 |
+
pad_end = pad_total - pad_beg
|
378 |
+
|
379 |
+
pad = nn.ConstantPad1d((pad_beg, pad_end), 0)
|
380 |
+
# `result`: shape (batch_size, char_seq_len, hidden_size)
|
381 |
+
result = self.conv(pad(inputs))
|
382 |
+
result = torch.transpose(result, 1, 2)
|
383 |
+
result = self.activation(result)
|
384 |
+
result = self.LayerNorm(result)
|
385 |
+
result = self.dropout(result)
|
386 |
+
final_char_seq = result
|
387 |
+
|
388 |
+
if final_seq_char_positions is not None:
|
389 |
+
# Limit transformer query seq and attention mask to these character
|
390 |
+
# positions to greatly reduce the compute cost. Typically, this is just
|
391 |
+
# done for the MLM training task.
|
392 |
+
# TODO add support for MLM
|
393 |
+
raise NotImplementedError("CanineForMaskedLM is currently not supported")
|
394 |
+
else:
|
395 |
+
query_seq = final_char_seq
|
396 |
+
|
397 |
+
return query_seq
|
398 |
+
|
399 |
+
|
400 |
+
class CanineSelfAttention(nn.Module):
|
401 |
+
def __init__(self, config):
|
402 |
+
super().__init__()
|
403 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
404 |
+
raise ValueError(
|
405 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
406 |
+
f"heads ({config.num_attention_heads})"
|
407 |
+
)
|
408 |
+
|
409 |
+
self.num_attention_heads = config.num_attention_heads
|
410 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
411 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
412 |
+
|
413 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
414 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
415 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
416 |
+
|
417 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
418 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
419 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
420 |
+
self.max_position_embeddings = config.max_position_embeddings
|
421 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
422 |
+
|
423 |
+
def transpose_for_scores(self, x):
|
424 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
425 |
+
x = x.view(*new_x_shape)
|
426 |
+
return x.permute(0, 2, 1, 3)
|
427 |
+
|
428 |
+
def forward(
|
429 |
+
self,
|
430 |
+
from_tensor: torch.Tensor,
|
431 |
+
to_tensor: torch.Tensor,
|
432 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
433 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
434 |
+
output_attentions: Optional[bool] = False,
|
435 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
436 |
+
mixed_query_layer = self.query(from_tensor)
|
437 |
+
|
438 |
+
# If this is instantiated as a cross-attention module, the keys
|
439 |
+
# and values come from an encoder; the attention mask needs to be
|
440 |
+
# such that the encoder's padding tokens are not attended to.
|
441 |
+
|
442 |
+
key_layer = self.transpose_for_scores(self.key(to_tensor))
|
443 |
+
value_layer = self.transpose_for_scores(self.value(to_tensor))
|
444 |
+
|
445 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
446 |
+
|
447 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
448 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
449 |
+
|
450 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
451 |
+
seq_length = from_tensor.size()[1]
|
452 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(-1, 1)
|
453 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(1, -1)
|
454 |
+
distance = position_ids_l - position_ids_r
|
455 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
456 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
457 |
+
|
458 |
+
if self.position_embedding_type == "relative_key":
|
459 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
460 |
+
attention_scores = attention_scores + relative_position_scores
|
461 |
+
elif self.position_embedding_type == "relative_key_query":
|
462 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
463 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
464 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
465 |
+
|
466 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
467 |
+
if attention_mask is not None:
|
468 |
+
if attention_mask.ndim == 3:
|
469 |
+
# if attention_mask is 3D, do the following:
|
470 |
+
attention_mask = torch.unsqueeze(attention_mask, dim=1)
|
471 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
472 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
473 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
474 |
+
attention_mask = (1.0 - attention_mask.float()) * torch.finfo(attention_scores.dtype).min
|
475 |
+
# Apply the attention mask (precomputed for all layers in CanineModel forward() function)
|
476 |
+
attention_scores = attention_scores + attention_mask
|
477 |
+
|
478 |
+
# Normalize the attention scores to probabilities.
|
479 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
480 |
+
|
481 |
+
# This is actually dropping out entire tokens to attend to, which might
|
482 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
483 |
+
attention_probs = self.dropout(attention_probs)
|
484 |
+
|
485 |
+
# Mask heads if we want to
|
486 |
+
if head_mask is not None:
|
487 |
+
attention_probs = attention_probs * head_mask
|
488 |
+
|
489 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
490 |
+
|
491 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
492 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
493 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
494 |
+
|
495 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
496 |
+
|
497 |
+
return outputs
|
498 |
+
|
499 |
+
|
500 |
+
class CanineSelfOutput(nn.Module):
|
501 |
+
def __init__(self, config):
|
502 |
+
super().__init__()
|
503 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
504 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
505 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
506 |
+
|
507 |
+
def forward(
|
508 |
+
self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor
|
509 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
510 |
+
hidden_states = self.dense(hidden_states)
|
511 |
+
hidden_states = self.dropout(hidden_states)
|
512 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
513 |
+
return hidden_states
|
514 |
+
|
515 |
+
|
516 |
+
class CanineAttention(nn.Module):
|
517 |
+
"""
|
518 |
+
Additional arguments related to local attention:
|
519 |
+
|
520 |
+
- **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention.
|
521 |
+
- **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to
|
522 |
+
attend
|
523 |
+
to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`,
|
524 |
+
*optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all
|
525 |
+
positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The
|
526 |
+
width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to
|
527 |
+
128) -- The number of elements to skip when moving to the next block in `from_tensor`. -
|
528 |
+
**attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in
|
529 |
+
*to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to
|
530 |
+
skip when moving to the next block in `to_tensor`.
|
531 |
+
"""
|
532 |
+
|
533 |
+
def __init__(
|
534 |
+
self,
|
535 |
+
config,
|
536 |
+
local=False,
|
537 |
+
always_attend_to_first_position: bool = False,
|
538 |
+
first_position_attends_to_all: bool = False,
|
539 |
+
attend_from_chunk_width: int = 128,
|
540 |
+
attend_from_chunk_stride: int = 128,
|
541 |
+
attend_to_chunk_width: int = 128,
|
542 |
+
attend_to_chunk_stride: int = 128,
|
543 |
+
):
|
544 |
+
super().__init__()
|
545 |
+
self.self = CanineSelfAttention(config)
|
546 |
+
self.output = CanineSelfOutput(config)
|
547 |
+
self.pruned_heads = set()
|
548 |
+
|
549 |
+
# additional arguments related to local attention
|
550 |
+
self.local = local
|
551 |
+
if attend_from_chunk_width < attend_from_chunk_stride:
|
552 |
+
raise ValueError(
|
553 |
+
"`attend_from_chunk_width` < `attend_from_chunk_stride` would cause sequence positions to get skipped."
|
554 |
+
)
|
555 |
+
if attend_to_chunk_width < attend_to_chunk_stride:
|
556 |
+
raise ValueError(
|
557 |
+
"`attend_to_chunk_width` < `attend_to_chunk_stride`would cause sequence positions to get skipped."
|
558 |
+
)
|
559 |
+
self.always_attend_to_first_position = always_attend_to_first_position
|
560 |
+
self.first_position_attends_to_all = first_position_attends_to_all
|
561 |
+
self.attend_from_chunk_width = attend_from_chunk_width
|
562 |
+
self.attend_from_chunk_stride = attend_from_chunk_stride
|
563 |
+
self.attend_to_chunk_width = attend_to_chunk_width
|
564 |
+
self.attend_to_chunk_stride = attend_to_chunk_stride
|
565 |
+
|
566 |
+
def prune_heads(self, heads):
|
567 |
+
if len(heads) == 0:
|
568 |
+
return
|
569 |
+
heads, index = find_pruneable_heads_and_indices(
|
570 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
571 |
+
)
|
572 |
+
|
573 |
+
# Prune linear layers
|
574 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
575 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
576 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
577 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
578 |
+
|
579 |
+
# Update hyper params and store pruned heads
|
580 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
581 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
582 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
583 |
+
|
584 |
+
def forward(
|
585 |
+
self,
|
586 |
+
hidden_states: Tuple[torch.FloatTensor],
|
587 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
588 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
589 |
+
output_attentions: Optional[bool] = False,
|
590 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
|
591 |
+
if not self.local:
|
592 |
+
self_outputs = self.self(hidden_states, hidden_states, attention_mask, head_mask, output_attentions)
|
593 |
+
attention_output = self_outputs[0]
|
594 |
+
else:
|
595 |
+
from_seq_length = to_seq_length = hidden_states.shape[1]
|
596 |
+
from_tensor = to_tensor = hidden_states
|
597 |
+
|
598 |
+
# Create chunks (windows) that we will attend *from* and then concatenate them.
|
599 |
+
from_chunks = []
|
600 |
+
if self.first_position_attends_to_all:
|
601 |
+
from_chunks.append((0, 1))
|
602 |
+
# We must skip this first position so that our output sequence is the
|
603 |
+
# correct length (this matters in the *from* sequence only).
|
604 |
+
from_start = 1
|
605 |
+
else:
|
606 |
+
from_start = 0
|
607 |
+
for chunk_start in range(from_start, from_seq_length, self.attend_from_chunk_stride):
|
608 |
+
chunk_end = min(from_seq_length, chunk_start + self.attend_from_chunk_width)
|
609 |
+
from_chunks.append((chunk_start, chunk_end))
|
610 |
+
|
611 |
+
# Determine the chunks (windows) that will attend *to*.
|
612 |
+
to_chunks = []
|
613 |
+
if self.first_position_attends_to_all:
|
614 |
+
to_chunks.append((0, to_seq_length))
|
615 |
+
for chunk_start in range(0, to_seq_length, self.attend_to_chunk_stride):
|
616 |
+
chunk_end = min(to_seq_length, chunk_start + self.attend_to_chunk_width)
|
617 |
+
to_chunks.append((chunk_start, chunk_end))
|
618 |
+
|
619 |
+
if len(from_chunks) != len(to_chunks):
|
620 |
+
raise ValueError(
|
621 |
+
f"Expected to have same number of `from_chunks` ({from_chunks}) and "
|
622 |
+
f"`to_chunks` ({from_chunks}). Check strides."
|
623 |
+
)
|
624 |
+
|
625 |
+
# next, compute attention scores for each pair of windows and concatenate
|
626 |
+
attention_output_chunks = []
|
627 |
+
attention_probs_chunks = []
|
628 |
+
for (from_start, from_end), (to_start, to_end) in zip(from_chunks, to_chunks):
|
629 |
+
from_tensor_chunk = from_tensor[:, from_start:from_end, :]
|
630 |
+
to_tensor_chunk = to_tensor[:, to_start:to_end, :]
|
631 |
+
# `attention_mask`: <float>[batch_size, from_seq, to_seq]
|
632 |
+
# `attention_mask_chunk`: <float>[batch_size, from_seq_chunk, to_seq_chunk]
|
633 |
+
attention_mask_chunk = attention_mask[:, from_start:from_end, to_start:to_end]
|
634 |
+
if self.always_attend_to_first_position:
|
635 |
+
cls_attention_mask = attention_mask[:, from_start:from_end, 0:1]
|
636 |
+
attention_mask_chunk = torch.cat([cls_attention_mask, attention_mask_chunk], dim=2)
|
637 |
+
|
638 |
+
cls_position = to_tensor[:, 0:1, :]
|
639 |
+
to_tensor_chunk = torch.cat([cls_position, to_tensor_chunk], dim=1)
|
640 |
+
|
641 |
+
attention_outputs_chunk = self.self(
|
642 |
+
from_tensor_chunk, to_tensor_chunk, attention_mask_chunk, head_mask, output_attentions
|
643 |
+
)
|
644 |
+
attention_output_chunks.append(attention_outputs_chunk[0])
|
645 |
+
if output_attentions:
|
646 |
+
attention_probs_chunks.append(attention_outputs_chunk[1])
|
647 |
+
|
648 |
+
attention_output = torch.cat(attention_output_chunks, dim=1)
|
649 |
+
|
650 |
+
attention_output = self.output(attention_output, hidden_states)
|
651 |
+
outputs = (attention_output,)
|
652 |
+
if not self.local:
|
653 |
+
outputs = outputs + self_outputs[1:] # add attentions if we output them
|
654 |
+
else:
|
655 |
+
outputs = outputs + tuple(attention_probs_chunks) # add attentions if we output them
|
656 |
+
return outputs
|
657 |
+
|
658 |
+
|
659 |
+
class CanineIntermediate(nn.Module):
|
660 |
+
def __init__(self, config):
|
661 |
+
super().__init__()
|
662 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
663 |
+
if isinstance(config.hidden_act, str):
|
664 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
665 |
+
else:
|
666 |
+
self.intermediate_act_fn = config.hidden_act
|
667 |
+
|
668 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
669 |
+
hidden_states = self.dense(hidden_states)
|
670 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
671 |
+
return hidden_states
|
672 |
+
|
673 |
+
|
674 |
+
class CanineOutput(nn.Module):
|
675 |
+
def __init__(self, config):
|
676 |
+
super().__init__()
|
677 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
678 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
679 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
680 |
+
|
681 |
+
def forward(self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
682 |
+
hidden_states = self.dense(hidden_states)
|
683 |
+
hidden_states = self.dropout(hidden_states)
|
684 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
685 |
+
return hidden_states
|
686 |
+
|
687 |
+
|
688 |
+
class CanineLayer(nn.Module):
|
689 |
+
def __init__(
|
690 |
+
self,
|
691 |
+
config,
|
692 |
+
local,
|
693 |
+
always_attend_to_first_position,
|
694 |
+
first_position_attends_to_all,
|
695 |
+
attend_from_chunk_width,
|
696 |
+
attend_from_chunk_stride,
|
697 |
+
attend_to_chunk_width,
|
698 |
+
attend_to_chunk_stride,
|
699 |
+
):
|
700 |
+
super().__init__()
|
701 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
702 |
+
self.seq_len_dim = 1
|
703 |
+
self.attention = CanineAttention(
|
704 |
+
config,
|
705 |
+
local,
|
706 |
+
always_attend_to_first_position,
|
707 |
+
first_position_attends_to_all,
|
708 |
+
attend_from_chunk_width,
|
709 |
+
attend_from_chunk_stride,
|
710 |
+
attend_to_chunk_width,
|
711 |
+
attend_to_chunk_stride,
|
712 |
+
)
|
713 |
+
self.intermediate = CanineIntermediate(config)
|
714 |
+
self.output = CanineOutput(config)
|
715 |
+
|
716 |
+
def forward(
|
717 |
+
self,
|
718 |
+
hidden_states: Tuple[torch.FloatTensor],
|
719 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
720 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
721 |
+
output_attentions: Optional[bool] = False,
|
722 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
|
723 |
+
self_attention_outputs = self.attention(
|
724 |
+
hidden_states,
|
725 |
+
attention_mask,
|
726 |
+
head_mask,
|
727 |
+
output_attentions=output_attentions,
|
728 |
+
)
|
729 |
+
attention_output = self_attention_outputs[0]
|
730 |
+
|
731 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
732 |
+
|
733 |
+
layer_output = apply_chunking_to_forward(
|
734 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
735 |
+
)
|
736 |
+
outputs = (layer_output,) + outputs
|
737 |
+
|
738 |
+
return outputs
|
739 |
+
|
740 |
+
def feed_forward_chunk(self, attention_output):
|
741 |
+
intermediate_output = self.intermediate(attention_output)
|
742 |
+
layer_output = self.output(intermediate_output, attention_output)
|
743 |
+
return layer_output
|
744 |
+
|
745 |
+
|
746 |
+
class CanineEncoder(nn.Module):
|
747 |
+
def __init__(
|
748 |
+
self,
|
749 |
+
config,
|
750 |
+
local=False,
|
751 |
+
always_attend_to_first_position=False,
|
752 |
+
first_position_attends_to_all=False,
|
753 |
+
attend_from_chunk_width=128,
|
754 |
+
attend_from_chunk_stride=128,
|
755 |
+
attend_to_chunk_width=128,
|
756 |
+
attend_to_chunk_stride=128,
|
757 |
+
):
|
758 |
+
super().__init__()
|
759 |
+
self.config = config
|
760 |
+
self.layer = nn.ModuleList(
|
761 |
+
[
|
762 |
+
CanineLayer(
|
763 |
+
config,
|
764 |
+
local,
|
765 |
+
always_attend_to_first_position,
|
766 |
+
first_position_attends_to_all,
|
767 |
+
attend_from_chunk_width,
|
768 |
+
attend_from_chunk_stride,
|
769 |
+
attend_to_chunk_width,
|
770 |
+
attend_to_chunk_stride,
|
771 |
+
)
|
772 |
+
for _ in range(config.num_hidden_layers)
|
773 |
+
]
|
774 |
+
)
|
775 |
+
self.gradient_checkpointing = False
|
776 |
+
|
777 |
+
def forward(
|
778 |
+
self,
|
779 |
+
hidden_states: Tuple[torch.FloatTensor],
|
780 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
781 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
782 |
+
output_attentions: Optional[bool] = False,
|
783 |
+
output_hidden_states: Optional[bool] = False,
|
784 |
+
return_dict: Optional[bool] = True,
|
785 |
+
) -> Union[Tuple, BaseModelOutput]:
|
786 |
+
all_hidden_states = () if output_hidden_states else None
|
787 |
+
all_self_attentions = () if output_attentions else None
|
788 |
+
|
789 |
+
for i, layer_module in enumerate(self.layer):
|
790 |
+
if output_hidden_states:
|
791 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
792 |
+
|
793 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
794 |
+
|
795 |
+
if self.gradient_checkpointing and self.training:
|
796 |
+
layer_outputs = self._gradient_checkpointing_func(
|
797 |
+
layer_module.__call__,
|
798 |
+
hidden_states,
|
799 |
+
attention_mask,
|
800 |
+
layer_head_mask,
|
801 |
+
output_attentions,
|
802 |
+
)
|
803 |
+
else:
|
804 |
+
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
|
805 |
+
|
806 |
+
hidden_states = layer_outputs[0]
|
807 |
+
if output_attentions:
|
808 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
809 |
+
|
810 |
+
if output_hidden_states:
|
811 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
812 |
+
|
813 |
+
if not return_dict:
|
814 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
815 |
+
return BaseModelOutput(
|
816 |
+
last_hidden_state=hidden_states,
|
817 |
+
hidden_states=all_hidden_states,
|
818 |
+
attentions=all_self_attentions,
|
819 |
+
)
|
820 |
+
|
821 |
+
|
822 |
+
class CaninePooler(nn.Module):
|
823 |
+
def __init__(self, config):
|
824 |
+
super().__init__()
|
825 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
826 |
+
self.activation = nn.Tanh()
|
827 |
+
|
828 |
+
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
|
829 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
830 |
+
# to the first token.
|
831 |
+
first_token_tensor = hidden_states[:, 0]
|
832 |
+
pooled_output = self.dense(first_token_tensor)
|
833 |
+
pooled_output = self.activation(pooled_output)
|
834 |
+
return pooled_output
|
835 |
+
|
836 |
+
|
837 |
+
class CaninePredictionHeadTransform(nn.Module):
|
838 |
+
def __init__(self, config):
|
839 |
+
super().__init__()
|
840 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
841 |
+
if isinstance(config.hidden_act, str):
|
842 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
843 |
+
else:
|
844 |
+
self.transform_act_fn = config.hidden_act
|
845 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
846 |
+
|
847 |
+
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
|
848 |
+
hidden_states = self.dense(hidden_states)
|
849 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
850 |
+
hidden_states = self.LayerNorm(hidden_states)
|
851 |
+
return hidden_states
|
852 |
+
|
853 |
+
|
854 |
+
class CanineLMPredictionHead(nn.Module):
|
855 |
+
def __init__(self, config):
|
856 |
+
super().__init__()
|
857 |
+
self.transform = CaninePredictionHeadTransform(config)
|
858 |
+
|
859 |
+
# The output weights are the same as the input embeddings, but there is
|
860 |
+
# an output-only bias for each token.
|
861 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
862 |
+
|
863 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
864 |
+
|
865 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
866 |
+
self.decoder.bias = self.bias
|
867 |
+
|
868 |
+
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
|
869 |
+
hidden_states = self.transform(hidden_states)
|
870 |
+
hidden_states = self.decoder(hidden_states)
|
871 |
+
return hidden_states
|
872 |
+
|
873 |
+
|
874 |
+
class CanineOnlyMLMHead(nn.Module):
|
875 |
+
def __init__(self, config):
|
876 |
+
super().__init__()
|
877 |
+
self.predictions = CanineLMPredictionHead(config)
|
878 |
+
|
879 |
+
def forward(
|
880 |
+
self,
|
881 |
+
sequence_output: Tuple[torch.Tensor],
|
882 |
+
) -> Tuple[torch.Tensor]:
|
883 |
+
prediction_scores = self.predictions(sequence_output)
|
884 |
+
return prediction_scores
|
885 |
+
|
886 |
+
|
887 |
+
class CaninePreTrainedModel(PreTrainedModel):
|
888 |
+
"""
|
889 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
890 |
+
models.
|
891 |
+
"""
|
892 |
+
|
893 |
+
config_class = CanineConfig
|
894 |
+
load_tf_weights = load_tf_weights_in_canine
|
895 |
+
base_model_prefix = "canine"
|
896 |
+
supports_gradient_checkpointing = True
|
897 |
+
|
898 |
+
def _init_weights(self, module):
|
899 |
+
"""Initialize the weights"""
|
900 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
901 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
902 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
903 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
904 |
+
if module.bias is not None:
|
905 |
+
module.bias.data.zero_()
|
906 |
+
elif isinstance(module, nn.Embedding):
|
907 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
908 |
+
if module.padding_idx is not None:
|
909 |
+
module.weight.data[module.padding_idx].zero_()
|
910 |
+
elif isinstance(module, nn.LayerNorm):
|
911 |
+
module.bias.data.zero_()
|
912 |
+
module.weight.data.fill_(1.0)
|
913 |
+
|
914 |
+
|
915 |
+
CANINE_START_DOCSTRING = r"""
|
916 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
917 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
918 |
+
behavior.
|
919 |
+
|
920 |
+
Parameters:
|
921 |
+
config ([`CanineConfig`]): Model configuration class with all the parameters of the model.
|
922 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
923 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
924 |
+
"""
|
925 |
+
|
926 |
+
CANINE_INPUTS_DOCSTRING = r"""
|
927 |
+
Args:
|
928 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
929 |
+
Indices of input sequence tokens in the vocabulary.
|
930 |
+
|
931 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
932 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
933 |
+
|
934 |
+
[What are input IDs?](../glossary#input-ids)
|
935 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
936 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
937 |
+
|
938 |
+
- 1 for tokens that are **not masked**,
|
939 |
+
- 0 for tokens that are **masked**.
|
940 |
+
|
941 |
+
[What are attention masks?](../glossary#attention-mask)
|
942 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
943 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
944 |
+
1]`:
|
945 |
+
|
946 |
+
- 0 corresponds to a *sentence A* token,
|
947 |
+
- 1 corresponds to a *sentence B* token.
|
948 |
+
|
949 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
950 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
951 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
952 |
+
config.max_position_embeddings - 1]`.
|
953 |
+
|
954 |
+
[What are position IDs?](../glossary#position-ids)
|
955 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
956 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
957 |
+
|
958 |
+
- 1 indicates the head is **not masked**,
|
959 |
+
- 0 indicates the head is **masked**.
|
960 |
+
|
961 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
962 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
963 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
964 |
+
model's internal embedding lookup matrix.
|
965 |
+
output_attentions (`bool`, *optional*):
|
966 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
967 |
+
tensors for more detail.
|
968 |
+
output_hidden_states (`bool`, *optional*):
|
969 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
970 |
+
more detail.
|
971 |
+
return_dict (`bool`, *optional*):
|
972 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
973 |
+
"""
|
974 |
+
|
975 |
+
|
976 |
+
@add_start_docstrings(
|
977 |
+
"The bare CANINE Model transformer outputting raw hidden-states without any specific head on top.",
|
978 |
+
CANINE_START_DOCSTRING,
|
979 |
+
)
|
980 |
+
class CanineModel(CaninePreTrainedModel):
|
981 |
+
def __init__(self, config, add_pooling_layer=True):
|
982 |
+
super().__init__(config)
|
983 |
+
self.config = config
|
984 |
+
shallow_config = copy.deepcopy(config)
|
985 |
+
shallow_config.num_hidden_layers = 1
|
986 |
+
|
987 |
+
self.char_embeddings = CanineEmbeddings(config)
|
988 |
+
# shallow/low-dim transformer encoder to get a initial character encoding
|
989 |
+
self.initial_char_encoder = CanineEncoder(
|
990 |
+
shallow_config,
|
991 |
+
local=True,
|
992 |
+
always_attend_to_first_position=False,
|
993 |
+
first_position_attends_to_all=False,
|
994 |
+
attend_from_chunk_width=config.local_transformer_stride,
|
995 |
+
attend_from_chunk_stride=config.local_transformer_stride,
|
996 |
+
attend_to_chunk_width=config.local_transformer_stride,
|
997 |
+
attend_to_chunk_stride=config.local_transformer_stride,
|
998 |
+
)
|
999 |
+
self.chars_to_molecules = CharactersToMolecules(config)
|
1000 |
+
# deep transformer encoder
|
1001 |
+
self.encoder = CanineEncoder(config)
|
1002 |
+
self.projection = ConvProjection(config)
|
1003 |
+
# shallow/low-dim transformer encoder to get a final character encoding
|
1004 |
+
self.final_char_encoder = CanineEncoder(shallow_config)
|
1005 |
+
|
1006 |
+
self.pooler = CaninePooler(config) if add_pooling_layer else None
|
1007 |
+
|
1008 |
+
# Initialize weights and apply final processing
|
1009 |
+
self.post_init()
|
1010 |
+
|
1011 |
+
def _prune_heads(self, heads_to_prune):
|
1012 |
+
"""
|
1013 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1014 |
+
class PreTrainedModel
|
1015 |
+
"""
|
1016 |
+
for layer, heads in heads_to_prune.items():
|
1017 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1018 |
+
|
1019 |
+
def _create_3d_attention_mask_from_input_mask(self, from_tensor, to_mask):
|
1020 |
+
"""
|
1021 |
+
Create 3D attention mask from a 2D tensor mask.
|
1022 |
+
|
1023 |
+
Args:
|
1024 |
+
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
|
1025 |
+
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
|
1026 |
+
|
1027 |
+
Returns:
|
1028 |
+
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
|
1029 |
+
"""
|
1030 |
+
batch_size, from_seq_length = from_tensor.shape[0], from_tensor.shape[1]
|
1031 |
+
|
1032 |
+
to_seq_length = to_mask.shape[1]
|
1033 |
+
|
1034 |
+
to_mask = torch.reshape(to_mask, (batch_size, 1, to_seq_length)).float()
|
1035 |
+
|
1036 |
+
# We don't assume that `from_tensor` is a mask (although it could be). We
|
1037 |
+
# don't actually care if we attend *from* padding tokens (only *to* padding)
|
1038 |
+
# tokens so we create a tensor of all ones.
|
1039 |
+
broadcast_ones = torch.ones(size=(batch_size, from_seq_length, 1), dtype=torch.float32, device=to_mask.device)
|
1040 |
+
|
1041 |
+
# Here we broadcast along two dimensions to create the mask.
|
1042 |
+
mask = broadcast_ones * to_mask
|
1043 |
+
|
1044 |
+
return mask
|
1045 |
+
|
1046 |
+
def _downsample_attention_mask(self, char_attention_mask: torch.Tensor, downsampling_rate: int):
|
1047 |
+
"""Downsample 2D character attention mask to 2D molecule attention mask using MaxPool1d layer."""
|
1048 |
+
|
1049 |
+
# first, make char_attention_mask 3D by adding a channel dim
|
1050 |
+
batch_size, char_seq_len = char_attention_mask.shape
|
1051 |
+
poolable_char_mask = torch.reshape(char_attention_mask, (batch_size, 1, char_seq_len))
|
1052 |
+
|
1053 |
+
# next, apply MaxPool1d to get pooled_molecule_mask of shape (batch_size, 1, mol_seq_len)
|
1054 |
+
pooled_molecule_mask = torch.nn.MaxPool1d(kernel_size=downsampling_rate, stride=downsampling_rate)(
|
1055 |
+
poolable_char_mask.float()
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
# finally, squeeze to get tensor of shape (batch_size, mol_seq_len)
|
1059 |
+
molecule_attention_mask = torch.squeeze(pooled_molecule_mask, dim=-1)
|
1060 |
+
|
1061 |
+
return molecule_attention_mask
|
1062 |
+
|
1063 |
+
def _repeat_molecules(self, molecules: torch.Tensor, char_seq_length: torch.Tensor) -> torch.Tensor:
|
1064 |
+
"""Repeats molecules to make them the same length as the char sequence."""
|
1065 |
+
|
1066 |
+
rate = self.config.downsampling_rate
|
1067 |
+
|
1068 |
+
molecules_without_extra_cls = molecules[:, 1:, :]
|
1069 |
+
# `repeated`: [batch_size, almost_char_seq_len, molecule_hidden_size]
|
1070 |
+
repeated = torch.repeat_interleave(molecules_without_extra_cls, repeats=rate, dim=-2)
|
1071 |
+
|
1072 |
+
# So far, we've repeated the elements sufficient for any `char_seq_length`
|
1073 |
+
# that's a multiple of `downsampling_rate`. Now we account for the last
|
1074 |
+
# n elements (n < `downsampling_rate`), i.e. the remainder of floor
|
1075 |
+
# division. We do this by repeating the last molecule a few extra times.
|
1076 |
+
last_molecule = molecules[:, -1:, :]
|
1077 |
+
remainder_length = torch.fmod(torch.tensor(char_seq_length), torch.tensor(rate)).item()
|
1078 |
+
remainder_repeated = torch.repeat_interleave(
|
1079 |
+
last_molecule,
|
1080 |
+
# +1 molecule to compensate for truncation.
|
1081 |
+
repeats=remainder_length + rate,
|
1082 |
+
dim=-2,
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
# `repeated`: [batch_size, char_seq_len, molecule_hidden_size]
|
1086 |
+
return torch.cat([repeated, remainder_repeated], dim=-2)
|
1087 |
+
|
1088 |
+
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1089 |
+
@add_code_sample_docstrings(
|
1090 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1091 |
+
output_type=CanineModelOutputWithPooling,
|
1092 |
+
config_class=_CONFIG_FOR_DOC,
|
1093 |
+
)
|
1094 |
+
def forward(
|
1095 |
+
self,
|
1096 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1097 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1098 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1099 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1100 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1101 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1102 |
+
output_attentions: Optional[bool] = None,
|
1103 |
+
output_hidden_states: Optional[bool] = None,
|
1104 |
+
return_dict: Optional[bool] = None,
|
1105 |
+
) -> Union[Tuple, CanineModelOutputWithPooling]:
|
1106 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1107 |
+
output_hidden_states = (
|
1108 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1109 |
+
)
|
1110 |
+
all_hidden_states = () if output_hidden_states else None
|
1111 |
+
all_self_attentions = () if output_attentions else None
|
1112 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1113 |
+
|
1114 |
+
if input_ids is not None and inputs_embeds is not None:
|
1115 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1116 |
+
elif input_ids is not None:
|
1117 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1118 |
+
input_shape = input_ids.size()
|
1119 |
+
elif inputs_embeds is not None:
|
1120 |
+
input_shape = inputs_embeds.size()[:-1]
|
1121 |
+
else:
|
1122 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1123 |
+
|
1124 |
+
batch_size, seq_length = input_shape
|
1125 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1126 |
+
|
1127 |
+
if attention_mask is None:
|
1128 |
+
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
|
1129 |
+
if token_type_ids is None:
|
1130 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1131 |
+
|
1132 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1133 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1134 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
1135 |
+
molecule_attention_mask = self._downsample_attention_mask(
|
1136 |
+
attention_mask, downsampling_rate=self.config.downsampling_rate
|
1137 |
+
)
|
1138 |
+
extended_molecule_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
1139 |
+
molecule_attention_mask, (batch_size, molecule_attention_mask.shape[-1])
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
# Prepare head mask if needed
|
1143 |
+
# 1.0 in head_mask indicate we keep the head
|
1144 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1145 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1146 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1147 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1148 |
+
|
1149 |
+
# `input_char_embeddings`: shape (batch_size, char_seq, char_dim)
|
1150 |
+
input_char_embeddings = self.char_embeddings(
|
1151 |
+
input_ids=input_ids,
|
1152 |
+
position_ids=position_ids,
|
1153 |
+
token_type_ids=token_type_ids,
|
1154 |
+
inputs_embeds=inputs_embeds,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
# Contextualize character embeddings using shallow Transformer.
|
1158 |
+
# We use a 3D attention mask for the local attention.
|
1159 |
+
# `input_char_encoding`: shape (batch_size, char_seq_len, char_dim)
|
1160 |
+
char_attention_mask = self._create_3d_attention_mask_from_input_mask(
|
1161 |
+
input_ids if input_ids is not None else inputs_embeds, attention_mask
|
1162 |
+
)
|
1163 |
+
init_chars_encoder_outputs = self.initial_char_encoder(
|
1164 |
+
input_char_embeddings,
|
1165 |
+
attention_mask=char_attention_mask,
|
1166 |
+
output_attentions=output_attentions,
|
1167 |
+
output_hidden_states=output_hidden_states,
|
1168 |
+
)
|
1169 |
+
input_char_encoding = init_chars_encoder_outputs.last_hidden_state
|
1170 |
+
|
1171 |
+
# Downsample chars to molecules.
|
1172 |
+
# The following lines have dimensions: [batch, molecule_seq, molecule_dim].
|
1173 |
+
# In this transformation, we change the dimensionality from `char_dim` to
|
1174 |
+
# `molecule_dim`, but do *NOT* add a resnet connection. Instead, we rely on
|
1175 |
+
# the resnet connections (a) from the final char transformer stack back into
|
1176 |
+
# the original char transformer stack and (b) the resnet connections from
|
1177 |
+
# the final char transformer stack back into the deep BERT stack of
|
1178 |
+
# molecules.
|
1179 |
+
#
|
1180 |
+
# Empirically, it is critical to use a powerful enough transformation here:
|
1181 |
+
# mean pooling causes training to diverge with huge gradient norms in this
|
1182 |
+
# region of the model; using a convolution here resolves this issue. From
|
1183 |
+
# this, it seems that molecules and characters require a very different
|
1184 |
+
# feature space; intuitively, this makes sense.
|
1185 |
+
init_molecule_encoding = self.chars_to_molecules(input_char_encoding)
|
1186 |
+
|
1187 |
+
# Deep BERT encoder
|
1188 |
+
# `molecule_sequence_output`: shape (batch_size, mol_seq_len, mol_dim)
|
1189 |
+
encoder_outputs = self.encoder(
|
1190 |
+
init_molecule_encoding,
|
1191 |
+
attention_mask=extended_molecule_attention_mask,
|
1192 |
+
head_mask=head_mask,
|
1193 |
+
output_attentions=output_attentions,
|
1194 |
+
output_hidden_states=output_hidden_states,
|
1195 |
+
return_dict=return_dict,
|
1196 |
+
)
|
1197 |
+
molecule_sequence_output = encoder_outputs[0]
|
1198 |
+
pooled_output = self.pooler(molecule_sequence_output) if self.pooler is not None else None
|
1199 |
+
|
1200 |
+
# Upsample molecules back to characters.
|
1201 |
+
# `repeated_molecules`: shape (batch_size, char_seq_len, mol_hidden_size)
|
1202 |
+
repeated_molecules = self._repeat_molecules(molecule_sequence_output, char_seq_length=input_shape[-1])
|
1203 |
+
|
1204 |
+
# Concatenate representations (contextualized char embeddings and repeated molecules):
|
1205 |
+
# `concat`: shape [batch_size, char_seq_len, molecule_hidden_size+char_hidden_final]
|
1206 |
+
concat = torch.cat([input_char_encoding, repeated_molecules], dim=-1)
|
1207 |
+
|
1208 |
+
# Project representation dimension back to hidden_size
|
1209 |
+
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
|
1210 |
+
sequence_output = self.projection(concat)
|
1211 |
+
|
1212 |
+
# Apply final shallow Transformer
|
1213 |
+
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
|
1214 |
+
final_chars_encoder_outputs = self.final_char_encoder(
|
1215 |
+
sequence_output,
|
1216 |
+
attention_mask=extended_attention_mask,
|
1217 |
+
output_attentions=output_attentions,
|
1218 |
+
output_hidden_states=output_hidden_states,
|
1219 |
+
)
|
1220 |
+
sequence_output = final_chars_encoder_outputs.last_hidden_state
|
1221 |
+
|
1222 |
+
if output_hidden_states:
|
1223 |
+
deep_encoder_hidden_states = encoder_outputs.hidden_states if return_dict else encoder_outputs[1]
|
1224 |
+
all_hidden_states = (
|
1225 |
+
all_hidden_states
|
1226 |
+
+ init_chars_encoder_outputs.hidden_states
|
1227 |
+
+ deep_encoder_hidden_states
|
1228 |
+
+ final_chars_encoder_outputs.hidden_states
|
1229 |
+
)
|
1230 |
+
|
1231 |
+
if output_attentions:
|
1232 |
+
deep_encoder_self_attentions = encoder_outputs.attentions if return_dict else encoder_outputs[-1]
|
1233 |
+
all_self_attentions = (
|
1234 |
+
all_self_attentions
|
1235 |
+
+ init_chars_encoder_outputs.attentions
|
1236 |
+
+ deep_encoder_self_attentions
|
1237 |
+
+ final_chars_encoder_outputs.attentions
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
if not return_dict:
|
1241 |
+
output = (sequence_output, pooled_output)
|
1242 |
+
output += tuple(v for v in [all_hidden_states, all_self_attentions] if v is not None)
|
1243 |
+
return output
|
1244 |
+
|
1245 |
+
return CanineModelOutputWithPooling(
|
1246 |
+
last_hidden_state=sequence_output,
|
1247 |
+
pooler_output=pooled_output,
|
1248 |
+
hidden_states=all_hidden_states,
|
1249 |
+
attentions=all_self_attentions,
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
|
1253 |
+
@add_start_docstrings(
|
1254 |
+
"""
|
1255 |
+
CANINE Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1256 |
+
output) e.g. for GLUE tasks.
|
1257 |
+
""",
|
1258 |
+
CANINE_START_DOCSTRING,
|
1259 |
+
)
|
1260 |
+
class CanineForSequenceClassification(CaninePreTrainedModel):
|
1261 |
+
def __init__(self, config):
|
1262 |
+
super().__init__(config)
|
1263 |
+
self.num_labels = config.num_labels
|
1264 |
+
|
1265 |
+
self.canine = CanineModel(config)
|
1266 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1267 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1268 |
+
|
1269 |
+
# Initialize weights and apply final processing
|
1270 |
+
self.post_init()
|
1271 |
+
|
1272 |
+
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1273 |
+
@add_code_sample_docstrings(
|
1274 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1275 |
+
output_type=SequenceClassifierOutput,
|
1276 |
+
config_class=_CONFIG_FOR_DOC,
|
1277 |
+
)
|
1278 |
+
def forward(
|
1279 |
+
self,
|
1280 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1281 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1282 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1283 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1284 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1285 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1286 |
+
labels: Optional[torch.LongTensor] = None,
|
1287 |
+
output_attentions: Optional[bool] = None,
|
1288 |
+
output_hidden_states: Optional[bool] = None,
|
1289 |
+
return_dict: Optional[bool] = None,
|
1290 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1291 |
+
r"""
|
1292 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1293 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1294 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1295 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1296 |
+
"""
|
1297 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1298 |
+
|
1299 |
+
outputs = self.canine(
|
1300 |
+
input_ids,
|
1301 |
+
attention_mask=attention_mask,
|
1302 |
+
token_type_ids=token_type_ids,
|
1303 |
+
position_ids=position_ids,
|
1304 |
+
head_mask=head_mask,
|
1305 |
+
inputs_embeds=inputs_embeds,
|
1306 |
+
output_attentions=output_attentions,
|
1307 |
+
output_hidden_states=output_hidden_states,
|
1308 |
+
return_dict=return_dict,
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
pooled_output = outputs[1]
|
1312 |
+
|
1313 |
+
pooled_output = self.dropout(pooled_output)
|
1314 |
+
logits = self.classifier(pooled_output)
|
1315 |
+
|
1316 |
+
loss = None
|
1317 |
+
if labels is not None:
|
1318 |
+
if self.config.problem_type is None:
|
1319 |
+
if self.num_labels == 1:
|
1320 |
+
self.config.problem_type = "regression"
|
1321 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1322 |
+
self.config.problem_type = "single_label_classification"
|
1323 |
+
else:
|
1324 |
+
self.config.problem_type = "multi_label_classification"
|
1325 |
+
|
1326 |
+
if self.config.problem_type == "regression":
|
1327 |
+
loss_fct = MSELoss()
|
1328 |
+
if self.num_labels == 1:
|
1329 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1330 |
+
else:
|
1331 |
+
loss = loss_fct(logits, labels)
|
1332 |
+
elif self.config.problem_type == "single_label_classification":
|
1333 |
+
loss_fct = CrossEntropyLoss()
|
1334 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1335 |
+
elif self.config.problem_type == "multi_label_classification":
|
1336 |
+
loss_fct = BCEWithLogitsLoss()
|
1337 |
+
loss = loss_fct(logits, labels)
|
1338 |
+
if not return_dict:
|
1339 |
+
output = (logits,) + outputs[2:]
|
1340 |
+
return ((loss,) + output) if loss is not None else output
|
1341 |
+
|
1342 |
+
return SequenceClassifierOutput(
|
1343 |
+
loss=loss,
|
1344 |
+
logits=logits,
|
1345 |
+
hidden_states=outputs.hidden_states,
|
1346 |
+
attentions=outputs.attentions,
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
|
1350 |
+
@add_start_docstrings(
|
1351 |
+
"""
|
1352 |
+
CANINE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1353 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1354 |
+
""",
|
1355 |
+
CANINE_START_DOCSTRING,
|
1356 |
+
)
|
1357 |
+
class CanineForMultipleChoice(CaninePreTrainedModel):
|
1358 |
+
def __init__(self, config):
|
1359 |
+
super().__init__(config)
|
1360 |
+
|
1361 |
+
self.canine = CanineModel(config)
|
1362 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1363 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1364 |
+
|
1365 |
+
# Initialize weights and apply final processing
|
1366 |
+
self.post_init()
|
1367 |
+
|
1368 |
+
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1369 |
+
@add_code_sample_docstrings(
|
1370 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1371 |
+
output_type=MultipleChoiceModelOutput,
|
1372 |
+
config_class=_CONFIG_FOR_DOC,
|
1373 |
+
)
|
1374 |
+
def forward(
|
1375 |
+
self,
|
1376 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1377 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1378 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1379 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1380 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1381 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1382 |
+
labels: Optional[torch.LongTensor] = None,
|
1383 |
+
output_attentions: Optional[bool] = None,
|
1384 |
+
output_hidden_states: Optional[bool] = None,
|
1385 |
+
return_dict: Optional[bool] = None,
|
1386 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1387 |
+
r"""
|
1388 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1389 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1390 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1391 |
+
`input_ids` above)
|
1392 |
+
"""
|
1393 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1394 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1395 |
+
|
1396 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1397 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1398 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1399 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1400 |
+
inputs_embeds = (
|
1401 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1402 |
+
if inputs_embeds is not None
|
1403 |
+
else None
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
outputs = self.canine(
|
1407 |
+
input_ids,
|
1408 |
+
attention_mask=attention_mask,
|
1409 |
+
token_type_ids=token_type_ids,
|
1410 |
+
position_ids=position_ids,
|
1411 |
+
head_mask=head_mask,
|
1412 |
+
inputs_embeds=inputs_embeds,
|
1413 |
+
output_attentions=output_attentions,
|
1414 |
+
output_hidden_states=output_hidden_states,
|
1415 |
+
return_dict=return_dict,
|
1416 |
+
)
|
1417 |
+
|
1418 |
+
pooled_output = outputs[1]
|
1419 |
+
|
1420 |
+
pooled_output = self.dropout(pooled_output)
|
1421 |
+
logits = self.classifier(pooled_output)
|
1422 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1423 |
+
|
1424 |
+
loss = None
|
1425 |
+
if labels is not None:
|
1426 |
+
loss_fct = CrossEntropyLoss()
|
1427 |
+
loss = loss_fct(reshaped_logits, labels)
|
1428 |
+
|
1429 |
+
if not return_dict:
|
1430 |
+
output = (reshaped_logits,) + outputs[2:]
|
1431 |
+
return ((loss,) + output) if loss is not None else output
|
1432 |
+
|
1433 |
+
return MultipleChoiceModelOutput(
|
1434 |
+
loss=loss,
|
1435 |
+
logits=reshaped_logits,
|
1436 |
+
hidden_states=outputs.hidden_states,
|
1437 |
+
attentions=outputs.attentions,
|
1438 |
+
)
|
1439 |
+
|
1440 |
+
|
1441 |
+
@add_start_docstrings(
|
1442 |
+
"""
|
1443 |
+
CANINE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1444 |
+
Named-Entity-Recognition (NER) tasks.
|
1445 |
+
""",
|
1446 |
+
CANINE_START_DOCSTRING,
|
1447 |
+
)
|
1448 |
+
class CanineForTokenClassification(CaninePreTrainedModel):
|
1449 |
+
def __init__(self, config):
|
1450 |
+
super().__init__(config)
|
1451 |
+
self.num_labels = config.num_labels
|
1452 |
+
|
1453 |
+
self.canine = CanineModel(config)
|
1454 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1455 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1456 |
+
|
1457 |
+
# Initialize weights and apply final processing
|
1458 |
+
self.post_init()
|
1459 |
+
|
1460 |
+
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1461 |
+
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1462 |
+
def forward(
|
1463 |
+
self,
|
1464 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1465 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1466 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1467 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1468 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1469 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1470 |
+
labels: Optional[torch.LongTensor] = None,
|
1471 |
+
output_attentions: Optional[bool] = None,
|
1472 |
+
output_hidden_states: Optional[bool] = None,
|
1473 |
+
return_dict: Optional[bool] = None,
|
1474 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1475 |
+
r"""
|
1476 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1477 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1478 |
+
|
1479 |
+
Returns:
|
1480 |
+
|
1481 |
+
Example:
|
1482 |
+
|
1483 |
+
```python
|
1484 |
+
>>> from transformers import AutoTokenizer, CanineForTokenClassification
|
1485 |
+
>>> import torch
|
1486 |
+
|
1487 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
|
1488 |
+
>>> model = CanineForTokenClassification.from_pretrained("google/canine-s")
|
1489 |
+
|
1490 |
+
>>> inputs = tokenizer(
|
1491 |
+
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
|
1492 |
+
... )
|
1493 |
+
|
1494 |
+
>>> with torch.no_grad():
|
1495 |
+
... logits = model(**inputs).logits
|
1496 |
+
|
1497 |
+
>>> predicted_token_class_ids = logits.argmax(-1)
|
1498 |
+
|
1499 |
+
>>> # Note that tokens are classified rather then input words which means that
|
1500 |
+
>>> # there might be more predicted token classes than words.
|
1501 |
+
>>> # Multiple token classes might account for the same word
|
1502 |
+
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
|
1503 |
+
>>> predicted_tokens_classes # doctest: +SKIP
|
1504 |
+
```
|
1505 |
+
|
1506 |
+
```python
|
1507 |
+
>>> labels = predicted_token_class_ids
|
1508 |
+
>>> loss = model(**inputs, labels=labels).loss
|
1509 |
+
>>> round(loss.item(), 2) # doctest: +SKIP
|
1510 |
+
```"""
|
1511 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1512 |
+
|
1513 |
+
outputs = self.canine(
|
1514 |
+
input_ids,
|
1515 |
+
attention_mask=attention_mask,
|
1516 |
+
token_type_ids=token_type_ids,
|
1517 |
+
position_ids=position_ids,
|
1518 |
+
head_mask=head_mask,
|
1519 |
+
inputs_embeds=inputs_embeds,
|
1520 |
+
output_attentions=output_attentions,
|
1521 |
+
output_hidden_states=output_hidden_states,
|
1522 |
+
return_dict=return_dict,
|
1523 |
+
)
|
1524 |
+
|
1525 |
+
sequence_output = outputs[0]
|
1526 |
+
|
1527 |
+
sequence_output = self.dropout(sequence_output)
|
1528 |
+
logits = self.classifier(sequence_output)
|
1529 |
+
|
1530 |
+
loss = None
|
1531 |
+
if labels is not None:
|
1532 |
+
loss_fct = CrossEntropyLoss()
|
1533 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1534 |
+
|
1535 |
+
if not return_dict:
|
1536 |
+
output = (logits,) + outputs[2:]
|
1537 |
+
return ((loss,) + output) if loss is not None else output
|
1538 |
+
|
1539 |
+
return TokenClassifierOutput(
|
1540 |
+
loss=loss,
|
1541 |
+
logits=logits,
|
1542 |
+
hidden_states=outputs.hidden_states,
|
1543 |
+
attentions=outputs.attentions,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
|
1547 |
+
@add_start_docstrings(
|
1548 |
+
"""
|
1549 |
+
CANINE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1550 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1551 |
+
""",
|
1552 |
+
CANINE_START_DOCSTRING,
|
1553 |
+
)
|
1554 |
+
class CanineForQuestionAnswering(CaninePreTrainedModel):
|
1555 |
+
def __init__(self, config):
|
1556 |
+
super().__init__(config)
|
1557 |
+
self.num_labels = config.num_labels
|
1558 |
+
|
1559 |
+
self.canine = CanineModel(config)
|
1560 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1561 |
+
|
1562 |
+
# Initialize weights and apply final processing
|
1563 |
+
self.post_init()
|
1564 |
+
|
1565 |
+
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1566 |
+
@add_code_sample_docstrings(
|
1567 |
+
checkpoint="Splend1dchan/canine-c-squad",
|
1568 |
+
output_type=QuestionAnsweringModelOutput,
|
1569 |
+
config_class=_CONFIG_FOR_DOC,
|
1570 |
+
expected_output="'nice puppet'",
|
1571 |
+
expected_loss=8.81,
|
1572 |
+
)
|
1573 |
+
def forward(
|
1574 |
+
self,
|
1575 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1576 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1577 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1578 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1579 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1580 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1581 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1582 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1583 |
+
output_attentions: Optional[bool] = None,
|
1584 |
+
output_hidden_states: Optional[bool] = None,
|
1585 |
+
return_dict: Optional[bool] = None,
|
1586 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1587 |
+
r"""
|
1588 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1589 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1590 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1591 |
+
are not taken into account for computing the loss.
|
1592 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1593 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1594 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1595 |
+
are not taken into account for computing the loss.
|
1596 |
+
"""
|
1597 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1598 |
+
|
1599 |
+
outputs = self.canine(
|
1600 |
+
input_ids,
|
1601 |
+
attention_mask=attention_mask,
|
1602 |
+
token_type_ids=token_type_ids,
|
1603 |
+
position_ids=position_ids,
|
1604 |
+
head_mask=head_mask,
|
1605 |
+
inputs_embeds=inputs_embeds,
|
1606 |
+
output_attentions=output_attentions,
|
1607 |
+
output_hidden_states=output_hidden_states,
|
1608 |
+
return_dict=return_dict,
|
1609 |
+
)
|
1610 |
+
|
1611 |
+
sequence_output = outputs[0]
|
1612 |
+
|
1613 |
+
logits = self.qa_outputs(sequence_output)
|
1614 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1615 |
+
start_logits = start_logits.squeeze(-1)
|
1616 |
+
end_logits = end_logits.squeeze(-1)
|
1617 |
+
|
1618 |
+
total_loss = None
|
1619 |
+
if start_positions is not None and end_positions is not None:
|
1620 |
+
# If we are on multi-GPU, split add a dimension
|
1621 |
+
if len(start_positions.size()) > 1:
|
1622 |
+
start_positions = start_positions.squeeze(-1)
|
1623 |
+
if len(end_positions.size()) > 1:
|
1624 |
+
end_positions = end_positions.squeeze(-1)
|
1625 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1626 |
+
ignored_index = start_logits.size(1)
|
1627 |
+
start_positions.clamp_(0, ignored_index)
|
1628 |
+
end_positions.clamp_(0, ignored_index)
|
1629 |
+
|
1630 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1631 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1632 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1633 |
+
total_loss = (start_loss + end_loss) / 2
|
1634 |
+
|
1635 |
+
if not return_dict:
|
1636 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1637 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1638 |
+
|
1639 |
+
return QuestionAnsweringModelOutput(
|
1640 |
+
loss=total_loss,
|
1641 |
+
start_logits=start_logits,
|
1642 |
+
end_logits=end_logits,
|
1643 |
+
hidden_states=outputs.hidden_states,
|
1644 |
+
attentions=outputs.attentions,
|
1645 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_clipseg": [
|
21 |
+
"CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"CLIPSegConfig",
|
23 |
+
"CLIPSegTextConfig",
|
24 |
+
"CLIPSegVisionConfig",
|
25 |
+
],
|
26 |
+
"processing_clipseg": ["CLIPSegProcessor"],
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_torch_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["modeling_clipseg"] = [
|
36 |
+
"CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
|
37 |
+
"CLIPSegModel",
|
38 |
+
"CLIPSegPreTrainedModel",
|
39 |
+
"CLIPSegTextModel",
|
40 |
+
"CLIPSegVisionModel",
|
41 |
+
"CLIPSegForImageSegmentation",
|
42 |
+
]
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_clipseg import (
|
46 |
+
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
47 |
+
CLIPSegConfig,
|
48 |
+
CLIPSegTextConfig,
|
49 |
+
CLIPSegVisionConfig,
|
50 |
+
)
|
51 |
+
from .processing_clipseg import CLIPSegProcessor
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_torch_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
pass
|
58 |
+
else:
|
59 |
+
from .modeling_clipseg import (
|
60 |
+
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
|
61 |
+
CLIPSegForImageSegmentation,
|
62 |
+
CLIPSegModel,
|
63 |
+
CLIPSegPreTrainedModel,
|
64 |
+
CLIPSegTextModel,
|
65 |
+
CLIPSegVisionModel,
|
66 |
+
)
|
67 |
+
|
68 |
+
else:
|
69 |
+
import sys
|
70 |
+
|
71 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/convert_clipseg_original_pytorch_to_hf.cpython-310.pyc
ADDED
Binary file (7.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/modeling_clipseg.cpython-310.pyc
ADDED
Binary file (43.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/processing_clipseg.cpython-310.pyc
ADDED
Binary file (6.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/configuration_clipseg.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CLIPSeg model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class CLIPSegTextConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
|
33 |
+
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
34 |
+
with the defaults will yield a similar configuration to that of the CLIPSeg
|
35 |
+
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 49408):
|
42 |
+
Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
|
43 |
+
by the `inputs_ids` passed when calling [`CLIPSegModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 512):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
47 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
max_position_embeddings (`int`, *optional*, defaults to 77):
|
53 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
54 |
+
just in case (e.g., 512 or 1024 or 2048).
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
58 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
59 |
+
The epsilon used by the layer normalization layers.
|
60 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout ratio for the attention probabilities.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
65 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
66 |
+
testing).
|
67 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
68 |
+
Padding token id.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
70 |
+
Beginning of stream token id.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
72 |
+
End of stream token id.
|
73 |
+
|
74 |
+
Example:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import CLIPSegTextConfig, CLIPSegTextModel
|
78 |
+
|
79 |
+
>>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
|
80 |
+
>>> configuration = CLIPSegTextConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
|
83 |
+
>>> model = CLIPSegTextModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```"""
|
88 |
+
|
89 |
+
model_type = "clipseg_text_model"
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
vocab_size=49408,
|
94 |
+
hidden_size=512,
|
95 |
+
intermediate_size=2048,
|
96 |
+
num_hidden_layers=12,
|
97 |
+
num_attention_heads=8,
|
98 |
+
max_position_embeddings=77,
|
99 |
+
hidden_act="quick_gelu",
|
100 |
+
layer_norm_eps=1e-5,
|
101 |
+
attention_dropout=0.0,
|
102 |
+
initializer_range=0.02,
|
103 |
+
initializer_factor=1.0,
|
104 |
+
pad_token_id=1,
|
105 |
+
bos_token_id=49406,
|
106 |
+
eos_token_id=49407,
|
107 |
+
**kwargs,
|
108 |
+
):
|
109 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
110 |
+
|
111 |
+
self.vocab_size = vocab_size
|
112 |
+
self.hidden_size = hidden_size
|
113 |
+
self.intermediate_size = intermediate_size
|
114 |
+
self.num_hidden_layers = num_hidden_layers
|
115 |
+
self.num_attention_heads = num_attention_heads
|
116 |
+
self.max_position_embeddings = max_position_embeddings
|
117 |
+
self.layer_norm_eps = layer_norm_eps
|
118 |
+
self.hidden_act = hidden_act
|
119 |
+
self.initializer_range = initializer_range
|
120 |
+
self.initializer_factor = initializer_factor
|
121 |
+
self.attention_dropout = attention_dropout
|
122 |
+
|
123 |
+
@classmethod
|
124 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
125 |
+
cls._set_token_in_kwargs(kwargs)
|
126 |
+
|
127 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
128 |
+
|
129 |
+
# get the text config dict if we are loading from CLIPSegConfig
|
130 |
+
if config_dict.get("model_type") == "clipseg":
|
131 |
+
config_dict = config_dict["text_config"]
|
132 |
+
|
133 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
134 |
+
logger.warning(
|
135 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
136 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
137 |
+
)
|
138 |
+
|
139 |
+
return cls.from_dict(config_dict, **kwargs)
|
140 |
+
|
141 |
+
|
142 |
+
class CLIPSegVisionConfig(PretrainedConfig):
|
143 |
+
r"""
|
144 |
+
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
|
145 |
+
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
146 |
+
with the defaults will yield a similar configuration to that of the CLIPSeg
|
147 |
+
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
|
148 |
+
|
149 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
150 |
+
documentation from [`PretrainedConfig`] for more information.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
154 |
+
Dimensionality of the encoder layers and the pooler layer.
|
155 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
156 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
157 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
158 |
+
Number of hidden layers in the Transformer encoder.
|
159 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
160 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
161 |
+
num_channels (`int`, *optional*, defaults to 3):
|
162 |
+
The number of input channels.
|
163 |
+
image_size (`int`, *optional*, defaults to 224):
|
164 |
+
The size (resolution) of each image.
|
165 |
+
patch_size (`int`, *optional*, defaults to 32):
|
166 |
+
The size (resolution) of each patch.
|
167 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
168 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
169 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
170 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
171 |
+
The epsilon used by the layer normalization layers.
|
172 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
173 |
+
The dropout ratio for the attention probabilities.
|
174 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
175 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
176 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
177 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
178 |
+
testing).
|
179 |
+
|
180 |
+
Example:
|
181 |
+
|
182 |
+
```python
|
183 |
+
>>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel
|
184 |
+
|
185 |
+
>>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
|
186 |
+
>>> configuration = CLIPSegVisionConfig()
|
187 |
+
|
188 |
+
>>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
|
189 |
+
>>> model = CLIPSegVisionModel(configuration)
|
190 |
+
|
191 |
+
>>> # Accessing the model configuration
|
192 |
+
>>> configuration = model.config
|
193 |
+
```"""
|
194 |
+
|
195 |
+
model_type = "clipseg_vision_model"
|
196 |
+
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
hidden_size=768,
|
200 |
+
intermediate_size=3072,
|
201 |
+
num_hidden_layers=12,
|
202 |
+
num_attention_heads=12,
|
203 |
+
num_channels=3,
|
204 |
+
image_size=224,
|
205 |
+
patch_size=32,
|
206 |
+
hidden_act="quick_gelu",
|
207 |
+
layer_norm_eps=1e-5,
|
208 |
+
attention_dropout=0.0,
|
209 |
+
initializer_range=0.02,
|
210 |
+
initializer_factor=1.0,
|
211 |
+
**kwargs,
|
212 |
+
):
|
213 |
+
super().__init__(**kwargs)
|
214 |
+
|
215 |
+
self.hidden_size = hidden_size
|
216 |
+
self.intermediate_size = intermediate_size
|
217 |
+
self.num_hidden_layers = num_hidden_layers
|
218 |
+
self.num_attention_heads = num_attention_heads
|
219 |
+
self.num_channels = num_channels
|
220 |
+
self.patch_size = patch_size
|
221 |
+
self.image_size = image_size
|
222 |
+
self.initializer_range = initializer_range
|
223 |
+
self.initializer_factor = initializer_factor
|
224 |
+
self.attention_dropout = attention_dropout
|
225 |
+
self.layer_norm_eps = layer_norm_eps
|
226 |
+
self.hidden_act = hidden_act
|
227 |
+
|
228 |
+
@classmethod
|
229 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
230 |
+
cls._set_token_in_kwargs(kwargs)
|
231 |
+
|
232 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
233 |
+
|
234 |
+
# get the vision config dict if we are loading from CLIPSegConfig
|
235 |
+
if config_dict.get("model_type") == "clipseg":
|
236 |
+
config_dict = config_dict["vision_config"]
|
237 |
+
|
238 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
239 |
+
logger.warning(
|
240 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
241 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
242 |
+
)
|
243 |
+
|
244 |
+
return cls.from_dict(config_dict, **kwargs)
|
245 |
+
|
246 |
+
|
247 |
+
class CLIPSegConfig(PretrainedConfig):
|
248 |
+
r"""
|
249 |
+
[`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
|
250 |
+
instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
|
251 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
|
252 |
+
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
|
253 |
+
|
254 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
255 |
+
documentation from [`PretrainedConfig`] for more information.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
text_config (`dict`, *optional*):
|
259 |
+
Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
|
260 |
+
vision_config (`dict`, *optional*):
|
261 |
+
Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
|
262 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
263 |
+
Dimensionality of text and vision projection layers.
|
264 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
265 |
+
The inital value of the *logit_scale* paramter. Default is used as per the original CLIPSeg implementation.
|
266 |
+
extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
|
267 |
+
Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
|
268 |
+
reduce_dim (`int`, *optional*, defaults to 64):
|
269 |
+
Dimensionality to reduce the CLIP vision embedding.
|
270 |
+
decoder_num_attention_heads (`int`, *optional*, defaults to 4):
|
271 |
+
Number of attention heads in the decoder of CLIPSeg.
|
272 |
+
decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
|
273 |
+
The dropout ratio for the attention probabilities.
|
274 |
+
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
275 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
276 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
277 |
+
decoder_intermediate_size (`int`, *optional*, defaults to 2048):
|
278 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
|
279 |
+
conditional_layer (`int`, *optional*, defaults to 0):
|
280 |
+
The layer to use of the Transformer encoder whose activations will be combined with the condition
|
281 |
+
embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
|
282 |
+
use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
|
283 |
+
Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
|
284 |
+
segmentation.
|
285 |
+
kwargs (*optional*):
|
286 |
+
Dictionary of keyword arguments.
|
287 |
+
|
288 |
+
Example:
|
289 |
+
|
290 |
+
```python
|
291 |
+
>>> from transformers import CLIPSegConfig, CLIPSegModel
|
292 |
+
|
293 |
+
>>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
|
294 |
+
>>> configuration = CLIPSegConfig()
|
295 |
+
|
296 |
+
>>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
|
297 |
+
>>> model = CLIPSegModel(configuration)
|
298 |
+
|
299 |
+
>>> # Accessing the model configuration
|
300 |
+
>>> configuration = model.config
|
301 |
+
|
302 |
+
>>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig
|
303 |
+
|
304 |
+
>>> # Initializing a CLIPSegText and CLIPSegVision configuration
|
305 |
+
>>> config_text = CLIPSegTextConfig()
|
306 |
+
>>> config_vision = CLIPSegVisionConfig()
|
307 |
+
|
308 |
+
>>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
|
309 |
+
```"""
|
310 |
+
|
311 |
+
model_type = "clipseg"
|
312 |
+
|
313 |
+
def __init__(
|
314 |
+
self,
|
315 |
+
text_config=None,
|
316 |
+
vision_config=None,
|
317 |
+
projection_dim=512,
|
318 |
+
logit_scale_init_value=2.6592,
|
319 |
+
extract_layers=[3, 6, 9],
|
320 |
+
reduce_dim=64,
|
321 |
+
decoder_num_attention_heads=4,
|
322 |
+
decoder_attention_dropout=0.0,
|
323 |
+
decoder_hidden_act="quick_gelu",
|
324 |
+
decoder_intermediate_size=2048,
|
325 |
+
conditional_layer=0,
|
326 |
+
use_complex_transposed_convolution=False,
|
327 |
+
**kwargs,
|
328 |
+
):
|
329 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
330 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
331 |
+
# of confusion!).
|
332 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
333 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
334 |
+
|
335 |
+
super().__init__(**kwargs)
|
336 |
+
|
337 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
338 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
339 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
340 |
+
if text_config_dict is not None:
|
341 |
+
if text_config is None:
|
342 |
+
text_config = {}
|
343 |
+
|
344 |
+
# This is the complete result when using `text_config_dict`.
|
345 |
+
_text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict()
|
346 |
+
|
347 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
348 |
+
for key, value in _text_config_dict.items():
|
349 |
+
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
350 |
+
# If specified in `text_config_dict`
|
351 |
+
if key in text_config_dict:
|
352 |
+
message = (
|
353 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
354 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
355 |
+
)
|
356 |
+
# If inferred from default argument values (just to be super careful)
|
357 |
+
else:
|
358 |
+
message = (
|
359 |
+
f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The "
|
360 |
+
f'value `text_config["{key}"]` will be overriden.'
|
361 |
+
)
|
362 |
+
logger.info(message)
|
363 |
+
|
364 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
365 |
+
text_config.update(_text_config_dict)
|
366 |
+
|
367 |
+
if vision_config_dict is not None:
|
368 |
+
if vision_config is None:
|
369 |
+
vision_config = {}
|
370 |
+
|
371 |
+
# This is the complete result when using `vision_config_dict`.
|
372 |
+
_vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict()
|
373 |
+
# convert keys to string instead of integer
|
374 |
+
if "id2label" in _vision_config_dict:
|
375 |
+
_vision_config_dict["id2label"] = {
|
376 |
+
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
377 |
+
}
|
378 |
+
|
379 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
380 |
+
for key, value in _vision_config_dict.items():
|
381 |
+
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
382 |
+
# If specified in `vision_config_dict`
|
383 |
+
if key in vision_config_dict:
|
384 |
+
message = (
|
385 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
386 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
387 |
+
)
|
388 |
+
# If inferred from default argument values (just to be super careful)
|
389 |
+
else:
|
390 |
+
message = (
|
391 |
+
f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. "
|
392 |
+
f'The value `vision_config["{key}"]` will be overriden.'
|
393 |
+
)
|
394 |
+
logger.info(message)
|
395 |
+
|
396 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
397 |
+
vision_config.update(_vision_config_dict)
|
398 |
+
|
399 |
+
if text_config is None:
|
400 |
+
text_config = {}
|
401 |
+
logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.")
|
402 |
+
|
403 |
+
if vision_config is None:
|
404 |
+
vision_config = {}
|
405 |
+
logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.")
|
406 |
+
|
407 |
+
self.text_config = CLIPSegTextConfig(**text_config)
|
408 |
+
self.vision_config = CLIPSegVisionConfig(**vision_config)
|
409 |
+
|
410 |
+
self.projection_dim = projection_dim
|
411 |
+
self.logit_scale_init_value = logit_scale_init_value
|
412 |
+
self.extract_layers = extract_layers
|
413 |
+
self.reduce_dim = reduce_dim
|
414 |
+
self.decoder_num_attention_heads = decoder_num_attention_heads
|
415 |
+
self.decoder_attention_dropout = decoder_attention_dropout
|
416 |
+
self.decoder_hidden_act = decoder_hidden_act
|
417 |
+
self.decoder_intermediate_size = decoder_intermediate_size
|
418 |
+
self.conditional_layer = conditional_layer
|
419 |
+
self.initializer_factor = 1.0
|
420 |
+
self.use_complex_transposed_convolution = use_complex_transposed_convolution
|
421 |
+
|
422 |
+
@classmethod
|
423 |
+
def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs):
|
424 |
+
r"""
|
425 |
+
Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
|
426 |
+
model configuration.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
[`CLIPSegConfig`]: An instance of a configuration object
|
430 |
+
"""
|
431 |
+
|
432 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/convert_clipseg_original_pytorch_to_hf.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Convert CLIPSeg checkpoints from the original repository. URL: https://github.com/timojl/clipseg."""
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import requests
|
21 |
+
import torch
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
from transformers import (
|
25 |
+
CLIPSegConfig,
|
26 |
+
CLIPSegForImageSegmentation,
|
27 |
+
CLIPSegProcessor,
|
28 |
+
CLIPSegTextConfig,
|
29 |
+
CLIPSegVisionConfig,
|
30 |
+
CLIPTokenizer,
|
31 |
+
ViTImageProcessor,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
def get_clipseg_config(model_name):
|
36 |
+
text_config = CLIPSegTextConfig()
|
37 |
+
vision_config = CLIPSegVisionConfig(patch_size=16)
|
38 |
+
|
39 |
+
use_complex_transposed_convolution = True if "refined" in model_name else False
|
40 |
+
reduce_dim = 16 if "rd16" in model_name else 64
|
41 |
+
|
42 |
+
config = CLIPSegConfig.from_text_vision_configs(
|
43 |
+
text_config,
|
44 |
+
vision_config,
|
45 |
+
use_complex_transposed_convolution=use_complex_transposed_convolution,
|
46 |
+
reduce_dim=reduce_dim,
|
47 |
+
)
|
48 |
+
return config
|
49 |
+
|
50 |
+
|
51 |
+
def rename_key(name):
|
52 |
+
# update prefixes
|
53 |
+
if "clip_model" in name:
|
54 |
+
name = name.replace("clip_model", "clip")
|
55 |
+
if "transformer" in name:
|
56 |
+
if "visual" in name:
|
57 |
+
name = name.replace("visual.transformer", "vision_model")
|
58 |
+
else:
|
59 |
+
name = name.replace("transformer", "text_model")
|
60 |
+
if "resblocks" in name:
|
61 |
+
name = name.replace("resblocks", "encoder.layers")
|
62 |
+
if "ln_1" in name:
|
63 |
+
name = name.replace("ln_1", "layer_norm1")
|
64 |
+
if "ln_2" in name:
|
65 |
+
name = name.replace("ln_2", "layer_norm2")
|
66 |
+
if "c_fc" in name:
|
67 |
+
name = name.replace("c_fc", "fc1")
|
68 |
+
if "c_proj" in name:
|
69 |
+
name = name.replace("c_proj", "fc2")
|
70 |
+
if "attn" in name and "self" not in name:
|
71 |
+
name = name.replace("attn", "self_attn")
|
72 |
+
# text encoder
|
73 |
+
if "token_embedding" in name:
|
74 |
+
name = name.replace("token_embedding", "text_model.embeddings.token_embedding")
|
75 |
+
if "positional_embedding" in name and "visual" not in name:
|
76 |
+
name = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight")
|
77 |
+
if "ln_final" in name:
|
78 |
+
name = name.replace("ln_final", "text_model.final_layer_norm")
|
79 |
+
# vision encoder
|
80 |
+
if "visual.class_embedding" in name:
|
81 |
+
name = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding")
|
82 |
+
if "visual.conv1" in name:
|
83 |
+
name = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding")
|
84 |
+
if "visual.positional_embedding" in name:
|
85 |
+
name = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight")
|
86 |
+
if "visual.ln_pre" in name:
|
87 |
+
name = name.replace("visual.ln_pre", "vision_model.pre_layrnorm")
|
88 |
+
if "visual.ln_post" in name:
|
89 |
+
name = name.replace("visual.ln_post", "vision_model.post_layernorm")
|
90 |
+
# projection layers
|
91 |
+
if "visual.proj" in name:
|
92 |
+
name = name.replace("visual.proj", "visual_projection.weight")
|
93 |
+
if "text_projection" in name:
|
94 |
+
name = name.replace("text_projection", "text_projection.weight")
|
95 |
+
# decoder
|
96 |
+
if "trans_conv" in name:
|
97 |
+
name = name.replace("trans_conv", "transposed_convolution")
|
98 |
+
if "film_mul" in name or "film_add" in name or "reduce" in name or "transposed_convolution" in name:
|
99 |
+
name = "decoder." + name
|
100 |
+
if "blocks" in name:
|
101 |
+
name = name.replace("blocks", "decoder.layers")
|
102 |
+
if "linear1" in name:
|
103 |
+
name = name.replace("linear1", "mlp.fc1")
|
104 |
+
if "linear2" in name:
|
105 |
+
name = name.replace("linear2", "mlp.fc2")
|
106 |
+
if "norm1" in name and "layer_" not in name:
|
107 |
+
name = name.replace("norm1", "layer_norm1")
|
108 |
+
if "norm2" in name and "layer_" not in name:
|
109 |
+
name = name.replace("norm2", "layer_norm2")
|
110 |
+
|
111 |
+
return name
|
112 |
+
|
113 |
+
|
114 |
+
def convert_state_dict(orig_state_dict, config):
|
115 |
+
for key in orig_state_dict.copy().keys():
|
116 |
+
val = orig_state_dict.pop(key)
|
117 |
+
|
118 |
+
if key.startswith("clip_model") and "attn.in_proj" in key:
|
119 |
+
key_split = key.split(".")
|
120 |
+
if "visual" in key:
|
121 |
+
layer_num = int(key_split[4])
|
122 |
+
dim = config.vision_config.hidden_size
|
123 |
+
prefix = "vision_model"
|
124 |
+
else:
|
125 |
+
layer_num = int(key_split[3])
|
126 |
+
dim = config.text_config.hidden_size
|
127 |
+
prefix = "text_model"
|
128 |
+
|
129 |
+
if "weight" in key:
|
130 |
+
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :]
|
131 |
+
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[
|
132 |
+
dim : dim * 2, :
|
133 |
+
]
|
134 |
+
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :]
|
135 |
+
else:
|
136 |
+
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim]
|
137 |
+
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2]
|
138 |
+
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:]
|
139 |
+
elif "self_attn" in key and "out_proj" not in key:
|
140 |
+
key_split = key.split(".")
|
141 |
+
layer_num = int(key_split[1])
|
142 |
+
dim = config.reduce_dim
|
143 |
+
if "weight" in key:
|
144 |
+
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :]
|
145 |
+
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[dim : dim * 2, :]
|
146 |
+
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :]
|
147 |
+
else:
|
148 |
+
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim]
|
149 |
+
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2]
|
150 |
+
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:]
|
151 |
+
else:
|
152 |
+
new_name = rename_key(key)
|
153 |
+
if "visual_projection" in new_name or "text_projection" in new_name:
|
154 |
+
val = val.T
|
155 |
+
orig_state_dict[new_name] = val
|
156 |
+
|
157 |
+
return orig_state_dict
|
158 |
+
|
159 |
+
|
160 |
+
# We will verify our results on an image of cute cats
|
161 |
+
def prepare_img():
|
162 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
163 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
164 |
+
return image
|
165 |
+
|
166 |
+
|
167 |
+
def convert_clipseg_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub):
|
168 |
+
config = get_clipseg_config(model_name)
|
169 |
+
model = CLIPSegForImageSegmentation(config)
|
170 |
+
model.eval()
|
171 |
+
|
172 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
173 |
+
|
174 |
+
# remove some keys
|
175 |
+
for key in state_dict.copy().keys():
|
176 |
+
if key.startswith("model"):
|
177 |
+
state_dict.pop(key, None)
|
178 |
+
|
179 |
+
# rename some keys
|
180 |
+
state_dict = convert_state_dict(state_dict, config)
|
181 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
182 |
+
|
183 |
+
if missing_keys != ["clip.text_model.embeddings.position_ids", "clip.vision_model.embeddings.position_ids"]:
|
184 |
+
raise ValueError("Missing keys that are not expected: {}".format(missing_keys))
|
185 |
+
if unexpected_keys != ["decoder.reduce.weight", "decoder.reduce.bias"]:
|
186 |
+
raise ValueError(f"Unexpected keys: {unexpected_keys}")
|
187 |
+
|
188 |
+
image_processor = ViTImageProcessor(size=352)
|
189 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
190 |
+
processor = CLIPSegProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
191 |
+
|
192 |
+
image = prepare_img()
|
193 |
+
text = ["a glass", "something to fill", "wood", "a jar"]
|
194 |
+
|
195 |
+
inputs = processor(text=text, images=[image] * len(text), padding="max_length", return_tensors="pt")
|
196 |
+
|
197 |
+
with torch.no_grad():
|
198 |
+
outputs = model(**inputs)
|
199 |
+
|
200 |
+
# verify values
|
201 |
+
expected_conditional = torch.tensor([0.1110, -0.1882, 0.1645])
|
202 |
+
expected_pooled_output = torch.tensor([0.2692, -0.7197, -0.1328])
|
203 |
+
if model_name == "clipseg-rd64-refined":
|
204 |
+
expected_masks_slice = torch.tensor(
|
205 |
+
[[-10.0407, -9.9431, -10.2646], [-9.9751, -9.7064, -9.9586], [-9.6891, -9.5645, -9.9618]]
|
206 |
+
)
|
207 |
+
elif model_name == "clipseg-rd64":
|
208 |
+
expected_masks_slice = torch.tensor(
|
209 |
+
[[-7.2877, -7.2711, -7.2463], [-7.2652, -7.2780, -7.2520], [-7.2239, -7.2204, -7.2001]]
|
210 |
+
)
|
211 |
+
elif model_name == "clipseg-rd16":
|
212 |
+
expected_masks_slice = torch.tensor(
|
213 |
+
[[-6.3955, -6.4055, -6.4151], [-6.3911, -6.4033, -6.4100], [-6.3474, -6.3702, -6.3762]]
|
214 |
+
)
|
215 |
+
else:
|
216 |
+
raise ValueError(f"Model name {model_name} not supported.")
|
217 |
+
|
218 |
+
assert torch.allclose(outputs.logits[0, :3, :3], expected_masks_slice, atol=1e-3)
|
219 |
+
assert torch.allclose(outputs.conditional_embeddings[0, :3], expected_conditional, atol=1e-3)
|
220 |
+
assert torch.allclose(outputs.pooled_output[0, :3], expected_pooled_output, atol=1e-3)
|
221 |
+
print("Looks ok!")
|
222 |
+
|
223 |
+
if pytorch_dump_folder_path is not None:
|
224 |
+
print(f"Saving model and processor to {pytorch_dump_folder_path}")
|
225 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
226 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
227 |
+
|
228 |
+
if push_to_hub:
|
229 |
+
print(f"Pushing model and processor for {model_name} to the hub")
|
230 |
+
model.push_to_hub(f"CIDAS/{model_name}")
|
231 |
+
processor.push_to_hub(f"CIDAS/{model_name}")
|
232 |
+
|
233 |
+
|
234 |
+
if __name__ == "__main__":
|
235 |
+
parser = argparse.ArgumentParser()
|
236 |
+
# Required parameters
|
237 |
+
parser.add_argument(
|
238 |
+
"--model_name",
|
239 |
+
default="clipseg-rd64",
|
240 |
+
type=str,
|
241 |
+
choices=["clipseg-rd16", "clipseg-rd64", "clipseg-rd64-refined"],
|
242 |
+
help=(
|
243 |
+
"Name of the model. Supported models are: clipseg-rd64, clipseg-rd16 and clipseg-rd64-refined (rd meaning"
|
244 |
+
" reduce dimension)"
|
245 |
+
),
|
246 |
+
)
|
247 |
+
parser.add_argument(
|
248 |
+
"--checkpoint_path",
|
249 |
+
default="/Users/nielsrogge/Documents/CLIPSeg/clip_plus_rd64-uni.pth",
|
250 |
+
type=str,
|
251 |
+
help=(
|
252 |
+
"Path to the original checkpoint. Note that the script assumes that the checkpoint includes both CLIP and"
|
253 |
+
" the decoder weights."
|
254 |
+
),
|
255 |
+
)
|
256 |
+
parser.add_argument(
|
257 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
258 |
+
)
|
259 |
+
parser.add_argument(
|
260 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
261 |
+
)
|
262 |
+
|
263 |
+
args = parser.parse_args()
|
264 |
+
convert_clipseg_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py
ADDED
@@ -0,0 +1,1477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CLIPSeg model."""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
28 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...utils import (
|
31 |
+
ModelOutput,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
replace_return_docstrings,
|
36 |
+
)
|
37 |
+
from .configuration_clipseg import CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
_CHECKPOINT_FOR_DOC = "CIDAS/clipseg-rd64-refined"
|
44 |
+
|
45 |
+
|
46 |
+
from ..deprecated._archive_maps import CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
47 |
+
|
48 |
+
|
49 |
+
# contrastive loss function, adapted from
|
50 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
51 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
52 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
53 |
+
|
54 |
+
|
55 |
+
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clipseg
|
56 |
+
def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor:
|
57 |
+
caption_loss = contrastive_loss(similarity)
|
58 |
+
image_loss = contrastive_loss(similarity.t())
|
59 |
+
return (caption_loss + image_loss) / 2.0
|
60 |
+
|
61 |
+
|
62 |
+
@dataclass
|
63 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg
|
64 |
+
class CLIPSegOutput(ModelOutput):
|
65 |
+
"""
|
66 |
+
Args:
|
67 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
68 |
+
Contrastive loss for image-text similarity.
|
69 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
70 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
71 |
+
similarity scores.
|
72 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
73 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
74 |
+
similarity scores.
|
75 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
76 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`].
|
77 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
78 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
|
79 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
80 |
+
The output of the [`CLIPSegTextModel`].
|
81 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
82 |
+
The output of the [`CLIPSegVisionModel`].
|
83 |
+
"""
|
84 |
+
|
85 |
+
loss: Optional[torch.FloatTensor] = None
|
86 |
+
logits_per_image: torch.FloatTensor = None
|
87 |
+
logits_per_text: torch.FloatTensor = None
|
88 |
+
text_embeds: torch.FloatTensor = None
|
89 |
+
image_embeds: torch.FloatTensor = None
|
90 |
+
text_model_output: BaseModelOutputWithPooling = None
|
91 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
92 |
+
|
93 |
+
def to_tuple(self) -> Tuple[Any]:
|
94 |
+
return tuple(
|
95 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
96 |
+
for k in self.keys()
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
@dataclass
|
101 |
+
class CLIPSegDecoderOutput(ModelOutput):
|
102 |
+
"""
|
103 |
+
Args:
|
104 |
+
logits (`torch.FloatTensor` of shape `(batch_size, height, width)`):
|
105 |
+
Classification scores for each pixel.
|
106 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
107 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
108 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
109 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
110 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
111 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
112 |
+
the self-attention heads.
|
113 |
+
"""
|
114 |
+
|
115 |
+
logits: torch.FloatTensor = None
|
116 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
117 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
118 |
+
|
119 |
+
|
120 |
+
@dataclass
|
121 |
+
class CLIPSegImageSegmentationOutput(ModelOutput):
|
122 |
+
"""
|
123 |
+
Args:
|
124 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
125 |
+
Contrastive loss for image-text similarity.
|
126 |
+
...
|
127 |
+
vision_model_output (`BaseModelOutputWithPooling`):
|
128 |
+
The output of the [`CLIPSegVisionModel`].
|
129 |
+
"""
|
130 |
+
|
131 |
+
loss: Optional[torch.FloatTensor] = None
|
132 |
+
logits: torch.FloatTensor = None
|
133 |
+
conditional_embeddings: torch.FloatTensor = None
|
134 |
+
pooled_output: torch.FloatTensor = None
|
135 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
136 |
+
decoder_output: CLIPSegDecoderOutput = None
|
137 |
+
|
138 |
+
def to_tuple(self) -> Tuple[Any]:
|
139 |
+
return tuple(
|
140 |
+
self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple()
|
141 |
+
for k in self.keys()
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
class CLIPSegVisionEmbeddings(nn.Module):
|
146 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg
|
147 |
+
def __init__(self, config: CLIPSegVisionConfig):
|
148 |
+
super().__init__()
|
149 |
+
self.config = config
|
150 |
+
self.embed_dim = config.hidden_size
|
151 |
+
self.image_size = config.image_size
|
152 |
+
self.patch_size = config.patch_size
|
153 |
+
|
154 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
155 |
+
|
156 |
+
self.patch_embedding = nn.Conv2d(
|
157 |
+
in_channels=config.num_channels,
|
158 |
+
out_channels=self.embed_dim,
|
159 |
+
kernel_size=self.patch_size,
|
160 |
+
stride=self.patch_size,
|
161 |
+
bias=False,
|
162 |
+
)
|
163 |
+
|
164 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
165 |
+
self.num_positions = self.num_patches + 1
|
166 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
167 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
168 |
+
|
169 |
+
def interpolate_position_embeddings(self, new_size):
|
170 |
+
if len(new_size) != 2:
|
171 |
+
raise ValueError("new_size should consist of 2 values")
|
172 |
+
|
173 |
+
num_patches_one_direction = int(self.num_patches**0.5)
|
174 |
+
# we interpolate the position embeddings in 2D
|
175 |
+
a = self.position_embedding.weight[1:].T.view(
|
176 |
+
1, self.config.hidden_size, num_patches_one_direction, num_patches_one_direction
|
177 |
+
)
|
178 |
+
b = (
|
179 |
+
nn.functional.interpolate(a, new_size, mode="bicubic", align_corners=False)
|
180 |
+
.squeeze(0)
|
181 |
+
.view(self.config.hidden_size, new_size[0] * new_size[1])
|
182 |
+
.T
|
183 |
+
)
|
184 |
+
result = torch.cat([self.position_embedding.weight[:1], b])
|
185 |
+
|
186 |
+
return result
|
187 |
+
|
188 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
189 |
+
batch_size = pixel_values.shape[0]
|
190 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
191 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
192 |
+
|
193 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
194 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
195 |
+
|
196 |
+
if embeddings.shape[1] != self.num_positions:
|
197 |
+
new_shape = int(math.sqrt(embeddings.shape[1] - 1))
|
198 |
+
embeddings = embeddings + self.interpolate_position_embeddings((new_shape, new_shape))
|
199 |
+
embeddings = embeddings.to(embeddings.dtype)
|
200 |
+
else:
|
201 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
202 |
+
|
203 |
+
return embeddings
|
204 |
+
|
205 |
+
|
206 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->CLIPSeg
|
207 |
+
class CLIPSegTextEmbeddings(nn.Module):
|
208 |
+
def __init__(self, config: CLIPSegTextConfig):
|
209 |
+
super().__init__()
|
210 |
+
embed_dim = config.hidden_size
|
211 |
+
|
212 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
213 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
214 |
+
|
215 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
216 |
+
self.register_buffer(
|
217 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
218 |
+
)
|
219 |
+
|
220 |
+
def forward(
|
221 |
+
self,
|
222 |
+
input_ids: Optional[torch.LongTensor] = None,
|
223 |
+
position_ids: Optional[torch.LongTensor] = None,
|
224 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
225 |
+
) -> torch.Tensor:
|
226 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
227 |
+
|
228 |
+
if position_ids is None:
|
229 |
+
position_ids = self.position_ids[:, :seq_length]
|
230 |
+
|
231 |
+
if inputs_embeds is None:
|
232 |
+
inputs_embeds = self.token_embedding(input_ids)
|
233 |
+
|
234 |
+
position_embeddings = self.position_embedding(position_ids)
|
235 |
+
embeddings = inputs_embeds + position_embeddings
|
236 |
+
|
237 |
+
return embeddings
|
238 |
+
|
239 |
+
|
240 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->CLIPSeg
|
241 |
+
class CLIPSegAttention(nn.Module):
|
242 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
243 |
+
|
244 |
+
def __init__(self, config):
|
245 |
+
super().__init__()
|
246 |
+
self.config = config
|
247 |
+
self.embed_dim = config.hidden_size
|
248 |
+
self.num_heads = config.num_attention_heads
|
249 |
+
self.head_dim = self.embed_dim // self.num_heads
|
250 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
251 |
+
raise ValueError(
|
252 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
253 |
+
f" {self.num_heads})."
|
254 |
+
)
|
255 |
+
self.scale = self.head_dim**-0.5
|
256 |
+
self.dropout = config.attention_dropout
|
257 |
+
|
258 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
259 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
260 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
261 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
262 |
+
|
263 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
264 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
265 |
+
|
266 |
+
def forward(
|
267 |
+
self,
|
268 |
+
hidden_states: torch.Tensor,
|
269 |
+
attention_mask: Optional[torch.Tensor] = None,
|
270 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
271 |
+
output_attentions: Optional[bool] = False,
|
272 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
273 |
+
"""Input shape: Batch x Time x Channel"""
|
274 |
+
|
275 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
276 |
+
|
277 |
+
# get query proj
|
278 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
279 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
280 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
281 |
+
|
282 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
283 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
284 |
+
key_states = key_states.view(*proj_shape)
|
285 |
+
value_states = value_states.view(*proj_shape)
|
286 |
+
|
287 |
+
src_len = key_states.size(1)
|
288 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
289 |
+
|
290 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
291 |
+
raise ValueError(
|
292 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
293 |
+
f" {attn_weights.size()}"
|
294 |
+
)
|
295 |
+
|
296 |
+
# apply the causal_attention_mask first
|
297 |
+
if causal_attention_mask is not None:
|
298 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
299 |
+
raise ValueError(
|
300 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
301 |
+
f" {causal_attention_mask.size()}"
|
302 |
+
)
|
303 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
304 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
305 |
+
|
306 |
+
if attention_mask is not None:
|
307 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
308 |
+
raise ValueError(
|
309 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
310 |
+
)
|
311 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
312 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
313 |
+
|
314 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
315 |
+
|
316 |
+
if output_attentions:
|
317 |
+
# this operation is a bit akward, but it's required to
|
318 |
+
# make sure that attn_weights keeps its gradient.
|
319 |
+
# In order to do so, attn_weights have to reshaped
|
320 |
+
# twice and have to be reused in the following
|
321 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
322 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
323 |
+
else:
|
324 |
+
attn_weights_reshaped = None
|
325 |
+
|
326 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
327 |
+
|
328 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
329 |
+
|
330 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
331 |
+
raise ValueError(
|
332 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
333 |
+
f" {attn_output.size()}"
|
334 |
+
)
|
335 |
+
|
336 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
337 |
+
attn_output = attn_output.transpose(1, 2)
|
338 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
339 |
+
|
340 |
+
attn_output = self.out_proj(attn_output)
|
341 |
+
|
342 |
+
return attn_output, attn_weights_reshaped
|
343 |
+
|
344 |
+
|
345 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->CLIPSeg
|
346 |
+
class CLIPSegMLP(nn.Module):
|
347 |
+
def __init__(self, config):
|
348 |
+
super().__init__()
|
349 |
+
self.config = config
|
350 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
351 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
352 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
353 |
+
|
354 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
355 |
+
hidden_states = self.fc1(hidden_states)
|
356 |
+
hidden_states = self.activation_fn(hidden_states)
|
357 |
+
hidden_states = self.fc2(hidden_states)
|
358 |
+
return hidden_states
|
359 |
+
|
360 |
+
|
361 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->CLIPSeg
|
362 |
+
class CLIPSegEncoderLayer(nn.Module):
|
363 |
+
def __init__(self, config: CLIPSegConfig):
|
364 |
+
super().__init__()
|
365 |
+
self.embed_dim = config.hidden_size
|
366 |
+
self.self_attn = CLIPSegAttention(config)
|
367 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
368 |
+
self.mlp = CLIPSegMLP(config)
|
369 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
370 |
+
|
371 |
+
def forward(
|
372 |
+
self,
|
373 |
+
hidden_states: torch.Tensor,
|
374 |
+
attention_mask: torch.Tensor,
|
375 |
+
causal_attention_mask: torch.Tensor,
|
376 |
+
output_attentions: Optional[bool] = False,
|
377 |
+
) -> Tuple[torch.FloatTensor]:
|
378 |
+
"""
|
379 |
+
Args:
|
380 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
381 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
382 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
383 |
+
`(config.encoder_attention_heads,)`.
|
384 |
+
output_attentions (`bool`, *optional*):
|
385 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
386 |
+
returned tensors for more detail.
|
387 |
+
"""
|
388 |
+
residual = hidden_states
|
389 |
+
|
390 |
+
hidden_states = self.layer_norm1(hidden_states)
|
391 |
+
hidden_states, attn_weights = self.self_attn(
|
392 |
+
hidden_states=hidden_states,
|
393 |
+
attention_mask=attention_mask,
|
394 |
+
causal_attention_mask=causal_attention_mask,
|
395 |
+
output_attentions=output_attentions,
|
396 |
+
)
|
397 |
+
hidden_states = residual + hidden_states
|
398 |
+
|
399 |
+
residual = hidden_states
|
400 |
+
hidden_states = self.layer_norm2(hidden_states)
|
401 |
+
hidden_states = self.mlp(hidden_states)
|
402 |
+
hidden_states = residual + hidden_states
|
403 |
+
|
404 |
+
outputs = (hidden_states,)
|
405 |
+
|
406 |
+
if output_attentions:
|
407 |
+
outputs += (attn_weights,)
|
408 |
+
|
409 |
+
return outputs
|
410 |
+
|
411 |
+
|
412 |
+
class CLIPSegPreTrainedModel(PreTrainedModel):
|
413 |
+
"""
|
414 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
415 |
+
models.
|
416 |
+
"""
|
417 |
+
|
418 |
+
config_class = CLIPSegConfig
|
419 |
+
base_model_prefix = "clip"
|
420 |
+
supports_gradient_checkpointing = True
|
421 |
+
|
422 |
+
def _init_weights(self, module):
|
423 |
+
"""Initialize the weights"""
|
424 |
+
factor = self.config.initializer_factor
|
425 |
+
if isinstance(module, CLIPSegTextEmbeddings):
|
426 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
427 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
428 |
+
elif isinstance(module, CLIPSegVisionEmbeddings):
|
429 |
+
factor = self.config.initializer_factor
|
430 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
431 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
432 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
433 |
+
elif isinstance(module, CLIPSegAttention):
|
434 |
+
factor = self.config.initializer_factor
|
435 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
436 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
437 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
438 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
439 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
440 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
441 |
+
elif isinstance(module, CLIPSegMLP):
|
442 |
+
factor = self.config.initializer_factor
|
443 |
+
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
444 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
445 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
446 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
447 |
+
elif isinstance(module, CLIPSegModel):
|
448 |
+
nn.init.normal_(
|
449 |
+
module.text_projection.weight,
|
450 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
451 |
+
)
|
452 |
+
nn.init.normal_(
|
453 |
+
module.visual_projection.weight,
|
454 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
455 |
+
)
|
456 |
+
|
457 |
+
if isinstance(module, nn.LayerNorm):
|
458 |
+
module.bias.data.zero_()
|
459 |
+
module.weight.data.fill_(1.0)
|
460 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
461 |
+
module.bias.data.zero_()
|
462 |
+
|
463 |
+
|
464 |
+
CLIPSEG_START_DOCSTRING = r"""
|
465 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
466 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
467 |
+
behavior.
|
468 |
+
|
469 |
+
Parameters:
|
470 |
+
config ([`CLIPSegConfig`]): Model configuration class with all the parameters of the model.
|
471 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
472 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
473 |
+
"""
|
474 |
+
|
475 |
+
CLIPSEG_TEXT_INPUTS_DOCSTRING = r"""
|
476 |
+
Args:
|
477 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
478 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
479 |
+
it.
|
480 |
+
|
481 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
482 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
483 |
+
|
484 |
+
[What are input IDs?](../glossary#input-ids)
|
485 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
486 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
487 |
+
|
488 |
+
- 1 for tokens that are **not masked**,
|
489 |
+
- 0 for tokens that are **masked**.
|
490 |
+
|
491 |
+
[What are attention masks?](../glossary#attention-mask)
|
492 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
493 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
494 |
+
config.max_position_embeddings - 1]`.
|
495 |
+
|
496 |
+
[What are position IDs?](../glossary#position-ids)
|
497 |
+
output_attentions (`bool`, *optional*):
|
498 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
499 |
+
tensors for more detail.
|
500 |
+
output_hidden_states (`bool`, *optional*):
|
501 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
502 |
+
more detail.
|
503 |
+
return_dict (`bool`, *optional*):
|
504 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
505 |
+
"""
|
506 |
+
|
507 |
+
CLIPSEG_VISION_INPUTS_DOCSTRING = r"""
|
508 |
+
Args:
|
509 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
510 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
511 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
512 |
+
output_attentions (`bool`, *optional*):
|
513 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
514 |
+
tensors for more detail.
|
515 |
+
output_hidden_states (`bool`, *optional*):
|
516 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
517 |
+
more detail.
|
518 |
+
return_dict (`bool`, *optional*):
|
519 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
520 |
+
"""
|
521 |
+
|
522 |
+
CLIPSEG_INPUTS_DOCSTRING = r"""
|
523 |
+
Args:
|
524 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
525 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
526 |
+
it.
|
527 |
+
|
528 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
529 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
530 |
+
|
531 |
+
[What are input IDs?](../glossary#input-ids)
|
532 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
533 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
534 |
+
|
535 |
+
- 1 for tokens that are **not masked**,
|
536 |
+
- 0 for tokens that are **masked**.
|
537 |
+
|
538 |
+
[What are attention masks?](../glossary#attention-mask)
|
539 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
540 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
541 |
+
config.max_position_embeddings - 1]`.
|
542 |
+
|
543 |
+
[What are position IDs?](../glossary#position-ids)
|
544 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
545 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
546 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
547 |
+
return_loss (`bool`, *optional*):
|
548 |
+
Whether or not to return the contrastive loss.
|
549 |
+
output_attentions (`bool`, *optional*):
|
550 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
551 |
+
tensors for more detail.
|
552 |
+
output_hidden_states (`bool`, *optional*):
|
553 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
554 |
+
more detail.
|
555 |
+
return_dict (`bool`, *optional*):
|
556 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
557 |
+
"""
|
558 |
+
|
559 |
+
|
560 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->CLIPSeg
|
561 |
+
class CLIPSegEncoder(nn.Module):
|
562 |
+
"""
|
563 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
564 |
+
[`CLIPSegEncoderLayer`].
|
565 |
+
|
566 |
+
Args:
|
567 |
+
config: CLIPSegConfig
|
568 |
+
"""
|
569 |
+
|
570 |
+
def __init__(self, config: CLIPSegConfig):
|
571 |
+
super().__init__()
|
572 |
+
self.config = config
|
573 |
+
self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
574 |
+
self.gradient_checkpointing = False
|
575 |
+
|
576 |
+
def forward(
|
577 |
+
self,
|
578 |
+
inputs_embeds,
|
579 |
+
attention_mask: Optional[torch.Tensor] = None,
|
580 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
581 |
+
output_attentions: Optional[bool] = None,
|
582 |
+
output_hidden_states: Optional[bool] = None,
|
583 |
+
return_dict: Optional[bool] = None,
|
584 |
+
) -> Union[Tuple, BaseModelOutput]:
|
585 |
+
r"""
|
586 |
+
Args:
|
587 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
588 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
589 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
590 |
+
than the model's internal embedding lookup matrix.
|
591 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
592 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
593 |
+
|
594 |
+
- 1 for tokens that are **not masked**,
|
595 |
+
- 0 for tokens that are **masked**.
|
596 |
+
|
597 |
+
[What are attention masks?](../glossary#attention-mask)
|
598 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
599 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
600 |
+
|
601 |
+
- 1 for tokens that are **not masked**,
|
602 |
+
- 0 for tokens that are **masked**.
|
603 |
+
|
604 |
+
[What are attention masks?](../glossary#attention-mask)
|
605 |
+
output_attentions (`bool`, *optional*):
|
606 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
607 |
+
returned tensors for more detail.
|
608 |
+
output_hidden_states (`bool`, *optional*):
|
609 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
610 |
+
for more detail.
|
611 |
+
return_dict (`bool`, *optional*):
|
612 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
613 |
+
"""
|
614 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
615 |
+
output_hidden_states = (
|
616 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
617 |
+
)
|
618 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
619 |
+
|
620 |
+
encoder_states = () if output_hidden_states else None
|
621 |
+
all_attentions = () if output_attentions else None
|
622 |
+
|
623 |
+
hidden_states = inputs_embeds
|
624 |
+
for idx, encoder_layer in enumerate(self.layers):
|
625 |
+
if output_hidden_states:
|
626 |
+
encoder_states = encoder_states + (hidden_states,)
|
627 |
+
if self.gradient_checkpointing and self.training:
|
628 |
+
layer_outputs = self._gradient_checkpointing_func(
|
629 |
+
encoder_layer.__call__,
|
630 |
+
hidden_states,
|
631 |
+
attention_mask,
|
632 |
+
causal_attention_mask,
|
633 |
+
output_attentions,
|
634 |
+
)
|
635 |
+
else:
|
636 |
+
layer_outputs = encoder_layer(
|
637 |
+
hidden_states,
|
638 |
+
attention_mask,
|
639 |
+
causal_attention_mask,
|
640 |
+
output_attentions=output_attentions,
|
641 |
+
)
|
642 |
+
|
643 |
+
hidden_states = layer_outputs[0]
|
644 |
+
|
645 |
+
if output_attentions:
|
646 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
647 |
+
|
648 |
+
if output_hidden_states:
|
649 |
+
encoder_states = encoder_states + (hidden_states,)
|
650 |
+
|
651 |
+
if not return_dict:
|
652 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
653 |
+
return BaseModelOutput(
|
654 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
655 |
+
)
|
656 |
+
|
657 |
+
|
658 |
+
class CLIPSegTextTransformer(nn.Module):
|
659 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.__init__ with CLIP->CLIPSeg
|
660 |
+
def __init__(self, config: CLIPSegTextConfig):
|
661 |
+
super().__init__()
|
662 |
+
self.config = config
|
663 |
+
embed_dim = config.hidden_size
|
664 |
+
self.embeddings = CLIPSegTextEmbeddings(config)
|
665 |
+
self.encoder = CLIPSegEncoder(config)
|
666 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
667 |
+
|
668 |
+
# For `pooled_output` computation
|
669 |
+
self.eos_token_id = config.eos_token_id
|
670 |
+
|
671 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
|
672 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
|
673 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg
|
674 |
+
def forward(
|
675 |
+
self,
|
676 |
+
input_ids: Optional[torch.Tensor] = None,
|
677 |
+
attention_mask: Optional[torch.Tensor] = None,
|
678 |
+
position_ids: Optional[torch.Tensor] = None,
|
679 |
+
output_attentions: Optional[bool] = None,
|
680 |
+
output_hidden_states: Optional[bool] = None,
|
681 |
+
return_dict: Optional[bool] = None,
|
682 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
683 |
+
r"""
|
684 |
+
Returns:
|
685 |
+
|
686 |
+
"""
|
687 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
688 |
+
output_hidden_states = (
|
689 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
690 |
+
)
|
691 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
692 |
+
|
693 |
+
if input_ids is None:
|
694 |
+
raise ValueError("You have to specify input_ids")
|
695 |
+
|
696 |
+
input_shape = input_ids.size()
|
697 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
698 |
+
|
699 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
700 |
+
|
701 |
+
# CLIPSeg's text model uses causal mask, prepare it here.
|
702 |
+
# https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324
|
703 |
+
causal_attention_mask = _create_4d_causal_attention_mask(
|
704 |
+
input_shape, hidden_states.dtype, device=hidden_states.device
|
705 |
+
)
|
706 |
+
# expand attention_mask
|
707 |
+
if attention_mask is not None:
|
708 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
709 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
710 |
+
|
711 |
+
encoder_outputs = self.encoder(
|
712 |
+
inputs_embeds=hidden_states,
|
713 |
+
attention_mask=attention_mask,
|
714 |
+
causal_attention_mask=causal_attention_mask,
|
715 |
+
output_attentions=output_attentions,
|
716 |
+
output_hidden_states=output_hidden_states,
|
717 |
+
return_dict=return_dict,
|
718 |
+
)
|
719 |
+
|
720 |
+
last_hidden_state = encoder_outputs[0]
|
721 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
722 |
+
|
723 |
+
if self.eos_token_id == 2:
|
724 |
+
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
725 |
+
# A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
726 |
+
# ------------------------------------------------------------
|
727 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
728 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
729 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
730 |
+
pooled_output = last_hidden_state[
|
731 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
732 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
|
733 |
+
]
|
734 |
+
else:
|
735 |
+
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
736 |
+
pooled_output = last_hidden_state[
|
737 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
738 |
+
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
739 |
+
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
|
740 |
+
.int()
|
741 |
+
.argmax(dim=-1),
|
742 |
+
]
|
743 |
+
|
744 |
+
if not return_dict:
|
745 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
746 |
+
|
747 |
+
return BaseModelOutputWithPooling(
|
748 |
+
last_hidden_state=last_hidden_state,
|
749 |
+
pooler_output=pooled_output,
|
750 |
+
hidden_states=encoder_outputs.hidden_states,
|
751 |
+
attentions=encoder_outputs.attentions,
|
752 |
+
)
|
753 |
+
|
754 |
+
|
755 |
+
class CLIPSegTextModel(CLIPSegPreTrainedModel):
|
756 |
+
config_class = CLIPSegTextConfig
|
757 |
+
|
758 |
+
_no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"]
|
759 |
+
|
760 |
+
def __init__(self, config: CLIPSegTextConfig):
|
761 |
+
super().__init__(config)
|
762 |
+
self.text_model = CLIPSegTextTransformer(config)
|
763 |
+
# Initialize weights and apply final processing
|
764 |
+
self.post_init()
|
765 |
+
|
766 |
+
def get_input_embeddings(self) -> nn.Module:
|
767 |
+
return self.text_model.embeddings.token_embedding
|
768 |
+
|
769 |
+
def set_input_embeddings(self, value):
|
770 |
+
self.text_model.embeddings.token_embedding = value
|
771 |
+
|
772 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
|
773 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
|
774 |
+
def forward(
|
775 |
+
self,
|
776 |
+
input_ids: Optional[torch.Tensor] = None,
|
777 |
+
attention_mask: Optional[torch.Tensor] = None,
|
778 |
+
position_ids: Optional[torch.Tensor] = None,
|
779 |
+
output_attentions: Optional[bool] = None,
|
780 |
+
output_hidden_states: Optional[bool] = None,
|
781 |
+
return_dict: Optional[bool] = None,
|
782 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
783 |
+
r"""
|
784 |
+
Returns:
|
785 |
+
|
786 |
+
Examples:
|
787 |
+
|
788 |
+
```python
|
789 |
+
>>> from transformers import AutoTokenizer, CLIPSegTextModel
|
790 |
+
|
791 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
|
792 |
+
>>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined")
|
793 |
+
|
794 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
795 |
+
|
796 |
+
>>> outputs = model(**inputs)
|
797 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
798 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
799 |
+
```"""
|
800 |
+
return self.text_model(
|
801 |
+
input_ids=input_ids,
|
802 |
+
attention_mask=attention_mask,
|
803 |
+
position_ids=position_ids,
|
804 |
+
output_attentions=output_attentions,
|
805 |
+
output_hidden_states=output_hidden_states,
|
806 |
+
return_dict=return_dict,
|
807 |
+
)
|
808 |
+
|
809 |
+
|
810 |
+
class CLIPSegVisionTransformer(nn.Module):
|
811 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIP->CLIPSeg
|
812 |
+
def __init__(self, config: CLIPSegVisionConfig):
|
813 |
+
super().__init__()
|
814 |
+
self.config = config
|
815 |
+
embed_dim = config.hidden_size
|
816 |
+
|
817 |
+
self.embeddings = CLIPSegVisionEmbeddings(config)
|
818 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
819 |
+
self.encoder = CLIPSegEncoder(config)
|
820 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
821 |
+
|
822 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
|
823 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
|
824 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
|
825 |
+
def forward(
|
826 |
+
self,
|
827 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
828 |
+
output_attentions: Optional[bool] = None,
|
829 |
+
output_hidden_states: Optional[bool] = None,
|
830 |
+
return_dict: Optional[bool] = None,
|
831 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
832 |
+
r"""
|
833 |
+
Returns:
|
834 |
+
|
835 |
+
"""
|
836 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
837 |
+
output_hidden_states = (
|
838 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
839 |
+
)
|
840 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
841 |
+
|
842 |
+
if pixel_values is None:
|
843 |
+
raise ValueError("You have to specify pixel_values")
|
844 |
+
|
845 |
+
hidden_states = self.embeddings(pixel_values)
|
846 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
847 |
+
|
848 |
+
encoder_outputs = self.encoder(
|
849 |
+
inputs_embeds=hidden_states,
|
850 |
+
output_attentions=output_attentions,
|
851 |
+
output_hidden_states=output_hidden_states,
|
852 |
+
return_dict=return_dict,
|
853 |
+
)
|
854 |
+
|
855 |
+
last_hidden_state = encoder_outputs[0]
|
856 |
+
pooled_output = last_hidden_state[:, 0, :]
|
857 |
+
pooled_output = self.post_layernorm(pooled_output)
|
858 |
+
|
859 |
+
if not return_dict:
|
860 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
861 |
+
|
862 |
+
return BaseModelOutputWithPooling(
|
863 |
+
last_hidden_state=last_hidden_state,
|
864 |
+
pooler_output=pooled_output,
|
865 |
+
hidden_states=encoder_outputs.hidden_states,
|
866 |
+
attentions=encoder_outputs.attentions,
|
867 |
+
)
|
868 |
+
|
869 |
+
|
870 |
+
class CLIPSegVisionModel(CLIPSegPreTrainedModel):
|
871 |
+
config_class = CLIPSegVisionConfig
|
872 |
+
main_input_name = "pixel_values"
|
873 |
+
|
874 |
+
def __init__(self, config: CLIPSegVisionConfig):
|
875 |
+
super().__init__(config)
|
876 |
+
self.vision_model = CLIPSegVisionTransformer(config)
|
877 |
+
# Initialize weights and apply final processing
|
878 |
+
self.post_init()
|
879 |
+
|
880 |
+
def get_input_embeddings(self) -> nn.Module:
|
881 |
+
return self.vision_model.embeddings.patch_embedding
|
882 |
+
|
883 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
|
884 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
|
885 |
+
def forward(
|
886 |
+
self,
|
887 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
888 |
+
output_attentions: Optional[bool] = None,
|
889 |
+
output_hidden_states: Optional[bool] = None,
|
890 |
+
return_dict: Optional[bool] = None,
|
891 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
892 |
+
r"""
|
893 |
+
Returns:
|
894 |
+
|
895 |
+
Examples:
|
896 |
+
|
897 |
+
```python
|
898 |
+
>>> from PIL import Image
|
899 |
+
>>> import requests
|
900 |
+
>>> from transformers import AutoProcessor, CLIPSegVisionModel
|
901 |
+
|
902 |
+
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
903 |
+
>>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined")
|
904 |
+
|
905 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
906 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
907 |
+
|
908 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
909 |
+
|
910 |
+
>>> outputs = model(**inputs)
|
911 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
912 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
913 |
+
```"""
|
914 |
+
return self.vision_model(
|
915 |
+
pixel_values=pixel_values,
|
916 |
+
output_attentions=output_attentions,
|
917 |
+
output_hidden_states=output_hidden_states,
|
918 |
+
return_dict=return_dict,
|
919 |
+
)
|
920 |
+
|
921 |
+
|
922 |
+
@add_start_docstrings(CLIPSEG_START_DOCSTRING)
|
923 |
+
class CLIPSegModel(CLIPSegPreTrainedModel):
|
924 |
+
config_class = CLIPSegConfig
|
925 |
+
|
926 |
+
def __init__(self, config: CLIPSegConfig):
|
927 |
+
super().__init__(config)
|
928 |
+
|
929 |
+
if not isinstance(config.text_config, CLIPSegTextConfig):
|
930 |
+
raise ValueError(
|
931 |
+
"config.text_config is expected to be of type CLIPSegTextConfig but is of type"
|
932 |
+
f" {type(config.text_config)}."
|
933 |
+
)
|
934 |
+
|
935 |
+
if not isinstance(config.vision_config, CLIPSegVisionConfig):
|
936 |
+
raise ValueError(
|
937 |
+
"config.vision_config is expected to be of type CLIPSegVisionConfig but is of type"
|
938 |
+
f" {type(config.vision_config)}."
|
939 |
+
)
|
940 |
+
|
941 |
+
text_config = config.text_config
|
942 |
+
vision_config = config.vision_config
|
943 |
+
|
944 |
+
self.projection_dim = config.projection_dim
|
945 |
+
self.text_embed_dim = text_config.hidden_size
|
946 |
+
self.vision_embed_dim = vision_config.hidden_size
|
947 |
+
|
948 |
+
self.text_model = CLIPSegTextTransformer(text_config)
|
949 |
+
self.vision_model = CLIPSegVisionTransformer(vision_config)
|
950 |
+
|
951 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
952 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
953 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
954 |
+
|
955 |
+
# Initialize weights and apply final processing
|
956 |
+
self.post_init()
|
957 |
+
|
958 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
|
959 |
+
def get_text_features(
|
960 |
+
self,
|
961 |
+
input_ids: Optional[torch.Tensor] = None,
|
962 |
+
attention_mask: Optional[torch.Tensor] = None,
|
963 |
+
position_ids: Optional[torch.Tensor] = None,
|
964 |
+
output_attentions: Optional[bool] = None,
|
965 |
+
output_hidden_states: Optional[bool] = None,
|
966 |
+
return_dict: Optional[bool] = None,
|
967 |
+
) -> torch.FloatTensor:
|
968 |
+
r"""
|
969 |
+
Returns:
|
970 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
971 |
+
applying the projection layer to the pooled output of [`CLIPSegTextModel`].
|
972 |
+
|
973 |
+
Examples:
|
974 |
+
|
975 |
+
```python
|
976 |
+
>>> from transformers import AutoTokenizer, CLIPSegModel
|
977 |
+
|
978 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
|
979 |
+
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
|
980 |
+
|
981 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
982 |
+
>>> text_features = model.get_text_features(**inputs)
|
983 |
+
```"""
|
984 |
+
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
|
985 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
986 |
+
output_hidden_states = (
|
987 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
988 |
+
)
|
989 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
990 |
+
|
991 |
+
text_outputs = self.text_model(
|
992 |
+
input_ids=input_ids,
|
993 |
+
attention_mask=attention_mask,
|
994 |
+
position_ids=position_ids,
|
995 |
+
output_attentions=output_attentions,
|
996 |
+
output_hidden_states=output_hidden_states,
|
997 |
+
return_dict=return_dict,
|
998 |
+
)
|
999 |
+
|
1000 |
+
pooled_output = text_outputs[1]
|
1001 |
+
text_features = self.text_projection(pooled_output)
|
1002 |
+
|
1003 |
+
return text_features
|
1004 |
+
|
1005 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
|
1006 |
+
def get_image_features(
|
1007 |
+
self,
|
1008 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1009 |
+
output_attentions: Optional[bool] = None,
|
1010 |
+
output_hidden_states: Optional[bool] = None,
|
1011 |
+
return_dict: Optional[bool] = None,
|
1012 |
+
) -> torch.FloatTensor:
|
1013 |
+
r"""
|
1014 |
+
Returns:
|
1015 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1016 |
+
applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
|
1017 |
+
|
1018 |
+
Examples:
|
1019 |
+
|
1020 |
+
```python
|
1021 |
+
>>> from PIL import Image
|
1022 |
+
>>> import requests
|
1023 |
+
>>> from transformers import AutoProcessor, CLIPSegModel
|
1024 |
+
|
1025 |
+
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
1026 |
+
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
|
1027 |
+
|
1028 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1029 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1030 |
+
|
1031 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1032 |
+
|
1033 |
+
>>> image_features = model.get_image_features(**inputs)
|
1034 |
+
```"""
|
1035 |
+
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
|
1036 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1037 |
+
output_hidden_states = (
|
1038 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1039 |
+
)
|
1040 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1041 |
+
|
1042 |
+
vision_outputs = self.vision_model(
|
1043 |
+
pixel_values=pixel_values,
|
1044 |
+
output_attentions=output_attentions,
|
1045 |
+
output_hidden_states=output_hidden_states,
|
1046 |
+
return_dict=return_dict,
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1050 |
+
image_features = self.visual_projection(pooled_output)
|
1051 |
+
|
1052 |
+
return image_features
|
1053 |
+
|
1054 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
|
1055 |
+
@replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig)
|
1056 |
+
def forward(
|
1057 |
+
self,
|
1058 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1059 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1060 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1061 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1062 |
+
return_loss: Optional[bool] = None,
|
1063 |
+
output_attentions: Optional[bool] = None,
|
1064 |
+
output_hidden_states: Optional[bool] = None,
|
1065 |
+
return_dict: Optional[bool] = None,
|
1066 |
+
) -> Union[Tuple, CLIPSegOutput]:
|
1067 |
+
r"""
|
1068 |
+
Returns:
|
1069 |
+
|
1070 |
+
Examples:
|
1071 |
+
|
1072 |
+
```python
|
1073 |
+
>>> from PIL import Image
|
1074 |
+
>>> import requests
|
1075 |
+
>>> from transformers import AutoProcessor, CLIPSegModel
|
1076 |
+
|
1077 |
+
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
1078 |
+
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
|
1079 |
+
|
1080 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1081 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1082 |
+
|
1083 |
+
>>> inputs = processor(
|
1084 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1085 |
+
... )
|
1086 |
+
|
1087 |
+
>>> outputs = model(**inputs)
|
1088 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1089 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1090 |
+
```"""
|
1091 |
+
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
|
1092 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1093 |
+
output_hidden_states = (
|
1094 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1095 |
+
)
|
1096 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1097 |
+
|
1098 |
+
vision_outputs = self.vision_model(
|
1099 |
+
pixel_values=pixel_values,
|
1100 |
+
output_attentions=output_attentions,
|
1101 |
+
output_hidden_states=output_hidden_states,
|
1102 |
+
return_dict=return_dict,
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
text_outputs = self.text_model(
|
1106 |
+
input_ids=input_ids,
|
1107 |
+
attention_mask=attention_mask,
|
1108 |
+
position_ids=position_ids,
|
1109 |
+
output_attentions=output_attentions,
|
1110 |
+
output_hidden_states=output_hidden_states,
|
1111 |
+
return_dict=return_dict,
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
image_embeds = vision_outputs[1]
|
1115 |
+
image_embeds = self.visual_projection(image_embeds)
|
1116 |
+
|
1117 |
+
text_embeds = text_outputs[1]
|
1118 |
+
text_embeds = self.text_projection(text_embeds)
|
1119 |
+
|
1120 |
+
# normalized features
|
1121 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1122 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1123 |
+
|
1124 |
+
# cosine similarity as logits
|
1125 |
+
logit_scale = self.logit_scale.exp()
|
1126 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
1127 |
+
logits_per_image = logits_per_text.t()
|
1128 |
+
|
1129 |
+
loss = None
|
1130 |
+
if return_loss:
|
1131 |
+
loss = clipseg_loss(logits_per_text)
|
1132 |
+
|
1133 |
+
if not return_dict:
|
1134 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1135 |
+
return ((loss,) + output) if loss is not None else output
|
1136 |
+
|
1137 |
+
return CLIPSegOutput(
|
1138 |
+
loss=loss,
|
1139 |
+
logits_per_image=logits_per_image,
|
1140 |
+
logits_per_text=logits_per_text,
|
1141 |
+
text_embeds=text_embeds,
|
1142 |
+
image_embeds=image_embeds,
|
1143 |
+
text_model_output=text_outputs,
|
1144 |
+
vision_model_output=vision_outputs,
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
|
1148 |
+
class CLIPSegDecoderLayer(nn.Module):
|
1149 |
+
"""
|
1150 |
+
CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after
|
1151 |
+
self-attention/MLP, rather than before.
|
1152 |
+
"""
|
1153 |
+
|
1154 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer.__init__ with CLIP->CLIPSeg
|
1155 |
+
def __init__(self, config: CLIPSegConfig):
|
1156 |
+
super().__init__()
|
1157 |
+
self.embed_dim = config.hidden_size
|
1158 |
+
self.self_attn = CLIPSegAttention(config)
|
1159 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
1160 |
+
self.mlp = CLIPSegMLP(config)
|
1161 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
1162 |
+
|
1163 |
+
def forward(
|
1164 |
+
self,
|
1165 |
+
hidden_states: torch.Tensor,
|
1166 |
+
attention_mask: torch.Tensor,
|
1167 |
+
causal_attention_mask: torch.Tensor,
|
1168 |
+
output_attentions: Optional[bool] = False,
|
1169 |
+
) -> Tuple[torch.FloatTensor]:
|
1170 |
+
"""
|
1171 |
+
Args:
|
1172 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1173 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
1174 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
1175 |
+
`(config.encoder_attention_heads,)`.
|
1176 |
+
output_attentions (`bool`, *optional*):
|
1177 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1178 |
+
returned tensors for more detail.
|
1179 |
+
"""
|
1180 |
+
residual = hidden_states
|
1181 |
+
|
1182 |
+
hidden_states, attn_weights = self.self_attn(
|
1183 |
+
hidden_states=hidden_states,
|
1184 |
+
attention_mask=attention_mask,
|
1185 |
+
causal_attention_mask=causal_attention_mask,
|
1186 |
+
output_attentions=output_attentions,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
hidden_states = residual + hidden_states
|
1190 |
+
hidden_states = self.layer_norm1(hidden_states)
|
1191 |
+
|
1192 |
+
residual = hidden_states
|
1193 |
+
hidden_states = self.mlp(hidden_states)
|
1194 |
+
hidden_states = residual + hidden_states
|
1195 |
+
hidden_states = self.layer_norm2(hidden_states)
|
1196 |
+
|
1197 |
+
outputs = (hidden_states,)
|
1198 |
+
|
1199 |
+
if output_attentions:
|
1200 |
+
outputs += (attn_weights,)
|
1201 |
+
|
1202 |
+
return outputs
|
1203 |
+
|
1204 |
+
|
1205 |
+
class CLIPSegDecoder(CLIPSegPreTrainedModel):
|
1206 |
+
def __init__(self, config: CLIPSegConfig):
|
1207 |
+
super().__init__(config)
|
1208 |
+
|
1209 |
+
self.conditional_layer = config.conditional_layer
|
1210 |
+
|
1211 |
+
self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim)
|
1212 |
+
self.film_add = nn.Linear(config.projection_dim, config.reduce_dim)
|
1213 |
+
|
1214 |
+
if config.use_complex_transposed_convolution:
|
1215 |
+
transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4)
|
1216 |
+
|
1217 |
+
self.transposed_convolution = nn.Sequential(
|
1218 |
+
nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1),
|
1219 |
+
nn.ReLU(),
|
1220 |
+
nn.ConvTranspose2d(
|
1221 |
+
config.reduce_dim,
|
1222 |
+
config.reduce_dim // 2,
|
1223 |
+
kernel_size=transposed_kernels[0],
|
1224 |
+
stride=transposed_kernels[0],
|
1225 |
+
),
|
1226 |
+
nn.ReLU(),
|
1227 |
+
nn.ConvTranspose2d(
|
1228 |
+
config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1]
|
1229 |
+
),
|
1230 |
+
)
|
1231 |
+
else:
|
1232 |
+
self.transposed_convolution = nn.ConvTranspose2d(
|
1233 |
+
config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
depth = len(config.extract_layers)
|
1237 |
+
self.reduces = nn.ModuleList(
|
1238 |
+
[nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)]
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
decoder_config = copy.deepcopy(config.vision_config)
|
1242 |
+
decoder_config.hidden_size = config.reduce_dim
|
1243 |
+
decoder_config.num_attention_heads = config.decoder_num_attention_heads
|
1244 |
+
decoder_config.intermediate_size = config.decoder_intermediate_size
|
1245 |
+
decoder_config.hidden_act = "relu"
|
1246 |
+
self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))])
|
1247 |
+
|
1248 |
+
def forward(
|
1249 |
+
self,
|
1250 |
+
hidden_states: Tuple[torch.Tensor],
|
1251 |
+
conditional_embeddings: torch.Tensor,
|
1252 |
+
output_attentions: Optional[bool] = None,
|
1253 |
+
output_hidden_states: Optional[bool] = None,
|
1254 |
+
return_dict: Optional[bool] = True,
|
1255 |
+
):
|
1256 |
+
all_hidden_states = () if output_hidden_states else None
|
1257 |
+
all_attentions = () if output_attentions else None
|
1258 |
+
|
1259 |
+
activations = hidden_states[::-1]
|
1260 |
+
|
1261 |
+
output = None
|
1262 |
+
for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)):
|
1263 |
+
if output is not None:
|
1264 |
+
output = reduce(activation) + output
|
1265 |
+
else:
|
1266 |
+
output = reduce(activation)
|
1267 |
+
|
1268 |
+
if i == self.conditional_layer:
|
1269 |
+
output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add(
|
1270 |
+
conditional_embeddings
|
1271 |
+
)
|
1272 |
+
output = output.permute(1, 0, 2)
|
1273 |
+
|
1274 |
+
layer_outputs = layer(
|
1275 |
+
output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions
|
1276 |
+
)
|
1277 |
+
|
1278 |
+
output = layer_outputs[0]
|
1279 |
+
|
1280 |
+
if output_hidden_states:
|
1281 |
+
all_hidden_states += (output,)
|
1282 |
+
|
1283 |
+
if output_attentions:
|
1284 |
+
all_attentions += (layer_outputs[1],)
|
1285 |
+
|
1286 |
+
output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len]
|
1287 |
+
|
1288 |
+
size = int(math.sqrt(output.shape[2]))
|
1289 |
+
|
1290 |
+
batch_size = conditional_embeddings.shape[0]
|
1291 |
+
output = output.view(batch_size, output.shape[1], size, size)
|
1292 |
+
|
1293 |
+
logits = self.transposed_convolution(output).squeeze(1)
|
1294 |
+
|
1295 |
+
if not return_dict:
|
1296 |
+
return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None)
|
1297 |
+
|
1298 |
+
return CLIPSegDecoderOutput(
|
1299 |
+
logits=logits,
|
1300 |
+
hidden_states=all_hidden_states,
|
1301 |
+
attentions=all_attentions,
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
|
1305 |
+
@add_start_docstrings(
|
1306 |
+
"""
|
1307 |
+
CLIPSeg model with a Transformer-based decoder on top for zero-shot and one-shot image segmentation.
|
1308 |
+
""",
|
1309 |
+
CLIPSEG_START_DOCSTRING,
|
1310 |
+
)
|
1311 |
+
class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel):
|
1312 |
+
config_class = CLIPSegConfig
|
1313 |
+
|
1314 |
+
def __init__(self, config: CLIPSegConfig):
|
1315 |
+
super().__init__(config)
|
1316 |
+
|
1317 |
+
self.config = config
|
1318 |
+
|
1319 |
+
self.clip = CLIPSegModel(config)
|
1320 |
+
self.extract_layers = config.extract_layers
|
1321 |
+
|
1322 |
+
self.decoder = CLIPSegDecoder(config)
|
1323 |
+
|
1324 |
+
# Initialize weights and apply final processing
|
1325 |
+
self.post_init()
|
1326 |
+
|
1327 |
+
def get_conditional_embeddings(
|
1328 |
+
self,
|
1329 |
+
batch_size: int = None,
|
1330 |
+
input_ids: Optional[torch.Tensor] = None,
|
1331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1332 |
+
position_ids: Optional[torch.Tensor] = None,
|
1333 |
+
conditional_pixel_values: Optional[torch.Tensor] = None,
|
1334 |
+
):
|
1335 |
+
if input_ids is not None:
|
1336 |
+
# compute conditional embeddings from texts
|
1337 |
+
if len(input_ids) != batch_size:
|
1338 |
+
raise ValueError("Make sure to pass as many prompt texts as there are query images")
|
1339 |
+
with torch.no_grad():
|
1340 |
+
conditional_embeddings = self.clip.get_text_features(
|
1341 |
+
input_ids, attention_mask=attention_mask, position_ids=position_ids
|
1342 |
+
)
|
1343 |
+
elif conditional_pixel_values is not None:
|
1344 |
+
# compute conditional embeddings from images
|
1345 |
+
if len(conditional_pixel_values) != batch_size:
|
1346 |
+
raise ValueError("Make sure to pass as many prompt images as there are query images")
|
1347 |
+
with torch.no_grad():
|
1348 |
+
conditional_embeddings = self.clip.get_image_features(conditional_pixel_values)
|
1349 |
+
else:
|
1350 |
+
raise ValueError(
|
1351 |
+
"Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`"
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
return conditional_embeddings
|
1355 |
+
|
1356 |
+
@add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
|
1357 |
+
@replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig)
|
1358 |
+
def forward(
|
1359 |
+
self,
|
1360 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
1361 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1362 |
+
conditional_pixel_values: Optional[torch.FloatTensor] = None,
|
1363 |
+
conditional_embeddings: Optional[torch.FloatTensor] = None,
|
1364 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1365 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1366 |
+
labels: Optional[torch.LongTensor] = None,
|
1367 |
+
output_attentions: Optional[bool] = None,
|
1368 |
+
output_hidden_states: Optional[bool] = None,
|
1369 |
+
return_dict: Optional[bool] = None,
|
1370 |
+
) -> Union[Tuple, CLIPSegOutput]:
|
1371 |
+
r"""
|
1372 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1373 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1374 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1375 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1376 |
+
|
1377 |
+
Returns:
|
1378 |
+
|
1379 |
+
Examples:
|
1380 |
+
|
1381 |
+
```python
|
1382 |
+
>>> from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
1383 |
+
>>> from PIL import Image
|
1384 |
+
>>> import requests
|
1385 |
+
|
1386 |
+
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
1387 |
+
>>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
1388 |
+
|
1389 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1390 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1391 |
+
>>> texts = ["a cat", "a remote", "a blanket"]
|
1392 |
+
>>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt")
|
1393 |
+
|
1394 |
+
>>> outputs = model(**inputs)
|
1395 |
+
|
1396 |
+
>>> logits = outputs.logits
|
1397 |
+
>>> print(logits.shape)
|
1398 |
+
torch.Size([3, 352, 352])
|
1399 |
+
```"""
|
1400 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1401 |
+
|
1402 |
+
# step 1: forward the query images through the frozen CLIP vision encoder
|
1403 |
+
with torch.no_grad():
|
1404 |
+
vision_outputs = self.clip.vision_model(
|
1405 |
+
pixel_values=pixel_values,
|
1406 |
+
output_attentions=output_attentions,
|
1407 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
1408 |
+
return_dict=return_dict,
|
1409 |
+
)
|
1410 |
+
pooled_output = self.clip.visual_projection(vision_outputs[1])
|
1411 |
+
|
1412 |
+
hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2]
|
1413 |
+
# we add +1 here as the hidden states also include the initial embeddings
|
1414 |
+
activations = [hidden_states[i + 1] for i in self.extract_layers]
|
1415 |
+
|
1416 |
+
# update vision_outputs
|
1417 |
+
if return_dict:
|
1418 |
+
vision_outputs = BaseModelOutputWithPooling(
|
1419 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1420 |
+
pooler_output=vision_outputs.pooler_output,
|
1421 |
+
hidden_states=vision_outputs.hidden_states if output_hidden_states else None,
|
1422 |
+
attentions=vision_outputs.attentions,
|
1423 |
+
)
|
1424 |
+
else:
|
1425 |
+
vision_outputs = (
|
1426 |
+
vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs
|
1427 |
+
)
|
1428 |
+
|
1429 |
+
# step 2: compute conditional embeddings, either from text, images or an own provided embedding
|
1430 |
+
if conditional_embeddings is None:
|
1431 |
+
conditional_embeddings = self.get_conditional_embeddings(
|
1432 |
+
batch_size=pixel_values.shape[0],
|
1433 |
+
input_ids=input_ids,
|
1434 |
+
attention_mask=attention_mask,
|
1435 |
+
position_ids=position_ids,
|
1436 |
+
conditional_pixel_values=conditional_pixel_values,
|
1437 |
+
)
|
1438 |
+
else:
|
1439 |
+
if conditional_embeddings.shape[0] != pixel_values.shape[0]:
|
1440 |
+
raise ValueError(
|
1441 |
+
"Make sure to pass as many conditional embeddings as there are query images in the batch"
|
1442 |
+
)
|
1443 |
+
if conditional_embeddings.shape[1] != self.config.projection_dim:
|
1444 |
+
raise ValueError(
|
1445 |
+
"Make sure that the feature dimension of the conditional embeddings matches"
|
1446 |
+
" `config.projection_dim`."
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
# step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks
|
1450 |
+
decoder_outputs = self.decoder(
|
1451 |
+
activations,
|
1452 |
+
conditional_embeddings,
|
1453 |
+
output_attentions=output_attentions,
|
1454 |
+
output_hidden_states=output_hidden_states,
|
1455 |
+
return_dict=return_dict,
|
1456 |
+
)
|
1457 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
1458 |
+
|
1459 |
+
loss = None
|
1460 |
+
if labels is not None:
|
1461 |
+
# move labels to the correct device to enable PP
|
1462 |
+
labels = labels.to(logits.device)
|
1463 |
+
loss_fn = nn.BCEWithLogitsLoss()
|
1464 |
+
loss = loss_fn(logits, labels)
|
1465 |
+
|
1466 |
+
if not return_dict:
|
1467 |
+
output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs)
|
1468 |
+
return ((loss,) + output) if loss is not None else output
|
1469 |
+
|
1470 |
+
return CLIPSegImageSegmentationOutput(
|
1471 |
+
loss=loss,
|
1472 |
+
logits=logits,
|
1473 |
+
conditional_embeddings=conditional_embeddings,
|
1474 |
+
pooled_output=pooled_output,
|
1475 |
+
vision_model_output=vision_outputs,
|
1476 |
+
decoder_output=decoder_outputs,
|
1477 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/processing_clipseg.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for CLIPSeg
|
17 |
+
"""
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
from ...tokenization_utils_base import BatchEncoding
|
23 |
+
|
24 |
+
|
25 |
+
class CLIPSegProcessor(ProcessorMixin):
|
26 |
+
r"""
|
27 |
+
Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor.
|
28 |
+
|
29 |
+
[`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the
|
30 |
+
[`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
image_processor ([`ViTImageProcessor`], *optional*):
|
34 |
+
The image processor is a required input.
|
35 |
+
tokenizer ([`CLIPTokenizerFast`], *optional*):
|
36 |
+
The tokenizer is a required input.
|
37 |
+
"""
|
38 |
+
|
39 |
+
attributes = ["image_processor", "tokenizer"]
|
40 |
+
image_processor_class = "ViTImageProcessor"
|
41 |
+
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
|
42 |
+
|
43 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
44 |
+
feature_extractor = None
|
45 |
+
if "feature_extractor" in kwargs:
|
46 |
+
warnings.warn(
|
47 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
48 |
+
" instead.",
|
49 |
+
FutureWarning,
|
50 |
+
)
|
51 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
52 |
+
|
53 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
54 |
+
if image_processor is None:
|
55 |
+
raise ValueError("You need to specify an `image_processor`.")
|
56 |
+
if tokenizer is None:
|
57 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
58 |
+
|
59 |
+
super().__init__(image_processor, tokenizer)
|
60 |
+
|
61 |
+
def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs):
|
62 |
+
"""
|
63 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
64 |
+
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
|
65 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
66 |
+
ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of
|
67 |
+
the above two methods for more information.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
71 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
72 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
73 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
74 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
75 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
76 |
+
tensor. Both channels-first and channels-last formats are supported.
|
77 |
+
visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
78 |
+
The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
|
79 |
+
NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
|
80 |
+
(C, H, W), where C is a number of channels, H and W are image height and width.
|
81 |
+
|
82 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
83 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
84 |
+
|
85 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
86 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
87 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
88 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
92 |
+
|
93 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
94 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
95 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
96 |
+
`None`).
|
97 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
98 |
+
"""
|
99 |
+
if text is None and visual_prompt is None and images is None:
|
100 |
+
raise ValueError("You have to specify either text, visual prompt or images.")
|
101 |
+
|
102 |
+
if text is not None and visual_prompt is not None:
|
103 |
+
raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.")
|
104 |
+
|
105 |
+
if text is not None:
|
106 |
+
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
107 |
+
|
108 |
+
if visual_prompt is not None:
|
109 |
+
prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs)
|
110 |
+
|
111 |
+
if images is not None:
|
112 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
113 |
+
|
114 |
+
if visual_prompt is not None and images is not None:
|
115 |
+
encoding = {
|
116 |
+
"pixel_values": image_features.pixel_values,
|
117 |
+
"conditional_pixel_values": prompt_features.pixel_values,
|
118 |
+
}
|
119 |
+
return encoding
|
120 |
+
elif text is not None and images is not None:
|
121 |
+
encoding["pixel_values"] = image_features.pixel_values
|
122 |
+
return encoding
|
123 |
+
elif text is not None:
|
124 |
+
return encoding
|
125 |
+
elif visual_prompt is not None:
|
126 |
+
encoding = {
|
127 |
+
"conditional_pixel_values": prompt_features.pixel_values,
|
128 |
+
}
|
129 |
+
return encoding
|
130 |
+
else:
|
131 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
132 |
+
|
133 |
+
def batch_decode(self, *args, **kwargs):
|
134 |
+
"""
|
135 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
136 |
+
refer to the docstring of this method for more information.
|
137 |
+
"""
|
138 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
139 |
+
|
140 |
+
def decode(self, *args, **kwargs):
|
141 |
+
"""
|
142 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
143 |
+
the docstring of this method for more information.
|
144 |
+
"""
|
145 |
+
return self.tokenizer.decode(*args, **kwargs)
|
146 |
+
|
147 |
+
@property
|
148 |
+
def feature_extractor_class(self):
|
149 |
+
warnings.warn(
|
150 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
151 |
+
FutureWarning,
|
152 |
+
)
|
153 |
+
return self.image_processor_class
|
154 |
+
|
155 |
+
@property
|
156 |
+
def feature_extractor(self):
|
157 |
+
warnings.warn(
|
158 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
159 |
+
FutureWarning,
|
160 |
+
)
|
161 |
+
return self.image_processor
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from transformers.utils import WEIGHTS_NAME
|
21 |
+
|
22 |
+
|
23 |
+
DIALOGPT_MODELS = ["small", "medium", "large"]
|
24 |
+
|
25 |
+
OLD_KEY = "lm_head.decoder.weight"
|
26 |
+
NEW_KEY = "lm_head.weight"
|
27 |
+
|
28 |
+
|
29 |
+
def convert_dialogpt_checkpoint(checkpoint_path: str, pytorch_dump_folder_path: str):
|
30 |
+
d = torch.load(checkpoint_path)
|
31 |
+
d[NEW_KEY] = d.pop(OLD_KEY)
|
32 |
+
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
|
33 |
+
torch.save(d, os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME))
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
parser = argparse.ArgumentParser()
|
38 |
+
parser.add_argument("--dialogpt_path", default=".", type=str)
|
39 |
+
args = parser.parse_args()
|
40 |
+
for MODEL in DIALOGPT_MODELS:
|
41 |
+
checkpoint_path = os.path.join(args.dialogpt_path, f"{MODEL}_ft.pkl")
|
42 |
+
pytorch_dump_folder_path = f"./DialoGPT-{MODEL}"
|
43 |
+
convert_dialogpt_checkpoint(
|
44 |
+
checkpoint_path,
|
45 |
+
pytorch_dump_folder_path,
|
46 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_sentencepiece_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["tokenization_gpt_sw3"] = ["GPTSw3Tokenizer"]
|
29 |
+
|
30 |
+
|
31 |
+
if TYPE_CHECKING:
|
32 |
+
try:
|
33 |
+
if not is_sentencepiece_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
from .tokenization_gpt_sw3 import GPTSw3Tokenizer
|
39 |
+
|
40 |
+
else:
|
41 |
+
import sys
|
42 |
+
|
43 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (700 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Inc. team and the AI-Sweden team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
""" Convert GPT-SW3 megatron checkpoints to pytorch"""
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import os
|
18 |
+
from os.path import isfile
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import GPT2Config
|
23 |
+
|
24 |
+
|
25 |
+
def recursive_print(name, val, spaces=0):
|
26 |
+
# Format the message.
|
27 |
+
if name is None:
|
28 |
+
msg = None
|
29 |
+
else:
|
30 |
+
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
|
31 |
+
msg = fmt.format(name)
|
32 |
+
|
33 |
+
# Print and recurse (if needed).
|
34 |
+
if isinstance(val, dict):
|
35 |
+
if msg is not None:
|
36 |
+
print(msg)
|
37 |
+
for k in val.keys():
|
38 |
+
recursive_print(k, val[k], spaces + 2)
|
39 |
+
elif isinstance(val, torch.Tensor):
|
40 |
+
print(msg, ":", val.size())
|
41 |
+
else:
|
42 |
+
print(msg, ":", val)
|
43 |
+
|
44 |
+
|
45 |
+
def fix_query_key_value_ordering(param, num_splits, num_heads, hidden_size):
|
46 |
+
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
|
47 |
+
# for compatibility with later versions of NVIDIA Megatron-LM.
|
48 |
+
# The inverse operation is performed inside Megatron-LM to read checkpoints:
|
49 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
|
50 |
+
# If param is the weight tensor of the self-attention block, the returned tensor
|
51 |
+
# will have to be transposed one more time to be read by HuggingFace GPT2.
|
52 |
+
input_shape = param.size()
|
53 |
+
# other versions store [num_heads * num_splits * hidden_size, :]
|
54 |
+
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
|
55 |
+
param = param.view(*saved_shape)
|
56 |
+
param = param.transpose(0, 1).contiguous()
|
57 |
+
param = param.view(*input_shape)
|
58 |
+
return param
|
59 |
+
|
60 |
+
|
61 |
+
def convert_megatron_checkpoint(sd_megatron, config):
|
62 |
+
"""
|
63 |
+
Converts a Megatron checkpoint to a HuggingFace GPT-SW3 checkpoint.
|
64 |
+
"""
|
65 |
+
n_positions = config.n_positions
|
66 |
+
layers = config.n_layer
|
67 |
+
vocab_size = config.vocab_size
|
68 |
+
heads = config.n_head
|
69 |
+
hidden_size_per_head = config.n_embd // config.n_head
|
70 |
+
|
71 |
+
word_embeddings = sd_megatron["model.language_model.embedding.word_embeddings.weight"][:vocab_size, :]
|
72 |
+
sd_hf = {
|
73 |
+
"transformer.wte.weight": word_embeddings,
|
74 |
+
"transformer.wpe.weight": sd_megatron["model.language_model.embedding.position_embeddings.weight"],
|
75 |
+
"transformer.ln_f.weight": sd_megatron["model.language_model.encoder.final_layernorm.weight"],
|
76 |
+
"transformer.ln_f.bias": sd_megatron["model.language_model.encoder.final_layernorm.bias"],
|
77 |
+
}
|
78 |
+
|
79 |
+
pf = "model.language_model.encoder.layers."
|
80 |
+
for i in range(layers):
|
81 |
+
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.bool))
|
82 |
+
causal_mask = causal_mask.view(1, 1, n_positions, n_positions)
|
83 |
+
sd_hf[f"transformer.h.{i}.attn.bias"] = causal_mask
|
84 |
+
sd_hf[f"transformer.h.{i}.attn.masked_bias"] = torch.tensor(-1e4, dtype=torch.bfloat16)
|
85 |
+
|
86 |
+
sd_hf[f"transformer.h.{i}.ln_1.weight"] = sd_megatron[f"{pf}{i}.input_layernorm.weight"]
|
87 |
+
sd_hf[f"transformer.h.{i}.ln_1.bias"] = sd_megatron[f"{pf}{i}.input_layernorm.bias"]
|
88 |
+
|
89 |
+
val1 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.weight"]
|
90 |
+
val1 = fix_query_key_value_ordering(val1, 3, heads, hidden_size_per_head)
|
91 |
+
sd_hf[f"transformer.h.{i}.attn.c_attn.weight"] = val1.transpose(0, 1).contiguous()
|
92 |
+
|
93 |
+
val2 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.bias"]
|
94 |
+
val2 = fix_query_key_value_ordering(val2, 3, heads, hidden_size_per_head)
|
95 |
+
sd_hf[f"transformer.h.{i}.attn.c_attn.bias"] = val2
|
96 |
+
|
97 |
+
sd_hf[f"transformer.h.{i}.attn.c_proj.weight"] = sd_megatron[f"{pf}{i}.self_attention.dense.weight"].transpose(
|
98 |
+
0, 1
|
99 |
+
)
|
100 |
+
sd_hf[f"transformer.h.{i}.attn.c_proj.bias"] = sd_megatron[f"{pf}{i}.self_attention.dense.bias"]
|
101 |
+
sd_hf[f"transformer.h.{i}.ln_2.weight"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.weight"]
|
102 |
+
sd_hf[f"transformer.h.{i}.ln_2.bias"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.bias"]
|
103 |
+
sd_hf[f"transformer.h.{i}.mlp.c_fc.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.weight"].transpose(0, 1)
|
104 |
+
sd_hf[f"transformer.h.{i}.mlp.c_fc.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.bias"]
|
105 |
+
sd_hf[f"transformer.h.{i}.mlp.c_proj.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.weight"].transpose(
|
106 |
+
0, 1
|
107 |
+
)
|
108 |
+
sd_hf[f"transformer.h.{i}.mlp.c_proj.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.bias"]
|
109 |
+
|
110 |
+
# For LM head, transformers' wants the matrix to weight embeddings.
|
111 |
+
sd_hf["lm_head.weight"] = word_embeddings
|
112 |
+
|
113 |
+
return sd_hf
|
114 |
+
|
115 |
+
|
116 |
+
def copy_config(config_hf, config_megatron):
|
117 |
+
"""Copy the config from Megatron to hf."""
|
118 |
+
config_hf.vocab_size = 64000
|
119 |
+
config_hf.n_positions = config_megatron["encoder_seq_length"]
|
120 |
+
config_hf.n_embd = config_megatron["hidden_size"]
|
121 |
+
config_hf.n_layer = config_megatron["num_layers"]
|
122 |
+
config_hf.n_head = config_megatron["num_attention_heads"]
|
123 |
+
config_hf.n_inner = config_megatron["ffn_hidden_size"]
|
124 |
+
config_hf.activation_function = "gelu"
|
125 |
+
config_hf.resid_pdrop = 0.1
|
126 |
+
config_hf.embd_pdrop = 0.1
|
127 |
+
config_hf.attn_pdrop = 0.1
|
128 |
+
config_hf.layer_norm_epsilon = config_megatron["layernorm_epsilon"] # 1e-5
|
129 |
+
config_hf.initializer_range = config_megatron["init_method_std"] # 0.02
|
130 |
+
config_hf.apply_query_key_layer_scaling = config_megatron["apply_query_key_layer_scaling"] # True
|
131 |
+
config_hf.normalize_attention_scores = True
|
132 |
+
config_hf.use_cache = True
|
133 |
+
|
134 |
+
# This identifies the 6.7B (7B) model which uses a different tokenizer
|
135 |
+
if config_megatron["hidden_size"] == 4096:
|
136 |
+
config_hf.bos_token_id = 1 # <|endoftext|>
|
137 |
+
config_hf.eos_token_id = 1 # <|endoftext|>
|
138 |
+
config_hf.pad_token_id = 0 # <unk>
|
139 |
+
else:
|
140 |
+
config_hf.bos_token_id = 2 # <s>
|
141 |
+
config_hf.eos_token_id = 3 # <|endoftext|>
|
142 |
+
config_hf.pad_token_id = 0 # <pad>
|
143 |
+
|
144 |
+
return config_hf
|
145 |
+
|
146 |
+
|
147 |
+
def main(args):
|
148 |
+
print(args)
|
149 |
+
|
150 |
+
checkpoint_path = args.checkpoint_path
|
151 |
+
save_path = args.save_path
|
152 |
+
if isfile(checkpoint_path):
|
153 |
+
raise FileNotFoundError(f"ERROR! could not find file {checkpoint_path}")
|
154 |
+
|
155 |
+
# Load the model.
|
156 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
157 |
+
|
158 |
+
# Load the config.
|
159 |
+
config_megatron = checkpoint["hyper_parameters"]["cfg"]
|
160 |
+
config_hf = GPT2Config()
|
161 |
+
config_hf = copy_config(config_hf=config_hf, config_megatron=config_megatron)
|
162 |
+
config_hf.architectures = ["GPT2LMHeadModel"]
|
163 |
+
|
164 |
+
sd_megatron = checkpoint["state_dict"]
|
165 |
+
|
166 |
+
# Convert.
|
167 |
+
print("Converting")
|
168 |
+
sd_hf = convert_megatron_checkpoint(sd_megatron, config_hf)
|
169 |
+
|
170 |
+
# Print the structure of converted state dict.
|
171 |
+
if args.print_checkpoint_structure:
|
172 |
+
recursive_print(None, sd_hf)
|
173 |
+
|
174 |
+
config_hf.tokenizer_class = "GPTSw3Tokenizer"
|
175 |
+
|
176 |
+
# Store the config to file.
|
177 |
+
print("Saving config")
|
178 |
+
config_hf.save_pretrained(save_path)
|
179 |
+
|
180 |
+
# Store the state_dict to file.
|
181 |
+
output_checkpoint_file = os.path.join(save_path, "pytorch_model.bin")
|
182 |
+
print(f'Saving checkpoint to "{output_checkpoint_file}"')
|
183 |
+
torch.save(sd_hf, output_checkpoint_file)
|
184 |
+
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
parser = argparse.ArgumentParser()
|
188 |
+
parser.add_argument(
|
189 |
+
"--checkpoint_path",
|
190 |
+
type=str,
|
191 |
+
required=True,
|
192 |
+
help="e.g. megatron_gpt--val_loss=2.42-step=38000-consumed_samples=54720000",
|
193 |
+
)
|
194 |
+
parser.add_argument("--save_path", type=str, required=True, help="e.g. /home/user/gpt-sw3/hf")
|
195 |
+
parser.add_argument("--print-checkpoint-structure", action="store_true")
|
196 |
+
_args = parser.parse_args()
|
197 |
+
main(_args)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The tokenizer used by the GPT-SW3 models."""
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import unicodedata
|
6 |
+
from shutil import copyfile
|
7 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import sentencepiece as spm
|
10 |
+
|
11 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
12 |
+
from ...utils import is_torch_available, logging
|
13 |
+
|
14 |
+
|
15 |
+
if is_torch_available():
|
16 |
+
import torch
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
21 |
+
|
22 |
+
|
23 |
+
class GPTSw3Tokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct an GPTSw3 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
26 |
+
|
27 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
28 |
+
this superclass for more information regarding those methods.
|
29 |
+
|
30 |
+
Example usage:
|
31 |
+
```python
|
32 |
+
>>> from transformers import GPTSw3Tokenizer
|
33 |
+
|
34 |
+
>>> tokenizer = GPTSw3Tokenizer.from_pretrained("AI-Sweden-Models/gpt-sw3-126m")
|
35 |
+
>>> tokenizer("Svenska är kul!")["input_ids"]
|
36 |
+
[1814, 377, 3617, 63504]
|
37 |
+
```
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
42 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
43 |
+
do_lower_case (`bool`, *optional*, defaults to `False`):
|
44 |
+
Whether or not to lowercase the input when tokenizing.
|
45 |
+
remove_space (`bool`, *optional*, defaults to `False`):
|
46 |
+
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
|
47 |
+
keep_accents (`bool`, *optional*, defaults to `False`):
|
48 |
+
Whether or not to keep accents when tokenizing.
|
49 |
+
pad_token (`str`, *optional*):
|
50 |
+
The token used for padding, for example when batching sequences of different lengths. If not provided, will
|
51 |
+
default to '<pad>' or '<unk>' depending on model size.
|
52 |
+
unk_token (`str`, *optional*):
|
53 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
54 |
+
token instead. If not provided, will default to '<unk>'.
|
55 |
+
eos_token (`str`, *optional*):
|
56 |
+
The end of sequence token seen during pretraining. If not provided, will default to '<|endoftext|>'
|
57 |
+
bos_token (`str`, *optional*):
|
58 |
+
The beginning of sequence token that can be used for downstream task, was not seen during pretraining. If
|
59 |
+
not provided, will default to '<s>' or '<|endoftext|>', depending on model size.
|
60 |
+
sp_model_kwargs (`dict`, *optional*):
|
61 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
62 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
63 |
+
to set:
|
64 |
+
|
65 |
+
- `enable_sampling`: Enable subword regularization.
|
66 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
67 |
+
|
68 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
69 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
70 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
71 |
+
using forward-filtering-and-backward-sampling algorithm.
|
72 |
+
|
73 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
74 |
+
BPE-dropout.
|
75 |
+
|
76 |
+
Attributes:
|
77 |
+
sp_model (`SentencePieceProcessor`):
|
78 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
79 |
+
whitespaces (`set`):
|
80 |
+
The whitespaces that are replaced in the whitespace normalization in preprocessing.
|
81 |
+
non_printing_characters_re (`Pattern`):
|
82 |
+
The compiled regular expression to remove non-printing characters in preprocessing.
|
83 |
+
"""
|
84 |
+
|
85 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
86 |
+
model_input_names = ["input_ids", "attention_mask"]
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
vocab_file,
|
91 |
+
do_lower_case=False,
|
92 |
+
remove_space=False,
|
93 |
+
keep_accents=False,
|
94 |
+
pad_token=None,
|
95 |
+
unk_token=None,
|
96 |
+
eos_token=None,
|
97 |
+
bos_token=None,
|
98 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
99 |
+
**kwargs,
|
100 |
+
) -> None:
|
101 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
102 |
+
|
103 |
+
name_or_path = kwargs.get("name_or_path")
|
104 |
+
if name_or_path is None:
|
105 |
+
logger.warning(
|
106 |
+
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
|
107 |
+
" you are testing the model, this can safely be ignored"
|
108 |
+
)
|
109 |
+
name_or_path = "None"
|
110 |
+
|
111 |
+
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
|
112 |
+
eos_token = "<|endoftext|>" if eos_token is None else eos_token
|
113 |
+
unk_token = "<unk>" if unk_token is None else unk_token
|
114 |
+
if "gpt-sw3-7b" in name_or_path:
|
115 |
+
pad_token = unk_token if pad_token is None else pad_token
|
116 |
+
bos_token = eos_token if bos_token is None else bos_token
|
117 |
+
else:
|
118 |
+
pad_token = "<pad>" if pad_token is None else pad_token
|
119 |
+
bos_token = "<s>" if bos_token is None else bos_token
|
120 |
+
|
121 |
+
self.do_lower_case = do_lower_case
|
122 |
+
self.remove_space = remove_space
|
123 |
+
self.keep_accents = keep_accents
|
124 |
+
self.vocab_file = vocab_file
|
125 |
+
|
126 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
127 |
+
self.sp_model.Load(vocab_file)
|
128 |
+
|
129 |
+
# Used for whitespace normalization in input texts
|
130 |
+
# fmt : off
|
131 |
+
self.whitespaces = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
|
132 |
+
# fmt : on
|
133 |
+
|
134 |
+
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
|
135 |
+
self.non_printing_characters_re = re.compile(
|
136 |
+
f"[{''.join(map(chr, list(range(0, 9)) + list(range(11, 32)) + list(range(127, 160)) + [160, 173, 8203]))}]"
|
137 |
+
)
|
138 |
+
|
139 |
+
super().__init__(
|
140 |
+
do_lower_case=do_lower_case,
|
141 |
+
remove_space=remove_space,
|
142 |
+
keep_accents=keep_accents,
|
143 |
+
bos_token=bos_token,
|
144 |
+
eos_token=eos_token,
|
145 |
+
unk_token=unk_token,
|
146 |
+
pad_token=pad_token,
|
147 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
148 |
+
**kwargs,
|
149 |
+
)
|
150 |
+
|
151 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__getstate__
|
152 |
+
def __getstate__(self):
|
153 |
+
state = self.__dict__.copy()
|
154 |
+
state["sp_model"] = None
|
155 |
+
return state
|
156 |
+
|
157 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__setstate__
|
158 |
+
def __setstate__(self, d):
|
159 |
+
self.__dict__ = d
|
160 |
+
|
161 |
+
# for backward compatibility
|
162 |
+
if not hasattr(self, "sp_model_kwargs"):
|
163 |
+
self.sp_model_kwargs = {}
|
164 |
+
|
165 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
166 |
+
self.sp_model.Load(self.vocab_file)
|
167 |
+
|
168 |
+
@property
|
169 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
|
170 |
+
def vocab_size(self) -> int:
|
171 |
+
return len(self.sp_model)
|
172 |
+
|
173 |
+
def preprocess_text(self, text: str) -> str:
|
174 |
+
"""
|
175 |
+
Returns the preprocessed text. This procedure is identical to what was used when training the tokenizer.
|
176 |
+
"""
|
177 |
+
|
178 |
+
# Remove non-printing characters
|
179 |
+
text = self.non_printing_characters_re.sub("", text)
|
180 |
+
|
181 |
+
# Normalize whitespaces
|
182 |
+
text = "".join([char if char not in self.whitespaces else " " for char in text])
|
183 |
+
|
184 |
+
# NFC Unicode normalization
|
185 |
+
text = unicodedata.normalize("NFC", text)
|
186 |
+
return text
|
187 |
+
|
188 |
+
def _tokenize(self, text: str, **kwargs) -> List[str]:
|
189 |
+
text = self.preprocess_text(text)
|
190 |
+
return self.sp_model.encode(text, out_type=str)
|
191 |
+
|
192 |
+
def _convert_token_to_id(self, token: str) -> int:
|
193 |
+
"""Converts a token (str) to an id (int) using the vocab."""
|
194 |
+
return self.sp_model.PieceToId(token)
|
195 |
+
|
196 |
+
def _convert_id_to_token(self, index: int) -> str:
|
197 |
+
"""Converts an index (int) to a token (str) using the vocab."""
|
198 |
+
return self.sp_model.IdToPiece(index)
|
199 |
+
|
200 |
+
@staticmethod
|
201 |
+
def clean_up_tokenization(out_string: str) -> str:
|
202 |
+
"""Returns the input string, this function is overridden to remove the default clean up."""
|
203 |
+
return out_string
|
204 |
+
|
205 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
206 |
+
"""Converts a sequence of tokens (strings) to a single string. Special tokens remain intact."""
|
207 |
+
current_sub_tokens = []
|
208 |
+
out_string = ""
|
209 |
+
prev_is_special = False
|
210 |
+
for token in tokens:
|
211 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
212 |
+
if token in self.all_special_tokens:
|
213 |
+
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
|
214 |
+
if not prev_is_special:
|
215 |
+
out_string += " "
|
216 |
+
|
217 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
218 |
+
prev_is_special = True
|
219 |
+
current_sub_tokens = []
|
220 |
+
else:
|
221 |
+
current_sub_tokens.append(token)
|
222 |
+
prev_is_special = False
|
223 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
224 |
+
|
225 |
+
return out_string
|
226 |
+
|
227 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.get_vocab
|
228 |
+
def get_vocab(self) -> Dict[str, int]:
|
229 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
230 |
+
vocab.update(self.added_tokens_encoder)
|
231 |
+
return vocab
|
232 |
+
|
233 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.save_vocabulary
|
234 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
235 |
+
if not os.path.isdir(save_directory):
|
236 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
237 |
+
return
|
238 |
+
out_vocab_file = os.path.join(
|
239 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
240 |
+
)
|
241 |
+
|
242 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
243 |
+
copyfile(self.vocab_file, out_vocab_file)
|
244 |
+
elif not os.path.isfile(self.vocab_file):
|
245 |
+
with open(out_vocab_file, "wb") as fi:
|
246 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
247 |
+
fi.write(content_spiece_model)
|
248 |
+
|
249 |
+
return (out_vocab_file,)
|
250 |
+
|
251 |
+
def encode_fast(
|
252 |
+
self, text: Union[str, List[str]], return_tensors: Union[str, bool] = False
|
253 |
+
) -> Union[List[int], List[List[int]], "torch.Tensor"]:
|
254 |
+
"""
|
255 |
+
Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced
|
256 |
+
functionality but is often much faster.
|
257 |
+
|
258 |
+
Does NOT handle special tokens correctly, these can manually be added as ids afterwards.
|
259 |
+
|
260 |
+
Does NOT support padding, these can manually be added as ids afterwards.
|
261 |
+
|
262 |
+
Use default HuggingFace tokenization methods for full functionality.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
text (`str` or `List[str]`): One or several text(s) to convert to token ids.
|
266 |
+
return_tensors (`str` or `bool`): Returns PyTorch tensors if set to True or "pt"
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
`List[int]`, `List[List[int]]`, or `torch.Tensor`: The encoded text(s) as token ids.
|
270 |
+
"""
|
271 |
+
|
272 |
+
if isinstance(text, str):
|
273 |
+
text = self.preprocess_text(text)
|
274 |
+
token_ids = self.sp_model.encode(text)
|
275 |
+
else:
|
276 |
+
text = [self.preprocess_text(t) for t in text]
|
277 |
+
token_ids = self.sp_model.encode(text)
|
278 |
+
|
279 |
+
if return_tensors is True or return_tensors == "pt":
|
280 |
+
token_ids = torch.tensor(token_ids)
|
281 |
+
|
282 |
+
return token_ids
|
283 |
+
|
284 |
+
def decode_fast(self, token_ids: Union[int, List[int]]) -> str:
|
285 |
+
"""
|
286 |
+
Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced
|
287 |
+
functionality but is often much faster.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
token_ids (`int` or `List[int]`): Encoded token or text as token id(s).
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
`str`: Decoded text
|
294 |
+
"""
|
295 |
+
|
296 |
+
return self.sp_model.decode(token_ids)
|
297 |
+
|
298 |
+
@property
|
299 |
+
def default_chat_template(self):
|
300 |
+
"""
|
301 |
+
This chat template formats messages like an instant messenger chat log, with "User:" and "Bot:" strings
|
302 |
+
preceding messages. BOS tokens are added between all messages.
|
303 |
+
"""
|
304 |
+
logger.warning_once(
|
305 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
306 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
307 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
308 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
309 |
+
)
|
310 |
+
return (
|
311 |
+
"{{ eos_token }}{{ bos_token }}"
|
312 |
+
"{% for message in messages %}"
|
313 |
+
"{% if message['role'] == 'user' %}{{ 'User: ' + message['content']}}"
|
314 |
+
"{% else %}{{ 'Bot: ' + message['content']}}{% endif %}"
|
315 |
+
"{{ message['text'] }}{{ bos_token }}"
|
316 |
+
"{% endfor %}"
|
317 |
+
"Bot:"
|
318 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_graphormer"] = [
|
30 |
+
"GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
31 |
+
"GraphormerForGraphClassification",
|
32 |
+
"GraphormerModel",
|
33 |
+
"GraphormerPreTrainedModel",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
if TYPE_CHECKING:
|
38 |
+
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
from .modeling_graphormer import (
|
47 |
+
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
48 |
+
GraphormerForGraphClassification,
|
49 |
+
GraphormerModel,
|
50 |
+
GraphormerPreTrainedModel,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
else:
|
55 |
+
import sys
|
56 |
+
|
57 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (996 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc
ADDED
Binary file (4.75 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc
ADDED
Binary file (9.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/modeling_graphormer.cpython-310.pyc
ADDED
Binary file (25.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation and HuggingFace
|
2 |
+
# Licensed under the MIT License.
|
3 |
+
|
4 |
+
import cython
|
5 |
+
|
6 |
+
cimport numpy
|
7 |
+
from cython.parallel cimport parallel, prange
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
|
12 |
+
# Reduce this number if matrices are too big for large graphs
|
13 |
+
UNREACHABLE_NODE_DISTANCE = 510
|
14 |
+
|
15 |
+
def floyd_warshall(adjacency_matrix):
|
16 |
+
"""
|
17 |
+
Applies the Floyd-Warshall algorithm to the adjacency matrix, to compute the
|
18 |
+
shortest paths distance between all nodes, up to UNREACHABLE_NODE_DISTANCE.
|
19 |
+
"""
|
20 |
+
(nrows, ncols) = adjacency_matrix.shape
|
21 |
+
assert nrows == ncols
|
22 |
+
cdef unsigned int n = nrows
|
23 |
+
|
24 |
+
adj_mat_copy = adjacency_matrix.astype(np.int32, order='C', casting='safe', copy=True)
|
25 |
+
assert adj_mat_copy.flags['C_CONTIGUOUS']
|
26 |
+
cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] M = adj_mat_copy
|
27 |
+
cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] path = -1 * np.ones([n, n], dtype=np.int32)
|
28 |
+
|
29 |
+
cdef unsigned int i, j, k
|
30 |
+
cdef numpy.int32_t M_ij, M_ik, cost_ikkj
|
31 |
+
cdef numpy.int32_t* M_ptr = &M[0,0]
|
32 |
+
cdef numpy.int32_t* M_i_ptr
|
33 |
+
cdef numpy.int32_t* M_k_ptr
|
34 |
+
|
35 |
+
# set unreachable nodes distance to UNREACHABLE_NODE_DISTANCE
|
36 |
+
for i in range(n):
|
37 |
+
for j in range(n):
|
38 |
+
if i == j:
|
39 |
+
M[i][j] = 0
|
40 |
+
elif M[i][j] == 0:
|
41 |
+
M[i][j] = UNREACHABLE_NODE_DISTANCE
|
42 |
+
|
43 |
+
# floyed algo
|
44 |
+
for k in range(n):
|
45 |
+
M_k_ptr = M_ptr + n*k
|
46 |
+
for i in range(n):
|
47 |
+
M_i_ptr = M_ptr + n*i
|
48 |
+
M_ik = M_i_ptr[k]
|
49 |
+
for j in range(n):
|
50 |
+
cost_ikkj = M_ik + M_k_ptr[j]
|
51 |
+
M_ij = M_i_ptr[j]
|
52 |
+
if M_ij > cost_ikkj:
|
53 |
+
M_i_ptr[j] = cost_ikkj
|
54 |
+
path[i][j] = k
|
55 |
+
|
56 |
+
# set unreachable path to UNREACHABLE_NODE_DISTANCE
|
57 |
+
for i in range(n):
|
58 |
+
for j in range(n):
|
59 |
+
if M[i][j] >= UNREACHABLE_NODE_DISTANCE:
|
60 |
+
path[i][j] = UNREACHABLE_NODE_DISTANCE
|
61 |
+
M[i][j] = UNREACHABLE_NODE_DISTANCE
|
62 |
+
|
63 |
+
return M, path
|
64 |
+
|
65 |
+
|
66 |
+
def get_all_edges(path, i, j):
|
67 |
+
"""
|
68 |
+
Recursive function to compute all possible paths between two nodes from the graph adjacency matrix.
|
69 |
+
"""
|
70 |
+
cdef int k = path[i][j]
|
71 |
+
if k == -1:
|
72 |
+
return []
|
73 |
+
else:
|
74 |
+
return get_all_edges(path, i, k) + [k] + get_all_edges(path, k, j)
|
75 |
+
|
76 |
+
|
77 |
+
def gen_edge_input(max_dist, path, edge_feat):
|
78 |
+
"""
|
79 |
+
Generates the full edge feature and adjacency matrix.
|
80 |
+
Shape: num_nodes * num_nodes * max_distance_between_nodes * num_edge_features
|
81 |
+
Dim 1 is the input node, dim 2 the output node of the edge, dim 3 the depth of the edge, dim 4 the feature
|
82 |
+
"""
|
83 |
+
(nrows, ncols) = path.shape
|
84 |
+
assert nrows == ncols
|
85 |
+
cdef unsigned int n = nrows
|
86 |
+
cdef unsigned int max_dist_copy = max_dist
|
87 |
+
|
88 |
+
path_copy = path.astype(long, order='C', casting='safe', copy=True)
|
89 |
+
edge_feat_copy = edge_feat.astype(long, order='C', casting='safe', copy=True)
|
90 |
+
assert path_copy.flags['C_CONTIGUOUS']
|
91 |
+
assert edge_feat_copy.flags['C_CONTIGUOUS']
|
92 |
+
|
93 |
+
cdef numpy.ndarray[numpy.int32_t, ndim=4, mode='c'] edge_fea_all = -1 * np.ones([n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32)
|
94 |
+
cdef unsigned int i, j, k, num_path, cur
|
95 |
+
|
96 |
+
for i in range(n):
|
97 |
+
for j in range(n):
|
98 |
+
if i == j:
|
99 |
+
continue
|
100 |
+
if path_copy[i][j] == UNREACHABLE_NODE_DISTANCE:
|
101 |
+
continue
|
102 |
+
path = [i] + get_all_edges(path_copy, i, j) + [j]
|
103 |
+
num_path = len(path) - 1
|
104 |
+
for k in range(num_path):
|
105 |
+
edge_fea_all[i, j, k, :] = edge_feat_copy[path[k], path[k+1], :]
|
106 |
+
|
107 |
+
return edge_fea_all
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation and HuggingFace
|
2 |
+
# Licensed under the MIT License.
|
3 |
+
|
4 |
+
from typing import Any, Dict, List, Mapping
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ...utils import is_cython_available, requires_backends
|
10 |
+
|
11 |
+
|
12 |
+
if is_cython_available():
|
13 |
+
import pyximport
|
14 |
+
|
15 |
+
pyximport.install(setup_args={"include_dirs": np.get_include()})
|
16 |
+
from . import algos_graphormer # noqa E402
|
17 |
+
|
18 |
+
|
19 |
+
def convert_to_single_emb(x, offset: int = 512):
|
20 |
+
feature_num = x.shape[1] if len(x.shape) > 1 else 1
|
21 |
+
feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64)
|
22 |
+
x = x + feature_offset
|
23 |
+
return x
|
24 |
+
|
25 |
+
|
26 |
+
def preprocess_item(item, keep_features=True):
|
27 |
+
requires_backends(preprocess_item, ["cython"])
|
28 |
+
|
29 |
+
if keep_features and "edge_attr" in item.keys(): # edge_attr
|
30 |
+
edge_attr = np.asarray(item["edge_attr"], dtype=np.int64)
|
31 |
+
else:
|
32 |
+
edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all
|
33 |
+
|
34 |
+
if keep_features and "node_feat" in item.keys(): # input_nodes
|
35 |
+
node_feature = np.asarray(item["node_feat"], dtype=np.int64)
|
36 |
+
else:
|
37 |
+
node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all
|
38 |
+
|
39 |
+
edge_index = np.asarray(item["edge_index"], dtype=np.int64)
|
40 |
+
|
41 |
+
input_nodes = convert_to_single_emb(node_feature) + 1
|
42 |
+
num_nodes = item["num_nodes"]
|
43 |
+
|
44 |
+
if len(edge_attr.shape) == 1:
|
45 |
+
edge_attr = edge_attr[:, None]
|
46 |
+
attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64)
|
47 |
+
attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1
|
48 |
+
|
49 |
+
# node adj matrix [num_nodes, num_nodes] bool
|
50 |
+
adj = np.zeros([num_nodes, num_nodes], dtype=bool)
|
51 |
+
adj[edge_index[0], edge_index[1]] = True
|
52 |
+
|
53 |
+
shortest_path_result, path = algos_graphormer.floyd_warshall(adj)
|
54 |
+
max_dist = np.amax(shortest_path_result)
|
55 |
+
|
56 |
+
input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type)
|
57 |
+
attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token
|
58 |
+
|
59 |
+
# combine
|
60 |
+
item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding
|
61 |
+
item["attn_bias"] = attn_bias
|
62 |
+
item["attn_edge_type"] = attn_edge_type
|
63 |
+
item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding
|
64 |
+
item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding
|
65 |
+
item["out_degree"] = item["in_degree"] # for undirected graph
|
66 |
+
item["input_edges"] = input_edges + 1 # we shift all indices by one for padding
|
67 |
+
if "labels" not in item:
|
68 |
+
item["labels"] = item["y"]
|
69 |
+
|
70 |
+
return item
|
71 |
+
|
72 |
+
|
73 |
+
class GraphormerDataCollator:
|
74 |
+
def __init__(self, spatial_pos_max=20, on_the_fly_processing=False):
|
75 |
+
if not is_cython_available():
|
76 |
+
raise ImportError("Graphormer preprocessing needs Cython (pyximport)")
|
77 |
+
|
78 |
+
self.spatial_pos_max = spatial_pos_max
|
79 |
+
self.on_the_fly_processing = on_the_fly_processing
|
80 |
+
|
81 |
+
def __call__(self, features: List[dict]) -> Dict[str, Any]:
|
82 |
+
if self.on_the_fly_processing:
|
83 |
+
features = [preprocess_item(i) for i in features]
|
84 |
+
|
85 |
+
if not isinstance(features[0], Mapping):
|
86 |
+
features = [vars(f) for f in features]
|
87 |
+
batch = {}
|
88 |
+
|
89 |
+
max_node_num = max(len(i["input_nodes"]) for i in features)
|
90 |
+
node_feat_size = len(features[0]["input_nodes"][0])
|
91 |
+
edge_feat_size = len(features[0]["attn_edge_type"][0][0])
|
92 |
+
max_dist = max(len(i["input_edges"][0][0]) for i in features)
|
93 |
+
edge_input_size = len(features[0]["input_edges"][0][0][0])
|
94 |
+
batch_size = len(features)
|
95 |
+
|
96 |
+
batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float)
|
97 |
+
batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long)
|
98 |
+
batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long)
|
99 |
+
batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long)
|
100 |
+
batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long)
|
101 |
+
batch["input_edges"] = torch.zeros(
|
102 |
+
batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long
|
103 |
+
)
|
104 |
+
|
105 |
+
for ix, f in enumerate(features):
|
106 |
+
for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]:
|
107 |
+
f[k] = torch.tensor(f[k])
|
108 |
+
|
109 |
+
if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0:
|
110 |
+
f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf")
|
111 |
+
|
112 |
+
batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"]
|
113 |
+
batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[
|
114 |
+
"attn_edge_type"
|
115 |
+
]
|
116 |
+
batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"]
|
117 |
+
batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"]
|
118 |
+
batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"]
|
119 |
+
batch["input_edges"][
|
120 |
+
ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], :
|
121 |
+
] = f["input_edges"]
|
122 |
+
|
123 |
+
batch["out_degree"] = batch["in_degree"]
|
124 |
+
|
125 |
+
sample = features[0]["labels"]
|
126 |
+
if len(sample) == 1: # one task
|
127 |
+
if isinstance(sample[0], float): # regression
|
128 |
+
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
|
129 |
+
else: # binary classification
|
130 |
+
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
|
131 |
+
else: # multi task classification, left to float to keep the NaNs
|
132 |
+
batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0))
|
133 |
+
|
134 |
+
return batch
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Graphormer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class GraphormerConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an
|
30 |
+
Graphormer model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the Graphormer
|
32 |
+
[graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
num_classes (`int`, *optional*, defaults to 1):
|
40 |
+
Number of target classes or labels, set to n for binary classification of n tasks.
|
41 |
+
num_atoms (`int`, *optional*, defaults to 512*9):
|
42 |
+
Number of node types in the graphs.
|
43 |
+
num_edges (`int`, *optional*, defaults to 512*3):
|
44 |
+
Number of edges types in the graph.
|
45 |
+
num_in_degree (`int`, *optional*, defaults to 512):
|
46 |
+
Number of in degrees types in the input graphs.
|
47 |
+
num_out_degree (`int`, *optional*, defaults to 512):
|
48 |
+
Number of out degrees types in the input graphs.
|
49 |
+
num_edge_dis (`int`, *optional*, defaults to 128):
|
50 |
+
Number of edge dis in the input graphs.
|
51 |
+
multi_hop_max_dist (`int`, *optional*, defaults to 20):
|
52 |
+
Maximum distance of multi hop edges between two nodes.
|
53 |
+
spatial_pos_max (`int`, *optional*, defaults to 1024):
|
54 |
+
Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and
|
55 |
+
collation.
|
56 |
+
edge_type (`str`, *optional*, defaults to multihop):
|
57 |
+
Type of edge relation chosen.
|
58 |
+
max_nodes (`int`, *optional*, defaults to 512):
|
59 |
+
Maximum number of nodes which can be parsed for the input graphs.
|
60 |
+
share_input_output_embed (`bool`, *optional*, defaults to `False`):
|
61 |
+
Shares the embedding layer between encoder and decoder - careful, True is not implemented.
|
62 |
+
num_layers (`int`, *optional*, defaults to 12):
|
63 |
+
Number of layers.
|
64 |
+
embedding_dim (`int`, *optional*, defaults to 768):
|
65 |
+
Dimension of the embedding layer in encoder.
|
66 |
+
ffn_embedding_dim (`int`, *optional*, defaults to 768):
|
67 |
+
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
|
68 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
69 |
+
Number of attention heads in the encoder.
|
70 |
+
self_attention (`bool`, *optional*, defaults to `True`):
|
71 |
+
Model is self attentive (False not implemented).
|
72 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
73 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
74 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
75 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
76 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
77 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
78 |
+
The dropout probability for the attention weights.
|
79 |
+
activation_dropout (`float`, *optional*, defaults to 0.1):
|
80 |
+
The dropout probability for the activation of the linear transformer layer.
|
81 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
82 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
83 |
+
for more details.
|
84 |
+
bias (`bool`, *optional*, defaults to `True`):
|
85 |
+
Uses bias in the attention module - unsupported at the moment.
|
86 |
+
embed_scale(`float`, *optional*, defaults to None):
|
87 |
+
Scaling factor for the node embeddings.
|
88 |
+
num_trans_layers_to_freeze (`int`, *optional*, defaults to 0):
|
89 |
+
Number of transformer layers to freeze.
|
90 |
+
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
|
91 |
+
Normalize features before encoding the graph.
|
92 |
+
pre_layernorm (`bool`, *optional*, defaults to `False`):
|
93 |
+
Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be
|
94 |
+
used.
|
95 |
+
apply_graphormer_init (`bool`, *optional*, defaults to `False`):
|
96 |
+
Apply a custom graphormer initialisation to the model before training.
|
97 |
+
freeze_embeddings (`bool`, *optional*, defaults to `False`):
|
98 |
+
Freeze the embedding layer, or train it along the model.
|
99 |
+
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
|
100 |
+
Apply the layer norm before each encoder block.
|
101 |
+
q_noise (`float`, *optional*, defaults to 0.0):
|
102 |
+
Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For
|
103 |
+
more detail, see fairseq's documentation on quant_noise).
|
104 |
+
qn_block_size (`int`, *optional*, defaults to 8):
|
105 |
+
Size of the blocks for subsequent quantization with iPQ (see q_noise).
|
106 |
+
kdim (`int`, *optional*, defaults to None):
|
107 |
+
Dimension of the key in the attention, if different from the other values.
|
108 |
+
vdim (`int`, *optional*, defaults to None):
|
109 |
+
Dimension of the value in the attention, if different from the other values.
|
110 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
111 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
112 |
+
traceable (`bool`, *optional*, defaults to `False`):
|
113 |
+
Changes return value of the encoder's inner_state to stacked tensors.
|
114 |
+
|
115 |
+
Example:
|
116 |
+
```python
|
117 |
+
>>> from transformers import GraphormerForGraphClassification, GraphormerConfig
|
118 |
+
|
119 |
+
>>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration
|
120 |
+
>>> configuration = GraphormerConfig()
|
121 |
+
|
122 |
+
>>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration
|
123 |
+
>>> model = GraphormerForGraphClassification(configuration)
|
124 |
+
|
125 |
+
>>> # Accessing the model configuration
|
126 |
+
>>> configuration = model.config
|
127 |
+
```
|
128 |
+
"""
|
129 |
+
|
130 |
+
model_type = "graphormer"
|
131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
num_classes: int = 1,
|
136 |
+
num_atoms: int = 512 * 9,
|
137 |
+
num_edges: int = 512 * 3,
|
138 |
+
num_in_degree: int = 512,
|
139 |
+
num_out_degree: int = 512,
|
140 |
+
num_spatial: int = 512,
|
141 |
+
num_edge_dis: int = 128,
|
142 |
+
multi_hop_max_dist: int = 5, # sometimes is 20
|
143 |
+
spatial_pos_max: int = 1024,
|
144 |
+
edge_type: str = "multi_hop",
|
145 |
+
max_nodes: int = 512,
|
146 |
+
share_input_output_embed: bool = False,
|
147 |
+
num_hidden_layers: int = 12,
|
148 |
+
embedding_dim: int = 768,
|
149 |
+
ffn_embedding_dim: int = 768,
|
150 |
+
num_attention_heads: int = 32,
|
151 |
+
dropout: float = 0.1,
|
152 |
+
attention_dropout: float = 0.1,
|
153 |
+
activation_dropout: float = 0.1,
|
154 |
+
layerdrop: float = 0.0,
|
155 |
+
encoder_normalize_before: bool = False,
|
156 |
+
pre_layernorm: bool = False,
|
157 |
+
apply_graphormer_init: bool = False,
|
158 |
+
activation_fn: str = "gelu",
|
159 |
+
embed_scale: float = None,
|
160 |
+
freeze_embeddings: bool = False,
|
161 |
+
num_trans_layers_to_freeze: int = 0,
|
162 |
+
traceable: bool = False,
|
163 |
+
q_noise: float = 0.0,
|
164 |
+
qn_block_size: int = 8,
|
165 |
+
kdim: int = None,
|
166 |
+
vdim: int = None,
|
167 |
+
bias: bool = True,
|
168 |
+
self_attention: bool = True,
|
169 |
+
pad_token_id=0,
|
170 |
+
bos_token_id=1,
|
171 |
+
eos_token_id=2,
|
172 |
+
**kwargs,
|
173 |
+
):
|
174 |
+
self.num_classes = num_classes
|
175 |
+
self.num_atoms = num_atoms
|
176 |
+
self.num_in_degree = num_in_degree
|
177 |
+
self.num_out_degree = num_out_degree
|
178 |
+
self.num_edges = num_edges
|
179 |
+
self.num_spatial = num_spatial
|
180 |
+
self.num_edge_dis = num_edge_dis
|
181 |
+
self.edge_type = edge_type
|
182 |
+
self.multi_hop_max_dist = multi_hop_max_dist
|
183 |
+
self.spatial_pos_max = spatial_pos_max
|
184 |
+
self.max_nodes = max_nodes
|
185 |
+
self.num_hidden_layers = num_hidden_layers
|
186 |
+
self.embedding_dim = embedding_dim
|
187 |
+
self.hidden_size = embedding_dim
|
188 |
+
self.ffn_embedding_dim = ffn_embedding_dim
|
189 |
+
self.num_attention_heads = num_attention_heads
|
190 |
+
self.dropout = dropout
|
191 |
+
self.attention_dropout = attention_dropout
|
192 |
+
self.activation_dropout = activation_dropout
|
193 |
+
self.layerdrop = layerdrop
|
194 |
+
self.encoder_normalize_before = encoder_normalize_before
|
195 |
+
self.pre_layernorm = pre_layernorm
|
196 |
+
self.apply_graphormer_init = apply_graphormer_init
|
197 |
+
self.activation_fn = activation_fn
|
198 |
+
self.embed_scale = embed_scale
|
199 |
+
self.freeze_embeddings = freeze_embeddings
|
200 |
+
self.num_trans_layers_to_freeze = num_trans_layers_to_freeze
|
201 |
+
self.share_input_output_embed = share_input_output_embed
|
202 |
+
self.traceable = traceable
|
203 |
+
self.q_noise = q_noise
|
204 |
+
self.qn_block_size = qn_block_size
|
205 |
+
|
206 |
+
# These parameters are here for future extensions
|
207 |
+
# atm, the model only supports self attention
|
208 |
+
self.kdim = kdim
|
209 |
+
self.vdim = vdim
|
210 |
+
self.self_attention = self_attention
|
211 |
+
self.bias = bias
|
212 |
+
|
213 |
+
super().__init__(
|
214 |
+
pad_token_id=pad_token_id,
|
215 |
+
bos_token_id=bos_token_id,
|
216 |
+
eos_token_id=eos_token_id,
|
217 |
+
**kwargs,
|
218 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/modeling_graphormer.py
ADDED
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft, clefourrier The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Graphormer model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Iterable, Iterator, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_outputs import (
|
26 |
+
BaseModelOutputWithNoAttention,
|
27 |
+
SequenceClassifierOutput,
|
28 |
+
)
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...utils import logging
|
31 |
+
from .configuration_graphormer import GraphormerConfig
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
_CHECKPOINT_FOR_DOC = "graphormer-base-pcqm4mv1"
|
37 |
+
_CONFIG_FOR_DOC = "GraphormerConfig"
|
38 |
+
|
39 |
+
|
40 |
+
from ..deprecated._archive_maps import GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
41 |
+
|
42 |
+
|
43 |
+
def quant_noise(module: nn.Module, p: float, block_size: int):
|
44 |
+
"""
|
45 |
+
From:
|
46 |
+
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/quant_noise.py
|
47 |
+
|
48 |
+
Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product
|
49 |
+
Quantization as described in "Training with Quantization Noise for Extreme Model Compression"
|
50 |
+
|
51 |
+
Args:
|
52 |
+
- module: nn.Module
|
53 |
+
- p: amount of Quantization Noise
|
54 |
+
- block_size: size of the blocks for subsequent quantization with iPQ
|
55 |
+
|
56 |
+
Remarks:
|
57 |
+
- Module weights must have the right sizes wrt the block size
|
58 |
+
- Only Linear, Embedding and Conv2d modules are supported for the moment
|
59 |
+
- For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down:
|
60 |
+
Revisiting the Quantization of Neural Networks"
|
61 |
+
- We implement the simplest form of noise here as stated in the paper which consists in randomly dropping
|
62 |
+
blocks
|
63 |
+
"""
|
64 |
+
|
65 |
+
# if no quantization noise, don't register hook
|
66 |
+
if p <= 0:
|
67 |
+
return module
|
68 |
+
|
69 |
+
# supported modules
|
70 |
+
if not isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)):
|
71 |
+
raise NotImplementedError("Module unsupported for quant_noise.")
|
72 |
+
|
73 |
+
# test whether module.weight has the right sizes wrt block_size
|
74 |
+
is_conv = module.weight.ndim == 4
|
75 |
+
|
76 |
+
# 2D matrix
|
77 |
+
if not is_conv:
|
78 |
+
if module.weight.size(1) % block_size != 0:
|
79 |
+
raise AssertionError("Input features must be a multiple of block sizes")
|
80 |
+
|
81 |
+
# 4D matrix
|
82 |
+
else:
|
83 |
+
# 1x1 convolutions
|
84 |
+
if module.kernel_size == (1, 1):
|
85 |
+
if module.in_channels % block_size != 0:
|
86 |
+
raise AssertionError("Input channels must be a multiple of block sizes")
|
87 |
+
# regular convolutions
|
88 |
+
else:
|
89 |
+
k = module.kernel_size[0] * module.kernel_size[1]
|
90 |
+
if k % block_size != 0:
|
91 |
+
raise AssertionError("Kernel size must be a multiple of block size")
|
92 |
+
|
93 |
+
def _forward_pre_hook(mod, input):
|
94 |
+
# no noise for evaluation
|
95 |
+
if mod.training:
|
96 |
+
if not is_conv:
|
97 |
+
# gather weight and sizes
|
98 |
+
weight = mod.weight
|
99 |
+
in_features = weight.size(1)
|
100 |
+
out_features = weight.size(0)
|
101 |
+
|
102 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
103 |
+
mask = torch.zeros(in_features // block_size * out_features, device=weight.device)
|
104 |
+
mask.bernoulli_(p)
|
105 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
|
106 |
+
|
107 |
+
else:
|
108 |
+
# gather weight and sizes
|
109 |
+
weight = mod.weight
|
110 |
+
in_channels = mod.in_channels
|
111 |
+
out_channels = mod.out_channels
|
112 |
+
|
113 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
114 |
+
if mod.kernel_size == (1, 1):
|
115 |
+
mask = torch.zeros(
|
116 |
+
int(in_channels // block_size * out_channels),
|
117 |
+
device=weight.device,
|
118 |
+
)
|
119 |
+
mask.bernoulli_(p)
|
120 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
|
121 |
+
else:
|
122 |
+
mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device)
|
123 |
+
mask.bernoulli_(p)
|
124 |
+
mask = mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
|
125 |
+
|
126 |
+
# scale weights and apply mask
|
127 |
+
mask = mask.to(torch.bool) # x.bool() is not currently supported in TorchScript
|
128 |
+
s = 1 / (1 - p)
|
129 |
+
mod.weight.data = s * weight.masked_fill(mask, 0)
|
130 |
+
|
131 |
+
module.register_forward_pre_hook(_forward_pre_hook)
|
132 |
+
return module
|
133 |
+
|
134 |
+
|
135 |
+
class LayerDropModuleList(nn.ModuleList):
|
136 |
+
"""
|
137 |
+
From:
|
138 |
+
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/layer_drop.py
|
139 |
+
A LayerDrop implementation based on [`torch.nn.ModuleList`]. LayerDrop as described in
|
140 |
+
https://arxiv.org/abs/1909.11556.
|
141 |
+
|
142 |
+
We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During
|
143 |
+
evaluation we always iterate over all layers.
|
144 |
+
|
145 |
+
Usage:
|
146 |
+
|
147 |
+
```python
|
148 |
+
layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])
|
149 |
+
for layer in layers: # this might iterate over layers 1 and 3
|
150 |
+
x = layer(x)
|
151 |
+
for layer in layers: # this might iterate over all layers
|
152 |
+
x = layer(x)
|
153 |
+
for layer in layers: # this might not iterate over any layers
|
154 |
+
x = layer(x)
|
155 |
+
```
|
156 |
+
|
157 |
+
Args:
|
158 |
+
p (float): probability of dropping out each layer
|
159 |
+
modules (iterable, optional): an iterable of modules to add
|
160 |
+
"""
|
161 |
+
|
162 |
+
def __init__(self, p: float, modules: Optional[Iterable[nn.Module]] = None):
|
163 |
+
super().__init__(modules)
|
164 |
+
self.p = p
|
165 |
+
|
166 |
+
def __iter__(self) -> Iterator[nn.Module]:
|
167 |
+
dropout_probs = torch.empty(len(self)).uniform_()
|
168 |
+
for i, m in enumerate(super().__iter__()):
|
169 |
+
if not self.training or (dropout_probs[i] > self.p):
|
170 |
+
yield m
|
171 |
+
|
172 |
+
|
173 |
+
class GraphormerGraphNodeFeature(nn.Module):
|
174 |
+
"""
|
175 |
+
Compute node features for each node in the graph.
|
176 |
+
"""
|
177 |
+
|
178 |
+
def __init__(self, config: GraphormerConfig):
|
179 |
+
super().__init__()
|
180 |
+
self.num_heads = config.num_attention_heads
|
181 |
+
self.num_atoms = config.num_atoms
|
182 |
+
|
183 |
+
self.atom_encoder = nn.Embedding(config.num_atoms + 1, config.hidden_size, padding_idx=config.pad_token_id)
|
184 |
+
self.in_degree_encoder = nn.Embedding(
|
185 |
+
config.num_in_degree, config.hidden_size, padding_idx=config.pad_token_id
|
186 |
+
)
|
187 |
+
self.out_degree_encoder = nn.Embedding(
|
188 |
+
config.num_out_degree, config.hidden_size, padding_idx=config.pad_token_id
|
189 |
+
)
|
190 |
+
|
191 |
+
self.graph_token = nn.Embedding(1, config.hidden_size)
|
192 |
+
|
193 |
+
def forward(
|
194 |
+
self,
|
195 |
+
input_nodes: torch.LongTensor,
|
196 |
+
in_degree: torch.LongTensor,
|
197 |
+
out_degree: torch.LongTensor,
|
198 |
+
) -> torch.Tensor:
|
199 |
+
n_graph, n_node = input_nodes.size()[:2]
|
200 |
+
|
201 |
+
node_feature = ( # node feature + graph token
|
202 |
+
self.atom_encoder(input_nodes).sum(dim=-2) # [n_graph, n_node, n_hidden]
|
203 |
+
+ self.in_degree_encoder(in_degree)
|
204 |
+
+ self.out_degree_encoder(out_degree)
|
205 |
+
)
|
206 |
+
|
207 |
+
graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1)
|
208 |
+
|
209 |
+
graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1)
|
210 |
+
|
211 |
+
return graph_node_feature
|
212 |
+
|
213 |
+
|
214 |
+
class GraphormerGraphAttnBias(nn.Module):
|
215 |
+
"""
|
216 |
+
Compute attention bias for each head.
|
217 |
+
"""
|
218 |
+
|
219 |
+
def __init__(self, config: GraphormerConfig):
|
220 |
+
super().__init__()
|
221 |
+
self.num_heads = config.num_attention_heads
|
222 |
+
self.multi_hop_max_dist = config.multi_hop_max_dist
|
223 |
+
|
224 |
+
# We do not change edge feature embedding learning, as edge embeddings are represented as a combination of the original features
|
225 |
+
# + shortest path
|
226 |
+
self.edge_encoder = nn.Embedding(config.num_edges + 1, config.num_attention_heads, padding_idx=0)
|
227 |
+
|
228 |
+
self.edge_type = config.edge_type
|
229 |
+
if self.edge_type == "multi_hop":
|
230 |
+
self.edge_dis_encoder = nn.Embedding(
|
231 |
+
config.num_edge_dis * config.num_attention_heads * config.num_attention_heads,
|
232 |
+
1,
|
233 |
+
)
|
234 |
+
|
235 |
+
self.spatial_pos_encoder = nn.Embedding(config.num_spatial, config.num_attention_heads, padding_idx=0)
|
236 |
+
|
237 |
+
self.graph_token_virtual_distance = nn.Embedding(1, config.num_attention_heads)
|
238 |
+
|
239 |
+
def forward(
|
240 |
+
self,
|
241 |
+
input_nodes: torch.LongTensor,
|
242 |
+
attn_bias: torch.Tensor,
|
243 |
+
spatial_pos: torch.LongTensor,
|
244 |
+
input_edges: torch.LongTensor,
|
245 |
+
attn_edge_type: torch.LongTensor,
|
246 |
+
) -> torch.Tensor:
|
247 |
+
n_graph, n_node = input_nodes.size()[:2]
|
248 |
+
graph_attn_bias = attn_bias.clone()
|
249 |
+
graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat(
|
250 |
+
1, self.num_heads, 1, 1
|
251 |
+
) # [n_graph, n_head, n_node+1, n_node+1]
|
252 |
+
|
253 |
+
# spatial pos
|
254 |
+
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
|
255 |
+
spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2)
|
256 |
+
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias
|
257 |
+
|
258 |
+
# reset spatial pos here
|
259 |
+
t = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1)
|
260 |
+
graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t
|
261 |
+
graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t
|
262 |
+
|
263 |
+
# edge feature
|
264 |
+
if self.edge_type == "multi_hop":
|
265 |
+
spatial_pos_ = spatial_pos.clone()
|
266 |
+
|
267 |
+
spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1
|
268 |
+
# set 1 to 1, input_nodes > 1 to input_nodes - 1
|
269 |
+
spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_)
|
270 |
+
if self.multi_hop_max_dist > 0:
|
271 |
+
spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist)
|
272 |
+
input_edges = input_edges[:, :, :, : self.multi_hop_max_dist, :]
|
273 |
+
# [n_graph, n_node, n_node, max_dist, n_head]
|
274 |
+
|
275 |
+
input_edges = self.edge_encoder(input_edges).mean(-2)
|
276 |
+
max_dist = input_edges.size(-2)
|
277 |
+
edge_input_flat = input_edges.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.num_heads)
|
278 |
+
edge_input_flat = torch.bmm(
|
279 |
+
edge_input_flat,
|
280 |
+
self.edge_dis_encoder.weight.reshape(-1, self.num_heads, self.num_heads)[:max_dist, :, :],
|
281 |
+
)
|
282 |
+
input_edges = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.num_heads).permute(
|
283 |
+
1, 2, 3, 0, 4
|
284 |
+
)
|
285 |
+
input_edges = (input_edges.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2)
|
286 |
+
else:
|
287 |
+
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
|
288 |
+
input_edges = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2)
|
289 |
+
|
290 |
+
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + input_edges
|
291 |
+
graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset
|
292 |
+
|
293 |
+
return graph_attn_bias
|
294 |
+
|
295 |
+
|
296 |
+
class GraphormerMultiheadAttention(nn.Module):
|
297 |
+
"""Multi-headed attention.
|
298 |
+
|
299 |
+
See "Attention Is All You Need" for more details.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, config: GraphormerConfig):
|
303 |
+
super().__init__()
|
304 |
+
self.embedding_dim = config.embedding_dim
|
305 |
+
self.kdim = config.kdim if config.kdim is not None else config.embedding_dim
|
306 |
+
self.vdim = config.vdim if config.vdim is not None else config.embedding_dim
|
307 |
+
self.qkv_same_dim = self.kdim == config.embedding_dim and self.vdim == config.embedding_dim
|
308 |
+
|
309 |
+
self.num_heads = config.num_attention_heads
|
310 |
+
self.attention_dropout_module = torch.nn.Dropout(p=config.attention_dropout, inplace=False)
|
311 |
+
|
312 |
+
self.head_dim = config.embedding_dim // config.num_attention_heads
|
313 |
+
if not (self.head_dim * config.num_attention_heads == self.embedding_dim):
|
314 |
+
raise AssertionError("The embedding_dim must be divisible by num_heads.")
|
315 |
+
self.scaling = self.head_dim**-0.5
|
316 |
+
|
317 |
+
self.self_attention = True # config.self_attention
|
318 |
+
if not (self.self_attention):
|
319 |
+
raise NotImplementedError("The Graphormer model only supports self attention for now.")
|
320 |
+
if self.self_attention and not self.qkv_same_dim:
|
321 |
+
raise AssertionError("Self-attention requires query, key and value to be of the same size.")
|
322 |
+
|
323 |
+
self.k_proj = quant_noise(
|
324 |
+
nn.Linear(self.kdim, config.embedding_dim, bias=config.bias),
|
325 |
+
config.q_noise,
|
326 |
+
config.qn_block_size,
|
327 |
+
)
|
328 |
+
self.v_proj = quant_noise(
|
329 |
+
nn.Linear(self.vdim, config.embedding_dim, bias=config.bias),
|
330 |
+
config.q_noise,
|
331 |
+
config.qn_block_size,
|
332 |
+
)
|
333 |
+
self.q_proj = quant_noise(
|
334 |
+
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias),
|
335 |
+
config.q_noise,
|
336 |
+
config.qn_block_size,
|
337 |
+
)
|
338 |
+
|
339 |
+
self.out_proj = quant_noise(
|
340 |
+
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias),
|
341 |
+
config.q_noise,
|
342 |
+
config.qn_block_size,
|
343 |
+
)
|
344 |
+
|
345 |
+
self.onnx_trace = False
|
346 |
+
|
347 |
+
def reset_parameters(self):
|
348 |
+
if self.qkv_same_dim:
|
349 |
+
# Empirically observed the convergence to be much better with
|
350 |
+
# the scaled initialization
|
351 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
352 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
353 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
354 |
+
else:
|
355 |
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
356 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
357 |
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
358 |
+
|
359 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
360 |
+
if self.out_proj.bias is not None:
|
361 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
362 |
+
|
363 |
+
def forward(
|
364 |
+
self,
|
365 |
+
query: torch.LongTensor,
|
366 |
+
key: Optional[torch.Tensor],
|
367 |
+
value: Optional[torch.Tensor],
|
368 |
+
attn_bias: Optional[torch.Tensor],
|
369 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
370 |
+
need_weights: bool = True,
|
371 |
+
attn_mask: Optional[torch.Tensor] = None,
|
372 |
+
before_softmax: bool = False,
|
373 |
+
need_head_weights: bool = False,
|
374 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
375 |
+
"""
|
376 |
+
Args:
|
377 |
+
key_padding_mask (Bytetorch.Tensor, optional): mask to exclude
|
378 |
+
keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s.
|
379 |
+
need_weights (bool, optional): return the attention weights,
|
380 |
+
averaged over heads (default: False).
|
381 |
+
attn_mask (Bytetorch.Tensor, optional): typically used to
|
382 |
+
implement causal attention, where the mask prevents the attention from looking forward in time
|
383 |
+
(default: None).
|
384 |
+
before_softmax (bool, optional): return the raw attention
|
385 |
+
weights and values before the attention softmax.
|
386 |
+
need_head_weights (bool, optional): return the attention
|
387 |
+
weights for each head. Implies *need_weights*. Default: return the average attention weights over all
|
388 |
+
heads.
|
389 |
+
"""
|
390 |
+
if need_head_weights:
|
391 |
+
need_weights = True
|
392 |
+
|
393 |
+
tgt_len, bsz, embedding_dim = query.size()
|
394 |
+
src_len = tgt_len
|
395 |
+
if not (embedding_dim == self.embedding_dim):
|
396 |
+
raise AssertionError(
|
397 |
+
f"The query embedding dimension {embedding_dim} is not equal to the expected embedding_dim"
|
398 |
+
f" {self.embedding_dim}."
|
399 |
+
)
|
400 |
+
if not (list(query.size()) == [tgt_len, bsz, embedding_dim]):
|
401 |
+
raise AssertionError("Query size incorrect in Graphormer, compared to model dimensions.")
|
402 |
+
|
403 |
+
if key is not None:
|
404 |
+
src_len, key_bsz, _ = key.size()
|
405 |
+
if not torch.jit.is_scripting():
|
406 |
+
if (key_bsz != bsz) or (value is None) or not (src_len, bsz == value.shape[:2]):
|
407 |
+
raise AssertionError(
|
408 |
+
"The batch shape does not match the key or value shapes provided to the attention."
|
409 |
+
)
|
410 |
+
|
411 |
+
q = self.q_proj(query)
|
412 |
+
k = self.k_proj(query)
|
413 |
+
v = self.v_proj(query)
|
414 |
+
|
415 |
+
q *= self.scaling
|
416 |
+
|
417 |
+
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
418 |
+
if k is not None:
|
419 |
+
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
420 |
+
if v is not None:
|
421 |
+
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
422 |
+
|
423 |
+
if (k is None) or not (k.size(1) == src_len):
|
424 |
+
raise AssertionError("The shape of the key generated in the attention is incorrect")
|
425 |
+
|
426 |
+
# This is part of a workaround to get around fork/join parallelism
|
427 |
+
# not supporting Optional types.
|
428 |
+
if key_padding_mask is not None and key_padding_mask.dim() == 0:
|
429 |
+
key_padding_mask = None
|
430 |
+
|
431 |
+
if key_padding_mask is not None:
|
432 |
+
if key_padding_mask.size(0) != bsz or key_padding_mask.size(1) != src_len:
|
433 |
+
raise AssertionError(
|
434 |
+
"The shape of the generated padding mask for the key does not match expected dimensions."
|
435 |
+
)
|
436 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
437 |
+
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
438 |
+
|
439 |
+
if list(attn_weights.size()) != [bsz * self.num_heads, tgt_len, src_len]:
|
440 |
+
raise AssertionError("The attention weights generated do not match the expected dimensions.")
|
441 |
+
|
442 |
+
if attn_bias is not None:
|
443 |
+
attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len)
|
444 |
+
|
445 |
+
if attn_mask is not None:
|
446 |
+
attn_mask = attn_mask.unsqueeze(0)
|
447 |
+
attn_weights += attn_mask
|
448 |
+
|
449 |
+
if key_padding_mask is not None:
|
450 |
+
# don't attend to padding symbols
|
451 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
452 |
+
attn_weights = attn_weights.masked_fill(
|
453 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
|
454 |
+
)
|
455 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
456 |
+
|
457 |
+
if before_softmax:
|
458 |
+
return attn_weights, v
|
459 |
+
|
460 |
+
attn_weights_float = torch.nn.functional.softmax(attn_weights, dim=-1)
|
461 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
462 |
+
attn_probs = self.attention_dropout_module(attn_weights)
|
463 |
+
|
464 |
+
if v is None:
|
465 |
+
raise AssertionError("No value generated")
|
466 |
+
attn = torch.bmm(attn_probs, v)
|
467 |
+
if list(attn.size()) != [bsz * self.num_heads, tgt_len, self.head_dim]:
|
468 |
+
raise AssertionError("The attention generated do not match the expected dimensions.")
|
469 |
+
|
470 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embedding_dim)
|
471 |
+
attn: torch.Tensor = self.out_proj(attn)
|
472 |
+
|
473 |
+
attn_weights = None
|
474 |
+
if need_weights:
|
475 |
+
attn_weights = attn_weights_float.contiguous().view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
|
476 |
+
if not need_head_weights:
|
477 |
+
# average attention weights over heads
|
478 |
+
attn_weights = attn_weights.mean(dim=0)
|
479 |
+
|
480 |
+
return attn, attn_weights
|
481 |
+
|
482 |
+
def apply_sparse_mask(self, attn_weights: torch.Tensor, tgt_len: int, src_len: int, bsz: int) -> torch.Tensor:
|
483 |
+
return attn_weights
|
484 |
+
|
485 |
+
|
486 |
+
class GraphormerGraphEncoderLayer(nn.Module):
|
487 |
+
def __init__(self, config: GraphormerConfig) -> None:
|
488 |
+
super().__init__()
|
489 |
+
|
490 |
+
# Initialize parameters
|
491 |
+
self.embedding_dim = config.embedding_dim
|
492 |
+
self.num_attention_heads = config.num_attention_heads
|
493 |
+
self.q_noise = config.q_noise
|
494 |
+
self.qn_block_size = config.qn_block_size
|
495 |
+
self.pre_layernorm = config.pre_layernorm
|
496 |
+
|
497 |
+
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
|
498 |
+
|
499 |
+
self.activation_dropout_module = torch.nn.Dropout(p=config.activation_dropout, inplace=False)
|
500 |
+
|
501 |
+
# Initialize blocks
|
502 |
+
self.activation_fn = ACT2FN[config.activation_fn]
|
503 |
+
self.self_attn = GraphormerMultiheadAttention(config)
|
504 |
+
|
505 |
+
# layer norm associated with the self attention layer
|
506 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim)
|
507 |
+
|
508 |
+
self.fc1 = self.build_fc(
|
509 |
+
self.embedding_dim,
|
510 |
+
config.ffn_embedding_dim,
|
511 |
+
q_noise=config.q_noise,
|
512 |
+
qn_block_size=config.qn_block_size,
|
513 |
+
)
|
514 |
+
self.fc2 = self.build_fc(
|
515 |
+
config.ffn_embedding_dim,
|
516 |
+
self.embedding_dim,
|
517 |
+
q_noise=config.q_noise,
|
518 |
+
qn_block_size=config.qn_block_size,
|
519 |
+
)
|
520 |
+
|
521 |
+
# layer norm associated with the position wise feed-forward NN
|
522 |
+
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
|
523 |
+
|
524 |
+
def build_fc(
|
525 |
+
self, input_dim: int, output_dim: int, q_noise: float, qn_block_size: int
|
526 |
+
) -> Union[nn.Module, nn.Linear, nn.Embedding, nn.Conv2d]:
|
527 |
+
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
|
528 |
+
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
input_nodes: torch.Tensor,
|
532 |
+
self_attn_bias: Optional[torch.Tensor] = None,
|
533 |
+
self_attn_mask: Optional[torch.Tensor] = None,
|
534 |
+
self_attn_padding_mask: Optional[torch.Tensor] = None,
|
535 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
536 |
+
"""
|
537 |
+
nn.LayerNorm is applied either before or after the self-attention/ffn modules similar to the original
|
538 |
+
Transformer implementation.
|
539 |
+
"""
|
540 |
+
residual = input_nodes
|
541 |
+
if self.pre_layernorm:
|
542 |
+
input_nodes = self.self_attn_layer_norm(input_nodes)
|
543 |
+
|
544 |
+
input_nodes, attn = self.self_attn(
|
545 |
+
query=input_nodes,
|
546 |
+
key=input_nodes,
|
547 |
+
value=input_nodes,
|
548 |
+
attn_bias=self_attn_bias,
|
549 |
+
key_padding_mask=self_attn_padding_mask,
|
550 |
+
need_weights=False,
|
551 |
+
attn_mask=self_attn_mask,
|
552 |
+
)
|
553 |
+
input_nodes = self.dropout_module(input_nodes)
|
554 |
+
input_nodes = residual + input_nodes
|
555 |
+
if not self.pre_layernorm:
|
556 |
+
input_nodes = self.self_attn_layer_norm(input_nodes)
|
557 |
+
|
558 |
+
residual = input_nodes
|
559 |
+
if self.pre_layernorm:
|
560 |
+
input_nodes = self.final_layer_norm(input_nodes)
|
561 |
+
input_nodes = self.activation_fn(self.fc1(input_nodes))
|
562 |
+
input_nodes = self.activation_dropout_module(input_nodes)
|
563 |
+
input_nodes = self.fc2(input_nodes)
|
564 |
+
input_nodes = self.dropout_module(input_nodes)
|
565 |
+
input_nodes = residual + input_nodes
|
566 |
+
if not self.pre_layernorm:
|
567 |
+
input_nodes = self.final_layer_norm(input_nodes)
|
568 |
+
|
569 |
+
return input_nodes, attn
|
570 |
+
|
571 |
+
|
572 |
+
class GraphormerGraphEncoder(nn.Module):
|
573 |
+
def __init__(self, config: GraphormerConfig):
|
574 |
+
super().__init__()
|
575 |
+
|
576 |
+
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
|
577 |
+
self.layerdrop = config.layerdrop
|
578 |
+
self.embedding_dim = config.embedding_dim
|
579 |
+
self.apply_graphormer_init = config.apply_graphormer_init
|
580 |
+
self.traceable = config.traceable
|
581 |
+
|
582 |
+
self.graph_node_feature = GraphormerGraphNodeFeature(config)
|
583 |
+
self.graph_attn_bias = GraphormerGraphAttnBias(config)
|
584 |
+
|
585 |
+
self.embed_scale = config.embed_scale
|
586 |
+
|
587 |
+
if config.q_noise > 0:
|
588 |
+
self.quant_noise = quant_noise(
|
589 |
+
nn.Linear(self.embedding_dim, self.embedding_dim, bias=False),
|
590 |
+
config.q_noise,
|
591 |
+
config.qn_block_size,
|
592 |
+
)
|
593 |
+
else:
|
594 |
+
self.quant_noise = None
|
595 |
+
|
596 |
+
if config.encoder_normalize_before:
|
597 |
+
self.emb_layer_norm = nn.LayerNorm(self.embedding_dim)
|
598 |
+
else:
|
599 |
+
self.emb_layer_norm = None
|
600 |
+
|
601 |
+
if config.pre_layernorm:
|
602 |
+
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
|
603 |
+
|
604 |
+
if self.layerdrop > 0.0:
|
605 |
+
self.layers = LayerDropModuleList(p=self.layerdrop)
|
606 |
+
else:
|
607 |
+
self.layers = nn.ModuleList([])
|
608 |
+
self.layers.extend([GraphormerGraphEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
609 |
+
|
610 |
+
# Apply initialization of model params after building the model
|
611 |
+
if config.freeze_embeddings:
|
612 |
+
raise NotImplementedError("Freezing embeddings is not implemented yet.")
|
613 |
+
|
614 |
+
for layer in range(config.num_trans_layers_to_freeze):
|
615 |
+
m = self.layers[layer]
|
616 |
+
if m is not None:
|
617 |
+
for p in m.parameters():
|
618 |
+
p.requires_grad = False
|
619 |
+
|
620 |
+
def forward(
|
621 |
+
self,
|
622 |
+
input_nodes: torch.LongTensor,
|
623 |
+
input_edges: torch.LongTensor,
|
624 |
+
attn_bias: torch.Tensor,
|
625 |
+
in_degree: torch.LongTensor,
|
626 |
+
out_degree: torch.LongTensor,
|
627 |
+
spatial_pos: torch.LongTensor,
|
628 |
+
attn_edge_type: torch.LongTensor,
|
629 |
+
perturb=None,
|
630 |
+
last_state_only: bool = False,
|
631 |
+
token_embeddings: Optional[torch.Tensor] = None,
|
632 |
+
attn_mask: Optional[torch.Tensor] = None,
|
633 |
+
) -> Tuple[Union[torch.Tensor, List[torch.LongTensor]], torch.Tensor]:
|
634 |
+
# compute padding mask. This is needed for multi-head attention
|
635 |
+
data_x = input_nodes
|
636 |
+
n_graph, n_node = data_x.size()[:2]
|
637 |
+
padding_mask = (data_x[:, :, 0]).eq(0)
|
638 |
+
padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype)
|
639 |
+
padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1)
|
640 |
+
|
641 |
+
attn_bias = self.graph_attn_bias(input_nodes, attn_bias, spatial_pos, input_edges, attn_edge_type)
|
642 |
+
|
643 |
+
if token_embeddings is not None:
|
644 |
+
input_nodes = token_embeddings
|
645 |
+
else:
|
646 |
+
input_nodes = self.graph_node_feature(input_nodes, in_degree, out_degree)
|
647 |
+
|
648 |
+
if perturb is not None:
|
649 |
+
input_nodes[:, 1:, :] += perturb
|
650 |
+
|
651 |
+
if self.embed_scale is not None:
|
652 |
+
input_nodes = input_nodes * self.embed_scale
|
653 |
+
|
654 |
+
if self.quant_noise is not None:
|
655 |
+
input_nodes = self.quant_noise(input_nodes)
|
656 |
+
|
657 |
+
if self.emb_layer_norm is not None:
|
658 |
+
input_nodes = self.emb_layer_norm(input_nodes)
|
659 |
+
|
660 |
+
input_nodes = self.dropout_module(input_nodes)
|
661 |
+
|
662 |
+
input_nodes = input_nodes.transpose(0, 1)
|
663 |
+
|
664 |
+
inner_states = []
|
665 |
+
if not last_state_only:
|
666 |
+
inner_states.append(input_nodes)
|
667 |
+
|
668 |
+
for layer in self.layers:
|
669 |
+
input_nodes, _ = layer(
|
670 |
+
input_nodes,
|
671 |
+
self_attn_padding_mask=padding_mask,
|
672 |
+
self_attn_mask=attn_mask,
|
673 |
+
self_attn_bias=attn_bias,
|
674 |
+
)
|
675 |
+
if not last_state_only:
|
676 |
+
inner_states.append(input_nodes)
|
677 |
+
|
678 |
+
graph_rep = input_nodes[0, :, :]
|
679 |
+
|
680 |
+
if last_state_only:
|
681 |
+
inner_states = [input_nodes]
|
682 |
+
|
683 |
+
if self.traceable:
|
684 |
+
return torch.stack(inner_states), graph_rep
|
685 |
+
else:
|
686 |
+
return inner_states, graph_rep
|
687 |
+
|
688 |
+
|
689 |
+
class GraphormerDecoderHead(nn.Module):
|
690 |
+
def __init__(self, embedding_dim: int, num_classes: int):
|
691 |
+
super().__init__()
|
692 |
+
"""num_classes should be 1 for regression, or the number of classes for classification"""
|
693 |
+
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1))
|
694 |
+
self.classifier = nn.Linear(embedding_dim, num_classes, bias=False)
|
695 |
+
self.num_classes = num_classes
|
696 |
+
|
697 |
+
def forward(self, input_nodes: torch.Tensor, **unused) -> torch.Tensor:
|
698 |
+
input_nodes = self.classifier(input_nodes)
|
699 |
+
input_nodes = input_nodes + self.lm_output_learned_bias
|
700 |
+
return input_nodes
|
701 |
+
|
702 |
+
|
703 |
+
class GraphormerPreTrainedModel(PreTrainedModel):
|
704 |
+
"""
|
705 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
706 |
+
models.
|
707 |
+
"""
|
708 |
+
|
709 |
+
config_class = GraphormerConfig
|
710 |
+
base_model_prefix = "graphormer"
|
711 |
+
main_input_name_nodes = "input_nodes"
|
712 |
+
main_input_name_edges = "input_edges"
|
713 |
+
|
714 |
+
def normal_(self, data: torch.Tensor):
|
715 |
+
# with FSDP, module params will be on CUDA, so we cast them back to CPU
|
716 |
+
# so that the RNG is consistent with and without FSDP
|
717 |
+
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
|
718 |
+
|
719 |
+
def init_graphormer_params(self, module: Union[nn.Linear, nn.Embedding, GraphormerMultiheadAttention]):
|
720 |
+
"""
|
721 |
+
Initialize the weights specific to the Graphormer Model.
|
722 |
+
"""
|
723 |
+
if isinstance(module, nn.Linear):
|
724 |
+
self.normal_(module.weight.data)
|
725 |
+
if module.bias is not None:
|
726 |
+
module.bias.data.zero_()
|
727 |
+
if isinstance(module, nn.Embedding):
|
728 |
+
self.normal_(module.weight.data)
|
729 |
+
if module.padding_idx is not None:
|
730 |
+
module.weight.data[module.padding_idx].zero_()
|
731 |
+
if isinstance(module, GraphormerMultiheadAttention):
|
732 |
+
self.normal_(module.q_proj.weight.data)
|
733 |
+
self.normal_(module.k_proj.weight.data)
|
734 |
+
self.normal_(module.v_proj.weight.data)
|
735 |
+
|
736 |
+
def _init_weights(
|
737 |
+
self,
|
738 |
+
module: Union[
|
739 |
+
nn.Linear, nn.Conv2d, nn.Embedding, nn.LayerNorm, GraphormerMultiheadAttention, GraphormerGraphEncoder
|
740 |
+
],
|
741 |
+
):
|
742 |
+
"""
|
743 |
+
Initialize the weights
|
744 |
+
"""
|
745 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
746 |
+
# We might be missing part of the Linear init, dependant on the layer num
|
747 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
748 |
+
if module.bias is not None:
|
749 |
+
module.bias.data.zero_()
|
750 |
+
elif isinstance(module, nn.Embedding):
|
751 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
752 |
+
if module.padding_idx is not None:
|
753 |
+
module.weight.data[module.padding_idx].zero_()
|
754 |
+
elif isinstance(module, GraphormerMultiheadAttention):
|
755 |
+
module.q_proj.weight.data.normal_(mean=0.0, std=0.02)
|
756 |
+
module.k_proj.weight.data.normal_(mean=0.0, std=0.02)
|
757 |
+
module.v_proj.weight.data.normal_(mean=0.0, std=0.02)
|
758 |
+
module.reset_parameters()
|
759 |
+
elif isinstance(module, nn.LayerNorm):
|
760 |
+
module.bias.data.zero_()
|
761 |
+
module.weight.data.fill_(1.0)
|
762 |
+
elif isinstance(module, GraphormerGraphEncoder):
|
763 |
+
if module.apply_graphormer_init:
|
764 |
+
module.apply(self.init_graphormer_params)
|
765 |
+
|
766 |
+
elif isinstance(module, nn.LayerNorm):
|
767 |
+
module.bias.data.zero_()
|
768 |
+
module.weight.data.fill_(1.0)
|
769 |
+
|
770 |
+
|
771 |
+
class GraphormerModel(GraphormerPreTrainedModel):
|
772 |
+
"""The Graphormer model is a graph-encoder model.
|
773 |
+
|
774 |
+
It goes from a graph to its representation. If you want to use the model for a downstream classification task, use
|
775 |
+
GraphormerForGraphClassification instead. For any other downstream task, feel free to add a new class, or combine
|
776 |
+
this model with a downstream model of your choice, following the example in GraphormerForGraphClassification.
|
777 |
+
"""
|
778 |
+
|
779 |
+
def __init__(self, config: GraphormerConfig):
|
780 |
+
super().__init__(config)
|
781 |
+
self.max_nodes = config.max_nodes
|
782 |
+
|
783 |
+
self.graph_encoder = GraphormerGraphEncoder(config)
|
784 |
+
|
785 |
+
self.share_input_output_embed = config.share_input_output_embed
|
786 |
+
self.lm_output_learned_bias = None
|
787 |
+
|
788 |
+
# Remove head is set to true during fine-tuning
|
789 |
+
self.load_softmax = not getattr(config, "remove_head", False)
|
790 |
+
|
791 |
+
self.lm_head_transform_weight = nn.Linear(config.embedding_dim, config.embedding_dim)
|
792 |
+
self.activation_fn = ACT2FN[config.activation_fn]
|
793 |
+
self.layer_norm = nn.LayerNorm(config.embedding_dim)
|
794 |
+
|
795 |
+
self.post_init()
|
796 |
+
|
797 |
+
def reset_output_layer_parameters(self):
|
798 |
+
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1))
|
799 |
+
|
800 |
+
def forward(
|
801 |
+
self,
|
802 |
+
input_nodes: torch.LongTensor,
|
803 |
+
input_edges: torch.LongTensor,
|
804 |
+
attn_bias: torch.Tensor,
|
805 |
+
in_degree: torch.LongTensor,
|
806 |
+
out_degree: torch.LongTensor,
|
807 |
+
spatial_pos: torch.LongTensor,
|
808 |
+
attn_edge_type: torch.LongTensor,
|
809 |
+
perturb: Optional[torch.FloatTensor] = None,
|
810 |
+
masked_tokens: None = None,
|
811 |
+
return_dict: Optional[bool] = None,
|
812 |
+
**unused,
|
813 |
+
) -> Union[Tuple[torch.LongTensor], BaseModelOutputWithNoAttention]:
|
814 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
815 |
+
|
816 |
+
inner_states, graph_rep = self.graph_encoder(
|
817 |
+
input_nodes, input_edges, attn_bias, in_degree, out_degree, spatial_pos, attn_edge_type, perturb=perturb
|
818 |
+
)
|
819 |
+
|
820 |
+
# last inner state, then revert Batch and Graph len
|
821 |
+
input_nodes = inner_states[-1].transpose(0, 1)
|
822 |
+
|
823 |
+
# project masked tokens only
|
824 |
+
if masked_tokens is not None:
|
825 |
+
raise NotImplementedError
|
826 |
+
|
827 |
+
input_nodes = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(input_nodes)))
|
828 |
+
|
829 |
+
# project back to size of vocabulary
|
830 |
+
if self.share_input_output_embed and hasattr(self.graph_encoder.embed_tokens, "weight"):
|
831 |
+
input_nodes = torch.nn.functional.linear(input_nodes, self.graph_encoder.embed_tokens.weight)
|
832 |
+
|
833 |
+
if not return_dict:
|
834 |
+
return tuple(x for x in [input_nodes, inner_states] if x is not None)
|
835 |
+
return BaseModelOutputWithNoAttention(last_hidden_state=input_nodes, hidden_states=inner_states)
|
836 |
+
|
837 |
+
def max_nodes(self):
|
838 |
+
"""Maximum output length supported by the encoder."""
|
839 |
+
return self.max_nodes
|
840 |
+
|
841 |
+
|
842 |
+
class GraphormerForGraphClassification(GraphormerPreTrainedModel):
|
843 |
+
"""
|
844 |
+
This model can be used for graph-level classification or regression tasks.
|
845 |
+
|
846 |
+
It can be trained on
|
847 |
+
- regression (by setting config.num_classes to 1); there should be one float-type label per graph
|
848 |
+
- one task classification (by setting config.num_classes to the number of classes); there should be one integer
|
849 |
+
label per graph
|
850 |
+
- binary multi-task classification (by setting config.num_classes to the number of labels); there should be a list
|
851 |
+
of integer labels for each graph.
|
852 |
+
"""
|
853 |
+
|
854 |
+
def __init__(self, config: GraphormerConfig):
|
855 |
+
super().__init__(config)
|
856 |
+
self.encoder = GraphormerModel(config)
|
857 |
+
self.embedding_dim = config.embedding_dim
|
858 |
+
self.num_classes = config.num_classes
|
859 |
+
self.classifier = GraphormerDecoderHead(self.embedding_dim, self.num_classes)
|
860 |
+
self.is_encoder_decoder = True
|
861 |
+
|
862 |
+
# Initialize weights and apply final processing
|
863 |
+
self.post_init()
|
864 |
+
|
865 |
+
def forward(
|
866 |
+
self,
|
867 |
+
input_nodes: torch.LongTensor,
|
868 |
+
input_edges: torch.LongTensor,
|
869 |
+
attn_bias: torch.Tensor,
|
870 |
+
in_degree: torch.LongTensor,
|
871 |
+
out_degree: torch.LongTensor,
|
872 |
+
spatial_pos: torch.LongTensor,
|
873 |
+
attn_edge_type: torch.LongTensor,
|
874 |
+
labels: Optional[torch.LongTensor] = None,
|
875 |
+
return_dict: Optional[bool] = None,
|
876 |
+
**unused,
|
877 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
878 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
879 |
+
|
880 |
+
encoder_outputs = self.encoder(
|
881 |
+
input_nodes,
|
882 |
+
input_edges,
|
883 |
+
attn_bias,
|
884 |
+
in_degree,
|
885 |
+
out_degree,
|
886 |
+
spatial_pos,
|
887 |
+
attn_edge_type,
|
888 |
+
return_dict=True,
|
889 |
+
)
|
890 |
+
outputs, hidden_states = encoder_outputs["last_hidden_state"], encoder_outputs["hidden_states"]
|
891 |
+
|
892 |
+
head_outputs = self.classifier(outputs)
|
893 |
+
logits = head_outputs[:, 0, :].contiguous()
|
894 |
+
|
895 |
+
loss = None
|
896 |
+
if labels is not None:
|
897 |
+
mask = ~torch.isnan(labels)
|
898 |
+
|
899 |
+
if self.num_classes == 1: # regression
|
900 |
+
loss_fct = MSELoss()
|
901 |
+
loss = loss_fct(logits[mask].squeeze(), labels[mask].squeeze().float())
|
902 |
+
elif self.num_classes > 1 and len(labels.shape) == 1: # One task classification
|
903 |
+
loss_fct = CrossEntropyLoss()
|
904 |
+
loss = loss_fct(logits[mask].view(-1, self.num_classes), labels[mask].view(-1))
|
905 |
+
else: # Binary multi-task classification
|
906 |
+
loss_fct = BCEWithLogitsLoss(reduction="sum")
|
907 |
+
loss = loss_fct(logits[mask], labels[mask])
|
908 |
+
|
909 |
+
if not return_dict:
|
910 |
+
return tuple(x for x in [loss, logits, hidden_states] if x is not None)
|
911 |
+
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states, attentions=None)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_idefics": ["IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP", "IdeficsConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_vision_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["image_processing_idefics"] = ["IdeficsImageProcessor"]
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_torch_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["modeling_idefics"] = [
|
36 |
+
"IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
37 |
+
"IdeficsForVisionText2Text",
|
38 |
+
"IdeficsModel",
|
39 |
+
"IdeficsPreTrainedModel",
|
40 |
+
]
|
41 |
+
_import_structure["processing_idefics"] = ["IdeficsProcessor"]
|
42 |
+
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_idefics import IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP, IdeficsConfig
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_vision_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
from .image_processing_idefics import IdeficsImageProcessor
|
54 |
+
|
55 |
+
try:
|
56 |
+
if not is_torch_available():
|
57 |
+
raise OptionalDependencyNotAvailable()
|
58 |
+
except OptionalDependencyNotAvailable:
|
59 |
+
pass
|
60 |
+
else:
|
61 |
+
from .modeling_idefics import (
|
62 |
+
IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
63 |
+
IdeficsForVisionText2Text,
|
64 |
+
IdeficsModel,
|
65 |
+
IdeficsPreTrainedModel,
|
66 |
+
)
|
67 |
+
from .processing_idefics import IdeficsProcessor
|
68 |
+
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/image_processing_idefics.cpython-310.pyc
ADDED
Binary file (6.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/modeling_idefics.cpython-310.pyc
ADDED
Binary file (49.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/processing_idefics.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/vision.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/perceiver.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
|
2 |
+
#
|
3 |
+
# MIT License
|
4 |
+
#
|
5 |
+
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
|
6 |
+
#
|
7 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
8 |
+
# of this software and associated documentation files (the "Software"), to deal
|
9 |
+
# in the Software without restriction, including without limitation the rights
|
10 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
11 |
+
# copies of the Software, and to permit persons to whom the Software is
|
12 |
+
# furnished to do so, subject to the following conditions:
|
13 |
+
#
|
14 |
+
# The above copyright notice and this permission notice shall be included in all
|
15 |
+
# copies or substantial portions of the Software.
|
16 |
+
#
|
17 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
18 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
19 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
20 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
21 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
22 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
23 |
+
# SOFTWARE.
|
24 |
+
|
25 |
+
|
26 |
+
"""
|
27 |
+
|
28 |
+
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
|
29 |
+
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
|
30 |
+
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
|
31 |
+
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
|
32 |
+
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
|
33 |
+
|
34 |
+
References:
|
35 |
+
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
|
36 |
+
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
|
37 |
+
|
38 |
+
"""
|
39 |
+
from typing import Optional, Tuple
|
40 |
+
|
41 |
+
import torch
|
42 |
+
import torch.nn as nn
|
43 |
+
|
44 |
+
from .configuration_idefics import IdeficsConfig
|
45 |
+
|
46 |
+
|
47 |
+
class IdeficsPerceiverResampler(nn.Module):
|
48 |
+
def __init__(
|
49 |
+
self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int
|
50 |
+
) -> None:
|
51 |
+
"""
|
52 |
+
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
|
53 |
+
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
|
54 |
+
returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
|
55 |
+
to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
|
56 |
+
Could be e.g., VIT embed_dim, ResNet pool dim, and so on.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
config (`IdeficsConfig`): config object
|
60 |
+
embed_dim (`int`): The size of each embedding vector
|
61 |
+
depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
|
62 |
+
n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
|
63 |
+
head_dim (`int`): Dimensionality of each head projection in the Transformer block.
|
64 |
+
n_latents (`int`):
|
65 |
+
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
66 |
+
|
67 |
+
"""
|
68 |
+
super().__init__()
|
69 |
+
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
|
70 |
+
self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
|
71 |
+
|
72 |
+
# Create Latents for Perceiver
|
73 |
+
self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True)
|
74 |
+
|
75 |
+
self.intermediate_dim = (
|
76 |
+
self.embed_dim * 4
|
77 |
+
if not hasattr(config.vision_config, "embed_dim")
|
78 |
+
else config.vision_config.embed_dim * 4
|
79 |
+
)
|
80 |
+
# Create Transformer Blocks
|
81 |
+
self.blocks = nn.ModuleList(
|
82 |
+
[
|
83 |
+
nn.ModuleList(
|
84 |
+
[
|
85 |
+
IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
|
86 |
+
IdeficsMLP(self.intermediate_dim, config),
|
87 |
+
]
|
88 |
+
)
|
89 |
+
for _ in range(depth)
|
90 |
+
]
|
91 |
+
)
|
92 |
+
self.layer_norm = nn.LayerNorm(self.embed_dim)
|
93 |
+
|
94 |
+
def forward(self, context: torch.Tensor) -> torch.Tensor:
|
95 |
+
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
|
96 |
+
# einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
|
97 |
+
latents = self.latents.repeat(context.shape[0], 1, 1)
|
98 |
+
|
99 |
+
# Feed through Perceiver Attention blocks...
|
100 |
+
for attn, ff in self.blocks:
|
101 |
+
latents = attn(context, latents) + latents
|
102 |
+
latents = ff(latents) + latents
|
103 |
+
|
104 |
+
return self.layer_norm(latents)
|
105 |
+
|
106 |
+
|
107 |
+
class IdeficsPerceiverAttention(nn.Module):
|
108 |
+
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
|
109 |
+
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
|
110 |
+
super().__init__()
|
111 |
+
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
|
112 |
+
self.qk_layer_norms = qk_layer_norms
|
113 |
+
# Normalization & Scaling
|
114 |
+
self.context_layer_norm = nn.LayerNorm(self.embed_dim)
|
115 |
+
self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
|
116 |
+
if self.qk_layer_norms:
|
117 |
+
self.q_layer_norm = nn.LayerNorm(self.head_dim)
|
118 |
+
self.k_layer_norm = nn.LayerNorm(self.head_dim)
|
119 |
+
|
120 |
+
self.qk_scale = self.head_dim**-0.5
|
121 |
+
|
122 |
+
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
|
123 |
+
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
124 |
+
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
125 |
+
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
126 |
+
|
127 |
+
self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False)
|
128 |
+
|
129 |
+
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
|
130 |
+
"""
|
131 |
+
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
|
132 |
+
|
133 |
+
Args:
|
134 |
+
context (`torch.Tensor`):
|
135 |
+
Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
|
136 |
+
latents (`torch.Tensor`):
|
137 |
+
Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
`torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
|
141 |
+
from context.
|
142 |
+
"""
|
143 |
+
context = self.context_layer_norm(context)
|
144 |
+
latents = self.latents_layer_norm(latents)
|
145 |
+
batch_size, seq_length, embed_dim = context.shape[:3]
|
146 |
+
|
147 |
+
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
|
148 |
+
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
|
149 |
+
q = self.q_proj(latents)
|
150 |
+
k = self.k_proj(torch.cat([context, latents], dim=-2))
|
151 |
+
v = self.v_proj(torch.cat([context, latents], dim=-2))
|
152 |
+
|
153 |
+
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
|
154 |
+
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
|
155 |
+
# einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads)
|
156 |
+
q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)]
|
157 |
+
|
158 |
+
if self.qk_layer_norms:
|
159 |
+
q = self.q_layer_norm(q)
|
160 |
+
k = self.k_layer_norm(k)
|
161 |
+
|
162 |
+
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
|
163 |
+
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
|
164 |
+
attn = stabilized_scores.softmax(dim=-1)
|
165 |
+
|
166 |
+
# Attend & project back to output...
|
167 |
+
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
|
168 |
+
# einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
|
169 |
+
return self.output_proj(resampled.transpose(1, 2).flatten(-2))
|
170 |
+
|
171 |
+
|
172 |
+
class IdeficsMLP(nn.Module):
|
173 |
+
def __init__(self, intermediate_size, config: IdeficsConfig):
|
174 |
+
"""Simple MLP block with intermediate_size and embedding size"""
|
175 |
+
super().__init__()
|
176 |
+
self.embed_dim = config.vision_config.embed_dim
|
177 |
+
self.ln = nn.LayerNorm(self.embed_dim)
|
178 |
+
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
|
179 |
+
self.act = nn.ReLU()
|
180 |
+
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
|
181 |
+
|
182 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
183 |
+
hidden_states = self.ln(hidden_states)
|
184 |
+
hidden_states = self.fc(hidden_states)
|
185 |
+
hidden_states = self.act(hidden_states)
|
186 |
+
hidden_states = self.c_proj(hidden_states)
|
187 |
+
|
188 |
+
return hidden_states
|
llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/configuration_instructblip.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/processing_instructblip.cpython-310.pyc
ADDED
Binary file (5.58 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__init__.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_longformer": [
|
28 |
+
"LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
29 |
+
"LongformerConfig",
|
30 |
+
"LongformerOnnxConfig",
|
31 |
+
],
|
32 |
+
"tokenization_longformer": ["LongformerTokenizer"],
|
33 |
+
}
|
34 |
+
|
35 |
+
try:
|
36 |
+
if not is_tokenizers_available():
|
37 |
+
raise OptionalDependencyNotAvailable()
|
38 |
+
except OptionalDependencyNotAvailable:
|
39 |
+
pass
|
40 |
+
else:
|
41 |
+
_import_structure["tokenization_longformer_fast"] = ["LongformerTokenizerFast"]
|
42 |
+
|
43 |
+
try:
|
44 |
+
if not is_torch_available():
|
45 |
+
raise OptionalDependencyNotAvailable()
|
46 |
+
except OptionalDependencyNotAvailable:
|
47 |
+
pass
|
48 |
+
else:
|
49 |
+
_import_structure["modeling_longformer"] = [
|
50 |
+
"LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
51 |
+
"LongformerForMaskedLM",
|
52 |
+
"LongformerForMultipleChoice",
|
53 |
+
"LongformerForQuestionAnswering",
|
54 |
+
"LongformerForSequenceClassification",
|
55 |
+
"LongformerForTokenClassification",
|
56 |
+
"LongformerModel",
|
57 |
+
"LongformerPreTrainedModel",
|
58 |
+
"LongformerSelfAttention",
|
59 |
+
]
|
60 |
+
|
61 |
+
try:
|
62 |
+
if not is_tf_available():
|
63 |
+
raise OptionalDependencyNotAvailable()
|
64 |
+
except OptionalDependencyNotAvailable:
|
65 |
+
pass
|
66 |
+
else:
|
67 |
+
_import_structure["modeling_tf_longformer"] = [
|
68 |
+
"TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
69 |
+
"TFLongformerForMaskedLM",
|
70 |
+
"TFLongformerForMultipleChoice",
|
71 |
+
"TFLongformerForQuestionAnswering",
|
72 |
+
"TFLongformerForSequenceClassification",
|
73 |
+
"TFLongformerForTokenClassification",
|
74 |
+
"TFLongformerModel",
|
75 |
+
"TFLongformerPreTrainedModel",
|
76 |
+
"TFLongformerSelfAttention",
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
if TYPE_CHECKING:
|
81 |
+
from .configuration_longformer import (
|
82 |
+
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
83 |
+
LongformerConfig,
|
84 |
+
LongformerOnnxConfig,
|
85 |
+
)
|
86 |
+
from .tokenization_longformer import LongformerTokenizer
|
87 |
+
|
88 |
+
try:
|
89 |
+
if not is_tokenizers_available():
|
90 |
+
raise OptionalDependencyNotAvailable()
|
91 |
+
except OptionalDependencyNotAvailable:
|
92 |
+
pass
|
93 |
+
else:
|
94 |
+
from .tokenization_longformer_fast import LongformerTokenizerFast
|
95 |
+
|
96 |
+
try:
|
97 |
+
if not is_torch_available():
|
98 |
+
raise OptionalDependencyNotAvailable()
|
99 |
+
except OptionalDependencyNotAvailable:
|
100 |
+
pass
|
101 |
+
else:
|
102 |
+
from .modeling_longformer import (
|
103 |
+
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
104 |
+
LongformerForMaskedLM,
|
105 |
+
LongformerForMultipleChoice,
|
106 |
+
LongformerForQuestionAnswering,
|
107 |
+
LongformerForSequenceClassification,
|
108 |
+
LongformerForTokenClassification,
|
109 |
+
LongformerModel,
|
110 |
+
LongformerPreTrainedModel,
|
111 |
+
LongformerSelfAttention,
|
112 |
+
)
|
113 |
+
|
114 |
+
try:
|
115 |
+
if not is_tf_available():
|
116 |
+
raise OptionalDependencyNotAvailable()
|
117 |
+
except OptionalDependencyNotAvailable:
|
118 |
+
pass
|
119 |
+
else:
|
120 |
+
from .modeling_tf_longformer import (
|
121 |
+
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
122 |
+
TFLongformerForMaskedLM,
|
123 |
+
TFLongformerForMultipleChoice,
|
124 |
+
TFLongformerForQuestionAnswering,
|
125 |
+
TFLongformerForSequenceClassification,
|
126 |
+
TFLongformerForTokenClassification,
|
127 |
+
TFLongformerModel,
|
128 |
+
TFLongformerPreTrainedModel,
|
129 |
+
TFLongformerSelfAttention,
|
130 |
+
)
|
131 |
+
|
132 |
+
else:
|
133 |
+
import sys
|
134 |
+
|
135 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc
ADDED
Binary file (8.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc
ADDED
Binary file (2.29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc
ADDED
Binary file (77.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc
ADDED
Binary file (84.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc
ADDED
Binary file (9.61 kB). View file
|
|