Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_filters.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_fourier.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_interpolation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_datatypes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_inputs.txt +21 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_results.txt +294 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_strels.txt +42 -0
- llmeval-env/lib/python3.10/site-packages/scipy/sparse/_csc.py +364 -0
- llmeval-env/lib/python3.10/site-packages/scipy/sparse/_data.py +506 -0
- llmeval-env/lib/python3.10/site-packages/scipy/sparse/_sputils.py +451 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Aden +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Anadyr +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Aqtau +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Aqtobe +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Ashgabat +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Atyrau +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Bahrain +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Baku +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Bangkok +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Barnaul +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Beirut +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Brunei +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Choibalsan +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Chongqing +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Chungking +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Damascus +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Dhaka +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Dubai +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Dushanbe +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Famagusta +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Gaza +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Hebron +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Ho_Chi_Minh +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Hong_Kong +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Irkutsk +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Istanbul +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Jakarta +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Jerusalem +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kabul +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kamchatka +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kashgar +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kathmandu +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Katmandu +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Khandyga +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kolkata +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Krasnoyarsk +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kuching +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kuwait +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Magadan +0 -0
- llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Muscat +0 -0
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_filters.cpython-310.pyc
ADDED
Binary file (52.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_fourier.cpython-310.pyc
ADDED
Binary file (8.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_interpolation.cpython-310.pyc
ADDED
Binary file (28.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_datatypes.cpython-310.pyc
ADDED
Binary file (1.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_inputs.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1 1 1 1 1 1 1
|
2 |
+
1 1 1 1 1 1 1
|
3 |
+
1 1 1 1 1 1 1
|
4 |
+
1 1 1 1 1 1 1
|
5 |
+
1 1 1 1 1 1 1
|
6 |
+
1 1 1 1 1 1 1
|
7 |
+
1 1 1 1 1 1 1
|
8 |
+
1 1 1 0 1 1 1
|
9 |
+
1 1 0 0 0 1 1
|
10 |
+
1 0 1 0 1 0 1
|
11 |
+
0 0 0 1 0 0 0
|
12 |
+
1 0 1 0 1 0 1
|
13 |
+
1 1 0 0 0 1 1
|
14 |
+
1 1 1 0 1 1 1
|
15 |
+
1 0 1 1 1 0 1
|
16 |
+
0 0 0 1 0 0 0
|
17 |
+
1 0 0 1 0 0 1
|
18 |
+
1 1 1 1 1 1 1
|
19 |
+
1 0 0 1 0 0 1
|
20 |
+
0 0 0 1 0 0 0
|
21 |
+
1 0 1 1 1 0 1
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_results.txt
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1 1 1 1 1 1 1
|
2 |
+
1 1 1 1 1 1 1
|
3 |
+
1 1 1 1 1 1 1
|
4 |
+
1 1 1 1 1 1 1
|
5 |
+
1 1 1 1 1 1 1
|
6 |
+
1 1 1 1 1 1 1
|
7 |
+
1 1 1 1 1 1 1
|
8 |
+
1 1 1 1 1 1 1
|
9 |
+
1 1 1 1 1 1 1
|
10 |
+
1 1 1 1 1 1 1
|
11 |
+
1 1 1 1 1 1 1
|
12 |
+
1 1 1 1 1 1 1
|
13 |
+
1 1 1 1 1 1 1
|
14 |
+
1 1 1 1 1 1 1
|
15 |
+
1 1 1 1 1 1 1
|
16 |
+
2 2 2 2 2 2 2
|
17 |
+
3 3 3 3 3 3 3
|
18 |
+
4 4 4 4 4 4 4
|
19 |
+
5 5 5 5 5 5 5
|
20 |
+
6 6 6 6 6 6 6
|
21 |
+
7 7 7 7 7 7 7
|
22 |
+
1 1 1 1 1 1 1
|
23 |
+
1 1 1 1 1 1 1
|
24 |
+
1 1 1 1 1 1 1
|
25 |
+
1 1 1 1 1 1 1
|
26 |
+
1 1 1 1 1 1 1
|
27 |
+
1 1 1 1 1 1 1
|
28 |
+
1 1 1 1 1 1 1
|
29 |
+
1 2 3 4 5 6 7
|
30 |
+
8 9 10 11 12 13 14
|
31 |
+
15 16 17 18 19 20 21
|
32 |
+
22 23 24 25 26 27 28
|
33 |
+
29 30 31 32 33 34 35
|
34 |
+
36 37 38 39 40 41 42
|
35 |
+
43 44 45 46 47 48 49
|
36 |
+
1 1 1 1 1 1 1
|
37 |
+
1 1 1 1 1 1 1
|
38 |
+
1 1 1 1 1 1 1
|
39 |
+
1 1 1 1 1 1 1
|
40 |
+
1 1 1 1 1 1 1
|
41 |
+
1 1 1 1 1 1 1
|
42 |
+
1 1 1 1 1 1 1
|
43 |
+
1 1 1 1 1 1 1
|
44 |
+
1 1 1 1 1 1 1
|
45 |
+
1 1 1 1 1 1 1
|
46 |
+
1 1 1 1 1 1 1
|
47 |
+
1 1 1 1 1 1 1
|
48 |
+
1 1 1 1 1 1 1
|
49 |
+
1 1 1 1 1 1 1
|
50 |
+
1 2 3 4 5 6 7
|
51 |
+
8 1 2 3 4 5 6
|
52 |
+
9 8 1 2 3 4 5
|
53 |
+
10 9 8 1 2 3 4
|
54 |
+
11 10 9 8 1 2 3
|
55 |
+
12 11 10 9 8 1 2
|
56 |
+
13 12 11 10 9 8 1
|
57 |
+
1 2 3 4 5 6 7
|
58 |
+
1 2 3 4 5 6 7
|
59 |
+
1 2 3 4 5 6 7
|
60 |
+
1 2 3 4 5 6 7
|
61 |
+
1 2 3 4 5 6 7
|
62 |
+
1 2 3 4 5 6 7
|
63 |
+
1 2 3 4 5 6 7
|
64 |
+
1 1 1 1 1 1 1
|
65 |
+
1 1 1 1 1 1 1
|
66 |
+
1 1 1 1 1 1 1
|
67 |
+
1 1 1 1 1 1 1
|
68 |
+
1 1 1 1 1 1 1
|
69 |
+
1 1 1 1 1 1 1
|
70 |
+
1 1 1 1 1 1 1
|
71 |
+
1 1 1 1 1 1 1
|
72 |
+
1 1 1 1 1 1 1
|
73 |
+
1 1 1 1 1 1 1
|
74 |
+
1 1 1 1 1 1 1
|
75 |
+
1 1 1 1 1 1 1
|
76 |
+
1 1 1 1 1 1 1
|
77 |
+
1 1 1 1 1 1 1
|
78 |
+
1 2 1 2 1 2 1
|
79 |
+
2 1 2 1 2 1 2
|
80 |
+
1 2 1 2 1 2 1
|
81 |
+
2 1 2 1 2 1 2
|
82 |
+
1 2 1 2 1 2 1
|
83 |
+
2 1 2 1 2 1 2
|
84 |
+
1 2 1 2 1 2 1
|
85 |
+
1 2 3 4 5 6 7
|
86 |
+
2 3 4 5 6 7 8
|
87 |
+
3 4 5 6 7 8 9
|
88 |
+
4 5 6 7 8 9 10
|
89 |
+
5 6 7 8 9 10 11
|
90 |
+
6 7 8 9 10 11 12
|
91 |
+
7 8 9 10 11 12 13
|
92 |
+
1 1 1 1 1 1 1
|
93 |
+
1 1 1 1 1 1 1
|
94 |
+
1 1 1 1 1 1 1
|
95 |
+
1 1 1 1 1 1 1
|
96 |
+
1 1 1 1 1 1 1
|
97 |
+
1 1 1 1 1 1 1
|
98 |
+
1 1 1 1 1 1 1
|
99 |
+
1 1 1 0 2 2 2
|
100 |
+
1 1 0 0 0 2 2
|
101 |
+
1 0 3 0 2 0 4
|
102 |
+
0 0 0 2 0 0 0
|
103 |
+
5 0 2 0 6 0 7
|
104 |
+
2 2 0 0 0 7 7
|
105 |
+
2 2 2 0 7 7 7
|
106 |
+
1 1 1 0 2 2 2
|
107 |
+
1 1 0 0 0 2 2
|
108 |
+
3 0 1 0 4 0 2
|
109 |
+
0 0 0 1 0 0 0
|
110 |
+
5 0 6 0 1 0 7
|
111 |
+
5 5 0 0 0 1 1
|
112 |
+
5 5 5 0 1 1 1
|
113 |
+
1 1 1 0 2 2 2
|
114 |
+
3 3 0 0 0 4 4
|
115 |
+
5 0 6 0 7 0 8
|
116 |
+
0 0 0 9 0 0 0
|
117 |
+
10 0 11 0 12 0 13
|
118 |
+
14 14 0 0 0 15 15
|
119 |
+
16 16 16 0 17 17 17
|
120 |
+
1 1 1 0 2 3 3
|
121 |
+
1 1 0 0 0 3 3
|
122 |
+
1 0 4 0 3 0 3
|
123 |
+
0 0 0 3 0 0 0
|
124 |
+
3 0 3 0 5 0 6
|
125 |
+
3 3 0 0 0 6 6
|
126 |
+
3 3 7 0 6 6 6
|
127 |
+
1 2 3 0 4 5 6
|
128 |
+
7 8 0 0 0 9 10
|
129 |
+
11 0 12 0 13 0 14
|
130 |
+
0 0 0 15 0 0 0
|
131 |
+
16 0 17 0 18 0 19
|
132 |
+
20 21 0 0 0 22 23
|
133 |
+
24 25 26 0 27 28 29
|
134 |
+
1 1 1 0 2 2 2
|
135 |
+
1 1 0 0 0 2 2
|
136 |
+
1 0 3 0 2 0 2
|
137 |
+
0 0 0 2 0 0 0
|
138 |
+
2 0 2 0 4 0 5
|
139 |
+
2 2 0 0 0 5 5
|
140 |
+
2 2 2 0 5 5 5
|
141 |
+
1 1 1 0 2 2 2
|
142 |
+
1 1 0 0 0 2 2
|
143 |
+
1 0 3 0 4 0 2
|
144 |
+
0 0 0 5 0 0 0
|
145 |
+
6 0 7 0 8 0 9
|
146 |
+
6 6 0 0 0 9 9
|
147 |
+
6 6 6 0 9 9 9
|
148 |
+
1 2 3 0 4 5 6
|
149 |
+
7 1 0 0 0 4 5
|
150 |
+
8 0 1 0 9 0 4
|
151 |
+
0 0 0 1 0 0 0
|
152 |
+
10 0 11 0 1 0 12
|
153 |
+
13 10 0 0 0 1 14
|
154 |
+
15 13 10 0 16 17 1
|
155 |
+
1 2 3 0 4 5 6
|
156 |
+
1 2 0 0 0 5 6
|
157 |
+
1 0 7 0 8 0 6
|
158 |
+
0 0 0 9 0 0 0
|
159 |
+
10 0 11 0 12 0 13
|
160 |
+
10 14 0 0 0 15 13
|
161 |
+
10 14 16 0 17 15 13
|
162 |
+
1 1 1 0 1 1 1
|
163 |
+
1 1 0 0 0 1 1
|
164 |
+
1 0 1 0 1 0 1
|
165 |
+
0 0 0 1 0 0 0
|
166 |
+
1 0 1 0 1 0 1
|
167 |
+
1 1 0 0 0 1 1
|
168 |
+
1 1 1 0 1 1 1
|
169 |
+
1 1 2 0 3 3 3
|
170 |
+
1 1 0 0 0 3 3
|
171 |
+
1 0 1 0 4 0 3
|
172 |
+
0 0 0 1 0 0 0
|
173 |
+
5 0 6 0 1 0 1
|
174 |
+
5 5 0 0 0 1 1
|
175 |
+
5 5 5 0 7 1 1
|
176 |
+
1 2 1 0 1 3 1
|
177 |
+
2 1 0 0 0 1 3
|
178 |
+
1 0 1 0 1 0 1
|
179 |
+
0 0 0 1 0 0 0
|
180 |
+
1 0 1 0 1 0 1
|
181 |
+
4 1 0 0 0 1 5
|
182 |
+
1 4 1 0 1 5 1
|
183 |
+
1 2 3 0 4 5 6
|
184 |
+
2 3 0 0 0 6 7
|
185 |
+
3 0 8 0 6 0 9
|
186 |
+
0 0 0 6 0 0 0
|
187 |
+
10 0 6 0 11 0 12
|
188 |
+
13 6 0 0 0 12 14
|
189 |
+
6 15 16 0 12 14 17
|
190 |
+
1 1 1 0 2 2 2
|
191 |
+
1 1 0 0 0 2 2
|
192 |
+
1 0 1 0 3 0 2
|
193 |
+
0 0 0 1 0 0 0
|
194 |
+
4 0 5 0 1 0 1
|
195 |
+
4 4 0 0 0 1 1
|
196 |
+
4 4 4 0 1 1 1
|
197 |
+
1 0 2 2 2 0 3
|
198 |
+
0 0 0 2 0 0 0
|
199 |
+
4 0 0 5 0 0 5
|
200 |
+
5 5 5 5 5 5 5
|
201 |
+
5 0 0 5 0 0 6
|
202 |
+
0 0 0 7 0 0 0
|
203 |
+
8 0 7 7 7 0 9
|
204 |
+
1 0 2 2 2 0 3
|
205 |
+
0 0 0 2 0 0 0
|
206 |
+
4 0 0 4 0 0 5
|
207 |
+
4 4 4 4 4 4 4
|
208 |
+
6 0 0 4 0 0 4
|
209 |
+
0 0 0 7 0 0 0
|
210 |
+
8 0 7 7 7 0 9
|
211 |
+
1 0 2 2 2 0 3
|
212 |
+
0 0 0 4 0 0 0
|
213 |
+
5 0 0 6 0 0 7
|
214 |
+
8 8 8 8 8 8 8
|
215 |
+
9 0 0 10 0 0 11
|
216 |
+
0 0 0 12 0 0 0
|
217 |
+
13 0 14 14 14 0 15
|
218 |
+
1 0 2 3 3 0 4
|
219 |
+
0 0 0 3 0 0 0
|
220 |
+
5 0 0 3 0 0 6
|
221 |
+
5 5 3 3 3 6 6
|
222 |
+
5 0 0 3 0 0 6
|
223 |
+
0 0 0 3 0 0 0
|
224 |
+
7 0 3 3 8 0 9
|
225 |
+
1 0 2 3 4 0 5
|
226 |
+
0 0 0 6 0 0 0
|
227 |
+
7 0 0 8 0 0 9
|
228 |
+
10 11 12 13 14 15 16
|
229 |
+
17 0 0 18 0 0 19
|
230 |
+
0 0 0 20 0 0 0
|
231 |
+
21 0 22 23 24 0 25
|
232 |
+
1 0 2 2 2 0 3
|
233 |
+
0 0 0 2 0 0 0
|
234 |
+
2 0 0 2 0 0 2
|
235 |
+
2 2 2 2 2 2 2
|
236 |
+
2 0 0 2 0 0 2
|
237 |
+
0 0 0 2 0 0 0
|
238 |
+
4 0 2 2 2 0 5
|
239 |
+
1 0 2 2 2 0 3
|
240 |
+
0 0 0 2 0 0 0
|
241 |
+
2 0 0 2 0 0 2
|
242 |
+
2 2 2 2 2 2 2
|
243 |
+
2 0 0 2 0 0 2
|
244 |
+
0 0 0 2 0 0 0
|
245 |
+
4 0 2 2 2 0 5
|
246 |
+
1 0 2 3 4 0 5
|
247 |
+
0 0 0 2 0 0 0
|
248 |
+
6 0 0 7 0 0 8
|
249 |
+
9 6 10 11 7 12 13
|
250 |
+
14 0 0 10 0 0 12
|
251 |
+
0 0 0 15 0 0 0
|
252 |
+
16 0 17 18 15 0 19
|
253 |
+
1 0 2 3 4 0 5
|
254 |
+
0 0 0 3 0 0 0
|
255 |
+
6 0 0 3 0 0 7
|
256 |
+
6 8 9 3 10 11 7
|
257 |
+
6 0 0 3 0 0 7
|
258 |
+
0 0 0 3 0 0 0
|
259 |
+
12 0 13 3 14 0 15
|
260 |
+
1 0 2 2 2 0 3
|
261 |
+
0 0 0 2 0 0 0
|
262 |
+
2 0 0 2 0 0 2
|
263 |
+
2 2 2 2 2 2 2
|
264 |
+
2 0 0 2 0 0 2
|
265 |
+
0 0 0 2 0 0 0
|
266 |
+
4 0 2 2 2 0 5
|
267 |
+
1 0 2 2 3 0 4
|
268 |
+
0 0 0 2 0 0 0
|
269 |
+
5 0 0 2 0 0 6
|
270 |
+
5 5 2 2 2 6 6
|
271 |
+
5 0 0 2 0 0 6
|
272 |
+
0 0 0 2 0 0 0
|
273 |
+
7 0 8 2 2 0 9
|
274 |
+
1 0 2 3 2 0 4
|
275 |
+
0 0 0 2 0 0 0
|
276 |
+
5 0 0 6 0 0 7
|
277 |
+
8 5 6 9 6 7 10
|
278 |
+
5 0 0 6 0 0 7
|
279 |
+
0 0 0 11 0 0 0
|
280 |
+
12 0 11 13 11 0 14
|
281 |
+
1 0 2 3 4 0 5
|
282 |
+
0 0 0 4 0 0 0
|
283 |
+
6 0 0 7 0 0 8
|
284 |
+
9 10 7 11 12 8 13
|
285 |
+
10 0 0 12 0 0 14
|
286 |
+
0 0 0 15 0 0 0
|
287 |
+
16 0 15 17 18 0 19
|
288 |
+
1 0 2 2 2 0 3
|
289 |
+
0 0 0 2 0 0 0
|
290 |
+
2 0 0 2 0 0 2
|
291 |
+
2 2 2 2 2 2 2
|
292 |
+
2 0 0 2 0 0 2
|
293 |
+
0 0 0 2 0 0 0
|
294 |
+
4 0 2 2 2 0 5
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_strels.txt
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0 0 1
|
2 |
+
1 1 1
|
3 |
+
1 0 0
|
4 |
+
1 0 0
|
5 |
+
1 1 1
|
6 |
+
0 0 1
|
7 |
+
0 0 0
|
8 |
+
1 1 1
|
9 |
+
0 0 0
|
10 |
+
0 1 1
|
11 |
+
0 1 0
|
12 |
+
1 1 0
|
13 |
+
0 0 0
|
14 |
+
0 0 0
|
15 |
+
0 0 0
|
16 |
+
0 1 1
|
17 |
+
1 1 1
|
18 |
+
1 1 0
|
19 |
+
0 1 0
|
20 |
+
1 1 1
|
21 |
+
0 1 0
|
22 |
+
1 0 0
|
23 |
+
0 1 0
|
24 |
+
0 0 1
|
25 |
+
0 1 0
|
26 |
+
0 1 0
|
27 |
+
0 1 0
|
28 |
+
1 1 1
|
29 |
+
1 1 1
|
30 |
+
1 1 1
|
31 |
+
1 1 0
|
32 |
+
0 1 0
|
33 |
+
0 1 1
|
34 |
+
1 0 1
|
35 |
+
0 1 0
|
36 |
+
1 0 1
|
37 |
+
0 0 1
|
38 |
+
0 1 0
|
39 |
+
1 0 0
|
40 |
+
1 1 0
|
41 |
+
1 1 1
|
42 |
+
0 1 1
|
llmeval-env/lib/python3.10/site-packages/scipy/sparse/_csc.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Compressed Sparse Column matrix format"""
|
2 |
+
__docformat__ = "restructuredtext en"
|
3 |
+
|
4 |
+
__all__ = ['csc_array', 'csc_matrix', 'isspmatrix_csc']
|
5 |
+
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from ._matrix import spmatrix
|
10 |
+
from ._base import _spbase, sparray
|
11 |
+
from ._sparsetools import csc_tocsr, expandptr
|
12 |
+
from ._sputils import upcast
|
13 |
+
|
14 |
+
from ._compressed import _cs_matrix
|
15 |
+
|
16 |
+
|
17 |
+
class _csc_base(_cs_matrix):
|
18 |
+
_format = 'csc'
|
19 |
+
|
20 |
+
def transpose(self, axes=None, copy=False):
|
21 |
+
if axes is not None and axes != (1, 0):
|
22 |
+
raise ValueError("Sparse arrays/matrices do not support "
|
23 |
+
"an 'axes' parameter because swapping "
|
24 |
+
"dimensions is the only logical permutation.")
|
25 |
+
|
26 |
+
M, N = self.shape
|
27 |
+
|
28 |
+
return self._csr_container((self.data, self.indices,
|
29 |
+
self.indptr), (N, M), copy=copy)
|
30 |
+
|
31 |
+
transpose.__doc__ = _spbase.transpose.__doc__
|
32 |
+
|
33 |
+
def __iter__(self):
|
34 |
+
yield from self.tocsr()
|
35 |
+
|
36 |
+
def tocsc(self, copy=False):
|
37 |
+
if copy:
|
38 |
+
return self.copy()
|
39 |
+
else:
|
40 |
+
return self
|
41 |
+
|
42 |
+
tocsc.__doc__ = _spbase.tocsc.__doc__
|
43 |
+
|
44 |
+
def tocsr(self, copy=False):
|
45 |
+
M,N = self.shape
|
46 |
+
idx_dtype = self._get_index_dtype((self.indptr, self.indices),
|
47 |
+
maxval=max(self.nnz, N))
|
48 |
+
indptr = np.empty(M + 1, dtype=idx_dtype)
|
49 |
+
indices = np.empty(self.nnz, dtype=idx_dtype)
|
50 |
+
data = np.empty(self.nnz, dtype=upcast(self.dtype))
|
51 |
+
|
52 |
+
csc_tocsr(M, N,
|
53 |
+
self.indptr.astype(idx_dtype),
|
54 |
+
self.indices.astype(idx_dtype),
|
55 |
+
self.data,
|
56 |
+
indptr,
|
57 |
+
indices,
|
58 |
+
data)
|
59 |
+
|
60 |
+
A = self._csr_container(
|
61 |
+
(data, indices, indptr),
|
62 |
+
shape=self.shape, copy=False
|
63 |
+
)
|
64 |
+
A.has_sorted_indices = True
|
65 |
+
return A
|
66 |
+
|
67 |
+
tocsr.__doc__ = _spbase.tocsr.__doc__
|
68 |
+
|
69 |
+
def nonzero(self):
|
70 |
+
# CSC can't use _cs_matrix's .nonzero method because it
|
71 |
+
# returns the indices sorted for self transposed.
|
72 |
+
|
73 |
+
# Get row and col indices, from _cs_matrix.tocoo
|
74 |
+
major_dim, minor_dim = self._swap(self.shape)
|
75 |
+
minor_indices = self.indices
|
76 |
+
major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype)
|
77 |
+
expandptr(major_dim, self.indptr, major_indices)
|
78 |
+
row, col = self._swap((major_indices, minor_indices))
|
79 |
+
|
80 |
+
# Remove explicit zeros
|
81 |
+
nz_mask = self.data != 0
|
82 |
+
row = row[nz_mask]
|
83 |
+
col = col[nz_mask]
|
84 |
+
|
85 |
+
# Sort them to be in C-style order
|
86 |
+
ind = np.argsort(row, kind='mergesort')
|
87 |
+
row = row[ind]
|
88 |
+
col = col[ind]
|
89 |
+
|
90 |
+
return row, col
|
91 |
+
|
92 |
+
nonzero.__doc__ = _cs_matrix.nonzero.__doc__
|
93 |
+
|
94 |
+
def _getrow(self, i):
|
95 |
+
"""Returns a copy of row i of the matrix, as a (1 x n)
|
96 |
+
CSR matrix (row vector).
|
97 |
+
"""
|
98 |
+
M, N = self.shape
|
99 |
+
i = int(i)
|
100 |
+
if i < 0:
|
101 |
+
i += M
|
102 |
+
if i < 0 or i >= M:
|
103 |
+
raise IndexError('index (%d) out of range' % i)
|
104 |
+
return self._get_submatrix(minor=i).tocsr()
|
105 |
+
|
106 |
+
def _getcol(self, i):
|
107 |
+
"""Returns a copy of column i of the matrix, as a (m x 1)
|
108 |
+
CSC matrix (column vector).
|
109 |
+
"""
|
110 |
+
M, N = self.shape
|
111 |
+
i = int(i)
|
112 |
+
if i < 0:
|
113 |
+
i += N
|
114 |
+
if i < 0 or i >= N:
|
115 |
+
raise IndexError('index (%d) out of range' % i)
|
116 |
+
return self._get_submatrix(major=i, copy=True)
|
117 |
+
|
118 |
+
def _get_intXarray(self, row, col):
|
119 |
+
return self._major_index_fancy(col)._get_submatrix(minor=row)
|
120 |
+
|
121 |
+
def _get_intXslice(self, row, col):
|
122 |
+
if col.step in (1, None):
|
123 |
+
return self._get_submatrix(major=col, minor=row, copy=True)
|
124 |
+
return self._major_slice(col)._get_submatrix(minor=row)
|
125 |
+
|
126 |
+
def _get_sliceXint(self, row, col):
|
127 |
+
if row.step in (1, None):
|
128 |
+
return self._get_submatrix(major=col, minor=row, copy=True)
|
129 |
+
return self._get_submatrix(major=col)._minor_slice(row)
|
130 |
+
|
131 |
+
def _get_sliceXarray(self, row, col):
|
132 |
+
return self._major_index_fancy(col)._minor_slice(row)
|
133 |
+
|
134 |
+
def _get_arrayXint(self, row, col):
|
135 |
+
return self._get_submatrix(major=col)._minor_index_fancy(row)
|
136 |
+
|
137 |
+
def _get_arrayXslice(self, row, col):
|
138 |
+
return self._major_slice(col)._minor_index_fancy(row)
|
139 |
+
|
140 |
+
# these functions are used by the parent class (_cs_matrix)
|
141 |
+
# to remove redundancy between csc_array and csr_matrix
|
142 |
+
@staticmethod
|
143 |
+
def _swap(x):
|
144 |
+
"""swap the members of x if this is a column-oriented matrix
|
145 |
+
"""
|
146 |
+
return x[1], x[0]
|
147 |
+
|
148 |
+
|
149 |
+
def isspmatrix_csc(x):
|
150 |
+
"""Is `x` of csc_matrix type?
|
151 |
+
|
152 |
+
Parameters
|
153 |
+
----------
|
154 |
+
x
|
155 |
+
object to check for being a csc matrix
|
156 |
+
|
157 |
+
Returns
|
158 |
+
-------
|
159 |
+
bool
|
160 |
+
True if `x` is a csc matrix, False otherwise
|
161 |
+
|
162 |
+
Examples
|
163 |
+
--------
|
164 |
+
>>> from scipy.sparse import csc_array, csc_matrix, coo_matrix, isspmatrix_csc
|
165 |
+
>>> isspmatrix_csc(csc_matrix([[5]]))
|
166 |
+
True
|
167 |
+
>>> isspmatrix_csc(csc_array([[5]]))
|
168 |
+
False
|
169 |
+
>>> isspmatrix_csc(coo_matrix([[5]]))
|
170 |
+
False
|
171 |
+
"""
|
172 |
+
return isinstance(x, csc_matrix)
|
173 |
+
|
174 |
+
|
175 |
+
# This namespace class separates array from matrix with isinstance
|
176 |
+
class csc_array(_csc_base, sparray):
|
177 |
+
"""
|
178 |
+
Compressed Sparse Column array.
|
179 |
+
|
180 |
+
This can be instantiated in several ways:
|
181 |
+
csc_array(D)
|
182 |
+
where D is a 2-D ndarray
|
183 |
+
|
184 |
+
csc_array(S)
|
185 |
+
with another sparse array or matrix S (equivalent to S.tocsc())
|
186 |
+
|
187 |
+
csc_array((M, N), [dtype])
|
188 |
+
to construct an empty array with shape (M, N)
|
189 |
+
dtype is optional, defaulting to dtype='d'.
|
190 |
+
|
191 |
+
csc_array((data, (row_ind, col_ind)), [shape=(M, N)])
|
192 |
+
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
|
193 |
+
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
|
194 |
+
|
195 |
+
csc_array((data, indices, indptr), [shape=(M, N)])
|
196 |
+
is the standard CSC representation where the row indices for
|
197 |
+
column i are stored in ``indices[indptr[i]:indptr[i+1]]``
|
198 |
+
and their corresponding values are stored in
|
199 |
+
``data[indptr[i]:indptr[i+1]]``. If the shape parameter is
|
200 |
+
not supplied, the array dimensions are inferred from
|
201 |
+
the index arrays.
|
202 |
+
|
203 |
+
Attributes
|
204 |
+
----------
|
205 |
+
dtype : dtype
|
206 |
+
Data type of the array
|
207 |
+
shape : 2-tuple
|
208 |
+
Shape of the array
|
209 |
+
ndim : int
|
210 |
+
Number of dimensions (this is always 2)
|
211 |
+
nnz
|
212 |
+
size
|
213 |
+
data
|
214 |
+
CSC format data array of the array
|
215 |
+
indices
|
216 |
+
CSC format index array of the array
|
217 |
+
indptr
|
218 |
+
CSC format index pointer array of the array
|
219 |
+
has_sorted_indices
|
220 |
+
has_canonical_format
|
221 |
+
T
|
222 |
+
|
223 |
+
Notes
|
224 |
+
-----
|
225 |
+
|
226 |
+
Sparse arrays can be used in arithmetic operations: they support
|
227 |
+
addition, subtraction, multiplication, division, and matrix power.
|
228 |
+
|
229 |
+
Advantages of the CSC format
|
230 |
+
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
|
231 |
+
- efficient column slicing
|
232 |
+
- fast matrix vector products (CSR, BSR may be faster)
|
233 |
+
|
234 |
+
Disadvantages of the CSC format
|
235 |
+
- slow row slicing operations (consider CSR)
|
236 |
+
- changes to the sparsity structure are expensive (consider LIL or DOK)
|
237 |
+
|
238 |
+
Canonical format
|
239 |
+
- Within each column, indices are sorted by row.
|
240 |
+
- There are no duplicate entries.
|
241 |
+
|
242 |
+
Examples
|
243 |
+
--------
|
244 |
+
|
245 |
+
>>> import numpy as np
|
246 |
+
>>> from scipy.sparse import csc_array
|
247 |
+
>>> csc_array((3, 4), dtype=np.int8).toarray()
|
248 |
+
array([[0, 0, 0, 0],
|
249 |
+
[0, 0, 0, 0],
|
250 |
+
[0, 0, 0, 0]], dtype=int8)
|
251 |
+
|
252 |
+
>>> row = np.array([0, 2, 2, 0, 1, 2])
|
253 |
+
>>> col = np.array([0, 0, 1, 2, 2, 2])
|
254 |
+
>>> data = np.array([1, 2, 3, 4, 5, 6])
|
255 |
+
>>> csc_array((data, (row, col)), shape=(3, 3)).toarray()
|
256 |
+
array([[1, 0, 4],
|
257 |
+
[0, 0, 5],
|
258 |
+
[2, 3, 6]])
|
259 |
+
|
260 |
+
>>> indptr = np.array([0, 2, 3, 6])
|
261 |
+
>>> indices = np.array([0, 2, 2, 0, 1, 2])
|
262 |
+
>>> data = np.array([1, 2, 3, 4, 5, 6])
|
263 |
+
>>> csc_array((data, indices, indptr), shape=(3, 3)).toarray()
|
264 |
+
array([[1, 0, 4],
|
265 |
+
[0, 0, 5],
|
266 |
+
[2, 3, 6]])
|
267 |
+
|
268 |
+
"""
|
269 |
+
|
270 |
+
|
271 |
+
class csc_matrix(spmatrix, _csc_base):
|
272 |
+
"""
|
273 |
+
Compressed Sparse Column matrix.
|
274 |
+
|
275 |
+
This can be instantiated in several ways:
|
276 |
+
csc_matrix(D)
|
277 |
+
where D is a 2-D ndarray
|
278 |
+
|
279 |
+
csc_matrix(S)
|
280 |
+
with another sparse array or matrix S (equivalent to S.tocsc())
|
281 |
+
|
282 |
+
csc_matrix((M, N), [dtype])
|
283 |
+
to construct an empty matrix with shape (M, N)
|
284 |
+
dtype is optional, defaulting to dtype='d'.
|
285 |
+
|
286 |
+
csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
|
287 |
+
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
|
288 |
+
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
|
289 |
+
|
290 |
+
csc_matrix((data, indices, indptr), [shape=(M, N)])
|
291 |
+
is the standard CSC representation where the row indices for
|
292 |
+
column i are stored in ``indices[indptr[i]:indptr[i+1]]``
|
293 |
+
and their corresponding values are stored in
|
294 |
+
``data[indptr[i]:indptr[i+1]]``. If the shape parameter is
|
295 |
+
not supplied, the matrix dimensions are inferred from
|
296 |
+
the index arrays.
|
297 |
+
|
298 |
+
Attributes
|
299 |
+
----------
|
300 |
+
dtype : dtype
|
301 |
+
Data type of the matrix
|
302 |
+
shape : 2-tuple
|
303 |
+
Shape of the matrix
|
304 |
+
ndim : int
|
305 |
+
Number of dimensions (this is always 2)
|
306 |
+
nnz
|
307 |
+
size
|
308 |
+
data
|
309 |
+
CSC format data array of the matrix
|
310 |
+
indices
|
311 |
+
CSC format index array of the matrix
|
312 |
+
indptr
|
313 |
+
CSC format index pointer array of the matrix
|
314 |
+
has_sorted_indices
|
315 |
+
has_canonical_format
|
316 |
+
T
|
317 |
+
|
318 |
+
Notes
|
319 |
+
-----
|
320 |
+
|
321 |
+
Sparse matrices can be used in arithmetic operations: they support
|
322 |
+
addition, subtraction, multiplication, division, and matrix power.
|
323 |
+
|
324 |
+
Advantages of the CSC format
|
325 |
+
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
|
326 |
+
- efficient column slicing
|
327 |
+
- fast matrix vector products (CSR, BSR may be faster)
|
328 |
+
|
329 |
+
Disadvantages of the CSC format
|
330 |
+
- slow row slicing operations (consider CSR)
|
331 |
+
- changes to the sparsity structure are expensive (consider LIL or DOK)
|
332 |
+
|
333 |
+
Canonical format
|
334 |
+
- Within each column, indices are sorted by row.
|
335 |
+
- There are no duplicate entries.
|
336 |
+
|
337 |
+
Examples
|
338 |
+
--------
|
339 |
+
|
340 |
+
>>> import numpy as np
|
341 |
+
>>> from scipy.sparse import csc_matrix
|
342 |
+
>>> csc_matrix((3, 4), dtype=np.int8).toarray()
|
343 |
+
array([[0, 0, 0, 0],
|
344 |
+
[0, 0, 0, 0],
|
345 |
+
[0, 0, 0, 0]], dtype=int8)
|
346 |
+
|
347 |
+
>>> row = np.array([0, 2, 2, 0, 1, 2])
|
348 |
+
>>> col = np.array([0, 0, 1, 2, 2, 2])
|
349 |
+
>>> data = np.array([1, 2, 3, 4, 5, 6])
|
350 |
+
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
|
351 |
+
array([[1, 0, 4],
|
352 |
+
[0, 0, 5],
|
353 |
+
[2, 3, 6]])
|
354 |
+
|
355 |
+
>>> indptr = np.array([0, 2, 3, 6])
|
356 |
+
>>> indices = np.array([0, 2, 2, 0, 1, 2])
|
357 |
+
>>> data = np.array([1, 2, 3, 4, 5, 6])
|
358 |
+
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
|
359 |
+
array([[1, 0, 4],
|
360 |
+
[0, 0, 5],
|
361 |
+
[2, 3, 6]])
|
362 |
+
|
363 |
+
"""
|
364 |
+
|
llmeval-env/lib/python3.10/site-packages/scipy/sparse/_data.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base class for sparse matrice with a .data attribute
|
2 |
+
|
3 |
+
subclasses must provide a _with_data() method that
|
4 |
+
creates a new matrix with the same sparsity pattern
|
5 |
+
as self but with a different data array
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from ._base import _spbase, _ufuncs_with_fixed_point_at_zero
|
12 |
+
from ._sputils import isscalarlike, validateaxis
|
13 |
+
|
14 |
+
__all__ = []
|
15 |
+
|
16 |
+
|
17 |
+
# TODO implement all relevant operations
|
18 |
+
# use .data.__methods__() instead of /=, *=, etc.
|
19 |
+
class _data_matrix(_spbase):
|
20 |
+
def __init__(self):
|
21 |
+
_spbase.__init__(self)
|
22 |
+
|
23 |
+
@property
|
24 |
+
def dtype(self):
|
25 |
+
return self.data.dtype
|
26 |
+
|
27 |
+
@dtype.setter
|
28 |
+
def dtype(self, newtype):
|
29 |
+
self.data.dtype = newtype
|
30 |
+
|
31 |
+
def _deduped_data(self):
|
32 |
+
if hasattr(self, 'sum_duplicates'):
|
33 |
+
self.sum_duplicates()
|
34 |
+
return self.data
|
35 |
+
|
36 |
+
def __abs__(self):
|
37 |
+
return self._with_data(abs(self._deduped_data()))
|
38 |
+
|
39 |
+
def __round__(self, ndigits=0):
|
40 |
+
return self._with_data(np.around(self._deduped_data(), decimals=ndigits))
|
41 |
+
|
42 |
+
def _real(self):
|
43 |
+
return self._with_data(self.data.real)
|
44 |
+
|
45 |
+
def _imag(self):
|
46 |
+
return self._with_data(self.data.imag)
|
47 |
+
|
48 |
+
def __neg__(self):
|
49 |
+
if self.dtype.kind == 'b':
|
50 |
+
raise NotImplementedError('negating a boolean sparse array is not '
|
51 |
+
'supported')
|
52 |
+
return self._with_data(-self.data)
|
53 |
+
|
54 |
+
def __imul__(self, other): # self *= other
|
55 |
+
if isscalarlike(other):
|
56 |
+
self.data *= other
|
57 |
+
return self
|
58 |
+
else:
|
59 |
+
return NotImplemented
|
60 |
+
|
61 |
+
def __itruediv__(self, other): # self /= other
|
62 |
+
if isscalarlike(other):
|
63 |
+
recip = 1.0 / other
|
64 |
+
self.data *= recip
|
65 |
+
return self
|
66 |
+
else:
|
67 |
+
return NotImplemented
|
68 |
+
|
69 |
+
def astype(self, dtype, casting='unsafe', copy=True):
|
70 |
+
dtype = np.dtype(dtype)
|
71 |
+
if self.dtype != dtype:
|
72 |
+
matrix = self._with_data(
|
73 |
+
self.data.astype(dtype, casting=casting, copy=True),
|
74 |
+
copy=True
|
75 |
+
)
|
76 |
+
return matrix._with_data(matrix._deduped_data(), copy=False)
|
77 |
+
elif copy:
|
78 |
+
return self.copy()
|
79 |
+
else:
|
80 |
+
return self
|
81 |
+
|
82 |
+
astype.__doc__ = _spbase.astype.__doc__
|
83 |
+
|
84 |
+
def conjugate(self, copy=True):
|
85 |
+
if np.issubdtype(self.dtype, np.complexfloating):
|
86 |
+
return self._with_data(self.data.conjugate(), copy=copy)
|
87 |
+
elif copy:
|
88 |
+
return self.copy()
|
89 |
+
else:
|
90 |
+
return self
|
91 |
+
|
92 |
+
conjugate.__doc__ = _spbase.conjugate.__doc__
|
93 |
+
|
94 |
+
def copy(self):
|
95 |
+
return self._with_data(self.data.copy(), copy=True)
|
96 |
+
|
97 |
+
copy.__doc__ = _spbase.copy.__doc__
|
98 |
+
|
99 |
+
def count_nonzero(self):
|
100 |
+
return np.count_nonzero(self._deduped_data())
|
101 |
+
|
102 |
+
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__
|
103 |
+
|
104 |
+
def power(self, n, dtype=None):
|
105 |
+
"""
|
106 |
+
This function performs element-wise power.
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
----------
|
110 |
+
n : scalar
|
111 |
+
n is a non-zero scalar (nonzero avoids dense ones creation)
|
112 |
+
If zero power is desired, special case it to use `np.ones`
|
113 |
+
|
114 |
+
dtype : If dtype is not specified, the current dtype will be preserved.
|
115 |
+
|
116 |
+
Raises
|
117 |
+
------
|
118 |
+
NotImplementedError : if n is a zero scalar
|
119 |
+
If zero power is desired, special case it to use
|
120 |
+
`np.ones(A.shape, dtype=A.dtype)`
|
121 |
+
"""
|
122 |
+
if not isscalarlike(n):
|
123 |
+
raise NotImplementedError("input is not scalar")
|
124 |
+
if not n:
|
125 |
+
raise NotImplementedError(
|
126 |
+
"zero power is not supported as it would densify the matrix.\n"
|
127 |
+
"Use `np.ones(A.shape, dtype=A.dtype)` for this case."
|
128 |
+
)
|
129 |
+
|
130 |
+
data = self._deduped_data()
|
131 |
+
if dtype is not None:
|
132 |
+
data = data.astype(dtype)
|
133 |
+
return self._with_data(data ** n)
|
134 |
+
|
135 |
+
###########################
|
136 |
+
# Multiplication handlers #
|
137 |
+
###########################
|
138 |
+
|
139 |
+
def _mul_scalar(self, other):
|
140 |
+
return self._with_data(self.data * other)
|
141 |
+
|
142 |
+
|
143 |
+
# Add the numpy unary ufuncs for which func(0) = 0 to _data_matrix.
|
144 |
+
for npfunc in _ufuncs_with_fixed_point_at_zero:
|
145 |
+
name = npfunc.__name__
|
146 |
+
|
147 |
+
def _create_method(op):
|
148 |
+
def method(self):
|
149 |
+
result = op(self._deduped_data())
|
150 |
+
return self._with_data(result, copy=True)
|
151 |
+
|
152 |
+
method.__doc__ = (f"Element-wise {name}.\n\n"
|
153 |
+
f"See `numpy.{name}` for more information.")
|
154 |
+
method.__name__ = name
|
155 |
+
|
156 |
+
return method
|
157 |
+
|
158 |
+
setattr(_data_matrix, name, _create_method(npfunc))
|
159 |
+
|
160 |
+
|
161 |
+
def _find_missing_index(ind, n):
|
162 |
+
for k, a in enumerate(ind):
|
163 |
+
if k != a:
|
164 |
+
return k
|
165 |
+
|
166 |
+
k += 1
|
167 |
+
if k < n:
|
168 |
+
return k
|
169 |
+
else:
|
170 |
+
return -1
|
171 |
+
|
172 |
+
|
173 |
+
class _minmax_mixin:
|
174 |
+
"""Mixin for min and max methods.
|
175 |
+
|
176 |
+
These are not implemented for dia_matrix, hence the separate class.
|
177 |
+
"""
|
178 |
+
|
179 |
+
def _min_or_max_axis(self, axis, min_or_max):
|
180 |
+
N = self.shape[axis]
|
181 |
+
if N == 0:
|
182 |
+
raise ValueError("zero-size array to reduction operation")
|
183 |
+
M = self.shape[1 - axis]
|
184 |
+
idx_dtype = self._get_index_dtype(maxval=M)
|
185 |
+
|
186 |
+
mat = self.tocsc() if axis == 0 else self.tocsr()
|
187 |
+
mat.sum_duplicates()
|
188 |
+
|
189 |
+
major_index, value = mat._minor_reduce(min_or_max)
|
190 |
+
not_full = np.diff(mat.indptr)[major_index] < N
|
191 |
+
value[not_full] = min_or_max(value[not_full], 0)
|
192 |
+
|
193 |
+
mask = value != 0
|
194 |
+
major_index = np.compress(mask, major_index)
|
195 |
+
value = np.compress(mask, value)
|
196 |
+
|
197 |
+
if axis == 0:
|
198 |
+
return self._coo_container(
|
199 |
+
(value, (np.zeros(len(value), dtype=idx_dtype), major_index)),
|
200 |
+
dtype=self.dtype, shape=(1, M)
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
return self._coo_container(
|
204 |
+
(value, (major_index, np.zeros(len(value), dtype=idx_dtype))),
|
205 |
+
dtype=self.dtype, shape=(M, 1)
|
206 |
+
)
|
207 |
+
|
208 |
+
def _min_or_max(self, axis, out, min_or_max):
|
209 |
+
if out is not None:
|
210 |
+
raise ValueError("Sparse arrays do not support an 'out' parameter.")
|
211 |
+
|
212 |
+
validateaxis(axis)
|
213 |
+
if self.ndim == 1:
|
214 |
+
if axis not in (None, 0, -1):
|
215 |
+
raise ValueError("axis out of range")
|
216 |
+
axis = None # avoid calling special axis case. no impact on 1d
|
217 |
+
|
218 |
+
if axis is None:
|
219 |
+
if 0 in self.shape:
|
220 |
+
raise ValueError("zero-size array to reduction operation")
|
221 |
+
|
222 |
+
zero = self.dtype.type(0)
|
223 |
+
if self.nnz == 0:
|
224 |
+
return zero
|
225 |
+
m = min_or_max.reduce(self._deduped_data().ravel())
|
226 |
+
if self.nnz != np.prod(self.shape):
|
227 |
+
m = min_or_max(zero, m)
|
228 |
+
return m
|
229 |
+
|
230 |
+
if axis < 0:
|
231 |
+
axis += 2
|
232 |
+
|
233 |
+
if (axis == 0) or (axis == 1):
|
234 |
+
return self._min_or_max_axis(axis, min_or_max)
|
235 |
+
else:
|
236 |
+
raise ValueError("axis out of range")
|
237 |
+
|
238 |
+
def _arg_min_or_max_axis(self, axis, argmin_or_argmax, compare):
|
239 |
+
if self.shape[axis] == 0:
|
240 |
+
raise ValueError("Cannot apply the operation along a zero-sized dimension.")
|
241 |
+
|
242 |
+
if axis < 0:
|
243 |
+
axis += 2
|
244 |
+
|
245 |
+
zero = self.dtype.type(0)
|
246 |
+
|
247 |
+
mat = self.tocsc() if axis == 0 else self.tocsr()
|
248 |
+
mat.sum_duplicates()
|
249 |
+
|
250 |
+
ret_size, line_size = mat._swap(mat.shape)
|
251 |
+
ret = np.zeros(ret_size, dtype=int)
|
252 |
+
|
253 |
+
nz_lines, = np.nonzero(np.diff(mat.indptr))
|
254 |
+
for i in nz_lines:
|
255 |
+
p, q = mat.indptr[i:i + 2]
|
256 |
+
data = mat.data[p:q]
|
257 |
+
indices = mat.indices[p:q]
|
258 |
+
extreme_index = argmin_or_argmax(data)
|
259 |
+
extreme_value = data[extreme_index]
|
260 |
+
if compare(extreme_value, zero) or q - p == line_size:
|
261 |
+
ret[i] = indices[extreme_index]
|
262 |
+
else:
|
263 |
+
zero_ind = _find_missing_index(indices, line_size)
|
264 |
+
if extreme_value == zero:
|
265 |
+
ret[i] = min(extreme_index, zero_ind)
|
266 |
+
else:
|
267 |
+
ret[i] = zero_ind
|
268 |
+
|
269 |
+
if axis == 1:
|
270 |
+
ret = ret.reshape(-1, 1)
|
271 |
+
|
272 |
+
return self._ascontainer(ret)
|
273 |
+
|
274 |
+
def _arg_min_or_max(self, axis, out, argmin_or_argmax, compare):
|
275 |
+
if out is not None:
|
276 |
+
raise ValueError("Sparse types do not support an 'out' parameter.")
|
277 |
+
|
278 |
+
validateaxis(axis)
|
279 |
+
|
280 |
+
if self.ndim == 1:
|
281 |
+
if axis not in (None, 0, -1):
|
282 |
+
raise ValueError("axis out of range")
|
283 |
+
axis = None # avoid calling special axis case. no impact on 1d
|
284 |
+
|
285 |
+
if axis is not None:
|
286 |
+
return self._arg_min_or_max_axis(axis, argmin_or_argmax, compare)
|
287 |
+
|
288 |
+
if 0 in self.shape:
|
289 |
+
raise ValueError("Cannot apply the operation to an empty matrix.")
|
290 |
+
|
291 |
+
if self.nnz == 0:
|
292 |
+
return 0
|
293 |
+
|
294 |
+
zero = self.dtype.type(0)
|
295 |
+
mat = self.tocoo()
|
296 |
+
# Convert to canonical form: no duplicates, sorted indices.
|
297 |
+
mat.sum_duplicates()
|
298 |
+
extreme_index = argmin_or_argmax(mat.data)
|
299 |
+
extreme_value = mat.data[extreme_index]
|
300 |
+
num_col = mat.shape[-1]
|
301 |
+
|
302 |
+
# If the min value is less than zero, or max is greater than zero,
|
303 |
+
# then we do not need to worry about implicit zeros.
|
304 |
+
if compare(extreme_value, zero):
|
305 |
+
# cast to Python int to avoid overflow and RuntimeError
|
306 |
+
return int(mat.row[extreme_index]) * num_col + int(mat.col[extreme_index])
|
307 |
+
|
308 |
+
# Cheap test for the rare case where we have no implicit zeros.
|
309 |
+
size = np.prod(self.shape)
|
310 |
+
if size == mat.nnz:
|
311 |
+
return int(mat.row[extreme_index]) * num_col + int(mat.col[extreme_index])
|
312 |
+
|
313 |
+
# At this stage, any implicit zero could be the min or max value.
|
314 |
+
# After sum_duplicates(), the `row` and `col` arrays are guaranteed to
|
315 |
+
# be sorted in C-order, which means the linearized indices are sorted.
|
316 |
+
linear_indices = mat.row * num_col + mat.col
|
317 |
+
first_implicit_zero_index = _find_missing_index(linear_indices, size)
|
318 |
+
if extreme_value == zero:
|
319 |
+
return min(first_implicit_zero_index, extreme_index)
|
320 |
+
return first_implicit_zero_index
|
321 |
+
|
322 |
+
def max(self, axis=None, out=None):
|
323 |
+
"""
|
324 |
+
Return the maximum of the array/matrix or maximum along an axis.
|
325 |
+
This takes all elements into account, not just the non-zero ones.
|
326 |
+
|
327 |
+
Parameters
|
328 |
+
----------
|
329 |
+
axis : {-2, -1, 0, 1, None} optional
|
330 |
+
Axis along which the sum is computed. The default is to
|
331 |
+
compute the maximum over all elements, returning
|
332 |
+
a scalar (i.e., `axis` = `None`).
|
333 |
+
|
334 |
+
out : None, optional
|
335 |
+
This argument is in the signature *solely* for NumPy
|
336 |
+
compatibility reasons. Do not pass in anything except
|
337 |
+
for the default value, as this argument is not used.
|
338 |
+
|
339 |
+
Returns
|
340 |
+
-------
|
341 |
+
amax : coo_matrix or scalar
|
342 |
+
Maximum of `a`. If `axis` is None, the result is a scalar value.
|
343 |
+
If `axis` is given, the result is a sparse.coo_matrix of dimension
|
344 |
+
``a.ndim - 1``.
|
345 |
+
|
346 |
+
See Also
|
347 |
+
--------
|
348 |
+
min : The minimum value of a sparse array/matrix along a given axis.
|
349 |
+
numpy.matrix.max : NumPy's implementation of 'max' for matrices
|
350 |
+
|
351 |
+
"""
|
352 |
+
return self._min_or_max(axis, out, np.maximum)
|
353 |
+
|
354 |
+
def min(self, axis=None, out=None):
|
355 |
+
"""
|
356 |
+
Return the minimum of the array/matrix or maximum along an axis.
|
357 |
+
This takes all elements into account, not just the non-zero ones.
|
358 |
+
|
359 |
+
Parameters
|
360 |
+
----------
|
361 |
+
axis : {-2, -1, 0, 1, None} optional
|
362 |
+
Axis along which the sum is computed. The default is to
|
363 |
+
compute the minimum over all elements, returning
|
364 |
+
a scalar (i.e., `axis` = `None`).
|
365 |
+
|
366 |
+
out : None, optional
|
367 |
+
This argument is in the signature *solely* for NumPy
|
368 |
+
compatibility reasons. Do not pass in anything except for
|
369 |
+
the default value, as this argument is not used.
|
370 |
+
|
371 |
+
Returns
|
372 |
+
-------
|
373 |
+
amin : coo_matrix or scalar
|
374 |
+
Minimum of `a`. If `axis` is None, the result is a scalar value.
|
375 |
+
If `axis` is given, the result is a sparse.coo_matrix of dimension
|
376 |
+
``a.ndim - 1``.
|
377 |
+
|
378 |
+
See Also
|
379 |
+
--------
|
380 |
+
max : The maximum value of a sparse array/matrix along a given axis.
|
381 |
+
numpy.matrix.min : NumPy's implementation of 'min' for matrices
|
382 |
+
|
383 |
+
"""
|
384 |
+
return self._min_or_max(axis, out, np.minimum)
|
385 |
+
|
386 |
+
def nanmax(self, axis=None, out=None):
|
387 |
+
"""
|
388 |
+
Return the maximum of the array/matrix or maximum along an axis, ignoring any
|
389 |
+
NaNs. This takes all elements into account, not just the non-zero
|
390 |
+
ones.
|
391 |
+
|
392 |
+
.. versionadded:: 1.11.0
|
393 |
+
|
394 |
+
Parameters
|
395 |
+
----------
|
396 |
+
axis : {-2, -1, 0, 1, None} optional
|
397 |
+
Axis along which the maximum is computed. The default is to
|
398 |
+
compute the maximum over all elements, returning
|
399 |
+
a scalar (i.e., `axis` = `None`).
|
400 |
+
|
401 |
+
out : None, optional
|
402 |
+
This argument is in the signature *solely* for NumPy
|
403 |
+
compatibility reasons. Do not pass in anything except
|
404 |
+
for the default value, as this argument is not used.
|
405 |
+
|
406 |
+
Returns
|
407 |
+
-------
|
408 |
+
amax : coo_matrix or scalar
|
409 |
+
Maximum of `a`. If `axis` is None, the result is a scalar value.
|
410 |
+
If `axis` is given, the result is a sparse.coo_matrix of dimension
|
411 |
+
``a.ndim - 1``.
|
412 |
+
|
413 |
+
See Also
|
414 |
+
--------
|
415 |
+
nanmin : The minimum value of a sparse array/matrix along a given axis,
|
416 |
+
ignoring NaNs.
|
417 |
+
max : The maximum value of a sparse array/matrix along a given axis,
|
418 |
+
propagating NaNs.
|
419 |
+
numpy.nanmax : NumPy's implementation of 'nanmax'.
|
420 |
+
|
421 |
+
"""
|
422 |
+
return self._min_or_max(axis, out, np.fmax)
|
423 |
+
|
424 |
+
def nanmin(self, axis=None, out=None):
|
425 |
+
"""
|
426 |
+
Return the minimum of the array/matrix or minimum along an axis, ignoring any
|
427 |
+
NaNs. This takes all elements into account, not just the non-zero
|
428 |
+
ones.
|
429 |
+
|
430 |
+
.. versionadded:: 1.11.0
|
431 |
+
|
432 |
+
Parameters
|
433 |
+
----------
|
434 |
+
axis : {-2, -1, 0, 1, None} optional
|
435 |
+
Axis along which the minimum is computed. The default is to
|
436 |
+
compute the minimum over all elements, returning
|
437 |
+
a scalar (i.e., `axis` = `None`).
|
438 |
+
|
439 |
+
out : None, optional
|
440 |
+
This argument is in the signature *solely* for NumPy
|
441 |
+
compatibility reasons. Do not pass in anything except for
|
442 |
+
the default value, as this argument is not used.
|
443 |
+
|
444 |
+
Returns
|
445 |
+
-------
|
446 |
+
amin : coo_matrix or scalar
|
447 |
+
Minimum of `a`. If `axis` is None, the result is a scalar value.
|
448 |
+
If `axis` is given, the result is a sparse.coo_matrix of dimension
|
449 |
+
``a.ndim - 1``.
|
450 |
+
|
451 |
+
See Also
|
452 |
+
--------
|
453 |
+
nanmax : The maximum value of a sparse array/matrix along a given axis,
|
454 |
+
ignoring NaNs.
|
455 |
+
min : The minimum value of a sparse array/matrix along a given axis,
|
456 |
+
propagating NaNs.
|
457 |
+
numpy.nanmin : NumPy's implementation of 'nanmin'.
|
458 |
+
|
459 |
+
"""
|
460 |
+
return self._min_or_max(axis, out, np.fmin)
|
461 |
+
|
462 |
+
def argmax(self, axis=None, out=None):
|
463 |
+
"""Return indices of maximum elements along an axis.
|
464 |
+
|
465 |
+
Implicit zero elements are also taken into account. If there are
|
466 |
+
several maximum values, the index of the first occurrence is returned.
|
467 |
+
|
468 |
+
Parameters
|
469 |
+
----------
|
470 |
+
axis : {-2, -1, 0, 1, None}, optional
|
471 |
+
Axis along which the argmax is computed. If None (default), index
|
472 |
+
of the maximum element in the flatten data is returned.
|
473 |
+
out : None, optional
|
474 |
+
This argument is in the signature *solely* for NumPy
|
475 |
+
compatibility reasons. Do not pass in anything except for
|
476 |
+
the default value, as this argument is not used.
|
477 |
+
|
478 |
+
Returns
|
479 |
+
-------
|
480 |
+
ind : numpy.matrix or int
|
481 |
+
Indices of maximum elements. If matrix, its size along `axis` is 1.
|
482 |
+
"""
|
483 |
+
return self._arg_min_or_max(axis, out, np.argmax, np.greater)
|
484 |
+
|
485 |
+
def argmin(self, axis=None, out=None):
|
486 |
+
"""Return indices of minimum elements along an axis.
|
487 |
+
|
488 |
+
Implicit zero elements are also taken into account. If there are
|
489 |
+
several minimum values, the index of the first occurrence is returned.
|
490 |
+
|
491 |
+
Parameters
|
492 |
+
----------
|
493 |
+
axis : {-2, -1, 0, 1, None}, optional
|
494 |
+
Axis along which the argmin is computed. If None (default), index
|
495 |
+
of the minimum element in the flatten data is returned.
|
496 |
+
out : None, optional
|
497 |
+
This argument is in the signature *solely* for NumPy
|
498 |
+
compatibility reasons. Do not pass in anything except for
|
499 |
+
the default value, as this argument is not used.
|
500 |
+
|
501 |
+
Returns
|
502 |
+
-------
|
503 |
+
ind : numpy.matrix or int
|
504 |
+
Indices of minimum elements. If matrix, its size along `axis` is 1.
|
505 |
+
"""
|
506 |
+
return self._arg_min_or_max(axis, out, np.argmin, np.less)
|
llmeval-env/lib/python3.10/site-packages/scipy/sparse/_sputils.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Utility functions for sparse matrix module
|
2 |
+
"""
|
3 |
+
|
4 |
+
import sys
|
5 |
+
from typing import Any, Literal, Optional, Union
|
6 |
+
import operator
|
7 |
+
import numpy as np
|
8 |
+
from math import prod
|
9 |
+
import scipy.sparse as sp
|
10 |
+
from scipy._lib._util import np_long, np_ulong
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['upcast', 'getdtype', 'getdata', 'isscalarlike', 'isintlike',
|
14 |
+
'isshape', 'issequence', 'isdense', 'ismatrix', 'get_sum_dtype']
|
15 |
+
|
16 |
+
supported_dtypes = [np.bool_, np.byte, np.ubyte, np.short, np.ushort, np.intc,
|
17 |
+
np.uintc, np_long, np_ulong, np.longlong, np.ulonglong,
|
18 |
+
np.float32, np.float64, np.longdouble,
|
19 |
+
np.complex64, np.complex128, np.clongdouble]
|
20 |
+
|
21 |
+
_upcast_memo = {}
|
22 |
+
|
23 |
+
|
24 |
+
def upcast(*args):
|
25 |
+
"""Returns the nearest supported sparse dtype for the
|
26 |
+
combination of one or more types.
|
27 |
+
|
28 |
+
upcast(t0, t1, ..., tn) -> T where T is a supported dtype
|
29 |
+
|
30 |
+
Examples
|
31 |
+
--------
|
32 |
+
>>> from scipy.sparse._sputils import upcast
|
33 |
+
>>> upcast('int32')
|
34 |
+
<type 'numpy.int32'>
|
35 |
+
>>> upcast('bool')
|
36 |
+
<type 'numpy.bool_'>
|
37 |
+
>>> upcast('int32','float32')
|
38 |
+
<type 'numpy.float64'>
|
39 |
+
>>> upcast('bool',complex,float)
|
40 |
+
<type 'numpy.complex128'>
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
t = _upcast_memo.get(hash(args))
|
45 |
+
if t is not None:
|
46 |
+
return t
|
47 |
+
|
48 |
+
upcast = np.result_type(*args)
|
49 |
+
|
50 |
+
for t in supported_dtypes:
|
51 |
+
if np.can_cast(upcast, t):
|
52 |
+
_upcast_memo[hash(args)] = t
|
53 |
+
return t
|
54 |
+
|
55 |
+
raise TypeError(f'no supported conversion for types: {args!r}')
|
56 |
+
|
57 |
+
|
58 |
+
def upcast_char(*args):
|
59 |
+
"""Same as `upcast` but taking dtype.char as input (faster)."""
|
60 |
+
t = _upcast_memo.get(args)
|
61 |
+
if t is not None:
|
62 |
+
return t
|
63 |
+
t = upcast(*map(np.dtype, args))
|
64 |
+
_upcast_memo[args] = t
|
65 |
+
return t
|
66 |
+
|
67 |
+
|
68 |
+
def upcast_scalar(dtype, scalar):
|
69 |
+
"""Determine data type for binary operation between an array of
|
70 |
+
type `dtype` and a scalar.
|
71 |
+
"""
|
72 |
+
return (np.array([0], dtype=dtype) * scalar).dtype
|
73 |
+
|
74 |
+
|
75 |
+
def downcast_intp_index(arr):
|
76 |
+
"""
|
77 |
+
Down-cast index array to np.intp dtype if it is of a larger dtype.
|
78 |
+
|
79 |
+
Raise an error if the array contains a value that is too large for
|
80 |
+
intp.
|
81 |
+
"""
|
82 |
+
if arr.dtype.itemsize > np.dtype(np.intp).itemsize:
|
83 |
+
if arr.size == 0:
|
84 |
+
return arr.astype(np.intp)
|
85 |
+
maxval = arr.max()
|
86 |
+
minval = arr.min()
|
87 |
+
if maxval > np.iinfo(np.intp).max or minval < np.iinfo(np.intp).min:
|
88 |
+
raise ValueError("Cannot deal with arrays with indices larger "
|
89 |
+
"than the machine maximum address size "
|
90 |
+
"(e.g. 64-bit indices on 32-bit machine).")
|
91 |
+
return arr.astype(np.intp)
|
92 |
+
return arr
|
93 |
+
|
94 |
+
|
95 |
+
def to_native(A):
|
96 |
+
"""
|
97 |
+
Ensure that the data type of the NumPy array `A` has native byte order.
|
98 |
+
|
99 |
+
`A` must be a NumPy array. If the data type of `A` does not have native
|
100 |
+
byte order, a copy of `A` with a native byte order is returned. Otherwise
|
101 |
+
`A` is returned.
|
102 |
+
"""
|
103 |
+
dt = A.dtype
|
104 |
+
if dt.isnative:
|
105 |
+
# Don't call `asarray()` if A is already native, to avoid unnecessarily
|
106 |
+
# creating a view of the input array.
|
107 |
+
return A
|
108 |
+
return np.asarray(A, dtype=dt.newbyteorder('native'))
|
109 |
+
|
110 |
+
|
111 |
+
def getdtype(dtype, a=None, default=None):
|
112 |
+
"""Function used to simplify argument processing. If 'dtype' is not
|
113 |
+
specified (is None), returns a.dtype; otherwise returns a np.dtype
|
114 |
+
object created from the specified dtype argument. If 'dtype' and 'a'
|
115 |
+
are both None, construct a data type out of the 'default' parameter.
|
116 |
+
Furthermore, 'dtype' must be in 'allowed' set.
|
117 |
+
"""
|
118 |
+
# TODO is this really what we want?
|
119 |
+
if dtype is None:
|
120 |
+
try:
|
121 |
+
newdtype = a.dtype
|
122 |
+
except AttributeError as e:
|
123 |
+
if default is not None:
|
124 |
+
newdtype = np.dtype(default)
|
125 |
+
else:
|
126 |
+
raise TypeError("could not interpret data type") from e
|
127 |
+
else:
|
128 |
+
newdtype = np.dtype(dtype)
|
129 |
+
if newdtype == np.object_:
|
130 |
+
raise ValueError(
|
131 |
+
"object dtype is not supported by sparse matrices"
|
132 |
+
)
|
133 |
+
|
134 |
+
return newdtype
|
135 |
+
|
136 |
+
|
137 |
+
def getdata(obj, dtype=None, copy=False) -> np.ndarray:
|
138 |
+
"""
|
139 |
+
This is a wrapper of `np.array(obj, dtype=dtype, copy=copy)`
|
140 |
+
that will generate a warning if the result is an object array.
|
141 |
+
"""
|
142 |
+
data = np.array(obj, dtype=dtype, copy=copy)
|
143 |
+
# Defer to getdtype for checking that the dtype is OK.
|
144 |
+
# This is called for the validation only; we don't need the return value.
|
145 |
+
getdtype(data.dtype)
|
146 |
+
return data
|
147 |
+
|
148 |
+
|
149 |
+
def get_index_dtype(arrays=(), maxval=None, check_contents=False):
|
150 |
+
"""
|
151 |
+
Based on input (integer) arrays `a`, determine a suitable index data
|
152 |
+
type that can hold the data in the arrays.
|
153 |
+
|
154 |
+
Parameters
|
155 |
+
----------
|
156 |
+
arrays : tuple of array_like
|
157 |
+
Input arrays whose types/contents to check
|
158 |
+
maxval : float, optional
|
159 |
+
Maximum value needed
|
160 |
+
check_contents : bool, optional
|
161 |
+
Whether to check the values in the arrays and not just their types.
|
162 |
+
Default: False (check only the types)
|
163 |
+
|
164 |
+
Returns
|
165 |
+
-------
|
166 |
+
dtype : dtype
|
167 |
+
Suitable index data type (int32 or int64)
|
168 |
+
|
169 |
+
"""
|
170 |
+
|
171 |
+
int32min = np.int32(np.iinfo(np.int32).min)
|
172 |
+
int32max = np.int32(np.iinfo(np.int32).max)
|
173 |
+
|
174 |
+
# not using intc directly due to misinteractions with pythran
|
175 |
+
dtype = np.int32 if np.intc().itemsize == 4 else np.int64
|
176 |
+
if maxval is not None:
|
177 |
+
maxval = np.int64(maxval)
|
178 |
+
if maxval > int32max:
|
179 |
+
dtype = np.int64
|
180 |
+
|
181 |
+
if isinstance(arrays, np.ndarray):
|
182 |
+
arrays = (arrays,)
|
183 |
+
|
184 |
+
for arr in arrays:
|
185 |
+
arr = np.asarray(arr)
|
186 |
+
if not np.can_cast(arr.dtype, np.int32):
|
187 |
+
if check_contents:
|
188 |
+
if arr.size == 0:
|
189 |
+
# a bigger type not needed
|
190 |
+
continue
|
191 |
+
elif np.issubdtype(arr.dtype, np.integer):
|
192 |
+
maxval = arr.max()
|
193 |
+
minval = arr.min()
|
194 |
+
if minval >= int32min and maxval <= int32max:
|
195 |
+
# a bigger type not needed
|
196 |
+
continue
|
197 |
+
|
198 |
+
dtype = np.int64
|
199 |
+
break
|
200 |
+
|
201 |
+
return dtype
|
202 |
+
|
203 |
+
|
204 |
+
def get_sum_dtype(dtype: np.dtype) -> np.dtype:
|
205 |
+
"""Mimic numpy's casting for np.sum"""
|
206 |
+
if dtype.kind == 'u' and np.can_cast(dtype, np.uint):
|
207 |
+
return np.uint
|
208 |
+
if np.can_cast(dtype, np.int_):
|
209 |
+
return np.int_
|
210 |
+
return dtype
|
211 |
+
|
212 |
+
|
213 |
+
def isscalarlike(x) -> bool:
|
214 |
+
"""Is x either a scalar, an array scalar, or a 0-dim array?"""
|
215 |
+
return np.isscalar(x) or (isdense(x) and x.ndim == 0)
|
216 |
+
|
217 |
+
|
218 |
+
def isintlike(x) -> bool:
|
219 |
+
"""Is x appropriate as an index into a sparse matrix? Returns True
|
220 |
+
if it can be cast safely to a machine int.
|
221 |
+
"""
|
222 |
+
# Fast-path check to eliminate non-scalar values. operator.index would
|
223 |
+
# catch this case too, but the exception catching is slow.
|
224 |
+
if np.ndim(x) != 0:
|
225 |
+
return False
|
226 |
+
try:
|
227 |
+
operator.index(x)
|
228 |
+
except (TypeError, ValueError):
|
229 |
+
try:
|
230 |
+
loose_int = bool(int(x) == x)
|
231 |
+
except (TypeError, ValueError):
|
232 |
+
return False
|
233 |
+
if loose_int:
|
234 |
+
msg = "Inexact indices into sparse matrices are not allowed"
|
235 |
+
raise ValueError(msg)
|
236 |
+
return loose_int
|
237 |
+
return True
|
238 |
+
|
239 |
+
|
240 |
+
def isshape(x, nonneg=False, *, allow_1d=False) -> bool:
|
241 |
+
"""Is x a valid tuple of dimensions?
|
242 |
+
|
243 |
+
If nonneg, also checks that the dimensions are non-negative.
|
244 |
+
If allow_1d, shapes of length 1 or 2 are allowed.
|
245 |
+
"""
|
246 |
+
ndim = len(x)
|
247 |
+
if ndim != 2 and not (allow_1d and ndim == 1):
|
248 |
+
return False
|
249 |
+
for d in x:
|
250 |
+
if not isintlike(d):
|
251 |
+
return False
|
252 |
+
if nonneg and d < 0:
|
253 |
+
return False
|
254 |
+
return True
|
255 |
+
|
256 |
+
|
257 |
+
def issequence(t) -> bool:
|
258 |
+
return ((isinstance(t, (list, tuple)) and
|
259 |
+
(len(t) == 0 or np.isscalar(t[0]))) or
|
260 |
+
(isinstance(t, np.ndarray) and (t.ndim == 1)))
|
261 |
+
|
262 |
+
|
263 |
+
def ismatrix(t) -> bool:
|
264 |
+
return ((isinstance(t, (list, tuple)) and
|
265 |
+
len(t) > 0 and issequence(t[0])) or
|
266 |
+
(isinstance(t, np.ndarray) and t.ndim == 2))
|
267 |
+
|
268 |
+
|
269 |
+
def isdense(x) -> bool:
|
270 |
+
return isinstance(x, np.ndarray)
|
271 |
+
|
272 |
+
|
273 |
+
def validateaxis(axis) -> None:
|
274 |
+
if axis is None:
|
275 |
+
return
|
276 |
+
axis_type = type(axis)
|
277 |
+
|
278 |
+
# In NumPy, you can pass in tuples for 'axis', but they are
|
279 |
+
# not very useful for sparse matrices given their limited
|
280 |
+
# dimensions, so let's make it explicit that they are not
|
281 |
+
# allowed to be passed in
|
282 |
+
if axis_type == tuple:
|
283 |
+
raise TypeError("Tuples are not accepted for the 'axis' parameter. "
|
284 |
+
"Please pass in one of the following: "
|
285 |
+
"{-2, -1, 0, 1, None}.")
|
286 |
+
|
287 |
+
# If not a tuple, check that the provided axis is actually
|
288 |
+
# an integer and raise a TypeError similar to NumPy's
|
289 |
+
if not np.issubdtype(np.dtype(axis_type), np.integer):
|
290 |
+
raise TypeError(f"axis must be an integer, not {axis_type.__name__}")
|
291 |
+
|
292 |
+
if not (-2 <= axis <= 1):
|
293 |
+
raise ValueError("axis out of range")
|
294 |
+
|
295 |
+
|
296 |
+
def check_shape(args, current_shape=None, *, allow_1d=False) -> tuple[int, ...]:
|
297 |
+
"""Imitate numpy.matrix handling of shape arguments
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
----------
|
301 |
+
args : array_like
|
302 |
+
Data structures providing information about the shape of the sparse array.
|
303 |
+
current_shape : tuple, optional
|
304 |
+
The current shape of the sparse array or matrix.
|
305 |
+
If None (default), the current shape will be inferred from args.
|
306 |
+
allow_1d : bool, optional
|
307 |
+
If True, then 1-D or 2-D arrays are accepted.
|
308 |
+
If False (default), then only 2-D arrays are accepted and an error is
|
309 |
+
raised otherwise.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
new_shape: tuple
|
314 |
+
The new shape after validation.
|
315 |
+
"""
|
316 |
+
if len(args) == 0:
|
317 |
+
raise TypeError("function missing 1 required positional argument: "
|
318 |
+
"'shape'")
|
319 |
+
if len(args) == 1:
|
320 |
+
try:
|
321 |
+
shape_iter = iter(args[0])
|
322 |
+
except TypeError:
|
323 |
+
new_shape = (operator.index(args[0]), )
|
324 |
+
else:
|
325 |
+
new_shape = tuple(operator.index(arg) for arg in shape_iter)
|
326 |
+
else:
|
327 |
+
new_shape = tuple(operator.index(arg) for arg in args)
|
328 |
+
|
329 |
+
if current_shape is None:
|
330 |
+
if allow_1d:
|
331 |
+
if len(new_shape) not in (1, 2):
|
332 |
+
raise ValueError('shape must be a 1- or 2-tuple of positive '
|
333 |
+
'integers')
|
334 |
+
elif len(new_shape) != 2:
|
335 |
+
raise ValueError('shape must be a 2-tuple of positive integers')
|
336 |
+
if any(d < 0 for d in new_shape):
|
337 |
+
raise ValueError("'shape' elements cannot be negative")
|
338 |
+
else:
|
339 |
+
# Check the current size only if needed
|
340 |
+
current_size = prod(current_shape)
|
341 |
+
|
342 |
+
# Check for negatives
|
343 |
+
negative_indexes = [i for i, x in enumerate(new_shape) if x < 0]
|
344 |
+
if not negative_indexes:
|
345 |
+
new_size = prod(new_shape)
|
346 |
+
if new_size != current_size:
|
347 |
+
raise ValueError('cannot reshape array of size {} into shape {}'
|
348 |
+
.format(current_size, new_shape))
|
349 |
+
elif len(negative_indexes) == 1:
|
350 |
+
skip = negative_indexes[0]
|
351 |
+
specified = prod(new_shape[:skip] + new_shape[skip+1:])
|
352 |
+
unspecified, remainder = divmod(current_size, specified)
|
353 |
+
if remainder != 0:
|
354 |
+
err_shape = tuple('newshape' if x < 0 else x for x in new_shape)
|
355 |
+
raise ValueError('cannot reshape array of size {} into shape {}'
|
356 |
+
''.format(current_size, err_shape))
|
357 |
+
new_shape = new_shape[:skip] + (unspecified,) + new_shape[skip+1:]
|
358 |
+
else:
|
359 |
+
raise ValueError('can only specify one unknown dimension')
|
360 |
+
|
361 |
+
if len(new_shape) != 2 and not (allow_1d and len(new_shape) == 1):
|
362 |
+
raise ValueError('matrix shape must be two-dimensional')
|
363 |
+
|
364 |
+
return new_shape
|
365 |
+
|
366 |
+
|
367 |
+
def check_reshape_kwargs(kwargs):
|
368 |
+
"""Unpack keyword arguments for reshape function.
|
369 |
+
|
370 |
+
This is useful because keyword arguments after star arguments are not
|
371 |
+
allowed in Python 2, but star keyword arguments are. This function unpacks
|
372 |
+
'order' and 'copy' from the star keyword arguments (with defaults) and
|
373 |
+
throws an error for any remaining.
|
374 |
+
"""
|
375 |
+
|
376 |
+
order = kwargs.pop('order', 'C')
|
377 |
+
copy = kwargs.pop('copy', False)
|
378 |
+
if kwargs: # Some unused kwargs remain
|
379 |
+
raise TypeError('reshape() got unexpected keywords arguments: {}'
|
380 |
+
.format(', '.join(kwargs.keys())))
|
381 |
+
return order, copy
|
382 |
+
|
383 |
+
|
384 |
+
def is_pydata_spmatrix(m) -> bool:
|
385 |
+
"""
|
386 |
+
Check whether object is pydata/sparse matrix, avoiding importing the module.
|
387 |
+
"""
|
388 |
+
base_cls = getattr(sys.modules.get('sparse'), 'SparseArray', None)
|
389 |
+
return base_cls is not None and isinstance(m, base_cls)
|
390 |
+
|
391 |
+
|
392 |
+
def convert_pydata_sparse_to_scipy(
|
393 |
+
arg: Any, target_format: Optional[Literal["csc", "csr"]] = None
|
394 |
+
) -> Union[Any, "sp.spmatrix"]:
|
395 |
+
"""
|
396 |
+
Convert a pydata/sparse array to scipy sparse matrix,
|
397 |
+
pass through anything else.
|
398 |
+
"""
|
399 |
+
if is_pydata_spmatrix(arg):
|
400 |
+
arg = arg.to_scipy_sparse()
|
401 |
+
if target_format is not None:
|
402 |
+
arg = arg.asformat(target_format)
|
403 |
+
elif arg.format not in ("csc", "csr"):
|
404 |
+
arg = arg.tocsc()
|
405 |
+
return arg
|
406 |
+
|
407 |
+
|
408 |
+
###############################################################################
|
409 |
+
# Wrappers for NumPy types that are deprecated
|
410 |
+
|
411 |
+
# Numpy versions of these functions raise deprecation warnings, the
|
412 |
+
# ones below do not.
|
413 |
+
|
414 |
+
def matrix(*args, **kwargs):
|
415 |
+
return np.array(*args, **kwargs).view(np.matrix)
|
416 |
+
|
417 |
+
|
418 |
+
def asmatrix(data, dtype=None):
|
419 |
+
if isinstance(data, np.matrix) and (dtype is None or data.dtype == dtype):
|
420 |
+
return data
|
421 |
+
return np.asarray(data, dtype=dtype).view(np.matrix)
|
422 |
+
|
423 |
+
###############################################################################
|
424 |
+
|
425 |
+
|
426 |
+
def _todata(s) -> np.ndarray:
|
427 |
+
"""Access nonzero values, possibly after summing duplicates.
|
428 |
+
|
429 |
+
Parameters
|
430 |
+
----------
|
431 |
+
s : sparse array
|
432 |
+
Input sparse array.
|
433 |
+
|
434 |
+
Returns
|
435 |
+
-------
|
436 |
+
data: ndarray
|
437 |
+
Nonzero values of the array, with shape (s.nnz,)
|
438 |
+
|
439 |
+
"""
|
440 |
+
if isinstance(s, sp._data._data_matrix):
|
441 |
+
return s._deduped_data()
|
442 |
+
|
443 |
+
if isinstance(s, sp.dok_array):
|
444 |
+
return np.fromiter(s.values(), dtype=s.dtype, count=s.nnz)
|
445 |
+
|
446 |
+
if isinstance(s, sp.lil_array):
|
447 |
+
data = np.empty(s.nnz, dtype=s.dtype)
|
448 |
+
sp._csparsetools.lil_flatten_to_array(s.data, data)
|
449 |
+
return data
|
450 |
+
|
451 |
+
return s.tocoo()._deduped_data()
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Aden
ADDED
Binary file (133 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Anadyr
ADDED
Binary file (743 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Aqtau
ADDED
Binary file (606 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Aqtobe
ADDED
Binary file (615 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Ashgabat
ADDED
Binary file (375 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Atyrau
ADDED
Binary file (616 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Bahrain
ADDED
Binary file (152 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Baku
ADDED
Binary file (744 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Bangkok
ADDED
Binary file (152 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Barnaul
ADDED
Binary file (753 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Beirut
ADDED
Binary file (732 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Brunei
ADDED
Binary file (320 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Choibalsan
ADDED
Binary file (619 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Chongqing
ADDED
Binary file (393 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Chungking
ADDED
Binary file (393 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Damascus
ADDED
Binary file (1.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Dhaka
ADDED
Binary file (231 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Dubai
ADDED
Binary file (133 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Dushanbe
ADDED
Binary file (366 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Famagusta
ADDED
Binary file (940 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Gaza
ADDED
Binary file (2.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Hebron
ADDED
Binary file (2.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Ho_Chi_Minh
ADDED
Binary file (236 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Hong_Kong
ADDED
Binary file (775 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Irkutsk
ADDED
Binary file (760 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Istanbul
ADDED
Binary file (1.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Jakarta
ADDED
Binary file (248 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Jerusalem
ADDED
Binary file (1.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kabul
ADDED
Binary file (159 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kamchatka
ADDED
Binary file (727 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kashgar
ADDED
Binary file (133 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kathmandu
ADDED
Binary file (161 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Katmandu
ADDED
Binary file (161 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Khandyga
ADDED
Binary file (775 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kolkata
ADDED
Binary file (220 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Krasnoyarsk
ADDED
Binary file (741 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kuching
ADDED
Binary file (320 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Kuwait
ADDED
Binary file (133 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Magadan
ADDED
Binary file (751 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/tzdata/zoneinfo/Asia/Muscat
ADDED
Binary file (133 Bytes). View file
|
|